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Abstract— Visual Simultaneous Localization and Mapping (VSLAM) systems are widely used in mobile robots for autonomous 
navigation.  One important part of VSLAM is trajectory estimation. Trajectory estimation is a part of the localization task in VSLAM 
where a robot needs to estimate the camera pose in order to precisely align the real visited image locations.  The poses are estimated 
using Visual Odometer Trajectory Estimation (VOTE) by extracting distinctive and traceable key points from sequence image 
locations having been visited by a robot. In the visual trajectory estimation, one of the most popular solutions is arguably PnP-
RANSCA function. PnP-RANSAC is a common approach used for estimating the VOTE, which uses a feature descriptor such as 
SURF to extract key-points and match them in pairs based on their descriptors. However, due to the sensor noise and the high 
fluctuating scenes constitute an inevitable shortcoming that reduces the single visual descriptor performance in extracting the 
distinctive and traceable key points. Thus, this paper proposes a method that uses a random sampling scheme to combine the result of 
multiple key-points descriptors. The scheme extracts the best key points from SIFT, SURF and ORB key-point detectors based on 
their key-point response value. These key points are combined and refined based on Euclidean distances. This combination of key 
points with their corresponding visual descriptors is used in VOTE, which reduces the trajectory estimation errors. The proposed 
algorithm is evaluated on the widely used benchmark dataset KITTI where the three longest sequences are selected, 00 with 4541 
images, 02 with 2761 images, and 05 with 1101 images. In trajectory estimation experiment, the proposed algorithm can reduce the 
trajectory error of 44%, 8% and 13% on KITTI dataset for the sequence 00, 02 and 05 respectively based on translational and 
rotational errors. In addition, the proposed algorithm succeeded in reducing the number of key points used in VOTE as combined 
with the state-of-the-art RTAB-Map. 
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I. INTRODUCTION 

Accurate Visual Odometry (VO) is one of the crucial 
elements in Visual Simultaneous Localization and Mapping 
(VSLAM) for autonomous navigation and driving assistance 
based on computer vision. VO can be identified as a process 
of estimation of a camera pose and motion between a 
sequence of image locations where the Trajectory Estimation 
(TE) is a process, which takes camera poses and enriches 
them with time information. Nister et al. proposed the Visual 
odometer (VO) term in 2004 [22]. National Aeronautics and 
Space Administration (NASA) used the VO in their rovers 
for Mars exploration missions [18]. Since that time, the VO 
has occupied a large and a growing share in the field of 
robotics and autonomous navigation even with computer 
vision application such as Content-Based Image Retrieval  
(CBIR). 

In the literature, the pose estimation problem is known as 
Perspective-n-Point (PnP) which determines the pose of a 
camera based on the apparent position of number n key 

points extracted from image locations [7]. There are many 
methods proposed for Visual Odometry Trajectory 
Estimation (VOTE) based on a PnP problem such as Direct 
Linear Transform (DLT) or Random Sample Consensus 
(RANSAC) [6]. However, the DLT method might produce 
solutions, which are not valid in particular orthogonal due to 
estimation step. 

Perspective-n-Point using RANSAC (PnP-RANSAC) 
scheme has been used to estimate the pose which is used for 
constructing the trajectory of a robot. The progress of 
RANSAC has earned considerable attention from 
researchers since Fischler, and Bolles [6] introduced this 
method regarding the convergent speed and performance 
[11], [16], [30]. One of the problems in the RANSAC is 
profoundly affected by the number and the distribution of 
the key points. RANSAC picks up the sample randomly, the 
number of key points affects the degree of variation of 
outputs to the same inputs, and the distribution of key points 
is a significant factor for efficient trajectory estimation [13], 
[24], [31]. 
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Different approaches tackle the problem of critical points 
distribution by dividing the image location into sub regions 
overlapping or non-overlapping in order to decrease the 
number, and the distribution of key points [2]. However, 
dividing the image locations into sections is an undesirable 
way in configuration [13], [26], [31]. The number of points 
and their distribution associated with the correct matched 
Key points can improve the VO performance [28]. However, 
VOTE approaches which using PnP-RANSAC scheme with 
a single Key point’s detector cannot extract the suitable 
number and distribution of the Key points. 

The key point’s detection method needs to be robust and 
be able to find similar key points in the previous images 
regardless of any differences in image scaling, rotation, or 
variance of illumination. Key point’s detection has a primary 
influence on the accuracy of estimating the calibration 
matrix and the fundamental matrix, which are used for 
estimating the camera poses [27], [26]. 

Therefore, this research focuses on the key point’s 
detection stage in VOTE and proposes a new selection 
scheme for enhancing a stereo VO framework named 
Multiple Descriptors for Visual Odometry Trajectory 
Estimation (MD-VOTE). The proposed framework extracts 
and selects the most responsive key points using three visual 
descriptors named Speeded-Up Robust Features (SURF), 
Scale-Invariant Feature Transform (SIFT) and Oriented 
FAST and Rotated BRIEF (ORB). These key points are 
refined and combined in order to keep the distribution, and 
the key points with the minimum number of key points, 
which improves the RANSAC performance and estimates a 
high accurate trajectory of a robot. 

Real-Time Appearance-Based Mapping (RTAB-Map) is 
the state-of-the-art VSLAM approach, and it is a single 
visual descriptor approach, which can estimate a robot 
trajectory using PnP-RANSAC 3D-2D method. RTAB-Map 
is used as a based method to compare with the proposed 
MD-VOTE. The proposed algorithm MD-VOTE is 
evaluated on the outdoor dataset Vision Benchmark Suite 
from Karlsruhe Institute of Technology and Toyota 
Technological Institute (KITTI), and the evaluation results 
are compared with RTAB-Map. The proposed MD-VOTE 
significantly outperforms RTAB-Map regarding translational 
and rotational errors on the longest three sequences 00, 02, 
and 05 from KITTI datasets.  

This paper is organized as follows: Section (II) highlights 
a general VOTE framework and its challenges in extracting 
the distinctive key points and describes the proposed MD-
VOTE algorithm. Section (III) presents the experimental 
setup, and the results of the trajectory estimation obtained by 
the proposed MD-VOTE algorithm and RTAB-Map 
examined under different conditions on the KITTI datasets. 
Finally, Section (IV) gives a summary of the paper. 

II. MATERIAL AND METHOD 

A new selection scheme for enhancing VOTE named 
Multiple Descriptors for Visual Odometry Trajectory 
Estimation (MD-VOTE) is proposed to use the multiple 
descriptors ”SURF, SIFT and ORB” based on the PnP-
RANSAC scheme to estimate the robot’s trajectory along 
visited locations. The proposed algorithm selects a set of 
distinctive 3D-2D matching key points, which are extracted 

from the image locations by using the key points detectors 
method of each descriptor individually. Algorithm 1 
illustrates the proposed MD-VOTE procedures and Figure 1 
shows the flowchart of the proposed MD-VOTE algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The flowchart for the proposed MD-VOTE algorithm 

A. Key points Detection Stage 

At the first stage, the key points detector from each visual 
descriptor: SURF, SIFT, and ORB detect their key points 
individually from the current image location. After that, the 
proposed algorithm ranks each key points according to its 
response value, followed by the refinement process. Next, 
the visual features are extracted from each refined key point, 
and the description of such key points is generated based on 
its corresponding descriptor. 

The final process in this stage is the key frame selection 
where the proposed algorithm used the method of RTAB-
Map in selecting the key frame according to a pre-set 
threshold. The same key frame will remain until the number 
of inliers points become under the threshold [15]. 

1) Ranking and Selecting Key points: The proposed 
algorithm starts by detecting three sets of key points using 
the three visual descriptors SURF, SIFT, and ORB from the 
current image location. Each set of key points is ranked 
individually based on the key points response value. The 
SIFT’s key points detector applies the Differences of 
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Gaussian (DoG) in order to recognize as much as possible of 
the key points by generating several Gaussian-blurred 
images. These images are based on several scales of the 
input image. 

After that, the SIFT’s key points detector computes the 
DoG images based on the subtraction of neighbors in scale 
space from each other. Based on the DoG images, the key 
points are selected if they meet the following conditions: (1) 
they are locally extreme in the DoG images in space and 
scale. (2) They fulfill the threshold ratio of eigenvalues of 
the Hessian matrix. (3) The key points contrast is high. The 
key points which succeed are detected by interpolating 
through the DoG images [17]. The contrast value is the key 
points response value, which is used to determine how 
strong the key points are [12]. 

The SURF descriptor is partly inspired by SIFT, where 
the key points in SURF start with computing integral in 

images which are fast in generating the Laplacian of 
Gaussian images using a box filter with various sizes. After 
that, the key points are detected as local maxima of the DoH 
on different levels applied to the integral image [1]. Since 
the key points are selected and extracted based on the DoH 
value [1], the DoH value is also used as the key points 
response value which is used to determine the strength of the 
key points [12]. 

The ORB develops Orientation FAST Key point (OFAST) 
for the key points detector which enhances the Features for 
Accelerated Segment Test (FAST) detector. The OFAST 
detects the key points from the input image based on the 
FAST detector with the radius of 9 for the circular of the 
connected pixels around the corner. Then, the key points are 
sorted out based on Harris corner computations to select the 
top key points [25]. The Harris corner computation produces 
the key point’s response value, which is used to determine 
how strong the key points are [12]. 
 
Algorithm 1 : MD-VOTE 
1: ������  is a set of 2D keypoints detected by SURF keypoints 

detector from the current image �	 
2: ���
�� is a set of 2D keypoints detected by SIFT keypoints 

detector from the current image �	 
3: ���� is a set of 2D keypoints detected by ORB keypoints 

detector from the current image �	 
4: Ranked the keypoints ������  based on the Determinant of 

Hessian (DoH) value of each keypoint. 
5: Ranked the keypoints ���
�� based on the contrast value of 

each keypoint. 
6: Ranked the keypoints ���� based on the Harris corner 

measure value of each keypoint. 
7: �������  is a set of the top k keypoints from ������ 
8: ����
�� is a set of the top k keypoints from ���
�� 
9: ����� is a set of the top k keypoints from ���� 
10: ����� is a set of the combination of keypoints  

����� � ������� ∪ top���� ∪  top��� 
11: ���� !"�# � $%&��'(�)%*'(%+%(�,����� , ./!"0 
 

12: * � 1%2�34%56�427�'�( 8���� !"�# , 9:)1, 9�1;
, <)= > extracts 

the corresponding features of each keypoints based on its own 
descriptor. 

13: ��?�!� � @2'4A'B%C2�7ℎ'(EF���� !"�# , *, �G�H ��/�I , 
where �G�H ��/� is the keyframe image. 

14: ��JK is a set of 3D keypoints extracted from a keyframe 
image based on the corresponding ��?�!�. 

15: ��B%	 is the corresponding pose of the camera at time t which 
is estimated by using @(@ L )MN9MOF���� !"�# , ��JKI. 

 
After the ranking of each key points set, the top k key 

points are selected from each key points set and are 
combined using Equation 1 

 
kpQRR  �  top�T��  ∪ top����  ∪ top��� (1) 

where topSURF, topSIFT, topORB are the sets of the top k key 
points extracted from each descriptor, the value of the 
variable ”top k” was selected as the top 400 key points based 
on [14] work and [ is the union operation as Equation 2 

 
A ∪ B � Wx ∣ x ∈ A or x ∈ B\             ,20 

 
where A and B are two sets of key points. Each descriptor 
covers up the shortages of each other, and the result of this 
combination is a set of distinctive key points extracted from 
the integration of these descriptors. Finally, the set kpall is 
passed to the next process to keep the distinctive key points 
and eliminate the overlapped key points as described in the 
next paragraph. 

2) Key points Refinement: The result of the previous 
process is the set of key point’s kpall, which contains the top 
k key points detected by each descriptor. In this stage, the 
key point’s refinement method keeps the distinctive key 
points and eliminates the overlapped ones. The distinctive 
key points are selected according to the highest response 
value in a limited area. The area size is defined by the radius 
dmin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2: A simple example for the refining method. 
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Fig. 2 shows an example of the refining method as 
follows: 

• Sorts out the key points in the set kpall based on the 
key point’s location in the image. 

• kpd is a set of key points which includes the first key 
points kp0 in the set kpall. 

• The set kpd also includes all key points lying within a 
distance d_`a from the key points kp0. 

• The function selects the key points from the set kpd, 
which has the highest rank based on its corresponding 
descriptor. As shown in Fig. 2, the set kpd includes 
the key points [kp1, kp2, kp3] whose corresponding 
ranks are [2], [5], [9] respectively. The key point’s 
kp2 is selected because it obtained the highest rank, 
as the key points with the highest rank is more 
distinctive and traceable. 

• The selected key points from the previous step is 
added to the set kprefine and the set kpd is eliminated 
from the set kpall. 

• The steps (2,3,4,5) are repeated until kpall is empty. 

Fig.  3: Example for the key points refinement method using a different 
radius 

Fig. 3 depicts an example of the number of key points 
detected by the three visual descriptors SURF, SIFT and 
ORB 
and shows the impact of key points refinement method using 
a different radius on the number of key points. The image 
location in the example is the location number 5 taken from 
sequence 05 of the KITTI dataset. This example shows that 
the distribution of the key points is focused on the edges of 
the white wall and the car plate. The proposed refinement 
method tries to find the suitable distribution of the key points, 
which improves the trajectory estimation. 

B. Key points Tracking Stage 

The second stage handles the pairwise matching of the 
key points and checks the mutual consistency. After refining 
the combined key points, each descriptor processes the 
pairwise matching of its keypoints. This set of key points is 
pairwise matched between the current image location and the 
key frame image location using the Nearest Neighbor 
Distance Ratio (NNDR) approach with kd tree and produces 
the set of matched pair-key points [14]. Then, the proposed 
algorithm extracts the 3D points from the key frame based 
on the corresponding 2D key points. At this stage, the 

refined 2D key points and their corresponding 3D key points 
are passed on to the next stage of motion estimation. 

 

C. Motion Estimation Stage 

The motion estimation stage is the stage where the pose is 
estimated between the current image location and the key 
frame location. The refined 2D key points and their 
corresponding 3D key points are used to estimate the 
translational and rotational matrix by using PnP-RANSAC 
approach, which eliminates the outlier. Finally, the pose of 
the camera related to the current image location is saved in 
the map representing the movement motion between the two 
locations as translational and rotational matrices. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.  4: Samples of KITTI dataset 

Regarding the graph optimization, the proposed algorithm 
used the Tree-based netwORk Optimizer (TORO) [10] that 
is being used in RTAB-Map [15]. 

III.  RESULTS AND DISCUSSION 

A. Experimental Setup 

The proposed MD-VOTE algorithm performance was 
evaluated using three outdoor scenes: the sequences 00, 02, 
and 05 from the public dataset KITTI [9]. KITTI is a stereo-
image dataset provided with visual odometry ground truth 
for the sequences. This dataset is used extensively in the 
literature to evaluate the performance of trajectory 
estimation algorithms [5, 21, 20, 23, 4]. Table 1 summarises 
the KITTI sequences and Fig. 4 shows samples of KITTI 
dataset. 

TABLE I 
THE KITTI  SEQUENCES DATASETS [9].  

Dataset #Images Image size (px) Dist(Km) 

KITTI 00 4541 1241x370 3.73 

KITTI 05 2761 1226x370 2.22 

KITTI 07 1101 1226x370 1.27 
 

The average translational and average rotational error 
criteria are used to evaluate the performance of the proposed 
MD-VOTE where the translational error is measured in 
percentages, and the rotational error is measured in degrees 
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per meter. KITTI Benchmark Suite is a toolbox to assess the 
trajectory error. The trajectory error estimates the relative 
average of the translational error Etrans and rotational error 
Erot using the segments at 100m, 200m, …, 800m lengths. It 
was conducted on the 3D coordinates of the estimated 
trajectory and the ground truth as follows [19]. 

EcdQae,F0 � 1
|F| i jkFplm ⊖ pom I ⊖ Fpp ⊖ p`Ikjq,`,p0∈�

,30 

 

Edsc,F0 � 1
|F| i  

,`,p0∈�
∠uFplm ⊖ pom I ⊖ Fpp ⊖ p`Iv,40 

where F is a set of frames (i, j),  px  ∈ SE,30 is the estimate 
poses and p ∈ SE,30 is the true poses and ∠z. | is the rotation 
angle. The SE(3) is a special Euclidean group, refer to 
transformations matrix and the ⊖  stand for the inverse 
compositional operator [8], [9]. The relative change is used 
to measure the difference between the two values where one 
of the values is considered as reference ”initial” values xi 
and relative change is unit less percentages expressed the 
percentage change between the initial value and the final 
value using Equation 5 [29] 

 

Cd,x~, x`0 � x~ L x`
|x`|                                                    ,50 

 
where Cdis relative change, x` is the initial value and x~ is the 
final value relative change is used to measure the difference 
that has been made by the proposed algorithm MD-VOTE in 
trajectory estimation against the start-of-the-art algorithm. 
Relative change is used to measure the difference that has 
been made by the proposed algorithm MD-VOTE in 
trajectory estimation against the start-of-the-art algorithm. 
All the parameters of the visual descriptors SURF. SIFT and 
ORB are set as reported in OpenCV [12]. The value of the 
variable maximum number of key points extracted from the 

image being determined at 400 points for each descriptor. 
This value is a default set by RTAB-Map [15]. For 
comparative purposes, RTAB-Map is used as baseline 
VOTE method to compare with the proposed MD-VOTE 
algorithm, where MD-VOTE and RTAB-Map parameters 
are set up as reported in [15]. 

B. Evaluation 

The first experiment evaluates the performance of the 
benchmark VOTE using the three visual descriptors SURF, 
SIFT and ORB individually whereas each descriptor is tested 
with a different number of key points: 400 key points and 
1000 key points. This experiment is conducted on the same 
three sequences (00, 02, and 05) in the KITTI dataset. The 
experiments are divided into three categories for simplicity 
in the evaluation and presentation of the results. 

1) Selecting the number of key points: Table 2 shows the 
results of the first experiment conducted using 400 and 1000 
key points in trajectory estimation through two values, the 
translational and rotational errors. An average translational 
error is measured in percentages, and an average rotational 
error is measured in degrees per meter. 

The results show that the benchmark VOTE using the 
visual descriptor ORB has scored the least errors compared 
to SURF and SIFT using the three sequences with a 
maximum of 1000 extracted key points used in trajectory 
estimation. In contrast, with a maximum of 400 extracted 
key points, the benchmark VOTE using the visual descriptor 
SURF has scored the least errors compared to SIFT and 
ORB using the same sequences. The reason is that SURF 
can extract and match the 400 key points more efficiently 
than other feature descriptors, which improve the PnP-
RANSAC process in estimating the poses. 

 

 

TABLE II 
COMPARISON BETWEEN DIFFERENT VISUAL DESCRIPTORS USING A DIFFERENT NUMBER OF KEY POINTS 

 
Based on Table 2, the SURF with 400 key points has 

scored the best results in the trajectory estimation for the 
sequences 00 and 02 over the other descriptors even with a 
different number of extracted key points. This fact shows 
that the quality of key points is more significant than the 
quantity in estimating the trajectory for the long sequences 
such as 00 and 02. In the case of sequence 05, ORB with 
1000 key points score the least errors due to its high speed in 
detecting and extracting the key points. 

2) The refinement method evaluation: The second 
experiment is conducted to evaluate the performance of the 
proposed MD-VOTE algorithm with the value of a different 
radius dmin, and shows the impact of a different radius on 
the efficiency of the proposed algorithm in estimating the 
trajectory. 

Table 3 shows the results of the proposed MD-VOTE 
algorithm using different radius d_ � z0,1,3,6,9|  to the 
proposed refinement method. This experiment shows the 

 
Seq-00, 4541 Images Seq-02, 4661 Images Seq-05, 2761 Images 

  
Translation  error % Rotation  error d/m  Translation  error % Rotation  error d/m  Translation  error % Rotation  error d/m  

4
00

 
K

e
yp

oi
nt

s SURF 0.016375 1.13E-04 0.013978 7.40E-05 0.010763 6.50E-05 

SIFT 0.019614 1.41E-04 0.017221 9.90E-05 0.01249 6.80E-05 

ORB 0.017698 1.16E-04 0.015105 9.60E-05 0.011001 6.40E-05 

1
00

0
 

K
e

yp
oi

nt
s SURF 0.025192 1.38E-04 0.015103 8.38E-05 0.009958 5.60E-05 

SIFT 0.025316 1.52E-04 0.01533 9.93E-05 0.01165 7.00E-05 

ORB 0.02509 1.37E-04 0.015001 8.20E-05 0.009754 5.40E-05 
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influence of the key point’s distribution on the estimation of 
trajectory using sequence 05 from KITTI dataset. The results 
show that the proposed MD-VOTE algorithm with radius = 
1 achieved minimal errors, and based on this result the 
radius = 1 is adopted in all experiments. 

TABLE III 
TRAJECTORY ESTIMATION ERRORS FOR SEQUENCE 05-USING MDVOTE 

Distance in 
pixel 

No. 
Keypoints 

Translation % Rotation d/m 

No filter 1200 0.010084 6.10E-05 

d_`a=1 980 0.008955 5.40E-05 

./!"=3 719 0.010589 5.90E-05 

./!"=6 518 0.011374 6.60E-05 

./!"=9 266 0.012149 8.20E-05 

 
It is noticed that using the proposed MD-VOTE algorithm 

without refining the key points which are 1200 key points 
extracted from the three visual descriptors, the MD-VOTE 
gets 0.010084% and 6.1E-05 m/d for the average 
translational and average rotational errors respectively. As 
for MD-VOTE with the key points refinement using 
radiusd_`a � 1, the maximum number of key points reaches 
980 key points and scores 0.008955% and 5.4E-05 d/m for 
the average translational and average rotational errors 
respectively which are the least recorded errors for the 
sequence 05. Furthermore, when the radius value increases, 
the number of key points decreases and the errors rate 
increases. 

Fig.s 5a and 5b show the translational and rotational 
errors as a function of the path length and the trajectory 
segmented at 100, 200,…, 800m lengths [9]. It is noticed 
that the proposed MD-VOTE algorithm used with the key 
points refinement using radius d_`a � 1  estimates the 
trajectory for sequence 05 with errors decreasing 
proportionately with the distance travelled which scored the 
least errors, i.e., 0.004638% and 0.000022 d/m for 
translational and rotational errors respectively. 

Additionally, Fig.s 5c and 5d show the translational and 
rotational errors as a function of the moving speed. It is 
noticed that the proposed MD-VOTE algorithm with radius 
d_`a � 1scored the least errors over linear change speed 
between 6 km/h to 12 km/h. It is concluded from Fig. 5c that 
the translational error increases as a vehicle move faster. As 
a matter of fact, the vehicle speeds up when it moves in a 
long straight path. Conversely, Fig. 5d shows that the 
rotational error is inversely proportional to speed, where the 
rotational error appears with the rotational movement of the 
vehicle, and the vehicle slows down its speed as it rotates. 

Now, based on the results shown in Table 3, it was 
decided to select the radius d_`a � 1  to be used in other 
experiments because MD-VOTE algorithm with radius 
d_`a � 1 has scored the least trajectory estimation errors for 
sequence 05. Accordingly, whenever the MD-VOTE 
algorithm is mentioned throughout this research, it means 
that it is the proposed algorithm that includes the key points 
refinement method-using radiusd_`a � 1 , unless it is 
explicitly stated otherwise. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Fig.  5: Experiment on sequence 05 using MD-VOTE with different radius 
values 

3) The MD-VOTE algorithm evaluation 
The final experiment evaluates the performance of the 

proposed MD-VOTE algorithm and compares between the 
proposed MDVOTE with the key points refinement method 
against the standard RTAB-Map in trajectory estimation for 
the three sequences 00, 02 and 05 from the KITTI dataset. 
Table 4 shows the average translational and average 
rotational errors for each sequence. The last row in Table 4 
shows the relative change ratio calculated between the 
proposed MD-VOTE algorithm with the key points 
refinement method and the standard RTAB-Map. 
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TABLE IV 
TRAJECTORY ESTIMATION ERRORS FOR SEQUENCES 00, 02 AND 05  
USING THE PROPOSED MD-VOTE WITH THE FILTERING METHOD  

AGAINST RTAB-MAP 

 
To clarify the efficiency of the proposed MD-VOTE 

algorithm, a comparison has been made between MD-VOTE 
and RTAB-Map regarding relative change with respect to 
trajectory estimation errors. The results of the comparison 
based on sequence 00, Table 4 show that MD-VOTE 
successfully reduces the translational and rotational errors by 
-44:35% and -23:80% respectively regarding relative 
changes with respect to RTB-Map. Similarly, the results of 
the comparison based on sequence 02, show that MD-VOTE 
successfully reduces the translational error by -8:65%, 
whereas the rotational error increases by +1:29%. As for 
sequence 05, both the translational and rotational errors 
decrease by -13:18% and -14:28% respectively. 

IV.  CONCLUSIONS 

The PnP-RANSAC method is applied to trajectory 
estimation. However, the single key point’s detector cannot 
efficiently tackle a challenging environment, which contains 
fluctuating scenes. Trajectory estimation requires distinctive 
matching key points that can be tracked to estimate the 
accurate trajectory of a robot’s camera movement between 
sequences of image locations. In this paper, the proposed 
algorithm MD-VOTE combines the key points, which are 
extracted from the multiple visual descriptors, SURF, SIFT 
and ORB.  

The combined key points are further filtered with the 
proposed key point’s refinement method to select the most 
distinctive key points, which contribute to the PnP-
RANSAC to improve the VOTE performance. The proposed 
algorithm MD-VOTE is evaluated on the longest three 
sequences 00, 02, and 05 from the outdoor dataset KITTI 
that is a widely used benchmark. The evaluation results are 
compared with RTAB-Map using single and multiple visual 
descriptors. The results of the experiments indicate that the 
proposed MD-VOTE significantly outperforms RTAB-Map 
in terms of translational and rotational errors, whereas the 
proposed algorithm scores the least translational and 
rotational errors (0.013636%, 0.000096), (0.013432%, 
0.000078) and (0.008955%, 0.000054) in the three 
sequences 00, 02 and 05 respectively.  

Additionally, the proposed MD-VOTE scores relative 
change ratio (-44.35%, -23.80%), (-8.65%, +1.29%) and (-
13.18%, -14.28%) regarding RTAB-Map for translational 
and rotational errors in the three sequences 00, 02 and 05 
respectively. The proposed MD-VOTE algorithm shows 
promising results in accurate trajectory estimation where 
MD-VOTE algorithm success to extract and retains the 
salient key points from multiple visual descriptors with 
suitable number and distribution for the key points. These 
key points improve the VO performance. As a future work, 
the MD-VOTE algorithm will integrate the Loop Closure 
Detection (LCD) to improve the VSLAM performance. 
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