

Vol.10 (2020) No. 2

ISSN: 2088-5334

Algorithmic Efficiency of Stroke Gesture Recognizers: a Comparative
Analysis

Ana Belén Erazoa1, Jorge Luis Pérez Medinaa2
 a Intelligent and Interactive Systems Lab (SI2-Lab), Universidad de Las Américas (UDLA), Quito, 170504, Ecuador

E-mail: 1ana.erazo@udla.edu.ec; 2jorge.perez.medina@udla.edu.ec

Abstract— Gesture interaction is today recognized as a natural, intuitive way to execute commands of an interactive system. For this
purpose, several stroke gesture recognizers become more efficient in recognizing end-user gestures from a training set. Although the
rate algorithms propose their rates of return there is a deficiency in knowing which is the most recommended algorithm for its use. In
the same way, the experiments known by the most successful algorithms have been carried out under different conditions, resulting in
non-comparable results. To better understand their respective algorithmic efficiency, this paper compares the recognition rate, the
error rate, and the recognition time of five reference stroke gesture recognition algorithms, i.e., $1, $P, $Q, !FTL, and Penny Pincher,
on three diverse gesture sets, i.e., NicIcon, HHReco, and Utopiano Alphabet, in a user-independent scenario. Similar conditions were
applied to all algorithms, to be executed under the same characteristics. For the algorithms studied, the method agreed to evaluate the
error rate and performance rate, as well as the execution time of each of these algorithms. A software testing environment was
developed in JavaScript to perform the comparative analysis. The results of this analysis help recommending a recognizer where it
turns out to be the most efficient. !FTL (NLSD) is the best recognition rate and the most efficient algorithm for the HHreco and
NicIcon datasets. However, Penny Pincher was the faster algorithm for HHreco datasets. Finally, $1 obtained the best recognition rate
for the Utopiano Alphabet dataset.

Keywords— gesture interaction; gesture recognition; algorithmic efficiency; stroke analysis.

I. INTRODUCTION

Gesture-based User interfaces are often recognized for
their naturalness and intuitiveness [1], [2], with a wide range
of applications, such as diagram design, user interface
prototyping, online food ordering, handwriting recognition,
in-car interaction, and smart home [3]. Today’s operating
systems do support programming gesture-based interfaces,
even suggesting some design guidelines for appropriate
mapping gestures to functions, which is a complex problem
[4]. Unfortunately, these guidelines cannot cover all
potential usages. In order to collect gestures for other
purposes that are not covered, elicitation techniques [5] can
be used to inform the design process for new gestures [6].
Subsequently, techniques such as machine learning,
template-based pairing, and pattern recognition are used to
incorporate these gestures into a gesture recognition process.
Gesture recognition algorithms typically try to distinguish
the candidate gesture that was drawn, to compare it with
reference gestures previously recorded in the system, and to
return the closest gesture that has been found, if any.

Nowadays, the main challenge for gesture recognition is
to produce a recognition algorithm with the best algorithmic
efficiency, e.g., in terms of execution time, recognition rate,

and computational complexity. Several such algorithms
already exist, but they are all programmed in different
languages and tested on different gesture sets.

The literature review does not report any analysis in
which these algorithms are compared under similar
conditions., thus having consequences on hypotheses and/or
assumptions about these algorithms. A contribution to
addressing this problem, therefore, consists of conducting a
comparative analysis of the most prominent gesture
recognizers, such as $1 [7], $P [8], $Q [9], !FTL and !NFTL
[10] and Penny Pincher [11], under the same experimental
conditions, using as assessment parameters their recognition
rate and execution time. To comply with this, a case study
will be carried out that takes as a reference a set of gestures,
which will be used individually, in the evaluation of the
algorithms, in order to compare the algorithms, indicated
above.

The comparative analysis is performed under the same
consistent conditions of execution and with the same
reference sets of gestures. The JavaScript programming
language is used to guarantee the same execution
environment. The study is focusing on three gesture sets:
NicIcon [12], HHreco [13], [14] and Utopiano Alphabet
[15]. This last dataset was created by us to incorporate other

438

sets of gestures in our comparative evaluation. As a result of
the study, it is expected to obtain a series of statistical tables
with the data obtained from the experimentation will be
presented and analyzed to identify the most appropriate
platform for the recognition of the proposed gesture.

The purpose of this article is to report the results of a
comparative study to contribute with the advances in
recognition of gestures by being able to make known which
are the most efficient algorithms, making the selection
process easier when it is necessary to incorporate natural
interactions with gestures in software applications. This will
help in the creation of new systems that allow a much more
sophisticated and simpler human-computer interaction for
end users. With correct implementation of a recognition
algorithm, a system can be made much more efficient and
time and money will be saved in its development. A special
approach is towards the implementation of these recognizers
in systems that help the prototype in the analysis and
requirements gathering phase, since they will show in real-
time how the interfaces and views will be displayed in the
application being developed, making that these stages of
development are much more precise and respond to the
user’s taste.

The remainder of this paper is structured as follows: the
next section reviews some work related to the most known
gesture recognition algorithms. The third presents the
comparative evaluation under the same conditions of
execution. The fourth section concludes the paper by
summarizing the findings of the experiment and by
discussing some future avenues of this work.

II. MATERIALS AND METHOD

A. Gesture Definition

In general, a gesture is referred to as anybody movement
performed to convey some meaning to the audience, such as
some thoughts, opinions, ideas, feelings, intentions, or to
combine them with speech. In gesture interaction, a gesture
is more precisely defined as “any physical movement that a
digital system can sense and respond to without the aid of
traditional pointing devices, such as a mouse or stylus” [1].
More specifically in the context of 2D gesture recognizers, a
stroke gesture consists of a sequence of points delineated by
a starting point and an ending point [2]. There are two types
of gestures [2]: (1) Uni-stroke are gestures without any
interruption in their line [7], and (2) Multi-stroke are
gestures with time/space interruption among their strokes
[16]. An interruption is detected with the lifting of the input
device (e.g., a stylus or a mouse) until touching the surface
again for the next stroke of the gesture [8].

A gesture can also have a resampling, which is to
transform the figure with n number of points to a specific
number of points p ≤ n. Gestures have several invariance
properties such as: translation (when invariant to position),
scale (when invariant to size), rotation (when invariant to
angle), and articulation (when invariant to the way the stroke
have been performed).

B. Current Status of Stroke gesture Recognition Algorithms

In this section, we deliver a brief overview of selected
stroke gesture recognizers to provide the study with some

background in this field. A pioneer is GrandMa [17], which
recognizes a candidate gesture from a training set by
computing 13 geometric features and comparing them with
the reference gestures contained in the training set. Instead
of extracting and comparing features, a typical process found
in machine learning, Levenshtein-based recognition (LVS)
[18] decomposes a gesture into a suite of small directional
strokes indicating the eight directions of a compass, and
compares gestures with the Levenshtein distance.

$1 [7] showed a quantum leap in the race for the best
recognizer by forgetting about complex programming
environments, procedures, and recognition processes to
simplify the recognition to its maximum. In this way, it
opened a new series of recognizers. $1 is a template-based
Uni-Stroke gesture recognizer that offered a very good
recognition rate while keeping the recognition time low. $P
[8] extended $1 to recognize multi-stroke gestures by
adopting a cloud matching approach instead of a pattern,
thus offering flexibility in the way gestures are compared,
indifferently from their composition, direction, ordering, and
number of strokes. $Q [9] is the last member of the $-family,
which optimizes the recognition time, especially for low-end
devices which are computationally less efficient. Until now,
these recognizers are point-to-point pattern matcher in that
they compare points of the candidate gesture to those of the
reference gestures. Penny Pincher [11] follows a point-to-
vector pattern matching by transforming points into vectors
to be compared. !FTL [10] generalizes this approach with a
vector-to-vector pattern matching: all gestures are vectorized
and compared based on the Lester distance generalized on
vectors instead of points. This approach intrinsically satisfy
position, scale, and rotation invariances since everything is
computed based on vectors. For these reasons, we chose
recognizers considered as representative members of these
three families.

C. Apparatus

The evaluations were carried out using a MacBook
computer with the following characteristics: Processor: 1.1
GHz Intel Core M. RAM memory: 8 GB. SSD: 251 GB.
Graphics Card: Intel HD Graphics 5300 1536 MB.
Operating system version: macOS 10.14.4 (18E226). Kernel
version: Darwin 18.5.0.

D. The Software Experimentation Environment

Figure 1 contains the main screen of the runtime
environment of !FTL [10]. This environment was developed
in JavaScript. The figure shows that the main functionalities
of the experimentation environment are: save a gesture,
compare a gesture, clean the working area, load gestures,
export gestures, compare datasets, export files with the
results. In order to save a candidate gesture, the first thing
that is done is to draw the gesture within the working area,
place a name, choose the number of points for resampling,
select the threshold and click on the button to save the
gesture. The next step is to compare the gesture, for this
another gesture is made with which you are going to undergo
the experimentation, and click on the “Compare Gestures”
command. This will display the results for each algorithm,
showing the name of the resulting gesture, the time used to
obtain the result and the distance, as shown in Figure 1.

439

Fig. 1 The interface of the experimentation environment

Fig. 2 The datasets used in the experiment: a) NicIcon [12]; b) HHreco [13, 14] and c) Utopiano Alphabet

E. Gesture Recognition Algorithms

As previously mentioned, the algorithms selected were
$1, $P, $Q, !FTL and Penny Pincher, since they belong to
three different families. We are not aware of any software
environment that incorporates all these gesture recognizers
at once, except in iGesture [19], which consists of a toolkit
for integrating stroke gesture interaction in user interfaces,
but not for comparing algorithms.

F. Datasets

To perform the experiment, a set of datasets and a
common execution environment were used. Figure 2 and
Table 1 describe the datasets used in the experiment. Note

that for each dataset a significant number of gestures is
displayed.

TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENT

Dataset

N
ro

.
R

ep
re

-
se

nt
at

io
ns

N
ro

. U
se

rs

R
ep

re
se

n-
ta

ti
on

s
by

us

er
 Total Gestures

NicIcon [12] 14 32 55 14x32x55=24.640

HHreco[13,
14]

13 19 30 13x19x30 = 7.410

Utopiano
Alphabet

22 20 10 22x20x10=4.400

440

G. Quantitative Measures

1) Recognition Rate: The recognition rate is an indicator
that allows to calculating the percentage of effectiveness of
an algorithm when it is subjected to an evaluation of gestures
of a candidate dataset with respect to the reference gestures
previously stored in the system. This means that, in
comparison, each candidate gesture will be evaluated with
the recognition algorithms against the reference gestures that
are previously registered in the system. The result will be
indicated showing the closest gesture in distance and the
time it took to compare. Then, the number of times in which
the algorithm recognized the candidate gestures correctly is
added. This sum is divided over the number of gestures
compared and with that, the recognition rate is already
obtained.

2) Error Rate: The error rate is a factor that allows to
calculate the percentage of deficiency of a specific algorithm
when it is submitted to the evaluation of the gestures of a
candidate dataset with respect to the previously stored
reference gestures. This means that, in the comparison, each
candidate gesture will be evaluated with the recognition
algorithms against the gestures that are in the system and the
result will be indicated, showing the closest gesture in
distance and the time it took to compare. Then, the number
of times the algorithm recognized the candidate gestures
incorrectly is added. This sum will be divided by the number
of gestures compared, thus enabling to compute the error
rate.

3) Recognition Time: The recognition time is an indicator
that captures the time in which an algorithm has been
worked when it is subjected to an evaluation, in which a
candidate dataset is compared with the datasets stored in the
system, using the algorithm procedure to indicate the result.
The recognition time is used to see the performance of each
algorithm evaluated. This factor is an average value since
time is measured since the evaluation of a gesture of the
candidate dataset begins and ends with the result of that
gesture. This time is added for each gesture and finally the
average time is computed in milliseconds.

Fig. 3 The experimentation procedure

H. Procedure

Similar conditions were applied to all algorithms, to be
executed under the same characteristics. For the algorithms
studied, the method agreed to evaluate the error rate and

performance rate, as well as the execution time of each of
these algorithms. First, a similar execution environment was
chosen for the comparison process. For these reasons, the $Q
and Penny Pincher algorithms were implemented in the
JavaScript language. Next, these algorithms were integrated
into the !FTL test environment. In parallel, the Utopiano
dataset was defined. After that, the Utopiano dataset was
created, with the voluntary participation of 20 people. Once
the similar conditions were created for each of the
algorithms, the experimentation was carried out with each
dataset. For each dataset the experimentation procedure
performed is summarized in Figure 3.

III. RESULTS AND DISCUSSION

This section presents the results obtained from the
comparative evaluation of the !FTL, $1, $P, $Q and
PennyPincher algorithms, performed with the NicIcon,
HHreco and Utopiano datasets. For each of the datasets, the
recognition rate, the recognition time and the error range of
the algorithms were calculated. For each measure, the results
will be reported and discussed.

I. Recognition Rate

NicIcon recognition rate analysis: Table 2 and Figure 4
show the average results of the recognition rate for the
NicIcon dataset. We can appreciate from these results, the
most recognized algorithm was !FTL(LSD), followed by
!FTL(NLSD). On the other hand, the gestures that had more
accurate results were Electricity and Roadblock. It is
important to note that some algorithms did not fully
recognize certain gestures, such as !FTL(NLSD) and $1 with
the “Gas” gesture. Similarly, the same situation happens
with the algorithm which did not recognize the “Flood”
gesture.

TABLE II
NICICON RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES)

 FTL
(LSD)

FTL
(NLSD)

$1 $P $Q Penny
Pincher

Average

Gas 0.20 0.00 0.00 0.91 0.51 2.42 0.67

Casualty 1.01 0.00 1.92 3.03 0.30 1.31 1.26

Police 2.93 1.22 0.91 2.83 0.71 0.10 1.45

Fire
brigade

6.79 0.30 6.19 2.98 0.71 1.52 3.08

Paramedics 4.34 5.56 8.18 1.82 1.41 11.92 5.54

Accident 6.05 18.63 2.43 5.34 0.85 2.46 5.96

Car 6.05 18.63 2.43 5.34 0.85 2.46 5.96

Person 4.24 0.20 3.03 10.0018.99 9.70 7.69

Fire 8.91 8.91 19.21 5.23 0.20 8.69 8.53

Injury 9.80 0.10 13.4311.8216.57 11.21 10.49

Flood 12.73 7.88 8.28 0.81 37.98 0.00 11.28

Bomb 31.59 35.20 7.10 5.05 0.91 4.35 14.03

Roadblock 14.06 14.67 7.38 26.1216.42 7.08 14.29

Electricity 28.33 21.22 21.3215.80 1.52 19.83 18.00

Average 9.79 9.47 7.27 6.93 6.99 5.93

Make the

reference gestures

Validate the

integrity of the

selected dataset

Select the

candidate dataset
Report the error

Compare candidate gestures

with reference gestures,

using all algorithms

Is the

dataset valid?

no yes

Are there still candidate gestures

and algorithms to evaluated?

Analyze the results

Generate report

with the result of

each algorithm

no yes

441

Fig. 4 Recognition rate resulting from the NicIcon dataset

HHreco recognition rate analysis: Table 3 and Figure 5

present the results obtained after experimentation with the
HHreco dataset. The most recognized algorithms was

!FTL(NLSD), followed by $1. The most recognized gestures
were Ellipse and Arch.

TABLE III
HHRECO RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES)

 FTL (LSD) FTL (NLSD) $1 $P $Q Penny Pincher Average
Parallelogram 1.96 15,29 4.71 4.51 5.49 3.14 5.85
Hexagon 2.94 18.63 10.39 0.78 1.18 1.37 5.88
Moon 12.35 16.27 4.90 4.12 4.12 4.31 7.68
Pentagon 6.47 14.12 23.14 0.59 1.57 0.39 7.71
Cylinder 0.98 16.47 19.80 6.86 4.12 8.04 9.38
Trapezoid 0.78 12.75 13.14 9.80 11.57 9.41 9.58
Square 13.92 32.16 8.63 4.31 4.31 4.71 11.34
Triangle 12.16 34.90 27.45 7.25 5.88 8.04 15.95
Cube 3.33 15.29 20.00 22.75 11.65 24.12 16.24
Heart 13.14 16.47 34.12 19.41 23.92 16.08 20.52
Callout 28.43 34.31 36.27 12.35 11.76 12.94 22.68
Ellipse 64.12 95.29 15.10 10.00 8.82 4.12 32.91
Arch 6.27 5.10 28.63 50.20 54.51 54.90 33.27

Average 12.84 25.16 18.94 11.76 11.48 11.66

Fig. 5 Recognition rate resulting from the HHreco dataset

442

Utopiano recognition rate analysis: Table 4 and Figure 6
indicate the results obtained after experimentation with the
Utopiano dataset. You can see that the algorithm that most

recognized was $1 and !FTL(NLSD). The most recognized
gestures were the letter N and P.

TABLE IV
UTOPIANO RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES)

 FTL (LSD) FTL (NLSD) $1 $P $Q Penny Pincher Average
B
E
S
Y
V
M
X
K
D
T
F
R
C
A
I
O
L
H
G
N
P
Q

1.60
16.50
2.50
2.00
5.50
5.00
7.50
23.16
30.50
4.50
43.50
9.00
16.50
23.50
24.50
33.50
31.00
20.00
17.83
20.00
33.50
40.50

3.85
23.00
6.50
17.33
13.50
7.00
16.50
12.11
38.00
15.00
46.50
6.50
47.00
32.00
26.50
39.50
68.00
32.50
35.17
35.00
19.50
37.00

3.90
19.00
44.00
32.67
30.50
43.00
39.00
54.21
18.50
44.50
26.00
62.00
44.00
65.50
37.50
62.50
56.00
67.00
78.67
67.00
74.00
70.50

1.10
7.00
10.00
12.67
14.50
17.50
13.00
7.89
15.00
23.50
9.50
25.00
14.00
13.50
25.50
14.50
12.50
20.50
20.17
28.50
35.00
32.00

0.85
7.00
13.00
10.67
15.00
11.00
13.50
11.05
11.50
18.50
9.50
22.00
18.00
10.50
24.00
11.50
5.50
22.00
20.83
17.00
28.50
34.00

0.95
7.00
13.00
10.67
15.00
11.00
13.50
11.05
11.50
18.50
9.50
22.00
18.00
10.50
24.00
11.50
5.50
22.00
20.83
17.00
28.50
34.00

2.04
13.00
14.33
14.44
15.67
16.83
17.17
19.30
21.75
21.83
24.58
24.75
25.83
26.33
27.25
29.33
30.58
31.08
32.47
32.67
37.58
40.75

Average 18.73 26.27 47.27 16.95 15.25 17.24

Fig. 6 Recognition rate resulting from the Utopiano dataset

J. Recognition Time

NicIcon recognition time analysis: Figure 7 shows the
average recognition time results of the NicIcon dataset.
Technically it is observed that the Penny Pincher algorithms,
followed by !FTL(NLSD), are the fastest to recognize
NicIcon gestures. Gas and Police were the gestures with the

best recognition times, that is, the lowest. Despite the speed
of these algorithms, it should be borne in mind that some of
the cases, these algorithms do not fully recognize gestures,
as is the case of Penny Pincher with the Flood and Police
gesture. While in the case of !FTL(NLSD), the unrecognized
gestures are Gas and Casualty.

443

Fig. 7 Average recognition time resulting from the NicIcon dataset

HHreco recognition time analysis: Figure 8 presents the

results of the average recognition time of the HHreco
dataset. It is indicated that the Penny Pincher algorithms,
followed by !FTL(LSD), are the fastest to recognize HHreco
gestures. The fastest representations to be recognized were

Pentagon and Hexagon. Despite the result obtained by these
algorithms, their recognition rate was not very high,
therefore, these algorithms cannot be considered very
efficient. On the contrary, this shows that they had the least
ability to recognize gestures.

Fig. 8 Average recognition time resulting from the HHreco dataset

Utopiano recognition time analysis: Figure 9 shows the

results of the average recognition time of the Utopiano
dataset. It is indicated that !FTL(NLSD) algorithms, followed

by Penny Pincher, are the fastest to recognize NicIcon
gestures. The fastest representations to be recognized were
the letters F and K.

Fig. 9 Average recognition time resulting from the Utopiano dataset

444

Table 5 shows a compilation of the results obtained from
the comparative evaluation presented in previous section.
The table indicates the two best algorithms, according to the

recognition rate and the recognition time for each of the
datasets.

TABLE V

SUMMARY OF THE RESULTS (EXPRESSED IN PERCENTAGE VALUES)

Datasets
Measures NicIcon HHreco Utopiano

Recognition rate

Position Recognizer Score Position Recognizer Score Position Recognizer Score
1st
2nd

!FTL(LSD)
!FTL(NLSD)

9.79%
9.47%

1st
2nd

!FTL(NLSD)
$1

25.26%
18.94%

1st
2nd

$1
!FTL(NLSD)

47.27%
26.27%

Recognition time

Position Recognizer Score Position Recognizer Score Position Recognizer Score
1st
2nd

Penny Pincher
!FTL(NLSD)

0.216ms
0.372ms

1st
2nd

Penny Pincher
!FTL(LSD)

0.34ms
0.361ms

1st
2nd

!FTL(NLSD)
Penny Pincher

0.518ms
0.757ms

In the first dataset, NicIcon, !FTL(LSD) is distinguished

as the algorithm with the highest recognition rate with
9.79%. The next algorithm is !FTL(NLSD) with a 9.47%
recognition rate, that is, only 0.32% lower than !FTL(LSD).
In the case of Electricity and Roadblock, the two gestures
with the greatest number of successes, the algorithms did not
meet the expectations, since it was proposed to have only an
error rate of 21.43%, in both gestures, and a 90.21% and
90.53% error with !FTL(NLSD), while !FTL (LSD) showed
71.67% and 85.94% of failed acknowledgments. Likewise,
the Penny Pincher algorithm is the fastest for the NicIcon
dataset with 0.22 ms, but its recognition rate is only 5.93%.
The next fastest is !FTL(NLSD) with 0.37 ms, that is 0.15 ms
more. Because of its recognition rate and speed, it makes the
! FTL (NLSD) algorithm the most efficient for the NicIcon
dataset.

In HHreco, we can see that !FTL(NLSD) as the algorithm
with the best recognition rate with 25.26 %. The algorithm
that obtained second place was $1 with an 18.94%
recognition rate, that is, it is 6.32% lower than! FTL
(NLSD). In the case of Ellipse and Arch, which are the two
most successful gestures, the proposal was complied with,
since Ellipse with !FTL(NLSD) had 95.29% assertiveness,
while with Arch he obtained 5.10% of hits over 15.34% of
the proposed error rate. On the other hand, with $1 and
Ellipse it resulted in 15.10% of assertiveness over the
estimated 70%, and with Arch it achieved 28.63%,
exceeding the indicated error rate of 15.34%. From the point
of view of recognition time, the Penny Pincher algorithm
was the fastest for the HHreco dataset with 0.34 ms, only
that its recognition rate only reached 11.66%. The next
fastest algorithm was !FTL(NLSD) with 0.36 ms, that is 0.02
ms more than the Penny Pincher time. This demonstrates its
efficiency again.

Finally, in the Utopiano Alphabet dataset, it is shown that
the $1 algorithm has the best recognition rate with 47.27%.
The second algorithm with the highest number of hits was
!FTL(NLSD) with 26.27%, that is, it is 21% less than $1. In
the case of the letter P and N, which are the two gestures
with the highest recognition rate, the letter P with $ 1 had
74% of assertiveness, while with the letter N it got 67% of
hits on the 18.18% of the error rate that was defined in both
letters. !FTL(NLSD) and the letter P obtained 19% over the
18.18% that was estimated to be correct, and with the letter
N it achieved 35% of assertiveness, exceeding the error rate
indicated above. Regarding the recognition time, the

!FTL(NLSD) algorithm was the fastest in the Utopiano
dataset with 0.52 ms, followed by Penny Pincher with 0.77
ms, that is, only a difference of 0.25 ms. And for the third
time, !FTL(NLSD) was once again the fastest and one of the
most accurate algorithms.

IV. CONCLUSION

This paper presented a comparative analysis of the
algorithmic efficiency of different algorithms on two
existing datasets and a dataset generated for this purpose.
Although the algorithms were evaluated under the same
experimental conditions, i.e., with the same data sets on the
same computer, the recognition rates are lower than
expected. Although the experiment was performed on the
same computer, there were peaks of times that varied due to
the events that the browser decided to allocate more time to
perform. For this reason, it is recommended to make the time
allocation for each process more uniform. One proposal is to
implement a service with low-level language such as C, to
perform the evaluation of the algorithms within a
microcontroller.

The evaluation process was semi-automatic since the
candidate gestures had to be done manually for each dataset
and compared with the dataset gestures. Therefore, it is
suggested to automate the evaluation [20] that can be taken
as a reference a gesture of the dataset randomly and evaluate
the remaining gestures against this selected gesture. This
process would be repeated for each gesture in the dataset:
while there was an unassessed gesture, it would be selected
and evaluated against the remaining gesture group. With this
form of evaluation, candidate gestures by the user would be
avoided. In the same line of automatic evaluation, gestures
stored in the experiment environment could be subject to
evaluation of design guidelines in terms of articulation,
including their operationalization in HTML (as in [21]) for
instance.

One of the main drawbacks encountered in making the
comparative analysis has to do with the different formats for
data that exist by dataset. Each dataset has a different way of
saving the repetitions of the gestures, in other words, the
way to store the name of the repetition that was performed,
the way to display the coordinates of the points and how
each file is saved with all repetitions according to user or
representation. Therefore, it is suggested that a protocol be
made for algorithms to run in similar environments.

445

The use of datasets helped save gesture diversification
time for the evaluation process, and as mentioned earlier,
there are several datasets that could not be used in this
project. For this reason, it is recommended to collect and use
other datasets in the future. There are datasets that have
characteristics that challenge recognition algorithms, such as
datasets with 3D figures. This opens the opportunity to
evaluate more algorithms that specialize in these gestures, as
is the case of $3, which can recognize figures in third
dimension.

REFERENCES
[1] Saffer, D.: Designing Gestural Interfaces: Touchscreens and

Interactive Devices. O’Reilly Media, Inc. (2009)
[2] Zhai, S., Kristensson, P., Appert, C., Andersen, T., Cao, X.:

Foundational issues in touch-surface stroke gesture design: An
integrative review. Found. Trends Human-Computer Interaction.
5(2), 97–205 (Feb 2012). https://doi.org/10.1561/1100000012.

[3] Schipor, O.A., Vatavu, R.D., Vanderdonckt, J.: Euphoria: A scalable,
event-driven architecture for designing interactions across
heterogeneous devices in smart environments. Information and
Software Technology 109, 43–59 (2019).
https://doi.org/https://doi.org/10.1016/j.infsof.2019.01.006.

[4] Simarro, F.M., Lopez-Jaquero, V., Vanderdonckt, J., González, P.,
Lozano, M.D., Limbourg, Q.: Solving the mapping problem in user
interface design by seamless integration in idealxml. In: Gilroy,
S.W., Harrison, M.D. (eds.) Interactive Systems, Design,
Specification, and Verification, 12th International Workshop, DSVIS
2005, Newcastle upon Tyne, UK, July 13-15, 2005, Revised Papers.
Lecture Notes in Computer Science, vol. 3941, pp. 161–172.
Springer (2005). https://doi.org/10.1007/11752707_14.

[5] Wobbrock, J.O., Aung, H.H., Rothrock, B., Myers, B.A.:
Maximizing the guessability of symbolic input. In: CHI’05 Extended
Abstracts on Human Factors in Computing Systems. pp. 1869–1872.
CHI EA’05, ACM, New York, NY, USA (2005).
https://doi.org/10.1145/1056808.1057043.

[6] Gheran, B.F., Vanderdonckt, J., Vatavu, R.D.: Gestures for smart
rings: Empirical results, insights, and design implications. In:
Proceedings of the 2018 Designing Interactive Systems Conference.
pp. 623–635. DIS’18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3196709.3196741.

[7] Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries,
toolkits or training: A $1 recognizer for user interface prototypes. In:
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology. pp. 159–168. UIST’07, ACM, New York,
NY, USA (2007). https://doi.org/10.1145/1294211.1294238.

[8] Vatavu, R.D., Anthony, L., Wobbrock, J.O.: Gestures as point
clouds: A $p recognizer for user interface prototypes. In: Proceedings
of the 14th ACM International Conference on Multimodal
Interaction. pp. 273–280. ICMI ’12, ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2388676.2388732.

[9] Vatavu, R.D., Anthony, L., Wobbrock, J.: $Q: A super-quick,
articulation-invariant stroke-gesture recognizer for low-resource

devices. In: Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and Services. pp.
623–635. MobileHCI’18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3229434.3229465.

[10] Vanderdonckt, J., Roselli, P., Pérez-Medina, J.L.: FTL, an
Articulation-Invariant Stroke Gesture Recognizer with Controllable
Position, Scale, and Rotation Invariances. In: Proceedings of the 20th
ACM International Conference on Multimodal Interaction. pp. 125–
134. ICMI’18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3242969.3243032.

[11] Taranta, II, E.M., LaViola, Jr., J.J.: Penny pincher: A blazing fast,
highly accurate $-family recognizer. In: Proceedings of the 41st
Graphics Interface Conference. pp. 195–202. GI’15, Canadian
Information Processing Society, Toronto, Ont., Canada, Canada
(2015), http://dl.acm.org/citation.cfm?id=2788890.2788925

[12] Niels, R., Willems, D., Vuurpijl, L.: The NicIcon database of
handwritten icons for crisis management. Nijmegen Institute for
Cognition and Information Radboud University Nijmegen,
Nijmegen, The Netherlands 2 (2008)

[13] Hse, H., Newton, A.R.: Graphic Symbol Recognition Toolkit
(HHreco) Tutorial. Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley (2003)

[14] Hse, H., Newton, A.R.: Sketched symbol recognition using zernike
moments. In: Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004. vol. 1, pp. 367–370. IEEE
(2004)

[15] Ager, S.: Omniglot: The Online Encyclopedia of Writing Systems &
Languages. Simon Ager (1998)

[16] Willems, D., Niels, R., van Gerven, M., Vuurpijl, L.: Iconic and
multi-stroke gesture recognition. Pattern Recognition 42(12), 3303 –
3312 (2009).
https://doi.org/https://doi.org/10.1016/j.patcog.2009.01.030.

[17] Rubine, D.: Specifying gestures by example. In: Proceedings of the
18th Annual Conference on Computer Graphics and Interactive
Techniques. pp. 329–337. SIGGRAPH’91, ACM, New York, NY,
USA (1991). https://doi.org/10.1145/122718.122753

[18] Coyette, A., Schimke, S., Vanderdonckt, J., Vielhauer, C.: Trainable
sketch recognizer for graphical user interface design. In:
Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.)
Human-Computer Interaction – INTERACT 2007. pp. 124–135.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[19] Signer, B., Kurmann, U., Norrie, M.: igesture: A general gesture
recognition framework. In: Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007). vol. 2, pp. 954–
958 (Sep 2007). https://doi.org/10.1109/ICDAR.2007.4377056

[20] Vanderdonckt, J., Beirekdar, A.: Automated web evaluation by
guideline review. Journal of Web Engineering 4(2), 102–117 (2005),
http://www.rintonpress.com/xjwe4/jwe-4-2/102-117.pdf

[21] Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture, M.: A
framework and a language for usability automatic evaluation of web
sites by static analysis of HTML source code. In: Kolski, C.,
Vanderdonckt, J. (eds.) Computer-Aided Design of User Interfaces
III, Proceedings of the Fourth International Conference on Computer-
Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes,
France. pp. 337–348. Kluwer (2002)

446

