

Vol.9 (2019) No. 2

ISSN: 2088-5334

 Logical Approach: Consistency Rules between Activity Diagram and
Class Diagram

Noraini Sulaiman#1, Sharifah Sakinah Syed Ahmad#2 Sabrina Ahmad#3
#Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Melaka, Malaysia

 E-mail: #1sakinah@utem.edu.my; *2sulaiman_noraini@yahoo.com; #3sabrinaa@utem.edu.my

Abstract— Requirements engineering (RE) is a fundamental in software development process. Requirements engineering
encompasses activities ranging from requirements elicitation and analysis to specification, verification and validation. Poor
requirements have been proved to be a major cause of software problems such as cost overruns, delivery delays, failure to meet
expectation and degradation. Requirements validation especially models validation has gained quite an interest from a lot of
researchers. In recent times, several researchers have expressed a great deal of interest in requirements validation, specifically models
validation. The field of research related to consistency checking has undergone a considerable boom from time to time. Numerous
methods, approaches and techniques have been recommended to address the requirements inconsistency issues, particularly in
models validation. In the software development industry, UML modelling has been extensively used. The different forms of the UML
model that characterise the system from various perspectives somehow establish a relation among the models to keep them
inseparable from one another. This is the reason why the inconsistency becomes unavoidable. The inconsistency in the models arises
when there is an overlap of the elements of the various models representing the different parts of the system and an absence of
cooperation. In this paper, the emphasis is given on the consistency rules that exist between the two models. The focus is also on the
class diagrams and activity, and the conversion of the rules into logical predicates, where the logical predicates are assessed with a
sample case study that constitutes of the two models.

Keywords— requirements engineering; UML modeling; logical approach; consistency rules; activity diagram.

I. INTRODUCTION

Requirements engineering (RE) is the first phase of the
software development process to develop software that is
working perfectly and fulfill the client’s needs.
Requirements engineering encompasses activities ranging
from requirements elicitation and analysis to specification,
verification, and validation. Poor requirements have been
proved a major cause of software problems such as cost
overruns, delivery delays, failure to meet expectation and
degradation. The requirements inconsistencies normally
happen during requirements elicitation phase that makes
customer’s needs usually uncertain and sketchy. It could
lead to an inadequate, incomplete, inconsistent, or
ambiguous Software Requirements Specification (SRS).
These drawbacks in SRS have a critical impact on the
quality of software development. SRS is written in Natural
Language (NL). This NL is prone to misunderstanding
because of the lack of clarity. It is sometimes difficult to use
language in a precise and ambiguous way without making
the document wordy and difficult to read. Sometimes it leads
to requirements confusion. The developer could not
distinguish whether it is a functional requirement or non-
functional requirement; sometimes several requirements may

be expressed into a single requirement. Tools and techniques
were introduced to translate this NL into logic statements by
using logic and mathematical formulas [1].

The use of logic is theoretically proved effective to model
the requirements by using Unified Modeling Language
(UML). UML is a standard modeling language to represent
the requirements of the system in diagrammatic notations in
object-oriented development practices. The UML currently
provides 14 diagrams to visualize the requirements of the
system from different aspects [2]. For example, Use Case
Diagram (UCD) models the functionalities of the system,
Activity diagram (AD) describes the flows of activities and
actions of the system, and Class diagram (CD) describes the
structure of the system [3]. However, it may not always be
possible to get consistent models. The more overwhelming a
system is, the more its development obliges an accumulation
of distinctive models. The vast scale modern system may
include several software engineers taking a shot at many
distinctive however related models speaking to parts of the
entire system detail. Guaranteeing consistency between
those models gets to be basic as even a minor inconsistency
can prompt critical faults in the system [4].

552

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296919176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Therefore, we need to do requirements validation, which
is a concern with checking the requirements for consistency,
completeness, and correctness (three Cs) Zowghi and
Gervasi stated in their paper about the relationship between
these three Cs [5]. To preserve the consistency in
requirements, we often failed to preserve their completeness;
therefore, it affects the correctness of the conditions because
generally in an attempt to complete the requirements, we
tend to add more requirements, which increase the
possibility of inconsistency to happen. Hypothetically, the
increasing of completeness will decrease the consistency and
correctness of requirements.

Consistency checking rules can emerge from several
sources such as (see Figure 1); Notation definitions; for
example, in a strongly typed programming language, the
notation requires that the use of each variable be consistent
with its declaration. Development methods; for example, a
method for designing distributed systems might require that
for any pair of communicating subsystems, the data items to
be communicated must be defined consistently in each
subsystem interface. Development process models; a process
model typically defines development steps, entry and exit
conditions for those steps, and constraints on the products of
each step. Local contingencies; sometimes a consistency
relationship occurs between descriptions, even though the
notation, method, or process model does not predetermine
this relationship. For example, a particular timing constraint
in requirement A must be the same as the timing constraint
in requirement B. Application domains; many consistency
rules arise from domain-specific constraints. For example,
the telecommunication domain might impose constraints on
the nature of a telephone call. Such constraints can be
specified as consistency rules to be checked during
development.

There are several techniques or approaches to validate the
requirements such as requirements review, prototyping,
model validation, requirements testing, etc. Different
approaches and tools [6]–[9] have been proposed by the
researchers in different ranging of inconsistency
management, from diagnosing to handling the
inconsistencies. Every researcher stated that how important
it is to have good techniques to manage the inconsistencies
in requirements regardless at any phase in software
development it is being implemented.

In this research, we aim to justify the consistency
checking rules for two commonly used UML models in
software development, which are Activity diagram (AD) and
Class diagram (CD) by using a logical approach. Previous
studies are still lack of concerns on these two models, even
though activity diagram is one of the top five most used
UML diagrams in industry and the fact that the number one
most used UML diagram is Class diagram are the reasons
why we chose to focus on these two models [10]. The
feedback we got from the questionnaire regarding the most
used UML diagrams, which the respondents chose activity
diagram as their most used UML diagram in their
development also has convinced us to focus on these models.
Activity diagrams are usually associated with a class as such;
they model the operations flow inside the class. Nevertheless,
the activity diagram also allows a hierarchical
decomposition, with sub activity states, and so it can model

several classes related to class aggregation. Using external
events, we can even synchronize several activity diagrams.
We then validated the rules by providing examples of
models from a case study.

Fig. 1 Consistency checking rule sources.

II. MATERIAL AND METHODS

A. Background Studies

There are several approaches proposed by the researchers
regarding consistency checking between UML models. A
new approach called View Integra to use consistent
transformation to detect the inconsistency by converts the
source diagrams into targeted diagrams that need to be
compared with (Egyed & Rey 2001). The converted
diagrams are called “interpreted” diagrams. They presented a
transformation framework for five UML diagrams; class,
object, sequence, collaboration, and state machine but there
are no consistency rules listed in their work. Shinkawa
identified the consistency for UML inter-models using
Colored Petri Net (CPN) formalism, where all the models
are represented by a common notation [11]. They focused on
four diagrams; use case, activity, state machine, and
sequence. The drawback from this approach is, to get the
consistent models, the original models need to be converted
into CPN models then convert them back into their original
states, which is taking quite a time to do that.

Sapna & Mohanty [12] chose to use direct approach by
proposing the rules for structural inter-model consistency
based on Object Constraint Language (OCL), which is
primarily used to determine structural consistency rules and
the relationship between the diagrams then transformed the
rules into SQL triggers and applied the rules to diagrams
saved in a repository. Their focused diagrams are a use case,
activity, class, sequence and state machine. Kalibatiene et al.
proposed a rule-based method to check consistency in UML
diagrams [13]. The proposed method was assessed using
comparative analysis and questionnaires. They elicited 50
consistency rules from 11 reviewed papers and from the 50

Consisntecy

Checking

Rule Sources

Application

Domain

Local

Contigencies

Development

Process Model

Development

Method

Notation

Definition

553

consistency rules; they evaluated the rules and removed the
redundant rules.

Meanwhile, Torre [14] has successfully introduced 190
consistency rules for all 14 UML diagrams out of 619
consistency rules through empirical research. Compared to
[13], which was focused on technique to identify the
inconsistency and did not present any consistency rules,
Torre has presented the whole collection of the rules in their
paper.

Chanda et al. proposed a framework for models
verification that composes syntactic correctness rules,
consistency rules and traceability rules based on the
relationship between the models [15]. By using a context-
free grammar (CFG) and UML 2.0 standard, they have
defined few rules of the syntactic correctness of the
diagrams, diagram traceability, and consistency based on the
common elements shared by the focused models. They have
used Lex and YACC to validate the CFG. They have defined
traceability rules to ensure the consistency between the
models by mapping the common elements from use case to
activity and from activity to class.

Ibrahim et al. proposed three structural consistency rules
between use case diagram and activity diagram using logical
approach [16]. They defined the elements of those two
models gathered from other literature then formalized the
elements to construct their proposed consistency rules. Khan
proposed to check the consistency of UML by using logical
reasoner [17]. The approach proposed the translations of the
UML based designs into the form of logic facts such as
predicate logic and then used an automatic logical reasoner
to infer the logic facts. A reasoner performed the reasoning

by checking the set of inferences rules (predicate logic) for
their validation. The paper focused on checking the
consistency of class diagrams by translating the diagram into
Web Ontology Language (OWL 2) ontology and used the
OWL 2 reasoner to reason the translated ontology. OWL 2
provides axioms to translate UML elements into OWL 2
semantics.

Ryndina and Jochen proposed an approach in their paper
[18] to establish consistency between business process
models and object life cycles using activity diagram and
state machines diagram respectively. They defined two
consistency notions for a process model and an object life
cycle and expressed these in terms of conditions that must
hold between the given life cycle and the life cycle that
generated from the process model. Those consistency
notions were transformed into predicate logic to form
equivalence and refinement definitions.

In this paper, we try to justify consistency rules for
between two models, activity and class diagrams since there
is no research in justifying the consistency rules between
these two models; activity and class diagram yet (refer Table
1). A software project mostly comprises of many designs
that represent both static and behavior abstractions of the
software. In [19], Spanoudakis stated, “Structural
consistency rules define the relationship that should hold
between the model elements regardless of the way they have
been constructed”. The common elements shared by the two
models to be identified and defined. The rules then will be
justified using a logical approach before they will be tested
using a case study that consists of both of the models.

TABLE I
SUMMARY OF CONSISTENCY RULES APPROACH

Articles Approach Focused UML Diagram

UCD AD CD SMD SD OD COD Others
(eg: COMD, ID, DD,
CSD, TD IOD, PSMD)

[20] transformational
[11] transformational
[12] direct
[21] knowledge base
[13] rule-based
[2] empirical research
[15] logical
[16] logical
[17] logical
[18] logical

The previous researches regarding the model's

requirements consistency checking were mostly focused on
techniques how to detect the inconsistencies between the two
models and not the justification for consistency rules
especially the rules between activity and class diagrams.
Regarding that matter, we chose to identify the rules for
these two models and try to justify the rules using a logical
approach.

B. Consistency rules between Activity and Class diagrams

UML is a standard modeling language to represent the
requirements of the system in diagrammatic notations in

object-oriented development practices. The UML models
represent the static structural and behavioral of the software
system. The developers using class diagrams mostly describe
the static structural and the behavioral of the system can be
depicted by using activity diagrams or sequence diagrams or
state diagrams. In short, the class diagram is used to
understand the static structures of classes and activity
diagram is used to understand the control flows of process or
operation. The lack of researches regarding consistency rules
for activity diagram even though activity diagram is one of
the top five most used UML diagrams in the industry and the
fact that the number one most used UML diagram is Class

554

diagram are the reasons why we chose to focus on these two
models [10].

Ohnishi proposed in their paper [22], that to ensure the
consistency of these two models, we need to check for three
things;

• Classes in AD and CD. The element of class in a class
diagram is equal to the element of swim lane or
partition in an activity diagram. Swim lane can be
referred to a class in an activity diagram.

• Actions in AD and operations in CD and Element of
action in activity diagram are equal to the element of
operation in the class diagram.

• Control flows between classes in AD and associations
in CD. The element of control flows between swim
lanes is equal to the association between classes in a
class diagram.

1) Rules Collection

Based on the literature reviews from other researchers [2],
[12], [15], [16], there is a total of five rules between activity
diagram and class diagram have been identified. Table 2 lists
the rules between AD and CD.

TABLE III
RULES BETWEEN AD AND CD

No Rules

1 A class name that appears in an activity diagram also
appears in the class diagram.

2 Swim lanes/partition in Activity diagram (represented
as class Name in activity state) must be present as a
unique class in the class diagram.

3 Each activity in an activity diagram must have a
corresponding operation in the class diagram.

4 An action that appears in an activity diagram must
also appear in the class diagram as the operation of a
class.

2) Rules Refinement

In this step, we removed the duplicates of UML
consistency rules that are either identical to or are implied by
another rule [23]. We do not need two or more rules that
have the same meaning. For example; Rule 1 and 2 for AD
and CD (refer to Table 2) are kind of have the same meaning.

a) Rule 1: A class name that appears in an activity
diagram also appears in the class diagram.

b) Rule 2: Swim lanes/partition in Activity diagram
(represented as class Name in activity state) must be present
as a unique class in the class diagram. Both of Rule 1 and
Rule 2 above give out the same meaning where the element
of swim lane of an activity diagram also represented as class
Name should appear as a class in a class diagram. Therefore,
we can remove one of the rules or we can create another rule
that has the same meaning as those two rules.

c) Rule 3: Each activity partition in an activity must
have a corresponding class in the class diagram.

C. Formalize the Models

In this section, we described the formalization of the
elements of these three models and then, the consistency
rules between them could be shown [16].

Definition 1. A UML Model is defined as a set
Model = {<AD>, <CD>}
Where
�� = ����| 1 ≤ � ≤ } is finite set of activity diagrams.
�� = ������

� 1 ≤ � ≤ } is finite set of class diagrams for
an activity.
Definition 1 descries a UML model that consists of at least
one activity diagram and one class diagram.

1) Formalization of AD

The activity diagram (AD) consists of elements in term of;
• Activities or activity states represent the invocation of

an operation, a step in a business process.
• Transitions or threads represent the flow of control

from one activity to another through a link between
the activities.

• Swim lanes represent a mechanism to group activities
performed by the same organizational units.

Definition 2. Activity diagram, ad is defined as a set
ad = {<N>, <AE>, <C>},
where
N = {nodesi |1≤ i ≤ n } is a finite set of nodes,

AE = {aei|1≤ i ≤ n } is an edge that connected the nodes,
C= {ci|1≤ i ≤ n } is a containment elements

.
Definition 3. N is a collection of nodes in the AD,
����

 = {<CN>, <ON>, <AC>}
where
CN = {cni |1≤ i ≤ n } is a finite set of control nodes,

ON = {oni|1≤ i ≤ n } is a finite set of object nodes,
AC= {aci|1≤ i ≤ n } is a finite set of action nodes.

Definition 4. AE is an activity edges,
AE = {<CF>, <OF>}
where
CF = {cfi |1≤ i ≤ n } is a finite set of control flows,

ON = {ofi|1≤ i ≤ n } is a finite set of object flows.

Definition 5. C is a containment element,
C = {<ACT>, <AP>}
where
ACT = {acti |1≤ i ≤ n } is a finite set of activities,

AP = {api|1≤ i ≤ n} is a finite set of activity partitions.

Definition 6. CN is set of control nodes and defined as
disjoint set,
I ∪ AF ∪ FF ∪ DS ∪ J ∪ FK ∪ M
where
I = {i i |1≤ i ≤ n } is a finite set of initial nodes,

AF = {afi|1≤ i ≤ n} is a finite set of activity final nodes,
FF = {ff i|1≤ i ≤ n} is a finite set of flow final nodes,
DS = {dsi|1≤ i ≤ n} is a finite set of decision nodes,
J = {j i|1≤ i ≤ n} is a finite set of join nodes,
FK = {fki|1≤ i ≤ n} is a finite set of fork nodes,
M = {mi|1≤ i ≤ n} is a finite set of merge nodes.

2) Formalization of Class Diagram (CD)

The class diagram (CD) consists of elements in terms of;
• Objects grouped into classes

555

• Properties of classes that consist of attributes and
operations

• Relationships between classes called associations

Definition 7. cd described a class diagram for an activity
diagram adi and is defined as a finite set of class diagrams,
�����

 ={ ������
, ������

, … , ������
|ad ∈ AD}

where �����
∈ CD

Definition 8. Let for each class diagram for an activity
diagram, �����

 is defined as
 �����

 = {<Class>,<Rel>},
Where Class = {������| 1 ≤ � ≤ } is a finite set of classes
in �����

,
Definition 9. A Class is a classifier, which describes a set of
objects that share the same attributes and methods in �����

 ����� ����

= {<Name>, <Att>,<Operation> }

Where
Name = ��!"�|1 ≤ � ≤ }is a name of the class in classi
Att = {�##�|1 ≤ � ≤ }is a finite set of attributes in ������
Operation = {$%�|1 ≤ � ≤ }is a finite set of methods in
������

Each class is characterized by a name, which is unique for

each one, and a set of properties called attributes and
operations.

3) Formalization on Consistency between AD and CD

Rule 1: An activity partition in an activity diagram must
have a corresponding class in a class diagram.

Proposition 1. If there is an activity partition in the activity
diagram, then there exists a corresponding class for the
activity partition.

Justification. Let given
C = {<ACT>, <AP>} is a containment elements
Where
�& = ��%�|1 ≤ � ≤ } is a finite set of activity partitions
Let �����

 = {<Class>,<Rel>},
Where
Class = {������| 1 ≤ � ≤ } is a finite set of classes in �����

,
�� '�((�

 = {�� '�((��
, �� '�((��

, … , �� '�((��
| ����� ∈ CD}

Therefore, ∀ �%� ∈ �� ∶ ∃�� '�((��
, ,ℎ"." �� '�((��

 ∈ ��

Rule 3. An action in an activity diagram must have a
corresponding method in a class diagram.
Proposition 3. If there is an action in an activity diagram,
then there exists a method in a class in the class diagram.
Justification. Let given
����

 = {<CN>, <ON>, <AC>} is a finite set of nodes,
Where AC= {aci|1≤ i ≤ n } is a finite set of action nodes in,
Let ����� ����

= {<Name>,<Att>,<Operation> },

Where Operation = {$%�|1 ≤ � ≤ }is a finite set of
operations in ������
And $% '�((�

 = {$% '�((��
, $% '�((��

, … , $% '�((��
| ����� ∈

CD}
Therefore, ∀ ��� ∈ �� ∶ ∃$% '�((�

, ,ℎ"." $% '�((�
 ∈ ��

III. RESULT AND DISCUSSION

In this research, we use UML Models for Tour
Management System (TMS) as a case study to discuss the
application of our proposed method. TMS enables visitor
requests for the scheme to check the availability of the
desired tour package. This information is stored in the Tour
Information System. The system will check whether the
customer is existing or new. The new user will enter his
personal and tour details for the reservation. In turn, he/she
is provided with a system-generated unique ID and password
for Login. When a customer is satisfied with the tour
package, he/she will request for reservation of tour. Personal
details of a new customer are stored in cust_info while the
details regarding the tour selected by the particular customer
are stored in tour info and the details regarding it would be
restructured in Tour Information System. Existing customer
can update his/her details in cust_info and cancel the
reservation for a tour from tour_info and changes regarding
it are reflected in Tour Information System. The
requirements of TMS are captured and visualized using a use
case diagram. The functionalities of each use case are then
modeled using activity diagrams. To show how UML
diagrams fulfilled our proposed consistency rules, we
showed one activity diagram (Appendix 1) and a class
diagram of the whole system (Appendix 2).

A. Consistency Rules between AD and CD

Rule 1. An activity partition in an activity diagram must
have a corresponding class in a class diagram.

For “Tour Information System” activity partition in
Appendix 1, there is a corresponding class in a class diagram
Appendix 2, i.e.

�%/012 345026�7�04 89(7:6
∈ ��/;8 , #ℎ" ��/38, ,ℎ"." ��/38
∈ ��/;8

Appendix 1 and Appendix 2 fulfilled Rule 1, i.e.,

∀ �%/012 345026�7�04 89(7:6 ∈ ��/;8

∶ ∃��/38, ,ℎ"." ��/38 ∈ ��/;8

Rule 2. Each activity in an activity diagram must have a
corresponding operation in a class diagram.

For “Select tour details” activity in Appendix 1, there is the
corresponding operation in a class diagram Figure 3, i.e,

��#8:': 7 /012 <:7��'(��/;8, #ℎ" ∃$%8:': 7 /012 <:7��'(= >,

,ℎ"." $%8:': 7 /012 <:7��'(=> ∈ ��/;8

Appendix 1 and Appendix 2 fulfilled Rule 2, i.e,

��#8:': 7 /012 <:7��'(∈ ��/;8 ∶ ∃$%8:': 7 /012 <:7��'(= >,
,ℎ"." $%8:': 7 /012 <:7��'(=> ∈ ��/;8

Rule 3. An action in an activity diagram must have a
corresponding operation in a class diagram.

For “Get Tour Details” action in Appendix 1, there is the
corresponding operation in a class diagram Appendix 2, i.e.,

556

��?:7 /012 <:7��'(��/;8 , #ℎ" ∃$%?:7 /012 3450= >,
,ℎ"." $%?:7 /012 3450=> ∈ ��/;8

Appendix 1 and Appendix 2 fulfilled Rule 3, i.e.,
��?:7 /012 <:7��'(∈ ��/;8
∶ ∃$%?:7 /012 3450=>, ,ℎ"." $%?:7 /012 3450=> ∈ ��/;8

IV. CONCLUSIONS

A large number of UML consistency rules have been
proposed by researchers to identify inconsistencies between
UML models. However, no previous research has proposed
the justification for consistency rules between two models;
activity and class diagrams. This work presents results
obtained by following a systematic protocol, whose aim was
to identify and analyze UML Consistency rules from the
literature. The set of UML Consistency rules compiled by
Torre (2014) was analyzed and consistency rules between
the two diagrams, class diagram, and activity diagram were
extracted and transformed into predicate logics to justify the
validation of the rules. The acquired predicated logics then
have been validated against related UML models.

The results from the questionnaire survey confirmed the
lack of requirements consistency checking practice within
the software development industry. Even standard topics in
requirements consistency research are new and unfamiliar to
many companies. Most of the respondents said that they
don’t apply consistency checking because of the time
constraint which consistency checking is normally will take
time to be done, and their schedule will be left behind.
Nevertheless, most of the companies need to improve their
requirements consistency practices.

ACKNOWLEDGMENT

The authors would like to thank the Universiti Teknikal
Malaysia Melaka for funding the study through
PJP/2018/FTK (16A)/S01642. Besides, thank you to the
Faculty of Information Technology and Communication for
providing excellent research facilities.

REFERENCES
[1] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in

natural language requirements,” ACM Trans. Softw. Eng. Methodol.,
vol. 14, no. 3, pp. 277–330, 2005.

[2] D. Torre, “A systematic identification of consistency rules for UML
diagrams,” 2015.

[3] H. Eriksson and M. Penker, Business Modeling With UML: Business
Patterns at Work. John Wiley & Sons, Inc., 2000.

[4] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” Proc.
13th Int. Conf. Softw. Eng. - ICSE ’08, p. 511, 2008.

[5] D. Zowghi and V. Gervasi, “The Three Cs of Requirements:
Consistency, Completeness, and Correctness,” Proc. 8th Int. Work.
Require. Eng. Found. Softw. Qual., no. March, pp. 155–164, 2002.

[6] Z. Liang and G. Wu, “Consistency Checking of Multiviews Based on
Agent.” IEEE, Hubei, China, 2004.

[7] L. I. U. Hua-xiao, W. Shou-yan, and J. I. N. Ying, “A Tool to Verify
the Consistency of Requirements Concern Model,” 2013.

[8] M. Kamalrudin, “Automated Software Tool Support for Checking
the Inconsistency of Requirements,” 2009 IEEE/ACM Int. Conf.
Autom. Softw. Eng., pp. 693–697, Nov. 2009.

[9] W. Li, “Toward consistency checking of natural language temporal
requirements,” 2011 26th IEEE/ACM Int. Conf. Autom. Softw. Eng.
(ASE 2011), pp. 651–655, Nov. 2011.

[10] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used
UML diagrams? A preliminary survey,” in CEUR Workshop
Proceedings, 2013, vol. 1078, pp. 3–12.

[11] Y. Shinkawa, “Inter-model consistency in UML based on CPN
formalism,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, pp. 411–
418, 2006.

[12] P. G. Sapna and H. Mohanty, “Ensuring consistency in the relational
repository of UML models,” Proc. - 10th Int. Conf. Inf. Technol.
ICIT 2007, pp. 217–222, 2007.

[13] D. Kalibatiene, O. Vasilecas, and R. Dubauskaite, “Ensuring
Consistency in Different IS Models – UML Case Study,” Balt. J.
Mod. Comput., vol. 1, no. 1–2, pp. 63–76, 2013.

[14] D. Torre, “On Collecting and Validating UML Consistency Rules : a
Research Proposal,” pp. 1–4, 2014.

[15] J. Chanda, a. Kanjilal, S. Sengupta, and S. Bhattacharya,
“Traceability of requirements and consistency verification of UML
use case, activity, and Class diagram: A Formal Approach,” 2009
Proceeding Int. Conf. Methods Model. Comput. Sci., 2009.

[16] N. Ibrahim, R. Ibrahim, M. Z. Saringat, D. Mansor, and T. Herawan,
“Consistency rules between UML use case and activity diagrams
using logical approach,” Int. J. Softw. Eng. its Appl., vol. 5, no. 3, pp.
119–134, 2011.

[17] A. H. Khan, Consistency of UML Based Designs Using Ontology
Reasoners, no. 168. 2013.

[18] K. Ryndina and M. K. Jochen, “Consistency of Business Process
Models and Object Life Cycles.”

[19] G. Spanoudakis and A. Zisman, “Inconsistency Management in
Software Engineering : Survey and Open Research Issues,” Handb.
Softw. Eng., pp. 329–380, 2001.

[20] A. Egyed and M. Del Rey, “Scalable Consistency Checking between
Diagrams - The VIEWINTEGRA Approach,” pp. 387–390, 2001.

[21] A. Kozlenkov and A. Zisman, “Are their Design Specifications
Consistent with our Requirements ?” 2002.

[22] A. Ohnishi, “Management and verification of the consistency among
UML Models,” no. September 2015.

[23] D. Torre and M. Genero, “UML Consistency Rules : A Systematic
Mapping Study,” no. January, pp. 1–28, 2014

557

APPENDIX I

558

APPENDIX II

559

