

Vol.7 (2017) No. 4

ISSN: 2088-5334

Second Order Learning Algorithm for Back Propagation Neural
Networks

Nazri Mohd Nawi#, Noorhamreeza Abdul Hamid#, Noor Azah Samsudin#, Mohd Amin Mohd Yunus#,
Mohd Firdaus Ab Aziz#

#Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
 E-mail: nazri@uthm.edu.my

Abstract— Training of artificial neural networks (ANN) is normally a time-consuming task due to iteratively search imposed by the
implicit nonlinearity of the network behavior. In this work an improvement to ‘batch-mode’ offline training methods, gradient-based
or gradient free is proposed. The new procedure computes and improves the search direction along the negative gradient by
introducing the ‘gain’ value of the activation functions and calculating the negative gradient on an error with respect to the weights as
well as ‘gain’ values in minimizing the error function. The main advantage of this new procedure is that it is easy to implement into
other faster optimization algorithms such as conjugate gradient method and Quasi-Newton method. The performance of the proposed
method implemented into conjugate gradient method and Quasi-Newton method is demonstrated by comparing the simulation results
to the neural network toolbox for the chosen benchmark. The simulation results clearly demonstrate that the proposed method
significantly improves the convergence rate significantly faster the learning process of the general back propagation algorithm
because of it new efficient search direction.

Keywords— Back propagation algorithm; gradient descent; activation function; second order method; search direction

I. INTRODUCTION

Methods to speed up and optimize the learning process in
feed forward neural networks (MLFNN) have been recently
studied and several new adaptive learning algorithms have
been discovered. The most popular learning algorithm is the
batch Back-propagation (BP) [1], [2] and it is the most
common and widely used supervised training algorithm in
solving a large number of classification and function
interpolation problems. BP algorithms are based on the
gradient descent algorithm which is well known in
optimization theory, and they usually exhibit poor
convergence rate and depend on parameters which have to
be specified by the user, because no theoretical basis for
choosing them exists [3]. The choices of selecting the best
values for those parameters are often crucial for the success
of the algorithm and definitely required the designer to
arbitrarily select parameters such as initial weights and
biases, a learning rate value, activation function, network
topology and gain of the activation function. It has been
found that very small variations in these values can make the
difference between good, average or bad performance [4].
This is also the main reason why the BP algorithm is too
slow, and generalization is not always good.

Many studies have been done to improve back
propagation learning algorithm, and those studies fall
roughly into two categories. The first category involves the
development of ad hoc techniques [5]-[6], [7]-[14]. In this
technique some of them introduced the momentum term,
others used the alternative cost function or dynamic
adaptation of the learning parameters. Many apply special
techniques of initialization of weights.

Another category of research has focused on standard
numerical optimization technique [15]-[17]. The most
popular approaches from the second category have used
conjugate gradient or quasi-Newton (Secant) methods. The
quasi-Newton methods are considered to be more efficient,
but their storage and computational requirements go up as
the square of the size of the network.

Another area of numerical optimization that has been
applied to neural networks is nonlinear least squares [18]-
[20]. The more general optimization methods were designed
to work effectively on all sufficiently smooth objective
functions. Most of them apply the higher order gradient
optimization routines to minimize the appropriately defined
error function, the multivariable function that depends on the
weight of the network. However, there is still the problem of
accelerating the learning process, especially when large
training sets and large networks are used.

1162

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296919097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Among those improvements, the researches focusing on
using ‘gain’ parameter are among the easiest to implement.
The gain parameter controls the steepness the activation
function. A few researchers hypothesized about the existence
of a relationship between gain of the activation function and
the weights [21]-[22] or between the gain and learning rate
[1], [3], [23]-[24], and Zurada [25] showed that using
activation functions with large gains yield results similar to
those with a high learning rate.

In this paper, we demonstrate that by changing the gain of
the activation functions in the gradient descent algorithm it
is actually improving the search direction and not the
learning rate. The motivation of this research is that
changing the gain activation functions is very effective
means for improving the search direction in general back
propagation. Later on, we implement and evaluate the effect
of adaptive gain value on the well-known non-linear
conjugate gradient algorithm and Quasi-Newton methods.

This research starts by initiating the basic iterations of
those optimisation methods in the form of

rrrr dww λ+=+1

where
rd is a descent search direction and

rλ is a learning

rate obtained by one-dimensional search. In the conjugate
gradient methods, it considers the search direction as

1)(−+−∇= rrrr dwEd β , where the scalar
rβ is chosen in such

manner that the method reduces to the linear conjugate
gradient when the function is quadratic, and the line search
is exact. The rest of methods define the search direction by

)(1
rrr wEBd ∇−= − where

rB is a nonsingular symmetric

matrix. Mainly, the matrix
rB is selected as: IBr = (the

steepest descent method),)(2
rr wEB ∇= (the Newton’s

method) or an approximation of the Hessian)(2
rwE∇ (BFGS,

DFP, etc.).
In this paper, we are not a concern on how to determine

the learning rate because our main interest is in finding the
efficient search direction in order to improve the learning.

By applying the new procedure in calculating an efficient
search direction, this paper presents two improved learning
algorithm which is conjugate gradient with Fletcher Reeves
update (CGFR-AG) and Broyden-Fletcher-Goldfarb-Shanno
(BFGS-AG) method for back propagation neural networks.
The proposed approaches presented in the paper consist of
three steps: (1) Modification of standard back propagation
algorithm by introducing gain value of the activation
function, (2) Calculating the gradient descent on error with
respect to the weights and gains values and (3) the
determination of the new search direction with the function
of gain variation.

In order to verify the efficacy of the proposed method, we
perform simulation experiments on four selected benchmark
problems. The remaining of the paper is organised as follows:
In Section II we proposed our modification on standard back
propagation algorithm with gain variation and validate the
proposed algorithm with ‘sine curve’ example [26]. Some
discussion of the proposed modification on Conjugate
gradient with Fletcher Reeves update (CGFR-AG) and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS-AG) algorithm
with new search direction procedure is presented in Section
III. Experiments and simulation results are presented in

Section IV. The final section contains concluding remarks
and short discussion for further research.

II. MATERIAL AND METHOD

The standard back propagation algorithm has become the
most popular algorithm used for training multi-layer feed
forward network. In this paper, the training will be referring
to batch training of the multi-layer perceptron (MLP) and
can be formulated as a nonlinear unconstrained optimization
problem. The objective of a learning process is to find a

weight vectorw which minimizes the different between the
actual output and the desired output. Namely,

)(min wE
nw ℜ∈

 (1)

Suppose for a particular input pattern 0o and let the input
layer is layer 0. The desired output is the teacher

pattern T
nttt]...[1= , and the actual output isLko , where L

denotes the output layer. Define an error function on that
pattern as,

∑ −=
k

L
kk otE 2)(

2

1 (2)

The overall error on the training set is simply the
sum, across patterns, of the pattern errorE . The main
purpose of the training is to search an optimal set of
connection weights so that the errors of the network output
can be minimized.

Let s
ko be the activation of the thk node of layers , and let

Ts
n

ss ooo]...[1= be the column vector of the activation values

in the layer s and the input layer as layer 0. Let sijw be the

weight on the connection from the thi node in layer 1−s to

the thj node in layers , and let Ts
nj

s
j

s
j www]...[1= be the

column vector of weights from layer 1−s to the thj node of

layers . The net input to thethj node of layer s is defined

as ∑ −− ==
k

s
k

s
kj

ss
j

s
j owownet 1

,
1),(, and let

Ts
n

ss netnetnet]...[1= be the column vector of the net input

values in layers . The activation of a node is given by a
function of its net input,

)(s
j

s
j

s
j netcfo = (3)

where f is any function with bounded derivative, and
s
jc is a real value called the gain of the node.

In neural network training, an activation function is used
for limiting the amplitude of the output of a neuron to
generates an output value for a node in a predefined range as
the closed unit interval c or alternatively [-1, +1]. In this
paper, we use a common choice of activation function of the
neurons in multilayer neural network, which is the logistic or
sigmoid activation function. For the thj node in layers ,

s
j

s
j netc

s
j

e
o

−+
=

1

1 (4)

where,

1163

 () jk

s
k

s
kj

s
j ownet θ+= ∑ −1

, (5)

where

jθ is a bias for the thj unit and s
jc is a real value

called the gain of the activation function.
In general the value of the gain parameter,c , directly

influences the slope of the activation function [27]. For large
gain values (c >>1), the activation function approaches a
‘step function’ whereas for small gain values (0 <c<< 1),
the output values change from zero to unity over a large
range of the weighted sum of the input values and the
sigmoid function approximates a ‘linear function’ as shown
in Fig. 1.

Fig. 1 The effect of gain on sigmoid activation function

To simplify the calculation, taken from the Equation (2)

we then can perform gradient descent on E with respect

to s
ijw . The chain rule yields

s
ij

s
j

s
j

s
j

s
j

s

ss
ij w

net

net

o

o

net

net

E

w

E

∂
∂

∂
∂

∂
∂

∂
∂=

∂
∂ +

+ ...
1

1

1

1

1
1

11
1 .)('.]....[−

+

+

++

−−= s
j

s
j

s
j

s
j

s
nj

s
j

s
n

s ocnetcf

w

w

Mδδ (6)

where
s
j

s
j net

E

∂
∂−=δ . In particular, the first three factors of (6)

indicate that

∑ ++=
k

s
j

s
j

s
j

s
jk

s
k

s cnetcfw)(')(1
,

1
1 δδ (7)

The iterative Equation (7) for s1δ is the same as standard

back propagation [4] except for the appearance of the value
gain. By combining (6) and (7) yields the learning rule for
weights:

1−=∆ s
j

s
j

s
ij ow λδ (8)

whereλ is a small positive constant called ‘step length’ or
‘learning rate’.

Gradient descent on error with respect to the gain can also
be calculated by using the chain rule as previously described;
it is easy to compute as

s
j

s
j

s
j

k

s
jk

s
ks

j

netnetcfw
c

E
)(')(1

,
1∑ ++=

∂
∂ δ (9)

Then,

s
j

s
js

j
s
j c

net
c λδ=∆ (10)

The learning rule for gains (10) is easily incorporated into
standard back propagation algorithms.

As in the standard back propagation algorithm uses the
gradient descent search direction with a fixed step length
λ in order to perform the minimization of the error function.
The iterative form of this algorithm is:

 rrr www ∆+=+1 (11)

where
rrr dw λ=∆ and

rd is the search direction or gradient

vector of the error function E at
rw . Let

r
r w

E
d

δ
δ−= and rr gd = .

It is well known that pure gradient descent methods with
fixed step length tend to be inefficient [28] due to the fact
that the choose of search directions and step sizes are not
optimal, if the first step size does not lead directly to the
minimum, gradient descent will zig-zag with many small
steps leading to very long computation times.

In order to avoid the oscillation, Rumelhart et. al. [4]
modified the back propagation search direction (d) by
adding momentum term (α):

)(111 −++ −+−= rrrrr wwgd α (12)

Although this extra term can avoid the oscillation, it
will introduce another extra term that has to be
considered. In our next section, we will show that by
adding the momentum term (α) is wise when the values
λ and α are well chosen by using conjugate gradient
method.

Previous researches [1], [3], [4] claimed that the adaptive
gain variation improved the learning rate or in order words,
it improved the step length as they referred Equation (7) and
(8) in calculating weight update expression with gain
variation as:

11
,

1)(')(−++∑=∆ s
j

k

s
j

s
j

s
j

s
jk

s
k

s
ij ocnetcfww δλ (13)

s
jc*λ

Previous researchers assumed that by coupling gain and
learning rate in Equation (13) it would improve the learning
rate automatically and as a result, the algorithm converge
faster as illustrated in Fig. 2.

rg

1164

This paper will show in our simulation results that the

contribution of the adaptive gain value in Equation (13) is
much more where it is actually improving the search
direction and not the step length as shown in Fig. 3.

We will show in our simulation results that the
contribution of the adaptive gain value in Equation (13) is
actually improving the search direction and not the step
length as shown in Fig. 3.

Fig. 3 Actual improvement on search direction by adaptive gain variation

As we note from Equation (6) and (7), the proposed back

propagation produces the new search direction with the new
procedure in calculating gradient with respect to weights and
gain value. In order to increase the convergence speed by
using this new gradient information, we propose to use
conjugate gradient and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm with this new search direction. In
the sequel, we present the modified of conjugate gradient
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm.

A. Validation on Sine Curve Example

The proposed approach was validated on a standard
feedforward neural network with one hidden layer by having
five hidden nodes. The training data set was created by using
the function]1,0[),**2sin(∈+= xwherexxy π as

been suggested by Bishop [24]. The network is trained using
0.3 as the learning rate value to achieve a target error equal
to 0.001. The batch mode training was employed in training
the Gradient Descent algorithm with adaptive changes in
weight, bias and gain values. The initial weight and bias
values were chosen as small random numbers in the range [-
1, +1]. The network is trained with an adaptive gain with an
initial value of unity for the gain parameter for all output as
well as hidden nodes.

In Fig. 4(a) the network output (continuous curve) is
shown against the training data points (circles)

)**2sin(xxy π+= . The output of the network using

constant unit gain value is also plotted in Fig. 4(a) (dotted
curve). Again, the result showed that the speed of
convergence is high due to the modified gain values. As

shown in Fig. 4(b), the network required 1154 epochs to
achieve the target error using the proposed adaptive gain
algorithm in batch mode, whereas using the same set of
initial weight and biases the network required 6014 epochs
to achieve the target error using constant unit gain value
during training.

Comparing both the curves in Fig. 4(a) it can be seen that
the training performance of the adaptive gain algorithm is
similar to that using constant gain value. However, the speed
of convergence of the adaptive gain algorithm is very high as
compared to that using constant gain value as shown in Fig.
4(b). The results proved that there is a dramatic
improvement in the learning speed of the back-propagation
algorithm.

(a)

(b)

Fig. 4 Output of the neural network training to learn a sine curve with and
without using the adaptive gain in back propagation algorithm (a), and
convergence speed for the sine function with and without using the adaptive
gain algorithm in back propagation training (b)

Next section, in order to confirm the claim in the previous
section, by means of simulation, this paper demonstrated the
implementation of the proposed method which used gradient
information with adaptive gain into the Broyden-Fletcher-
Goldfarb-Shanno (BFGS).

λ

rg

s
jc*λ

Fig. 2 New step length with adaptive gain variation claimed by previous
researchers [1]-[3]

λ

λ

)(rr cg

rg

1165

B. Broyden-Fletcher-Goldfarb-Shahno (BFGS/AG)
Algorithm with the Proposed New Search Direction
Procedure

While BP is a steepest descent algorithm, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [28]-[29] is an
approximation to Newton's method. Suppose that we have an

error function)(wE which we want to minimize with

respect to the parameter vectorw , then the search direction
d for Newton’s method is found by solving the system of
equations

)()]([12 wEwEd ∇∇−= − (14)

where HwE =∇)(2 is the Hessian matrix and gwE =∇)(.

This method converges in one iteration for a quadratic
function. Unfortunately, it needs the computation of the
inverse of Hessian matrix. This becomes a very difficult task
for real applications. The BFGS algorithm allows
constructing)(2 wE∇ by using the only gradient

information with the function of gain value
)()(cgwE =∇ provided in Section II. The complete

algorithm works are shown as follows:

Step 1: Initializing the vector
)0(w and a positive definite

initialization of Hessian
matrix)0(H . Select a

convergence threshold CT .
Step 2: Compute the descent search

direction
rd

)(rrrr cgHd −=

Step 3: Search the optimal value

for *
rλ by using line search

technique such as:

)(min)(
0

*
rrrrrr dwEdwE λλ

λ
+=+

≥

Step 4: Update
rw :

rrrr dww *

1 λ−=+

Step 5: Compute

rrr wws −= +1

)()(11 rrrrr cgcgy −= ++

r
T
r

r
T
rr

r
T
r

T
rr

r
T
r

rr
T
r

r
ys

Hys

ys

ss

ys

yHy
−

+=∇ 1

Step 6: Update the inverse
matrix

rH :

rrr HH ∇+=+1

Step 7: Compute the error function
value)(rwE

Step 8: If CTwE r >)(go to Step 2,

else stop training

C. Conjugate Gradient-Fletcher Reeves (CGFR/AG)
Algorithm with the Proposed New Search Direction
Procedure

One of the main reason for choosing conjugate gradient
method because of its known and remarkable properties in
generating in a very economical fashion, a set of vectors
with a property known as conjugacy [26]. The standard

conjugate gradient method is an unconstrained
optimization technique used to minimize the
nonnegative error function)(wE by generating a

sequence of approximation 1+rw iteratively according to:

rrrr dww λ+=+1 (15)

The scalar rλ is the step length, known in neural network

notation as learning rate. As we mentioned earlier, we are

not a concern in finding the optimal step lengthrλ because it

can be determined by many line search techniques in the
way that)(rrr dwf λ+ is minimized along the

direction rd , given rw and rd fixed. We focused on

finding the optimal search direction as in the standard
conjugate gradient algorithm; it begins the minimization
process with an initial estimate

0w and an initial search

direction as:

r
r

r g
w

E
d =−=

δ
δ

 (16)

With adaptive gain variation the calculation for a
new search direction with the function of gain is:

)()(,, rkrrk
r

r cgc
w

E
d =−=

δ
δ

 (17)

As for standard conjugate gradient, each direction
1+rd is

chosen to be a linear combination of the gradient descent
direction

1+− rg and the previousrd . As written as:

rrrr dgd β+−= ++ 11 (18)

With adaptive gain, we calculated each new direction

1+rd as:

)()()(,,1,
1

1 rkrrkrrk
r

r cdcc
w

E
d β

δ
δ +−= +

+
+

 (19)

where the scalar rβ is to be determined by the requirement

that rd and 1+rd must fulfil the conjugacy property. There

are many formulae for the parameterrβ . One of them is

introduced by Fletcher and Reeves [28] and is given as:

r
T
r

r
T
r

r gg

gg 11 ++=β (20)

The complete CGFR-AG algorithm works as indicated in the
following algorithm:

Step 1: Initializing the weight vector

0w randomly, the gradient

vector 00 =g and gain

v ector 10 =c . Let the first

s earch direction
00 gd = .

Set 00 =β , 1=epoch and 1=r .

Let Nt is the number of

1166

weight parameters. Select a
convergence threshold CT .

Step 2: At step r , evaluate
gradient vector)(rr cg with

r espect to gain vector
rc .

Step 3: Evaluate)(rwE . If CTwE r <)(

t hen STOP training ELSE go to
Step 4.

Step 4: Evaluate search direction:

11)(−−+−= rrrrr dcgd β

Step 5: For the first iteration,
check if 1>r THEN update

)()(

)()(1111
1

rrr
T
r

rrr
T
r

r cgcg

cgcg ++++
+ =β ELSE go

to step 6.
Step 6: If 0]/)1[(=+ Ntepoch THEN

‘ restart’ the gradient vector

with)(11 −−−= rrr cgd ELSE go to

Step 7.
Step 7: Calculate the search the

optimal value for *
rλ by using

line search technique such as:

)(min)(
0

*
rrrrrr dwEdwE λλ

λ
+=+

≥

Step 8: Update
rw :

rrrr dww *

1 λ−=+

Step 9: Evaluate new gradient
vector)(11 ++ rr cg with respect to

gain value
1+rc .

Step 10: Evaluate new search
direction:

rrrrrr dccgd)()(111 β+−= +++

Step 11: Set 1+= rr and go to Step
2.

Conjugate gradient algorithm established much faster

convergence rate than first-order gradient descent approach.
This is because Conjugate Gradient uses its second order
convergence property without complex calculation of the
Hessian matrix.

Conjugate gradient method relies on improved gradient
descent search direction. Later we showed that with an
adaptive gain in Conjugate Gradient method had improved
further the search direction. As a result, it converges faster.

III. RESULTS AND DISCUSSION

A computer simulation has been developed to evaluate the
performance of the proposed the learning algorithms. The
simulations have been carried out on a Pentium IV 3 GHz
PC Dell with 1 GB RAM and using MATLAB version 6.5.0
(R13).

Six selected benchmark datasets were used as datasets as
suggested by Prechelt [30] in order to study and evaluated
the performance of the algorithm. Those six classification
problems are 7-bit parity problem, Thyroid, Wisconsin
breast cancer, Diabetes, Iris classification problem and glass
classification problem.

For the purposes of comparison, all algorithms were
trained by using the same networks architecture and

parameters setting for the same problem. Furthermore, the
performances of all the proposed algorithms are also
compared with respect to the neural network toolbox. For
each problem, five algorithms have been analysed. The first
algorithm is standard back propagation (BP), second
Broyden-Fletcher-Goldfarb-Shanno (trainbfg) from ‘Matlab
Neural Network Toolbox version 4.0.1’. The other two
algorithms are standard Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and our proposed Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method with adaptive gain (CGFR/AG).

Since some of the values for parameters in Toolbox were
set to default, therefore, both algorithms from Toolbox and
proposed algorithm were fixed with the values of learning
rate = 0.3, momentum term = 0.7 and standard sigmoid
activation function is used for all nodes in the network. The
gain parameters of all nodes are set to 1.0 initially. For all
simulations, all algorithms were tested using the same initial
weights, initialized randomly from the range [0, 1] and
received the same sequence of input patterns.

All results were presented as a table which summarizes the
performance of the algorithms for simulations that have
reached a solution. All algorithms were trained with 100
trials, if an algorithm fails to converge, it is considered that it
fails to train the FNN, but its epochs, CPU time and
generalization accuracy are not included in the statistical
analysis of the algorithms.

A. Thyroid Problems

This dataset was one of the famous datasets and was
created based on the ‘artificial neural network’ version of the
‘thyroid disease’ problem dataset from the UCI repository of
machine learning databases. The main objective of the
dataset is trying to diagnose thyroid hyper or hypo-function
based on patient query data and patient examination data in
order to decide whether the patient’s thyroid has over-
function, normal function or under-function. For a standard
experiment, the selected architecture of the FNN is 21-5-3.
The target error for this datasets is set to 0.05 with the
maximum epochs is 1000.

Tyroid Problem

321.2350

111.6042

0

500
1000

1500
2000
2500

3000

3500
4000

BP BP/AG

Methods

E
p

o
ch

s

0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

350.0000

C
P

U
 ti

m
e

(s
ec

o
n

d
s)

Epochs CPU time(seconds)

3469

1104

Fig. 5 The comparison of the number of epochs and CPU time needed to
convergence for BP and BP/AG for thyroid problem

As can be seen in Fig. 5, the proposed method with

adaptive gain had reduced three times number of CPU time
and epochs as compared to the standard BP. In Fig. 6, the
proposed method CGFR/AG easily outperformed others
algorithms in term of a number of epochs and CPU time.
Even though the standard CGFR performed well as

1167

compared to traincgf, yet with the introduction of gain in the
proposed method, the number of CPU time and the number
of epochs had been reduced significantly. Same results can
be seen in Fig. 7 where the proposed BFGS/AG
outperformed both algorithms with up to 33% faster.

Tyroid Problem

9.9072

6.4269

4.7710

0

10

20

30

40

50

60

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

C
P

U

tim
e(

se
co

n
d

s)
Epochs CPU time(seconds)

48

15 11

Fig. 6 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFR and the proposed CGFR/AG for thyroid
problem

Tyroid Problem

8.6648
9.6249

5.2678

0

10

20

30

40

50

60

70

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

62

35

62

21

Fig. 7 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS and the proposed BFGS/AG for thyroid
problem

B. Wisconsin Breast Cancer Classifications Problems

This dataset was created based on the ‘breast cancer
Wisconsin’ problem and was taken from UCI repository of
machine learning databases. It was created by Dr. William
H. Wolberg [31], where Dr. William tried to diagnose breast
cancer by trying to classify a tumor as either benign or
malignant based on cell descriptions gathered by
microscopic examination. For this problem, the selected
architecture of the FNN is 9-5-2 and the target error was set
as to 0.02 with the maximum epochs is 1000.

It can be seen from Fig. 8 that the effect of the proposed
adaptive gain into back propagation had reduced the CPU
time and number of epochs up to 38%. In addition in Fig. 9,
the standard CGFR performed slightly better as compared to
traincgf, however, the proposed CGFR/AG had reduced
further the number epochs until 60%. Overall, Fig. 10
demonstrated that the proposed method BFGS/AG
outperformed others algorithms in term of CPU time and
number of epochs.

Cancer Classification Problem

52.1555

18.7154

0

200

400

600

800

1000

1200

BP BP/Ag

Methods

E
p

o
ch

s

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

1109

425

Fig. 8 The comparison of the number of epochs and CPU time needed to
convergence for BP and the proposed BP/AG for cancer classification
problem

Cancer Classification Problem

3.7883
3.3060

1.5503

0

10

20

30
40

50

60

70

80

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s
0.0000

0.5000

1.0000

1.5000
2.0000

2.5000

3.0000

3.5000

4.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

71
65

39

Fig. 9 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFR and the proposed CGFR/AG for cancer
classification problem

Cancer Classification Problem

2.4513

1.7153 1.5718

0

5

10

15
20

25

30

35

40

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

35

32 29

Fig. 10 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS and the proposed BFGS/AG for cancer
classification problem

C. Diabetes Classifications Problems

This dataset was taken from the UCI repository of
machine learning database and was created based on the
‘Pima Indians diabetes’ problem dataset. The datasets,
doctors try to diagnose diabetes of Pima Indians based on
personal data (age, the number of times pregnant) and the
results of medical examinations (e.g. blood pressure, body
mass index, the result of glucose tolerance test, etc.) before
deciding whether a Pima Indian individual is diabetes
positive or not. Again, the selected architecture of the FNN
is for this datasets is 8-5-2 where the target error is set to
0.01, and the maximum epochs are 1000.

The implementation of the proposed adaptive gain into
BP/AG had successfully reduced the number of epochs and

1168

CPU time as compared to the standard BP as shown in Fig.
11. Same results can be seen in Fig. 12 and 13 where the
proposed method CGFR/AG and BFGS/AG had
outperformed other algorithms in term of CPU time and a
number of epochs.

Diabetes Classification Problem

26.0133

14.7113

0

100

200

300

400

500

600

BP BP/AG

Methods

E
p

o
ch

s

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

C
P

U

tim
e(

se
co

n
d

s)
Epochs CPU time(seconds)

517
413

Fig. 11 The comparison of the number of epochs and CPU time needed to
convergence for BP and the proposed BP/AG for diabetes classification
problem

Diabetes Classification Problem

4.0060

2.6000

2.0030

0

20

40

60

80

100

120

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s

0.0000
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

97

50
40

Fig. 12 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFR and the proposed CGFR/AG for diabetes
classification problem

Diabetes Classification Problem

4.1166

4.6721

4.0448

0

20

40

60

80

100

120

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

3.6000

3.8000

4.0000

4.2000

4.4000

4.6000

4.8000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

106 95 83

Fig. 13 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS and the proposed BFGS/AG for diabetes
classification problem

D. IRIS Classifications Problems

This is perhaps the best-known database to be found in the
pattern recognition literature a classical classification dataset
and was made famous by Fisher [32]. The datasets try to
illustrate principles of discriminant analysis. Fisher's paper is
considered as a classic paper in the field and is frequently

referenced to this day. The best-selected architecture of the
FNN for this problem is 4-5-3 where target error was set as
0.05, and the maximum epochs was set to 1000.

Fig. 14 shows that the proposed implementation on
BP/AG had significantly improved the convergence time as
compared to the standard BP in term of CPU time and
number of epochs. It is clear that the proposed method
CGFR/AG and BFGS/AG had outperformed other
algorithms in term of CPU time and a number of epochs as
can be seen in Fig. 15 and Fig. 16.

IRIS Classification Problem

28.8065

21.7131

0

100

200

300
400
500

600

700

800

BP BP/AG

Methods

E
p

o
ch

s

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

743

587

Fig. 14 The comparison of the number of epochs and CPU time needed to
convergence for BP and the proposed BP/AG for IRIS classification
problem

IRIS Classification Problem

3.8071

1.9146
1.4232

0

10

20

30
40

50

60

70

80

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s

0.0000

0.5000

1.0000

1.5000
2.0000

2.5000

3.0000

3.5000

4.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

69

39
29

Fig. 15 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFR and the proposed CGFR/AG for IRIS
classification problem

IRIS Classification Problem

2.6267
3.0063

1.8317

0

10

20

30

40

50

60

70

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

50 63

40

Fig. 16 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS and the proposed BFGS/AG for IRIS
classification problem

1169

E. 7 BIT Parity

The parity problem is also one of the classical and
considers the most popular initial testing tasks that are very
demanding for classification particularly for the neural
network to solve. This is because the target-output always
changes whenever a single bit in the input vector changes
and this makes generalization difficult, and as a result, the
learning does not always converge easily [33]. For this
problem, the selected architecture of the FNN is 7-5-1,
where the target error has been set to 0.05 with the
maximum epochs is set to 3000.

In achieving the target error, the performance of the
proposed method BP/AG had significantly reduced the
number of epoch up to 50% as shown in Fig. 17. Whereas, in
Fig. 18 and 19 the proposed CGFR/AG and BFGS/AG still
maintain the ability to reach the target error with a slight
improvement in term of CPU time and the number of epochs.

7-Bit PArity Problem

50.7911

21.7648

0

200

400

600
800

1000

1200

1400

1600

BP BP/AG

Methods

E
p

o
ch

s

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

1339

545

Fig 17 The comparison of the number of epochs and CPU time needed to
convergence for BP and the proposed BP/AG for 7-Bit parity problem

7-Bit Parity Problem

10.6129 10.6496

8.1057

0

50

100

150

200

250

300

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

C
P

U
 ti

m
e

(s
ec

o
n

d
s)

Epochs CPU time (seconds)

273

147
114

Fig. 18 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFR the proposed CGFR/AG for 7-Bit parity
problem

7-Bit Parity problem

4.4451

4.0183

3.7330

0
20
40
60
80

100
120
140
160
180

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

3.2000

3.4000

3.6000

3.8000

4.0000

4.2000

4.4000

4.6000

C
P

U
 ti

m
e

(s
ec

o
n

d
s)

Epochs CPU time(seconds)

164

93
85

Fig. 19 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS the proposed BFGS/AG for 7-Bit parity
problem

F. Glass Classification Problem

This dataset was also taken from the UCI repository of
machine learning database. The dataset was created based on
the ‘glass’ problem where it was based on the study to
classify types of glass and was motivated by the
criminological investigation. From the study, the results of a
chemical analysis of glass splinters (percent content of 8
different elements) plus the refractive index are used to
classify the sample to be either float processed or non-float
processed building windows, vehicle windows, containers,
tableware, or head lamps. The problem contains 9 inputs, 6
outputs, 214 examples and the selected architecture of the
FNN is 9-5-6, where the target error has been set to 0.05
with the maximum epochs is set to 3000.

Glass Classification Problem

32.9061

20.4352

0

100

200

300
400

500

600

700

800

BP BP/AG

Methods

E
p

o
ch

s
0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

698

492

Fig. 20 The comparison of the number of epochs and CPU time needed to
convergence for BP and the proposed BP/AG for glass classification
problem

Glass Classification Problem

6.5244

9.6080

5.6083

0

50

100

150

200

250

300

traincgf CGFR CGFR/AG

Methods

E
p

o
ch

s

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

C
P

U

tim
e(

se
co

n
d

s)
Epochs CPU time(seconds)

277

108
72

Fig. 21 The comparison of the number of epochs and CPU time needed to
convergence for traincgf, CGFRS the proposed CGFR/AG for glass
classification problem

Glass Classification Problem

3.9691

2.3268

0.9285

0

20

40

60

80

100

120

140

trainbfg BFGS BFGS/AG

Methods

E
p

o
ch

s

0.0000
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000

C
P

U

tim
e(

se
co

n
d

s)

Epochs CPU time(seconds)

116

27 15

Fig. 22 The comparison of the number of epochs and CPU time needed to
convergence for trainbfg, BFGS the proposed BFGS/AG for glass
classification problem

1170

Fig. 20 demonstrated that the proposed BP/AG had
improved the performance of reaching the target error by
reducing the number of epochs up to 30%. Again, the
proposed CGFR/Ag and BFGS/AG outperformed other
algorithms in reaching the target error as can seen in Fig. 21
and 22.

IV. CONCLUSION

In this paper, a new and improved training method is
introduced for fast supervised learning method in the neural
network. The performance of the proposed first order and
second order methods with adaptive gain (BP-AG, CGFR-
AG, BFGS-AG) with standard second order methods
without gain (BP, CGFR, BFGS) in terms of speed of
convergence evaluated in the number of epochs and CPU
time. Based on some simulation results, it’s showed that the
proposed algorithm had shown improvements in the
convergence rate with 40% faster than other standard
algorithms without losing their accuracy. It has been shown
that the proposed algorithm is also robust as the results have
been compared with the ‘Matlab neural network toolbox
‘implementation. Based on simulation results on selected
benchmark datasets, the results clearly show that the
proposed method outperforms the standard training
algorithms in neural network toolbox. Furthermore, it runs
much faster, performs less CPU time, has improved average
number of epochs, and better convergence rates without
losing their accuracy performance.

ACKNOWLEDGMENT

The authors would like to thank Universiti Tun Hussein
Onn Malaysia (UTHM) Ministry of Higher Education
(MOHE) Malaysia for financially supporting this Research
under Trans-disciplinary Research Grant Scheme (TRGS)
vote no. T003. This research also supported by GATES IT
Solution Sdn. Bhd under its publication scheme.

 REFERENCES
[1] Thimm G., Moerland F., and Emile Fiesler, The Interchangeability of

Learning Rate an Gain in Back propagation Neural Networks. Neural
Computation, 1996. 8(2): p. 451-460.

[2] Chin Kim On, Teo Kein Yau, Rayner Alfred, Jason Teo, Patricia
Anthony, Wang Cheng, Backpropagation Neural Ensemble for
Localizing and Recognizing Non-Standardized Malaysia’s Car Plates.
International Journal on Advanced Science, Engineering and
Information Technology, Vol. 6 (2016) No. 6, pages: 1112-1119.

[3] Eom K. and Jung K., Performance Improvement of Back propagation
algorithm by automatic activation function gain tuning using fuzzy
logic. Neurocomputing, 2003. 50: p. 439-460.

[4] Holger R. M. and Graeme C. D., The Effect of Internal Parameters
and Geometry on the Performance of Back-Propagation Neural
Networks. Environmental Modeling and Software, 1998. 13(1): p.
193-209.

[5] Rumelhart D. E., Hinton G. E., and Williams R. J., Learning internal
representations by back-propagation errors. Parallel Distributed
Processing, 1986. 1 (Rumelhart D.E. et al. Eds.): p. 318-362.

[6] Sotiropoulos D.G., Kostopoulos A.E., and G. T.N., A spectral
version of Perry's Conjugate gradient method for neural network
training. 4th GRACM Congress on Computational Mechanics
(GRACM 2002), 2002. 1: p. 291-298.

[7] Weisss and Kulikowski, Computer systems that learn. 1991: p. 223.

[8] Fahlman S.E., Faster learning variations of back propagation: An
empirical study. D. Touretzky, G.E. Hinton and T.J. Sejnowski
(editors) Proceedings of the1988 Connectionist Models Summer
School, 1988: p. 38-51.

[9] Hollis P. W., Harper J. S., and Paulos J. J., The Effects of Precision
Constraints in a Backpropagation Learning Network. Neural
Computation, 1990. 2(3): p. 363-373.

[10] Jacobs R.A., Increased rates of convergence through learning rate
adaptation. Neural Networks, 1988. 1: p. 295–307.

[11] Kamarthi S. V. and Pitner S., Accelerating Neural Network Training
using Weight Extrapolations. Neural Networks, 1999. 12: p. 1285-
1299.

[12] Leonard J. and Kramer M. A., Improvement to the backpropagation
algorithm for training neural networks. Computer and Chemical
Engineering, 1990. 14(3): p. 337-341.

[13] Looney C. G., Stabilization and Speedup of Convergence in Training
Feed Forward Neural Networks. Neurocomputing, 1996. 10(1): p. 7-
31.

[14] Perantonis S. J. and Karras D. A., An Efficient Constrained Learning
Algorithm with Momentum Acceleration. Neural Networks, 1995.
8(2): p. 237-249.

[15] Tollenaere T., SuperSAB: Fast adaptive back propagation wiih good
scaling properties. Neural Networks, 1990. 3(5): p. 561-573.

[16] Rigler A. K., Imine J. M., and Vogl T. P., Rescaling of variables in
hack propagation learning. Neural Networks, 1990. 3(5): p. 561-573.

[17] Yusuf Hendrawan, Dimas Firmanda Al Riza, Machine Vision
Optimization using Nature-Inspired Algorithms to Model Sunagoke
Moss Water Status. International Journal on Advanced Science,
Engineering and Information Technology, Vol. 6 (2016) No. 1, pages:
45-57.

[18] Shanno D.F., Recent advances in numerical techniques for large
scale oprimization. in Neural Nelworks for Control. Miller. Sutton
and Werbos, 1990.

[19] Charalambous C., Conjugate gradient algorithm for efficient training
of artificial neural networks. IEEE Proc, 1992. 139(3): p. 301-310.

[20] Douglas S. C. and Meng T. H.-Y., Linearized least-squares training
of multilayer feedforward neural networks. IEEE lnternational]oint
Conference on Neural Networks, 1991. 1: p. 1307-1312.

[21] Wessels L. F. A. and Barnard E., Avoiding false local minima by
proper initialization of connections. IEEE Transactions on Neural
Networks, 1992. 3: p. 899-905.

[22] Codrington C. and Tenorio M., Adaptive Gain networks. Proceedings
of the IEEE International Conference on Neural Networks (ICNN94),
1994. 1: p. 339-344.

[23] Noriega, L., Multilayer Perceptron Tutorial. Lecture notes, 2005: p.
1-12.

[24] Holger R. Maier and Graeme C. Dandy, The effect of internal
parameters and geometry on the performance of back-propagation
neural networks: an empirical study. Environmental Modelling &
Software, 1997. 13: p. 193-209.

[25] Zurada J.M., Introduction to Arti4cial Neural Systems. 1992, St. Paul,
MN: West Publishing Company.

[26] Bishop C. M., Neural Networks for Pattern Recognition. 1995:
Oxford University Press.

[27] Tai-Hoon Cho, Richard W. Conners, and Philip A. Araman, Fast
Back-Propagation Learning Using Steep Activation Functions and
Automatic Weight Reinitialization. IEEE International Conference
on Systems, Man, and Cybernetics, 1991. 3: p. 1587-1592.

[28] Adrian J. Sheperd, Second Order Methods for Neural Networks-Fast
and Reliable Training Methods for Multi-layer Perceptrons, ed. J.G.
Taylor. 1997: Springer. 143.

[29] Byatt D., Coope I. D., and PriceC. J., E ect of limited precision on
the BFGS quasi-Newton algorithm. ANZIAM J, 2004. 45: p. 283-
295.

[30] 28. Fletcher R. and Reeves R. M., Function minimization by
conjugate gradients. Comput. J., 1964. 7(2): p. 149-160.

[31] L.Prechelt, Proben1 - A set of Neural Network Bencmark Problems
and Benchmarking Rules. Technical Report 21/94, 1994: p. 1-38.

[32] Mangasarian O. L. and W.W. H., Cancer diagnosis via linear
programming. SIAM News, 1990. 23(5): p. 1-18.

[33] Erik Hjelmas and P.W. Munro, A comment on parity problem.
Technical Report, 1999: p. 1-7.

1171

