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Abstract— Based on current in silico methods, enzyme sub-functional classes is distinguished from sequence level information, local 
order or sequence length and order knowledge. To date, no work has been done to predict the enzyme subclasses efficiently 
corresponding to the ENZYME database. In order to precisely predict the sub-functional classes of enzyme, we propose a derivative 
feature vector labelled as APH which unifies amino acid composition, dipeptide composition, hydrophobicity and hydrophilicity. 
Support Vector Machine is used for prediction and the performance is evaluated using accuracy obtained over 99% and Matthew’s 
Correlation Coefficient (MCC) over 0.99 with the aid of biological validation from in vivo studies. 
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I. INTRODUCTION 

An enzyme functional and sub-functional class plays a 
major role in protein evolution studies [1], structural class [2, 
3], subcellular localization [4] as well as protein function 
prediction [5, 6]. According to the ENZYME database, 
enzymes can be categorized to six main functional classes 
based on their Enzyme Commission (EC) number accessible 
from (http://www.brenda-enzymes.org/) namely 
oxidoreductases, transferases, hydrolases, lyases, isomerases, 
and ligases abbreviated as EC.1, EC.2, EC.3, EC.4, EC.5, 
and EC.6 respectively. All of these main classes can be 
further classified into its sub-functional classes as illustrated 
in Figure 1. The primary knowledge of enzyme main and 
subclasses is significant as it embodies essential information 
that classes can be used to infer protein structures related in 
understanding the biological   function of a protein used 
vastly as therapeutic strategy [7]. However, to date, no 
researches carried out had correctly predicted the sub-
functional classes which correspond to the ENZYME 
database. This is due to the previous methods that focused 
merely on the use of sequence level information [8] with 
lack or no sequence order and sequence length knowledge [9, 
10] to identify the subclasses. 

 

Fig. 1. The hierarchical structure of enzymes consists of the main and sub-
functional classes 
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For instance, for EC.1, in Wang et al. [10] the number of 
subclasses correctly predicted is 12; Zhou et al. [9] and 
Huang et al. [11] predicted 16 subclasses and Shen and Chou 
[12] and Shi and Hu [13] predicted up to 18 subclasses 
whereas the ENZYME database has 21 subclasses all in all. 
Thus, by adopting the aforementioned rudiments, we can 
distinguish the uncategorized sequences in each class 
efficiently. 

Concerning to the prediction of enzyme sub-functional 
classes, many attempts [9-16] have been made using 
computational methods such as SVM [9, 11, 13, 15-16, 20]. 
It is believed that biological based knowledge has a strong 
relation to derive the enzyme sub-functional classes. This is 
because enzymes play an important role in regulating and 
initiating every biological reaction [8]. In regard to this, 
amino acid composition (AAC) is one of the initial 
successful methods used extensively due to its ingenuous 
characteristics [17]. Fundamentally, AAC is dependent on 
the proportion of amino acid residue occurrences quantified 
using statistical method found in the respective enzyme 
protein sequence [18]. In previous work, up to 90% [10, 12-
13] accurate prediction of the enzyme sub-functional classes 
can be attained using the modified versions of AAC 
representation which are the pseudo amino acid composition 
(Pse-AAC) [10] and amphiphilic pseudo-amino acid 
composition (Am-Pse-AAC) [9]. The improved 
performances of Pse-AAC and AmPse-AAC was accredited 
to the incorporation of several encoding features and 
machine learning algorithm as in functional domain [12, 19], 
conjoint triad feature (CTF) [10, 20], and gene ontology (GO) 
[21] adopted using Support Vector Machines (SVM) [9, 13, 
15-16, 20] and K-Nearest Neighbor (KNN) [11] classifier. 
Though, the discrete model of PseAAC is of use in statistical 
prediction but complex in terms of integrating the sequence-
order information whereas the Am-Pse-AAC could lead to 
an infinite number of sample patterns due to different types 
of amphiphilic features. Thus, we believe that finding the 
optimal amphiphilic features for instance hydrophobicity [22] 
and hydrophilicity [23]; as input vector could lead to a better 
prediction. Previous work [13] done had proved that the use 
of these features increased the overall prediction accuracy by 
3.4% compared to Shen and Chou’s results [12]. 
Subsequently, the dipeptide composition yield upon the 
hydrolysis of two amino acids resorted by many researchers 
in expressing the enzyme sequence information efficiently 
such as the increment of diversity [24]. 

      The aforementioned methods in predicting sub-
functional classes of enzymes each have their own merits. 
As is well known, an enzyme sub-functional class is very 
dense that involves many physical and chemical properties. 
For this kind of complicated biological system, it would be 
particularly effective to treat it by assembling many 
individual predictors with each operated based on its own 
special feature. Hence, this paper focuses primarily on 
presenting a new alternative feature vector, abbreviated as 
APH. APH is the consolidation between (i) AAC, (ii) 
dipeptide composition, (iii) hydrophobicity and 
hydrophilicity properties of protein sequence in order to 
tackle three major elements: (1) sequence level information, 
(2) local order of protein sequences, and (3) sequence order 
and length respectively. In computational approach, SVM 

[20] is utilized in predictive tasks to deal with multi-class 
classification problems. By utilizing APH and SVM, we 
evaluate the prediction outcome based on accuracy (acc) and 
Matthew’s Correlation Coefficient (MCC).  

Additionally, biological validation is also done as 
supporting source. The rest of the paper is organized as 
follows. In Section 2, we illustrate the performance of 
computational methods and algorithms on the benchmark 
datasets. Section 3 presents the experimental results and 
discussion. Finally, the last section deduces the summary of 
this study.  

II. MATERIAL AND METHODS 

A. Dataset 

The sub-functional classes were classified into each of the 
six main enzyme classes based on the accession numbers 
extracted from the ENZYME database at 
ftp://ftp.expasy.org/databases/enzyme/ (Release of 19-Oct-
2011). The corresponding protein sequences represented by 
its EC number were taken from the databank of 
Uniprot/Swiss-Prot at http://www.ebi.ac.uk/swissprot/ 
(Release of 21-Sep- 2011). The dataset used in [10] and [13] 
were also applied in order to examine the effectiveness of 
the proposed method as compared to the previously used 
techniques. The benchmark dataset were curated based on 
the following screening procedures as illustrated in Figure 2: 
(1) a redundancy cutoff was set to avoid any homologous 
bias where no sequences had ≥ 25% sequence identity to 
any other, (2) enzymes with less than 50 amino acids were 
excluded to avoid fragment data, and (3) enzymes consist of 
multi-domain proteins with multiple enzymatic functions 
was removed. Thus, six datasets (SeqEC.1 – SeqEC.6) were 
constructed based on the main functional classes which can 
be formulated as:   

 
               (1) 

 

i=1 where Seqk = {k EC.1, EC.2, EC.3, EC.4, EC.5, EC.6} 
are defined as the main functional classes of enzyme, Sk.i and 
Sk.w are the sub-functional classes given that w = {21, 9, 10, 6, 
6, 6} respectively which varies depending on the elements in 
k.  

 
Fig. 2. Steps of dataset preprocessing 
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From Figure 2, each of the enzyme functional class 
carries its own enzymatic functionalities which contribute to 
the genesis of interesting problems in bioinformatics [8]. 
The six functional classes are classified as the following: (i) 
EC.1: take responsibility in catalyzing oxidation and 
reduction reactions, (ii) EC.2: used in a functional group 
transfer reaction from one molecule to another, (iii) EC.3: 
responsible for catalyzing the hydrolysis reaction and 
breakage of single bonds, (iv) EC.4: take responsibility in 
formation or removal of double bond with group transfer, (v) 
EC.5: functions in catalyzing the isomerization of functional 
groups within a single molecule, and (vi) EC.6: catalyzing 
the single bond formation by eliminating the elements of 
water from two functional groups to form a single bond. 

B. Generation of AAC 

AAC alone performs at its best with existing yet more 
complex features indicating the presence of sequence-level 
information that is predictive of interaction, but which is not 
necessarily restricted to domains. AAC is a fraction of each 
amino acid present in the protein sequence. Suppose a 
protein sequence with L amino acid residues:  

R1R2R3R4R5…RL       (2)  
where R represents the amino acid residue and the subscript 
number represents the position of amino acid residue of 
length, L in a protein sequence (Seqk).  
  

If λ is the length of protein sequence and βi is the frequency 
of occurrence of an amino acid i, then AACi is:  

       (3)  

where i is any of the 20 amino acids.  

C. Composition of Dipeptide 

In order to implement information about frequency as 
well as local order of residues in proteins, we also 
constructed dipeptide composition (DPC) based model. DPC 
is considered as better feature as compared to AAC as it 
encapsulates global as well as local information of the 
sequence. The DPC based model encompasses the 
information about AAC along local order of amino acid. It 
gives the fixed pattern length of a vector with 400 (20x20) 
dimensions. The fraction of each dipeptide, DPCi was 
computed using the following equation:  

        (4) 

where i, j are any of the 20 amino acid residues, σij is the 
fraction of a pair of amino acids (i, j = 1, 2,...,20) and ω is 
the total number of all possible dipeptides. 

D. Generation of Pse-AAC Features 

The concept of Pse-AAC concerning on the use of 
hydrophobicity and hydrophilicity factors was proposed in 
order to avoid a complete lost in the sequence order 
information. In contrast with the conventional AAC that 
contains 20 components with each reflecting the occurrence 
frequency for one of the 20 native amino acids in a protein, 
the essence of Pse-AAC is that it includes information 
beyond AAC where the first 20 represent the components of 
its conventional AAC while the additional factors reflects 

the sequence order effect of a protein through a discrete 
model. Thus, according to the definition of Pse-AAC, a 
protein sequence can be expressed as a vector P which is 
formulated as follows:    
 P = {P1,..., P20 , P20+λ }       (5)  

where the first 20 numbers in Eq. (5) represent the classic 
AAC, and the next λ discrete numbers describe sequence 
correlation factor which is the hydrophobicity and 
hydrophilicity values calculated based on [9] by the 
following equation:  

     (6) 

     (7) 

 
 
where i is the indices of amino acid residue; hφ1 and hφ

2 are 
the original hydrophobic and hydrophilic  
values of the ith amino acid.   

E. APH with SVM Classification 

In the present study, a freely downloadable package of 
SVM which is the SVMlight  (http://svmlight.joachims.org/) 
has been used to predict the sub-functional classes of 
enzyme. The define parameters used such as the linear 
inbuilt kernel function by adopting the 10-fold cross 
validation (CV) technique. Since the prediction of sub-
functional classes is a multi-class classification problem, we 
constructed N SVMs for N class classification. Here, the 
class number was equal to six for enzyme functional classes. 
Hence, ith SVM was trained with all the samples in the ith 
class with positive label and negative label for the sequences 
of remaining sub-functional classes. This kind of SVM is 
known as one versus all (1-v-a) SVM. The training and 
testing dataset was partitioned in ratio of 0.8:0.2.   
  We implemented the hybrid module which encapsulates the 
complete information of a protein such as AAC, DPC and 
hydrophobicity and hydrophilicity properties known as the 
APH features to all of the six datasets (SeqEC.1 – SeqEC.6) 
used. SVM was provided with an input vector of 441 
dimensions that consisted of 20 features for AAC, 400 
features of DPC, and 21 features of the hydrophobicity and 
hydrophilicity factors. 

F. Evaluation Measurement 

In order to assess the prediction performances, acc and 
MCCi were calculated as described by [19] using equations:  
 

   (8) 

 

       (9)  

where i is the index of a particular subclass, ℕ refers to the 
number of sequences predicted in subclass i, �i represents 
the number of correctly predicted sequences of class i, qi is 
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the number of correctly predicted sequences not of class i, �i 
represents the number of incorrectly predicted sequences of 
class i and si is the number of incorrectly predicted 
sequences not of class i.    
  

 
Fig. 3. Prediction of enzyme sub-functional classes. 

 

III.  RESULTS AND DISCUSSION 

A. Assessment of the most significant feature 

The most significant feature is assessed using two 
measurements: acc is used to assess the degree of correctly 
predicted sub-functional classes with respect to the ground 
truth; MCC is used to access the degree of true and false 
positives and negatives and used even if the classes are of 
very different sizes.  
Figure 4 and 5 presents the prediction performance that has 
been achieved using the discussed measurements. 

 
Fig. 4. Performance comparison across different method in terms of acc. 

 
Fig. 5. Performance comparison across different method in terms of MCC. 

  
Based on the figures above, it shows APH outperformed 

the others in main classes for both acc and MCC with 99.3% 
and 0.995 in EC.2 and EC.3 respectively.  This can be due to 
the property of APH which takes into account the knowledge 
of sequence order and length information. From these results, 
it suggests that the more properties of dataset are 
incorporated into the predictive model; an improved result 
can be obtained. Despite the promising results from all 
functional classes, the MCC value in EC.5  
for APH is slightly lower than the AAC. It can be mainly 
due to the lesser number of sequences being analyzed as 
compared to the other classes. Otherwise, APH performs 
relatively well even if the protein sequences are of low 
homologous to each other.   

B. Assessment on the optimal number of CV  

From Supplementary Figure 1, it shows the trends of 
enzyme functional class elements with different number of 
CVs; represented as 5, 8, 10, 12, and 15. According to Chan 
and Lin [25], a notable increment trend for all class occurs 
within the 10-fold CV. Surprisingly, all classes also exhibit 
similar trends with an optimal value at peak with 10CV. This 
strongly owns to the definition that 10CV tends to provide 
less biased estimation of the acc. By employing the optimal 
10CV using APH as feature, the results obtained 
outperforms with the highest acc of 96.1% for EC.2. This 
explains the feature representation criteria which considers 
the intrinsic information of the sequences used in this study.   

C. Prediction on the subclasses using the best classification 
method  

In this paper, we compared three classifiers namely SVM, 
KNN and Naïve Bayes (NB) for predicting sub-functional 
classes of enzyme for low homologies to known enzymes. 
From Supplementary Table 1, the SVM classifier 
outperformed the others for all classes. This reports that 
SVM is capable of solving the imbalance multi-class 
classification problem which occurs in predicting enzyme 
sub-functional classes by improving the predictive rule. 
SVM with APH as sequence-based feature showed a 
promising output with the highest acc of 95.7% for EC.2. 
This result simply implies that SVM works at its best with 
feature representation of higher degree where several 
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properties of problem that is needed to be solved had been 
taken into consideration.   

D. Prediction of unidentified enzyme sub- functional classes  

 
TABLE I 

THE BIOLOGICAL VALIDATION OF ENZYME SUB-FUNCTIONAL CLASS PREDICTION. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Discriminating biochemical structure transformation 

patterns is an initial step toward reaction prediction. Thus, 
several studies have been carried out by researchers that 
have scientifically proven the existence of biochemical 
reaction in enzyme prediction via in vivo validation. The 
sub-functional class EC.2.9 currently has only one sub-  
subclass EC.2.9.1 which is selenotransferases, despite the 
very broad definition of enzymes transferring selenium-
containing groups. This sub-functional class contains 
miscellaneous enzymes and includes several reactions for 
which the classification may have to be reviewed further by 
incorporating further knowledge-based context of functional 
groups.  

E. Comparison to other related works  

According to Table 2, comparing the prediction 
performance with existing works is difficult due to the 
different specification of computational framework and 
datasets. However, it is obvious that previous works uses 
larger number of sequences with greater similarity than our 
method. To the best of our knowledge, the best accall was 
from Wang et al. [41] with 93.5%, using CTF as features. 
Notwithstanding of utilizing only 25% sequences ID, our 

proposed method surpasses others at 95.9%. We believe this 
was due to the efficiency of APH to precisely predict the 
enzyme sub-functional classes. This was directly accredited 
to the hybridization of different features to form APH, which 
cancelled out each other weaknesses. Moreover, many other 
works used fixed number of subclasses as previously done.  
 

TABLE II  
PERFORMANCE COMPARISON WITH OTHER RELATED 

WORKS. 
 

Sequence  
Similarity/Features 

Vector/Method   

  
References  

  
accall 
(%)   

<40ED/PseAAC+CTF/AMSVM [41] 93.5 

≤40ED/LFD+ID/SVM [13] 94.7 
≤40ED/Top-Down 

Approach/KNN [12] 92.4 
<40ED/Am-Pse-AAC/ AFK-

NN [11] 92.1 
<40ED/Functional 

Domain+PseAAC/ISort [19] 94.8 

Sub-functional Class  
Enzyme Functional Class  

ENZYME 
database  

This study  Wang et al. 
[10]  

Shi and Hu 
[13]  

Shen and Chou 
[12]  

EC.1.19  
[37]  

EC.1 EC.1 unknown unknown unknown 

EC.1.20  
[39]  

EC.1 EC.1 unknown unknown unknown 

EC.1.21  
[38]  

EC.1 EC.1 unknown unknown unknown 

EC.2.9  
[30]  

EC.2 EC.2 unknown unknown unknown 

EC.3.3  
[32]  

EC.3 EC.3 unknown unknown unknown 

EC.3.7  
[33]  

EC.3 EC.3 unknown unknown unknown 

EC.3.8  
[34]  

EC.3 EC.3 unknown unknown unknown 

EC.3.11 
[35]  

EC.3 EC.3 unknown unknown unknown 

EC.3.13  
[36]  

EC.3 
 

EC.3 
unknown unknown unknown 

EC.2.8  
[31]  

EC.2 EC.2 unknown EC.2 EC.2 

EC.4.4  
[29]  

EC.4 EC.4 unknown EC.4 EC.4 

EC.4.99  
[28]  

EC.4 EC.4 unknown EC.4 EC.4 

EC.5.5 
 [40]  EC.5 EC.5 unknown EC.5 EC.5 

EC.5.99  
[41]  

EC.5 EC.5 unknown EC.5 EC.5 

EC.6.2  
[42]  EC.6 EC.6 unknown EC.6 EC.6 

EC.6.4  
[43]  

EC.6 EC.6 unknown EC.6 EC.6 

EC.6.5  
[45]  EC.6 EC.6 unknown EC.6 EC.6 

EC.6.6  
[44]  

EC.6 EC.6 unknown EC.6 EC.6 
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≤25ED/GO-PseAAC [21] 86.5 
<40ED/Am-PseAAC/ 

Augmented CDA [26] 76.6 

<40ED/AAC/CDA [27]) 63.6 

25ED/APH/SVM This study 95.9 
 
*ED: Percentage of sequence ID; AM-SVM: Arithmetic mean (AM) offset SVM; 
LFD+ID: Low-frequency power spectral density and increment of diversity; AFK-NN: 
Adaptive fuzzy KNN; CDA: Covariant-discriminant algorithm. 

IV.  CONCLUSIONS 

In this paper, we can conclude that enzyme sub-functional 
classes are an essential protein fold prior to the prediction of 
protein structure and function. In this study, we proposed 
APH in order to overcome the weaknesses of subclasses 
prediction by employing (i) the most significant features, (ii) 
the optimal classifier and (iii) the distinguishable 
nonidentified subclasses. We devised APH, which is 
hybridized from the different features in predicting low 
homologous sequence similarities. Based on the results of 
five different types of evaluation carried out; (i) assessment 
of the most significant feature, (ii) assessment on the optimal 
number of CV, (iii) prediction on the subclasses using the 
best classification method, (iv) prediction of enzyme sub-
functional classes with biological studies done previously as 
supporting material, and (v) comparison to other related 
works. In near future, we plan to investigate larger amount 
of sequences and further exploring the sub-functional classes 
for more latent information that might open up to a whole 
new research direction. We shall also make effort in 
designing a web-server for the method presented in this 
paper.   
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