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Abstract— Inside clinical research, gait analysis is a fundamental part of the functional evaluation of the human body's movement. Its 
evaluation has been carried out through different methods and tools, which allow early diagnosis of diseases, and monitoring and 
assessing the effectiveness of therapeutic plans applied to patients for rehabilitation. The observational method is one of the most used 
in specialized centers in Colombia; however, to avoid any possible errors associated with the subjectivity observation, technological 
tools that provide quantitative data can support this method. This paper deals with the methodological process for developing a 
computational tool and hardware device for the analysis of gait, specifically on articular kinematics of the knee.  This work develops a 
prototype based on the fusion of inertial measurement units (IMU) data as an alternative for the attenuation of errors associated with 
each of these technologies. A videogrammetry technique measured the same human gait patterns to validate the proposed system, in 
terms of accuracy and repeatability of the recorded data. Results showed that the developed prototype successfully captured the knee-
joint angles of the flexion-extension motions with high consistency and accuracy in with the measurements obtained from the 
videogrammetry technique. Statistical analysis (ICC and RMSE) exhibited a high correlation between the two systems for the 
measures of the joint angles. These results suggest the possibility of using an IMU-based prototype in realistic scenarios for accurately 
tracking a patient’s knee-joint kinematics during a human gait.  
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I. INTRODUCTION 

Human gait can be described as a sequence of events that 
occur rhythmically, that is, a repetitive pattern that allows 
the locomotion by combining several activities from the 
brain, nerves, and muscles. Gait analysis offers an 
opportunity for clinical evaluation of the act of walking and 
may reveal physical and psychological characteristics  [1]–
[4]. Observational gait analysis is an acquired skill that 
requires much practice and repetition. The process is 
complex and difficult because the physical therapist must 
learn how to look at the different body's joints while 
simultaneously compares the observed gait with normal gait 
features in three body planes (sagittal, frontal, and 
transversal) [5]. 

 

In effect,  biomechanics gait data from knee joints are 
collected by laboratories using different technologies and 
instrumentation, such as [6], [7]. Moreover, it is possible to 
employ kinematics of rigid bodies for calculating the knee 
joint angle coming from the relative movement between the 
knee segments of the tibia and the femur [8], [9]. The data 
are reported in two-dimensional charts, where the abscissa 
defines the percentage of the gait cycle (GC), i.e., the time 
interval from heel contact of one foot to the next heel contact 
of the same foot, meanwhile the ordinate corresponds to the 
biomechanical measure of interest, that is, the knee-joint 
angle [10].  

Gait analysis is commonly used to describe and identify 
normal gait but also to discover abnormal gait patterns [11], 
[12].The motion capture (MOCAP) system is one of the 
most used methods for gait analysis. It digitally records the 
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body movements generating an accurate 3D measurement of 
joint kinematics. However, this method requires a controlled 
laboratory setup. In recent years, improvements in MOCAP 
systems have played an important role in clinical and 
bioengineering applications due to their effectiveness in 
identifying the patient's walking disability [13], [14]. An 
accurate diagnosis can provide crucial information for 
clinical decisions and the creation of optimal therapeutic 
strategies to improve the patient's health.  

Normally, authors in the field tend to divide MOCAP 
systems for gait analysis into three main types [cita]: vision-
based, sensors-based, and data fusion. Concerning vision-
based, MOCAP utilizes data captured from optical sensors, 
usually from the visible spectrum, to obtain a quantitative 
measurement of human gait.  Currently, there are many 
optical systems on the market for 2D and 3D gait analyses 
such as Vicon, Qualysis, and Optitrack; they are 
characterized by their high precision and repeatability. 
However, these systems become a non-viable option in 
clinical institutes in Colombia because of their high cost and 
complex technological infrastructure [15]–[17].  

On the other hand, sensor-based systems have a large 
offer of sensors to quantify the orientation of body segments 
and joint angles. The Inertial Measurement Units (IMU), 
composed by accelerometers, gyroscopes, and 
magnetometers,  can provide data for motion tracking with 
enough accuracy and precision system [18]–[21]. The main 
advantage of IMU technologies is the ability to recording 
data with high sampling rates.  Also,  sensor fusion 
algorithms are proving to be a powerful method to overcome 
the limitations of vision-based capture systems in relation to 
marker occlusion and data loss [22], [23] technical advances 
in sensor devices have provided the opportunity of 
improving motion capture processes. Nevertheless, 
regardless of the technology used for data capture, there 
always is an inherently associated noise. This can generate 
inaccuracies when estimating parameters such as speed and 
acceleration. Therefore, it is necessary to develop methods to 
reduce noise, among them, Butterworth low pass filter [24], 
[25] and Kalman filter [7], [26]–[31] are the most used. 
Tannous et al. [32] incorporate IMU sensors in joint rotation 
axes to measure ankle and knee accelerations. They 
proposed a real-time orientation-based fusion scheme 
between Kinect and IMU sensors to improve the knee-joints 
kinematics during functional rehabilitation of the lower limb 
movement. They used a Kalman Filter to obtain accurate 
measures of joint angles since there are different types and 
sources of error that arise when placing these devices in the 
body.   

This paper presents a data fusion study for the acquisition 
and processing of signals to measure the knee-joint angles 
during a human gait. The proposed system combines IMU 

sensors (gyroscope + accelerometer). This work is structured 
as follows: Section 2 describes the experimental procedure 
and methods for analyzing the signal of the knee-joint angle. 
Section 3 presents the main results and discusses them. 
Lastly, Section 4 explains the research conclusions and 
future directions. One of the contributions of this study is the 
development of a methodology that allows us to measure the 
knee angle of the IMU reliably and at a low cost, with a high 
possibility of expanding the use of this technology to other 
joints of the human body.  

II. MATERIALS AND METHODS 

This section describes the methodology of the proposed 
system for all the stages, namely: acquisition, calibration, 
calculation of joint kinematics, preprocessing and data 
visualization. In order to enable a visual understanding, and 
explaining diagram of the proposed approach is shown in 
Fig. 1. 

 

 
Fig. 1  Block diagram of the proposed methodology

A. Prototype Develop 

The developed prototype consists of a lower limb 
motion system using two IMU sensors, type MPU6050 

(gyroscope, accelerometer and triaxial magnetometer). 
IMUs were used to track the thigh and leg segments using 
Velcro, such can be seen in Fig. 2.  
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Fig. 2 Subject wearing develop system with IMU sensors: a) subject in front view; b) subject in sagittal view. 

 
Each triaxial gyroscope was set to cover a range of 500 

degrees per second. Each triaxial accelerometer range is set 
to 16G. Signals measured by both sensors are captured at a 
sampling frequency of 120 Hz. IMU sensors are connected 
to an Arduino Nano board (ATmega328P), through the I2C 
communication pins. Additionally, a force sensor resistor 
FSR402 is connected to the Arduino via a USB cable. The 
prototype data is transmitted to the PC through the Bluetooth 
module HC06 (See Fig. 3). 

 
Fig. 3 The electronic scheme of the prototype developed to capture the 
measurements. 

B. Experimental Setup 

The methods and protocols used in this study are based on 
guidelines for the functional evaluation of human gait. The 
database considered in this study was obtained from 
recordings of signals from 12 volunteer subjects aged 
between 18 and 28.  To validate the accuracy and 
repeatability of the measurements, a videogrammetry 
technique is used, together with a widely used criterion for 
the clinical-functional evaluation and measurement of knee 
flexion angles through the use of universal goniometers [33], 
[34].   

The videogrammetry technique –applied for the gait 
analysis at the knee-joint- consists of placing a camera that 
captures the image of adhesive markers placed on the hip, 
knee and ankle joints. The here-used tool used for validation 
purposes is an optical motion capture system (cvMob), 
which is a free software used for the evaluation of two-
dimensional human gait. Reliability and accuracy for knee-

joint angle measurement have been compared to systems 
such as Vicon 3D as discussed in [35]. Therefore, the first 
step in the process was the selection of camera features to 
analyze. The camera used is a Logitech 920 Webcam, since 
it offers a high definition for video capture with a resolution 
of 1920x1080 pixels and 30 FPS. The camera calibration 
algorithm used is Zhang's algorithm [36], [37], which 
iteratively finds correspondences between the coordinates of 
some easily identifiable characteristic points of a known 
object (chessboard) both in the image plane and in the scene.  

C. Statistical Analysis 

Data acquired by the developed prototype as well as 
videogrammetry technique were recorded as video samples. 
When performing the trials, 12 subjects are instructed to 
walk a set distance of 6 meters at a slow walking speed. An 
effective distance between 2.1 - 4.1 meters was captured 
with the camera range. For determining the reliability and 
repeatability of the system, statistical analysis of recorded 
data by IMU is carried out using Octave 4.4.1. The mean 
and standard deviation of the Root Mean Square Error 
(RMSE) are the statistical measures used for making 
comparisons. On the other hand, the Intraclass Correlation 
Coefficient (ICC) allows assessing the repeatability of the 
instrument under identical conditions. Thus, in this paper, 
ICC evaluates the consistency of two recording sessions 
(executed within 10 days). Statistical analysis rejects the null 
hypothesis if the alpha value associated with the observed 
result is equal to or less than a significance level of 0.05. 
Finally, the intra- and intertester validation criteria are 
methods to estimate significant parameters as well as a 
reference for measures of maximum active knee flexion and 
extension with universal goniometers. 

D. Knee-Joint Angle Measurement Model 

The MPU-6050 integrated 6-axis MotionTracking device 
that combines a 3-axis gyroscope (wx, wy, wz) and 3-axis 
accelerometer (ax, ay, az).  The angle is calculated from a 
data fusion model that incorporates the gyroscope and 
accelerometer measurements of both sensors. The sensor 
alignment also enables more accurate data fusion, when data 
from both sensors are aligned to the terrestrial reference 
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systems and frameworks, the data extracted can then be 
fused reliably.  

The proposed algorithm accumulates several 
measurements against a fixed reference orientation and 
proceeds to estimate an adjustment value within a time 
interval in order to measure the gyroscope and accelerometer 
at zero. The offsets are calculated for a total of 200 
measurements and then averaged in order to obtain the 6 
adjustment parameters. 

In the Tait-Bryan convention, the angle of the sagittal 
plane is represented by the symbol �  . This angle can be 
calculated from a complementary filter, which consists of a 
weighted sum between the gyroscope and accelerometer 
measurements such as detail in Eq.1. Where k1 y  k2 is a 
constant between [0-1] and was established experimentally. 
 

 � � ��� �� � 	 
����� �  ��. ��� � ��
����������

�  (1) 

 
Since the angle of the knee-joint corresponds to the 

relative angle between the consecutive segments of the thigh 
and leg, two mpu-6050 are placed as follows: The first 
sensor is fixed between the Hip-Knee (�� ) joints and the 
second between the Knee-Ankle (� �).  
 
 � � �� ! � � (2) 

 
Finally, the knee-joint angle �  shown in Eq. 2 is 

calculated as the difference of the segments, provided that 
the sensors are oriented with respect to the same reference 
systems. 

E. Kalman Filter 

This section describes the process of filtering the data 
obtained to improve the quality of the IMU data. The 
proposed filter is Kalman, which is mainly used to filter and 
predict measurements in linear systems where noise can take 
on are Gaussian-distributed. This filter contains a process 
model and a measurement model, where equations Eq. 3 and 
Eq. 4 correspond to the equation of the process and the 
measurement. 

 
  "# � � $"# �� � %& � 
  (3) 
 
 ' � (" � )  (4) 

 
The matrix $ relates the state at the previous time step k−1 
to the state at the current step k, the matrix %  relates the 
optional control input and he matrix ( relates the state to the 
measurement ' . The random variables 
  and )  represent 
the process and measurement noise respectively [38]. When 
these equations are applied for the filtering of measures can 
be considered $ � % � ( � 1;  
 � ) � 0 and " �  � , 
corresponding to the knee-joint angle [39] . 

In addition, the equations for the Kalman filter can be 
divided into two groups: time update equations and 
measurement update equations. The complete operation of 
the proposed Kalman filter is described in Fig. 4. 
 

 
Fig. 4 Kalman Filter Equations. 

 
In practice, Q represents the process noise covariance and 

R is the measurement noise covariance. Finally, a posteriori 
estimate covariance matrix - � , the a priori estimate 
covariance matrix - �� and .  is the Kalman gain. 

F. Feature Extraction and Segmentation 

In this stage, the segmentation of the signal is performed 
which consists of extracting a complete cycle from the gait 
pattern. For this, the maximum points -/  of the signal are 
located as illustrated in Fig. 5. 

 

 
Fig.5 Gait pattern segmentation 

 
Because it can cause changes in the interval of separation 

of the peaks, from the central maximum the maximums are 
located -/��  and then -/�� . The intervals can be found at 
Δ-/�� and then Δ-/��can be calculated from equations Eq. 5 
y Eq. 6. 

 
 Δ-/�� � 1-/ !  -/�� 1 (5) 
 
 Δ-/�� � 1-/�� !  -/  1 (6)
  

Similarly, the interval from the central maximum -/ to the 
minimums 2/ and 2/�� calculated as shown in Eq. 7 y Eq. 8. 

 
 Δ2/�� � 12/ !  -/  1 (7) 
 
 Δ2/�� � 12/�� !  -/  1 (8) 

 
After, from this data, it is possible to define the size of the 

window 3456  signal interval by calculating the variables C1 
and C2 (Eq.9, Eq.10, and Eq. 11). 

 

433



 7� � Δ2/��/Δ-/�� (9) 
 
 7� � Δ2/��/Δ-/��      (10) 
 
 3456 � 39-/ ! 7�Δ-/��,  -/ � 7�Δ-/�� ; (11) 

G. Dynamic Time Warping and Polynomial Regression 

The dynamic time warping (DTW) method uses a cost 
function for estimating the warping function for aligning and 
normalize two signals. This approach is useful and widely 
used because of the different sampling frequency that 
recording devices can have for collecting data from the same 
event. In effect, linear time normalization scales the shorter 
data so that the two vectors can have the same length, 
making thus possible the comparison. In this way, for 
reducing the dissimilarity between two signals, the shorter 
signal must be interpolated until it coincides with the length 
of the larger one.  After the segmentation and normalization 
of the gait patterns, it is necessary to establish a set of 
patterns of the repetitions performed by each subject to 
obtain an adjustment curve using the polynomial regression 
method with a 95% confidence interval. 

III.  RESULT AND DISCUSSION 

This paper presented the use of both the IMU prototype 
and videogrammetry data capture protocol to create an 
affordable and portable system to analyze human gait.  Fig 6 
shows the results of the Kalman filter applied to the knee 
angle signal from subject 1. Afterward, the features 
extraction process consisted of locating the maximum and 
minimum values of each signal using an algorithm. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Fig. 6. Kalman Filter and Knee Angle Estimation Model 
 
This approach automatically detects the peak-peak 

intervals, and therefore, the C1 and C2 values for the signal 
segmentation (see Fig. 7).  

 

 
Fig. 7 Identification of maximum and minimum peaks. 

 
The minimum values correspond to the time in which the 

foot encounters the ground (contact phase), identified by the 
information from the FSR force sensors on the heel of the 
foot. Fig. 8 presents the result of the signal segmentation, 
showing up the identified phases of human gait: initial 
contact, load response, terminal support, and balance. 

 

 
Fig. 8 . Segmentation and identification of the human gait phases. 

 
Fig 9 presents the video sequence for a complete human 

gait cycle. The therapist performed an inspection and 
functional evaluation of the lower limb joints from 12 
subjects to determine a normal human gait.  The data fusion 
model used data from two IMU sensors at a sampling 
frequency of 120 Hz to estimate the knee angle. Also, the 
setup of the Kalman Filter included the calculation of both Q 
and R covariance matrices. Using the data captured during a 
time interval of the IMU sensor in a stable position, the 
value of R was 0.028; meanwhile, analyzing the signal 
response in function of Q values (0.1, 0.01 and 0.001)  the 
estimation of the best-fit Q value for signal filtering was 
0.001. 
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Fig. 9 video sequence captured from the camera for a complete cycle of human gait.  

 
Due to the un-synchronized stored of gait patterns, it is 

necessary to use the DTW technique for a temporary 
normalization. From these patterns, it is possible to apply a 
curve of adjustment using the least-squares method; thus, 
with a polynomial of degree n=10 and a 95% confidence 
interval, the Fig. 10 shows the normalization of the signal. 

 

 
Fig. 10 Polynomial regression of normalized gait patterns. 

 
The results showed that, for the 12 subjects, our motion 
tracking system successfully measured and recorded the 
knee flexion-extension (joint angles). Table 1 shows the 
accuracy of the joint angles measured from the two systems 
(proposed prototype and cvmob).  The interclass correlation 
coefficient (ICC) between these systems was high for all 
subjects (> 0.97). Besides, RMSEs were low (2.2° – 4.1°) 
with a mean of 3.27.  In previous studies of knee-joint angle 
measurement, especially in Knee Flexion Kinematics for 
Functional Rehabilitation Movements, Tannous et al. 

obtained ICC values around 0.96 – 0.98 and RMSE mean 
value of 3.96° from their lower limb fusion algorithm [32].  
Also, Farrokh et al. estimated knee-joint angle in gait human 
with accelerometer and gyroscope sensors, obtaining ICC 
values from 0.99 to 1.0 and RMSE mean value of 3.58° [38]. 
Compared to previous studies, the proposed system can provide 
quantitative measurements of knee movements with high 
accuracy within the range of portable sensors. This system uses 
low-cost IMU sensors, providing remarkable improvements 
over earlier developed systems. 

TABLE I 
 ACCURACY RESULTS OF THE TWO SYSTEMS FOR THE 12 SUBJECTS 

Subject RMSE ICC 

1 4.0 0.97 

2 4.0 0.99 

3 3.4 0.99 

4 3.5 0.97 

5 2.8 0.98 

6 3.1 0.98 

7 3.2 0.99 

8 2.8 0.99 

9 3.0 0.96 

10 3.5 0.98 

11 3.1 0.99 

12 2.9 0.98 

 
Table II shows the results (RMSE and ICC) over the two 

sessions (repeatability). It worth it to highlight that ICC, 
unlike Pearson, besides to establish the strength of the 
dependence between variables, it allows us to establish 
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whether these are close to each other.  For joint angles in the 
two sessions, ICC was high (> 0.97) for all subjects, 
presenting a strong correlation between the data sets from 
the two sessions. RMSEs for session 1 was around 0.5° – 
2.1°, and for session 2, 1.0° - 2.7°. 

TABLE II 
REPEATABILITY OF THE TWO SESSIONS 

Subject RMSE 
Session 1 

RMSE 
Session 2 

ICC 

1 1.3 2.7  0.97 
2 1.0 1.0  0.99 
3 1.6 1.8  0.99 
4 0.5 1.4  0.97 
5 1.2 2.6  0.98 
6 1.2 1.9  0.98 
7 1.2  1.1  0.99 
8 0.9  1.2  0.99 
9 2.0  2.3  0.96 
10 0.5  1.2  0.98 
11 2.1  3.0  0.99 
12 1.0  1.1  0.98 

IV.  CONCLUSIONS 

This study presented a portable prototype to measure knee 
angles using two IMUs connected to the thigh and leg, as 
well as the filtering process and data fusion model developed 
for estimating the knee joint angles. Specifically, for all 
subjects, the IMU-based system and the CvMOb yielded 
RMSE values around 2.2 °- 4.1 °, and ICC > 0.97.  
Recording data from 12 subjects, the findings demonstrated 
that the Kalman-based data fusion method (gyroscopes + 
triaxial accelerometers) allowed to mitigate and stabilize the 
accumulated errors of the IMU accurately. These results 
suggest that the prototype could use in realistically setups to 
accurately track knee movement to perform gait analysis.  
This system could also be an alternative to the current 
capture systems, and due to its low cost, it could have a high 
potential in clinical settings in emerging countries such as 
Colombia; however, additional experiments must validate 
the proposed system in clinical settings. Finally, it is 
possible to incorporate more IMU to track more body parts 
and joint angles, the authors are moving towards such a 
direction.  
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