

d by Repositorio da Produ

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://onlinelibrary.wiley.com/doi/10.1002/mgg3.750

DOI: 10.1002/mgg3.750

Direitos autorais / Publisher's copyright statement:

©2019 by Wiley. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br **ORIGINAL ARTICLE**

Copy number alterations associated with clinical features in an underrepresented population with breast cancer

Raquel M. Rodrigues-Peres¹ | Benilton S. Carvalho^{2,3} | Meenakshi Anurag^{4,5} | Jonathan T. Lei^{4,6} | Livia Conz¹ | Rodrigo Gonçalves⁷ | Cássio Cardoso Filho¹ | Susana O. B. Ramalho¹ | Geisilene R. de Paiva¹ | Sophie F. M. Derchain¹ Iscia Lopes-Cendes^{3,8} | Matthew J. Ellis^{4,5,6,9} | Luis O. Z. Sarian¹

¹Faculty of Medical Sciences, Department of Obstetrics and Gynecology, State University of Campinas–UNICAMP, Campinas, Brazil

²Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas—UNICAMP, Campinas, Brazil

³The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil

⁴Department of Medicine, Baylor College of Medicine, Houston, TX

⁵Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX

⁶Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX

⁷Department of Mastology, Hospital das Clínicas, Discipline of Gynecology, Department of Obstetrics and Gynecology, Faculty of Medicine, University of São Paulo, Brazil

⁸Department of Medical Genetics, State University of Campinas–UNICAMP, Campinas, Brazil

⁹Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX

Correspondence

Raquel Mary Rodrigues-Peres, Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas-UNICAMP, Rua Alexander Fleming, 101 - Cidade Universitária "Zeferino Vaz" - CEP: 13083-881 -Campinas, SP, Brazil. Email: raqmrp@gmail.com

Funding information

Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2008/02469-8 and 2015/18830-5

Abstract

Background: As the most incident tumor among women worldwide, breast cancer is a heterogeneous disease. Tremendous efforts have been made to understand how tumor characteristics as histological type, molecular subtype, and tumor microenvironment collectively influence disease diagnosis to treatment, which impact outcomes. Differences between populations and environmental and cultural factors have impacts on the origin and evolution of the disease, as well as the therapeutic challenges that arise due to these factors. We, then, compared copy number variations (CNVs) in mucinous and nonmucinous luminal breast tumors from a Brazilian cohort to investigate major CNV imbalances in mucinous tumors versus non-mucinous luminal tumors, taking into account their clinical and pathological features.

Methods: 48 breast tumor samples and 48 matched control blood samples from Brazilian women were assessed for CNVs by chromosome microarray. Logistic regression and random forest models were used in order to assess CNVs in chromosomal regions from tumors.

Results: CNVs that were identified in chromosomes 1, 5, 8, 17, 19, and 21 classify tumors according to their histological type, ethnicity, disease stage, and familial history.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

Conclusion: Copy number alterations described in this study provide a better understanding of the landscape of genomic aberrations in mucinous breast cancers that are associated with clinical features.

KEYWORDS

breast cancer, copy number alteration, ethnicity, family history, mucinous, stage

1 | INTRODUCTION

As the most incident tumor among women worldwide, breast cancer also causes the highest number of deaths in the female population, especially in developing countries where the diagnosis of late-stage disease is made in most cases (World Health Organization, 2018). Breast cancer is also a heterogeneous disease, where the individual's genetics in combination with the influence of tumor histological type, molecular subtype, and tumor microenvironment contribute to disease progression. A better understanding of these factors in relation to early diagnosis and disease treatment impacting overall survival is critical (Cecilio et al., 2015). In addition, differences between populations and also environmental and cultural factors significantly affect the origin and evolution of the disease, and therefore bring additional therapeutic challenges (IARC, 2014).

Ductal carcinomas account for more than 70% of breast tumors and include all histological types that cannot be classified into defined types. Their prognosis depends mainly on the molecular subtype and other features such as stage that includes tumor size, affected lymph nodes, and the presence of metastasis (IARC, 2014). Among the histological types of breast tumors, mucinous carcinomas of the breast are rare and comprise 1%-6% of all breast tumor cases, especially in women over 75 years of age (Ha, Deleon, & Deleon, 2013). Genomic studies involving this type of tumor are understudied, in part because of its low incidence. A portion of the cases that did not respond well to standard-of-care treatments were characterized as presenting positivity for ERBB2 and P53, with a higher probability of metastasis. Cases that present the mucinous histological type in less than 90% of the tumor or, in association with invasive ductal tumors, also tend to be more aggressive (Lacroix-Triki et al., 2010). In addition, chromosome analysis in pure mucinous tumors in conjunction with other histological types showed gains in 1q and 16p arms and losses in the 16q and 22q arms, despite lower genetic instability compared to invasive ductal tumors. Studies have shown that a number of genes such as ERBB2, FGFR1, CCND1, FGF3, FGF4, FGF19, PIK3CA, BRCA1, TSC2, STK11, AKT3, and ESR1, among others, present changes in tumors of this type (Lei, Yu, Chen, Chen, & Wang, 2016; Ross et al., 2016). Hence, a better understanding is needed of altered genomic landscape in aggressive, treatment-refractory mucinous breast tumors.

Majority of defined breast cancer molecular subtypes were derived from ductal invasive breast tumors, and largely lacked profiling from other histological types of breast tumors (Dieci, Orvieto, Dominici, Conte, & Guarneri, 2014; Perou et al., 2000; The Cancer Genome Atlas [TCGA], 2012). Few studies have described how molecular features from different histological types may influence treatment response (Caldarella et al., 2013; Weigelt et al., 2008). Mucinous tumors are often described as Luminal A, and recent studies have shown that this subtype tended to have worse responses to cytotoxic agents and develop resistance to chemotherapy compared earlier to other histological subtypes (Araki & Miyoshi, 2018; Martelotto, Ng, Piscuoglio, Weigelt, & Reis-Filho, 2014).

Although breast cancer comes in many histological forms, the mucinous histological type remains understudied, in part due to its low incidence. In addition, the Brazilian population of breast cancer patients is understudied regardless of the tumor phenotype. Current demographic data shows that the Brazilian population is composed of mixed ethnicities (Instituto Brasileiro de Geografia e Estatística [IBGE], 2018). Since Brazil is a genetically underrepresented population, studies that include Brazilian cohorts may uncover previously unknown genetic drivers of therapeutic resistance and lead to the discovery of new biomarkers. The genetic composition of tumors in the Brazilian population is also dissimilar from that of populations living in other regions of the globe, even in neighboring Latin America countries, since the patterns of colonization and intrinsic miscegenation between colonizers and the native populations vary markedly across these countries (Giolo et al., 2012; Popejoy & Fullerton, 2016).

In this study, we compare the genomic features in terms of copy number variations (CNVs) in mucinous and nonmucinous luminal breast tumors of a Brazilian cohort. With this methodological approach, we were able to describe major CNV imbalances in mucinous tumors versus ordinary luminal A/B tumors in association with clinical and pathological features.

2 | SUBJECTS AND METHODS

The procedures for obtaining the samples used in this study, as well as the informed consent form signed by all the women participating in this study, followed the recommendations of the Declaration of Helsinki and were approved by the Research Committee of CAISM-Women's Hospital/ UNICAMP (approved project n.º 082/2013) on 12/12/2013 and by the Research Ethics Committee of UNICAMP and CONEP-National Research Committee (approved project n.º 1.166.843) on 7/30/2015. Tumor and blood samples of women who agreed to participate in the study and signed the consent form for this purpose were collected by the Division of Gynecological Oncology and Breast Pathology of CAISM-Women's Hospital/UNICAMP. Medical records were reviewed to obtain women clinical and epidemiological data. For this study, only ductal and mucinous tumors with or without other minor components were selected after the histopathological characterization of the biopsy. A skilled pathologist selected tumor and normal areas for microdissection. Tumor areas were used to obtain 10µm fragments from which DNA extraction using phenol/ chloroform protocol was performed. A similar protocol was used for DNA retrieval from blood samples.

DNA was verified in agarose gel and considered adequate only when hosting >80% of integrity. DNA was then diluted at concentrations between 40 and 60 ng/ µl, which were verified by the Epoch spectrophotometer (Biotek[®], Winooski, VT). These concentrations are suitable for use with Affymetrix[®] Cytoscan[™] HD Array assay kits (Thermo Fisher Scientific Inc., Santa Clara, CA). The protocol was performed as per manufacturer recommendations, comprising the steps of preparing the genomic DNA, digestion, ligation, PCR, purification, quantification, fragmentation, labeling, hybridization, washing, staining, and chip scanning. After scanning, data was processed by Affymetrix Molecular Diagnostic Software (AMDS) and quality control was generated by ChAS analysis software (Chromosome Analysis Suite, Affymetrix[®]). About 48 chips were hybridized for the tumor samples and 48 chips for the blood samples of the same woman, the latter being used as control of constitutive CNVs.

For CNV analysis, data were normalized via the ASCRMA and raw copy algorithms. Then, the normalized data was segmented using the Parent-specific circular binding segmentation (Olshen et al., 2011), copynumber, GADA, and CBS protocols. Only alterations contemplating at least 25 microarray probes for deletions or 50 probes for amplifications were considered, along with fragments of 100kb with low-rank representation (LRR) ≤ -0.3 for deletions and LRR ≥ 0.3 for amplifications. The data were also evaluated by the intersection of methods performed and described above: only samples with CNVs present in three or more of the methods were considered as altered for the variation of interest. Afterward, two statistical tests were applied to rank the most relevant CNVs by comparing between ductal and mucinous samples and also to evaluate the most relevant CNVs in relation to the clinical and pathological characteristics. Functional pathways associated with these CNVs were searched using DAVID 6.8 (The Database for Annotation, Visualization and Integrated Discovery, p-value ≤ 0.05) (Huang, Sherman, & Lempicki, 2009) and UCSC Table Browser was used to retrieve information on variants already described that are in association with the verified CNVs.

3 | RESULTS

Table 1 shows the clinical and epidemiological features of the women included in the study, per tumor histological type. The majority of the women were above 45 years of age and were postmenopausal. Disease stage was predominantly I or II. About 81% of the women were Caucasian versus 19% Afro-descendants. Fourteen women reported one or more cases of breast cancer in their families. Majority of the cases (n = 35) were classified as Luminal A, 11 Luminal B and 2 Luminal B/HER2 enriched.

The frequencies of CNVs, by chromosome, in relation to clinical/pathological data are shown in Table 2. Interestingly, the altered chromosomes that relate both to later disease stage as to the presence of family history were found to be associated with CNVs on the same chromosomes (chr 5, 19 and 21),

FABLE 1	Description of the clinical and epidemiological
features of the v	omen included in the study

	Mucin	ous Samples	Ducta Samp	l les
	n	%	n	%
Age at diagnosis				
35–45	0	0	3	6
>45	10	21	35	73
Ethnicity				
Caucasian	9	19	30	62
Afro-descendant	1	2	8	17
Menopausal status				
Post	9	19	28	58
Pre	1	2	10	21
Disease stage				
I/II	9	19	27	57
III	1	2	11	22
Familial history—breast cancer				
Yes	1	2	13	27
No	9	19	25	52
Molecular subtype				
Luminal A	7	15	28	58
Luminal B	1	2	10	21
Luminal B/HER2	2	4	0	0

4 of 11

	Chromosome	Percentage
Histological type	chr8	27.81
	chr1	21.16
	chr15	8.80
	chr16	7.00
	chr14	6.67
	chr12	4.82
	chr11	4.80
	chr18	4.32
	chr17	4.09
	chr19	3.16
	chr6	2.50
	chr13	2.50
	chr20	1.77
	chr22	1.54
	chr3	1.47
	chr9	1.37
	chr21	1.23
	chr7	0.95
	chr4	0.90
	chr2	0.62
	chr10	0.35
	chr5	0.10
Ethnicity	chr1	17.85
	chr17	13.23
	chr10	12.15
	chr19	12.12
	chr8	8.71
	chr16	7.88
	chr11	5.83
	chr14	5.51
	chr20	2.61
	chr13	2.59
	chr6	2.11
	chr12	1.82
	chr21	1.54%
	chr3	1.51
	chr5	1.14
	chr22	0.87
	chr2	0.71
	chr4	0.70
	chr7	0.52
	chr9	0.29
	chr18	0.21

(Continues)

TABLE 2 (Continued)

	Chromosome	Percentage
Disease stage	chr19	46.27
	chr21	35.07
	chr5	18.66
Familial history	chr21	49.42
	chr19	28.79
	chr5	21.79

although higher levels of CNVs in chromosome 19 (46%) were associated with late stage and chromosome 21 (49%) for family history presence. For histological type, comparing ductal to mucinous breast carcinomas, CNVs in chromosomes 8 and 1 account for almost 49% of all alterations found in the mucinous tumors analyzed. Similarly, CNVs in chromosome 19 sum to 46.27% of alterations related to later disease stage, alterations in chromosome 21 sum to 49.42% for familial history presence and chromosomes 1 and 17 sum to 31.08% for ethnicity (Caucasian).

Table 3 describes the genes related to CNVs in each chromosome, according to the features they were most associated with. Logistic Regressions and Random Forests models were used to assess these regions, comparing the genomic profiles of the samples, in which a power of discrimination (AUC) of 73% was obtained. The CNVs ranking data distinguishing between histological types and other clinical/pathological tumors' characteristics were assessed to evaluate how these alterations contributed to the separation between considered groups.

Table 4 summarizes the annotation findings in terms of functional pathways closely associated to the CNV-related genes found in the most altered chromosomes, depending on the analyzed trait. Pathways involved with alternative splicing and polymorphisms were mainly associated with most of the altered regions.

Supplementary Table S1 shows the variants already described associated with the CNVs found in this study. The information of cancer-related phenotypes, genes, and clinical status was assessed in order to better describe variants and their clinical interpretation. It is worth noting that all variants have been previously linked to breast or other forms of human neoplasms and roughly 60% of the CNVs found are of uncertain significance or have conflict of interpretation. Our observations add up to this data to be part of a more accurate interpretation in the future.

4 | DISCUSSION

The results shown describe altered chromosome regions that better classify tumors according to their histological type,

forests
mobi
on/ran
: regressi
logistic
by
verified
l genes,
lated
d re]
e an
featur
is per
atior
altera
most a
ing
ontain
les c
son
omc
chr
o u
iptic
escr
D
3
ILF
AB
E

TABLE 3	Description of cl.	nromosomes co	ontaining most a	lterations per fea	ature and related	genes, verified b	y logistic regress	ion/random fore	sts		
	Histological			Familial							
	type			history	Disease stage					Ethnicity	
Chromosome	1		8	21	19					1	17
Percentage	21.16%		27.81%	49.42%	46.27%					17.85%	13.23%
Genes	FNDC5	NBPF13P	TATDNI	SAMSNI	FKRP	C19 or f70	C19orf24	SYNGR4	CENPBD1P1	RORC	MEIS3P2
	PHBP12	CC2D1B	RNF139-ASI	SLC19A1	ZNF257	CRX	SF3A2	BSPHI	CTBP2P7	EMBPI	DDX42
	STXBP3	ZC3H11A	LYN	RAD23BLP	ZNF573	ZNF439	UHRFI	GCDH	ZNF155	SLC2AI-ASI	CRLF3
	DIRAS3	PGBD2	DLGAP2	PRDM15	ZNF468	ZNF700	PLEKHA4	ZNF814	SEMA6B	C1 orf131	NXN
	MYCL	POLR3C	DMTN	PCBP3	ZSCAN5A	KLK8	SNORD23	TMEM143	DOTIL	RFWD2	APOH
	FKSG48	TRIM58	ZNF250	ERG	MIR3940	KLK15	OR7A10	CYP4F2	LMTK3	HHAT	ATAD5
	LMO4	HHIPL2	ANKI	LINC00320	ZNF725P	RNU6-902P	DBP	PCGF7P	RPL23AP2	RGLI	CCDC144CP
	PPIE	CFL1P2	RNF139	RPL31P1	SLC27A5	SAFB	KCNNI	RN7SL513P	TTYHI	RNU2-12P	PSMD7P1
	VAV3	BMP8B	LINC01109	RPL34P3	ZFP30	ZNF606	SPPL2B	SSC5D	ZNF793	GPATCH2	CTNS
	ZZZ3	EIF4G3	COL22A1	ITGB2	ZNF222	ZIM2	ZNF780B	EHD2	SIGLEC7	FMO4	MYO18A
	LRRC7	SYDE2	PXDNL	DIP2A	ZNF121	SNRPEP4	NTF4	LENG8	ZNF432	ZBTB41	TRIM16L
	AK5	AK2	TTPA	LINC00159	CHMP2A	OSCAR	MIR3189	BIRC8	LAIRI	CYCSP4	CCDC47
	BRINP2	PBXI	FAM66A	RPL23AP4	ZNF69	НДНД	CYTH2	GYSI	SIGLEC6	LAMB3	RAI1-AS1
	PIGK	SF3B4	IKBKB	I d61XNS	UQCR11	MAN2BI	RNA5SP468	ZNF285	ZNF135	PLD5	SREBF1
	C1 orf185	MACFI	CSMD1	C21orf91	ZNF737	TPM3P6	RFX2	CALR	SAFB2	ARID4B	MAP2K3
	GCLM	SI00PBP	LRRC69	OR4K11P	CTUI	ZNF813	SPHK2	SIPA1L3	MEGF8	RGS7	SCPEP1
	COL24A1	TFAP2E	NPM1P6	BACHI	SIGLEC5	ZNF446	RASIP1	ZNF571-ASI	ZNF433	CI orf100	ATP2A3
	S100A16	SMYD3	PKHD1L1	TTC3	SLC5A5	ZNF675	CLPP	ZNF780A	RPL23AP80	ESRRG	SNORD3C
	ABL2	DISPI	CLVSI	PRMT2	CACNG8	RNU6-1337P	ZNF324	ZNF254	RFXANK	OPTC	SMCR5
	RNF115	ZMPSTE24	LYPLAI	SLC37A1	GALP	MIR517C	ZNF473	ZNF726	PTPRS	WDR64	ZSWIM5P2
	MRPS6P2	MIR4423	PRKDC	TTC3-AS1	ZNF221	WDR87	ZNF878	SYDEI	CD70	DENNDIB	RAII
	THBS3	CFHR2	MFHASI	PKNOXI	POU2F2	MIR520H	KLKPI	KIR3DP1	RNU6-751P	CDIA	MIR33B
	GNG12-AS1	RPS15AP6	FAM66B	CHODL-ASI	C5AR2	MIR521-1	KCNJ14	MY09B	NPASI	PPP1R12B	CDRT15L2
	OXCT2	SMAP2	RAB2A	HSF2BP	<i>MEF2B</i>	FUT2	RNA5SP465	KHSRP	GRIK5	ZP4	BRIPI
	TUBB8P6	USP33	ASPH	SST	ELSPBPI	MIR522	RNA5SP464	CCDC130	FPRI	GNPAT	
	HENMTI	TRITI	MYOM2	SNORD74	KDELRI	ZNF571	LSM4	CYP4F3		FCGRIA	
	STRIPI	CCNT2P1	CYCSP22	TIAMI	POLR2E	FUTI	MED25	CACNA IA		HNRNPA1P59	
	YARS	ASTNI	TRMT12	RNU4-45P	ZNF628	ZNF582	MAU2	TMEM145		FLVCRI	
	PLD5	RLF	ELP3	GRIKI-AS2	MZFI	MIR518A2	ZNF235	CAII		IBA57	
											(Continues)

5 of 11

	Ethnicity	COLGALT2	SLC35F3	PBXI	MDM4	TTC13	LHX4	CDC73	CDC42BPA	COLIIAI	CFHR2	HMGN1P5	HIST2H3D	SLC2A1	TRMTIL	GNG4	PTPN14	CFHRI	KLHL12	CSRP1	MROH9	CD46	HIST2H2BF	KDM5B	BRINP3	CRBI	PDE4B				
		GDF15	PRR19	SYT3	SULT2AI	ZNF283	SULT2B1	LYPD5	GTF2FI	ALKBH7	PRR12	TPRXI	EPNI	ZNF490	RNU6-982P	MAMSTR	IOWNZI	RPL39P38	PRRG2	RN7SL121P	KLK9	NAT14	SIGLECLI	ZNF841	ACSBG2	SPINT2	KLK6	KLK10	KLK7	ZNF763	LRG1
		ZNF611	LINC00662	TUBB4A	MIR4321	TMEM161A	KLK5	TMEM160	BAX	MIR4323	LGALS14	KCNA7	OR7C2	OR7A5	JUND	BCL3	FAM83E	KIAA1683	RN7SL693P	CYP4F8	SLC25A42	RPL7P51	NOSIP	RN7SL708P	SIGLEC18P	PGPEP1	ZNF676	GLTSCRI	GLTSCR2	ZSCAN5C	LONPI
		FTL	CSNKIG2- ASI	FAM90A28P	ORIABIP	ZNF420	MIR519A2	<i>MIR516A2</i>	MIR7-3	MIR516A1	MIR527	MIR519A1	BTBD2	THEG	SAEI	ZNF566	RPS9	ASFIB	SUGP2	ZNF702P	TRIM28	SECIP	CEP89	ZNF546	PPPIR14A	DENNDIC	ZBTB45	NDUFA3P1	ZNF835	RPL28	ATP1A3
	Disease stage	ZNF43	CI9orf18	ZNF45	TNFSF9	SNRNP70	MIR1227	IGSF23	TNFAIP8L1	SIGLEC9	KIR3DL3	ZNF578	ZNF350	CABP5	JSRPI	URII	SPACA4	ZNF28	ZNF709	LRRC25	PSPN	ERCCI	AP3DI	ZNF470	ZNF761	CRB3	PPP1R13L	ZNF808	ZNF233	RUVBL2	CEACAM22P
	Familial history	YBEY	GTF2IP2	LINC00314	C21orf58	SCAF4	LINC00315	TIMM9P2	KCNE2	RPS26P5	DSTNP1	H2AFZP1	DYRKIA	HMGN1P2	MIRLET7C	CYP4F29P	FAM207A	LIPI	UBASH3A	APP	LINC00205	ANKRD30BP1	MIR3156-3	PDE9A	SAMSNI-ASI	MCM3AP-ASI	NCAM2	NRIPI	TRAPPC10	COL18A1	POTED
		SGCZ	SNORD112	EBAG9	THAPI	FUT10	TRPSI	FER1L6-AS2	FGFRI	FBX032	SNTG1	LPL	NRGI	LINC01111	POLB	SLC10A5	FER1L6	GSR	ENPP2	C8orf22	ZNF705G	IMPAI	MIR4662A	DPY19L4	RNF170	I dSIM	DECRI	RPS3AP30	FABP5	RPL5P23	PCMI
		IXLW	MUCI	GIPC2	TMEM56	FUBPI	MIR1256	CFHRI	RNF19B	HPCAL4	<i>MIR4421</i>	LPGATI	FMN2	FNDC7	DNAJB4	KIF14	TRAF5	RCOR3	LIN9	DDX59	KIAA1522	TRIM46	RNA5SP52	TMEM54	FAM129A	C8B	ZNF672	GBAPI	RNA5SP44	TPR	NOTCH2
(Continued)	Histological type	RORI	CHRM3	SPATA17	DABI	RGS7	RN7SL854P	EEFIAIP14	RNU6-877P	AKT3	ST6GALNAC5	RN7SL370P	RNF11	GJA5	CLCA4	ARL5AP3	DTL	NSRPIPI	ACOTII	PLA2G12AP1	TAFIA	HMCNI	NME7	SLC35F3	MIR92B	CDC42BPA	CDKN2C	EVI5	FAM102B	SRGAP2	MRPS21
TABLE 3																															

⁽Continues)

TABLE 3	(Continued)								
	Histological type			Familial history	Disease stage				Ethnicity
	OSBPL9	TTC39A	XKR6	CRYAA	CEACAM16	PLIN3	SLC25A41	VNIR85P	
	WDR63	USP25	RNU6-756P	MRPL51P2	KLK12	ZNF443	MIR7-3HG	VNIR84P	
	HSPE1P25	CSMD2	DEFB109P1B	MCM3AP	KLK14	DYRKIB	TCF3	LRRC4B	
	HPCA		SYBU	BRWD1-ITI	NR2C2AP	NTN5	ISOC2	НООК2	
	LINC01057		CHD7	WDR4	UBE2S	ZNF415	TPRX2P	ZFP82	
	NFASC		MCM4	MIR125B2	LGALS17A	CGB5	ZNF100	CGB7	
	RAVER2			RNU1-98P	FBL	ARHGEF1	LGALS16	DPP9	
	DDAHI			PTTG11P	RDH13	ZNF563	PAFAH1B3	KLK13	
	OR2W3			SIKI	CIRBP	SLC25A23	ZNF665	ZFP28	
	GLMN			ERLECIPI	HDGFRP2	SMIM7	RPL18	CCDC9	
	RN7SKP98			CBS	MIDN	RNU6-1028P	TTC9B	ZNF225	
	NEXN-ASI			DSCAM	TM6SF2	KLKII	RPL18A	ZNF226	
	NEXN			TMPRSS15	PRKACA	RNU6-1041P	SEPT7P8	ZNF320	
	DPYD			RNU6-1326P	HAPLN4	PLIN4	ZNF816	ZNF227	
	JAKI			LINC00308	CYP4F22	MLLTI	ZNF540	ZNF112	
	PSMB2			PPIAP1	FEMIA	NCAN	ZNF92P2	RABACI	
	PIAS3			PCNT	CLC	MAP3K10	SNORD112	ZNF805	
	TMC02			MIR99A	ZNF568	TPM3P9	ZNF92P3	ZNF230	
	RN7SKP12			RSPHI	MAST3	MIER2	HKRI	KLK4	
	PDE4B			PCP4	RNU6-165P	NLRP8	LENG8-ASI	HMGNIP32	
	RNA5SP21			PSMGI	KDM4B	GRWDI	TICAMI	RPL36	
	TMEM56- RWDD3			MIR1283-2	TPM4	ZNF83	TINCR	ZNF564	
	RNA5SP20			LINC00322	LSM7	ABCA7	BRD4	CD33	
	STM			MIR5692B	ZNF234	CSNK1G2	ARRDC5	ZNF223	
	SV2A			LINC00307	HSDIIBIL	ONECUT3	SNORA68	ZNF224	
	CACHDI			RUNXI	ZNF321P	RPL32P34	ZNF574	MIR3188	
	RNU7-121P			ADARBI	RPSAP58	KIR2DP1	INSR	PLEKHJI	
	<i>GPATCH2</i>			GRIKI	FCGBP	ZSCAN5B	CIRBP-AS1	CGB8	
	FAFI			ERVH48-1	ARMC6	KIR3DLI	RNA5-8SP4	ZNF208	
									(Continues)

7 of 11

8 of 11 WILEY Molecular Genetics & Genomic Medicine

C2CD2 POFU TPTIP RNU6- CLDN	2 CATS T2 CYP4 1 CLEC 286P SYCE 14 ZNF7	se stage SPERD 4F23P CIIA 22 799	CGB1 MIR5684 SUGP1 KLK2 CCDC124	CEACAM19 ADAT3 SCAMP4 GATAD2A LEUTX	ATP8B3 FAM90A27P BBC3 SIGLEC14 ARRDC2	Ethnicity
VDAC2 NDUF BRWD U2AF1 RNU6- KRTAF	2PI GRIN 2PI GRIN 1 AMH 1 PGK 113P UBEZ P10-3	12D RI IP2 2M	CI90rf81 CI90rf81 ATP5D ATP5D KIR2DL1 KIR2DL3 KIR2DL4	ZNRF4 ZNF284 ZNF284 ZNF404 C5ARI SHANKI ZNF585A ILI 2RBI	SHISA7 SHISA7 ZC3H4 RCN3 DEDD2 RAD23A AKT2 HIPK4	

TABLE 3 (Continued)

ethnicity, disease stage, and familial history. For this set of tumors, almost half of the alterations were found in chromosomes 8 and 1 when considering mucinous tumors compared to ductal breast carcinomas, in chromosome 19 when considering the later disease stage when comparing to earlier stages, in chromosome 21 when comparing presence of family history to its absence and virtually 1/3 of the changes were found on chromosomes 1 and 17 when ethnicity (Caucasian X Afro-descendants) was considered. Also, genes found in CNVs regions described in this study were significantly enriched in gene sets related to alternative splicing, polymorphisms, DNA-binding, transcriptional regulation, phosphoproteins, and mutagenic sites, among others.

Polymorphisms of single nucleotides or of larger DNA fragments and all the other abovementioned pathways are widely associated with the development of cancer in general. Aberrant activation of these pathways in breast cancer is part of the oncogenic mechanisms contributing to disease progression and is the focus of many current studies, since the disruption of mechanisms affected by these pathways may lead to pathogenic events (Mocellin, Valpione, Rossri, & Pooley, 2018; Nicolini, 2017.; Ziv et al., 2017). The description of these changes is very relevant from the point of view of genetic susceptibility.

Alternative splicing has been extensively linked to activation of many tumor processes, because RNA processing is vital for the production of variant proteins that are involved in steps such as angiogenesis, invasion, and antiapoptosis. These processes are also influenced not only by genetic but also environmental factors, for example, chemical and immune responses, heat stress, and DNA damage (Anczuków & Krainer, 2016; Pai & Luca, 2018). Copy number alterations were described as having a particular association to alternative splicing, especially large ones, as seen in our study (Sebestyén et al., 2016; Singh & Eyras, 2017). Also, hereditary breast cancer was reported as enriched for splicing mutations, what often leads to loss of functions in cancer (Rhine et al., 2018).

Thus, in relation to clinical features, namely histological type, ethnicity, disease stage, and familial history, there are particularities worth pointing out. As previously stated, CNVs in chromosomes 1, 8, 17, 19, and 21 explain around half of the alterations found in these samples when associated with one of these clinical characteristics. Alterations in chromosome 1 have been described in 50%–60% of breast tumors and are associated with disease initiation, presence of amplification sites, and a large number of copy number alterations, especially in the 1q arm, which harbor many oncogenes as *MYCL1*, *JUN*, *NRAS*, *SHC1*, and *NCSTN*, for example, all verified in samples from our current study (Goh et al., 2017; Orsetti et al., 2006; Silva et al., 2015). Chromosome 8p arm CNVs are widely linked to poor prognosis and metabolic disruptions in breast cancer; moreover,

I nathways associated	Feature	Chr.	Pathway/function	Gene count	%	p-value
ped (DAVID 6.8	Histological type	1	Alternative splicing	37	57.8	0.0017
			Splice variant	29	45.3	0.0096
			Cytoplasm	20	31.2	0.015
			Mutagenesis site	11	17.2	0.041
		8	Polymorphism	87	55.1	0.021
			Alternative splicing	81	51.3	0.0056
			Phosphoprotein	69	43.7	0.0014
			Splice variant	67	42.4	0.0012
			Cytoplasm	44	27.8	0.0047
	Familial history	21	Alternative splicing	40	40.8	0.0043
			Phosphoprotein	35	35.7	0.0014
			Protein binding	32	32.7	0.038
			Nucleus	28	28.6	0.0003
			Cytosol	18	18.4	0.0055
	Disease stage	19	Polymorphism	224	53.8	0.013
			Nucleus	149	35.8	1E-12
			Transcription	118	28.4	4E-28
			Metal binding	117	28.1	6E-13
			DNA binding	106	25.5	1E-26
	Ethinicity	1	Alternative splicing	33	60.0	0.024
			Splice variant	28	50.9	0.01
			Ubl conjugation	10	18.2	0.016
		17	Splice variant	12	54.5	0.0028

TABLE 4Functional annotation of
genes and enriched pathways associated
with CNVs described (DAVID 6.8
Database)

recent studies showed that loss of multiple genes in this region may create greater genomic instability, leading to different effects from loss of a single gene (Cai et al., 2016; Lebok et al., 2015). These two chromosomes are mainly associated with differentiation of ductal and mucinous types, which explain why they were found linked to histological type alterations (Afghahi et al., 2015; Lacroix-Triki et al., 2010).

Ethnicity was found to be associated with CNVs on chromosomes 1 and 17. A recent study suggests that genes near BRCA1 in 17q are correlated with breast cancer in African Americans (Ochs-Balcom et al., 2015). However, there is a lack of studies that confirm this association, although genes related to heredity could also contribute to this finding. Interestingly, familial history presence correlated mainly to CNVs in chromosome 21. The gene NRIP1 localized at 21q21 was described to be a susceptibility locus (Ghoussaini et al., 2012) and this region was among our identified CNVs. Also, other chromosome 21 regions were identified, containing genes as SAMSN1, associated with several cancer types such as multiple myeloma, lung cancer, glioblastoma, and RUNX1, implicated as an oncogene and tumor suppressor in breast cancer (Browne et al., 2015; Mercado-Matos, Matthew-Onabanjo,

& Shaw, 2017; Noll et al., 2014; Yamada et al., 2008; Yan et al., 2013). Late disease stage was correlated to chromosome 19 copy number alterations. These regions have been described in association with high-grade breast cancers for other studies (Yu, Kanaan, Bae, Baed, & Gabrielson, 2009) and are characterized by aggressiveness and poor prognosis tumors.

Since this study focused on a Brazilian cohort, it is worth mentioning that the genetic composition of the Brazilian population is sharply mixed and is genomically underrepresented in studies that consider variants and tumor markers (Popejoy & Fullerton, 2016). There might be considerable genetic differences underlying tumor biology in these cases, so it is critical to consider understudied populations to better understand breast cancer worldwide. Despite the restricted sample size, this is the first study to evaluate breast cancer CNVs in this specific population, associating them to tumor clinical features. CNV regions identified from these samples and their correlated genes could potentially be different from non-Brazilian cohorts. In a previous study comparing Brazilian and TCGA (The Cancer Genome Atlas) data (data not shown), we found striking differences between these two cohorts, which were related to genes involved in different carcinogenic pathways, since pathways related to FGF and 10 of 11 WILFY_Molecular Genetics & Genomic Medicine

Wnt were most commonly affected in the Brazilian samples, whereas those associated with cholecystokinin receptor (CCKR) signaling and inflammation mediated by chemokine and cytokine signaling pathways were most commonly affected in the TCGA samples.

We conclude that the copy number alterations described in this study provide an overview of the chromosomal regions affected by CNVs and their association with clinical and pathological features. New molecular targets can be inferred from this study and these CNV regions should be investigated in more detail, potentially driving more dedicated studies focusing on breast tumors from Brazilian cohorts.

ACKNOWLEDGMENTS

This study was funded by the *Fundação de Amparo à Pesquisa do Estado de São Paulo* (FAPESP), government public grants 2013/25683-3 (Sarian LOZ) and 2015/18830-5 (Rodrigues-Peres RM). The "Programa Institucional de Internacionalização – CAPES – PrInt" sponsored the partnership between Brazilian and US collaborators by covering travel expenses.

CONFLICT OF INTEREST

The authors declare no potential conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Raquel M. Rodrigues-Peres D https://orcid. org/0000-0002-5855-6859

REFERENCES

- Afghahi, A., Forgó, E., Mitani, A. A., Desai, M., Varma, S., Seto, T., ... West, R. B. (2015). Chromosomal copy number alterations for associations of ductal carcinoma *in situ* with invasive breast cancer. *Breast Cancer Research*, 17, 108. https://doi.org/10.1186/ s13058-015-0623-y
- Anczuków, O., & Krainer, A. R. (2016). Splicing-factor alterations in cancers. *RNA*, 22(9), 1285–1301. https://doi.org/10.1261/ rna.057919.116
- Araki, K., & Miyoshi, Y. (2018). Mechanism of resistance to endocrine therapy in breast cancer: The important role of PI3K/Akt/ mTOR in estrogen receptor-positive, HER2-negative breast cancer. *Breast Cancer*, 25(4), 392–401. https://doi.org/10.1007/ s12282-017-0812-x
- Browne, G., Taipaleenmäki, H., Bishop, N. M., Madasu, S. C., Shaw, L. M., van Wijnen, A. J., ... Lian, J. B. (2015). Runx1 is associated

with breast cancer progression in MMTV-PyMT transgenic mice and its depletion *in vitro* inhibits migration and invasion. *Journal of Cellular Physiology*, 230(10), 2522–2532. https://doi.org/10.1002/ jcp.24989

- Cai, Y., Crowther, J., Pastor, T., Abbasi Asbagh, L., Baietti, M. F., De Troyer, M., ... Sablina, A. A. (2016). Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. *Cancer Cell*, 29(5), 751–766. https://doi.org/10.1016/j. ccell.2016.04.003
- Caldarella, A., Buzzoni, C., Crocetti, E., Bianchi, S., Vezzosi, V., Apicella, P., ... Paci, E. (2013). Invasive breast cancer: A significant correlation between histological types and molecular subgroups. *Journal of Cancer Research and Clinical Oncology*, *139*(4), 617– 623. https://doi.org/10.1007/s00432-012-1365-1
- Cecilio, A. P., Takakura, E. T., Jumes, J. J., dosSantos, J. W., Herrera, A. C., Victorino, V. J., & Panis, C. (2015). Breast cancer in Brazil: Epidemiology and treatment challenges. *Breast Cancer (Dove Med Press)*, 7, 43–49.
- Dieci, M. V., Orvieto, E., Dominici, M., Conte, P., & Guarneri, V. (2014). Rare breast cancer subtypes: Histological, molecular, and clinical peculiarities. *The Oncologist*, 19(8), 805–813. https://doi. org/10.1634/theoncologist.2014-0108
- Ghoussaini, M., Fletcher, O., Michailidou, K., Turnbull, C., Schmidt, M. K., Dicks, E. D., ... Easton, D. F. (2012). Genome-wide association analysis identifies three new breast cancer susceptibility loci. *Nature Genetics*, 44(3), 312–318. https://doi.org/10.1038/ ng.1049
- Giolo, S. R., Soler, J. M. P., Greenway, S. C., Almeida, M. A. A., de Andrade, M., Seidman, J. G., … Pereira, A. C. (2012). Brazilian urban population genetic structure reveals a high degree of admixture. *European Journal of Human Genetics*, 20(1), 111–116. https:// doi.org/10.1038/ejhg.2011.144
- Goh, J. Y., Feng, M., Wang, W., Oguz, G., Yatim, S. M. J. M., Lee, P. L., ... Yu, Q. (2017). Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. *Nature Medicine*, 23(11), 1319–1330. https://doi. org/10.1038/nm.4405
- Ha, K. Y., Deleon, P., & Deleon, W. (2013). Invasive mucinous carcinoma of the breast. *Proceedings (Baylor University. Medical Center)*, 26(3), 295–297. https://doi.org/10.1080/08998280.2013.11928989
- Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Research*, 37(1), 1–13. https:// doi.org/10.1093/nar/gkn923
- IARC Working Group on the Evaluation of Cancer. (2014). Breast cancer screening—Preventive interventions (Vol. 15, 2nd ed.). World Health Organization.
- Instituto Brasileiro de Geografia e Estatística (IBGE). (2018). Retrieved September 5, 2018, from https://www.ibge.gov.br/estatisticas-novop ortal/sociais/populacao.html
- Lacroix-Triki, M., Suarez, P. H., MacKay, A., Lambros, M. B., Natrajan, R., Savage, K., ... Reis-Filho, J. S. (2010). Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. *The Journal of Pathology*, 222(3), 282–298. https:// doi.org/10.1002/path.2763
- Lebok, P., Mittenzwei, A., Kluth, M., Özden, C., Taskin, B., Hussein, K., ... Burandt, E. (2015). 8p deletion is strongly linked to poor prognosis in breast cancer. *Cancer Biology & Therapy*, 16(7), 1080– 1087. https://doi.org/10.1080/15384047.2015.1046025

- Lei, L., Yu, X., Chen, B., Chen, Z., & Wang, X. (2016). Clinicopathological characteristics of mucinous breast cancer: A retrospective analysis of a 10-year study. *PLoS ONE*, *11*(5), e0155132. https://doi.org/10.1371/journal.pone.0155132
- Martelotto, L. G., Ng, C. K., Piscuoglio, S., Weigelt, B., & Reis-Filho, J. S. (2014). Breast cancer intra-tumor heterogeneity. *Breast Cancer Research*, 16(3), 210. https://doi.org/10.1186/bcr3658
- Mercado-Matos, J., Matthew-Onabanjo, A. N., & Shaw, L. M. (2017). RUNX1 and breast cancer. *Oncotarget*, 8(23), 36934–36935. https:// doi.org/10.18632/oncotarget.17249
- Mocellin, S., Valpione, S., Rossri, C. R., & Pooley, K. (2018). Breast cancer susceptibility: An integrative analysis of genomic data. *BioRxiv*.
- Nicolini, A., Ferrari, P., Diodati, L., & Carpi, A. (2017). Recent advances in comprehending the signaling pathways involved in the progression of breast cancer. *International Journal of Molecular Sciences*, 18(11), 2321. https://doi.org/10.3390/ijms18112321
- Noll, J. E., Hewett, D. R., Williams, S. A., Vandyke, K., Kok, C., To, L. B., & Zannettino, A. C. W. (2014). SAMSN1 is a tumor suppressor gene in multiple myeloma. *Neoplasia*, 16(7), 572–585. https://doi. org/10.1016/j.neo.2014.07.002
- Ochs-Balcom, H. M., Sun, X., Chen, Y., Barnholtz-Sloan, J., Erwin, D. O., Jandorf, L., ... Elston, R. C. (2015). Putative linkage signals identified for breast cancer in African American families. *Cancer Epidemiology, Biomarkers & Prevention*, 24(2), 442–447. https:// doi.org/10.1158/1055-9965.EPI-14-1131
- Olshen, A. B., Bengtsson, H., Neuvial, P., Spellman, P. T., Olshen, R. A., & Seshan, V. E. (2011). Parent-specific copy number in paired tumor-normal studies using circular binary segmentation. *Bioinformatics*, 27(15), 2038–2046. https://doi.org/10.1093/bioin formatics/btr329
- Orsetti, B., Nugoli, M., Cervera, N., Lasorsa, L., Chuchana, P., Rougé, C., ... Theillet, C. (2006). Genetic profiling of chromosome 1 in breast cancer: Mapping of regions of gains and losses and identification of candidate genes on 1q. *British Journal of Cancer*, 95(10), 1439–1447. https://doi.org/10.1038/sj.bjc.6603433
- Pai, A. A., & Luca, F. (2018). Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. *Wiley Interdisciplinary Reviews: RNA*, 10(1), e1503. https ://doi.org/10.1002/wrna.1503
- Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., ... Botstein, D. (2000). Molecular portraits of human breast tumours. *Nature*, 406(6797), 747–752. https://doi.org/10.1038/35021093
- Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. *Nature*, 538(7624), 161–164. https://doi.org/10.1038/538161a
- Rhine, C. L., Cygan, K. J., Soemedi, R., Maguire, S., Murray, M. F., Monaghan, S. F., & Fairbrother, W. G. (2018). Hereditary cancer genes are highly susceptible to splicing mutations. *PLoS Genetics*, 14(3), e1007231. https://doi.org/10.1371/journal.pgen.1007231
- Ross, J. S., Gay, L. M., Nozad, S., Wang, K., Ali, S. M., Boguniewicz, A., ... Stephens, P. J. (2016). Clinically advanced and metastatic pure mucinous carcinoma of the breast: A comprehensive genomic profiling study. *Breast Cancer Research and Treatment*, 155(2), 405–413. https://doi.org/10.1007/s10549-016-3682-6
- Sebestyén, E., Singh, B., Miñana, B., Pagès, A., Mateo, F., Pujana, M. A., ... Eyras, E. (2016). Large-scale analysis of genome and

transcriptome alterations in multiple tumors unveils novel cancerrelevant splicing networks. *Genome Research*, 26(6), 732–744. https ://doi.org/10.1101/gr.199935.115

- Silva, G. O., He, X., Parker, J. S., Gatza, M. L., Carey, L. A., Hou, J. P., ... Perou, C. M. (2015). Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. *Breast Cancer Research and Treatment*, 152(2), 347–356. https://doi.org/10.1007/s10549-015-3476-2
- Singh, B., & Eyras, E. (2017). The role of alternative splicing in cancer. *Transcription*, 8(2), 91–98. https://doi.org/10.1080/21541 264.2016.1268245
- The Cancer Genome Atlas (TCGA). (2012). Comprehensive molecular portraits of human breast tumours. *Nature*, *490*(7418), 61–70. https://doi.org/10.1038/nature11412
- Weigelt, B., Horlings, H. M., Kreike, B., Hayes, M. M., Hauptmann, M., Wessels, L., ... Peterse, J. L. (2008). Refinement of breast cancer classification by molecular characterization of histological special types. *The Journal of Pathology*, 216(2), 141–150. https://doi. org/10.1002/path.2407
- World Health Organization. (2018). WHO website. Retrieved September 5, 2018, from http://www.who.int/cancer/prevention/diagnosisscreening/breast-cancer/en/
- Yamada, H., Yanagisawa, K., Tokumaru, S., Taguchi, A., Nimura, Y., Osada, H., ... Takahashi, T. (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. *Genes, Chromosomes & Cancer*, 47(9), 810–818. https://doi.org/10.1002/ gcc.20582
- Yan, Y., Zhang, L., Xu, T., Zhou, J., Qin, R., Chen, C., ... Lu, Y. (2013). SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme. *PLoS ONE*, 8(11), e81905. https://doi. org/10.1371/journal.pone.0081905
- Yu, W., Kanaan, Y., Bae, Y. K., Baed, Y. K., & Gabrielson, E. (2009). Chromosomal changes in aggressive breast cancers with basal-like features. *Cancer Genetics and Cytogenetics*, 193(1), 29–37. https:// doi.org/10.1016/j.cancergencyto.2009.03.017
- Ziv, E., Tice, J. A., Sprague, B., Vachon, C. M., Cummings, S. R., & Kerlikowske, K. (2017). Using breast cancer risk associated polymorphisms to identify women for breast cancer chemoprevention. *PLoS ONE*, *12*(1), e0168601. https://doi.org/10.1371/journ al.pone.0168601

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Rodrigues-Peres RM,

Carvalho BS, Anurag M, et al. Copy number alterations associated with clinical features in an underrepresented population with breast cancer. *Mol Genet Genomic Med.* 2019;7:e750. https://doi.org/10.1002/mgg3.750