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Abstract

We describe the creation, content, and validation of the Dark Energy Survey (DES) internal year-one cosmology
data set, Y1A1 GOLD, in support of upcoming cosmological analyses. The Y1A1 GOLD data set is assembled
from multiple epochs of DES imaging and consists of calibrated photometric zero-points, object catalogs, and
ancillary data products—e.g., maps of survey depth and observing conditions, star–galaxy classification, and
photometric redshift estimates—that are necessary for accurate cosmological analyses. The Y1A1 GOLD wide-
area object catalog consists of~137 million objects detected in co-added images covering~1800 deg2 in the DES
grizY filters. The 10σ limiting magnitude for galaxies is =g 23.4, =r 23.2, =i 22.5, =z 21.8, and =Y 20.1.
Photometric calibration of Y1A1 GOLD was performed by combining nightly zero-point solutions with stellar
locus regression, and the absolute calibration accuracy is better than 2% over the survey area. DES Y1A1 GOLD is
the largest photometric data set at the achieved depth to date, enabling precise measurements of cosmic
acceleration at z1.

Key words: catalogs – cosmology: observations – surveys – techniques: image processing – techniques:
photometric

1. Introduction

The Dark Energy Survey (DES; DES Collaboration 2005,
2016) is a photometric survey utilizing the Dark Energy
Camera (DECam; Flaugher et al. 2015) on the Blanco 4 m
telescope at Cerro Tololo Inter-American Observatory (CTIO)
in Chile to observe ~5000 deg2 of the southern sky in five
broadband filters, g, r, i, z, Y, ranging from ∼400 to~1060 nm
(Li et al. 2016; Burke et al. 2017).51 The primary goal of DES
is to study the origin of cosmic acceleration and the nature of
dark energy through four key probes: weak lensing, large-scale
structure, galaxy clusters, and Type Ia supernovae (SNe). More
generally, DES provides a rich scientific data set and has
already had a significant impact beyond cosmology (e.g., DES
Collaboration 2016).

Precision measurements of dark energy with DES rely on an
unprecedented survey data set and a comprehensive under-
standing of the survey performance. It is necessary to identify,
characterize, and mitigate the influences of variable observing
conditions, data processing artifacts, photometric calibration
nonuniformity, and astrophysical foregrounds. For example,
photometric calibration must be accurate and uniform to avoid
introducing noise and bias into photometric redshift estimates.
Studies of galaxy clustering depend on a detailed knowledge of
survey coverage, galaxy detection efficiency, and the accuracy
of recovered galaxy properties. Furthermore, detailed modeling
of the point-spread function (PSF) and instrument response is
required to perform galaxy shape measurements on objects that
are fainter than the detection limit of a single DES image. The
scale and complexity of assembling, characterizing, and
validating the DES data motivate a collaborative effort that
draws upon and enables a wide range of scientific analyses.

Here we describe the creation, composition, and validation
of the DES first-year (Y1) data set in support of cosmological
analyses (shown schematically in Figure 1). While this data set
is currently proprietary to the DES Collaboration, this
document is intended to serve as a reference for these data
products when they become publicly available.52 Observing for
DES Y1 spanned from 2013 August to 2014 February and
covered ~40% of the DES footprint, averaging three to four
visits per band. The resulting images were processed through

the DES data management (DESDM) system (Ngeow et al.
2006; Mohr et al. 2008; Sevilla et al. 2011; Desai et al. 2012;
Mohr et al. 2012; Morganson et al. 2018) and assembled into
the DES year-one annual data set (Y1A1). Y1A1 consists of
reduced single-epoch images and object catalogs (known as
“Y1A1 FINALCUT”), along with multiepoch co-added images
and associated multiband catalogs (known as “Y1A1
COADD”). Photometric calibration of Y1A1 was performed
globally on a CCD-to-CCD basis, and maps of the survey
coverage and depth were assembled with the mangle software
suite (Hamilton & Tegmark 2004; Swanson et al. 2008). The
Y1A1 data set covers ~2000 deg2 in any single filter with
inhomogeneous coverage and depth. In total, ~1800 deg2 of
the Y1A1 footprint has simultaneous coverage in all five DES
filters.
The desired precision of DES cosmological analyses

motivates further refinement of Y1A1. The resulting data set,
referred to as Y1A1 GOLD, is accompanied by extensive
validation and ancillary data products to facilitate cosmological
analyses. The primary components of Y1A1 GOLD are
(Figure 1) (1) a multiband photometric object catalog
subselected from the Y1A1 COADD object catalog; (2) an
adjusted photometric calibration to improve uniformity over
the survey footprint; (3) shape and photometry information
from a simultaneous multiepoch, multiobject fit; (4) a set of
ancillary maps quantifying survey characteristics using the
HEALPix rasterization scheme (Górski et al. 2005); and (5)
several value-added quantities for high-level analyses (i.e., a
star–galaxy classifier and photo-z estimates). When creating the
Y1A1 GOLD object catalog, several classes of nonphysical,
spurious, or otherwise problematic objects were identified and
either flagged or removed. The calibrated magnitudes of objects
were also corrected for interstellar extinction using a stellar
locus regression (SLR) technique. The ancillary data products
associated with Y1A1 GOLD accurately quantify the char-
acteristics of the survey, further mitigating the impact of
systematic uncertainties. A high-level summary of the
performance of Y1A1 GOLD is tabulated in Table 1.
Our purpose here is to document the production and

performance of the Y1A1 GOLD data set in support of
upcoming DES cosmology analyses. We start by describing the
DES Y1 observations in Section 2 and briefly reviewing the
image reduction pipeline applied to produce the Y1A1 data set
in Section 3. In Section 4 we describe the photometric
calibration of the Y1A1 data, and in Section 5 we describe the
image co-addition process. In Section 6 we discuss the creation

51 The DECam filter throughput is publicly available athttp://www.ctio.noao.
edu/noao/node/1033.
52 Note that the DES Y1 cosmology data set described here is distinct from the
forthcoming DES public data release, which will include data from the first 3 yr
of DES.
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of unique object catalogs, while in Sections 7 and 8 we
describe the ancillary maps and value-added quantities
produced to complement the Y1A1 GOLD catalog. We briefly
conclude in Section 9.

2. Data Collection

DES has been allocated 105 nights per year on the Blanco
telescope starting in 2013. The first year of DES observing
spanned from 2013 August 31 to 2014 February 9 and
consisted of both full and half nights.53 Details on DES
operation and data collection are provided by Diehl et al.
(2014); here we briefly summarize some of the key details
relevant to the creation of Y1A1 GOLD.

DES consists of two observing programs: a shallower wide-
area survey and a deeper time-domain (SN) survey (Figure 2).
The DES wide-area survey footprint covers ~5000 deg2 with
90 s exposures in griz and 45 s exposures in Y. A single
imaging pass over this footprint, called a “tiling,” collects
science data over ~83% of the survey footprint owing to
inefficiencies in the pointing layout and camera footprint (e.g.,
area not covered owing to gaps between CCDs, nonfunctioning
CCDs, and problematic area near the edges of the CCDs). The
DECam pointings for each tiling are shifted relative to each
other by a large fraction of the camera field of view in a dither
pattern designed to maximize uniformity and distribute
repeated detections of a given object over the focal plane.
During Y1, DES observed~2000 deg2 of the wide-area survey
footprint with three to four dithered tilings per filter. The Y1
footprint consisted of two areas: one near the celestial equator
including Stripe 82 (S82; Annis et al. 2014), and a much larger
area that was also observed by the South Pole Telescope (SPT;
Carlstrom et al. 2011). During Y1, DES collected 17,671 wide-
area survey exposures in a variety of observing conditions
(Diehl et al. 2014).

The SN survey observes 10 fields in four filters (griz) on a
regular cadence to detect and characterize SNe through
difference imaging (Kessler et al. 2015). Longer exposure
times (150 s) and frequent repeated visits result in a
significantly deeper survey in the SN fields. All 10 SN fields
reside within the DES wide-area footprint, but only two were
covered by wide-area imaging in Y1 (Figure 2). Over the
course of Y1, DES collected a total of 2699 time-domain
survey exposures.
In addition to the wide-area and SN survey fields, two

auxiliary fields outside the DES footprint were observed to aid
in the training of photometric redshifts and star–galaxy
classification. Fields overlapping with COSMOS (Scoville
et al. 2007) and VVDS-14h (Le Fèvre et al. 2005) were
observed during the DES Science Verification (SV) period.54

These observations are deeper than most of the Y1 wide-area
survey.
During DES operation, sets of biases and flat-field calibra-

tion exposures were taken in each filter before each night of
observing. Standard-star fields were observed at three different
airmasses at the beginning and end of each night unless
conditions were obviously nonphotometric.55 Cloud cover was
monitored continuously during observing by the RASICAM
all-sky infrared camera (Lewis et al. 2010; Reil et al. 2014).
DES images the sky whenever weather allows the Blanco

dome to be open, resulting in some exposures being taken in
very poor conditions. Thus, data quality monitoring is essential
to select exposures that meet the scientific requirements of the
survey. The quality of exposures is evaluated based on the PSF,
sky brightness, and sky transparency. For each exposure, we
define teff to be the ratio between the actual exposure time and
the exposure time necessary to achieve the same signal-to-noise
ratio (S/N) for point sources observed in nominal conditions

Figure 1. Schematic of the constituents of the Y1A1 processing (left) and the additional Y1A1 GOLD products (right).

53 Several exposures taken during engineering time earlier in 2013 August
were also included in the Y1A1 data set.

54 Data from the DECam Science Verification period is available athttps://
des.ncsa.illinois.edu/releases/sva1.
55 On DES half nights only two standard-star fields were observed at the
midpoint of the night.
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(Neilsen et al. 2015).56 To pass preliminary data quality cuts,
wide-area survey exposures must have >t 0.3eff in the r, i,
and z bands and >t 0.2eff in the g and Y bands. The median
measured teff for Y1 was =t 0.75eff in the r, i, and z bands
and =t 0.49eff in the g and Y bands. In contrast, the
preliminary data quality cuts for SN exposures require
FWHM<2″ and that a 20th-magnitude simulated source
have S/N > 20 (>80) for the shallow (deep) exposures
(Kessler et al. 2015). Of the exposures taken during Y1, 82%
of the wide-area exposures and 95% of the SN exposures
passed their respective data quality criteria (i.e., did not
require re-observation). A number of additional exposures
were removed from the Y1 data set owing to instrumental
artifacts (scattered light and internal reflections from bright
stars, contaminating light from airplanes, poor telescope
tracking, shutter malfunctions, dome occultations, etc.). In
total, the Y1A1 FINALCUT processing consists of 16,857
DECam exposures, including wide field, SN, auxiliary fields,
and standard stars.

3. Image Processing

The DESDM system is responsible for reducing, cataloging,
and distributing DES data. Earlier iterations of the DESDM
image processing pipeline are outlined in Sevilla et al. (2011)
and Mohr et al. (2012), and a more detailed summary with
updates for the forthcoming DES 3 yr processing is available in
Bernstein et al. (2017a) and Morganson et al. (2018). Here we
briefly summarize the single-epoch image processing steps
applied during the DES Y1A1 FINALCUT campaign. The
Y1A1 FINALCUT campaign resulted in ~20 TB of processed
images and a catalog of ~740 million detected objects.

1. Overscan and Cross Talk: Each DECam CCD has two
amplifiers for converting photo-carrier counts to analog-
to-digital units (ADU). For each amplifier, the average in
the overscan region was calculated and subtracted on a
row-by-row basis. Cross talk is manifested as low-level
leakage of electronic signals between different readout
amplifiers and is observed at the level of ~ -10 3 for pairs
of amplifiers on the same CCD and~ - -–10 104 6 for pairs

of amplifiers on different CCDs on the same electronic
back plane. Cross talk was corrected by applying a matrix
operation to the simultaneous readout of 140 amplifiers
(including the amplifiers for the eight focus and
alignment CCDs). The elements of the cross-talk
correction matrix were derived from the median amplifier
output for each “victim” channel as a function of the
“source” amplifier signal for a large number of sky
images. Cross talk between the DECam CCDs is found to
be nonlinear when the signal on the source amplifier
exceeds its saturation level—i.e., the level at which the
amplifier response becomes nonlinear (Figure2 of
Bernstein et al. 2017a). This cross-talk nonlinearity was
incorporated into cross-talk correction. There is no
evidence for temporal variation in the cross-talk between
CCDs on year timescales, and a single cross-talk matrix
was used for the Y1A1 processing.

2. Bias Correction:A master bias frame was constructed
from the average of ~100 zero-second exposures taken
during the pre-night calibration sequences over the course
of the Y1 observing season. This master bias was
subtracted from each CCD to remove any residual fixed
pattern noise not incorporated by the overscan correction.

3. Bad Pixel Masking:Bad pixel masks were created for
each CCD by identifying outliers in sets of biases and
g-band flat-field calibration exposures. These bad pixels
were masked and interpolated based on values in adjacent
columns. The Y1A1 processing campaign used a single
static bad pixel mask. Two CCDs have failed since
commissioning and were removed from Y1 processing
(Figure 3; Diehl et al. 2014). CCD61 failed on 2012
November 7, and data from this CCD were not used in
Y1. CCD2 failed on 2013 November 30, and data from
this CCD were only included for the early months
of Y1.57

4. Nonlinearity Correction:Several (~10) CCD amplifiers
have a nonlinear response at low light levels (generally
below 300 ADU pixel–1). For DES, this affects the sky
level in short (~15 s) standard-star observations and
wide-survey dark-sky g-band observations (90 s). For
most other filters/exposure times, the night sky alone is

Table 1
Y1A1 GOLD Data Quality Summary

Parameter Band Reference
g r i z Y

Median PSF FWHM 1 25 1 07 0 97 0 89 1 07 Section 7.2
Sky coverage (in all bands) 1786 deg2 1773 deg2 Section 7.3
Astrometric accuracy 25 mas (relative); <300 mas (external) Section 5.1
Absolute photometric uncertainty (mmag) 14 4 2 15 32 Section 4.4
Relative photometric uniformity (mmag) 19 22 20 20 18 Section 4.4
Completeness limit (95%) 23.6 23.4 22.9 22.4 Section 6.4
Co-add galaxy magnitude limit (10σ)a -

+23.4 0.40
0.14

-
+23.2 0.37

0.13
-
+22.5 0.34

0.14
-
+21.8 0.37

0.12
-
+20.1 0.33

0.18 Section 7.1

Multiepoch galaxy magnitude limit (10σ)a -
+23.7 0.40

0.07
-
+23.5 0.29

0.16
-
+22.9 0.30

0.14
-
+22.2 0.32

0.14 K Section 7.1

Galaxy selection (i � 22) Efficiency>98%; contamination<3% Section 8.1
Stellar selection (i � 22) Efficiency>86%; contamination<6% Section 8.1

Note.
a The quoted values correspond to the mode, 16th percentile, and 84th percentile of the magnitude limit distribution. Using the median instead of the mode reduces the
magnitude limit by ~0.05 mag.

56 The effective exposure time is defined as =T t Teff eff exp, where Texp is the
shutter-open exposure time. 57 CCD2 subsequently recovered on 2016 December 29.
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enough to give a sufficient number of counts per pixel to
make the nonlinearity correction negligible. The non-
linearity effect can be several percent at very low light
levels. At very high light levels (>2× 104 ADU pixel–1),
there is also a small nonlinear behavior (2%).

We corrected for nonlinearity at both low and high
light levels using a fixed look-up table derived from
calibration exposures obtained during the SV period. One
amplifier on CCD31 has a time-variable nonlinear gain at
the 20% level, and this CCD was excluded from Y1
processing.58 The Y1A1 data processing did not correct
for charge-induced pixel shifts (i.e., the “brighter-fatter”
effect; Antilogus et al. 2014; Gruen et al. 2015), although
corrections have been incorporated into more recent
reductions of the DES data (Bernstein et al. 2017a).

5. Pupil Correction:An additive correction was applied for
pupil ghosting in each exposure. As part of this process,
“star flats” were created in each filter and CCD by taking
multiple dithered exposures of a dense stellar field and
fitting a cubic polynomial to variations in the observed
brightnesses of stars. The pupil ghost correction was
constructed on a CCD-by-CCD basis for each exposure
from the star flat and the level of sky background
(including scattered light and the night-sky pupil image).
The pupil correction was scaled and subtracted from each
CCD individually. This technique can leave gradients of
several percent in the sky background level (worst in z
and Y bands), which propagate into the reduced science
images and are corrected during photometric calibration
(Appendix A).59

6. Flat-fielding:The response of DECam to the night sky is
more stable than nightly variations in the illumination of
the flat-field screen taken during pre-night calibrations.
Therefore, in Y1A1 we created a single average flat-field
frame for each filter from ~100 individual flat-field
exposures. The science exposures were divided by the
average flat-field frames normalized on a CCD-by-CCD
basis. The pupil and flat-field corrections used for Y1A1

Figure 2. DES Y1A1 GOLD sky coverage in celestial coordinates (red) plotted in McBryde–Thomas flat polar quartic projection. Specific regions of the Y1A1
GOLD footprint, including the SN and auxiliary fields, are explicitly labeled (see Section 2). The nominal DES 5 yr footprint is outlined in black.

Figure 3. Processed DECam image from Y1A1 (top) and CCD layout
(bottom). The three empty slots in the DECam image correspond to CCD2,
CCD31, and CCD61. CCD61 failed during SV, while CCD2 failed part way
through Y1. One amplifier of CCD31 has time-variable low-light-level
nonlinearity, and this CCD was not processed for Y1A1.

58 The other amplifier on CCD31 is stable and has been recovered in more
recent processing.
59 More recent implementations of the data processing pipeline fit the additive
correction over the full focal plane rather than CCD by CCD (Morganson
et al. 2018).
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processing remove small-scale fluctuations in the back-
ground due to pixel-size variations, i.e., tree rings, edge
brightening, and tape bumps (Plazas et al. 2014).
However, this correction is approximate and results in
photometric measurement residuals at the level of
~0.5%. A more rigorous correction has been applied in
subsequent DES data reductions (Bernstein et al. 2017a;
Morganson et al. 2018).

7. Weight Plane Creation:A weight plane image was
created containing the inverse variance of the flat-fielded
image value in each pixel. The variance estimate summed
the expected Poisson noise and read noise. Saturated
pixels were flagged and set to zero in the weight plane.
The weight plane is used to assign relative weights to
images during the co-addition process.

8. Fringe Frame Correction:Fringing is visible in z- and
Y-band exposures. The fringing pattern is nearly identical
in these bands but has a larger amplitude in the Y band. A
set of templates was constructed from a stack of ~120
z- and Y-band exposures from DES SV. These template
images were median filtered and averaged on a pixel-by-
pixel level to construct a fringe frame. In the reduction
pipeline, each CCD of the z- and Y-band exposures had
its median sky level measured, and this sky level was
used to scale the fringe frame, which was then subtracted
on a CCD-by-CCD basis. The scaling method was
identical to that used to scale and subtract the pupil
pattern. The vast majority of exposures have a fringe
residual that is <0.1% of the sky background level.
Exposures taken under the brightest conditions accepted
for Y-band observing can have a fringe residual that is
∼0.4% of the sky background level.

9. Illumination Correction:Light reflected from the flat-
field screen fills the telescope pupil differently than the
focused light of distant stars. To account for pixel-level
differences in the throughput of the flat-field images, we
applied a multiplicative correction to the DECam
response based on the star flats. After dividing by the
star flats the residual difference in response between
CCDs is typically <2% peak to peak (Appendix A.1).

10. Preliminary Astrometric Solution:A world coordinate
system (WCS) was installed in the image header at the
time of observation using a fixed distortion map derived
from the star flats and an optical axis read from the
telescope encoders. The pointing of each image was
updated matching the centers of bright stars measured
with SExtractor (Bertin & Arnouts 1996; Bertin
et al. 2002) to the UCAC-4 catalog using SCAMP
(Bertin 2006). This WCS was replaced by a superior
one during the co-addition step (Section 5), and the
astrometric accuracy of the Y1A1 GOLD catalog is
described in Section 5.1.

11. Artifact Removal:Bright stars (16 mag) saturate the
90 s DES exposures in griz. Saturated pixels are set to
zero in the image weight map plane. Brighter stars can
produce charge overflow into pixels in the CCD readout
direction. These overflow pixels are flagged in the mask
plane, zeroed in the weight plane, and interpolated in the
image plane. In addition, corresponding pixels on the
victim amplifier of the CCD are masked owing to large
nonlinear cross talk. Extremely bright oversaturated stars
can leave a secondary charge overflow in the readout

register of the amplifier, conventionally called “edge
bleeds” (see Figure5 in Bernstein et al. 2017a). Edge
bleeds can be located some distance from the bright star
and are strongest in the rows near the readout register.
These rows are identified and masked.

Energy deposited from cosmic-ray interactions with
the CCDs were detected on single images using the
findCosmicRays algorithm adopted from the LSST
software stack.60 The cosmic-ray pixels were flagged in the
mask plane, zeroed in the weight plane, and interpolated in
the image plane.

Long streaks produced by rapidly moving objects
(i.e., meteors and Earth-orbiting satellites) were detected
using a Hough transform algorithm and were also masked
(Melchior et al. 2016).

12. Single-epoch Catalog Creation:Object catalogs were
produced for each CCD using the AstrOmatic package
(Bertin 2006). Photometric fluxes were derived using
PSFEx and SExtractor for fixed apertures, the PSF
model, and a galaxy model. The local sky background on
each CCD was estimated by SExtractor. The single-
epoch Y1A1 FINALCUT catalogs served as an input into
the photometric calibration described in Section 4.

4. Photometric Calibration

The photometric calibration of Y1A1 was a multistep
process largely following the procedure of Tucker et al.
(2007). Photometric calibration was performed on the single-
epoch Y1A1 FINALCUT images first on a nightly and then on
a global basis. An additional calibration adjustment was
derived from the stellar locus and applied at catalog level.
Below we briefly describe the steps in the photometric
calibration of Y1A1; a more detailed discussion of the Y1A1
photometric calibration can be found in Appendix A.

4.1. Nightly Photometric Calibration

A preliminary photometric calibration of the Y1A1 data was
performed on a nightly basis. Standard-star fields were
observed at various airmasses at the beginning and end of
each night. These images were reduced, and the centroids of
stars were matched to a set of primary standard stars from
Sloan Digital Sky Survey (SDSS) DR9 (Smith et al. 2002). The
DES secondary standards were then transformed to an initial
DES AB photometric system via a set of transformation
equations derived from SDSS DR9 and supplemented by
UKIDSS DR6 (Appendix A.4). This tied the DES flux
calibration of the secondary standards to SDSS and to the
AB magnitude system (i.e., Padmanabhan et al. 2008).
The transformed nightly standards were used to fit a set of

nightly photometric equations to model the spatial and
temporal dependence of the DECam instrument throughput
(Equations (6)–(10)). These equations track the accumulation
of dust on the Blanco primary mirror, the relative throughput of
the atmosphere at CTIO, and variations in the throughput and
shape of the filter response at the location of each CCD. The
nightly photometric equations produce an initial photometric
calibration for all exposures taken on photometric nights. The
relative calibration scatter for the nightly solution on a typical

60 https://lsst-web.ncsa.illinois.edu/doxygen/x_masterDoxyDoc/
namespacelsst_1_1meas_1_1algorithms.html
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photometric night is ~0.02 mag rms. This nightly photometric
calibration was used to anchor the relative global calibration of
nonphotometric exposures described in the next section. A
more detailed description can be found in Appendix A.1.

4.2. Global Calibration

We implemented a global calibration module (GCM) to derive
calibrated zero-points for all exposures, including those taken
under nonphotometric conditions, and to improve on the relative
calibration accuracy achieved by the nightly photometric
solution. The GCM procedure follows that of Glazebrook
et al. (1994) and is described in more detail in Appendix A.2.
Briefly, the Y1A1 data were split into regions of contiguous,
overlapping images where at least one image had been
previously calibrated. The calibrated images served as a
reference against which other images in the grouping were
calibrated. To be calibrated by the GCM, an image needed to
either overlap a calibrated image or have an unbroken path of
overlapping images to a calibrated image.

Following the prescription of Glazebrook et al. (1994), we
estimate the rms magnitude residual for each CCD image from
overlap with other CCD images. The rms distribution over all
CCD images is a measure of the internal reproducibility
uncertainty on small scales (the scales of overlapping CCD
images) and is a measure of the precision of the overall GCM
solution. We find the rms to be ~3 mmag (Figure 4). This
uncertainty is relevant when analyzing light curves of variable
objects but does not represent the internal consistency/
uniformity of the relative calibrations on large scales.

While the GCM method is very precise, small systematic
gradients in the flat fields of individual images can cause low-
amplitude gradients over large scales. To “anchor” the fit
against large-scale gradients, we used the set of nightly
secondary standard stars and a sparse grid work of tertiary
standard stars observed under photometric conditions and
calibrated by the nightly photometric equations. The tertiary
standards were chosen such that they would anchor the global
solution on scales >10–15 deg, but on smaller scales the
calibration would be dominated by the solution from over-
lapping uncalibrated exposures. We further examine the
uniformity and absolute calibration accuracy (relative to the
AB system) in Sections 4.3 and 4.4.

4.3. Photometric Calibration Adjustment

The global calibration is found to be uniform at the ~2%
level in each band over the majority of the Y1A1 survey
footprint (discussed in Section 4.4). However, nonuniformity in

the colors of objects can severely impact DES science by
introducing a spatial dependence on object selection and photo-
z estimation. The SLR technique uses the distinct shape of the
stellar locus in color–color space to provide a relative
calibration of exposures in different bands (e.g., Ivezić et al.
2004; MacDonald et al. 2004; High et al. 2009; Gilbank et al.
2011; Coupon et al. 2012; Desai et al. 2012; Kelly et al. 2014).
To correct for residual spatial nonuniformity in the calibration
and account for Galactic reddening (including uncertainties in
the amplitude of reddening and possible variations in the
effective Milky Way dust law), we have applied a secondary
adjustment to the calibration of the co-add object catalogs
derived from the stellar locus. Gradients in stellar population
are subdominant to other calibration uncertainties in Y1A1
given the DES filter bandpasses and high Galactic latitude of
the survey (e.g., High et al. 2009; Kelly et al. 2014). We
followed the procedure of Drlica-Wagner et al. (2015) and
applied a modified version of the BigMACS SLR code (Kelly
et al. 2014)61 coupled with an empirical stellar locus to derive
zero-point adjustments to improve the color uniformity of stars
across the Y1A1 footprint. The SLR adjustment was tied to the
i-band magnitude derived from the GCM, dereddened using the
Schlegel et al. (SFD; 1998) dust map with a reddening law
from O’Donnell (1994). The SLR zero-point adjustments were
interpolated to the positions of each object in the catalog and
were applied directly to the magnitudes of objects derived from
the co-added images. In this way, the calibrated magnitudes of
the Y1A1 GOLD catalog are already corrected for interstellar
extinction. After the SLR adjustment, the color of stars was
found to be uniform at the ~1% level across the footprint,
which was verified using the red sequence of galaxies. More
detail on the SLR calibration adjustment can be found in
Appendix A.3.

4.4. Photometric Calibration Accuracy

To quantify the accuracy of photometric calibration, we
would like to characterize the statistical distribution of
Δm=mmeas−mtrue, where mmeas and mtrue are the measured
and true magnitude of catalog objects, respectively. The
characterization of the Dm distribution can be split into two
components: (1) an “absolute” calibration accuracy that
represents a linear shift of the Δm distribution (e.g., the mean
of the distribution), and (2) a “relative” calibration accuracy
that represents the spread of the Δm distribution (e.g., standard
deviation of the distribution). In reality, values of mtrue are not

Figure 4. Internal reproducibility uncertainty for the Y1A1 r-band photometric zero-points calculated by comparing the rms calibrated magnitudes of stars in
overlapping CCDs. The mode of the rms internal calibration uncertainty is 2.8 mmag. Similar figures for other bands are shown in Appendix A.2.

61 https://code.google.com/p/big-macs-calibrate/
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available, and we must make use of the calibrated magnitudes
from other surveys or synthetic models, which have their own
associated uncertainties. We describe several calibration
validation studies below and summarize the results in
Table 2.

The absolute calibration of the Y1A1 GOLD is tied to SDSS
through the DES secondary standard stars. As an independent
cross-check on the absolute photometric calibration, we
examined the CALSPEC standard star, C26202 (Bohlin
et al. 2014). We calculated synthetic magnitudes for C26206
by convolving Hubble Space Telescope (HST) spectra (stis-
nic_006)62 with the focal-plane-averaged DECam filter
throughput including atmospheric attenuation at an airmass of
1.3 (Berk et al. 1999). The predicted magnitude of C26202 in
each of the DES grizY bands is g=16.695, r=16.340,
i=16.257, z=16.245, and Y=16.268. These predicted
magnitudes were then compared against the pre-SLR corrected
magnitudes measured by the GCM to give a “top-of-the-
atmosphere” estimate of the absolute calibration uncertainty. We
derive an absolute offset (in mag) of δg=0.014, δr=0.004,
δi=0.002, δz=0.015, and δY=0.032, which we quote as the
absolute photometric calibration uncertainty in Table 1.

Our primary technique for quantifying the relative photometric
accuracy of Y1A1 GOLD is by comparing the calibrated
magnitudes of stars against those derived from a combination of
APASS (Henden & Munari 2014) and 2MASS (Skrutskie et al.
2006) (Figure 5). We perform a “top-of-the-atmosphere”
comparison by calculating the difference between the GCM
calibrated magnitude and the APASS/2MASS magnitude
transformed to the DES system (Appendix A.4). We derive the
relative calibration uncertainty as the half-width between the 16th
and 84th percentiles of the difference in magnitude over the
footprint: σ68(g)=0.019, σ68(r)=0.022, σ68(i)=0.020,
σ68(z)=0.020, and σ68(Y)=0.018 (Table 1). These values
include calibration uncertainties from both DES and APASS/
2MASS and are thus a conservative upper bound on the Y1A1

GCM accuracy. We further compare the SLR-adjusted Y1A1
GOLD photometry to the transformed APASS/2MASS photo-
metry dereddened using the SFD maps and reddening law of
O’Donnell (1994). We find a dispersion of σ68(g)=0.025,
σ68(r)=0.024, σ68(i)=0.020, σ68(z)=0.018, and σ68(Y)=
0.015. These values include an additional contribution from
differences in the reddening correction derived from the SLR and
the SFD dust maps, which results in larger uncertainty in the bluer
filters where interstellar reddening is more extreme. These
comparisons are shown in more detail in Appendix A.5.
As an additional cross-check, we compared the “top-of-the-

atmosphere” Y1A1 GCM calibration against a global calibra-
tion of the contiguous DES 3 yr data set (Y3A1). The absolute
calibration of the Y3A1 data set was also tied to C26202 but
made use of additional observations of this object. From
comparisons against other CALSPEC standards (LDS749B and
WD0308-565), the absolute calibration of Y3 is believed to be
accurate at the ~1% level. The relative calibration of Y3 was
performed over the contiguous Y3A1 footprint using an
independent forward global calibration method (FGCM) and
is found to be uniform at the 0.7% level (Burke et al. 2017). We
checked the absolute calibration of Y1A1 GOLD by matching
stars against their Y3 counterparts over the Y1A1 GOLD
footprint. We found that the absolute offset between Y1A1
GCM and Y3A1 FGCM was δg=0.023, δr<0.001,
δi=0.004, δz=0.011, and δY=0.05, while the relative
calibration spread was σ68(g)=0.014, σ68(r)=0.007,
σ68(i)=0.008, σ68(z)=0.013, and σ68(Y)=0.015. These
numbers are in good agreement with those quoted above and
support the expectation that the relative calibration uncertainty
in Table 1 is a conservative estimate.

5. Image Co-addition

Image co-addition allows DES to detect fainter objects and
mitigates the impact of residual transient imaging artifacts (e.g.,
unmasked cosmic rays, satellite streaks, etc.). Combining
multiple dithered exposures also positions objects at different
points on the focal plane, mitigating systematics associated
with the nonuniform response of the instrument.
DESDM produced image co-adds from the weighted average

of overlapping single-epoch images. The pixels of the input
images were remapped onto a uniform pixel grid using SWarp
with the LANCZOS3 kernel (Bertin et al. 2002; Bertin 2010).
The remapped pixel grid was defined on co-add tiles spanning

´0.73 deg 0.73 deg and comprising 104×104 remapped
pixels (a pixel scale of 0 263 pixel–1, comparable to the
physical pixel scale of DECam). For each tile, one co-added
image was produced for each photometric band.
Before performing image co-addition, several image quality

checks were run to identify and blacklist CCD images with
severe imaging artifacts. CCD images affected by strong
scattered light artifacts were identified by a ray-tracing
algorithm using the Yale bright star catalog (Hoffleit &
Jaschek 1991), the telescope pointing, and a detailed model of
the DECam optics, filter changer, and shutter assemblies.
Several exposures have excess noise in one or more of the
DECam CCD back planes. These CCD images were identified
through visual inspection and through the detection of a large
number of spurious catalog objects. In addition, CCD images
that were affected by bright meteor trails and airplanes were
identified through visual inspection. Less than 1% of CCD
images were blacklisted and removed from the co-add process.

Table 2
Photometric Calibration Validation

Technique Band

g r i z Y
(mmag) (mmag) (mmag) (mmag) (mmag)

Absolute Photometric Offset
GCM versus

C26202
14 4 2 15 32

GCM versus
Y3 FGCM

23 <1 4 11 50

Relative Photometric Uniformity
GCM versus

APASS/2MASS
19 22 20 20 18

GCM+SLR versus
APASS/
2MASS+SFD

25 24 20 18 15

GCM versus
Y3 FGCM

14 7 8 13 15

Note. Summary of photometric calibration performance for the Y1A1 GOLD
data set. See Section 4.4 for more details.

62 http://www.stsci.edu/hst/observatory/crds/calspec.html
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When DESDM created co-added images, the PSFs of the
individual input images were not homogenized. This decision
was motivated by studies of SV data where PSF homogeniza-
tion was found to produce correlated sky noise, which made it
difficult to properly estimate the photometric uncertainties of
galaxies. While nonhomogenized PSF co-addition yields
better-behaved photometric uncertainties, it can introduce
sharp PSF discontinuities on the ~ 0 .1 scale that are difficult
to model with conventional polynomial approximation techni-
ques (i.e., PSFEx; Bertin 2006). Some of these issues can be
addressed by using quantities measured in the Y1A1 FINAL-
CUT catalog (Section 6); however, studies that depend
sensitively on morphological characterization (i.e., weak
lensing analyses) perform their own simultaneous fit of the
individual single-epoch images (Section 6.3).63

In addition to the main survey, there are several regions
where the DES Y1 imaging is considerably deeper than the
nominal three to four tilings. Co-adds have been created in
these regions using different numbers of input images to
achieve different photometric depths. The Y1A1 GOLD co-add
catalog thus contains four different samples:

1. WIDE: The WIDE co-add data sample is built from
exposures in the S82 and SPT regions of the Y1 wide-
area survey footprint and has a depth of three to four
tilings. One of the SN fields, SN-E, resides within the
SPT region; however, to maintain uniformity, the WIDE
data set only includes images that were taken as part of
the DES wide-area survey (the SN-E exposures are
included in the other data sets that follow).

2. D04: The D04 sample is constructed by co-adding images
in the SN, COSMOS, and VVDS-14h fields with the goal
of reaching an effective depth roughly comparable to the
WIDE sample. Quantitatively, exposures were selected to
give å t T T4j j j

exp
eff, exp, wide, where t jeff, is the effective

exposure timescale factor for exposure j (Section 2), T jexp,

is the shutter-open time for exposure j, and Twide is the
wide-area exposure time in Y1 (90 s in griz and 45 s in
Y). When selecting exposures for the D04 and D10
samples, we attempted to apply data quality selections
based on FWHM and teff . For the D04 sample, exposures
in the grizY bands were generally required to pass the

wide-area survey data quality requirements (Section 2)
and have FWHM<1 3. However, in several cases these
requirements were relaxed to better approximate the
desired depth. While the D04 sample was designed to
mimic the depth of the WIDE survey, the longer exposure
times for the auxiliary and SN fields result in a data set
that is on average ~0.2 mag deeper than WIDE. The
median MAG_AUTO 10σ limiting magnitude for galaxies
(Section 7.1) in the D04 sample is g=23.6, r=23.4,
i=22.8, z=22.0, Y=20.3. The D04 data set has been
used to train and test photo-z algorithms and object
classification (e.g., Hoyle et al. 2017).

3. D10: The D10 sample is constructed in the SN,
COSMOS, and VVDS-14h fields by co-adding images
to an effective depth of 10 exposures. The 10-exposure
depth is intended to mimic the expected main survey
depth at the end of DES. Similar to D04, general criteria
requiring survey quality, FWHM<1 3 in riz, and
FWHM<1 4 in gY were applied. The median
MAG_AUTO 10σ limiting magnitude for galaxies
(Section 7.1) in the D10 sample is g=24.2, r=24.0,
i=23.5, z=22.7, Y=20.9.

4. DFULL: The DFULL sample uses all high-quality
images in the SN, COSMOS, and VVDS-14h fields.
The DFULL co-add applies a requirement of FWHM<
1 3 in riz band and FWHM<1 4 in g band (no FWHM
requirement is placed on Y band). Exposures are still
required to pass the survey quality cuts, but no restriction
is placed on the number of exposures that go into the co-
add. The median MAG_AUTO 10σ limiting magnitude for
galaxies (Section 7.1) in the DFULL sample is g=24.2,
r=23.9, i=23.8, z=23.7, Y=21.2, with ∼10% of
the area having a limiting magnitude greater than 25 in
griz.64

5.1. Astrometric Accuracy

Astrometric calibration places the DES exposures onto a
consistent reference frame with each other and with external
catalogs. We used SCAMP (Bertin 2006) to find an astrometric

Figure 5. Comparison of stellar magnitudes from the DES Y1A1 GCM and those estimated from APASS/2MASS transformed into the DES filter system
(Appendix A.4). The sky plot (left) shows the median magnitude offset for stars binned into ~0.2 deg2 HEALPix pixels. The GCM calibrated magnitudes are
consistent with the transformed values from APASS/2MASS with a half-width of s = 22 mmag68 (calculated between the 16th and 84th percentiles). Similar figures
for other bands are shown in Appendix A.

63 Studies with PSF homogenization are ongoing, and PSF-homogenized co-
adds have been used for several DES science analyses using SV data (Hennig
et al. 2017; Klein et al. 2017).

64 The median depth of the DFULL sample in g and r band is comparable to
that of D10 owing to the fact that few additional exposures passed the survey
quality and FWHM requirements outside of the deep SN fields. The r-band
depth is 0.05 mag shallower in DFULL owing to a slightly larger area with
more varied data quality.
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solution including corrections for optical distortion toward the
edges of the focal plane. During Y1A1 FINALCUT processing,
initial astrometric calibration was performed on individual
exposures. Starting with an approximate initial solution
provided by the telescope control system, the SExtractor
windowed image coordinates of bright stars in the DES
exposures were extracted and matched against the UCAC-4
stellar catalog (Zacharias et al. 2013).

When building co-add tiles, an additional astrometric
refinement process was performed to remap the DES input
images against each other and against the 2MASS catalog
(Skrutskie et al. 2006). The single-epoch catalogs from all
exposures overlapping a tile were input to SCAMP, and a
simultaneous best fit was obtained treating exposures from each
filter as separate instruments. This best-fit astrometric solution
was used when combining images. After astrometric refine-
ment, the median internal astrometric precision of the Y1A1
wide-area co-add images is ~25 mas (3σ-clipped rms disper-
sion around the mean for stars with S/N> 100). In
comparison, the median astrometric precision when compared
against 2MASS is 200–350 mas (Figure 6). This difference is
dominated by the proper motions of high Galactic latitude stars
and uncertainty in the astrometric accuracy of faint 2MASS
sources.65 This has been confirmed by comparisons between
Y3 DES data and Gaia DR1 (Gaia Collaboration 2016), where
the median astrometric uncertainty is found to be ~150 mas
(DES Collaboration 2018).66

6. Object Catalogs

6.1. Co-add Catalog Creation

Catalogs of unique astrophysical sources were assembled
from the co-added images. The goal of the DESDM catalog
production was to assemble the most inclusive catalog of
sources while maintaining a low contamination fraction. The
production of catalog subsamples that are complete to a given
threshold is left to subsequent science analyses. Source
detection, morphological characterization, and multiband
photometric flux measurements were performed using SEx-
tractor (Bertin & Arnouts 1996; Bertin et al. 2002). Source
detection used a CHI-MEAN combination of the co-added
images in r+i+z (Szalay et al. 1999; Bertin 2010). The
CHI-MEAN detection image was designed to minimize
discontinuities between regions with different numbers of
exposures (see Appendix B). In contrast, flux and shape
measurements were performed on each band individually using
SExtractor in dual mode (i.e., analyzing the image for an
individual band simultaneously with the detection image). The
local background was estimated via 16×16 pixel boxes with
3σ clipping of bright pixels and median filtering of the boxes.
The image was convolved with a 3×3 pixel structuring
element of the form [[1, 2, 1][2, 4, 2][1, 2, 1]]. An S/N
threshold of 1.5σ per pixel was applied over the convolved
image to detect objects. Source localization was derived from
the barycenter of the object in the i, z, Y, r, g single-band co-
add images (in order). Co-add object positions in world
coordinates (J2000 epoch) were computed using the astro-
metric solution found during image co-addition (Section 5.1).
The depth and PSF of the DES imaging result in overlapping

isophotes for objects in crowded regions, e.g., galaxy clusters,
star clusters, and dense stellar regions around the LMC.

Figure 6. Top: relative internal astrometric error in milliarcseconds derived by comparing the positions of stars in the individual DES exposures that go into the Y1A1
co-adds. Bottom: relative external astrometric error derived by comparing the position of stars in DES and 2MASS (without correcting for proper motion). The color
scales represent the astrometric uncertainty in milliarcseconds, while the legends of the right panels report the modes of the distributions. The SN exposure times are
significantly longer than the wide-area survey exposure times, leading to a fainter saturation threshold. This reduces the number of nonsaturated bright stars and
increases the astrometric uncertainty estimated by this technique (a more accurate estimate of the astrometry in the SN fields can be found in Kessler et al. 2015).

65 http://www.ipac.caltech.edu/2mass/releases/allsky/doc/sec2_2.html
66 Bernstein et al. (2017b) show that, using Gaia DR1, the astrometric solution
for a single DECam exposure can be made accurate to within 3–6 mas.
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Incomplete deblending of overlapping objects affects the
measured shapes and photometric properties of cluster galaxies,
which impacts weak lensing and cluster cosmology science.
SExtractor attempts to deblend each detected object into
subcomponents using a multithresholding algorithm (Bertin &
Arnouts 1996). An object is separated into two (or more) new
objects if the intensity of the new object is greater than a
fraction of the total intensity set by the DEBLEND_MINCONT
parameter, while the number of deblending thresholds is set by
the DEBLEND_NTHRESH parameter. The Y1A1 processing
campaign adopts 0.001 and 32, respectively, for the two
parameters. These values were optimized based on SV data to
balance completeness and purity for cluster galaxies. More
aggressive deblending techniques for the DES data have been
explored in Zhang et al. (2015).

SExtractor was used to measure object photometry via
several methods (see Sevilla et al. 2011):

1. Fixed aperture fluxes (FLUX_APER) were measured for
12 circular apertures with different radii from 0 25 to 9″.

2. Elliptical aperture fluxes (FLUX_AUTO) were calculated
using the second-order moments of each object to derive
the elongation and orientation of the best-fit ellipse (Kron
1980). The ellipse scaling factor was derived from the
first-order moment of the radial distribution.

3. PSF model fluxes (FLUX_PSF) suitable for point-like
sources were fit to the measured PSF shape. As
mentioned in Section 5, PSF discontinuities in the
Y1A1 co-add images can degrade the quality of the
PSF model fluxes.

4. Exponential model fluxes (FLUX_MODEL) suitable for
galaxies were fit by convolving a one-component
exponential model with a local model of the PSF. These
fluxes were fit both individually in each band and by
fixing the model shape based on the detection image
(FLUX_DETMODEL).

Among the morphological measurements performed by
SExtractor, two are designed to separate point-like objects
(i.e., stars) from spatially extended sources (i.e., galaxies). The
first is the CLASS_STAR variable, which uses a neural network
to assess the “stellarity” of an object (Bertin & Arnouts 1996).
The second variable, SPREAD_MODEL, is derived from the
Fisher’s linear discriminant between a model of the PSF and an
extended source model convolved with the PSF (Desai et al.
2012; Bouy et al. 2013; Soumagnac et al. 2015). The
application of these variables to star–galaxy separation is
detailed in Section 8.1.

As stated previously, catalog quantities were also derived for
individual single-epoch exposures that compose the co-added
images. Objects detected on the individual exposures were
associated with sources in the co-add catalog using a 1″
matching radius. While shallower, the single-epoch catalogs
are important for probing the temporal domain. Additionally,
the photometry of the single-epoch catalogs is not subject to the
PSF discontinuities present in the co-adds. For this reason, we

calculated a number of photometric and morphological
quantities from the average of single-epoch measurements
weighted by their associated statistical uncertainties (the names
of these quantities are prefixed by “WAVG”). In particular, the
weighted-average spread-model quantity (WAVG_SPREAD_
MODEL) has been shown to yield better star–galaxy separation
(Drlica-Wagner et al. 2015) for stellar objects, and the
weighted-average PSF magnitudes (WAVGCALIB_MAG_PSF)
have been found to yield more precise stellar photometry than
the corresponding co-add quantities. In addition, uncertainties
for the WAVG quantities are calculated directly from the
variance in the measurements from individual exposures and
thus avoid any systematics introduced in the co-addition
process.

6.2. Y1A1 GOLD Catalog Selection

We assembled the Y1A1 GOLD object catalog as a high-
quality subselection of the objects extracted from the Y1A1 co-
add images. When selecting the Y1A1 GOLD catalog, we
sought to remove spurious, nonphysical objects while mini-
mally decreasing the statistical power of any scientific
investigation (Table 3). Specifically, we required that objects
be observed, but not necessarily detected, at least once in each
of the g, r, i, and z bands. We also required that all objects have
SPREADERR_MODEL>0 for the g, r, i, and z bands to
eliminate objects with unphysical SPREADERR_MODEL values
indicative of a failure in the SExtractor photometric fit.67

We also identify several classes of objects that are extremely
unusual and flag them for exclusion from most cosmological
analyses (Table 4). In addition to objects flagged by
SExtractor, we specifically identify (1) objects with
extremely blue ( - - - < -{ }g r r i i z, , 1) or extremely
red ( - - - >{ }g r r i i z, , 4) colors, (2) bright stars that
saturate some of the single-epoch inputs to the co-add image,
and (3) objects that have a large (>1″) offset in the windowed
centroid derived from the g and i bands. Finally, we require that
objects reside within the Y1A1 GOLD footprint (Section 7.3)
and flag any objects that reside in poor-quality or potentially
problematic (“bad”) regions (Section 7.4).

6.3. Multiepoch, Multiobject Fitting

The Y1A1 co-added images provide deeper and more
sensitive object detection than individual single-epoch images.
However, the co-addition process averages across multiple
images, resulting in a discontinuous PSF and correlated noise
properties. Precision measurements that rely on an accurate
PSF determination, such as galaxy shape measurements for
cosmic shear, require a joint fit of pixel-level data from
multiple single-epoch images.
We used the ngmix68 code (Sheldon 2014; Jarvis et al.

2016; Sheldon & Huff 2017) to reanalyze pixel-level data from

Table 3
Y1A1 GOLD Catalog Selection

Selection Description

NITER_MODEL_{GRIZ}>0 Select objects that were observed at least once in each of the g, r, i, z bands.
SPREADERR_MODEL_{GRIZ}>0 SPREADERR_MODEL=0 indicates a failure in the photometric fit.

67 Objects that are not detected in a specific band have a sentinel value of
SPREADERR_MODEL=1.
68 https://github.com/esheldon/ngmix
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multiepoch postage stamps of each object in the Y1A1 GOLD
co-add catalog. We used PSFEx (Bertin 2011) to model and
interpolate the PSF at the location of each object, and then we
generated an image of the PSF using the python package,
psfex.69 We then used the ngmix code to fit this
reconstructed PSF image to a set of three free, independent
Gaussians.

We used ngmix in “multiepoch” mode to simultaneously fit
a model to all available epochs and bands. In this mode, a
model is convolved by the local PSF in each single-epoch
image, and a χ2 sum is calculated over all pixels in a postage
stamp. This is repeated for each epoch and band, and a total χ2

sum is calculated. We then find the parameters of the model
that maximize the likelihood.

We took this procedure one step further, performing
simultaneous multiepoch, multiband, and multiobject fits,
which we call “MOF.” We first identified groups of objects
using a friends-of-friends algorithm (e.g., Huchra & Geller
1982; Berlind et al. 2006). We then fit the members of the
group using the following procedure:

1. Perform an initial model fit to each object, masking the
light from neighbors using the überseg algorithm (Jarvis
et al. 2016).

2. Fit the model to each object again, this time subtracting
the light from neighbors using the models from the
previous fit.

3. Repeat the previous step until all fits converge, or a
maximum of 15 iterations was reached.

This fit was performed simultaneously in the g r i z, , , bands
using all available imaging epochs and assuming the same
spatial model for all bands and epochs. An example of this
procedure is shown in Figure 7.

We found that fitting a galaxy model with fully free bulge and
disk components was highly unstable, so we adopted the
following approach, inspired by the “composite” model used
in the SDSS.70 We first fit the disk and bulge models
separately, represented by an exponential and de Vaucouleurs
profile (de Vaucouleurs 1948), respectively. We then
determined the linear combination of these models that best
fit the data,

= + -( ) ( )M f M f M1 , 1tot dev dev dev exp

where Mdev is the bulge model, Mexp is the disk model, and fdev
represents the fraction of light in the bulge component. This
total model is unlikely to be a good fit of the data, and we only

use it as a starting point for a more refined model. We formed a
new model that has the best fdev determined as above, as well as
the same ratio of scale lengths for the bulge and disk
components. This new model has free parameters for the
center, ellipticity, overall scale, and fluxes. A common center,
scale, and ellipticity were used for all bands, but the flux for
each band was left free.
For computational efficiency, each component of this model

was approximated by a sum of Gaussians (Hogg & Lang 2013).
This choice made convolution with the triple-Gaussian PSF
model very fast. A fast approximation for the exponential
function was also used to speed up computations (Shel-
don 2014).
We imposed uninformative priors on all parameters except

for the ellipticity and the fraction of light present in the bulge,
fdev. For both of these parameters, we applied priors based on
fits to deep COSMOS imaging data, provided as postage
stamps with the GalSim project.71 We defined convergence to
be when the flux from subsequent fits to objects did not change
more than a part in a thousand, and structural parameters such
as scale and ellipticity did not change by more than one part in
a million. For incorporation into the Y1A1 GOLD catalog, we
converted MOF fluxes to magnitudes and applied the SLR
adjustment discussed in Section 4.3.

Table 4
Y1A1 GOLD Catalog Flags

Flag Bit Selection Description

1 FLAGS_{GRIZ}>3 Objects flagged by SExtractor
2 - - - < -{ }g r r i i z, , 1 Objects with unphysical colors

- - - >{ }g r r i i zOR , , 4
4 (NEPOCHS_G=0) AND (MAGERR_AUTO_G<0.05) Artifacts associated with stars close to the saturation threshold

AND (MAG_MODEL_I−MAG_AUTO_I)<−0.4
8 (a a- > ∣ ∣ 1J g J i2000, 2000, Objects with large astrometric offsets between bands

d d- > ∣ ∣OR 1J g J i2000, 2000, )
AND (MAGERR_AUTO_G<0.05)

Figure 7. Group of objects fit using the MOF algorithm. In the top row we
show the sky-subtracted image (left), the models for neighboring sources
(middle), and the SExtractor segmentation map (right). In the bottom row we
show the sky-subtracted image after also subtracting the light from neighbors
(left), the fraction of light assigned to the central object (middle; 100% in white
and 0% in black), and the weight map (right). Note that a bad column and a
flagged object are identified in the weight map. The masked object was not fit,
and thus its light was not subtracted.

69 https://github.com/esheldon/psfex
70 http://www.sdss.org/dr12/algorithms/magnitudes/#cmodel 71 https://github.com/GalSim-developers/GalSim
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6.4. Catalog Completeness

We assessed the completeness and purity of the Y1A1 GOLD
catalog by comparing it against data from the Canada–France–
Hawaii Lensing Survey (CFHTLenS) W4 field (Hildebrandt
et al. 2012; Erben et al. 2013), which overlap the S82 region of
Y1A1 GOLD. The DES data in this overlap region have a
typical 10σ limiting magnitude of g∼23.1, r∼23.0, i∼22.5,
z∼21.8 (Section 7.1). This is comparable to the median for
Y1A1 GOLD in i and z bands and~0.2 mag shallower than the
median in g and r bands (Table 1). In this region, CFHTLenS is
1 mag deeper than the Y1A1 GOLD catalog, making it a good
test for object detection completeness. We transformed the
magnitude of CFHTLenS objects into the DES system
(Appendix A.4) and removed objects residing in masked regions
of either survey. We associated objects between the two catalogs
based on a spatial coincidence of 1″ and required a matching
magnitude within 2 mag. We then calculated the detection
completeness as the fraction of CFHTLenS objects that are
matched to Y1A1 GOLD objects as a function of the
CFHTLenS magnitude transformed into the DES system. The
contamination of the Y1A1 GOLD catalog is assessed as the
fraction of Y1A1 GOLD objects that are unmatched to
CFHTLenS objects as a function of magnitude. We find that
the 95% completeness limit of the Y1A1 GOLD catalog is
g=23.6, r=23.4, i=22.9, and z=22.4 (Figure 8). We find
that for magnitudes brighter than these limits, the contamination
of the Y1A1 GOLD catalog is 2%. The Y1A1 GOLD catalog
is >99% complete in all four bands for magnitudes brighter than
21.5. This completeness estimate does not account for objects
that are blended in both CFHTLenS and DES, which is estimated
to be ~1% of objects at DES depth. We also note that Y1A1
object detection was performed on a combined r+i+z
detection image and no S/N threshold was applied to the
measurements in individual bands when calculating completeness.

7. Ancillary Maps

Several ancillary maps were produced to characterize the
coverage, sensitivity, observing conditions, and potentially
problematic regions of Y1A1 GOLD as a function of sky

position. Generating ancillary maps for Y1A1 GOLD was a
multistep process: we created a vectorized representation of the
survey coverage and limiting magnitude using mangle
(Hamilton & Tegmark 2004; Swanson et al. 2008), we
rasterized the mangle maps with HEALPix for ease of use,
we estimated observing conditions over the survey footprint,
and we subselected a nominal high-quality footprint. Finally,
we flagged sky regions where the true survey performance
deviates from that estimated by the ancillary data products (i.e.,
the regions around bright stars, astrometric failures, etc.). Each
of these steps is described in more detail below.

7.1. Maps of Survey Coverage and Depth

Quantifying survey coverage and limiting magnitude as a
function of sky position are essential for statistically rigorous
cosmological analyses. To accurately track characteristics of
the DES survey at the sub-CCD level, DESDM produces
mangle masks (Hamilton & Tegmark 2004; Swanson et al.
2008) as part of the Y1A1 COADD pipeline. These masks are
an accurate representation of the coverage, sensitivity, and
overlap of DECam exposures including dead CCDs, gaps
between CCDs, masked regions around bright stars, and bright
streaks from Earth-orbiting satellites.
During co-add production, mangle masks were created at

the level of co-add tiles (Figure 9). The steps are as follows:

1. Polygons were created using the four corners of each
input CCD image and assigned a weight equal to the
median value of pixels in the CCD weight plane.

2. Satellite streaks were represented by polygons, and the
area of these polygons was removed from the single-
epoch CCD polygon.

3. Polygons were trimmed to fit the tile boundaries.
4. Polygons were subdivided into disjoint regions with the

balkanize command. Following the weighted-average
scheme chosen for image co-addition, the total weight of
a balkanized polygon is the sum of the weights of the
individual polygons.

5. Regions around bright stars and bleed trails are removed
from the mangle mask. While the precise location of
these artifacts is image dependent, it is computationally
simpler to mask the stacked map with the largest shape
covering a bright star or bleed trail rather than removing
these regions from each single-epoch polygon.

6. The mangle co-add weight map was converted into a
10σ limiting magnitude map for a 2″ diameter aperture:

p
w

= -
⎛
⎝
⎜⎜

⎞
⎠
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2.5 log 10

2 1
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2
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where mZP=30 is the tile zero-point, D=2″,
ωpix=0 263 is the pixel size, and wtot is the total
weight of the polygon. This definition of the magnitude
limit corresponds to the MAG_APER_4 quantity measured
by SExtractor.

While the vectorized mangle masks are a very accurate
representation of the DES survey coverage, they are compu-
tationally unwieldy for many scientific analyses. To increase
the speed and ease with which survey coverage and limiting
magnitude can be accessed, we generate anti-aliased HEALPix
maps of these quantities (Figure 9). Pixelized maps of the
survey coverage fraction were created at a resolution of

Figure 8. Completeness (solid circles) and contamination (dashed triangles) of
the Y1A1 GOLD co-add object catalog determined by comparison to the
CFHTLenS W4 field. Object matching was performed within a 1″ radius, and
CFHTLenS magnitudes were transformed to the DES system using the
equations in Appendix A.4. Statistics were calculated for the subset of objects
that were unmasked in both surveys and have been truncated at the 5σ limiting
magnitude of CFHTLenS (Erben et al. 2013).
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nside = 4096 ( =area 0.73 arcmin2) by calculating the
fraction of higher-resolution subpixels (nside = 32768,

=area 0.01 arcmin2) that were contained within the mangle
mask. Similarly, maps of the survey limiting magnitude were
generated at nside = 4096 by calculating the mean limiting
magnitude for subpixels (nside = 32768). When calculating
the limiting magnitude, subpixels that were not covered by the
survey were excluded from the calculation, while subpixels that
have been masked (i.e., bright stars, bleed trails, etc.) were
assumed to have the limiting magnitude of their parent
polygon. The HEALPix resolution of nside = 4096 was
chosen as a compromise between computational accuracy and
ease of use. This resolution was found to have a negligible
effect on the correlation function of simulated galaxies on
scales larger than 0 5 when combined with the survey coverage
fraction maps.

We followed the prescription of Rykoff et al. (2015) to
convert the mangle coverage and depth maps into 10σ
limiting magnitude maps for galaxy photometry. We selected
galaxies using the MODEST_CLASS star–galaxy classifier
(Section 8.1) and trained a random forest model to predict
the 10σ limiting magnitude as a function of observing
conditions. The input vector for the random forest included

the PSF FWHM, sky brightness, airmass, and exposure time for
each band being fit (Section 7.2). The training was performed
on coarse HEALPix pixels (nside=1024) that contained
more than 100 galaxies. Once trained, the model was applied to
the pixels at the full mask resolution of nside=4096. We
derived magnitude limits for both co-add AUTO magnitudes
and the multiepoch composite model magnitudes derived by
the MOF (Section 6.3). We applied the SLR calibration
adjustment (Section 4.3) to the resulting depth maps to correct
for interstellar extinction and zero-point nonuniformity. The
median 10σ limiting magnitudes for MAG_AUTO are
= -

+g 23.4 0.40
0.14, = -

+r 23.2 0.37
0.13, = -

+i 22.5 0.34
0.14, = -

+z 21.8 0.37
0.12,

= -
+Y 20.1 0.33

0.18, where the uncertainties represent the 16th and
84th percentiles of the distribution. In comparison, the median
10σ limiting magnitudes for the MOF CM_MAG magnitudes are
= -

+g 23.7 0.40
0.07, = -

+r 23.5 0.29
0.16, = -

+i 22.9 0.30
0.14, and = -

+z 22.2 0.32
0.14.

We find that the depth estimates are accurate at the level of
6%–7%, but that 3%–4% of this measured uncertainty is due to
“pixelization noise” resulting from averaging over a range of
depths when fitting the model on coarse pixels. An example of
the resulting depth maps for r band can be found in Figure 10,
and figures for the other bands can be found in Appendix C.

Figure 9. Coverage and depth maps for a single Y1A1 co-add tile. Left: vectorized mangle weight map for an r-band co-add tile. Satellite trails, star masks, and chip
gaps are stored at full resolution. Middle: pixelized 10σ limiting magnitude map for galaxies using HEALPix at nside = 4096. Right: pixelized map of the coverage
fraction at HEALPix nside = 4096. This tile is located on the border of the Y1A1 footprint and has been chosen for illustrative purposes owing to its variable depth
and incomplete coverage.

Figure 10. Sky map and normalized histogram for the r-band 10σ limiting magnitude (MAG_AUTO) derived in HEALPix pixels over the Y1A1 GOLD footprint. The
mode of the limiting magnitude distribution is shown in the right panel. The derivation of the limiting magnitude is described in Section 7.1. Similar figures for other
bands are shown in Appendix C.
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7.2. Maps of Survey Characteristics

Variations in observing conditions can be a significant
source of systematic uncertainty in cosmological analyses. In a
wide-area optical survey such as DES, variable observing
conditions can imprint spurious spatial correlations, noise, and
depth fluctuations on the object catalogs that are used for
galaxy clustering and cosmic shear analyses. By identifying
and characterizing these systematic effects, it becomes possible
to quantify and minimize their impact on scientific results. We
followed the procedure developed by Leistedt et al. (2016) to
construct survey characteristic and coverage fraction maps for
the Y1A1 GOLD data set using QuickSip.72 Since the
nonlinear transfer function between the stack of images at any
position on the sky and the final galaxy catalog is largely
unknown, we created maps of many different survey
observables. For each band, we created maps of both weighted-
and unweighted-average quantities of each image. The main
quantities expected to be used for null tests in cosmological
analyses with the Y1A1 GOLD catalog are the total exposure
time, the mean PSF FWHM, the mean airmass, and the sky
background. The inverse variance weighted averages of these
quantities are shown in Figure 11. Further modeling of the
survey transfer function is important for DES cosmology
analyses, and several approaches have already been developed
(e.g., Chang et al. 2015; Suchyta et al. 2016).

7.3. Footprint Map

The nominal footprint for the Y1A1 GOLD catalog is
defined using an nside = 4096 HEALPix map. For a pixel to
be included in the Y1A1 GOLD footprint, it must meet the
following criteria simultaneously in the g, r, i, z bands:

1. A mangle coverage fraction �0.5, implying that at least
half of the pixel area has been observed or is unmasked
according to mangle (Section 7.1).

2. A coverage fraction of �0.5 from the survey character-
istics maps (Section 7.2).

3. A minimum total exposure time of 90 s (Section 7.2).
4. A valid solution from the SLR calibration adjustment

(Section 4.3).

These selection criteria reduce the total co-added area of Y1A1
covered in any band, 1927 deg2, to a nominal WIDE+D04
Y1A1 GOLD footprint in g, r, i, z of 1786 deg2. Simulta-
neously applying the same criteria to the Y band (with a
minimum exposure time of 45 s) results in a g, r, i, z, Y
footprint of 1773 deg2. These numbers were calculated by
summing the coverage fraction of pixels in the footprint.

7.4. Bad Region Mask

Masks were developed to remove regions where survey
artifacts make it difficult to control systematic uncertainties
when doing cosmological analyses. Since not all science topics
require the same masks (e.g., studies of galaxy evolution may
not want to mask nearby galaxies), the various masks are

Figure 11. Survey characteristics of the Y1A1 GOLD data set estimated from the inverse variance weighted stack of single-epoch images in r band at each position on
the sky. Panels correspond to mean airmass (top left), PSF FWHM in pixels (top right), exposure time in seconds (bottom left), and sky brightness in ADU (bottom
right).

72 https://github.com/ixkael/QuickSip
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collected into a bitmap defined in Table 5. Removing area
associated with any of these masks results in a WIDE+D04
footprint area of 1506 deg2 in g, r, i, z and 1496 deg2 in g, r, i,
z, Y.

7.4.1. Catalog Artifacts

1. Unphysical colors (bit=64):This mask is designed to
remove imaging artifacts that were not masked before
creating co-adds. In particular, this mask removes regions
where there are significant reflected light artifacts (both
specular and diffuse) from bright stars, unmasked orbital
satellite trails, and co-add saturation artifacts. This mask
is pixelized at nside = 2048, and pixels with �8
objects possessing unphysical colors are masked (see
Table 4). The threshold for flagging bad pixels was set by
visual inspection of the co-add tiles. The resulting
masked area is 1.3 deg2.

2. Astrometric discrepancies (bit=1):We flag regions that
have a high concentration of galaxies with large
astrometric offsets between filters. We select galaxies
with i<22, MAGERR_AUTO_G<0.2, and windowed
positions in g and i band differ by more than 1″. This
criterion has been found to select objects in regions of
strongly variable background (e.g., the wings of bright
stars, regions of poor sky subtraction, regions with
scattered light, etc.). The resulting masked area in this
case is 30.1 deg2.

3. PSF model failures (bit=512):There are several
regions where PSF modeling failed owing to varying
depth and a discontinuous PSF. Co-add tiles possessing
poor PSF models are identified as having a large number
of stars where the co-add PSF magnitude differs from the
weighted-average single-epoch PSF magnitude by more
than 0.2 mag. We flag HEALPix pixels (nside = 512)
possessing >20 stars with large discrepancies in PSF
magnitudes. The total region masked in this way
is 7.2 deg2.

7.4.2. Bright Stars

Regions around saturated stars were masked at the pixel
level as part of the image processing pipeline described in

Section 3. However, catalog-level investigation revealed a
residual increase in the number density of objects surrounding
the brightest stars. To avoid contamination from spurious
objects in the halos of bright stars, we designed radial masks
based on the brightness of the contaminating stars and the
number density of surrounding objects. These masks were
developed for two bright star catalogs as described below.

1. Yale bright star regions (bit=32):Masked regions were
determined from the positions and magnitudes of stars in
the Yale Bright Star Catalog (Hoffleit & Jaschek 1991).
The masking radius was determined from the V-band
magnitude of each star, following the equation

= - ´( ) ( )R V0.86835 deg 0.1439 deg . 3

Minimum and maximum masking radii were imposed at
0.1 deg and 0.4 deg, respectively. The resulting masked
area is 18.4 deg2.

2. 2MASS bright stars (bit=2, 8):We mask regions
around bright stars from the 2MASS catalog (Skrutskie
et al. 2006) within a radius of

= - ´( ) ( )R J0.09 deg 0.0073 deg , 4

assuming a minimum and maximum masking radius of
0.01 deg and 0.05 deg, respectively. Many of the bright
stars in 2MASS overlap with the faintest stars in the Yale
Bright Star Catalog, and we find a comparable masking
radius (albeit derived using different bands). Because the
fainter 2MASS stars may not be problematic for all
science applications, we split the 2MASS star mask into
stars with 5<J<8 and stars with 8<J<12. The
masked areas are 38.6 deg2 and 119.5 deg2, respectively.

7.4.3. Large Foreground Objects

1. The Large Magellanic Cloud (bit=16):The center of
the Large Magellanic Cloud (LMC) is located ~5 deg
from the southwest edge of the DES footprint, and the
stellar population of the LMC presents a number of
challenges for extragalactic science. The high density of
stars decreases the purity of galaxy samples, while the
2MASS star masks described in Section 7.4.2 lead to a
complex and heavily masked area. The stellar locus of the
LMC differs from that of the Milky Way, making it
difficult to apply the SLR calibration adjustment
described in Section 4. For these reasons, we masked a
region around the LMC with a boundary defined as

a < < 60 1002000 and d-  < < - 70 582000 . The
LMC mask removed 95.8 deg2.

2. Bright galaxies (bit=4):The Third Reference Catalog
of Bright Galaxies (RC3; Corwin et al. 1994) contains
galaxies subtending  ¢1 . Since galaxy size is highly
correlated with magnitude, we continue to use a
magnitude-dependent masking formulation similar to that
applied to bright stars. We masked a circular region
around RC3 galaxies with 10<B<16 with a magni-
tude-dependent selection:

= - ´( ) ( )R B0.269 deg 0.0166 deg . 5

We imposed minimum and maximum masking radii such
that < <R0.03 deg 0.1 deg. The bright galaxy mask
removes 5.4 deg2.

Table 5
Y1A1 GOLD Bad Region Mask

Flag Bit Area Description
( deg2)

1 30.1 High density of astrometric discrepancies
2 119.5 2MASS moderate star regions (8 < J < 12)
4 5.4 RC3 large galaxy region (10 < B < 16)
8 38.6 2MASS bright star regions (5 < J < 8)
16 95.8 Region near the LMC
32 18.4 Yale bright star regions (−2 < V < 5.6)
64 1.3 High density of unphysical colors
128 L Unused bit
256 0.7 Milky Way globular clusters
512 7.2 Poor COADD PSF modeling

Note. Masked regions for the Y1A1 GOLD WIDE+D04 footprint. The
masked area is calculated using the coverage fraction of the pixels that are
removed from the footprint by each mask. The criteria defining each mask can
be found in Section 7.4.
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3. Globular clusters (bit=256):The high stellar density of
Milky Way globular clusters makes them difficult regions
for cosmology analyses. We identified three globular
clusters, NGC 1261, NGC 1851, and NGC 7089, and
masked circular regions with radius 1.5 times the angular
size reported by Sinnott (1988). This resulted in a total
masked area of 0.7 deg2.

8. Value-added Quantities

The astrometric, photometric, and morphological parameters
derived for each object are supplemented with additional
information important for astrophysical and cosmological
analyses. These “value-added quantities” are built from the
calibrated co-add object catalog and provide additional
information on an object-by-object basis. The two primary
value-added quantities provided with Y1A1 GOLD are (1) a
simple star–galaxy classifier and (2) a set of photo-z estimates.

8.1. Star–Galaxy Separation

As part of the Y1A1 GOLD catalog, we produced a
“MODEST_CLASS” object classification with the primary goal
of selecting high-quality galaxy samples. MODEST_CLASS is
based on the i-band co-add quantity SPREAD_MODEL_I and
its associated error, SPREADERR_MODEL_I. SPREAD_MO-
DEL is a morphological variable defined as a normalized linear
discriminant between the best-fit local PSF model and a slightly
more extended model composed of a circular exponential disk
convolved with the PSF (Desai et al. 2012; Soumagnac et al.
2015). The i band was chosen as the reference band for object
classification owing to its depth and superior PSF. Image-level
simulations of the DES data support the conclusion that i band
yields the best overall performance for object classification, and
this result was verified using deep HST imaging on the
COSMOS field.

We used space-based imaging of COSMOS (Leauthaud et al.
2007) and GOODS-S (Giavalisco et al. 2004) along with
spectroscopic observations from VVDS (Le Fèvre et al. 2005)
that overlapped the Y1A1 GOLD footprint as a truth sample for
developing MODEST_CLASS. We defined star and galaxy
samples optimized for “high completeness” and “high purity”
by applying thresholds on the combination of SPREAD_MO-
DEL_I and SPREADERR_MODEL_I.73 The object classifica-
tion scheme is defined in Table 6 and shown graphically in
Figure 12.

Following Drlica-Wagner et al. (2015), we validated the
performance of the MODEST_CLASS star–galaxy classifier on

data from CFHTLenS (Hildebrandt et al. 2012; Erben et al.
2013). We matched CFHTLenS catalog objects to the Y1A1
GOLD data (Section 6) and selected high-quality samples of
stars and galaxies using the class_star and fitclass
measurements by CFHTLenS (Heymans et al. 2012). Specifi-
cally, our CFHTLenS stellar selection was (fitclas-
s=1)OR(class_star>0.98) and our galaxy selection
was (fitclass=0)OR(class_star<0.2). Note that
~7% of matched CFHTLenS objects are unclassified according
to this prescription, and these objects are not used for assessing
the performance of MODEST_CLASS.
We define the “efficiency” of a galaxy sample as the number

of true galaxies that are also classified as galaxies divided by
the total number of true galaxies in the sample (i.e., the true
positive rate). Conversely, the “contamination” of a galaxy
sample is defined as the number of galaxies that are
misclassified divided by the total number of objects classified
as galaxies (i.e., the false discovery rate). Similar definitions
apply to the stellar selections, and the performance of the
MODEST_CLASS galaxy and star selections are shown in
Figure 13. We find that a high-purity galaxy selection has
an efficiency 98% and a contamination rate 3% for i<22.
In contrast, the high-completeness stellar selection has an
efficiency of 86% with a contamination of 6% for i<22.
We estimate similar performance for MODEST_CLASS through
a comparison against the DEEP2-3 field in the first public data
release of Hyper Suprime Camera (Aihara et al. 2017).
The MODEST_CLASS selection provides an initial baseline

for object classification and is found to be sufficient for
characterizing the distributions of stars and galaxies in Y1A1
GOLD (Figures 14 and 15). Multivariate machine-learning
techniques and template-fitting algorithms have the potential to
provide much better object classification (e.g., Fadely et al.
2012; Soumagnac et al. 2015, etc.). Several advanced object
classification techniques are currently being explored within
DES and will be detailed in future publications (I. Sevilla et al.
2017, in preparation). We emphasize that MODEST_CLASS has
been optimized for galaxy selection. Several alternative
selections have been suggested for more complete samples of
stars (e.g., Bechtol et al. 2015; Drlica-Wagner et al. 2015).

8.2. Photometric Redshift Estimation

In this section we briefly summarize the approach to photo-z
estimation and validation for DES Y1 science analyses. While
photo-z estimates were provided as part of the initial Y1A1
GOLD data set, it was realized that individual cosmology
analyses benefit from photo-z estimation and validation
customized to their distinct science samples. Therefore, we
present a general overview of the photo-z estimation and
validation procedures, and we refer the reader to upcoming

Table 6
Y1A1 GOLD MODEST_CLASS Star–Galaxy Classification

Class Selection Description

0 SPREAD_MODEL_I+(5/3)×SPREADERR_MODEL_I<−0.002 Unphysical PSF fit (likely stars)
1 SPREAD_MODEL_I+(5/3)×SPREADERR_MODEL_I>0.005 AND High-confidence galaxies

NOT (|WAVG_SPREAD_MODEL_I|<0.002 AND MAG_AUTO_I<21.5)
2 |SPREAD_MODEL_I+(5/3)×SPREADERR_MODEL_I|<0.002 High-confidence stars
3 0.002<SPREAD_MODEL_I+(5/3)×SPREADERR_MODEL_I<0.005 Ambiguous classification

Note. The high-purity and high-completeness galaxy samples are defined as MODEST CLASS =_ 1 and MODEST CLASS Î { }_ 1, 3 , respectively. Similarly, the high-
purity and high-completeness stellar samples are defined as MODEST CLASS =_ 2 and MODEST CLASS Î { }_ 0, 2, 3 , respectively.

73 The high-completeness and high-purity samples differ in the classification
assigned to ambiguous objects.
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publications dedicated to photo-z estimation for distinct DES
analyses (e.g., Cawthon et al. 2017; Davis et al. 2017; Gatti
et al. 2018; Hoyle et al. 2017).

Photo-z estimates were generated with two distinct
algorithms: the machine-learning code DNF (De Vicente
et al. 2016), and a modified version of the template code BPZ
(Benéz 2000; Hoyle et al. 2017). These two codes are
representative of common machine-learning and template-
fitting photo-z estimation techniques. Both algorithms utilized
spectroscopic data for training, and a detailed discussion of

the spectroscopic sample can be found in Gschwend
et al. (2017).
For many cosmological analyses, we are interested in

accurately characterizing the statistical distribution of galaxies
in tomographic bins of redshift and less interested in predicting
the redshift of any individual galaxy. Thus, we applied two
independent techniques targeted at validating the statistical
properties of our predicted photo-z distributions (Davis et al.
2017; Hoyle et al. 2017).

1. We performed a direct validation of the color–redshift
relationship by matching galaxies from DES science

Figure 12. MODEST_CLASS star–galaxy selection for objects in a ~13 deg2 region centered on a d =  - ( ), 51 , 452000 2000 . The left panel shows the distribution of
spread_model_i and its error. The middle panel compares the distribution of the SExtractor neural-network classifier, class_star, with the
MODEST_CLASS selection criteria. The right panel shows a tight stellar locus in the i-band magnitude compared against the MODEST_CLASS criteria. In all panels the
black (red) lines correspond to the pure (complete) galaxy selection threshold applied on MODEST_CLASS.

Figure 13. Performance of the MODEST_CLASS star–galaxy classifier based
on a comparison to deeper imaging from CFHTLenS. Top: measured efficiency
and contamination for high-purity (solid) and high-completeness (dashed)
galaxy samples. Bottom: efficiency and contamination for high-purity (solid)
and high-completeness (dashed) stellar samples (note that MODEST_CLASS is
not optimized for stellar selection).

Figure 14. Number counts of objects passing the MODEST_CLASS pure star
selection (top) and complete galaxy selection (bottom) as a function of
MAG_AUTO magnitude in the g, r, i, and z bands. The impact of galaxy
contamination can be seen in the stellar number counts at magnitudes fainter
than i 23.
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samples to galaxies with multiband photometry obtained
within the COSMOS field (Laigle et al. 2016). This
choice of validation data mitigated the impact of redshift
or galaxy-type dependent selection biases, which can
affect spectroscopic surveys (e.g., Bonnett et al. 2016;
W. Hartley et al. 2018, in preparation). However, the
30-band photo-z estimates from COSMOS have a larger
intrinsic uncertainty than spectroscopically determined
redshifts. In addition, validating performance on a
~2 deg2

field leads to large uncertainty due to cosmic
variance, which was estimated using the Buzzard suite of
LCDM simulations (J. DeRose et al. 2017, in prep-
aration; Sánchez et al. 2017; R. H. Wechsler et al. 2018,
in preparation).

2. A second, independent indirect validation technique
relies on the clustering-redshift technique (Newman
2008; Ménard et al. 2013; Schmidt et al. 2013). We
selected a luminous red galaxy sample (redMaGiC; Rozo
et al. 2016), which has well-determined photo-z esti-
mates, as a reference and divided this sample into redshift
bins of widthΔz=0.02. We then divided the full sample
of DES objects into tomographic redshift bins based on
predicted photo-z and cross-correlated the data in each
tomographic bin with each of the more finely binned
redMaGiC reference samples. We measured the excess
angular cross-correlation signal, which is proportional to
the redshift distribution. We calibrated a constant redshift
offset in each tomographic bin between the photo-z
predictions and the clustering signal. We estimated the
errors arising from the evolution of galaxy–dark matter
halo bias and discrepancies in the shape of the clustering
redshift distribution by repeating the same analysis using
the Buzzard simulations (Cawthon et al. 2017; Gatti
et al. 2018).

Both validation techniques possess associated uncertainties.
The direct validation technique has comparable uncertainties
from sample variance (since COSMOS covers a ~2 deg2

region of the sky) and systematic uncertainty in matching the
morphological and color–magnitude error distribution of the
galaxy sample. In contrast, we find that the dominant
systematic uncertainties for the indirect validation technique
come from the clustering bias evolution of the binned source
galaxy samples and incorrectness in the shape of the photo-z

distribution. In addition, we are unable to perform indirect
clustering validation for tomographic bins with z1 owing to
limited redMaGiC reference data at these redshifts.
The most important photo-z performance metric for cosmic

shear analyses is the bias of the estimated mean of a redshift
distribution in a tomographic bin with respect to the unknown
true mean redshift in that bin (Bonnett et al. 2016). We
characterized the photo-z accuracy from the photo-z bias
distribution, defined as the difference between the average
measured photometric redshift and the average true redshift
distribution, D = á ñ - á ñz z ztrue phot . Since the true redshift
distribution is unknown, we employed the direct and indirect
validation techniques described above to estimate á ñztrue and Δz
in four tomographic bins with 0.2<z<1.3. We find that both
techniques yield D∣ ∣z 0.02 with an uncertainty of compar-
able magnitude when applied to the BPZ estimates for the
primary subsample of the Y1A1 GOLD catalog used for
cosmic shear analyses (Hoyle et al. 2017; Zuntz et al. 2017).
We present several other results from the validation of the

BPZ template code optimized over the redshift range
0.2<z<1.3 for the primary Y1 weak-lensing shear catalog
(Zuntz et al. 2017). In Figure 16, we show the n(z) distribution
for the weak-lensing shear catalog derived from Y1A1 GOLD.
The n(z) distribution is found to be in good agreement with the
n(z) predicted from COSMOS when cosmic variance and other
associated systematic uncertainties are accounted for (Hoyle
et al. 2017). We also show a comparison between the redshift
estimate from a random sampling of the 30-band COSMOS P
(z) (Laigle et al. 2016) and the median photo-z derived from
DES Y1 using BPZ. Structure along the line of sight is visible
in the higher-resolution COSMOS redshifts but is not resolved
by DES. For the full weak-lensing subsample, the normalized
median absolute deviation (NMAD) of the quantity
(zDES− zCOSMOS)/(1 + zCOSMOS) is 0.08–0.09, depending on
the point estimate used to determine the DES BPZ redshift.
When restricted to i�22, the photo-z NMAD decreases to
0.06–0.07. Due to the strict selection requirements of the weak-
lensing subsample, the NMAD for the full Y1A1 GOLD
galaxy sample is slightly larger (~0.12). The photometric
redshift accuracy for forthcoming DES Y1 cosmology analyses
will be documented in more detail in Hoyle et al. (2017),
Cawthon et al. (2017), Davis et al. (2017), and Gatti
et al. (2018).

Figure 15. Density of objects with i<22 passing the high-completeness star (left) and high-purity galaxy (right) MODEST_CLASS selections. The linear color scales
represent the density of catalog objects and are the same for both panels. The density of objects has been corrected for the coverage fraction of each pixel (Section 7.1).
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9. Conclusion

During its first year, DES imaged ~2000 deg2 of the
southern sky in each of the g, r, i, z, and Y photometric filters.
These data have been processed, calibrated, co-added,
cataloged, and characterized to form the DES Y1A1 GOLD
cosmology data sample, which covers ~1800 deg2 with a
depth of three to four tilings per band and a photometric
calibration accuracy of 2%. The photometric calibration
uniformity of the Y1A1 GOLD catalog was validated and
adjusted via an SLR technique, which also corrects for the
effects of interstellar extinction on the calibrated magnitudes of
objects. The development of Y1A1 GOLD was driven by the
goal of producing a maximal sample of Y1 data while
minimizing the impact of systematic features. Several ancillary
maps characterizing the DES survey and its performance were
produced as part of Y1A1 GOLD. In addition, a simple star–
galaxy classifier and several photometric redshift estimates
were also produced as necessary precursors to many DES
science analyses. The Y1A1 GOLD data set is intended to be
used as the nominal starting point for cosmological analyses
with the DES Y1 data.

The next DES co-added data set will consist of exposures
from the first three seasons of DES and will increase both the
survey coverage (~5000 deg2) and depth (five to six tilings per
band). Improvements to the Blanco telescope infrastructure,
data processing algorithms, and photometric calibration are
expected to yield higher-quality data. In addition, many of the
improvements developed for Y1A1 GOLD have been inte-
grated into the core DESDM processing pipeline (e.g.,
Morganson et al. 2018) and into automated tools for science
catalog creation (e.g., A. Fausti Neto et al. 2017, in
preparation). However, we anticipate that future data sets will
still require the construction and validation of a high-quality
data sample to serve as the basis for cosmological analyses. On
the longer term, we expect that a similar procedure for
assembling and validating cosmology data samples will be
necessary for future surveys, such as LSST. We hope that the
production of Y1A1 GOLD will help serve as a road map for
assembling cosmology-ready data samples for future large
photometric surveys.
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Appendix A
Photometric Calibration

In this appendix, we provide more details on the photometric
calibration of Y1A1, including nightly calibration (Appendix A.1),
global calibration (Appendix A.2), and an SLR adjustment
(Appendix A.3). We note that the nightly and global calibration
steps followed on the procedure of Tucker et al. (2007) and were
performed on the single-epoch catalog data before co-addition. In
contrast, the SLR adjustment was performed on the weighted-
average magnitudes of multiple single-epoch catalogs and is
applied directly to the co-added object catalogs. A collection of
transformation equations between DES and several other surveys is
provided in Appendix A.4.

A.1. Nightly Photometric Calibration

The first step in DES Y1 photometric calibration used
observations of standard-star fields to derive a set of calibration
coefficients for each photometric night. A subset of the standard-
star fields listed in Table 7 were observed at different airmasses at
the beginning and end of each DES night or half night (Section 2).
The DES nightly standard-star fields are predominantly located in
the equatorial fields of SDSS Data Release 9 (DR9; Ahn
et al. 2012), with the addition of several fields from the Southern
u′g′r′i′z′ Standard Network (Smith et al. 2017).78 Devoted
observations of these standard-star fields were supplemented by
DES survey observations that overlapped the standard-star fields.
For Y band, we used stars from the equatorial fields of the UKIRT
Infrared Deep Sky Survey Data Release 6 (UKIDSS DR6;
Lawrence et al. 2007) matched against SDSS stars. All nightly
standard stars were transformed to an initial DES AB photometric
system via matching to objects in SDSS and UKIDSS
(Appendix A.4). The spatial distribution of the DES standard-
star fields is shown in Figure 17.
Due to its provenance, primarily from SDSS DR9, we refer to

the set of DES nightly standards as secondary standards. The
fundamental standard for SDSS was the F subdwarf star BD
+17°4708, which was used for calibrating the set of SDSS
primary standards (Smith et al. 2002). These primary standards
were in turn used (indirectly) in the ubercalibration of SDSS
(Padmanabhan et al. 2008). Thus, the DES secondary standards
tie the absolute flux calibration of DES to the SDSS primary
standards, to BD+17°4708, and ultimately to the AB magnitude
system.
Nightly observations of the secondary standards were used

to fit a set of photometric equations. These photometric
equations, which are based on those used by SDSS (Tucker

74 http://healpix.sourceforge.net
75 https://github.com/healpy/healpy
76 https://github.com/esheldon/fitsio
77 https://github.com/esheldon/ngmix
78 http://www-star.fnal.gov
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where λ0 (λ= g, r, i, z, Y) is the calibrated standard-star
magnitude in the DES system, Fλ is the observed PSF flux
(counts s−1), a is the photometric zero-point for the night, b is
the instrumental color term coefficient, -( )g r 0, -( )i z 0, and

-( )z Y 0 are the calibrated standard-star colors, -( )g r fid,
-( )i z fid, and -( )z Y fid are fiducial reference colors (chosen

so that the effects of b are relatively small for a star of typical
color within the DES footprint), k is the first-order extinction
coefficient, and X is the airmass of the observation. The values
for the fiducial colors are - =( )g r 0.53fid , - =( )i z 0.09fid ,
and - =( )z Y 0.05fid .
Separate a and b coefficients were determined for each

functioning science CCD, while a single value of k was
assumed for the full focal plane. The nightly values of a track
the overall throughput of the DECam instrument at the location
of each CCD, and variations in a mostly track the gradual
accumulation of dust on the Blanco primary mirror. The nightly
values of b track variations in the shape of the total filter
response curve at the location of each CCD (including
atmospheric transmission). Under photometric conditions,
the value of k should not vary across the focal plane, and a
single value of k was fit for the full focal plane. Variations in
the nightly values of k track the relative throughput of the
atmosphere at CTIO. The median values of a and b are shown
for each science CCD in Figure 18, and the nightly variations
of a, b, and k are shown in Figure 19. The site-average values
for the a, b, and k coefficients are tabulated in Table 8.
We note that, despite the use of star flats and pupil

corrections, there are still minor variations in the zero-points
across the focal plane in Figure 18. These variations can be
attributed to two main sources: (1) the DES star flat procedure
is subject to small flat/planar gradients across the focal plane,
with the understanding that the photometric calibration
procedure will remove such gradients; and (2) CCD-to-CCD
variations in quantum efficiency have not been fully accounted
for in the Y1A1 image processing, and this is also reflected in
the smaller-scale between-CCD variations in the zero-points.
The DES Y3 processing has largely corrected for variations in
quantum efficiency, while Burke et al. (2017) show that
gradients in the star flats can be successfully removed by the
photometric calibration.
The code used to perform the nightly fits is called the

Photometric Standards Module (PSM).79 We note that PSM
not only fits Equations (6)–(10) but also performs an
automated initial culling of nonphotometric data using the
outputs of RASICAM (Lewis et al. 2010; Reil et al. 2014).
PSM also culls dome-occulted exposures (identified by a
strong gradient in a across the focal plane) and performs
iterative sigma-clipping to achieve a good solution for a night.
For the Y1 data set, we also culled nights with rms fit
residuals >0.025 mag or an atypical (∼2σ–3σ outlier) fit
value for the first-order extinction. The typical relative
calibration scatter from the PSM solution is ~0.02 mag rms.
This scatter includes the contribution from stellar shot noise in
the standard-star observations.

A.2. Global Calibration

In addition to deriving the nightly calibration coefficients for
each photometric night in DES Y1, we would like to calibrate
exposures taken under cloudy conditions and exposures where
the nightly solution failed (e.g., due to contrails). We would
also like to improve on the ~2% rms relative calibration
uncertainty achieved by the PSM solution. To achieve both of

Table 7
DES Nightly Standard-star Fields

Field Name R.A. Decl. Exposure Time (s)

J2000 J2000 g r i z Y

Preferred Fieldsa

SDSS J2140-0000 21:40:00 +00:00:00 15 15 15 15 20
SDSS J2300-0000 23:00:00 +00:00:00 15 15 15 15 20
SDSS J0000-0000 00:00:00 +00:00:00 15 15 15 15 20
SDSS J0100-0000 01:00:00 +00:00:00 15 15 15 15 20
SDSS J0200-0000 02:00:00 +00:00:00 15 15 15 15 20
SDSS J0320-0000 03:20:00 +00:00:00 15 15 15 15 20
SDSS J0843-0000 08:43:00 +00:00:00 15 15 15 15 20
SDSS J0933-0005 09:33:00 −00:05:00 15 15 15 15 20
SDSS J0958-0010 09:58:00 −00:10:00 15 15 15 15 20
SDSS J1048-0000 10:48:00 +00:00:00 15 15 15 15 20
SDSS J1227-0000 12:27:00 +00:00:00 15 15 15 15 20
SDSS J1442-0005 14:42:00 −00:05:00 15 15 15 15 20
C26202/HST 03:32:30 −27:46:05 15 15 15 15 20
MaxVis 06:30:00 −58:45:00 15 15 15 15 20

Supplemental Fieldsb

SAE1-A 01:24:50 −44:33:40 3 3 3 3 5
SAE2-A 04:03:00 −44:41:45 3 3 3 3 5
SAE3-A 06:42:54 −45:05:06 3 3 3 3 5
SAE4-A 09:23:44 −45:21:02 3 3 3 3 5
SAE5-A 12:04:11 −45:24:03 3 3 3 3 5
SAE6-A 14:45:33 −45:15:34 3 3 3 3 5
SAE8-A 20:07:22 −44:37:01 3 3 3 3 5
SAE9-A 22:45:37 −44:22:47 3 3 3 3 5

Notes.
a The preferred fields (with the exception of C26202/HST and MaxVis) have
photometric standard stars covering the entire DECam focal plane. This permits
photometric zero-points to be determined for every CCD using a single
exposure.
b The supplemental fields have photometric standard stars covering a 10′×10′
region and are typically used for expanding the range of airmasses when no
suitable primary field is observable. These particular supplemental fields come
from the Southern ugriz Standard Stars project (Smith et al. 2017).

79 https://github.com/DarkEnergySurvey/PSM
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these goals, we applied a global calibration to simultaneously
calibrate all overlapping CCD images in the Y1 data set. In
addition to calibrating images that lacked a PSM solution, the
global calibration can achieve a relative calibration between
overlapping images at the level of ( )0.003 mag 0.3% rms, even
if the exposures were taken under cloudy conditions.

The global calibration was implemented as a Global
Calibrations Module (GCM).80 The GCM generalizes the
procedure of Glazebrook et al. (1994) by replacing overlapping
image “frames” with arbitrarily shaped overlapping catalog
data sets (these are still conventionally referred to as “images”).
The procedure is summarized briefly as follows.

1. For each filter, consider n data sets for which ¼( )m1, ,
are uncalibrated and + ¼( )m n1, , are calibrated. In
most cases these data sets represent object catalogs from
individual exposures or CCD images. However, the
calibrated data set consists of standard stars spanning the
entire Y1A1 footprint (Figure 17).

2. Compile a list of all unique pairs of observations of a
common star on two data sets.

3. For a given pair of images, i, j, let

D = -( ) ( )m mmedian , 11ij i j
pairs

where mi is the magnitude of a star in image i, mj is the
magnitude of the same star in image j, and the median is
calculated over matched pairs of stars. Note that
Δij=−Δji.

4. Let ZPi be a floating zero-point that can be applied to the
data set from image i to produce calibrated magnitudes.
For images that are already calibrated (i>m), we fix
ZPi=0.

5. Let θij define a function that selects overlapping image
pairs. We define θij=1 if i=j or if i and j overlap;
otherwise, θij=0.

6. To find calibrated zero-points for each image, we
minimize the sum of squares,

å q= D + -( ) ( )S ZP ZP . 12
i j

ij ij i j
,

2

7. We derive a calibrated magnitude for each object detected
on image i (where i<m) by adding ZPi to the raw
instrumental magnitudes.

In Figure 20, we show a simple example of the GCM
algorithm on two disconnected groups of three overlapping
data sets (i.e., images). In each group, one of the overlapping
images has been previously calibrated and serves as the
reference against which the other images in its grouping are
calibrated. To be calibrated, an uncalibrated image needs either
to overlap a calibrated image (e.g., the left group in Figure 20)
or to have an unbroken path of overlapping images to a
calibrated image (e.g., image 3 in the right panel of Figure 20).
In the right panel of Figure 20 we show the matrix equation that
minimizes Equation (12) for this particular set of images
(Glazebrook et al. 1994). Note that, via this matrix equation,
the zero-points for the two calibrated images (images 5 and 6)
have been fixed to a value of zero (1× ZP5= 0 and
1× ZP6= 0), since no offset is applied to these previously
calibrated images.
Following the prescription of Glazebrook et al. (1994), we

estimate the rms magnitude residual for each CCD image, i,
from overlap with other CCD images, j, as

å
å

q

q
=

D + -( )
( )

ZP ZP
rms . 13i

j ij ij i j
2

j ij

The rms distribution over all CCD images is a measure of the
internal (reproducibility) errors on small scales (the scales of
overlapping CCD images) and is a measure of the precision of
the overall GCM solution.
In principle, the GCM method is very precise but carries the

caveat that any small systematic gradients in the flat-fielding of
individual images can cause low-amplitude gradients over large
scales. We used the set of secondary standard stars and a sparse
grid work of tertiary standard stars (Figure 17) as an “anchor”
to keep the GCM fit from drifting owing to any small
systematic gradients in the Y1A1 FINALCUT exposures. We
note that the sparse grid work of tertiary standards in the SPT
region was extracted from stars in photometric exposures,
calibrated by the nightly PSM results. From the full set of
PSM-calibrated exposures in the SPT region, we selected a
sparse grid work of thin (one-degree-wide) “struts” of constant
R.A. and constant decl. This morphology was chosen so that
the tertiaries would anchor the GCM solution on large scales
(>10–15 deg), but on smaller scales the calibration would be
dominated by the GCM solution for overlapping uncalibrated
exposures.

Figure 17. Standard stars used for the photometric calibration of DES Y1. Nightly standard-star fields (Table 7) are marked with green circles, while other secondary
standards from SDSS and Smith et al. (2017) are shown in pink. The grid work of tertiary standards is shown in blue.

80 https://github.com/DarkEnergySurvey/GCM
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The GCM algorithm relies on having at least one calibrated
image or data set to anchor each isolated image group. To
identify isolated groups of exposures, we employed a group-
finding algorithm developed for studies of galaxy clusters and
large-scale structure (Huchra & Geller 1982). For Y1A1
FINALCUT, there were several disconnected image groups—
in particular, the SPT region, the S82 region, the four SN fields
(SN-E was treated as an isolated group even though it overlaps
the SPT area), the COSMOS field, and the VVDS-14h field
(see Figure 2). We therefore ran GCM separately on each of
these eight regions. The S82, COSMOS, and VVDS-14h fields
overlap with the equatorial region of SDSS and were anchored
by the secondary standards (mostly derived from SDSS). SPT

was anchored by the aforementioned grid work of tertiaries,
supplemented with individual fields from DES SV. The SN
fields also used individual standard-star fields from SV for their
calibrators. As with the grid work of tertiary standards, the
individual SV fields had been previously calibrated using
nightly results from the PSM code (Wyatt et al. 2014).
The S82 region and the smaller individual fields (COSMOS,

VVDS-14h, and the SN fields) were each calibrated with a
single pass of the GCM. This run treated the catalog from each
individual CCD image as the unit to be calibrated and yielded
zero-point offsets for each CCD directly. Due to its large area,
the SPT region was calibrated from multiple iterations of the
GCM. The first pass treated the full catalog from each exposure
(59 or 60 functioning science CCDs) as the unit to be
calibrated. This could be done because, due to the star flat
procedure, all the CCDs on a given exposure have very nearly
the same zero-point (at least for exposures taken under
photometric conditions). In this pass, small (2%–3%) variations
in the relative zero-point across the focal plane were
temporarily removed using the median a coefficients for each
CCD (Figure 18). In this manner, each exposure was
temporarily flat-fielded across the focal plane to reduce

Figure 18. Median fit values from DES Y1 for the a and b coefficients as a function of position on the DECam focal plane. The color scale represents the offset in the
median fit value for each CCD with respect to the median for the focal plane as listed in the bottom left of each panel. The spatial variations in photometric zero-points
across the DECam focal plane are typically less than 0.02–0.03 mag for Y1A1.

Figure 19. Nightly fit values for the a coefficient of CCD35 (top), the b
coefficient of CCD35 (middle), and the k coefficient of the DECam focal plane
(bottom) for nights in DES Y1. For the a and b coefficients, the trends in
CCD35 are found to be representative of the trends in the other CCDs.

Table 8
DES Y1 Average PSM Fit Values

Coeff. Band Median Mean σ Mean Error Number

a g −25.396 −25.389 0.044 0.001 3717
r −25.501 −25.485 0.079 0.001 4072
i −25.386 −25.380 0.059 0.001 3806
z −25.056 −25.056 0.049 0.001 3080
Y −23.976 −23.979 0.051 0.001 3627

b g −0.004 −0.004 0.017 <0.001 3717
r 0.024 0.024 0.014 <0.001 4072
i 0.012 0.012 0.057 0.001 3806
z 0.020 0.020 0.071 0.001 3080
Y 0.187 0.187 0.123 0.002 3627

k g 0.191 0.196 0.027 0.003 63
r 0.099 0.102 0.021 0.003 69
i 0.065 0.068 0.024 0.003 64
z 0.083 0.081 0.023 0.003 52
Y 0.070 0.075 0.031 0.004 61

Note. Statistics were calculated for nights in Y1 with a good PSM fit. The a
and b values were calculated individually for each CCD, while the k values
were calculated for the full focal plane.
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exposure-scale photometric gradients. For the first pass, only
exposures that were classified as having been observed under
photometric conditions—as determined by RASICAM—were
allowed in the GCM fit. The first pass yielded a set of zero-
point offsets—one per exposure—for all the (apparently)
photometric exposures in the SPT region. The second run of
GCM was essentially identical to the first, but it removed
outlier exposures—ones with particularly “noisy” or discrepant
zero-points. For both the first and second runs, the sparse grid
work of tertiaries and the handful of individual calibrated SV
fields (Figure 17) were used as the calibrated data set for the
Glazebrook et al. (1994) algorithm. Again, this yielded a set of
zero-point offsets—one per exposure—for all the photometric
exposures in the SPT region. These individual CCD zero-point
offsets were applied to all the CCD images in the set of
photometric exposures included in the second-pass run of
GCM, creating a set of “quaternary” standard stars covering
nearly all of the SPT region. In the third and final run of the
GCM for the SPT region, the catalog from each individual
CCD image was treated—as in the case of GCM runs for S82,
COSMOS, VVDS-14h, and the SN fields—as the unit to be
calibrated. Furthermore, all CCD images from the SPT region
—those from photometric exposures and those from nonphoto-
metric exposures—were included in the GCM fit. For this third
pass of the GCM, the newly created quaternary standard stars
were used as the calibrated data set. This third pass of the GCM
for the SPT region yielded a set of zero-point offsets for each
CCD image, which was used to calibrate the Y1A1 GOLD
single-epoch CCD images in advance of the image co-addition
process.

A.3. Photometric Calibration Adjustment

To correct for residual color nonuniformity in the photo-
metric calibration and to account for Galactic reddening (i.e.,
Figure 21), the GCM calibration was adjusted at the catalog
level using SLR (Section 4.3). A reference stellar locus was
empirically derived from the globally calibrated DES Y1A1
stellar objects in the region of the Y1A1 footprint with the
smallest -( )E B V value from Schlegel et al. (1998).
Corrections were computed for the WAVGCALIB_MAG_PSF
magnitudes described in Section 6. Our stellar selection was
based on the weighted average of the spread_model
quantity for the matched objects (|WAVG_SPREAD_MO-
DEL_R|<0.003). We selected co-add objects with S/N>
10 in i band and S/N>5 in at least two other bands (grzY).
We segmented the sky into equal-area pixels using the
HEALPix scheme(Górski et al. 2005), starting with a
relatively fine grid, nside = 512 (~0.01 deg2). If there were
fewer than 200 stars in a pixel, then we appended neighboring
pixels using the get_all_neighbors function from
healpy, enlarging the pixel chunks until they contained at
least 200 stars. To reduce computation time in high-density
regions near the LMC, when there were more than 2000 stars
per pixel we randomly down-sampled. Approximately 97% of
the wide-area survey footprint was fit in chunks of 9 pixels
containing a median of ∼400 stars and yielding an effective
resolution of ∼0.1 deg2. We applied a modified version of the
BigMACS SLR code (Kelly et al. 2014)81 to calibrate each star
from the reference exposure with respect to the empirical stellar
locus. The absolute calibration was set against the i-band

Figure 20. Schematic of the GCM algorithm based on Figure1 of Glazebrook et al. (1994). Left: the stars in images 5 and 6 have been previously calibrated, while the
stars in the other images are uncalibrated. The algorithm minimizes the zero-point offsets from all the overlapping images. Images that have a connected path via
overlapping images to a reference image can be calibrated to that reference image. Right: corresponding matrix equation for this set of images.

Figure 21. Interstellar extinction, -( )E B V , over the Y1A1 GOLD footprint taken from Schlegel et al. (1998). The DES footprint was explicitly chosen to occupy a
low-extinction region at high Galactic latitude.

81 https://code.google.com/p/big-macs-calibrate/
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magnitude derived from the GCM solution, which was
dereddened using the SFD map with a reddening law of

= ´ -( )A E B V1.947I SFD. This extinction correction was
derived following the prescription of Cardelli et al. (1989) with
RV=3.1, but updated for the DES i-band throughput using
optical–near-IR coefficients from O’Donnell (1994) assuming a
source spectrum that is constant in spectral flux density per unit
wavelength, fλ ( - - -Åerg cm s2 1 1). The flat SED was chosen to
represent the wide range of stellar SEDs from the Pickles
ATLAS (Pickles 1998) and SEDs of galaxies over the range of
redshifts probed by DES (Arnouts & Ilbert 2011).

Variations in the average metallicity of the stellar popula-
tions used for the SLR will introduce systematic shifts that are
not due to photometric variation or Galactic reddening (e.g.,
High et al. 2009). For DES Y1A1, these shifts are largest for
the g band, where they can have a 1%–2% effect on the
calibration. A larger effect can be found in the vicinity of the
LMC, which we avoid for extragalactic science. The effect of
metallicity variations can be much worse at lower Galactic
latitudes and in bluer filters (i.e., u band).
The final product was an SLR correction map at a resolution

of nside = 512 that we implemented with a bi-linear
interpolation to obtain magnitude and flux corrections for the
full Y1A1 GOLD catalog. The resulting SLR-adjusted
magnitudes used in the Y1A1 GOLD catalog are thus already
corrected for Galactic reddening.

A.4. Photometric Transformation Equations

We have derived transformation equations between various
surveys and the DES system. We document these transforma-
tion equations here for reference.

We define a transformation from SDSS/UKIDSS to the DES
system to place the nightly standard-star exposures on an initial
DES AB photometric system (Section 4.1):

= - ´ - +( ) ( )g g g r0.104 0.01, 14des sdss sdss

= - ´ - +( ) ( )r r g r0.102 0.02, 15des sdss sdss

= - ´ - +( ) ( )i i i z0.256 0.02, 16des sdss sdss

= - ´ - +( ) ( )z z i z0.086 0.01, 17des sdss sdss

= + ´ - +( ) ( )Y Y z Y0.238 0.634. 18des ukidss sdss ukidss

These transformation equations were derived in a hybrid
manner: the color coefficients were determined by matching
data from the DES SV data set with data from SDSS DR9 (or,
in the case of the Y band, with a combination of UKIDSS DR6
Y band and SDSS DR9) and fitting the result. The zero-point
for each relation was determined from synthetic AB photo-
metry. We applied the DES, SDSS, and UKIDSS filter curves
to the Pickles (1998) stellar library and measured the offset
between the two synthetic magnitudes at zero color for each
filter band. We note that the large zero-point offset for the
Y-band transformation is due to the fact that the UKIDSS data
are in the Vega magnitude system, while the Ydes is set to the
AB magnitude system. These transformation equations are
valid for stars with - <( )g r 1.2sdss . For an individual object,
the transformation from SDSS/UKIDSS to DES will depend
on interstellar extinction. The DES footprint occupies a region
of low extinction, and we estimate that the median correction
due to reddening in the g band is 0.8 mmag (90% of Y1A1
GOLD has a g-band correction of <2 mmag). Median

extinction corrections for the other bands are a factor of 4
lower than g band.
We validate the relative calibration accuracy of Y1A1

GOLD by comparing the calibrated magnitudes of stars in the
Y1A1 GOLD catalog against those derived from a combination
of APASS (Henden & Munari 2014) and 2MASS (Skrutskie
et al. 2006). We selected stellar objects from the Y1A1 GOLD
catalog using MODEST_CLASS (Section 8.1) and perform a 2″
match to the APASS and 2MASS catalogs. We then fit a set of
transformation equations to map from gapass, rapass, and J2mass to
a predicted magnitude in each of the DES filters:

= - ´ - -( ) ( )g g g r0.0642 0.0239, 19des apass apass

= - ´ - -( ) ( )r r r i0.1264 0.0098, 20des apass apass

= - ´ - - -( )
( )

i r r J0.4145 0.81 0.391,

21
des apass apass 2mass

= + + ´ - -
-
( ) ( )

( )

z J r J0.81 0.3866 0.81

0.0414,
22

des 2mass apass 2mass

= + + ´ - -
-
( ) ( )

( )

Y J r J0.81 0.2938 0.81

0.0443.
23

des 2mass apass 2mass

Equations (21)–(23) are derived from a global fit of the
Y1A1 GOLD data set and are valid for stars for which

- <r J 1.81apass 2mass . We find a cleaner and tighter relation
using the hybrid APASS/2MASS -( )r Japass 2mass color rather
than a purely APASS -( )r iapass apass color for these transfor-
mation equations. These transformation equations explicitly
remove any absolute calibration offset between the two data
sets and can be used to test for spatial nonuniformity between
the GCM calibration and these external catalogs (Figure 23).
We note that the residual structure seen in the S82 region of
Figure 23 does not appear in comparisons with SDSS DR10 or
DES Y3, suggesting that this structure is a feature introduced
by APASS.
To validate the completeness and contamination of the

Y1A1 GOLD catalog, we perform a comparison with the
CFHTLenS data in the W4 field. In this case, we are interested
in the transformed magnitude of all objects, so we perform no
stellar selection. We use matched objects to derive a set of
transformation equations from the CFHTLenS g′, r′, i′, z′ filters
to the DES g, r, i, z system:

= + - +( ) ( )g g g r0.062 0.058, 24des CFHT CFHT CFHT

= - - +( ) ( )r r g r0.078 0.021, 25des CFHT CFHT CFHT

= - - +( ) ( )i i i z0.179 0.062, 26des CFHT CFHT CFHT

= - - +( ) ( )z z i z0.139 0.053. 27des CFHT CFHT CFHT

We find that these equations should be valid for objects with
g−r<1.2 and i−z<1.0.

A.5. Calibration Validation

In this section we show ancillary plots of the performance
and validation of the Y1A1 photometric calibration
(Figures 22–25).
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Figure 22. Internal rms errors in the photometric zero-point reproducibility per CCD for DES Y1A1. The zero-point rms is calculated by comparing the calibrated
magnitudes of stars in overlapping CCDs. Note that these data include observations taken in both clear and cloudy conditions. Typical internal reproducibility errors
are ~3 mmag (~0.3%). The color scale in the left panels represents the rms internal calibration uncertainty in mmag.
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Figure 23. Comparison of stellar magnitudes from the DES Y1A1 GCM and those estimated from APASS/2MASS transformed into the DES filter system
(Equations (19)–(23)). The sky plots (left) show the median magnitude offset for stars binned into ~0.2 deg2 HEALPix pixels. The GCM calibrated magnitudes are
consistent with the transformed values from APASS/2MASS with s ~ 20 mmag68 (calculated between the 16th and 84th percentiles). Note that the GCM g-band
calibration disagrees with APASS/2MASS by ~4% in the eastern portion of the SPT region ( <-R.A. 20), motivating the SLR adjustment described in Section 4.3.
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Figure 24. Adjustment to the GCM photometric zero-points derived from the SLR fit, after removing the contribution from interstellar extinction using the SFD maps
and reddening from O’Donnell (1994). The width of these distributions represents adjustments to the calibration uniformity and differences between the interstellar
extinction derived from the stellar locus and interstellar dust maps. The SLR adjustment is generally ~10 mmag (rms) over most of the area. A larger adjustment is
made in the g band, which reflects the larger impact of reddening in the blue filters and a region of nonuniformity in the west of the footprint. There is no adjustment to
the GCM i band because the SLR fit is tied to the dereddened magnitudes of stars in that band.
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Appendix B
COADD Source Detection

The Y1A1 COADD source detection was performed on a
normalized “detection image” formed from a nonlinear
combination of the r, i, and z co-added images. The original
SWarp combination formula for computing the value of a pixel
of the detection image is (Bertin 2010)

å
c = ( )

w f

n
, 28c n c c

2

where fc is the background-subtracted pixel value, wc is the
weight of the pixel in channel c, and n is the number of valid
inputs. Compared to the standard c2 combination proposed by
Szalay et al. (1999), χ leads to a less skewed noise distribution
(if one assumes that input noise follows a Gaussian distribu-
tion), while maintaining identical detection capabilities. How-
ever, both estimators have a bias that depends on n, which leads
to visible seams between regions with a different number of
input images. This motivated the implementation of two new
normalized image combination schemes in SWarp, with a
variable offset applied to the original (still assuming that the

inputs are normally and independently distributed). CHI-
MEAN is recentered on the mean (e.g., Evans et al. 2000):

CHI MEAN
å m

m
=

-

-
‐ ( )

w f

n
, 29

c n c c
2

2
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m =
G +

G
(( ) )

( )
( )n

n
2

1 2

2
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while CHI-MODE is recentered on the mode of the distribution:

CHI MODE
å

m
=

- -

-
‐ ( )

w f n

n

1
. 31

c n c c
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The left panel of Figure 26 shows a comparison of the
distributions obtained from the original χ, CHI-MODE, and
CHI-MEAN estimators for Gaussian input noise. The right
panel of Figure 26 shows that the CHI-MEAN estimator
generates the most seamless stacking results, and it was used to
produce the Y1A1 COADD detection images.

Figure 25. Color uniformity of the SLR adjustment applied to the GCM zero-points. The adjustment was largest for the (g − r) color in the eastern portion of the SPT
region. The color nonuniformity in this region was one of the specific motivations for the SLR calibration adjustment. After the SLR adjustment was applied, the color
of stars was found to be uniform at the 1%–2% level across the footprint.
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Appendix C
Catalog Depth Maps

In this appendix we collect a set of figures documenting the
10σ limiting magnitude of the Y1A1 GOLD catalog as

described in Section 7.1. We include depth maps both for the
MAG_AUTO values derived from the co-added images
(Figure 27) and for the CM_MAG values derived from multi-
epoch, multiobject fitting (Figure 28).

Figure 26. Left: normalized distribution of the value x of a detection image pixel for the original χ (OLD_CHI, top), CHI-MODE (middle), and CHI-MEAN (bottom)
estimators when the inputs to the co-add are normally and independently distributed. n is the number of input images. The means of the distributions are shown as
vertical lines. Right: gamma-corrected close-up of a χ (OLD_CHI, top), CHI-MODE (middle), and CHI-MEAN (bottom) detection image computed from a set of eight
input images with zero-mean Gaussian white noise. The number of inputs decreases by steps of 64 pixels from left (eight inputs) to right (one input). CHI-MEAN
detection images are virtually seamless, even at the transition between one and two input images.
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Figure 27. Sky maps and normalized histograms of the 10σ limiting magnitude for galaxies fit with MAG_AUTO. The mode of the limiting magnitude distribution is
shown in the right panel of each row. The derivation of the limiting magnitude is described in more detail in Section 7.1.
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