

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file: Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://www.sciencedirect.com/science/article/pii/S037026931730998X

DOI: 10.1016/j.physletb.2017.12.021

Direitos autorais / Publisher's copyright statement: ©2018 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br

Physics Letters B 777 (2018) 151-162

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

ALICE Collaboration*

ARTICLE INFO

Article history: Received 27 September 2017 Received in revised form 21 November 2017 Accepted 8 December 2017 Available online 12 December 2017 Editor: L. Rolandi

ABSTRACT

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The two-particle correlator $\langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$, calculated for different combinations of charges α and β , is almost independent of v_2 (for a given centrality), while the three-particle correlator $\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_2) \rangle$ scales almost linearly both with the event ν_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Parity symmetry is conserved in electromagnetism and is maximally violated in weak interactions. In strong interactions, global parity violation is not observed even though it is allowed by quantum chromodynamics. Local parity violation in strong interactions might occur in microscopic domains under conditions of finite temperature [1-4] due to the existence of the topologically non-trivial configurations of the gluonic field, instantons and sphalerons. The interactions between guarks and gluonic fields with non-zero topological charge [5] change the quark chirality. A local imbalance of chirality, coupled with the strong magnetic field produced in heavy-ion collisions ($B \sim 10^{15}$ T) [6–8], would lead to charge separation along the direction of the magnetic field, which is on average perpendicular to the reaction plane (the plane of symmetry defined by the impact parameter vector and the beam direction), a phenomenon called Chiral Magnetic Effect (CME) [9–12]. Since the sign of the topological charge is equally probable to be positive or negative, the charge separation averaged over many events is zero. This makes the observation of the CME experimentally difficult and possible only via correlation techniques.

Azimuthal anisotropies in particle production relative to the reaction plane, often referred to as anisotropic flow, are an important observable to study the system created in heavy-ion collisions [13, 14]. Anisotropic flow arises from the asymmetry in the initial geometry of the collision. Its magnitude is quantified via the coefficients v_n in a Fourier decomposition of the charged particle azimuthal distribution [15,16]. Local parity violation would result in an additional sine term [17]

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2\nu_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2\nu_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + ...,$$
(1)

where $\Delta \varphi_{\alpha} = \varphi_{\alpha} - \Psi_{\text{RP}}$, φ_{α} is the azimuthal angle of the particle of charge α (+, -) and $\Psi_{\rm RP}$ is the reaction-plane angle. The first $(v_{1,\alpha})$ and the second $(v_{2,\alpha})$ coefficients are called directed and elliptic flow, respectively. The $a_{1,\alpha}$ coefficient quantifies the effects from local parity violation. Since the average $\langle a_{1,lpha} \rangle = 0$ over many events, one can only measure $\langle a_{1,\alpha}^2 \rangle$ or $\langle a_{1,+} a_{1,-} \rangle$. The chargedependent two-particle correlator

(2)

 $= \langle \cos(\Delta \varphi_{\alpha}) \cos(\Delta \varphi_{\beta}) \rangle + \langle \sin(\Delta \varphi_{\alpha}) \sin(\Delta \varphi_{\beta}) \rangle$

https://doi.org/10.1016/j.physletb.2017.12.021 0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

...

 $\delta_{\alpha\beta} \equiv \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$

is not convenient for such a study, because along with the signal $\langle a_{1,\alpha} a_{1,\beta} \rangle$ (β denotes the charge) there is a much stronger contribution from correlations unrelated to the azimuthal asymmetry in the initial geometry ("non-flow"). These correlations largely come from the inter-jet correlations and resonance decays. To increase the CME contribution it was proposed to use the following correlator [17]

$$\gamma_{\alpha\beta} \equiv \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{\text{RP}}) \rangle$$
$$= \langle \cos(\Delta\varphi_{\alpha})\cos(\Delta\varphi_{\beta}) \rangle - \langle \sin(\Delta\varphi_{\alpha})\sin(\Delta\varphi_{\beta}) \rangle$$
(3)

that measures the difference between the correlation projected onto the reaction plane and perpendicular to it. In practice, the reaction-plane angle is estimated by constructing the event plane angle Ψ_2 using azimuthal particle distributions, which is why this correlator is often described as a three-particle correlator. This correlator suppresses background contributions at the level of v_2 , the difference between the particle production in-plane and out-ofplane. Examples of such background sources are the local charge conservation (LCC) coupled with elliptic flow [18,19], momentum conservation [19–21], and directed-flow fluctuations [22]. The most significant background source for CME measurements is the LCC.

The measurements of charge-dependent azimuthal correlations performed at the Relativistic Heavy Ion Collider (RHIC) [23-26] and the Large Hadron Collider (LHC) [27,28] are in qualitative agreement with the expectations for the CME. However, the interpretation of these experimental results is complicated due to possible background contributions. The Event Shape Engineering (ESE) technique was proposed to disentangle background contributions from the potential CME signal [29]. This method makes it possible to select events with eccentricity values significantly larger or smaller than the average in a given centrality class [30,31] since v_2 scales approximately linearly with eccentricity [32]. Centrality estimates the degree of overlap between the two colliding nuclei, with low percentage values corresponding to head-on collisions. The CME contribution is expected to mainly scale with the magnetic field strength and to not have a strong dependence on the eccentricity [33], while the background varies significantly. Therefore ESE provides a unique tool to separate the CME signal from the background for the three-particle correlator.

The CMS Collaboration has recently reported the measurement of the three-particle correlator $\gamma_{\alpha\beta}$ in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [34], where the direction of the magnetic field is expected to be uncorrelated to the reaction plane [35]. The magnitude of the correlator in p–Pb and Pb–Pb collisions is comparable for similar final-state charged-particle multiplicities. This measurement indicates that the contribution of the CME to this observable in this multiplicity range is small.

In this paper we report the measurements of the two-particle correlator $\delta_{\alpha\beta}$, the three-particle correlator $\gamma_{\alpha\beta}$, and the elliptic flow v_2 of unidentified charged particles. These measurements are performed for shape selected and unbiased events in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. An upper limit on the CME contribution is deduced from comparisons of the observed dependence of the correlations on the event v_2 to that estimated using Monte Carlo (MC) simulations of the magnetic field of spectators with different initial conditions. While this paper was in preparation, a paper employing a similar approach to estimate the fraction of the CME signal in the three-particle correlator was submitted by the CMS Collaboration [36].

The data sample recorded by ALICE during the 2010 LHC Pb–Pb run at $\sqrt{s_{\text{NN}}} = 2.76$ TeV is used for this analysis. General information on the ALICE detector and its performance can be found in [37,38]. The Time Projection Chamber (TPC) [37,39]

and Inner Tracking System (ITS) [37,40] are used to reconstruct charged-particle tracks and measure their momenta with a trackmomentum resolution better than 2% for the transverse momentum interval $0.2 < p_T < 5.0 \text{ GeV}/c$ [38]. The two innermost layers of the ITS, the Silicon Pixel Detector (SPD), are employed for triggering and event selection. Two scintillator arrays (V0) [37,41], which cover the pseudorapidity ranges $-3.7 < \eta < -1.7$ (VOC) and $2.8 < \eta < 5.1$ (VOA), are used for triggering, event selection, and the determination of centrality [42] and Ψ_2 . The trigger conditions and the event selection criteria are described in [38]. An offline event selection is applied to remove beam induced background and pileup events. Approximately $9.8 \cdot 10^6$ minimum-bias Pb–Pb events with a reconstructed primary vertex within ± 10 cm from the nominal interaction point in the beam direction belonging to the 0–60% centrality interval are used for this analysis.

Charged particles reconstructed using the combined information from the ITS and TPC in $|\eta| < 0.8$ and $0.2 < p_{\rm T} < 5.0$ GeV/c are selected with full azimuthal coverage. Additional quality cuts are applied to reduce the contamination from secondary charged particles (i.e. particles originating from weak decays, conversions and secondary hadronic interactions in the detector material) and fake tracks (with random associations of space points). Only tracks with at least 70 space points in the TPC (out of a maximum of 159) with an average χ^2 per degree-of-freedom for the track fit lower than 2, a distance of closest approach (DCA) to the reconstructed event vertex smaller than 2.4 cm in the transverse plane (xy) and 3.2 cm in the longitudinal direction (z) are accepted. The charged particle track reconstruction efficiency was estimated from HIJING simulations [43,44] combined with a GEANT3 [45] detector model, and found to be independent of the collision centrality. The reconstruction efficiency of primary particles defined in [46], which may bias the determination of the $p_{\rm T}$ averaged charge-dependent correlations and flow, increases from 70% at $p_{\rm T} = 0.2 \ {\rm GeV}/c$ to 85% at $p_{\rm T} \sim 1.5$ GeV/c where it has a maximum. It then gradually decreases and is flat at 80% for $p_T > 3.0 \text{ GeV}/c$. The systematic uncertainty of the efficiency is about 5%.

The event shape selection is performed as in [30] based on the magnitude of the second-order reduced flow vector, q_2 [47], defined as

$$q_2 = \frac{|\mathbf{Q}_2|}{\sqrt{M}},\tag{4}$$

where $|\mathbf{Q}_2| = \sqrt{Q_{2,x}^2 + Q_{2,y}^2}$ is the magnitude of the second order harmonic flow vector and *M* is the multiplicity. The vector \mathbf{Q}_2 is calculated from the azimuthal distribution of the energy deposition measured in the VOC. Its *x* and *y* components and the multiplicity are given by

$$Q_{2,x} = \sum_{i} w_i \cos(2\varphi_i), \ Q_{2,y} = \sum_{i} w_i \sin(2\varphi_i), \ M = \sum_{i} w_i,$$
(5)

where the sum runs over all channels *i* of the VOC detector (i = 1 - 32), φ_i is the azimuthal angle of channel *i* and w_i is the amplitude measured in channel *i*. The large gap in pseudorapidity $(|\Delta \eta| > 0.9)$ between the charged particles in the TPC used to determine v_2 , $\delta_{\alpha\beta}$ and $\gamma_{\alpha\beta}$ and those in the VOC suppresses non-flow effects. Ten event-shape classes with the lowest (highest) q_2 value corresponding to the 0–10% (90–100%) range are investigated for each centrality interval.

The flow coefficient v_2 is measured using the event plane method [16]. The orientation of the event plane Ψ_2 is estimated from the azimuthal distribution of the energy deposition measured by the VOA detector. The event plane resolution is calculated from correlations between the event planes determined in the TPC and

 Table 1

 Summary of absolute systematic uncertainties. The uncertainties depend on centrality and shape selection, whose minimum and maximum values are listed here.

	Opposite charge	Same charge
δ _{αβ} γαβ	$\begin{array}{c} (3.4-25)\times 10^{-5} \\ (2.6-34)\times 10^{-6} \end{array}$	$\begin{array}{c} (3.1-10)\times 10^{-5} \\ (4.1-74)\times 10^{-6} \end{array}$
v ₂	$(1.2 - 4.7) \times 10^{-3}$	

Fig. 1. (Colour online.) Unidentified charged particle v_2 for shape selected and unbiased events as a function of collision centrality. The event selection is based on q_2 determined in the VOC with the lowest (highest) value corresponding to 0–10% (90–100%) q_2 . Points are slightly shifted along the horizontal axis for better visibility. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

the two V0 detectors separately [16]. The non-flow contributions to the v_2 coefficient and charge-dependent azimuthal correlations are greatly suppressed by the large rapidity separation between the TPC and the V0A ($|\Delta \eta| > 2.0$).

The absolute systematic uncertainties are evaluated from the variation of the results with different selection criteria on the reconstructed collision vertex, different magnetic field polarities, as well as by estimating the centrality from multiplicities measured by the TPC or the SPD rather than the V0 detector. Changes of the results due to variations of the track-selection criteria (e.g. changing the DCA xy and z ranges, number of the TPC space points, using tracks reconstructed by the TPC only) are considered as part of the systematic uncertainties. The effect of reconstruction efficiency on the measurements is checked by randomly rejecting tracks to ensure a flat acceptance in p_{T} . The detector response is studied using HIJING and AMPT [48] simulations, where the v_2 coefficients and the charge-dependent azimuthal correlations obtained directly from the models are compared with those from reconstructed tracks. The largest contribution to the systematic uncertainties is given by the detector response. The checks related to the reconstruction efficiency, magnetic field polarity and trackselection criteria also yield significant deviations from the nominal values for v_2 , $\gamma_{\alpha\beta}$ and $\delta_{\alpha\beta}$, respectively. The contributions from all sources are added in quadrature as an estimate of the total systematic uncertainty. The resulting systematic uncertainties are summarized in Table 1.

Fig. 1 presents the unidentified charged particle v_2 averaged over $0.2 < p_T < 5.0 \text{ GeV/}c$ for shape selected and unbiased samples as a function of collision centrality. The measured v_2 for the shape selected events differs from the average by up to 25%, which demonstrates that events with the desired initial spatial anisotropy can be experimentally selected. Sensitivity of the event shape selection deteriorates for peripheral collisions (already visible for the

Fig. 2. (Colour online.) Top: Centrality dependence of $\gamma_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events. Bottom: Centrality dependence of $\delta_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events. The event selection is based on q_2 determined in the VOC with the lowest (highest) value corresponding to 0–10% (90–100%) q_2 . Points are slightly shifted along the horizontal axis for better visibility in both panels. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

50–60% centrality class) due to the low multiplicity and for central collisions due to the reduced magnitude of flow [30].

The centrality dependence of $\gamma_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events is shown in the top panel of Fig. 2. The same charge results denote the average between pairs of particles with only positive and only negative charges since the two combinations are found to be consistent within statistical uncertainties. The correlation of pairs with the same charge is stronger than the correlation for pairs of opposite charge for both shape selected and unbiased events. The ordering of the correlations of pairs with same and opposite charge indicates a charge separation with respect to the reaction plane. The magnitude of the same and opposite charge pair correlations depends weakly on the event-shape selection (q_2 , i.e. v_2) in a given centrality bin.

The bottom panel of Fig. 2 shows the centrality dependence of $\delta_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased samples. As reported in [27], the magnitude of the correlation for the same charge pairs is smaller than for the opposite charge combinations. This is in contrast to the CME expectation, indicating that background dominates the correlations. The same and opposite charge pair correlations are insensitive to the event-shape selection in a given centrality bin.

The difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ can be used to study the charge separation effect. This difference is presented as a function of v_2 for various centrality classes in the top panel of Fig. 3. The difference is positive

Fig. 3. (Colour online.) Top: Difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ as a function of v_2 for shape selected events together with a linear fit (dashed lines) for various centrality classes. Bottom: Difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ multiplied by the charged-particle density [49] as a function of v_2 for shape selected events for various centrality classes. The event selection is based on q_2 determined in the VOC with the lowest (highest) value corresponding to 0–10% (90–100%) q_2 . Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

for all centralities and its magnitude decreases for more central collisions and with decreasing v_2 (in a given centrality bin). At least two effects could be responsible for the centrality dependence: the reduction of the magnetic field with decreasing centrality and the dilution of the correlation due to the increase in the number of particles [24] in more central collisions. The difference between opposite and same charge pair correlations multiplied by the charged-particle density in a given centrality bin, $dN_{ch}/d\eta$ (taken from [49]), to compensate for the dilution effect, is presented as a function of v_2 in the bottom panel of Fig. 3. All the data points fall approximately onto the same line. This is gualitatively consistent with expectations from LCC where an increase in v_2 , which modulates the correlation between balancing charges with respect to the reaction plane [50], results in a strong effect. Therefore, the observed dependence on v_2 points to a large background contribution to $\gamma_{\alpha\beta}$.

The expected dependence of the CME signal on v_2 was evaluated with the help of a Monte Carlo Glauber [51] calculation including a magnetic field. In this simulation, the centrality classes are determined from the multiplicity of charged particles in the acceptance of the V0 detector following the method presented in [42]. The multiplicity is generated according to a negative binomial distribution with parameters taken from [42] based on the number of participant nucleons and binary collisions. The elliptic flow is assumed to be proportional to the eccentricity of the participant nucleons and approximately reproduces the measured

Fig. 4. (Colour online.) The expected dependence of the CME signal on v_2 for various centrality classes from a MC-Glauber simulation [51] (see text for details). No event shape selection is performed in the model, and therefore a large range in v_2 is covered. The solid lines depict linear fits based on the v_2 variation observed within each centrality interval.

 $p_{\rm T}$ -integrated v_2 values [52]. The magnetic field is evaluated at the geometrical centre of the overlap region from the number of spectator nucleons following Eq. (A.6) from [11] with the proper time $\tau = 0.1$ fm/*c*. The magnetic field is calculated in 1% centrality classes and averaged into the centrality intervals used for data analysis. It is assumed that the CME signal is proportional to $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle$, where |B| and Ψ_B are the magnitude and direction of the magnetic field, respectively. Fig. 4 presents the expected dependence of the CME signal on v_2 for various centrality classes. Similar results are found using MC-KLN CGC [53,54] and EKRT [55] initial conditions. The MC-KLN CGC simulation was performed using version 32 of the Monte Carlo $k_{\rm T}$ -factorization code (*mckt*) available at [56], while the TRENTO model [57] was employed for EKRT initial conditions.

To disentangle the potential CME signal from background, the dependence on v_2 of the difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ and the CME signal expectations are fitted with a linear function (see lines in Figs. 3 (top panel) and 4, respectively):

$$F_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle) / \langle v_2 \rangle),$$
(6)

where p_0 accounts for the overall scale, which cannot be fixed in the MC calculations, and p_1 reflects the slope normalised such that in a pure background scenario, where the correlator is directly proportional to v_2 , it is equal to unity. The presence of a significant CME contribution, on the other hand, would result in non-zero intercepts at $v_2 = 0$ of the linear functions shown in Fig. 3. The ranges used in these fits are based on the v_2 variation observed in data and the corresponding MC interval within each centrality range. The centrality dependence of p_1 from fits to data and to the signal expectations based on MC-Glauber, MC-KLN CGC and EKRT models is reported in Fig. 5. The observed p_1 from data is a superposition of a possible CME signal and background. Assuming a pure background case, p_1 from data and MC models can be related according to

$$f_{\rm CME} \times p_{1,\rm MC} + (1 - f_{\rm CME}) \times 1 = p_{1,\rm data},$$
 (7)

where $f_{\rm CME}$ denotes the CME fraction to the charge dependence of $\gamma_{\alpha\beta}$ and is given by

$$f_{\text{CME}} = \frac{(\gamma_{\text{opp}} - \gamma_{\text{same}})^{\text{CME}}}{(\gamma_{\text{opp}} - \gamma_{\text{same}})^{\text{CME}} + (\gamma_{\text{opp}} - \gamma_{\text{same}})^{\text{Bkg}}}.$$
(8)

Fig. 5. (Colour online.) Centrality dependence of the p_1 parameter from a linear fit to the difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ and from linear fits to the CME signal expectations from MC-Glauber [51], MC-KLN CGC [53,54] and EKRT [55] models (see text for details). Points from MC simulations are slightly shifted along the horizontal axis for better visibility. Only statistical uncertainties are shown.

Fig. 6. (Colour online.) Centrality dependence of the CME fraction extracted from the slope parameter of fits to data and MC-Glauber [51], MC-KLN CGC [53,54] and EKRT [55] models, respectively (see text for details). The dashed lines indicate the physical parameter space of the CME fraction. Points are slightly shifted along the horizontal axis for better visibility. Only statistical uncertainties are shown.

Fig. 6 presents f_{CME} for the three models used in this study. The CME fraction cannot be precisely extracted for central (0–10%) and peripheral (50–60%) collisions due to the large statistical uncertainties on p_1 extracted from data. The negative values for the CME fraction obtained for the 40–50% centrality range (deviating from zero by one σ), if confirmed, would indicate that our expectations for the background contribution to be linearly proportional to v_2 are not accurate. Combining the points from 10–50% neglecting a possible centrality dependence gives $f_{CME} = 0.10 \pm 0.13$, $f_{CME} = 0.08 \pm 0.10$ and $f_{CME} = 0.08 \pm 0.11$ for the MC-Glauber, MC-KLN CGC and EKRT models, respectively. These results are consistent with zero CME fraction and correspond to upper limits on f_{CME} of 33%, 26% and 29%, respectively, at 95% confidence level for the 10–50% centrality interval. The CME fraction agrees with the observations in [36] where the centrality intervals overlap.

In summary, the Event Shape Engineering technique has been applied to measure the dependence on v_2 of the charge-dependent two- and three-particle correlators $\delta_{\alpha\beta}$ and $\gamma_{\alpha\beta}$ in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. While for $\delta_{\alpha\beta}$ we observe no significant

 v_2 dependence in a given centrality bin, $\gamma_{\alpha\beta}$ is found to be almost linearly dependent on v_2 . When the charge dependence of $\gamma_{\alpha\beta}$ is multiplied by the corresponding charged-particle density, to compensate for the dilution effect, a linear dependence on v_2 is observed consistently across all centrality classes. Using a Monte Carlo simulation with different initial-state models, we have found that the CME signal is expected to exhibit a weak dependence on v_2 in the measured range. The observations imply that the dominant contribution to $\gamma_{\alpha\beta}$ is due to non-CME effects. In order to get a quantitative estimate of the signal and background contributions to the measurements, we fit both $\gamma_{\alpha\beta}$ and the expected signal dependence on v_2 with a first order polynomial. This procedure allows to estimate the fraction of the CME signal in the centrality range 10-50%, but not for the most central (0-10%) and peripheral (50-60%) collisions due to large statistical uncertainties. Averaging over the centrality range 10-50% gives an upper limit of 26% to 33% (depending on the initial-state model) at 95% confidence level for the CME contribution to the difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research - Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional

de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru: Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine. Ukraine: Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and U.S. Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

- [1] T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226-1239.
- [2] T.D. Lee, G.C. Wick, Vacuum stability and vacuum excitation in a spin 0 field
- theory, Phys. Rev. D 9 (1974) 2291–2316.
 [3] P.D. Morley, I.A. Schmidt, Strong P, CP, T violations in heavy ion collisions, Z. Phys. C 26 (1985) 627.
- [4] D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Possibility of spontaneous parity vio-
- lation in hot QCD, Phys. Rev. Lett. 81 (1998) 512–515, arXiv:hep-ph/9804221. [5] S.-S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. Math.
- 99 (1974) 48–69. [6] A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields
- in heavy ion collisions, Phys. Lett. B 710 (2012) 171–174, arXiv:1111.1949 [hep-ph].
- [7] W.-T. Deng, X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907, arXiv:1201.5108 [nucl-th].
- [8] U. Gursoy, D. Kharzeev, K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (5) (2014) 054905, arXiv:1401.3805 [hep-ph].
- [9] D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it, Phys. Lett. B 633 (2006) 260–264, arXiv:hep-ph/0406125.
- [10] D. Kharzeev, A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67–79, arXiv:0706.1026 [hep-ph].
- [11] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: 'event by event P and CP violation', Nucl. Phys. A 803 (2008) 227–253, arXiv:0711.0950 [hep-ph].
- [12] K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033, arXiv:0808.3382 [hep-ph].
- [13] S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in noncentral nuclear collisions, arXiv:0809.2949 [nucl-ex].
- [14] U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl-th].
- [15] S. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665–672, arXiv:hep-ph/9407282.
- [16] A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671–1678, arXiv:nuclex/9805001.
- [17] S.A. Voloshin, Parity violation in hot QCD: how to detect it, Phys. Rev. C 70 (2004) 057901, arXiv:hep-ph/0406311.

- [18] S. Schlichting, S. Pratt, Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables, Phys. Rev. C 83 (2011) 014913, arXiv:1009.4283 [nucl-th].
- [19] S. Pratt, S. Schlichting, S. Gavin, Effects of momentum conservation and flow on angular correlations at RHIC, Phys. Rev. C 84 (2011) 024909, arXiv:1011.6053 [nucl-th].
- [20] J. Liao, V. Koch, A. Bzdak, On the charge separation effect in relativistic heavy ion collisions, Phys. Rev. C 82 (2010) 054902, arXiv:1005.5380 [nucl-th].
- [21] A. Bzdak, V. Koch, J. Liao, Azimuthal correlations from transverse momentum conservation and possible local parity violation, Phys. Rev. C 83 (2011) 014905, arXiv:1008.4919 [nucl-th].
- [22] D. Teaney, L. Yan, Triangularity and dipole asymmetry in heavy ion collisions, Phys. Rev. C 83 (2011) 064904, arXiv:1010.1876 [nucl-th].
- [23] STAR Collaboration, B.I. Abelev, et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601, arXiv:0909.1739 [nucl-ex].
- [24] STAR Collaboration, B.I. Abelev, et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908, arXiv:0909.1717 [nucl-ex].
- [25] STAR Collaboration, L. Adamczyk, et al., Fluctuations of charge separation perpendicular to the event plane and local parity violation in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 88 (6) (2013) 064911, arXiv:1302.3802 [nucl-ex].
- [26] STAR Collaboration, L. Adamczyk, et al., Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett. 113 (2014) 052302, arXiv:1404.1433 [nucl-ex].
- [27] ALICE Collaboration, B. Abelev, et al., Charge separation relative to the reaction plane in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV, Phys. Rev. Lett. 110 (1) (2013) 012301, arXiv:1207.0900 [nucl-ex].
- [28] ALICE Collaboration, J. Adam, et al., Charge-dependent flow and the search for the chiral magnetic wave in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 93 (4) (2016) 044903, arXiv:1512.05739 [nucl-ex].
- [29] J. Schukraft, A. Timmins, S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering, Phys. Lett. B 719 (2013) 394–398, arXiv:1208.4563 [nucl-ex].
- [30] ALICE Collaboration, J. Adam, et al., Event shape engineering for inclusive spectra and elliptic flow in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 93 (3) (2016) 034916, arXiv:1507.06194 [nucl-ex].
- **[31]** ATLAS Collaboration, G. Aad, et al., Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector, Phys. Rev. C 92 (3) (2015) 034903, arXiv:1504.01289 [hep-ex].
- [32] F.G. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908, arXiv:1111.6538 [nucl-th].
- [33] A. Bzdak, Suppression of elliptic flow induced correlations in an observable of possible local parity violation, Phys. Rev. C 85 (2012) 044919, arXiv:1112.4066 [nucl-th].
- [34] CMS Collaboration, V. Khachatryan, et al., Observation of charge-dependent azimuthal correlations in *p*-Pb collisions and its implication for the search for the chiral magnetic effect, Phys. Rev. Lett. 118 (12) (2017) 122301, arXiv: 1610.00263 [nucl-ex].
- [35] R. Belmont, J.L. Nagle, To CME or not to CME? Implications of p+Pb measurements of the chiral magnetic effect in heavy ion collisions, Phys. Rev. C 96 (2) (2017) 024901, arXiv:1610.07964 [nucl-th].
- [36] CMS Collaboration, A.M. Sirunyan, et al., Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC, arXiv:1708.01602 [nucl-ex].
- [37] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, J. Instrum. 3 (2008) S08002.
- [38] ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nuclex].
- [39] J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 622 (2010) 316–367, arXiv:1001. 1950 [physics.ins-det].
- [40] ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, J. Instrum. 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
- [41] ALICE Collaboration, E. Abbas, et al., Performance of the ALICE VZERO system, J. Instrum. 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- [42] ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE, Phys. Rev. C 88 (4) (2013) 044909, arXiv:1301.4361 [nucl-ex].
- [43] X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501–3516.
- [44] M. Gyulassy, X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021.

- [45] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. Urban, GEANT detector description and simulation tool, CERN-W5013 1 (1994) 1.
- [46] ALICE Collaboration, S. Acharya, et al., The ALICE definition of primary particles, ALICE-PUBLIC-2017-005, https://cds.cern.ch/record/2270008.
- **[47]** STAR Collaboration, C. Adler, et al., Elliptic flow from two and four particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV, Phys. Rev. C 66 (2002) 034904, arXiv:nucl-ex/0206001.
- [48] Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/ 0411110.
- [49] ALICE Collaboration, K. Aamodt, et al., Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 106 (2011) 032301, arXiv:1012.1657 [nucl-ex].
- [50] Y. Hori, T. Gunji, H. Hamagaki, S. Schlichting, Collective flow effects on charge balance correlations and local parity-violation observables in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC, arXiv:1208.0603 [nucl-th].

- [51] M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57 (2007) 205–243, arXiv: nucl-ex/0701025.
- [52] ALICE Collaboration, K. Aamodt, et al., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302, arXiv:1011.3914 [nucl-ex].
- [53] H.-J. Drescher, Y. Nara, Eccentricity fluctuations from the color glass condensate at RHIC and LHC, Phys. Rev. C 76 (2007) 041903, arXiv:0707.0249 [nucl-th].
 [54] I.L. Albacete, A. Dumitru, A model for gluon production in heavy-ion collisions
- at the LHC with rcBK unintegrated gluon densities, arXiv:1011.5161 [hep-ph].
- [55] H. Niemi, K.J. Eskola, R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2) (2016) 024907, arXiv:1505.02677 [hep-ph].
- [56] http://faculty.baruch.cuny.edu/naturalscience/physics/dumitru/CGC_IC.html.
- [57] J.S. Moreland, J.E. Bernhard, S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (1) (2015) 011901, arXiv:1412.4708 [nucl-th].

ALICE Collaboration

S. Acharya¹³⁹, J. Adam⁹⁸, D. Adamová⁹⁵, J. Adolfsson³⁴, M.M. Aggarwal¹⁰⁰, G. Aglieri Rinella³⁵, M. Agnello³¹, N. Agrawal⁴⁸, Z. Ahammed¹³⁹, N. Ahmad¹⁷, S.U. Ahn⁸⁰, S. Aiola¹⁴³, A. Akindinov⁶⁵, M. Al-Turany¹⁰⁸, S.N. Alam¹³⁹, D.S.D. Albuquerque¹²⁴, D. Aleksandrov⁹¹, B. Alessandro⁵⁹, R. Alfaro Molina⁷⁵, A. Alici^{27,54,12}, A. Alkin³, J. Alme²², T. Alt⁷¹, L. Altenkamper²², I. Altsybeev¹³⁸, C. Alves Garcia Prado¹²³, C. Andrei⁸⁸, D. Andreou³⁵, H.A. Andrews¹¹², A. Andronic¹⁰⁸, V. Anguelov¹⁰⁵, C. Anson ⁹⁸, T. Antičić ¹⁰⁹, F. Antinori ⁵⁷, P. Antonioli ⁵⁴, R. Anwar ¹²⁶, L. Aphecetche ¹¹⁶, H. Appelshäuser ⁷¹, S. Arcelli ²⁷, R. Arnaldi ⁵⁹, O.W. Arnold ^{106,36}, I.C. Arsene ²¹, M. Arslandok ¹⁰⁵, B. Audurier ¹¹⁶, A. Augustinus ³⁵, R. Averbeck ¹⁰⁸, M.D. Azmi ¹⁷, A. Badalà ⁵⁶, Y.W. Baek ^{61,79}, B. Audurier ¹¹⁶, A. Augustinus ³⁵, R. Averbeck ¹⁰⁸, M.D. Azmi ¹⁷, A. Badalà ⁵⁶, Y.W. Baek ^{61,79}, S. Bagnasco ⁵⁹, R. Bailhache ⁷¹, R. Bala ¹⁰², A. Baldisseri ⁷⁶, M. Ball ⁴⁵, R.C. Baral ^{68,89}, A.M. Barbano ²⁶, R. Barbera ²⁸, F. Barile ^{53,33}, L. Barioglio ²⁶, G.G. Barnaföldi ¹⁴², L.S. Barnby ⁹⁴, V. Barret ¹³³, P. Bartalini ⁷, K. Barth ³⁵, E. Bartsch ⁷¹, M. Basile ²⁷, N. Bastid ¹³³, S. Basu ¹⁴¹, G. Batigne ¹¹⁶, B. Batyunya ⁷⁸, P.C. Batzing ²¹, J.L. Bazo Alba ¹¹³, I.G. Bearden ⁹², H. Beck ¹⁰⁵, C. Bedda ⁶⁴, N.K. Behera ⁶¹, I. Belikov ¹³⁵, F. Bellini ^{27,35}, H. Bello Martinez ², R. Bellwied ¹²⁶, L.G.E. Beltran ¹²², V. Belyaev ⁸⁴, G. Bencedi ¹⁴², S. Beole ²⁶, A. Bercuci ⁸⁸, Y. Berdnikov ⁹⁷, D. Berenyi ¹⁴², R.A. Bertens ¹²⁹, D. Berzano ³⁵, L. Betev ³⁵, A. Bhasin ¹⁰², I.R. Bhat ¹⁰², A.K. Bhati ¹⁰⁰, B. Bhattacharjee ⁴⁴, J. Bhom ¹²⁰, A. Bianchi ²⁶, L. Bianchi ¹²⁶, N. Bianchi ⁵¹, C. Bianchin ¹⁴¹, J. Bielčík ³⁹, J. Bielčíková ⁹⁵, A. Bilandzic ^{36,106}, G. Biro ¹⁴², R. Biswas ⁴, S. Biswas ⁴, J.T. Blair ¹²¹, D. Blau ⁹¹, C. Blume ⁷¹, G. Boca ¹³⁶, F. Bock ^{83,35,105}, A. Bogdanov ⁸⁴, L. Boldizsár ¹⁴², M. Bombara ⁴⁰, G. Bonomi ¹³⁷, M. Bonora ³⁵, J. Book ⁷¹, H. Borel ⁷⁶, A. Borissov ^{105,19}, M. Borri ¹²⁸, F. Botta ²⁶, C. Bouriau ⁹², L. Bratrud ⁷¹, P. Braun-Munzinger ¹⁰⁸, M. Bregant ¹²³, T.A. Broker ⁷ L. Boldizsár¹⁴², M. Bombara⁴⁰, G. Bonomi¹³⁷, M. Bonora³⁵, J. Book⁷¹, H. Borel⁷⁶, A. Borissov^{105,19}, M. Borri¹²⁸, E. Botta²⁶, C. Bourjau⁹², L. Bratrud⁷¹, P. Braun-Munzinger¹⁰⁸, M. Bregant¹²³, T.A. Broker⁷¹, M. Broz³⁹, E.J. Brucken⁴⁶, E. Bruna⁵⁹, G.E. Bruno^{35,33}, D. Budnikov¹¹⁰, H. Buesching⁷¹, S. Bufalino³¹, P. Buhler¹¹⁵, P. Buncic³⁵, O. Busch¹³², Z. Buthelezi⁷⁷, J.B. Butt¹⁵, J.T. Buxton¹⁸, J. Cabala¹¹⁸, D. Caffarri^{35,93}, H. Caines¹⁴³, A. Caliva^{64,108}, E. Calvo Villar¹¹³, P. Camerini²⁵, A.A. Capon¹¹⁵, F. Carena³⁵, W. Carena³⁵, F. Carnesecchi^{27,12}, J. Castillo Castellanos⁷⁶, A.J. Castro¹²⁹, E.A.R. Casula⁵⁵, C. Ceballos Sanchez⁹, P. Cerello⁵⁹, S. Chandra¹³⁹, B. Chang¹²⁷, S. Chapeland³⁵, M. Chartier¹²⁸, S. Chattopadhyay¹³⁹, S. Chattopadhyay¹¹¹, A. Chauvin^{36,106}, C. Cheshkov¹³⁴, B. Cheynis¹³⁴, V. Chibante Barroso³⁵, D.D. Chinellato¹²⁴, S. Cho⁶¹, P. Chochula³⁵, M. Chojnacki⁹², S. Choudhury¹³⁹, T. Chowdhury¹³³, P. Christakoglou⁹³, C.H. Christensen⁹², P. Christiansen³⁴, T. Chujo¹³², S.U. Chung¹⁹, C. Cicalo⁵⁵, L. Cifarelli^{12,27}, F. Cindolo⁵⁴, L. Cleymans¹⁰¹, F. Colamaria³³, D. Colella^{35,66,53}, A. Collu⁸³ C. Cicalo ⁵⁵, L. Cifarelli ^{12,27}, F. Cindolo ⁵⁴, J. Cleymans ¹⁰¹, F. Colamaria ³³, D. Colella ^{35,66,53}, A. Collu ⁸³, M. Colocci ²⁷, M. Concas ^{59,ii}, G. Conesa Balbastre ⁸², Z. Conesa del Valle ⁶², M.E. Connors ^{143,iii}, J.G. Contreras ³⁹, T.M. Cormier ⁹⁶, Y. Corrales Morales ⁵⁹, I. Cortés Maldonado ², P. Cortese ³², M.R. Cosentino ¹²⁵, F. Costa ³⁵, S. Costanza ¹³⁶, J. Crkovská ⁶², P. Crochet ¹³³, E. Cuautle ⁷³, L. Cunqueiro ⁷², T. Dahms ^{36,106}, A. Dainese ⁵⁷, M.C. Danisch ¹⁰⁵, A. Danu ⁶⁹, D. Das ¹¹¹, I. Das ¹¹¹, S. Das ⁴, A. Dash ⁸⁹, S. Dash ⁴⁸, S. De ^{49,123}, A. De Caro ³⁰, G. de Cataldo ⁵³, C. de Conti ¹²³, J. de Cuveland ⁴², A. De Falco ²⁴, D. De Gruttola ^{30,12}, N. De Marco ⁵⁹, S. De Pasquale ³⁰, R.D. De Souza ¹²⁴, H.F. Degenhardt ¹²³, A. Deisting ^{108,105}, A. Deloff⁸⁷, C. Deplano ⁹³, P. Dhankher ⁴⁸, D. Di Bari ³³, A. Di Mauro ³⁵, P. Di Nezza ⁵¹, B. Di Ruzza ⁵⁷, M.A. Diaz Corchero ¹⁰, T. Dietel ¹⁰¹, P. Dillenseger ⁷¹, R. Divià ³⁵, Ø. Djuvsland ²², A. Dobrin ³⁵, D. Domenicis Gimenez ¹²³, B. Dönigus ⁷¹, O. Dordic ²¹, L.V.R. Doremalen ⁶⁴, A.K. Dubey ¹³⁹,

 ALCE Collaboration / Physics Letters B 777 (2018) 151-162
 A. Dubla 108, L. Ducroux 134, A.K. Duggal 100, M. Dukhishyam 89, P. Dupieux 133, R.J. Ehlers 143, D. Elia 53, E. Endress 113, H. Engel 70, E. Epple 143, B. Erazmus 116, F. Erhardt 99, B. Espagnon 62, S. Esumi 132, G. Eulisse 35, J. Eum 19, D. Evans 112, S. Evdokimov 114, L. Fabbietti 106,36, J. Faivre 82, A. Fantoni 51, M. Fasel 96,83, L. Feldkamp 72, A. Feliciello 59, G. Feofilov 138, A. Fernández Téllez 2, E.G. Ferreiro 16, A. Ferretti 26, A. Festanti 29,35, V.J.G. Feuillard 76,133, J. Figjel 120, M.A.S. Figueredo 123, S. Filchagin 110, D. Finogeev 63, F.M. Fionda 22,24, M. Floris 35, S. Foertsch 77, P. Foka 108, S. Fokin 91, E. Fragiacomo 60, A. Francescon 35, A. Francisco 116, U. Frankenfeld 108, G.G. Fronze 26, U. Fuchs 35, C. Furget 82, A. Furs 63, M. Fusco Girard 30, J.J. Gaardhøje 92, M. Gagliardi 26, A.M. Gago 113, K. Gajdosova 92, M. Gallio 26, C.D. Galvan 122, P. Ganoti 86, C. Garabatos 108, E. Garcia-Solis 13, K. Gajdosova 92, M. Gallio 26, C.D. Galvan 122, P. Ganoti 86, C. Garabatos 108, E. Garcia-Solis 13, K. Gargba, S. Cokons 4, P. Gianotti 51, P. Giubellino 35.108,59, P. Giubilato 29, E. Gladysz-Dziadus 120, P. Glässel 105, D.M. Goméz Coral 75, A. Gomez Ramirez 70, A.S. Gonzalez 35, V. Gonzalez 10, P. González-Zamora 10,2, S. Gorbunov 42, L. Görlich 120, S. Gotovac 119, V. Grabski 75, L.K. Graczykowski 140, K.L. Graham 112, L. Greiner 83, A. Grelli 64, C. Grigoras 35, V. Grigoriev 84, A. Grigoryan 1, S. Grigoryan 78, J.M. Gronefeld 108, F. Grosa 31, J.F. Grosse-Oetringhaus 35, R. Gorsso 108, L. Gruber 115, F. Guber 63, R. Guernane 82, B. Guerzoni 27, K. Gulbrandsen 92, T. Gunji 131, A. Gupt 102, R. Gupta 102, I.B. Guzman 2, R. Haake 35, C. Hadjidakis 62, H. Hamagaki 85, G. Hamar 142, J.C. Hamon 135, M.R. Haque 64, J.W. Harris 143, A. Harton 13, H. Hassan 82, D. Hatzifotiadou 12,54, S. Hayashi 131, S.T. Heckel 71, E. Hellbär 71, H. Helstrup 37, A. Herghelegiu 88, E.G. Hernandez 2, G. Herrera Corral 11, F. Herrmann D.S. Hwang ²⁰, S.A. Iga Buitron ⁷³, R. Ilkaev ¹¹⁰, M. Inaba ¹³², M. Ippolitov ^{84,91}, M. Irfan ¹⁷, M.S. Islam ¹¹¹, M. Ivanov ¹⁰⁸, V. Ivanov ⁹⁷, V. Izucheev ¹¹⁴, B. Jackk ⁵³, N. Jacazio ²⁷, P.M. Jacobs ⁸³, M.B. Jadhav ⁴⁸, J. Jadlovsky ¹¹⁸, S. Jaelani ⁶⁴, C. Jahnke ³⁶, M.J. Jakubowska ¹⁴⁰, M.A. Janik ¹⁴⁰, P.H.S.Y. Jayarathna ¹²⁶, C. Jena ⁸⁹, S. Jena ¹²⁶, M. Jercic ⁹⁹, R.T. Jimenez Bustamante ¹⁰⁸, P.G. Jones ¹¹², A. Jusko ¹¹², P. Kalinak ⁶⁶, A. Kalweit ⁵⁵, J.H. Kang ¹⁴⁴, V. Kaplin ⁸⁴, S. Kar ¹³⁹, A. Karasu Uysal ⁵¹, O. Karavichev ⁶³, T. Karavicheva ⁶³, L. Karayan ^{108,105}, P. Karczmarczyk ⁵⁵, E. Karpechev ⁶³, U. Kebschull ⁷⁰, R. Keidel ¹⁴⁵, D.L.D. Keijdener ⁶⁴, M. Keil ⁵⁵, J. K. Kunat ⁴⁹, M.M. Kielbowicz ¹²⁰, B. Kileng ³⁷, B. Kim ¹³², D. Kim ¹⁴⁴, D.J. Kim ¹²⁷, H. Kim ¹⁴⁴, J.S. Kim ⁴³, J. Kim ¹⁰⁵, M. Kim ⁶¹, M. Kim ¹⁴⁴, S. Kim ²⁰, T. Kim ¹⁴⁴, J. S. Kirsch ⁴², I. Kisel ⁴², J. Kisel ⁴⁴⁰, G. Kiss ¹⁴², J.L. Klay ⁶, C. Klein ⁷¹, J. Klein ³⁵, C. Klein-Bösing ⁷², S. Klewin ¹⁰⁵, A. Klugeg ³⁵, M.L. Knichel ^{35,105}, A.G. Knospe ¹²⁶, C. Kobdaj ¹¹⁷, M. Kofarago ¹⁴², M.K. Köhler ¹⁰⁵, T. Kollegger ¹⁰⁸, V. Kondratiev ¹³⁸, N. Kondratyeva ⁸⁴, E. Kondratyuk ¹¹⁴, A. Konevskikh ⁶³, M. Konyushikhin ¹⁴¹, M. Kopcik ¹¹⁸, M. Kour ¹⁰², C. Kouzinopoulos ³⁵, O. Kovalenko ⁸⁷, V. Kovalenko ¹³⁸, M. Kowalski ¹²⁰, G. Koyithatta Meethaleveedu ⁴⁸, I. Krälik ⁶⁶, A. Kravčáková ⁴⁰, L. Kreis ¹⁰⁶, M. Krivda ^{66,112}, F. Krizek ⁹⁵, E. Kryshen ⁹⁷, M. Krzewicki ⁴², A.M. Kubera ¹⁸, V. Kuera ⁹⁵, C. Kuhn ¹³⁵, P.G. Kuijer ⁹³, A. Kurepin ⁶³, A. Kurzyakin ¹¹⁰, S. Kushpil ⁹⁵, M.J. Kweon ⁶¹, Y. Kwon ¹⁴⁴, S.L La Pointe ⁴², P. La Rocca ²⁸, C. Lagana Fernandes ¹²³, Y.S. Laika ³⁹, R. Lea ²⁵, L. Leardini ¹⁰⁵, S. Lee ¹⁴⁴, F. Lehas ⁹³, S. Lehner ¹¹⁵, J. Lehrbach ⁴², R.C. Lemmon ⁹⁴, V. Lenti ³⁵, R. Lavgorath ⁶⁴, J. Kondoza ¹²², P. Leviai ¹⁴², X. Li¹⁴, J.

159

E. Meninno³⁰, J. Mercado Pérez¹⁰⁵, M. Meres³⁸, S. Mhlanga¹⁰¹, Y. Miake¹³², M.M. Mieskolainen⁴⁶, D.L. Mihaylov¹⁰⁶, K. Mikhaylov^{65,78}, J. Milosevic²¹, A. Mischke⁶⁴, A.N. Mishra⁴⁹, D. Miśkowiec¹⁰⁸, J. Mitra ¹³⁹, C.M. Mitu ⁶⁹, N. Mohammadi ⁶⁴, B. Mohanty ⁸⁹, M. Mohisin Khan ¹⁷, ^v, E. Montes ¹⁰, D.A. Moreira De Godoy ⁷², L.A.P. Moreno², S. Moretto ²⁹, A. Morreale ¹¹⁶, A. Morsch ³⁵, V. Muccifora ⁵¹, E. Mudnic¹¹⁹, D. Mühlheim⁷², S. Muhuri¹³⁹, M. Mukherjee⁴, J.D. Mulligan¹⁴³, M.G. Munhoz¹²³, K. Münning⁴⁵, R.H. Munzer⁷¹, H. Murakami¹³¹, S. Murray⁷⁷, L. Musa³⁵, J. Musinsky⁶⁶, C.J. Myers¹²⁶, J.W. Myrcha¹⁴⁰, D. Nag⁴, B. Naik⁴⁸, R. Nair⁸⁷, B.K. Nandi⁴⁸, R. Nania^{54,12}, E. Nappi⁵³, A. Narayan⁴⁸, M.U. Naru¹⁵, H. Natal da Luz¹²³, C. Nattrass¹²⁹, S.R. Navarro², K. Nayak⁸⁹, R. Nayak⁴⁸, T.K. Nayak¹³⁹, S. Nazarenko¹¹⁰, A. Nedosekin⁶⁵, R.A. Negrao De Oliveira³⁵, L. Nellen⁷³, S.V. Nesbo³⁷, F. Ng¹²⁶, M. Nicassio ¹⁰⁸, M. Niculescu ⁶⁹, J. Niedziela ^{140,35}, B.S. Nielsen ⁹², S. Nikolaev ⁹¹, S. Nikulin ⁹¹, V. Nikulin ⁹⁷, F. Noferini ^{12,54}, P. Nomokonov ⁷⁸, G. Nooren ⁶⁴, J.C.C. Noris ², J. Norman ¹²⁸, A. Nyanin ⁹¹, J. Nystrand ²², H. Oeschler ^{19,105,i}, S. Oh ¹⁴³, A. Ohlson ^{35,105}, T. Okubo ⁴⁷, L. Olah ¹⁴², J. Oleniacz ¹⁴⁰, A.C. Oliveira Da Silva ¹²³, M.H. Oliver ¹⁴³, J. Onderwaater ¹⁰⁸, C. Oppedisano ⁵⁹, R. Orava ⁴⁶, M. Oravec ¹¹⁸, A. Ortiz Velasquez⁷³, A. Oskarsson³⁴, J. Otwinowski¹²⁰, K. Oyama⁸⁵, Y. Pachmayer¹⁰⁵, V. Pacik⁹², D. Pagano¹³⁷, P. Pagano³⁰, G. Paić⁷³, P. Palni⁷, J. Pan¹⁴¹, A.K. Pandey⁴⁸, S. Panebianco⁷⁶, V. Papikyan¹, G.S. Pappalardo⁵⁶, P. Pareek⁴⁹, J. Park⁶¹, S. Parmar¹⁰⁰, A. Passfeld⁷², S.P. Pathak¹²⁶, R.N. Patra¹³⁹, B. Paul ⁵⁹, H. Pei⁷, T. Peitzmann ⁶⁴, X. Peng⁷, L.G. Pereira ⁷⁴, H. Pereira Da Costa ⁷⁶, D. Peresunko ^{91,84}, E. Perez Lezama ⁷¹, V. Peskov ⁷¹, Y. Pestov ⁵, V. Petráček ³⁹, V. Petrov ¹¹⁴, M. Petrovici ⁸⁸, C. Petta ²⁸, R.P. Pezzi ⁷⁴, S. Piano ⁶⁰, M. Pikna ³⁸, P. Pillot ¹¹⁶, L.O.D.L. Pimentel ⁹², O. Pinazza ^{54,35}, L. Pinsky ¹²⁶, D.B. Piyarathna¹²⁶, M. Płoskoń⁸³, M. Planinic⁹⁹, F. Pliquett⁷¹, J. Pluta¹⁴⁰, S. Pochybova¹⁴², P.L.M. Podesta-Lerma¹²², M.G. Poghosyan⁹⁶, B. Polichtchouk¹¹⁴, N. Poljak⁹⁹, W. Poonsawat¹¹⁷, A. Pop⁸⁸, H. Poppenborg⁷², S. Porteboeuf-Houssais¹³³, V. Pozdniakov⁷⁸, S.K. Prasad⁴, R. Preghenella⁵⁴, F. Prino⁵⁹, C.A. Pruneau¹⁴¹, I. Pshenichnov⁶³, M. Puccio²⁶, G. Puddu²⁴, P. Pujahari¹⁴¹, V. Punin¹¹⁰, J. Putschke¹⁴¹, S. Raha⁴, S. Rajput¹⁰², J. Rak¹²⁷, A. Rakotozafindrabe⁷⁶, L. Ramello³², F. Rami¹³⁵, D.B. Rana¹²⁶, R. Raniwala ¹⁰³, S. Raniwala ¹⁰³, S.S. Räsänen ⁴⁶, B.T. Rascanu ⁷¹, D. Rathee ¹⁰⁰, V. Ratza ⁴⁵, I. Ravasenga ³¹, K.F. Read ^{129,96}, K. Redlich ^{87,vi}, A. Rehman ²², P. Reichelt ⁷¹, F. Reidt ³⁵, X. Ren⁷, R. Renfordt ⁷¹, A.R. Reolon ⁵¹, A. Reshetin ⁶³, K. Reygers ¹⁰⁵, V. Riabov ⁹⁷, R.A. Ricci ⁵², T. Richert ³⁴, M. Richter ²¹, P. Riedler ³⁵, W. Riegler ³⁵, F. Riggi ²⁸, C. Ristea ⁶⁹, M. Rodríguez Cahuantzi ², K. Røed ²¹, E. Rogochaya ⁷⁸, P. Riedler ³⁵, W. Riegler ³⁵, F. Riggi ²⁸, C. Ristea ⁶⁹, M. Rodríguez Cahuantzi ², K. Røed ²¹, E. Rogochaya ⁷⁸, D. Rohr ^{35,42}, D. Röhrich ²², P.S. Rokita ¹⁴⁰, F. Ronchetti ⁵¹, E.D. Rosas ⁷³, P. Rosnet ¹³³, A. Rossi ^{29,57}, A. Rotondi ¹³⁶, F. Roukoutakis ⁸⁶, A. Roy ⁴⁹, C. Roy ¹³⁵, P. Roy ¹¹¹, A.J. Rubio Montero ¹⁰, O.V. Rueda ⁷³, R. Rui ²⁵, B. Rumyantsev ⁷⁸, A. Rustamov ⁹⁰, E. Ryabinkin ⁹¹, Y. Ryabov ⁹⁷, A. Rybicki ¹²⁰, S. Saarinen ⁴⁶, S. Sadhu ¹³⁹, S. Sadovsky ¹¹⁴, K. Šafařík ³⁵, S.K. Saha ¹³⁹, B. Sahlmuller ⁷¹, B. Sahoo ⁴⁸, P. Sahoo ⁴⁹, R. Sahoo ⁴⁹, S. Sahoo ⁶⁸, P.K. Sahu ⁶⁸, J. Saini ¹³⁹, S. Sakai ¹³², M.A. Saleh ¹⁴¹, J. Salzwedel ¹⁸, S. Sambyal ¹⁰², V. Samsonov ^{97,84}, A. Sandoval ⁷⁵, D. Sarkar ¹³⁹, N. Sarkar ¹³⁹, P. Sarma ⁴⁴, M.H.P. Sas ⁶⁴, E. Scapparone ⁵⁴, F. Scarlassara ²⁹, B. Schaefer ⁹⁶, R.P. Scharenberg ¹⁰⁷, H.S. Scheid ⁷¹, C. Schiaua ⁸⁸, R. Schicker ¹⁰⁵, C. Schmidt ¹⁰⁴, M.O. Schmidt ¹⁰⁵, M. Schmidt ¹⁰⁴, N.V. Schmidt ^{71,96}, J. Schukraft ³⁵, Y. Schutz ^{135,35}, K. Schwarz ¹⁰⁸, K. Schweda ¹⁰⁸, G. Scioli ²⁷, E. Scomparin ⁵⁹, M. Šefčík ⁴⁰, J.E. Seger ⁹⁸, Y. Sekiguchi ¹³¹, D. Sekihata ⁴⁷, I. Selyuzhenkov ^{108,84}, K. Senosi ⁷⁷, S. Senyukov ^{3,35,135}, E. Serradilla ^{75,10}, P. Sett ⁴⁸, A. Sevcenco ⁶⁹, A. Shabanov ⁶³, A. Shabetai ¹¹⁶, R. Shahoyan ³⁵, W. Shaikh ¹¹¹, A. Shangaraev ¹¹⁴, A. Sharma ¹⁰⁰, A. Sharma ¹⁰², M. Sharma ¹⁰², N. Sharma ^{122,100}, A.I. Sheikh ¹³⁹, K. Shigaki ⁴⁷, Q. Shou ⁷, K. Shtejer ^{26,9}, Y. Sibiriak ⁹¹, S. Siddhanta ⁵⁵, K.M. Sielewicz ³⁵, T. Siemiarczuk ⁸⁷, S. Silaeva ⁹¹, D. Silvermyr ³⁴, C. Silvestre ⁸², G. Simatovic ⁹⁹, G. Simonetti ³⁵, R. Singaraju ¹³⁹, R. Singh ⁸⁹, V. Singhal ¹³⁹, T. Sinha ¹¹¹, B. Sitar ³⁸, M. Sitta ³², T.B. Skaali ²¹, M. Slupecki ¹²⁷, N. Smirnov ¹⁴³, S. Silaeva⁹¹, D. Silvermyr³⁴, C. Silvestre⁸², G. Simatovic⁹⁹, G. Simonetti³⁵, R. Singaraju¹³⁹, R. Singh⁸⁹, V. Singhal¹³⁹, T. Sinha¹¹¹, B. Sitar³⁸, M. Sitta³², T.B. Skaali²¹, M. Slupecki¹²⁷, N. Smirnov¹⁴³, R.J.M. Snellings⁶⁴, T.W. Snellman¹²⁷, J. Song¹⁹, M. Song¹⁴⁴, F. Soramel²⁹, S. Sorensen¹²⁹, F. Sozzi¹⁰⁸, E. Spiriti⁵¹, I. Sputowska¹²⁰, B.K. Srivastava¹⁰⁷, J. Stachel¹⁰⁵, I. Stan⁶⁹, P. Stankus⁹⁶, E. Stenlund³⁴, D. Stocco¹¹⁶, M.M. Storetvedt³⁷, P. Strmen³⁸, A.A.P. Suaide¹²³, T. Sugitate⁴⁷, C. Suire⁶², M. Suleymanov¹⁵, M. Suljic²⁵, R. Sultanov⁶⁵, M. Šumbera⁹⁵, S. Sumowidagdo⁵⁰, K. Suzuki¹¹⁵, S. Swain⁶⁸, A. Szabo³⁸, I. Szarka³⁸, U. Tabassam¹⁵, J. Takahashi¹²⁴, G.J. Tambave²², N. Tanaka¹³², M. Tarhini⁶², M. Tariq¹⁷, M.G. Tarzila⁸⁸, A. Tauro³⁵, G. Tejeda Muñoz², A. Telesca³⁵, K. Terasaki¹³¹, C. Terrevoli²⁹, B. Teyssier¹³⁴, D. Thakur⁴⁹, S. Thakur¹³⁹, D. Thomas¹²¹, F. Thoresen⁹², R. Tieulent¹³⁴, A. Tikhonov⁶³, A.R. Timmins¹²⁶, A. Toia⁷¹, S.R. Torres¹²², S. Tripathy⁴⁹, S. Trogolo²⁶, G. Trombetta³³, L. Tropp⁴⁰, V. Trubnikov³, W.H. Trzaska¹²⁷, B.A. Trzeciak⁶⁴, T. Tsuji¹³¹, A. Tumkin¹¹⁰, R. Turrisi⁵⁷,

T.S. Tveter ²¹, K. Ullaland ²², E.N. Umaka ¹²⁶, A. Uras ¹³⁴, G.L. Usai ²⁴, A. Utrobicic ⁹⁹, M. Vala ^{118,66}, J. Van Der Maarel ⁶⁴, J.W. Van Hoorne ³⁵, M. van Leeuwen ⁶⁴, T. Vanat ⁹⁵, P. Vande Vyvre ³⁵, D. Varga ¹⁴², A. Vargas ², M. Vargyas ¹²⁷, R. Varma ⁴⁸, M. Vasileiou ⁸⁶, A. Vasiliev ⁹¹, A. Vauthier ⁸², O. Vázquez Doce ^{106,36}, V. Vechernin ¹³⁸, A.M. Veen ⁶⁴, A. Velure ²², E. Vercellin ²⁶, S. Vergara Limón ², R. Vernet ⁸, R. Vértesi ¹⁴², L. Vickovic ¹¹⁹, S. Vigolo ⁶⁴, J. Viinikainen ¹²⁷, Z. Vilakazi ¹³⁰, O. Villalobos Baillie ¹¹², A. Villatoro Tello ², A. Vinogradov ⁹¹, L. Vinogradov ¹³⁸, T. Virgili ³⁰, V. Vislavicius ³⁴, A. Vodopyanov ⁷⁸, M.A. Völkl ^{105,104}, K. Voloshin ⁶⁵, S.A. Voloshin ¹⁴¹, G. Volpe ³³, B. von Haller ³⁵, I. Vorobyev ^{106,36}, D. Voscek ¹¹⁸, D. Vranic ^{35,108}, J. Vrláková ⁴⁰, B. Wagner ²², H. Wang ⁶⁴, M. Wang ⁷, D. Watanabe ¹³², Y. Watanabe ^{131,132}, M. Weber ¹¹⁵, S.G. Weber ¹⁰⁸, D.F. Weiser ¹⁰⁵, S.C. Wenzel ³⁵, J.P. Wessels ⁷², U. Westerhoff ⁷², A.M. Whitehead ¹⁰¹, J. Wiechula ⁷¹, J. Wikne ²¹, G. Wilk ⁸⁷, J. Wilkinson ^{105,54}, G.A. Willems ^{35,72}, M.C.S. Williams ⁵⁴, E. Willsher ¹¹², B. Windelband ¹⁰⁵, W.E. Witt ¹²⁹, S. Yalcin ⁸¹, K. Yamakawa ⁴⁷, P. Yang ⁷, S. Yano ⁴⁷, Z. Yin ⁷, H. Yokoyama ^{132,82}, I.-K. Yoo ¹⁹, J.H. Yoon ⁶¹, V. Yurchenko ³, V. Zaccolo ⁵⁹, A. Zaman ¹⁵, C. Zampolli ³⁵, H.J.C. Zanoli ¹²³, N. Zardoshti ¹¹², A. Zarochentsev ¹³⁸, P. Závada ⁶⁷, N. Zaviyalov ¹¹⁰, H. Zbroszczyk ¹⁴⁰, M. Zhalov ⁹⁷, H. Zhang ^{22,7}, X. Zhang ⁷, Y. Zhang ⁷, C. Zhang ⁶⁴, Z. Zhang ^{7,133}, C. Zhao ²¹, N. Zhigareva ⁶⁵, D. Zhou ⁷, Y. Zhou ⁹², Z. Zhou ²², H. Zhu ²², J. Zhu ⁷, A. Zichichi ^{27,12}, A. Zimmermann ¹⁰⁵, M.B. Zimmermann ³⁵, G. Zinovjev ³, J. Zmeskal ¹¹⁵, S. Zou ⁷

- ¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
- ² Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- ³ Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
- ⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
- ⁵ Budker Institute for Nuclear Physics, Novosibirsk, Russia
- ⁶ California Polytechnic State University, San Luis Obispo, CA, United States
- ⁷ Central China Normal University, Wuhan, China
- ⁸ Centre de Calcul de l'IN2P3, Villeurbanne, Lyon, France
- ⁹ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
- ¹⁰ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- ¹¹ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
- ¹² Centro Fermi Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
- ¹³ Chicago State University, Chicago, IL, United States
- ¹⁴ China Institute of Atomic Energy, Beijing, China
- ¹⁵ COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
- ¹⁶ Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- ¹⁷ Department of Physics, Aligarh Muslim University, Aligarh, India
- ¹⁸ Department of Physics, Ohio State University, Columbus, OH, United States
- ¹⁹ Department of Physics, Pusan National University, Pusan, Republic of Korea
- ²⁰ Department of Physics, Sejong University, Seoul, Republic of Korea
- ²¹ Department of Physics, University of Oslo, Oslo, Norway
- ²² Department of Physics and Technology, University of Bergen, Bergen, Norway
- ²³ Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN. Rome. Italy
- ²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
- ²⁵ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
- ²⁶ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
- ²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
- ²⁸ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
- ²⁹ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
- ³⁰ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
- ³¹ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
- ³² Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
- ³³ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- ³⁴ Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
- ³⁵ European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ³⁶ Excellence Cluster Universe, Technische Universität München, Munich, Germany
- ³⁷ Faculty of Engineering, Bergen University College, Bergen, Norway
- ³⁸ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- ³⁹ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- ⁴⁰ Faculty of Science, P.J. Šafárik University, Košice, Slovakia
- ⁴¹ Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
- ⁴² Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁴³ Gangneung-Wonju National University, Gangneung, Republic of Korea
- ⁴⁴ Gauhati University, Department of Physics, Guwahati, India
- ⁴⁵ Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- ⁴⁶ Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴⁷ Hiroshima University, Hiroshima, Japan
- ⁴⁸ Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁹ Indian Institute of Technology Indore, Indore, India
- ⁵⁰ Indonesian Institute of Sciences, Jakarta, Indonesia
- ⁵¹ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁵² INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
- ⁵³ INFN, Sezione di Bari, Bari, Italy

⁵⁴ INFN, Sezione di Bologna, Bologna, Italy ⁵⁵ INFN, Sezione di Cagliari, Cagliari, Italy ⁵⁶ INFN. Sezione di Catania, Catania, Italy ⁵⁷ INFN, Sezione di Padova, Padova, Italy ⁵⁸ INFN, Sezione di Roma, Rome, Italy ⁵⁹ INFN, Sezione di Torino, Turin, Italy ⁶⁰ INFN. Sezione di Trieste, Trieste, Italy ⁶¹ Inha University, Incheon, Republic of Korea ⁶² Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France ⁶³ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia ⁶⁴ Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands ⁶⁵ Institute for Theoretical and Experimental Physics, Moscow, Russia ⁶⁶ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia ⁶⁷ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ⁶⁸ Institute of Physics, Bhubaneswar, India ⁶⁹ Institute of Space Science (ISS), Bucharest, Romania ⁷⁰ Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany ⁷¹ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany ⁷² Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany ⁷³ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico ⁷⁴ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil ⁷⁵ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico ⁷⁶ IRFU, CEA, Université Paris-Saclay, Saclay, France 77 iThemba LABS, National Research Foundation, Somerset West, South Africa 78 Joint Institute for Nuclear Research (JINR), Dubna, Russia ⁷⁹ Konkuk University, Seoul, Republic of Korea ⁸⁰ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea ⁸¹ KTO Karatay University, Konya, Turkey ⁸² Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France ⁸³ Lawrence Berkeley National Laboratory, Berkeley, CA, United States 84 Moscow Engineering Physics Institute, Moscow, Russia ⁸⁵ Nagasaki Institute of Applied Science, Nagasaki, Japan ⁸⁶ National and Kapodistrian University of Athens, Physics Department, Athens, Greece ⁸⁷ National Centre for Nuclear Studies, Warsaw, Poland ⁸⁸ National Institute for Physics and Nuclear Engineering, Bucharest, Romania ⁸⁹ National Institute of Science Education and Research, HBNI, Jatni, India ⁹⁰ National Nuclear Research Center, Baku, Azerbaijan ⁹¹ National Research Centre Kurchatov Institute, Moscow, Russia 92 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark ⁹³ Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands ⁹⁴ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom ⁹⁵ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic ⁹⁶ Oak Ridge National Laboratory, Oak Ridge, TN, United States ⁹⁷ Petersburg Nuclear Physics Institute, Gatchina, Russia 98 Physics Department, Creighton University, Omaha, NE, United States ⁹⁹ Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia ¹⁰⁰ Physics Department, Panjab University, Chandigarh, India ¹⁰¹ Physics Department, University of Cape Town, Cape Town, South Africa ¹⁰² Physics Department, University of Jammu, Jammu, India ¹⁰³ Physics Department, University of Rajasthan, Jaipur, India ¹⁰⁴ Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ¹⁰⁵ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany ¹⁰⁶ Physik Department, Technische Universität München, Munich, Germany ¹⁰⁷ Purdue University, West Lafayette, IN, United States ¹⁰⁸ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ¹⁰⁹ Rudjer Bošković Institute, Zagreb, Croatia ¹¹⁰ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia ¹¹¹ Saha Institute of Nuclear Physics, Kolkata, India ¹¹² School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom ¹¹³ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru ¹¹⁴ SSC IHEP of NRC Kurchatov institute, Protvino, Russia ¹¹⁵ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria ¹¹⁶ SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France ¹¹⁷ Suranaree University of Technology, Nakhon Ratchasima, Thailand ¹¹⁸ Technical University of Košice, Košice, Slovakia ¹¹⁹ Technical University of Split FESB, Split, Croatia ¹²⁰ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland ¹²¹ The University of Texas at Austin, Physics Department, Austin, TX, United States 122 Universidad Autónoma de Sinaloa, Culiacán, Mexico ¹²³ Universidade de São Paulo (USP), São Paulo, Brazil ¹²⁴ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil ¹²⁵ Universidade Federal do ABC, Santo Andre, Brazil 126 University of Houston, Houston, TX, United States 127 University of Jyväskylä, Jyväskylä, Finland ¹²⁸ University of Liverpool, Liverpool, United Kingdom

- ¹²⁹ University of Tennessee, Knoxville, TN, United States
- ¹³⁰ University of the Witwatersrand, Johannesburg, South Africa
- ¹³¹ University of Tokyo, Tokyo, Japan
- 132 University of Tsukuba, Tsukuba, Japan

- ¹³³ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
- ¹³⁴ Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
- ¹³⁵ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- ¹³⁶ Università degli Studi di Pavia, Pavia, Italy
- ¹³⁷ Università di Brescia, Brescia, Italy
- ¹³⁸ V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
- ¹³⁹ Variable Energy Cyclotron Centre, Kolkata, India
- ¹⁴⁰ Warsaw University of Technology, Warsaw, Poland
- ¹⁴¹ Wayne State University, Detroit, MI, United States
- ¹⁴² Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
- ¹⁴³ Yale University, New Haven, CT, United States
- ¹⁴⁴ Yonsei University, Seoul, Republic of Korea
 ¹⁴⁵ Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany
- ⁱ Deceased
- ⁱⁱ Dipartimento DET del Politecnico di Torino, Turin, Italy.
- iii Georgia State University, Atlanta, Georgia, United States.
- ^{iv} M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
- ^v Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
- ^{vi} Institute of Theoretical Physics, University of Wroclaw, Poland.