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Slightly extending a right-handed neutrino version of the 3 − 3 − 1 model, we show that it is not only
possible to solve the strong CP problem but also to give the total dark matter abundance reported by the
Planck collaboration. Specifically, we consider the possibility of introducing a 3 − 3 − 1 scalar singlet to
implement a gravity stable Peccei-Quinn mechanism in this model. Remarkably, for allowed regions of the
parameter space, the arising axions with masses ma ≈meV can both make up the total dark matter relic
density through nonthermal production mechanisms and be very close to the region to be explored by the
IAXO helioscope.
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I. INTRODUCTION

The impressive observation that almost thirty percent of
the energy content of the Universe is due to dark matter
(DM) is challenging our understanding of particle physics
and cosmology. For a historical review see Ref. [1]. Much
effort have been done in order to unravel the nature of DM.
Experiments designed to detect weakly interacting massive
particles (WIMPs), the, so far, DM candidate paradigm,
have failed in providing positive results [2,3]. At the same
time, the Large Hadron Collider (LHC) has not been able to
produce any signal of a DM candidate, as is the case of the
lightest supersymmetric partners of the standard model
(SM) neutral particles (gauge or scalar), called neutralinos,
or gravitinos (partners of the graviton) [4].

As a consequence of these negative results, it is notice-
able the growing interest in studying axions and axionlike
particles (ALPs) because they are well motivated alter-
natives to WIMPs. Moreover, they can be linked to

solutions of still intriguing astrophysical phenomena [5]:
(i) ALPs may be the explanation to the TeV photon
cosmic transparency if there are gamma ray ↔ ALP
oscillations. If so, gamma rays could be converted to
ALPs due to the magnetic fields near active galactic nuclei,
for instance, traveling “freely” for a long distance to
our galaxy and then reconverted into gamma rays in the
galactic magnetic fields; (ii) also, ALPs may explain the
anomalous energy loss of white dwarfs because from
the luminosity of this kind of stars it is inferred that a
new energy loss mechanism is needed. In the present
scenario, this mechanism could be related to axions or
ALPs bremsstrahlung if they directly couple to electrons.
All these astrophysical processes constrain the relevant
parameters describing axions and ALPs physics. In fact,
besides these theoretical arguments for considering axions
and/or ALPs, there is also much experimental effort
searching for this kind of particles [6]. A variety of
experiments have been designed and, in general, they
are classified as haloscopes, helioscopes and light-shining
through a wall, and most of them are based on the
conversion of axions or ALPs into gamma rays in the
presence of strong magnetic fields [7].
The axion field was initially introduced as a dynamical

solution for the so-called strong CP problem. This problem
comes from the extra term which has to be added to the
QCD Lagrangian due to the nontrivial structure of the QCD
vacuum:
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Lθ ¼ θ
g2s

32π2
GaμνG̃a

μν;

whereGaμν is the gluon field strength and G̃a
μν its dual. This

θ–term violates P, T and CP symmetries and, hence, it
induces a neutron electric dipole moment (NEDM). In
order to be in agreement with experimental NEDM data the
value of the θ parameter must be θ ≲ 0.7 × 10−11 [8]. The
strong CP problem is, then, to explain why this parameter
is so small. After including weak interactions, the coef-
ficient of the GG̃ term changes to θ̄ ¼ θ − arg detMq,
where Mq is the quark mass matrix. The Peccei–Quinn
(PQ) solution to this problem is implemented by introduc-
ing a global U(1) symmetry that must be spontaneously
broken and afflicted by a color anomaly. The axion is then
the Nambu–Goldstone boson associated to the breaking of
that U(1) symmetry, which is now known as the Uð1ÞPQ
symmetry. After including the axion field, aðxÞ, the
total Lagrangian has a term proportional to the color
anomaly NC:

LTotal ¼ LSM þ θ̄
g2s

32π2
GaμνG̃a

μν þ
aðxÞ
f̃a=NC

g2s
32π2

GaμνG̃a
μν

þ kineticþ interactions;

where f̃a=NC ≡ fa is the axion-decay constant and it is
related to the magnitude of the vacuum expectation
value (VEV) that breaks the Uð1ÞPQ symmetry. We also
have that the divergence of the PQ current, ∂μJ

μ
PQ, is

NC
g2s

32π2
GaμνG̃a

μν ≠ 0. Hence, the CP violating term GG̃ is

now proportional to (θ̄ þ NCaðxÞ=f̃aÞ and it is shown
that haðxÞi ¼ −f̃aθ̄=NC minimizes the axion effective
potential so that, when the axion field is redefined,
aðxÞ → aðxÞ − haðxÞi, the CP violating term GG̃ is no
longer present in the Lagrangian, solving in this way the
strong CP problem. Although the axion is massless at tree
level, it is, in fact, a pseudo-Nambu-Goldstone boson since
it gains a mass due to nonperturbative QCD effects related
to the Uð1ÞPQ color anomaly. The axion mass and all its
couplings are governed by the value of fa. The original
conception of the axion was ruled out long ago because fa
was thought to be near the electroweak scale, implying in a
“visible” axion, in contradiction with laboratory and
astrophysical constraints. Few years after the PQ proposal
it was realized that for large enough values of fa the axion
could be a cold dark matter candidate [9–11]. In fact, for
high symmetry breaking scales, the axion is a nonbaryonic
extremely weakly-interacting massive particle, stable on
cosmological time scales, which makes it a candidate to
dark matter. Later in the text we discuss the constraints on
fa coming from NEDM, “invisibility” of the axion, and
astrophysical data.

In order to consider the axion a viable DM candidate we
must deal with its relic abundance which strongly depends
on the history of the Universe. In particular, the cosmo-
logical scenario for the axion production changes signifi-
cantly if the PQ symmetry is broken before or after the
inflationary expansion of the Universe. The main issue
related to the order of these events concerns the axion-
production mechanisms. There are production mechanisms
due to topological defects, like axionic strings and domain
walls, that are comparable to the vacuum misalignment
one. Hence, on one hand, if the PQ-symmetry breaking
occurs before inflation, inflation will erase these topologi-
cal defects. On the other hand, if the PQ-symmetry
breaking happens after inflation, it is expected an additional
number of axions to be produced due to the decay of the
topological defects, affecting directly the relic abundance
estimative. In this work we consider axions as DM
candidates in the so-called post-inflationary scenario, when
the reheating temperature, TR, is high enough to restore the
PQ symmetry, TR > TC ∼ fa, which will be broken at a
later time, when the temperature of the Universe falls below
the critical temperature TC.
As we can see, axions present some features with

relevant implications not only in particle physics but also
in cosmology and it is also a strong indication that physics
beyond the SM is in order. In this vein a large variety of
models, extensions of the SM, has been proposed. Most of
them claim for very appealing achievements relating the
DM solution to another yet unsolved issue in particle
physics [12–14], as it is the case of the lightness of the
active neutrino masses, the smallness of the strong CP
violation, or the hierarchy problem, for instance.
Among others, a way of introducing new physics is

to consider a model with a larger symmetry group. In
particular, there is a class of models based on the SUð3ÞC ⊗
SUð3ÞL ⊗ Uð1ÞX gauge group (the so called 3 − 3 − 1
models, for shortness), which are interesting extensions of
the SM. In general, these 3 − 3 − 1 models bring welcome
features which we review very shortly here. We can take
advantage of the larger group representation to choose the
matter content in order to introduce new degrees of freedom
which are appropriate to implement, for instance, a mecha-
nism to generate tiny active neutrino masses, in the lepton
sector. The quark sector will also have new degrees of
freedom and, depending on the particular representation,
the model can have quarks with exotic electric charges or
not. The issue of the chiral anomaly cancellation is solved
provided we have the same number of triplets and anti-
triplets, including color counting. Then, considering that
we have the same number of lepton and quark families, say
nf, we find that nf must be three or a multiple of three.
However, from the QCD asymptotic freedom we find that
the number of families must be just three in order to get the
correct, negative, sign of the renormalization group β
function. Note that, contrarily to the SM, the total number
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of families must be considered altogether in order to get the
model anomaly free. Hence, the number of families and the
number of colors are related to each other by the anomaly
cancellation condition. This fact is a direct consequence of
the 3 − 3 − 1 gauge invariance and it can be seen as a hint
to the solution to the family replication issue. We can still
mention other interesting features: (i) the electric charge
quantization does not depend if neutrinos are Majorana
or Dirac fermions [15]; (ii) the model described in
Refs. [16–18] presents the relation t2 ¼ ðg0=gÞ2 ¼
sin2 θW=ð1 − 4 sin2 θWÞ, which relates the Uð1ÞX and the
SUð3ÞL coupling constants, g0 and g, respectively, to the
electroweak θW angle. This relations shows a Landau-
like pole at some OðTeVÞ, energy scale, μ, for which
sin2 θWðμÞ ¼ 1=4 [19], and it would be an explanation to
the observed value sin2 θWðMZÞ < 1=4. (iii) The Peccei-
Quinn symmetry, usually introduced to solve the strong CP
problem, can be introduced in a natural way [20]. In this
work we consider a version of a 3 − 3 − 1 model where a
gravity stable PQ mechanism can be implemented. We
analyze the conditions under which the axion, resulting
from the spontaneous breaking of the PQ symmetry in this
model, can be considered a dark matter candidate.
This work is organized as follows. In Sec. II, we present

the general features of the 3 − 3 − 1 model, including its
matter content, Yukawa interactions and scalar potential. In
Sec. III we show the main steps to make the axion invisible
and the PQ mechanism stable against gravitational effects.
We also show the axion effective potential from which its
mass is derived. In Sec. IV we consider the axion
production mechanisms in order to compute its abundance
in the Universe. Results for the vacuum misalignment and
decay of the string and string-wall system mechanisms are
given. In Sec. V we confront the predictions from the
previous section with the observational constraints, coming
mainly from the Planck-collaboration results for the DM
abundance, the NEDM data and direct axion searches, in
order to constrain the parameter space of the model.
Section VI is devoted to our final discussions and
conclusions.

II. BRIEFLY REVIEWING THE MODEL

We consider the 3 − 3 − 1 model with right-handed
neutrinos, Na, in the same multiplet as the SM leptons,
νa and ea. In other words, in this model all of the left-
handed leptons, FaL ¼ ðνa; ea; Nc

aÞTL with a ¼ 1, 2, 3,
belong to the same ð1; 3;−1=3Þ representation, where
the numbers inside the parenthesis denote the quantum
numbers of SUð3ÞC, SUð3ÞL and Uð1ÞX gauge groups,
respectively. This model was proposed in Refs. [21,22] and
it has been subsequently considered in Refs. [20,23–31]. It
shares appealing features with other versions of 3 − 3 − 1
models [16–18,32–36]. Furthermore, the existence of right-
handed neutrinos allows mass terms at tree level, but it is

necessary to go to the one-loop level to obtain neutrino
masses in agreement with experiments [26].
The remaining left-handed fermionic fields of the model

belong to the following representations

Quarks∶ QL ¼ ðu1; d1; u4ÞTL ∼ ð3; 3; 1=3Þ; ð1Þ

QbL ¼ ðdb; ub; dbþ2ÞTL ∼ ð3; 3̄; 0Þ; ð2Þ

where b ¼ 2, 3; and “∼” means the transformation proper-
ties under the local symmetry group. Additionally, in the
right-handed field sector we have

Leptons∶ eaR ∼ ð1; 1;−1Þ; ð3Þ

Quarks∶ usR ∼ ð3; 1; 2=3Þ; dtR ∼ ð3; 1;−1=3Þ; ð4Þ

where a ¼ 1, 2, 3; s ¼ 1;…; 4 and t ¼ 1;…; 5.
In order to generate the fermion and boson masses, the

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX symmetry must be spontane-
ously broken to the electromagnetic group, i.e., to the
Uð1ÞQ symmetry, whereQ is the electric charge. To do this,
it is necessary to introduce, at least, three SUð3ÞL triplets, η,
ρ, χ, as shown in Ref. [30], which are given by

η ¼ ðη01; η−2 ; η03ÞT ∼ ð1; 3;−1=3Þ;
ρ ¼ ðρþ1 ; ρ02; ρþ3 ÞT ∼ ð1; 3; 2=3Þ; ð5Þ

χ ¼ ðχ01; χ−2 ; χ03ÞT ∼ ð1; 3;−1=3Þ: ð6Þ

Once these fermionic and bosonic fields are introduced
in the model, we can write the most general Yukawa
Lagrangian, invariant under the local gauge group, as
follows

LYuk ¼ Lρ
Yuk þ Lη

Yuk þ Lχ
Yuk; ð7Þ

with

Lρ
Yuk ¼ αtQ̄LdtRρþ αbsQ̄bLusRρ�

þ Yaa0ϵijkðF̄aLÞiðFa0LÞcjðρ�Þk þ Y0
aa0F̄aLea0Rρ

þ H:c:; ð8Þ

Lη
Yuk ¼ βsQ̄LusRηþ βbtQ̄bLdtRη� þ H:c:; ð9Þ

Lχ
Yuk ¼ γsQ̄LusRχ þ γbtQ̄bLdtRχ� þ H:c:; ð10Þ

where ϵijk is the Levi-Civita symbol and a0, i; j; k ¼ 1, 2,
3 and a, b, s, t are in the same range as in Eq. (3). It is
also straightforward to write down the most general
scalar potential consistent with gauge invariance and
renormalizability as
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Vðη; ρ; χÞ ¼ VZ2
ðη; ρ; χÞ þ VZ2

ðη; ρ; χÞ; ð11Þ

with

VZ2
ðη; ρ; χÞ

¼ −μ21η†η − μ22ρ
†ρ − μ23χ

†χ

þ λ1ðη†ηÞ2 þ λ2ðρ†ρÞ2 þ λ3ðχ†χÞ2 þ λ4ðχ†χÞðη†ηÞ
þ λ5ðχ†χÞðρ†ρÞ þ λ6ðη†ηÞðρ†ρÞ þ λ7ðχ†ηÞðη†χÞ
þ λ8ðχ†ρÞðρ†χÞ þ λ9ðη†ρÞðρ†ηÞ þ ½λ10ðχ†ηÞ2 þ H:c:�;

ð12Þ

VZ2
ðη; ρ; χÞ ¼ −μ24χ†ηþ λ11ðχ†ηÞðη†ηÞ þ λ12ðχ†ηÞðχ†χÞ

þ λ13ðχ†ηÞðρ†ρÞ þ λ14ðχ†ρÞðρ†ηÞ
þ λ15ϵijkηiρjχk þ H:c: ð13Þ

We have divided the total scalar potential Vðη; ρ; χÞ in two
pieces, VZ2

ðη; ρ; χÞ, invariant under the Z2 discrete sym-
metry (χ → −χ, u4R → −u4R, dð4;5ÞR → −dð4;5ÞR, and all the
other fields even by the symmetry), and VZ2

ðη; ρ; χÞ, which
breaks Z2. This discrete symmetry is motivated by the
implementation of the PQ mechanism as shown below.
It is well known that the minimal vacuum structure

needed to give masses to all the particles in the model is

hρi ¼ 1ffiffiffi
2

p ð0; vρ0
2
; 0ÞT; hηi ¼ 1ffiffiffi

2
p ðvη0

1
; 0; 0ÞT;

hχi ¼ 1ffiffiffi
2

p ð0; 0; vχ0
3
ÞT; ð14Þ

which correctly reduces the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX
symmetry to the Uð1ÞQ one. In principle, the remaining
neutral scalars, η03 and χ

0
1, can also gain VEVs. However, in

this case, dangerous Nambu-Goldstone bosons can arise in
the physical spectrum, as shown in Ref. [37]. In this paper,
we are going to consider only the minimal vacuum
structure given in Eq. (14).

III. IMPLEMENTING A GRAVITY
STABLE PQ MECHANISM

The key ingredient to implement the PQ mechanism
is the invariance of the entire Lagrangian under a global
Uð1Þ symmetry, called Uð1ÞPQ, which must be both
afflicted by a color anomaly and spontaneously broken
[38–41]. In general, the implementation of the PQ mecha-
nism in the 3 − 3 − 1 models is relatively straightforward
[20,28]. In particular, in Ref. [20] a gravitationally stable
PQ mechanism for the model considered here is success-
fully implemented. We are going to review its main results
for completeness.

First of all, we search for all Uð1Þ symmetries of the
Lagrangian given in Eqs. (7) and (11). Doing so, we find
only two symmetries, Uð1ÞX and Uð1ÞB, which clearly do
not satisfy the two minimal conditions required for the
Uð1ÞPQ symmetry. See Table I for the quantum number
assignments of the fields for these symmetries. In other
words, the Uð1ÞPQ is not naturally allowed by the gauge
symmetry. However, if the Lagrangian is slightly modified
by imposing a Z2 discrete symmetry such that χ → −χ,
u4R → −u4R, dð4;5ÞR → −dð4;5ÞR, all terms in VZ2

ðη; ρ; χÞ
are forbidden. In addition, the Yukawa Lagrangian inter-
actions given in Eqs. (8)–(10) are slightly modified to

Lρ
Yuk ¼ αaQ̄LdaRρþ αbaQ̄bLuaRρ�

þ Yaa0εijkðF̄aLÞiðFbLÞcjðρ�Þk þ Y0
aa0F̄aLea0Rρ

þ H:c:; ð15Þ

Lη
Yuk ¼ βaQ̄LuaRηþ βbaQ̄bLdaRη� þ H:c:; ð16Þ

Lχ
Yuk ¼ γ4Q̄Lu4Rχ þ γbðbþ2ÞQ̄bLdðbþ2ÞRχ� þ H:c: ð17Þ

Consequently, with the imposition of this Z2 symmetry a
Uð1ÞPQ symmetry is automatically introduced with the
charges given in Table II.
As η, ρ, χ get VEVs, an axion appears in the physical

spectrum. However, it is a visible axion because the Uð1ÞPQ
symmetry is actually broken by vρ0

2
, which is upper

bounded by the value of vSM ≃ 246 GeV, as shown in
Refs. [20,37]. Hence, this scenario is ruled out [42].
Nevertheless, a singlet scalar, ϕ ∼ ð1; 1; 0Þ, can be intro-
duced in order to make the axion invisible. Its role is to
break the PQ symmetry at an energy scale much larger than
the electroweak one. This field does not couple directly to
quarks and leptons, however it couples to the scalar triplets,
η, ρ and χ, through Hermitian terms and the non-Hermitian
term λPQϵ

ijkηiρjχkϕ, from which it gets a PQ charge equal
to 6, cf. Table II. Notice that this term is allowed as long as
the ϕ field is odd under theZ2 symmetry, i.e.,Z2ðϕÞ ¼ −ϕ.

TABLE I. The U(1) symmetries of the Lagrangian given by
Eqs. (7) and (11).

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η)

Uð1ÞX 1=3 0 2=3 −1=3 −1=3 −1 2=3 −1=3
Uð1ÞB 1=3 1=3 1=3 1=3 0 0 0 0

TABLE II. The Uð1ÞPQ charges in the model with a Z2 discrete
symmetry such that χ→−χ, u4R → −u4R, and dð4;5ÞR → −dð4;5ÞR.

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η)

Uð1ÞPQ −2 2 0 0 1 3 −2 −2
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Although the Z2 discrete symmetry apparently introdu-
ces the PQ mechanism in the model, there are two issues
with it. First, the Z2 and gauge symmetries allow some
renormalizable terms in the scalar potential, such as ϕ2, ϕ4,
ρ†ρϕ2, η†ηϕ2, χ†χϕ2, that explicitly violate the PQ sym-
metry in an order low enough to make the PQ mechanism
ineffective. Second, since the PQ symmetry is global, it is
expected to be broken by gravitational effects [43,44].
Thus, a mechanism to stabilize the axion solution has to be
introduced. As usual, the entire Lagrangian is considered to
be invariant under a ZD discrete gauge symmetry (anomaly
free) [20,28,45–48] and, in addition, this symmetry is
supposed to induce the Uð1ÞPQ symmetry. For ZD≥10 it
is found that all effective operators of the form ϕN=MN−4

Pl
(where N ≥ D is a positive integer and MPl is the reduced
Planck mass) that can jeopardize the PQ mechanism are
suppressed. In particular, in Ref. [20] two different sym-
metries, Z10 and Z11, were found to stabilize the PQ
mechanism for the Lagrangian given by Eqs. (11), (15)–
(17). The specific charge assignments for these symmetries
are shown in Table III. Note that the term λ15ϵijkηiρjχk in
the scalar potential is prohibited by both of these discrete
symmetries and it must be removed from the entire
Lagrangian.
We remark that both theZ10 andZ11 discrete symmetries

in Table III are anomaly free. This type of discrete
symmetry is known as gauge discrete ZN symmetry and
it is assumed to be a remnant of a gauge (local) symmetry
valid at very high energies, [45]. The anomaly-free con-
ditions are necessary in order to truly protect the PQ
mechanism against gravity effects [46,49–51], Specifically,
these discrete symmetries satisfy A3CðZNÞ ¼ A3LðZNÞ ¼ 0

Mod N=2, where A3C and A3L are the ½SUð3ÞC�2 × ZN ,
½SUð3ÞL�2 × ZN anomalies, respectively. Other anomalies,
such as Z3

N , do not give useful low energy constraints
because these depend on some arbitrary choices concerning
to the full theory. In particular, the Z3

N anomaly depends on
the fermions which get masses at very high energy and are
integrated out in the low-energy Lagrangian. All the details
of these anomaly conditions applied to the 3 − 3 − 1model
can be found in Ref. [20].
In both cases, the axion, aðxÞ, is the phase of the ϕ field,

i.e., ϕðxÞ ∝ exp ðiaðxÞ=f̃aÞ, which implies f̃a ≈ vϕ. As it is
well known, to make the axion compatible with astro-
physical and cosmological considerations, the axion-decay
constant fa (related to f̃a by fa ¼ f̃a=NC ¼ f̃a=NDW, with

NDW being the number of domain walls in the theory.
In this model we have NC ¼ NDW ¼ 3), must be in the
range 109 GeV≲ fa ≲ 1012 GeV (we are assuming a post-
inflationary PQ symmetry breaking scenario). Note that
this high value of fa ¼ f̃a=NC ≈ vϕ=NC ≫ vρ0

2
; vη0

1
; vχ0

3
,

justifies the approximation in the form of axion eigenstate.
It is also important to remember that in this model v2

ρ0
2

þ
v2
η0
1

¼ v2SM and vχ0
3
is expected to be at the TeVenergy scale.

Now, we can go further calculating the axion mass, ma.
In this model, the axion gains mass because the Uð1ÞPQ
symmetry is both anomalous under the SUð3ÞC group and
explicitly broken by gravity-induced operators, gϕN=MN−4

Pl
(with g ¼ jgj exp iδ). These operators have a high dimen-
sion (N ≥ 10) because of the protecting Z10 or Z11 discrete
symmetries, as shown in Table III. These two effects induce
an effective potential for the axion, Veff , from which it is
possible to determine the axion mass. In more detail, as the
Uð1ÞPQ symmetry is anomalous, we will have a VPQ term in
the effective potential, which can be written as

VPQ ¼ −m2
πf2π

�
1 −

4mumd

ðmu þmdÞ2
sin2

�
aðxÞ
2fa

��
1=2

; ð18Þ

where mπ ≃ 135 MeV and fπ ≃ 92 MeV are the mass and
decay constant of the neutral pion, respectively; mu and md
are the masses of the up and down quarks. Note that VPQ

has a minimum when haðxÞi=fa ¼ 0, which solves the
strong CP problem in the usual way.
However, because of the PQ symmetry is also explicitly

broken by gravity effects, the effective potential gets
another term, Vgravity, which reads

Vgravity ≃ −
jgjvNϕ

2N=2−1MN−4
Pl

cos

�
NaðxÞ
f̃a

þ δD

�
; ð19Þ

where N ¼ 10, 11 for Z10 and Z11, respectively. The phase
δD inside the trigonometric function can be written as

δD ¼ δ − Nθ̄; ð20Þ

where δ is the phase of the g coupling constant and θ̄ is the
parameter which couples to the gluonic field strength and
its dual. This extra term in the scalar potential, Eq. (19), has
two important consequences. First, it induces a shift in the

value of haðxÞifa
where Veff has a minimum. Expanding Veff ¼

VPQ þ Vgravity in powers of haðxÞi
fa

, we find that in the
minimum, the axion VEV satisfies

jhaðxÞij
fa

����
min

≃

NjgjNN−1
DW

2
N
2
−1

ð fa
MPl

ÞN−2M2
Pl sin δD

m2
πf2π
f2a

mumd

ðmuþmdÞ2 þ
N2jgjNN−2

DW

2
N
2
−1 ð fa

MPl
ÞN−2M2

Pl cos δD
;

ð21Þ

TABLE III. The charge assignment for ZD that stabilizes the
PQ mechanism in the considered 3 − 3 − 1 model.

QL QiL (uaR, u4R) (daR, dð4;5ÞR) FaL eaR ρ (χ, η) ϕ

Z10 þ7 þ5 þ1 þ1 þ7 þ1 þ6 þ6 þ2
Z11 þ7 þ6 þ1 þ1 þ8 þ2 þ6 þ6 þ4
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where we have used vϕ ≈ f̃a ¼ NDWfa. Note that for

jgj ¼ 0 (or for δD ¼ 0) we have that haðxÞi
fa

¼ 0 in the
minimum, as it should be to solve the strong CP problem.

However, in the general case, the value of haðxÞi
fa

does not
satisfy the NEDM constraint [8], which imposes

haðxÞi
fa

¼ θ̄ ≲ 0.7 × 10−11: ð22Þ

In addition, Vgravity brings a mass contribution for the axion,
ma;gravity. From Eq. (19) we obtain

m2
a;gravity ¼

N2jgjNN−2
DW

2
N
2
−1

�
fa
MPl

�
N−2

M2
Pl cos δD: ð23Þ

This contribution can, in general, be much larger than the
well-known axion-mass term coming from the QCD non-
perturbative terms, Eq. (18),

m2
a;QCD ¼ m2

πf2π
f2a

mumd

ðmu þmdÞ2
: ð24Þ

Thus, in order to maintain the axion mass stable, we are
going to look for values of the parameters jgj, fa and δD for
N ¼ 10, 11 that both satisfy the NEDM constraint and
leave the axion mass stable ðma;QCD ≳ma;gravityÞ.
Before closing this section, it is important to remark that

although the 3 − 3 − 1 model considered in this paper has
additional contributions to CP-violating processes that in
principle can contribute to the NEDM, these do not require
tuning the model parameters at the same order of the θ̄
parameter as it was correctly estimated in Ref. [20].
Roughly speaking, the dominant contribution to the
up-quark electric dipole moment, deu, coming from the
interchange of the χ scalar is of order deujmu≪mu4

;mχ
≈

ejγ4·γbðbþ2Þj sin α
48π2

mu4
m2

χ
KðrÞ, where sin α is the sine of the

CP-violating phase, α, and KðrÞ ¼ 1
2r −

1
r2 þ 1

r3 ln ð1þ rÞ,
with r ¼ m2

u4
m2

χ
− 1, and where mu is the up-quark mass; mu4

andmχ are the exotic quark and scalar masses, respectively.
For reasonable Yukawa couplings (γ4, γbðbþ2Þ) and
CP-violating phases, and for mu4 and mχ masses of order
of TeV, the den ∼ 4

3
ded −

1
3
deu ≈OðdeuÞ is in agreement with

experiments without requiring a strong fine-tuning of the
parameter of the model [20].

IV. REVIEWING THE NONTHERMAL
PRODUCTION OF AXION DARK MATTER

For the postinflationary fa values considered here, cold
dark matter in the form of axions can be produced by three
different processes: the misalignment mechanism [52],

where the axion field oscillates about the minimum of
its potential, trying to decrease the energy after the breaking
of the PQ symmetry; and the decay of one-dimensional
(global strings [53]) and two-dimensional (domain walls
[54]) topological defects, which appear after breaking this
symmetry. Now, we will briefly review the general expres-
sions for the axion relic density in these three mechanisms
following Ref. [55].

A. Misalignment mechanism

The equation of motion for the axion field a in a
homogeneous and isotropic Universe, is of the type of a
damped harmonic oscillator with a natural frequency equal
to the axion mass. In this case, taking into account
nonperturbative effects of QCD at finite temperature
and considering the interacting instanton liquid model
(IILM) [56], the axion mass depends on the temperature
as [57]

m2
aðTÞ ¼ cT

Λ4
QCD

f2a

�
T

ΛQCD

�
−n
; ð25Þ

where the values of the parameters are cT ¼ 1.68 × 10−7,
n ¼ 6.68 and ΛQCD¼ 400 MeV [57]. This dependence, is
valid in the regimewhere the axion mass at temperature T is
less than its value at temperature zero, given by mað0Þ2 ¼
c0

Λ4
QCD

f2a
, where c0 ¼ 1.46 × 10−3, which leads to a mini-

mum temperature ∼103 MeV for the validity of the fit. The
temperature Tosc at which the axion field begins to oscillate
is given by [55]

Tosc ¼ 2.29 GeV

�
g�ðToscÞ

80

�
− 1
4þn
�

fa
1010 GeV

�
− 2
4þn

×

�
ΛQCD

400 MeV

�
; ð26Þ

where g�ðToscÞ is the number of relativistic degrees of
freedom at temperature Tosc. Eq. (26) is valid for temper-
atures greater than 103MeV, where Eq. (25) holds, and it is
also assumed a not too strong dependence on the temper-
ature of g�, which, for the range 109 GeV < fa <
1012 GeV analyzed in this work, varies between 80 and
85 [58], what would change the abundance of axion dark
matter by a factor of ≈1.02. Once the adiabatic condition
is satisfied, both the entropy and the number of axions
with momentum zero per comoving volume are con-
served [9], and it is possible to obtain the dark matter
abundance [55]

Ωa;mish2 ¼ 4.63 × 10−3
�

fa
1010 GeV

�6þn
4þn

; ð27Þ
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where g�ðToscÞ ¼ 80 and ΛQCD¼ 400 MeV have been
used.

B. Decay of global strings

Global strings are the first of the topological defects
that appear after the breaking of the Uð1ÞPQ symmetry at
T ≲ vϕ because the field ϕ (with PQ charge equal to 6 in the
3 − 3 − 1 model considered here) acquires a VEV jhϕij ¼
vϕ [55,59]. Actually, the breaking of the PQ symmetry
leads to the formation of a densely knotted network of
cosmic axion strings, which oscillate under their own
tension, losing their energy by radiating axions [60]. The
radiation process lasts from the PQ-symmetry breaking
time to the QCD phase transition time. Using results of
numerical studies which provide the time dependence
of ρstring (energy density of strings) and ρa;string (energy
density of axions produced by the string decays), it is
possible to obtain the nowadays abundance of radiated
axions [61,62],

Ωa;stringh2 ¼ αN2
DW ×

�
fa

1010 GeV

�6þn
4þn

; ð28Þ

with α ¼ ð7.3� 3.9Þ × 10−3, g�ðToscÞ ¼ 80 and
ΛQCD¼ 400 MeV. NDW ¼ 3 is the number of domain
walls in this model, and n ¼ 6.68 is the same parameter
that appears in Eq. (25).

C. Decay of string-wall systems

In the 3 − 3 − 1 model considered, a Z3 subgroup
remains after the breaking of the Uð1ÞPQ symmetry, which
makes the vacuum manifold to be made of several
disconnected components. When the temperature of the
Universe lies between the electroweak and QCD phase
transition energy scales, domain walls appear as a conse-
quence of breaking this Z3 discrete symmetry. These
domain walls are attached by strings and occur at the
boundaries between regions of space-time where the value
of the field ϕ is different. These inhomogeneities of
space-time are in tension with the assumptions of standard
cosmology. So, it is necessary that these domain walls
decay at a certain time after being formed [63]. Actually,
the domain walls bounded by strings begin to oscillate
and eventually, when their tensions are greater than the
tensions of the strings, their annihilations lead to axion
production [64,65].
The energy density of domain walls can overclose the

Universe due to its dependence on the inverse of the square
of the scale factor, R, which decreases at a slower rate than
the corresponding to matter, ρ∼R−3, and radiation, ρ∼R−4.
In our case, this problem is solved by the introduction of a
Planck-suppressed operator in the effective potential for the
axion field a, parametrized as in Eq. (19). The current axion
abundance is given by the expression [55,66]:

Ωa;wallh2 ¼ 1.23 × 10−6½7.22 × 103� 32pβ
�
2p − 1

3 − 2p

�

×

�
N4

DW

�
1 − cos

2πN
NDW

��
1− 3

2p

× jgj1− 3
2p

�
Ξ

10−52

�
1− 3

2p
�

fa
1010 GeV

�
4þ3ð4p−16−3nÞ

2pð4þnÞ
;

ð29Þ

where Ξ ¼ 1

2
N
2

ð vϕ
MPl

ÞN−4, and β ¼ 1.65� 0.47 is a parameter

obtained from numerical simulations. Finally, we will refer
to the case p ¼ 1 as the exact scaling, and p ≠ 1 as the
deviation from scaling. From here on, we use p ¼ 0.926 for
the deviation from scaling case, since it is the suggested
value by numerical simulations [55].
In order to conclude this section, we have seen that

axions can be produced by three different non-thermal
mechanisms, which leads to the result that the total abun-
dance of axions in the Universe can be written as the sum of
all these contributions, Eqs. (27), (28) and (29), i.e.,

Ωah2 ¼ Ωa;mish2 þΩa;stringh2 þ Ωa;wallh2: ð30Þ

The total dark matter abundance due to axions is upper
bounded by the observational constraint on the current relic
density ΩPlanck

DM h2 ¼ 0.1197� 0.0066 (at 3σ) as reported by
the Planck Collaboration [67]. In the next section, we will
analyze the behavior of each contribution to the total
abundance, in order to establish a suitable region of
parameters for the model analyzed in this work.

V. CONSTRAINING THE NONTHERMAL
PRODUCTION OF AXION DARK MATTER

In general, the total dark matter relic density due to
axions in this 3 − 3 − 1 model depends on fa, g; NDW
and ZN . The dependence on fa, g, and NDW is direct
because Ωa;mis;Ωa;string and Ωa;wall explicitly depend on
these parameters. Nevertheless, the dependence on ZN is
indirect. Roughly speaking, this discrete symmetry con-
strains the order of the dominant gravity-induced operator
gϕN=MN−4

Pl . In other words, the discrete symmetry sets the
exponent N which directly affects the total dark matter due
to axions. Actually, we have two discrete symmetries, Z10

and Z11 (see Table III), that stabilize the PQ mechanism,
which implies that there are two cases to be considered,
N ¼ 10 and N ¼ 11. On the other hand, the domain wall
parameter, NDW, is set to be equal to 3 by the PQ symmetry
and the matter content in the model. Thus, we are interested
in knowing if the model with Z10 or/and Z11 symmetry
provides the total dark matter reported by the Planck
collaboration [67] when fa, g, take their allowed values,
without conflicting with the constraints on the axion
phenomenology.
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In order to do that, it is convenient, first, to study
separately the behavior of the three axion production
mechanisms which results are shown in Fig. 1.
Specifically, the cyan and black lines show the axion
abundances produced by misalignment and global string
decay mechanisms, respectively. On the other hand, the
blue lines show the abundance of axion dark matter due to
the decay of domain wall systems for N ¼ 10 and N ¼ 11,
calculated for the coupling constant value jgj ¼ 1. Two
shaded regions are also shown: the light red one corre-
sponds to the exclusion region coming from the constraint
of the over closure of the Universe [67], and the yellow
region gives the possible interval for the axion decay
constant fa, for which no over abundance of axions from
decay of global strings or domain walls is produced.
Finally, the dark green line corresponds to the total
abundance of axions, Ωah2, as given by Eq. (30), obtained
for the caseN ¼ 10 and jgj ¼ 1. The case forN ¼ 11 is not
shown because for all the considered values of fa the axion
relic density is overabundant.
From Fig. 1 some conclusions are straightforward.

First, Ωa;mis and Ωa;string grow when fa grows. Thus, in
principle, these are dominant for the greater values of fa
(5.3 × 109 GeV≲ fa ≲ 1.7 × 1010 GeV). However, the
misalignment mechanism is always subdominant because
Ωa;string has an extra N2

DW ¼ 9 global factor. Indeed, the
misalignment mechanism contributes at most by ≈7%
for the total dark matter density. In contrast, Ωa;wall is
decreasing with fa and thus it dominates Ωa for the smaller
values of fa (3.6 × 109 GeV≲ fa ≲ 5.3 × 109 GeV). That

can be understood realizing that the domain-wall time
decay is larger for smaller fa values, making the domain
wall more stable and, in this way, explaining why this
mechanism contributes more for the axion relic density
when fa is smaller. The opposite behavior of Ωa;string and
Ωa;wall allow to set an upper and lower bound on fa. For
jgj ¼ 1, fa is constrained to be 3.6×109 GeV<fa < 1.7×
1010 GeV in order to satisfy Ωa;wallh2 and Ωa;stringh2 ≲
ΩPlanck

DM h2 [67]. Actually, the interval of allowed fa values is
slightly thinner because all of the three axion production
mechanisms contribute simultaneously. Also, note that the
fa upper bound above is independent on the value of N and
on the value of jgj, as can be seen from Eq. (28). In contrast,
the lower bound is only valid for the case of N ¼ 10.
Actually, the case of Z11 is completely ruled out and, for
this reason, our analysis will be concerned exclusively with
the Z10 symmetry case. Once we have gained a general
knowledge about the behavior ofΩah2 as function of fa for
jgj ¼ 1, we can go further studying the parameter space for
the Z10 case, allowed by the axion phenomenology. In
particular, in Fig. 2 we show the parameter space fa − jgj
for the cases of exact scaling (p ¼ 1, left frame) and
deviation from scaling (p ¼ 0.926, right frame). The range
of values of the coupling constant, g, has been chosen to
include values of jgj ≤ ffiffiffiffiffiffi

4π
p

. The blue curves correspond to
the regions where the total axion dark matter abundance is
equal to ΩPlanck

DM h2, taking into account the uncertainties in
the parameters α and β in Eqs. (28) and (29). Notice that
for a given value of fa, jgj is lower bounded by these lines.
Larger values of jgj imply Ωah2 < ΩPlanck

DM h2. The light blue
shaded region is ruled out by the over closure of the
Universe for the case of the parameter β ¼ 2.12 in Eq. (29)
and for the α ¼ 7.3 − 3.9 ¼ 3.4 factor in Eq. (28). From
the remaining region, it is possible to exclude another large
part applying the axion mass stability condition, ma;QCD >
ma;gravity [see the discussion near Eq. (23)]. Becausema;gravity

is directly proportional to jgj and fN−2
a , cf. Eq. (23), and

m2
a;QCD is inversely proportional to f2a, cf. Eq. (24), the

forbidden region, denoted by the light red color, is in the top
right part of the fa − jgj plane. In addition, in Fig. 2 are
shown three dark red lines which correspond to the NEDM
constraint, given by Eq. (22), for different values of δD. It is
important to realize that δD values of order one (not shown)
do not give allowed regions in the parameter space. It is
necessary to allow δD ≲ 10−5 in order to have nonexcluded
regions which are below the lines. In particular, we calculate
the maximum values of δD that give allowed regions in
the parameter space. The corresponding results, in the cases
of exact scaling (p ¼ 1) and deviation from scaling
(p ¼ 0.926), are

δD ¼
� ð0.4–4.1Þ × 10−5 Exact scaling;

ð2.9–9.5Þ × 10−6 Deviation from scaling:
ð31Þ

FIG. 1. Relic density of nonthermal axion dark matter in the
3 − 3 − 1model, assuming exact scaling, p ¼ 1, and jgj ¼ 1. The
central values of the parameters in Eqs. (28) and (29) together
with NDW ¼ 3 have been used. The vertical dashed lines limit
regions with over production of axions by decay of domain walls
(left line) and strings (right line), while the horizontal red line is
the experimental constraint Ωah2 ¼ ΩPlanck

DM h2.
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These values are obtained by taking jgj ¼ ffiffiffiffiffiffi
4π

p
, and con-

sidering the uncertainties in the parameters of the three axion
production mechanisms. Lower values of jgj would require
higher tuning on the δD parameter, with values of the order
10−8 as shown in Fig. 2. In general, for jgj fixed, the tuning
on δD depends on the decay constant fa and the mechanism
of axion darkmatter production: if the decay of domain walls
was dominant (left side of the curves), the tuning would be
less severe than if the production by string decay (right side
of the curves) was the dominant one.
Also, in Fig. 2 is shown that for a δD small enough in

order to satisfy the NEDM condition, and for a given jgj
value between 5 × 10−2 and

ffiffiffiffiffiffi
4π

p
, there are two separated

regions for fa where axions can make up the total DM relic
density. For instance, taking jgj ¼ ffiffiffiffiffiffi

4π
p

and considering the
uncertainties in the parameters, these regions and their
corresponding axion masses for the exact scaling case, are

fa ≈
� ð2.8–3.5Þ× 109 GeV→ma ≈ ð1.7–2.1Þ× 10−3 eV

ð1.1–1.2Þ× 1010 GeV→ma ≈ ð5–5.4Þ× 10−4 eV

ð32Þ

In the first range for fa the production of dark matter is
mainly through the decay of domain walls, while in the
second range it is due to the decay of strings. Taking
smaller values for jgj, will lead to more stringent intervals
for both fa and ma. For the case of deviation from scaling,
we find fa ≈ ð3.4–3.6Þ × 109 GeV, corresponding to
ma ≈ ð1.7–1.8Þ × 10−3 eV, when the domain walls decay
is the leading production mechanism, and fa ≈ ð1.1–1.2Þ×
1010 GeV, leading to ma ≈ ð5–5.4Þ × 10−4 eV, for the
string decay as the dominant contribution.

Finally, for values of jgj of order one, we can make
predictions regarding the observability of axion in current
and/or future experiments. Specifically, the axion coupling
to two photons, gaγγ , depends on the fa decay constant, the
electromagnetic and color anomaly coefficients, E and NC,
respectively. It is known that these anomaly coefficients are
completely determined by the fermion content and the

(a) (b)

FIG. 2. Observational constraints on the parameter space fa − jgj in the 3 − 3 − 1 model, assuming exact scaling (a) and deviation
from scaling (b). These plots correspond to the Z10 discrete symmetry, and NDW ¼ 3. The shaded regions in light red and light blue
correspond to regions of the parameter space where the constraints given by ma;QCD > ma;gravity and Ωah2 ≤ ΩPlanck

DM h2 are violated,
respectively. Moreover, the regions above the straight red lines correspond to the exclusion regions set by the NEDM condition, as given
by Eqs. (21) and (22), for three different choices of the δD parameter.

FIG. 3. Projected sensitivities of different experiments in the
search for axion dark matter. The green regions show sensitivities
of light-shining-through-wall experiments like ALPS-II [70], of
the helioscope IAXO [69], of the haloscopes ADMX and
ADMX-HF [71,72]. The yellow band corresponds to the generic
prediction for axion models in QCD. In addition, the two (one)
thick red (blue) lines stand for the predicted mass ranges and
coupling to photons in this model, for jgj ¼ 0.1 (jgj ¼ 1), where
axions make up the total DM relic density.
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Uð1ÞPQ charges of the model, cf. Table (II). Standard
calculations for anomaly coefficients [41,68] furnish
E ¼ −4 and NC ¼ 3. With this information, we can go
further plotting, in Fig. 3, gaγγ as a function of ma for the
regions where axions make up the total dark matter relic
density and for two different values of jgj, specifically jgj ¼
0.1 and jgj ¼ 1. This figure clearly shows two allowed
regions for jgj ¼ 0.1: ma ≈ ð0.4–0.6Þ × 10−3 eV with
gaγγ ≈ ð4.5–5.9Þ × 10−13 GeV−1 and ma ≈ ð0.9–1.3Þ ×
10−3 eV with gaγγ ≈ ð1.1–1.6Þ × 10−12 GeV−1, and one
region for jgj ¼ 1: ma ≈ ð1.4–1.8Þ × 10−3 eV with gaγγ ≈
ð1.8–2.2Þ × 10−12 GeV−1. The reason why there is only
one region for larger jgj values is that the gravitational mass
grows with jgj and thus, it conflicts with the condition
ma;QCD ≫ ma;gravity for lower axion masses. Moreover, it is
notable that for the range with larger masses (blue line), the
axion parameters of this 3 − 3 − 1 model are very close to
the projected region which is going to be explored by the
IAXO experiment [66,69].

VI. CONCLUSIONS

In this work, we consider a version of an alternative
electroweak model based on the SUð3ÞL ⊗ Uð1ÞX gauge
symmetry, the so called 3 − 3 − 1 models, when the color
gauge group is added. For this version, which includes
right-handed neutrinos, it is shown in Ref. [20] that the PQ
mechanism for the solution of the strong CP problem can
be implemented. In this implementation, the axion, the
pseudo Nambu-Goldstone boson that emerges from the
PQ-symmetry breaking, is made invisible by the introduc-
tion of the scalar singlet ϕ ∼ ð1; 1; 0Þ whose VEV, vϕ ≈ f̃a,
is much larger than vSM, and any other VEV in the model.
Moreover, the axion is also protected against gravitational
effects, that could destabilize its mass, by a discrete ZN
symmetry, with N ¼ 10, 11.
Once we have set this consistent scenario, we investigate

the capabilities of this axion, produced in the framework of
this particular 3 − 3 − 1 model, to be a postinflationary
cold dark matter candidate. We started focusing in the
axion-production mechanisms. As it was explained in the
previous section, from Fig. 1 we see that the vacuum
misalignment mechanism does not dominate the DM relic
abundance, and, if it was the only production mechanism in
action, an upper bound for fa could be set by imposing that
it should account for all the DM abundance, i.e.,
Ωa;mish2 ¼ ΩPlanck

DM h2, and we would find the corresponding
value fa ≈ 1.5 × 1011 GeV, for the parameters determined
by the model, in this caseNDW ¼ 3. However, there are two
other more efficient mechanisms due to the decay of
topological defects: cosmic strings and domain walls. As
the curves for Ωa;stringh2 and Ωa;wallh2 grow in opposite
directions, relatively to the fa values, we can determine an
upper bound and a lower bound for fa by imposing the total
Ωah2 matches the observed Planck results. This is the case

when we add up all the contributions for N ¼ 10, and we
find 3.6 × 109 GeV < fa < 1.7 × 1010 GeV. However, we
would like to stress that this is not the case for N ¼ 11. For
N ¼ 11 there is no value of fa for which the addition of the
partial abundances lies below the observed result. It means
that theZ11, which possesses the good quality of stabilizing
the axion, is not appropriate for the axion-production issue
since it makes the domain wall mechanism too efficient and
overpopulates the Universe.
As it can be seen from Fig. 1, for any fixed allowed value

of jgj, there are two values of fa that are in agreement with
the value of ΩPlanck

DM h2. In fact they are regions, if we take
into account the uncertainties following the discussion in
the previous section for Fig. 2. Outside these regions, the
axion abundance will be a fraction of ΩPlanck

DM h2. See the
solid dark green curve in Fig. 1 for jgj ¼ 1. If this happens
to be the case, i.e., if these predicted regions are somehow
excluded, by future experimental data for the axion mass
value, for instance, then, another kind of DM will be
needed. We have also found special values for δD,
ð0.4–4.1Þ × 10−5, by requiring the minimal compatible
intersection region between the curves that obey the
NEDM and ΩPlanck

DM h2 constraints. This value was obtained
considering the maximum value of jgj, i.e., jgj ¼ ffiffiffiffiffiffi

4π
p

,
cf. Fig. 2(a). For lower values of jgj, higher tuning on δD is
required. However, it seems unnatural to require severe
levels of tuning on δD, since for this quantity a tiny value is
the result of the difference between two terms that have
completely different origins.
Regarding the capabilities of detecting the axion dark

matter, Fig. 3 shows the sensitivities of several experiments
in the ma − gaγγ plane. In this plot, the thick blue and red
lines are the regions where the axion abundance is
responsible for all the observed DM. These lines were
obtained by using jgj of order one. Moreover, the blue
region corresponding to masses of the order of meV and
gaγγ ≈ 10−12 GeV−1, lies very close to the projected IAXO
sensitivity, so that it will be reachable in the near future.
Looking back to our results we can conclude that this

version of the 3 − 3 − 1 model, concerning the axion DM
issue and the strong CP problem, is phenomenologically
consistent. This model, besides its good qualities presented
in the introduction, also possesses new degrees of freedom
that are not yet experimentally probed. For instance, the
model has charged and neutral scalars (besides the Higgs),
extra vector bosons and extra quarks, that are expected to be
heavy, and could, in principle, be searched at colliders. See
Refs. [73,74] for recent studies concerning the 3 − 3 − 1
model phenomenology, in general, at the LHC.
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