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An analogue model for the AdS2 spacetime has been recently introduced by Mosna et al.
[Phys. Rev. D 94, 104065 (2016)] by considering sound waves propagating on a fluid with an
ill-defined velocity profile at its source/sink. The wave propagation is then uniquely defined only when
one imposes an extra boundary condition at the source/sink (which corresponds to the spatial infinity of
AdS2). Here we show that, once this velocity profile is smoothed out at the source/sink, the need for
extra boundary conditions disappears. This, in turn, corresponds to deformations of the AdS2 spacetime
near its spatial infinity. We also examine how this regularization of the velocity profile picks up a specific
boundary condition for the idealized system, so that both models agree in the long wavelength limit.

DOI: 10.1103/PhysRevD.97.104056

I. INTRODUCTION

It is well known [1,2] that sound waves propagating on a
moving (inviscid, irrotational, and barotropic) fluid satisfy
the wave equation on an effective curved spacetime,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νψÞ ¼ 0; ð1Þ

where ψ is the perturbation of the velocity potential of the

fluid, i.e., δv⃗ ¼ −∇⃗ψ . The metric gμν is the effective metric
felt by the sound waves and it is determined by the essential
quantities which define the background fluid. In two-
dimensional models this metric is given by [2]

ds2 ¼
�
σ

c

�
2

½−ðc2 − v2Þdt2 − 2vdtdrþ dr2 þ r2dθ2�;

ð2Þ
where v is the velocity of the background fluid, σ its density
and c the speed of sound relative to the fluid. In this way,
sound waves propagating in a moving fluid can be used as a
playground to study aspects of general relativity (analogue
gravity).
Analogue models are useful to test elements of quantum

field theory (QFT) in curved spaces. The detection of
Hawking radiation in a fluid analogue gravity system has
been reported in [3] (it has been argued in [4,5] that the
Planckianity of the spectrum is lost under the experimental

setup of [3]; at any rate, with the increase of Froude’s
number, the Planckian spectrum should be observed [4]).
The phenomenon of super-radiance has also been observed
in the laboratory in this context [6]. On the other hand,
models based on Bose-Einstein condensates have also been
used to provide a description of QFT in curved spaces.
Analogues of cosmological particle creation by an expand-
ing universe [7] and Hawking radiation [8] have also been
observed in the laboratory within this setup.
One difficulty faced by QFT in curved spacetimes is the

question of the well-posedness of the wave equation. When
the spacetime fails to be globally hyperbolic, it may be
possible to have an infinite number of acceptable physical
evolutions for the propagating wave [9–11]. These solu-
tions are in one-to-one correspondence with self-adjoint
extensions of the spatial part of the wave operator which, in
turn, correspond to extra conditions that should be imposed
at the spatial boundary.
In a previous paper [12], some of the authors introduced

an analogue model based on the anti–de Sitter (AdS) space
in terms of a planar radial flow with a point source/sink.
The AdS spacetime is nonglobally hyperbolic and, as a
result, it is impossible to uniquely solve the wave equation
without specifying additional boundary equations at infin-
ity (in a certain sense, information can flow in from infinity
on AdS). On the analogue model end, the background flow
on which the sound waves propagate has constant radial
velocity,

v⃗ðr⃗Þ ¼ αce⃗r; ð3Þ
with constant −1 < α < 1, and the spacelike infinity of
AdS is mapped to point source at r ¼ 0. Notice that jαj < 1

*dquispe@ifi.unicamp.br
†mosna@ime.unicamp.br
‡pitelli@ime.unicamp.br

PHYSICAL REVIEW D 97, 104056 (2018)

2470-0010=2018=97(10)=104056(7) 104056-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.104056&domain=pdf&date_stamp=2018-05-30
https://doi.org/10.1103/PhysRevD.94.104065
https://doi.org/10.1103/PhysRevD.97.104056
https://doi.org/10.1103/PhysRevD.97.104056
https://doi.org/10.1103/PhysRevD.97.104056
https://doi.org/10.1103/PhysRevD.97.104056


and thus the fluid velocity is always subsonic and no dumb
holes appear in this case.
Introducing a new time coordinate given by (see [12])

τ ¼ tþ α

cð1 − α2Þ r; ð4Þ

and considering circularly symmetric sound waves ψðt; rÞ,
we obtain the wave equation

∂2ψ

∂τ2 ¼ c2ð1 − α2Þ2 ∂
2ψ

∂r2 : ð5Þ

Equation (5) resembles the equation of a semi-infinite
string, for which boundary conditions at r ¼ 0 have the
usual interpretation. The need for extra boundary condi-
tions at AdS can thus be interpreted as the natural require-
ment of specifying boundary conditions for the sound
waves at the fluid source at r ¼ 0. In [12] some of us
calculated, among other things, how physical quantities,
like the phase difference between ingoing and outgoing
scattered waves δðωÞ, relate to those boundary conditions.
We also analyzed the linear stability of the fluid configu-
ration with relation to the chosen boundary condition.
The velocity flow considered in Eq. (3) is clearly not well

defined at the source. A natural question that comes to mind
is, what happens to the previous analysis if we regularize
v⃗ðr⃗Þ near the origin so that the flow is well defined and
continuous there [13]? How does the regularization affect
δðωÞ and what is its effect on the AdS counterpart of
this analogue model? The aim of this paper is to provide
answers to these questions.

II. ADS ANALOGUE MODEL

We start by briefly reviewing the AdS case; more details
can be found in [12]. The continuity equation for a
stationary flow with constant radial velocity (3) leads to
a density for the background fluid of the form

σðrÞ ¼ k
αcr

; ð6Þ

where k is a constant. Substituting Eqs. (3) and (6) into the
line element (2) and making use of the transformation of
variables (4) we get

ds2 ¼ k2

α2c4r2

�
−c2ð1 − α2Þdτ2 þ dr2

1 − α2
þ r2dθ2

�
: ð7Þ

If we define τ̄ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
τ and r̄ ¼ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
we

arrive at

ds2 ¼ 1

H2r̄2
½−dτ̄2 þ dr̄2� þ ð1 − α2Þ

H2
dθ2; ð8Þ

with H2 ¼ α2c4ð1 − α2Þ=k2. But this is just the product of
the AdS2 metric in Poincaré coordinates with S1. Therefore,
circularly symmetric sound waves propagating on this fluid
provide an analogue model for scalar waves on AdS2 [14].
Radial sound waves on this background satisfy Eq. (5),

where r > 0 is the radial coordinate. It is well known that,
for waves propagating on the half-line, a boundary con-
dition is necessary at r ¼ 0. The boundary condition which
is required in order that the spatial part of the wave operator
becomes self-adjoint is given by the mixed boundary
condition

ψðτ; 0Þ þ β
∂ψðτ; 0Þ

∂r ¼ 0; ð9Þ

where β ∈ R ∪ f�∞g is a parameter. The Dirichlet and
Neumann boundary conditions correspond to β ¼ 0 and
β ¼ �∞, respectively.
It was shown in [12] that the boundary condition appears

as an observable in the scattering of circularly symmetric
waves; i.e., the phase difference between the ingoing and
outgoing waves depends on the chosen boundary condi-
tion. The scattering solution of Eq. (5) with boundary
condition (9) is

ψðt; rÞ ∼ ðe−i ω
cð1−αÞr þ ei

ω
cð1þαÞrþiδðzÞÞe−iωt; ð10Þ

where z≡ βω
cð1−α2Þ and δðzÞ is given by

eiδðzÞ ¼ iz − 1

izþ 1
: ð11Þ

The boundary condition parameter β is, therefore, encoded
in the phase difference between the incoming and out-
going waves.
The linear stability of the fluid configuration also

depends on the boundary condition. In particular, if
β > 0, there are modes of the form

ψðt; rÞ ∼ e−ð1−αÞr=βecð1−α2Þt=β: ð12Þ

These modes grow exponentially in time, leading to a linear
instability of the configuration. For β ≤ 0 and β ≠ �∞, the
fluid configuration is mode stable.

III. REGULARIZATION OF THE FLUID
VELOCITY

We now consider sound waves in more general two-
dimensional radial fluid flows. As discussed above, we are
interested in the case where the velocity can be written as

v⃗ðrÞ ¼ vðrÞe⃗r:

The acoustic metric for the fluid flow, which we assume to
be ideal and barotropic, then takes the form
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gμν ¼
�
σðrÞ
c

�
2

0
BB@

−ðc2 − vðrÞ2Þ −vðrÞ 0

−vðrÞ 1 0

0 0 r2

1
CCA;

where, as a result of the continuity equation, the counterpart
of Eq. (6) is given by

σðrÞ ¼ k
rvðrÞ ; ð13Þ

where k is a constant. Note that density diverges as r → 0 in
all models of this kind, with finite fluid velocities. This
might be circumvented by adding a θ or z component to the
velocity, but we do not consider this here.
According to Eq. (1), it is straightforward to write down

the wave equation for ψ with gμν defined by Eq. (2). Before
doing that, we take advantage of the fact that the acoustic
metric is static to construct the transformations

dτ ¼ dtþ v
c2 − v2

dr;

dρ ¼ dr;

dϕ ¼ dθ: ð14Þ

The acoustic metric in these coordinates is then given by

gμ0ν0 ¼
�
σ

c

�
2

0
BB@

−ðc2 − vðρÞ2Þ 0 0

0 c2

c2−vðρÞ2 0

0 0 ρ2

1
CCA;

and the wave equation for the perturbation ψðτ; ρ;ϕÞ
becomes

∂2ψ

∂τ2 ¼ c2
�
1 −

v2

c2

�
2 ∂2ψ

∂ρ2 − c2
1 − v4

c4

v
dv
dρ

∂ψ
∂ρ

−
c2 − v2

ρ2
∂2ψ

∂ϕ2
: ð15Þ

We now consider regularizations of the profile velocity
near the source/sink. Note that in the AdS analogue model,
v⃗ðr⃗Þ is not well defined at the origin. We thus modify it so
that v⃗ðr⃗Þ is at least continuous there [13]. Therefore, we
consider regularizations of v⃗ for which vðρÞ is 0 at ρ ¼ 0.
For ρ > 0, the velocity should then increase until it
becomes constant, v ¼ αc. The transition of vðρÞ from
vð0Þ ¼ 0 to vðρÞ ¼ αc is, for now, left arbitrary.
Consider the case when vðρÞ can be written, near the

origin, as

vðρÞ ¼ αc

�
ρ

ρ0

�
n
; ρ≲ ρ0; ð16Þ

where ρ0 and n are undetermined parameters. This
profile must still be matched to another expression,
valid for ρ > ρ0, which approaches the constant value
αc for large ρ. We see that ρ0 is related with the width
of the region wherein vðρÞ is not constant, and that n
determines how fast vðρÞ grows near the origin. Figure 1
shows different velocity profiles corresponding to
n ¼ 1=2; 1, and 2.
We consider waves with circular symmetry and write,

after separating variables, ψ ¼ RðρÞe−iωτ. Moreover, let us
introduce the dimensionless radial coordinate

x≡ ρ=ρ0

and the dimensionless frequency

Ω≡ ωρ0=c:

It follows from Eq. (15) that, near the origin (at x ¼ 0),

ð1 − α2x2nÞ2R00ðxÞ − n
x
ð1 − α4x4nÞR0ðxÞ þΩ2RðxÞ ¼ 0:

ð17Þ

This equation is only meaningful for x≲ 1. We note that
x ¼ 0 is a regular singular point of this ordinary differential
equation. One solution can thus be written as

RðxÞ ¼ xs
X∞
k¼0

akxk; ð18Þ

with s ¼ nþ 1 or s ¼ 0 (by Frobenius method). If n is
noninteger, we have two linear independent solutions,
which, around x ¼ 0, behave as

R1ðxÞ ∼ xnþ1;

R2ðxÞ ∼ 1: ð19Þ

FIG. 1. Regularizations of vðρÞ as in Eq. (16), with n ¼ 1=2, 1,
and 2 from top to bottom, respectively.
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If n is integer we have

R1ðxÞ ∼ xnþ1;

R2ðxÞ ∼ 1þ pR1ðxÞ ln x; ð20Þ

with constant p. For n ¼ 1 (a case which is important later),
we have

R1ðxÞ ∼ x2 þOðx4Þ;

R2ðxÞ ∼ 1 −
1

2
Ω2x2 ln xþOðx4Þ: ð21Þ

IV. FINITE ENERGY CONDITION

The propagating scalar field associated with the sound
waves has the energy-momentum tensor

Tμν ¼ ∂μψ∂νψ − gμν
�
1

2
gαβ∂αψ∂βψ

�
: ð22Þ

In ðτ; ρ;ϕÞ coordinates the vector field ξμ
0

0 ¼ δμ
0

0 is clearly
Killing. The conserved current in this case is then given by

Qμ0 ¼ −
ffiffiffiffiffiffiffi
−g0

p
Tμ0ν0ξ0ν ¼

�
σ3ðρÞ
c2

ρ

�
Tμ0α0gα000

¼
�
σ5ðρÞ
c4

ρ

�
ðc2 − vðρÞ2ÞTμ000 : ð23Þ

This is the conserved current in ðτ; ρ;ϕÞ coordinates.
Going to the laboratory coordinates ðt; r; θÞ and noticing
that detð∂xμ0=∂xμÞ ¼ 1, we find that the sound energy in
the laboratory frame is

Q0 ¼ ∂x0
∂xμ0 Q

μ0 ¼ Q00 −
vðrÞ

c2 − v2ðrÞQ
1: ð24Þ

This energy coincides, indeed, with the usual energy
density defined in the fluid dynamics literature (Q0 is
obviously not invariant and, in other coordinates, it does
not correspond to the correct fluid mechanics energy)
[16,17]. A straightforward calculation yields

Q00 ¼ 1

2

σðρÞ
c

ρ

� ð∂rψÞ2
c2 − vðρÞ2 þ

c2 − vðρÞ2
c2

ð∂rψÞ2 þ
ð∂θψÞ2
ρ2

�

ð25Þ

and

Q10 ¼ −
σðρÞ
c

ρ
c2 − vðρÞ2

c2
∂rψ∂τψ : ð26Þ

The energy density in the laboratory frame is thus
given by

E≡Q0 ¼ 1

2

�
σðrÞ
c

r

�

×

�
1

c2
ð∂tψÞ2 þ

ðc2 − vðrÞ2Þ
c2

ð∂rψÞ2 þ
ð∂θψÞ2
r2

�
:

ð27Þ

A straightforward calculation shows that the solutions
RiðxÞ have energy densities Ei given by

E1 ∼
kcΩ5

2α
sin

�
ω

�
t −

αρ0
cðnþ 1Þ x

nþ1

��
2

x2þn;

E2 ∼
kcΩ5

2α
sin

�
ω

�
t −

αρ0
cðnþ 1Þ x

nþ1

��
2

x−n; ð28Þ

for x small (the above expressions are valid for both n
integer and noninteger).
For 0 < n < 1, both energies are integrable and finite

near x ¼ 0. On the other hand, for n ≥ 1, only one of the
solutions, namely, R1ðxÞ has finite energy near x ¼ 0 and
R2ðxÞ must be discarded. Therefore, for n ≥ 1 no extra
boundary condition at the origin is necessary in order to
reduce the number of independent solutions. For 0 < n < 1
the problem is ill posed unless an extra condition is
specified at x ¼ 0. It is interesting to note that the velocity
profile is smooth at the origin precisely for n ≥ 1. In other
words, when the velocity profile is “nice enough” there is
no need to consider self-adjoint extensions for the wave
operator.

V. AN ANALYTIC SOLUTION

To extend the previous analysis to the whole space one
needs a global solution of Eq. (15). This can be done
numerically for any reasonable profile of the kind shown in
Fig. 1. Fluid flows that allow a closed form, exact, solution
for the wave equation are hard to find but do exist. One
example is given by the velocity profile given by

vðρÞ ¼ αc tanh

�
ρ

ρ0

�
: ð29Þ

Note that for ρ ∼ 0 we have v ∼ ρ and therefore no
boundary conditions are necessary at the origin (this is
the case n ¼ 1 of the previous section). The radial part of
the wave equation becomes, for this choice of v,

ð1 − α2tanh2xÞ2 d
2RðxÞ
dx2

−
1 − α4tanh4x
sinh x cosh x

dRðxÞ
dx

þ Ω2RðxÞ ¼ 0; ð30Þ

with solutions
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R�ðxÞ ¼ exp

�
iΩκ�ðxÞ
1 − α2

�
2F1

×

�
a∓ þ 1

2
; a∓ −

1

2
; c∓;−

csch2x
1 − α2

�
; ð31Þ

where 2F1 is the (ordinary) hypergeometric function. The
functions κ�ðxÞ and the parameters a� and c� are given by

κ�ðxÞ ¼ � ln sinh x −
α

2
ln ð1 − α2 þ csch2xÞ;

a� ¼ 1

2
� iΩ=2
1� α

;

c� ¼ 1� iΩ
1 − α2

: ð32Þ

As discussed in the previous section, the finite energy
solution RðxÞ ¼ AR−ðxÞ þ BRþðxÞ must be proportional
to R1ðxÞ. It follows from Eq. (21) (since we are in the case
n ¼ 1) that

AR−ð0Þ þ BRþð0Þ ¼ 0: ð33Þ
This leads to (up to a global multiplicative constant)

A ¼ Rþð0Þ ¼
Γð1 − iΩ

1−αÞ
Γð1 − iΩ=2

1−α ÞΓð1 − iΩ=2
1þαÞ

e−i
Ω ln ð1−α2Þ
2ð1−αÞ ;

B ¼ −R−ð0Þ ¼ −
Γð1þ iΩ

1−αÞ
Γð1þ iΩ=2

1−α ÞΓð1þ iΩ=2
1þαÞ

ei
Ω ln ð1−α2Þ
2ð1þαÞ : ð34Þ

These expressions for A and B now provide a complete
description for the circular waves propagating on the fluid.
In particular, the way by which the waves interact with the
source/sink located at x ¼ 0 (or equivalently r ¼ 0) is also
encoded by these expressions.
We now find the phase difference δðΩÞ between incom-

ing and outgoing circular waves. For x ≫ 1, the velocity is
constant and we know that, for this case, the solutions must
be incoming and outgoing waves of the form e�iΩx=ð1−α2Þ
[12]. Let us recover this behavior from the asymptotic
expansions of R�ðxÞ. For the hypergeometric function, we
have, for x → ∞,

2F1

�
a∓þ1

2
;a∓−

1

2
;c∓;−

csch2x
1−α2

�
∼1þ ð1−4a2∓Þ

ð1−α2Þc∓
e−x:

ð35Þ

Next, we compute the asymptotic behaviour of κ�ðxÞ. We
have

κ�ðxÞ ∼�ðx − ln 2Þ − α

2
ln ð1 − α2 þ 4e−2xÞ: ð36Þ

As a result, the solution of the wave equation for x → ∞
becomes, up to a multiplicative constant,

ψðτ; xÞ ∼ ðηe− iΩx
1−α2 þ ξe

iΩx
1−α2Þe−iωτ; ð37Þ

where η ¼ ACþ and ξ ¼ BC−, with

C� ¼ e�iΩ ln 2
1−α2 : ð38Þ

The phase difference δðΩÞ between incoming and out-
going waves is thus given by

eiδðΩÞ ¼ ξ

η
¼ −

Γð1þ iΩ
1−α2ÞΓð1 − iΩ=2

1−α ÞΓð1 − iΩ=2
1þαÞ

Γð1 − iΩ
1−α2ÞΓð1þ iΩ=2

1−α ÞΓð1þ iΩ=2
1þαÞ

× exp

�
i
Ω lnð1−α2

4
Þ

1 − α2

�
: ð39Þ

Figure 2 depicts the phase difference given by Eq. (39).
One can check that the slope of δðΩÞ approaches a constant
value,

δ0ðΩÞ → −
2αarctanhðαÞ

1 − α2
;

as Ω → ∞.
One can also check that, for small values of Ω,

δðΩÞ ∼ π −
Ω

1 − α2
ln

�
4

1 − α2

�
:

Figure 3 shows that this phase difference agrees with that
obtained for the AdS case for small Ω. In order to analyze
this, let us go back to dimensionful quantities. The
dimensionless frequency Ω ¼ ωρ0=c can then be written as

Ω ¼ 2πρ0=λ;

where we used the fact that λc ¼ 2πω, λ being the wave-
length of the sound wave. Recall that the parameter ρ0
represents the region where vðρÞ raises from 0 to its constant
value. For small values of Ω, the sound wavelength is much

FIG. 2. Phase difference between ingoing and outgoing circular
waves for α ¼ 1=2.
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larger than ρ0 and, therefore, the sound waves cannot
properly probe the region for which vðρÞ is not constant.
As a consequence, the results found in [12] hold.
Comparing the results coming from Eqs. (11) and (39),

we find perfect agreement up to first order in Ω as long as

β ¼ ln

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

�
ρ0: ð40Þ

This illustrates the fact, discussed in [12], that the extra
boundary condition in the AdS case, determined by β,
provides an effective description of the point source at
r ¼ 0. The equation above corresponds to the value of β
associated with the regularization given by Eq. (29).
Changing the regularization also changes this effective
parameter.
We finally note that there are no damped modes for this

fluid configuration. This follows from the fact that finite-
ness of energy requires that a solution of the wave equation
for imaginary Ω would have to be proportional to R1ðxÞ
for x → 0, and proportional to R−ðxÞ for x → ∞. This
cannot happen since R1 and R− are linearly independent.

VI. CONCLUSION

We studied an analogue model based on radial flows in
hydrodynamics. It is known that for constant radial
velocities the resulting effective metric corresponds to
the AdS2 × S1 spacetime [12], which is not globally
hyperbolic. This implies that the dynamics of fields in
this background is not well defined unless extra boundary
conditions are prescribed (in this case at the spatial
boundary of AdS). On the analogue model end this implies
that one needs to specify extra boundary conditions at the
origin. This corresponds to an effective description of how
the field interacts with the point source/sink of the flow.
Here we considered regularizations of the fluid velocity
near the source/sink at the origin. We found that a certain
class of regularizations—those for which v⃗ðrÞ is smooth at
the origin—leads to a well-defined dynamics for sound
waves without the need of extra boundary conditions. This
is to be expected since, at least as far as the velocity field is
concerned, the hole at the origin has become invisible in
those cases. On the effective spacetime end this corre-
sponds to the introduction of a deformation of AdS near its
spatial infinity (so that the spacetime is forced to no longer
be asymptotically AdS). We finally showed that, when the
wavelength of the sound waves is much larger than the
effective radius set by the regularization, the effects of
the latter are negligible, as expected. In this case the
regularization has the effect of picking up a specific
boundary condition for the idealized case so that both
models agree in the long wavelength limit.
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