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We propose a simple modification of the density matrix renormalization-group (DMRG) method in order to
tackle strongly disordered quantum spin chains. Our proposal, akin to the idea of the adaptive time-dependent
DMRG, enables us to reach larger system sizes in the strong disorder limit by avoiding most of the metastable
configurations, which hinder the performance of the standard DMRG method. We benchmark our adaptive
method by revisiting the random antiferromagnetic XXZ spin-1/2 chain for which we compute the random-
singlet ground-state average spin-spin correlation functions and von Neumann entanglement entropy. We then
apply our method to the bilinear-biquadratic random antiferromagnetic spin-1 chain tuned to the antiferromagnet
and gapless highly symmetric SU(3) point. We find the new result that the mean correlation function decays
algebraically with the same universal exponent φ = 2 as the spin-1/2 chain. We then perform numerical and
analytical strong-disorder renormalization-group calculations, which confirm this finding and generalize it for
any highly symmetric SU(N ) random-singlet state.

DOI: 10.1103/PhysRevB.98.195115

I. INTRODUCTION

The theoretical investigation of strongly correlated systems
by unbiased (i.e., whose error is controlled) methods is a
challenge, mainly, due to the lack of appropriate techniques
to study those systems. In the last years some progress has
been obtained by methods based on tensor network states
(TNTs), such as the multiscale entanglement renormaliza-
tion ansatz (MERA) [1] and projected entangled pair states
(PEPS), [2] and by Monte-Carlo-based methods (for a review,
see Refs. [3,4]).

In the case of one-dimensional systems, the density matrix
renormalization group (DMRG) [5] is a remarkable technique
capable of providing quasiexact results for both static and
dynamic properties [6]. (Quantum Monte Carlo techniques
are also powerful in d = 1, but are limited to some classes of
problems due to the famous sign problem.) In particular, the
rich low-energy physics of several clean systems, belonging
to the Tomonaga-Luttinger liquid universality class [7], was
shown to be captured by the DMRG technique [6].

The effects of inhomogeneities, common in real materials,
add to the plethora of phenomena in strongly interacting
systems. They can completely change the critical behavior
and induce Griffiths phases surrounding critical points (for
a review, see Refs. [8,9]). Among all the exotic phenom-
ena induced by disorder in strongly correlated systems, one
is of particular importance: the infinite-randomness criti-
cality. In the renormalization-group sense, the concept of
infinite-randomness criticality states that the effective dis-
order strength of a system (measured by some statistical
fluctuations of a local quantity) increases without bounds
as the system is probed (coarse grained) on ever larger
length scales. Along the years, it was shown that this con-
cept is more ubiquitous than previously thought, ranging

from spin chains [10,11], higher-dimensional magnetic and
superconducting systems [12,13], to nonequilibrium [14,15],
and driven systems [16,17]. Interestingly, there is one bi-
ased (approximate) technique capable of studying this phe-
nomenon: the strong-disorder renormalization-group (SDRG)
method [18] (for a review, see Refs. [19,20]).

Given the importance of the infinite-randomness concept,
it is desirable to study it through other unbiased methods. The
Monte Carlo method was shown to be up to the task [21,22].
Evidently, it is also desirable to use the DMRG method
since it is suitable for ground-state quantities and can be
used to study systems plagued by the sign problem. The
earlier attempts were either controversial [23] or restricted
to small systems [24] (see also Ref. [25]). More recently,
tensor-network-based methods were developed [26,27].

In this work, we present an alternative DMRG algorithm
(we call it adaptive DMRG) for disordered systems, which is
capable of improving the stability of the DMRG for relatively
high degrees of disorder and able to reach comparatively
large systems when compared to the conventional algorithm.
We will apply our method to the random spin-1/2 chain in
order to benchmark our algorithm and subsequently to the
random bilinear-biquadratic spin-1 chain where we find new
results for the correlation function, which is also confirmed by
strong-disorder renormalization-group calculations.

This work is organized as follows. In Sec. II, we introduce
the studied models and review some known results. In Sec. III
we introduce our adaptive DMRG method comparing it with
either exact diagonalization (when possible) or the standard
DMRG method. In Sec. IV, we present our SDRG calcula-
tions confirming the new DMRG results on the spin-1 chain
and generalizing it to other systems. Finally, we report our
conclusions in Sec. V.
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II. MODELS AND SOME KNOWN RESULTS

A. Random antiferromagnetic spin-1/2 XXZ chain

The random antiferromagnetic spin-1/2 XXZ chain is de-
scribed by the Hamiltonian

H =
L−1∑
i=1

Ji

(
sx
i sx

i+1 + s
y

i s
y

i+1 + �sz
i s

z
i+1

)
, (1)

where si are spin-1/2 operators, � is the system anisotropy,
and 0 < Ji < � are uncorrelated random couplings dis-
tributed according to the distribution

P (J ) = D

�

(
�

J

)1−1/D

. (2)

Here, � sets the energy scale, and D parameterizes the
disorder strength.

The model (1) is one of the most studied random sys-
tems exhibiting low-energy infinite-randomness physics. For
−1/2 < � � 1, the clean Luttinger liquid is perturbatively
unstable against any amount of disorder (D > 0) with a
random-single (RS) state replacing it as the true ground
state [11,28]. The RS state is approximately a collection of
nearly independent singlet pairs in which their size � and
excitation energy ω are related via an exotic activated scaling

ln ω ∼ −�ψ, (3)

with universal tunneling exponent ψ = 1
2 . A striking hallmark

of the infinite-randomness character of the RS ground state
is that the typical and arithmetic mean spin-spin correlation
functions are completely different from each other in the
long-distance � � 1 regime: while the former decays as a
stretched exponential, i.e., ln Cα

typ(�) = ln |〈sα
i sα

i+�〉| ∼ −�ψα ,

with ψα = ψ = 1
2 for α = x, y, z, the latter decays only

algebraically

Cα
av(�) = 〈

sα
i sα

i+�

〉 = (−1)��−φα , (4)

with φα = φ = 2. Here, 〈· · · 〉 and · · · denote the ground-
state and disorder averages, respectively. The RS state also
exhibits an emergent SO(2)→ SU(2) symmetry characterized
by the symmetric exponents ψα and φα: a general feature of
strongly disordered SO(N )-symmetric antiferromagnetic spin
chains [29,30].

It is well known that (1) can be mapped to a chain of
interacting spinless fermions [31]. For the special case � = 0,
the fermions are noninteracting and thus, large systems can be
studied via exact diagonalization. For this reason, we will use
the disordered XX chain to provide benchmark results.

Another important quantity in our investigation is the en-
tanglement entropy (EE), which is given by

S (�) = −TrρA ln ρA, (5)

where ρA is the zero-temperature reduced density matrix of
a continuous subsystem A of size � obtained by tracing out
the degrees of freedom of the complementary and continuous
subsystem B (of size L − �). For 1 � � � L, it was shown
in the clean case that [32–34],

S (�) = c

3η
ln � + aη, (6)

where c = 1 is the central charge, a is a nonuniversal con-
stant, and η = 1(2) for the systems with periodic (open)
boundary conditions. While the EE of clean chains are quite
well understood [35–37], much less is known for the case
of disordered systems, which are not conformally invariant.
In particular, for the disordered antiferromagnetic spin-1/2
Heisenberg chains it was shown [38–41] that the average EE
behaves very similarly to the clean system with S ∼ ceff

3η
ln �,

where the effective central charge is given by ceff = ln 2.

B. Random antiferromagnetic spin-1 chains

The other model we are interested in is the disordered spin-
1 bilinear-quadratic chain, the Hamiltonian of which is

H =
L−1∑
i=1

Ji[cos θSi · Si+1 + sin θ (Si · Si+1)2], (7)

where Si are spin-1 operators, Ji > 0 are random indepen-
dent couplings distributed according to Eq. (2), and θ is an
angle parametrizing the anisotropy between the bilinear and
the biquadratic terms. The zero-temperature phase diagram
of this model was shown to be very rich [42], exhibiting
six phases: a ferromagnetic phase, a mesonic RS phase, a
baryonic RS phase, a Haldane phase, a Griffiths phase, and
a large spin phase. Interestingly, and like the XXZ spin-1/2
chain, all the RS phases were shown to have an emergent
SU(3) symmetry out of an SO(3) symmetric chain [29,30]. As
in the random spin-1/2 antiferromagnetic chain, the emergent
SU(3) symmetry is manifest in all correlation functions. Let
�α (α = 1, . . . , 8) be the eight generators of the fundamental
representation of the SU(3) group, which can be chosen
as: �1 = Sx , �2 = Sy , �3 = Sz, �4 = SxSy + SySx , �5 =
SxSz + SzSx , �6 = SySz + SySx , �7 = (Sx )2 − (Sy )2, and
�8 = 1√

3
[3(Sz)2 − 2]. Therefore, the arithmetic average cor-

relation function

Cα
av(x) = 〈

�α
i �α

i+x

〉
, (8)

decays with the universal and isotropic exponent φα = φ.
Likewise, the typical correlation functions also decay as a
stretched exponential with exponent ψα = ψ .

The mesonic SU(3) RS phase was shown to have similar
correlations as the SU(2) RS phase. Actually, all mesonic
SU(N ) RS phases share the same long-distance behavior
with the exponents of the typical and the mean correlation
being φα = ψ−1

α = 2 [43]. On the other hand, it was shown
in Ref. [43] that ψ−1

α = N for baryonic SU(N ) RS phases.
In addition, based on some assumptions, it was argued that
φα = 4/N . However, as shown later in Sec. IV and confirmed
by our DMRG results in Sec. III, one of the assumptions does
not hold and, as a novel result of this work, the correct result
is φα = 2 independent of the symmetry group rank.

III. DMRG STUDY

In this section, we show how the standard application of the
DMRG technique fails in describing the strongly disordered
quantum systems (1), and then introduce our adaptive DMRG
strategy in order to remedy this situation.

195115-2
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A. Antiferromagnetic XX and Heisenberg spin-1/2 chains

Let us start with the random XXZ antiferromagnetic spin-
1/2 chain (1). We first focus on the free fermionic case � = 0
and then on the SU(2) symmetric case � = 1.

First, we report being able to obtain the ground-state
energy of the disordered XX chain with high accuracy by
using the standard DMRG. For chains of sizes L = 120 and
considering m ∼ 200 states in the DMRG truncation, [5] we
found that the errors in the energies are typically smaller
than ∼10−10 and the discarded weights are �10−10. Having
accomplished this, we would expect to obtain accurate results
for the EE, as well. Comparing with the exact EE obtained
via the free-fermion map, [39,44] this is indeed the case
for system sizes L = 120 and disorder D � 2

3 as shown in
Figs. 1(a) and 1(b) where, respectively, we study the average
EE and the EE of a single chain. On the other hand, for
stronger disorder D � 1, surprisingly, we verified that the
standard DMRG algorithm fails to correctly describe the EE
as explicit in Figs. 1(a) and 1(c). We also note that the average
EE changes very little when the number of states increases
from m = 160 to m = 260. For further comparison, we also
plot the average EE 〈S (�)〉 ∼ 1

6ceff ln(�) with universal ceff =
ln 2 as predicted by the strong-disorder RG method [38].

Adaptive DMRG method

We now provide the basic notion behind our adaptive
DMRG method. In Fig. 1(c) we present the EE for a specific
coupling configuration {J1, J2, . . . , JL−1} distributed accord-
ing to Eq. (2) with D = 1. Clearly, the standard DMRG fails
to reproduce the exact result for � > 6. It turns out that, for
this specific disorder realization, spins 7 and 78 are strongly
entangled and locked into a singlet state to a very high degree
of approximation, as predicted by the SDRG method (see
Refs. [45,46] for a precise quantification of this statement).
As a consequence of the activated dynamics (3), its effective
excitation energy can be smaller than the standard DMRG
error, which we have set as ∼10−10. In that case, the standard
DMRG method could easily get stuck in an excited/metastable
state and miss the ≈ ln 2 contribution of that singlet pair to the
EE for � > 6.1

Is it possible to recover the missing pair? As we mentioned
before, increasing the number of states does not help. Here,
we suggest an alternative route, which works in most cases.
Lowering the disorder while maintaining roughly the same
realization (as explained below), the excitation gap between
spins 7 and 78 increases, and thus, the standard DMRG
method should correctly describe the EE. This is exactly the
case as verified in Fig. 1(b). There, we considered the same
coupling configuration as in Fig. 1(c) but with the square root
taken: {√J1,

√
J2, . . . ,

√
JL−1}, which is equivalent to having

the coupling constants distributed according to Eq. (2) with
D = 1

2 . A caveat is in order here. Notice that, for the XX
spin-1/2 chain, the SDRG method predicts the same RS state
for chains in Figs. 1(b) and 1(c). Evidently, there are stronger
corrections to the RS state for smaller D [45,46].

1A similar situation may also happen in frustrated systems, where
there are several states with energies very close to the ground energy.

0 20 40 60l

0.6

0.8

1.0

S
(l

) D = 2/3 (standard DMRG)
D = 2/3 (Exact)
D = 1 (standard DMRG)
D = 1 (Exact)
D = 1 (adaptive DMRG)
SDRG

(a)

0 20 40 60l

0.5

1.0

1.5

S
(l

) /
 ln

 2

D = 1/2 (Exact)
D = 1/2 (standard DMRG)

(b)

0 20 40 60l
0.0

1.0

2.0

3.0

S
(l

) /
 ln

 2

D = 1 (Exact)
D = 1 (standard DMRG)

(c)

FIG. 1. The EE S as a function of the subsystem size l for the
random XX chain obtained via exact diagonalization and via the
standard and adaptive DMRG methods. We have considered chains
of size L = 120 and different values of disorder strength D (see
legends). In (a) the EE is averaged over 2000 disorder realizations.
In (b) and (c), the EE is computed for a single disorder realization.
The thick brown line in (a) corresponds to the curve ln 2

6 ln l + 0.62.

Given the possibility of capturing the correct ground state
for weaker disorder strength, we then propose the following
adaptive DMRG strategy. We start with a weakly disordered
chain (say, with disorder strength D0) where the standard
DMRG method is successful. After obtaining the quasiexact
eigenstate |�D0〉, we use it as the initial guess in the Lanczos
or Davidson procedure for the new disorder strength D0 + δD

(where the new couplings are simply J
1+δD/D0
i ). For δD �

D0, we expect |�D0〉 to be a very good starting point for
|�D0+δD〉. Here, we need to use the step-to-step wave function
transformation during the sweeps as described in Ref. [47].
We perform a few (about four) sweeps in order to obtain the
new quasiexact eigenstate |�D0+δD〉. Finally, we then iterate

195115-3



J. C. XAVIER, JOSÉ A. HOYOS, AND E. MIRANDA PHYSICAL REVIEW B 98, 195115 (2018)

this procedure until the desired disorder strength D is reached.
Since the DMRG is able to obtain the quasiexact states for
small disorder strengths, by using the above procedure the
DMRG will adiabatically adapt a new basis to represent
the new eigenstates [48]. If there is no abrupt change in
the energy levels (as a function of the disorder strength), it
is then expected that the above procedure will find the true
(low-energy) states and will not get stuck in metastable states.
As we show in the following, this is indeed the case.

Our strategy certainly may sound numerically costly. How-
ever, notice that in many cases it is desirable to study many
different disorder strengths D. Our strategy becomes a natural
one when this is the case.

As a demonstration, we shown in Fig. 1(a) the arithmetic
average EE obtained using our adaptive strategy starting from
D0 = 0.4 and increasing it in steps of δD = 0.06 until we
reach D = 1. We observed that for this sequence of D’s the
adaptive DMRG algorithm is able to reproduce the exact EE
for almost all chains for D = 1 and L = 120. As expected, we
verified that decreasing the value of δD improves the adaptive
DMRG method with the associated increase in CPU time.

Let us now discuss the spin-spin correlations (4). In order
to avoid border effects, we measure 〈Sz

i S
z
j 〉 in the center

part of the chain by considering only 1
4L < i < j < 3

4L. The
disorder average is performed over all possible distances x =
j − i within that range and over various different disorder
realizations.

In Fig. 2 we present the adaptive DMRG results for Cav(x)
for the random spin-1/2 XX and the Heisenberg chain for
systems of size L = 120, disorder strength D = 1, and 103

disorder realizations. Our results are in perfect agreement with
analytical and previous numerical results in which the decay
exponent is φ = 2 for both models [11,49,50]. For the Heisen-
berg model, it is interesting to contrast this with the clean
exponent φclean = 1 [51]. Recently, a quantum Monte Carlo
study proposed a logarithmic correction to the correlation
function for the Heisenberg model [22]. It is not within the
scope of the present work to further investigate this feature,
which would require longer chains and better statistics. Here,
we simply report that our data are also compatible with it as
shown in Fig. 1(a).

B. Disordered bilinear-biquadratic spin-1 chain

We now present our DMRG study on the random spin-1
chain Eq. (7). Our purpose is to use our adaptive DMRG
strategy in a strongly disordered system, which is not in
the well-studied SU(2) infinite-randomness universality class.
We then focus on the case θ = π

4 , which exhibits exact
SU(3) symmetry [i.e., the Hamiltonian (7) becomes H =∑

i Ji�i · �i+1 + const. ] placing the system in the baryonic
RS phase [42].

In Fig. 3, we plot the arithmetic average correlations Cα
av(x)

Eq. (8) for α = 3 and 8, D = 1 and L = 84. The average was
performed similarly to the spin-1/2 case considering all the
spin pairs Si and Sj in the range 1

4L < i < j < 3
4L. We verify

that Cα
av ∼ x−φ with φ = 2 is consistent with our numerical

data. This is a novel result, which is in agreement with the
predictions of the SDRG method of Sec. IV. It is interesting
to compare with the clean chain exponent φclean = 4

3 [52].

10 20 30 40 50 60x
10-4

10-3

(-
1)

x C
avz

(x
)

DMRG
0.69x-2-2.13x-3

(ln(x/2.31))1/2(0.39x-2-0.12x-3)

L = 120
D = 1.0

(a) Heisenberg chain

10 20 30 40 50 60
x

10
-5

10
-4

10
-3

(-
1)

x C
z av

(x
)

DMRG 
Exact diagonalization

0.092x-2-0.036x-3

L = 120
D = 1.0

(b) XX chain

FIG. 2. Log-log plot of the arithmetic average correlation func-
tion Cz

av(x ) vs. x for (a) the Heisenberg and (b) the XX chains. The
system size L = 120, the disorder strength D = 1 and we averaged
over 1 000 disorder realizations. The DMRG data is obtained using
the adaptive strategy. The solid and dashed lines are best fit of the
DMRG data.

Similarly to the spin-1/2 case, the logarithmic correction of
the clean system [∝ ln2/9(x)] [52] is also compatible with
our data. We report that similar results were also obtained
considering other system sizes 32 � L � 84 and disorder

1 10 20 30 40x
10-4

10-3

10-2

10-1

A
ve

ra
ge

 c
or

re
la

tio
ns

|C3
av(x)|

|C8
av(x)|

0.42x-2.08

0.27(ln(x/0.58))2/9x-2

L = 84
D = 1.0

FIG. 3. The arithmetic average correlation functions C3
av and C8

av

[see Eq. (8)] for the SU(3)-symmetric disordered spin-1 bilinear-
biquadratic chain Eq. (7) with θ = π

4 , system size L = 84, and
disorder strength D = 1. The continuous blue and dashed green lines
are the best fit of C3

av for x > 10. They are compatible with the SDRG
prediction Cav ∼ x−2. As in the spin-1/2 case, a logarithmic is also
compatible with our data. The DMRG data are obtained using the
adaptive strategy and averaging over 1 000 disorder realizations.
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FIG. 4. Sketch of the SU(3) random-singlet state. Sites con-
nected by links are in a singlet state formed by 3, 6, 9, . . . spins.
Notice the links do not overlap. Different colors represent singlets
with different number of spins.

strengths 1
4 � D � 1. In addition, we report that (not shown)

Cα
av(x) oscillates with period of 3, as a consequence of the

antiferromagnetic SU(3)-symmetric character of the ground
state [42]. As expected, we observed that both correlations are
identical within the DMRG error.

IV. STRONG-DISORDER RG STUDY

In this section we compute the arithmetic average correla-
tion function Cα

av [see Eq. (8)] for the spin-1 chain (7) in the
strong-disorder limit and in the phase of emergent Hadronic
SU(3) symmetry. For that reason, we will employ the strong-
disorder renormalization-group (SDRG) method developed in
Refs. [42,43].

A. SU(3) random-singlet ground state

For strong disorder strength D � 1 (and very plausibly
for any D > 0), the ground state of the Hamiltonian (7) is
the SU(3) random singlet state for π

4 � θ < π
2 [42]. In this

case, due to the emergent SU(3) symmetry, the ground state is
composed by nearly independent SU(3) singlets as sketched
in Fig. 4.

Unlike the usual SU(2) spin-1/2 random-singlet state
where all singlets are made of spin pairs, in the SU(3) case
they can be made of any multiple of three spins. Interestingly,
it has been shown that the clustering of spins disentangles
from the chain energetics near the infinite-randomness fixed
point [43]. Therefore, the ground state depicted in Fig. 4 can
be obtained in the following simple fashion: (i) one randomly
chooses a neighboring spin pair in the chain and (ii) fuses
them together in a new effective spin (a new spin cluster).
(ii.a) If the total number of original spins in the new cluster is
a multiple of 3, the cluster is removed from the system since
they form a singlet as in Fig. 4, otherwise, (ii.b) it remains
in the system waiting for a new decimation. The procedure (i)
and (ii) is iterated until all spins become clustered into singlets
(assuming that the lattice size is a multiple of 3) as in Fig. 4.

With these simplified clustering rules, it is possible to
compute the probability that two original spins � lattice sites
apart become clustered in the same singlet. Assuming that
they share correlations of order unity, then Cα

av would simply
be proportional to that probability, since spins in different
singlets would have exponentially small correlation. In this
way, it was concluded in Ref. [43] that Cα

av ∼ �− 4
N , with N =

3. (This generalizes to all SU(N ) random singlet states where
singlets are composed by multiples of N original spins.)

However, as we show below, the assumption that spins
belonging to the same singlet have strong correlations is not
correct. Therefore, we need a better understanding of the
many possible singlet states in order to correctly compute Cα

av.

(a)

(b)

(c)

FIG. 5. Schematic representation of the clustering process of
three spins into a singlet state. Colors are for aesthetic purposes only.

B. Correlations in the SU(3) singlets

The simplest and most common SU(3) singlet is the one
made of three spins (see Fig. 5). It can be readily obtained
by the antisymmetrization of the three possible spin flavors
[corresponding to Fig. 5(c)]:

|s3-spins〉 = 1√
6

(|1, 0,−1〉 + |0,−1, 1〉 + | − 1, 1, 0〉

−|0, 1,−1〉 − |1,−1, 0〉 − | − 1, 0, 1〉). (9)

It is then clear that any spin pair i, j in the |s3-spins〉 sin-
glet state share correlation of order unity, namely, Cα

i,j =
〈s3-spins|�α

i �α
j |s3-spins〉 = − 1

3 , for any α.
Another way of obtaining |s3-spins〉 is by following the

SDRG method [42,43]. One first fuses, say, spins S1 and S2

into a new spin-1 effective degree of freedom S̃ [correspond-
ing to Fig. 5(b)], which is then decimated with spin S3 into a
singlet. With respect to the original flavors, the S̃ degrees of
freedom are

|1̃〉 = 1√
2

(|1, 0〉 − |0, 1〉),

|0̃〉 = 1√
2

(|1,−1〉 − |−1, 1〉), (10)

| − 1̃〉 = 1√
2

(|0,−1〉 − |−1, 0〉),

which are obtained by projecting S1 + S2 on the triplet man-
ifold. The state (9) is then obtained by projecting S̃ + S3 on
the singlet manifold S̄ = 0, i.e.,

|s3-spins〉 = 1√
3

(|1̃,−1〉 − |0̃, 0〉 + |−1̃, 1〉). (11)

We now ask, for instance, how Cz
1,3 can be obtained given the

knowledge of the singlet state (11). First, we notice that the
correlation 〈

S̃zSz
3

〉 = 1
6

〈
S̄2 − S̃2 − S2

3

〉 = − 2
3 . (12)

Then, we make use of the Wigner-Eckart theorem. Since
S̃ is simply S1 + S2 projected on the triplet manifold, then
S1 = cS̃,S1,S2

S̃. Since we will need to deal only with the case
S1 = S2 = S̃ = 1, we lighten the notation by cS̃,S1,S2

= c = 1
2 ,

which can be obtained by projecting S1,2 in the multiplet (10).
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(a)

(b)

(c)

(d)

FIG. 6. Schematic representation of the clustering process of six
spins into a singlet state. Colors are for aesthetic purposes only.

Finally, we have that

〈
Sα

1,2S
β

3

〉 = c
〈
S̃αS

β

3

〉 = −δα,β

3
. (13)

We now ask about the correlations between S1 and S2. For
instance, 〈

Sz
1S

z
2

〉 = 1
6

〈
S̃2 − S2

1 − S2
2

〉 = − 1
3 . (14)

With these results, we recover that Cα
i,j =

〈s3-spins|�α
i �α

j |s3-spins〉 = − 1
3 , since it can be verified that

the three-spin singlet is also an SU(3) singlet.
Before generalizing these results to other singlets, let us

examine the case of singlets composed by six spins. They
can be formed in many different ways. For our purpose, let
us examine only the case in which spins S1 and S2 are fused
together in the new effective spin S̃1. Likewise spins S3 and
S4 (S5 and S6) become locked into the new effective spin
S̃2 (S̃3) (see Fig. 6). The resulting singlet is obtained by
antisymmetrizing the effective flavors of S̃1, S̃2, and S̃3, just as
in the three-spin case, resulting in the singlet |s6-spins(a)〉 given
by (9) with the flavors m replaced by m̃ in (10) [corresponding
to Fig. 6(d)]. Less straightforwardly, we can fuse spins S̃1 and
S̃2 into the new effective spin-1 ˜̃S [the flavors of which are
given by (10) with m̃ → ˜̃m and m → m̃], and then fuse ˜̃S
with S̃3 into the S̄ = 0 singlet state |s6-spins(a)〉 [corresponding
to Figs. 5(c) and 5(d)] given by (11) with with m̃ → ˜̃m and
m → m̃ (as before).

Let us now compute the correlations. Consider for instance
Cz

1,2 = 〈Sz
1S

z
2〉 = 〈s6-spins(a)|Sz

1S
z
2|s6-spins(a)〉. Although the sin-

glet state is a different one, the correlation is just as in the
three-spin case (14) yielding Cα

1,2 = Cα
3,4 = Cα

5,6 = − 1
3 for

any α (due to symmetry). Hence, as in the three-spin singlet
case, there are strong correlations. Notice this strong correla-
tion is a general feature when two original spins are decimated
together into an S̃ = 1 cluster. Afterwards, renormalizations
involving S̃ do not change the correlation between the original
spins.

However, the correlations between other spin pairs are
much weaker. Consider for instance Cz

1,3. Making use of
the Wigner-Eckart theorem, then 〈Sz

1S
z
3〉 = c2〈S̃z

1S̃
z
2〉 = − 1

3c2,

since S̃1 and S̃2 are fused into a ˜̃S = 1 cluster from which

follows (14). Finally, let us compute Cz
1,5. We will need to

compute 〈 ˜̃SzS̃z
3〉 = − 2

3 since they fuse into a singlet, and
thus follows (12). From the Wigner-Eckart theorem, 〈Sz

1S
z
5〉 =

c2〈S̃z
1S̃

z
3〉 = c3〈 ˜̃SzS̃z

3〉 = −2c3/3.
We then conclude that, by symmetry, Cα

i,j = − 1
12 for all

other pairs (i, j ) that are not (1,2), (3,4), or (5,6). The
important feature, as we show below, is that some longer-
ranged correlations pick up powers of c, and thus, can be
exponentially smaller in larger clusters.

We are now in a position to compute the correlations
between spins Si and Sj belonging to a generic SU(3) sin-
glet. Since they belong to the same singlet cluster, they
will be fused together at some point of the SDRG flow.
Let S̃ be the effective cluster they first become fused to-
gether. Also, let S̃i and S̃j be the effective clusters that
originated S̃. Necessarily, spin Si (Sj ) belongs to cluster
S̃i (S̃j ). Then 〈S̃z

i S̃
z
j 〉 = 1

6 〈S̃2 − S̃2
i − S̃2

j 〉 = 1
6 [S̃(S̃ + 1) − 4]

and Cz
i,j = cki+kj 〈S̃z

i S̃
z
j 〉, where ki (kj ) is the number of fu-

sions undergone by Si (Sj ) before S̃i is clustered with S̃j .
Finally, by symmetry,

Cα
i,j = 1

6 [S̃(S̃ + 1) − 4]cki+kj , (15)

for any spins belonging to the same singlet cluster and c = 1
2 .

Recall that S̃ = 0 (1) when the effective clusters of Si and Sj

are fused together into a singlet (triplet) state.

C. Mean correlation function

Having computed the correlation between two spins be-
longing to the same cluster (15), we now proceed to com-
pute the arithmetic mean correlation function (8). Following
the SDRG philosophy, spins in different singlet clusters share
very weak correlations and therefore, do not contribute to the
long-distance behavior of Cα

av (we set Cα
i,j = 0 for i and j

belonging to different spin singlet clusters).
We then proceed by numerically implementing the SDRG

method as explained in the following. We focus on the
SU(3)-symmetric spin chain θ = π

4 in the Hamiltonian (7)
(but this also applies to π

4 � θ < π
2 ) with coupling constants

drawn from the distribution (2). We then decimate the entire
chain using the SDRG rules as explained in Refs. [42,43].
We choose the largest coupling in the system, say, J2, and
decimate the corresponding effective cluster spin pair either
by (i) removing them from the system (which happens when
the total number of original spins in both clusters is a multiple
of 3) or (ii) by clustering them in a new effective spin-1
cluster (which happens otherwise). In the case (i) of a singlet
decimation, the neighboring spin clusters become connected
via a weaker coupling of magnitude J̃ = 2J1J3

9J2
. On the other

hand for the case (ii), the new couplings connecting to the new
effective spin cluster are J̃1,3 = 1

2J1,3.
After the entire chain is decimated, the SDRG ground state

is obtained (see Fig. 4) and the correlations can be computed
via (15). Averaging over all distances and over M different
disorder realizations, Cα

av is obtained as shown in Fig. 7.
For comparison, we also plot the arithmetic mean singlet-
correlation Cα

av,cluster, which is simply the probability of finding
two spins belonging to the same spin singlet cluster multiplied
by − 1

3 . Notice that Cα
av,cluster(x) ∼ x−φcluster with φcluster = 4

3 (as
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FIG. 7. The arithmetic mean spin-spin correlation Cα
av function

as a function of the spin separation x computed for distances x =
1 + 3n, with n ∈ N+. For comparison, we also show the singlet
spin-spin correlation Cα

av,singlet (see text). The system size is L = 312

(where periodic boundary conditions were considered), the disorder
parameter is D = 1, and we have averaged over M = 2 × 103 differ-
ent disorder realizations.

shown in Ref. [43]) and that Cα
av(x) ∼ x−φ with φ = 2. We

have studied chains of different sizes and different disorder
strengths and verified the universality of these exponents.

It is desirable to obtain an analytical derivation for the
universal exponents φ = 2 and φcluster = 4

3 . We will learn
from this quest that Cav,cluster is dominated by spin pairs in
large clusters composed by several original spins, and that the
exponential suppression of correlations after many clusterings
[see Eq. (15)] is so strong that Cav becomes dominated by
original spins pairs that become locked together in a cluster
for the first time.

We start our analysis with Q(t ; ρ): the probability of
finding a spin cluster composed of t original spins at the length
scale x = ρ−1 = L/NT where NT is the total number of spin
clusters at that length scale, ρ is simply the density of spin
clusters in the lattice, and L is the original number of lattice
sites. As mentioned in Sec. IV A, the SDRG clustering rules
disentangle from the system energetics in the later stages of
the SDRG flow. In that case, the flow equation for Q becomes
much simpler:

d[LρQ] = dNdec(−2Q(t ; ρ) + Q
t� Q). (16)

The left-hand side of Eq. (16) is simply the change on
the number of clusters containing t original spins when the
system density changes from ρ to ρ + dρ. dNdec is the cor-
responding total number of decimations, which is related to
ρ via d[Lρ] = −(2p + q )dNdec, with p (q = 1 − p) being
the probability of a (non)singlet decimation and d[Lρ] being
the corresponding change in the total number of clusters. For
the SU(3) case, p = q = 1

2 . Generically for the SU(N ) case,
p = 1

N−1 . Recall that for each singletlike decimation, two
clusters are removed while for a nonsinglet decimation, two
clusters are removed but a new one is inserted. The first term
on the right-hand side of Eq. (16) accounts for the removal of
the two decimated clusters in every decimation. The last term
accounts for the insertion of the new cluster containing the

0 2 4 6 8 10
x = - (t-1) ln(1-ργ)

-10

-7.5

-5

-2.5

0

2.5

y 
= 

ln
(ρ

−γ
 Q

(t
;ρ

))

ρ = 3-1

ρ = 3-2

ρ = 3-3

ρ = 3-4

ρ = 3-5

ρ = 3-6

ρ = 3-7

y = - x - 0.5

L = 313

D = 1
M = 2x103

FIG. 8. The probability Q(t ; ρ ) of finding a spin cluster com-
posed of t original spins at the density scale ρ for various different
density values. The data were obtained via the numerical implemen-
tation of the SDRG procedure where the parameters used are the
same as in Fig. 7. The dashed line is the simplified prediction Eq. (17)
with an offset for better comparison. The lines are guides to the eye.

total number of spins: Q
t� Q = ∑

t1,t2
Q(t1)Q(t2)δt,t1+t2 (1 −

δt,N − δt,2N − . . . ). The term inside the parentheses ensures
that only nonsinglet decimations contribute. In order to keep
the analysis simple, from now on we will allow Q(t ) to
be nonzero also for t a multiple of N and recast this term

as qQ
t⊗ Q = q

∑
t1,t2

Q(t1)Q(t2)δt,t1+t2 . Exchanging Q
t�

Q by qQ
t⊗ Q is equivalent to replacing the precise occur-

rence of a nonsinglet decimation by its average occurrence.
Therefore, this simplification cannot change the large-t be-
havior of Q(t ; ρ), and thus, we expect to obtain the correct
value of the universal exponents φ and φcluster.

We now try a solution of type Q(t ; ρ) = Aρe
−Bρ (t−1),

where Aρ and Bρ are t-independent functions. From the
normalization condition

∑∞
t=1 Q(t ; ρ) = 1, our ansatz sim-

plifies to Q = Aρ (1 − Aρ )t−1. Plugging this result into the
simplified flow equation, we find that

Q(t ; ρ) = ργ (1 − ργ )t−1, (17)

where γ = 1 − 2
N

and we have used the initial condition
Q(t ; 1) = δt,1. For comparison, we plot in Fig. 8 the probabil-
ity Q(t ; ρ) for various different values of density ρ obtained
via the numerical implementation of the SDRG procedure as
explained for Fig. 7. As expected, the large-t behavior is well
described by our simplified result (17), although we cannot
rule out a power-law correction to the exponential dependence
on t .

We are now able to obtain the leading behavior of Cα
av,cluster.

This is proportional to the probability that any two original
spins, x lattice sites apart, are in neighboring spin clusters
at the density scale ρ = x−1. (We can associate x with ρ−1

because the size of the clusters is of order of the mean distance
between them.) Thus, we need the probability RT (ρ) that a
certain original spin is still active (i.e., belonging to some
spin cluster) at the density scale ρ. This is proportional to the
total number of original spins in the effective chains. Thus,
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RT ∝ ρ
∑

t tQ(t ; ρ) = ρt̄ = ρ1−γ and

Cα
av,cluster ∼ [RT (ρ)]2 ∝ x−φcluster , (18)

with φcluster = 4
N

, which recovers the result of Ref. [43].
In order to compute Cα

av, we need the probability R(t ; ρ) =
RT (ρ)Q(t ; ρ) of finding an original spin in a cluster com-
posed by t original spins at the density scale ρ. The correla-
tions in Eq. (15) are incorporated in the following approximate
way. We assume that contribution to the correlations coming
from spins Si and Si+x is ∝ c2k where k is the largest integer
smaller then ti+ti+x

N
, where ti and ti+x are respectively the

number of original spins on the clusters containing Si and Si+x

when they are fused together at the density scale ρ = x−1.
Thus, Eq. (18) is generalized to

Cα
av ∼

∞∑
k=0

c2k
∑

kN<ti+tj �(k+1)N

R(ti ; ρ)R(tj ; ρ) (19)

= ρ2

(
1 +

∞∑
n=1

an(1 − ργ )n
)

∼ ax−φ, (20)

where the second sum in (19) denotes a double sum over all
values ti and tj obeying the constraint kN < ti + tj � (k +
1)N . In the last passage, we considered only the long-distance
regime x � 1 where we found a universal exponent φ = 2
and the constant

a =
∞∑

k=0

c2k[(2k − 1)N2 − N ]

2
= (N + N2)c2 + N2 − N

2(1 − c2)2
.

(21)

We therefore recover the numerical SDRG results in Fig. 7 and
provide a simple theory for the DMRG results of Sec. III. It is
interesting to track the contributions to the constant (21). The
exponential decay of correlations upon many projections (15)
dictates that the main contribution comes from those spins in
smaller clusters. For this reason, the result (20) is applicable
to any SU(N ) random singlet state.

V. CONCLUSIONS

We have devised an adaptive density matrix
renormalization-group (DMRG) method able to tackle
strongly disordered random systems and applied it to the
random antiferromagnetic spin-1/2 chain and to the random
spin-1 with bilinear and biquadratic interactions.

The adaptive DMRG method was able to recover the
known results for the spin-1/2 chain in the literature and
overcome the deficiency of the standard DMRG method
in capturing the entanglement between distant spins in the
system. For the spin-1 chain at the SU(3) symmetric point
[θ = π

4 in (7)], we found that the average correlations decay
as a power law with the same universal exponent as in the
spin-1/2 chains, φ = 2. In order to confirm this result, we then
developed a strong-disorder renormalization-group (SDRG)
framework for computing the spin-spin correlation for all
SU(N ) symmetric random-singlet states and concluded that
the correlation exponent is universal and equal to φ = 2 for
all N � 2. This result also applies to all SO(N )-symmetric
random spin chains exhibiting enlarged SU(N ) symmetry
random-singlet ground states [29,30].

Our adaptive DMRG algorithm requires few changes with
respect to the standard DMRG method and thus, can be
easily implemented. The input state of our method in the
high-disorder regime is self-generated and does not rely on
other methods such as those of the tensor-network-based
algorithms. Finally, the convergence of our method for larger
degrees of disorder can be controlled by setting smaller dis-
order increments. Therefore, our method may be suitable to
study other quantum phase transitions driven by the disorder
strength such as many-body localization transitions.
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