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The important thing is not to stop questioning.
Curiosity has its own reason for existence. One
cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous
structure of reality. It is enough if one tries
merely to comprehend a little of this mystery
each day.
(Albert Einstein - LIFE Magazine, 2 May 1955,
p. 64)
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Resumo

Assim como em outros domínios do conhecimento, as técnicas de aprendizado profundo revo-
lucionaram o desenvolvimento de abordagens para a super-resolução de imagens. Algoritmos
recentes para solucionar este problema têm empregado redes neurais convolucionais em arqui-
teturas residuais com várias camadas e funções gerais de perda. Essas estruturas (arquiteturas
e funções de perda) são genéricas e não abordam as principais características de uma imagem
para a percepção visual humana (luminância, contraste e estrutura), resultando em melhores
imagens, no entanto, com ruído principalmente em suas bordas. Neste trabalho, apresentamos e
avaliamos um método, denominado super-resolução de imagens refinada com informação de
bordas (Edge Enhanced Super-Resolution - EESR) usando uma nova rede neural residual com
foco nas bordas da imagem e uma combinação de funções de perda: Peak Signal-to-Noise Ratio
(PSNR), L1, Multiple-Scale Structural Similarity (MS-SSIM) e uma nova função baseada na
técnica Pencil Sketch. Como principal contribuição do trabalho, o modelo proposto visa alavancar
os limites da super-resolução de imagens, apresentando uma melhoria dos resultados em termos
da métrica SSIM e alcançando resultados promissores para a métrica PSNR. Os resultados
experimentais obtidos mostram que o modelo desenvolvido é competitivo quando comparado
com o estado da arte para os quatro conjuntos de dados (Set05, Set14, B100, Urban100) avaliados
para super-resolução de imagens.



Abstract

As in other knowledge domains, deep learning techniques have revolutionized the development
of approaches to image super-resolution. Recent algorithms for addressing this problem have
employed convolutional neural networks in multi-layered residual architectures and general loss
functions. These structures (architectures and loss functions) are generic and do not address
the main features of an image for human visual perception (luminance, contrast and structure),
resulting in better images, however, with noise mainly at its edges. In this work, we present
and evaluate a method, called Edge Enhanced Super Resolution (EESR), using a new residual
neural network focusing on the edges of the image and a combination of loss functions: Peak
Signal-to-Noise Ratio (PSNR), L1, Multiple-Scale Structural Similarity (MS-SSIM) and a new
function based on the Pencil Sketch technique. As main contribution of this work, the proposed
model aims to leverage the limits of image super-resolution, presenting an improvement of the
results in terms of the SSIM metric and achieving promising results for the PSNR metric. The
obtained experimental results show that the developed model is competitive when compared to
the state of the art for the four data sets (Set05, Set14, B100, Urban100) evaluated for image
super-resolution.
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Chapter 1

Introduction

This chapter describes the problem under investigation in this dissertation, as well as its motiva-
tion, objectives and research questions, contributions and text organization.

1.1 Context and Motivation

The super-resolution using single images is the process of upscaling images, where a Super-
Resolution (SR) version of an image is obtained from a Low Resolution (LR) image, such that
the SR image will be ideally equivalent to the High Resolution (HR) image. The super-resolution
problem is considered a classic problem in the image processing field, having many solutions
already developed, which use different interpolation equations to reconstruct the image and
filters to make corrections to the final result [12, 19, 20, 23, 30, 53, 79].

The classic solutions [17, 32, 62, 66, 67, 78], however, become outdated with the evolution
of technology presenting unsatisfactory results for several application areas. In medicine, high-
resolution images may provide more details and allow better diagnosis [47,52]. In entertainment,
old images captured at low resolution may be reproduced in order to be displayed on larger
televisions with high resolution [44]. In security and surveillance, the resulting images may
improve the identification of people, objects, car plates, and other information [26, 49, 57].
Furthermore, the acquired images do not always possess a proper quality, containing noise, focus
or distortion problems. Such issues make the upscaling process more difficult and causing the
resulting images to be less understandable to the human visual system [10, 77].

Nowadays, due to the advances in technology and larger processing power, different machine
learning and image processing techniques have been explored to allow the use of Deep Neural
Network (DNN), becoming the state of the art in segmentation, classification, and reconstruction
of images [14].

The challenge New Trends in Image Restoration and Enhancement (NTIRE) was created in
20161 with issues in 20172, 20183 and 20194. This competition aims to drive the improvement
of super-resolution algorithms and, since its first edition, the best algorithms on individual super-
resolution images use DNN, such as Enhanced Deep Super-Resolution (EDSR) [39], Multi-scale

1NTIRE 2016: http://www.vision.ee.ethz.ch/ntire/
2NTIRE 2017: http://www.vision.ee.ethz.ch/ntire17/
3NTIRE 2018: http://www.vision.ee.ethz.ch/ntire18/
4NTIRE 2019: http://www.vision.ee.ethz.ch/ntire19/
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Deep Super-Resolution (MDSR) [39], Very Deep Network Super-Resolution (VDSR) [31],
which reinforces the importance of this technique to the area [15].

The super-resolution algorithms based on DNN usually have different architectures, however,
they commonly use Peak Signal-to-Noise Ratio (PSNR) and L2 as loss functions [48, 50, 58, 60,
80, 81]. According to the Kautz et al. [83], these loss functions for the super-resolution problem
are generalist and do not consider the position of the error in the image, which can generate
images with noise at the edges, making it difficult for the human visual system to interpret the
images.

1.2 Research Questions and Objectives

In order to improve the results of the super-resolution in single images, we have raised some
guide questions. The main research questions are outlined as follows:

• Can the use of an edge loss function help the neural network achieve a better super-
resolution image?

• Can edge-focused layers in a neural network produce super-resolution images better for
the human visual system?

• Can the use of inputs with different edge information help the network to improve the
result?

The main objective of this work is to improve the processing of super-resolution images,
making the perception of the resulting images more pleasant to the human visual system and
allowing a better understanding of their content. To be consistent with our goals, the following
guidelines were defined in this work:

• The investigation of super-resolution methods.

• The evaluation of deep learning architectures for the super-resolution of single images.

• The analysis of different loss functions used in the state of the art.

• The comparison of the results obtained with state of the art approaches.

1.3 Contributions

The main contributions of our work related to the super-resolution problem in single images
include:

• The development and evaluation of a deep neural network architecture, named Edge
Enhanced Super-Resolution (EESR) [21], based on a Residual Network (ResNet), with
layers modified with the Unsharp filter, becoming more specialized at the edges.
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• The proposition of a mix of loss functions, which encompasses both general and specific
edge faults. This mix of functions uses the Pencil Sketch technique to consider the image
edges and helps the network converge to an image with improved edges.

These contributions provided superior results for the Structural Similarity (SSIM) metric and
similar results for the PSNR metric in the data sets tested when compared to the state of the art
algorithms.

1.4 Text Organization

This text is organized as follows. Section 2 briefly reviews some relevant concepts and techniques
related to the topic under investigation. Section 3 presents relevant works related to super-
resolution. Section 4 describes the proposed method for image super-resolution enhanced by
edge information. Section 5 presents and analyzes the experimental results obtained with our
method, as well as a comparison to other methods available in the literature. Section 6 concludes
the work with some final remarks and directions for future work. Finally, Appendix A presents
some additional results obtained with our EESR method.
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Chapter 2

Background

This chapter presents some relevant concepts related to our work, more specifically, a brief
introduction of deep learning, the residual network (ResNet) architecture, the concept of super-
resolution, the pencil sketch, the unsharp mask filter, and performance metrics.

2.1 Deep Learning

Deep Learning or Deep Neural Network (DNN) is the name given to a set of machine learning
algorithms that are based on Neural Network (NN) [11, 14, 25, 37, 42, 43]. These algorithms are
inspired by the neurons in the human brain and have existed since the 1960’s, however, they have
gained notoriety in recent years due to the increased computational power, larger amount of data,
and emergence of new techniques. A DNN is composed of layers that can have one or more
operations. A set of convolutions is commonly used in neural networks for image and video
processing; these networks are called Convolutional Neural Networks (CNN) [18, 22, 36, 56].

One of the most important competitions in image processing is the ImageNet [13] challenge,
composed of approximately 1 million images divided into 1000 classes (for instance, dogs, cats,
birds, cars). As of 2012, with AlexNet [34] winning the ImageNet [35] challenge with a 10%
less error than the second place, the DNN architectures begin to gain prominence, boosting the
development of other architectures that reached the state of the art in diverse applications, such as
VGGNet [60], GoogLeNet [65], ResNet [28], Inception [64], YOLO [55] among others [13, 54].

2.1.1 Residual Network - ResNet

The Residual Network (ResNet) is a DNN created by He et al. [28] in 2015 for the ImageNet
challenge, inspired by the philosophy of VGG [28] networks. The ResNet has most of the layers
with 3×3 convolutions and follows two basic rules: (i) for the same feature map size, the number
of filters in the layers are the same; and (ii) when the feature map size is halved, the number of
filters is folded.

The architecture ends with a global average pooling layer, where the number varies with the
number of outputs. The original network has 1000-way, as illustrated in Figure 2.1. Finally, to
obtain the residual network, shortcut connections are inserted. When the dimensions between the
output and input layers are the same, the shortcut is a identity mapping (solid line shortcuts in
Figure 2.1), but when dimensions increase (dotted line shortcuts in Figure 2.1), two options are
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considered: the shortcut performs a identity mapping or a projection. The architecture version,
without the shortcuts, is referred to as plain network [28].

Figure 2.1: Examples of architectures presented by the creators of ResNet. Left: the VGG-19
model as a reference. Middle: a plain network with 34 parameter layers. Right: a residual
network with 34 parameter layers [28].
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ResNet-based residual networks are easier to optimize and train, even with a significant
number of layers, however, they can achieve competitive results in a variety of tasks, such as
classification and super-resolution, resulting in less computational time for training.

2.2 Super-Resolution

Super-Resolution (SR) of images [23, 63, 68, 72, 76] is a classic problem in the image processing
field that affects several application domains, such as medicine [52], entertainment [44], and
surveillance [26]. The computation of SR images are divided into (i) super-resolution of single
images - where only one Low Resolution (LR) image is used to obtain a High Resolution (HR)
image, such that this SR can be considered more complex, since there is a minimum amount of
information about the image; (ii) super-resolution of multi-images - where multiple LR versions
of an image are used to obtain a HR image, and the LR image versions may contain images with
intermediate resolutions or different noise types [5, 9, 70]. In our work, we focus only on SR of
single images.

(a) high-resolution (481×321 pixels) (b) low-resolution 2× (240×160 pixels)

(c) low-resolution 3× (160×107 pixels) (d) low-resolution 4× (120×80 pixels)

Figure 2.2: Image 108070.png in HR and LR versions reduced using only the bicubic
function [45].

The LR images can be obtained under different strategies, but most researches assume that
the LR images are downscaled versions, created through the bicubic technique, of the HR images.
These images may still contain randomly noise to simulate compression or loss of information.
Figure 2.2 shows an HR image and LR versions reduced 2, 3, and 4 times using only the bicubic
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function. It is possible to observe a greater loss of information when the reduced factor increases,
such as the loss of some edges in Figure 2.2b and the complete loss of these edges in Figure 2.2d.

2.3 Pencil Sketch

Pencil sketch [40, 69] is a non-photorealistic technique used to convert colored images into
a grayscale sketch. This technique simulates the effects of different pencils and strokes on
paper [69]. The result of the pencil sketch is an image with edges and a sense of preserved
depth, however, without colors and textures, since they are suppressed in the process. Thus, this
technique is used to create beautiful non-realistic images, with many details and shadow effects.

The pencil sketch technique is simple to implement and it is composed of three basic steps:
(i) initially, the color image is converted to a grayscale image; (ii) the blurred image is then
created based on the grayscale image; (iii) finally, the resulting image is created by dividing
the grayscale image by the blurred image. The image resulting from this process is grayscale.
In order to create the color image, we convert the original image from Red Green Blue (RGB)
color space to the Y-luma, Cr-red difference, and Cb-blue difference (YCrCb) color space, and
multiply the Y-luma by the result of the pencil sketch.

Algorithm 1: Pencil sketch computation.

1 i m p o r t cv2
2

3 d e f p e n c i l _ s k e t c h ( img_rgb ) :
4 # S tep 1
5 i f img_rgb . shape [ 2 ] > 1 :
6 img_gray = cv2 . c v t C o l o r ( img_rgb , cv2 .COLOR_RGB2GRAY)
7 e l s e :
8 img_gray = cv2 . c v t C o l o r ( img_rgb )
9

10 # S tep 2
11 i m g _ b lu r = cv2 . G a u s s i a n B l u r ( img_gray , ( 2 1 , 21) , 0 , 0 )
12

13 # S tep 3
14 mg_ps = cv2 . d i v i d e ( img_gray , img_blur , s c a l e =256)
15

16 r e t u r n img_ps
17

18 img = cv2 . imread ( img_p )
19 img_ps = p e n c i l _ s k e t c h ( img )
20

21 # c o n v e r t s t h e RGB image t o YCrCb image
22 img_yCrCb = cv2 . c v t C o l o r ( img , cv2 . COLOR_RGB2YCR_CB)
23

24 # m u l t i p l i e s t h e Y−luma and p e n c i l s k e t c h r e s u l t
25 img_yCrCb [ : , : , 0 ] = cv2 . m u l t i p l y ( img_yCrCb [ : , : , 0 ] , img_ps , s c a l e = 1 . / 2 5 6 )
26

27 # r e s u l t i n g c o l o r image
28 i m g _ r e s u l t = cv2 . c v t C o l o r ( img_yCrCb , cv2 . COLOR_YCR_CB2RGB)
29

30
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Algorithm 1 presents the main implementation steps of the pencil sketch technique, imple-
mented in Python programming language and OpenCV library [7]. Figure 2.3 illustrates the
results achieved for each step of the algorithm.

(a) original image (b) grayscale image (Step 1)

(c) blurred image (Step 2) (d) pencil sketch result (Step 3) (e) resulting color image

Figure 2.3: Results of the Pencil Sketch algorithm. (a) original image [78]; (b) graycale image;
(c) blurred image; (d) result of the division between images (b) and (c); (e) result of multiplying
image (d) with Y-luma of image (a).

From the result of the pencil sketch technique (image shown in Figure 2.4c), it is possible
to observe shadow effects and image edges with no perfect lines, giving a more realistic notion
than an edge image.

The main difference between the pencil sketch and traditional edge detectors, such as
Sobel [61], Laplacian [24] and Canny [8], is the preservation of depth information and the fact
that the edge traces are not converted to lines, which can be seen in Figure 2.4.
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(a) Sobel result (b) Laplacian result (c) Pencil sketch result

Figure 2.4: Comparison among different methods for edge detection.

2.4 Unsharp Mask Filter

The unsharp mask filter [6, 24] is a simple sharpen operator that helps improve text and detail
in the images, thus enhancing the edges. The filter acts as a high-frequency filter through a
procedure where a non-attenuated or smoothed image of the original image is subtracted and
added to the original image again [46].

Figure 2.5 illustrates the main steps of the unsharp mask filter, where F (x, y) is the original
image, the G(x, y) is the smoothed image, the H(x, y) is the subtraction of the G(x, y) and
F (x, y) images, and Funsharped(x, y) is the final image resulting from the sum of H(x, y) and
F (x, y).

SmoothF(x,y) Funsharped(x,y)
G(x,y) H(x,y)

Figure 2.5: Main steps of the unsharp mask filter.

2.5 Performance Metrics

To compare the similarity between high-resolution and super-resolution images or to define if a
method produces better results, the PSNR and SSIM metrics are commonly used [75]. However,
these strategies do not represent the actual similarity perceived by the human visual system [75].

The PSNR metric represents the signal to noise ratio based on the Mean Square Error (MSE).
The MSE is shown in Equation 2.1. The PSNR value is high if there is less noise between the
HR and SR images. The PSNR is shown in Equation 2.2, where I(i, j) is the original image, m
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and n are the image dimensions, and K(i, j) is the super-resolution image.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i,j) −K(i,j)]
2 (2.1)

PSNR = 20 log10
(
max I(i,j)

)
− 10 log10(MSE) (2.2)

Using the MSE as the basis, the result of this method does not take into account the region
that has more or less noise, allowing images for having much noise at the edges, but no noise in
the interior regions, resulting in a high value, but with noise at the edges, which makes the visual
perception difficult.

The structural similarity in Single-Scale SSIM and Multiple-Scale Structural Similarity
(MS-SSIM) are similar structural methods that attempt to represent the similarity between images
in a way closer to that observed by the human eye, which takes into account the luminance,
contrast and structure information. In these methods, the values of similarity vary from 0 (the
images are not similar) to 1 (the images are similar) [71, 73].

The SSIM metric is shown in Equation 2.3, where µHR and σ2
HR are the mean and variance of

HR, µSR and σ2
SR are the mean and variance of SR, and σHS-R is the covariance of HR and SR, C1

and C2 are constants that stabilize the equation (C1 = 0.01 ∗ 2552 and C2 = 0.03 ∗ 2552).

SSIM(HR,SR) =
(2µHR µSR + C1)(2σHS-R + C2)

(µ2
HR + µ2

SR + C1)(σ2
HR + σ2

SR + C2)
(2.3)
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Chapter 3

Related Work

In this chapter, we present a review of the main approaches related to this dissertation and their
contributions to the super-resolution problem. The methods were selected based on two criteria:
(i) the contribution for the state of the art; (ii) the availability of the source codes by their authors.

3.1 Very Deep Super Resolution - VDSR

The VDSR is a DNN that was created by Lee et al. [31] with inspiration in VGG networks used
for classification images in the ImageNet challenge. The VDSR model is composed of 20 layers
that are in pairs of layers convolutional and nonlinear repeatedly and have 64 filters of the size
3×3×64.

The network input image is an interpolated HR (HRI) version of the LR image, with the HRI
image. The network predicts a residual image that is summed to the HRI image and generates
the final output image. The loss function used is denoted as

1

2
|r − f(x)|2 (3.1)

where r is a residual image calculated by r = y − HRI, where y is the output image and f(x) is
the network predicted image. Figure 3.1 illustrates the VDSR architecture.

The VDSR is approximately 104 times faster than Super-Resolution Convolutional Neural
Networks (SRCNN) [16], which was the state-of-the-art super-resolution algorithm. This was
possible due to the use of residual learning in the context of super-resolution. The authors
presented a comparison between a residual network and a standard network to demonstrate the
gains of residual networks in super-resolution.

The networks were created with 20 layers and tested for a scale factor of 2×. Figure 3.2
shows the PSNR results of the networks in 80 epochs, where it is possible to observe that the
residual network is more stable through the epochs and the final result is better [31].

3.2 Enhanced Deep Super Resolution - EDSR

Since the development of some state of the art models, such as VDSR [31] and SRResNet [59],
demonstrated that residual networks performed better in super-resolution, other models have
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Figure 3.1: VDSR architecture [31].

Figure 3.2: Results for the comparison conducted by Kim et al. [31] that show the values of
PSNR with variations of initial leaning rate for (a) the residual network, (b) the standard network
and (c) the bicubic interpolation [31].

been developed based on the residual networks.
The Enhanced Deep Super-Resolution (EDSR) was developed based on the SRResNet

network for the NTIRE20171 super-resolution competition and is considered one of the best
deep learning codes for super-resolution. This network starts from a simplification of the residual
blocks of the SRResNet network, as shown in Figure 3.3. The original residual block is shown
in Figure 3.3a, the SRResNet is shown in Figure 3.3b, whereas the residual block proposed by
Lee et al. in EDSR [39] is shown Figure 3.3c.

According to Lee et al. [39], the simplification of the residual blocks with the removal
of the batch normalization layers is possible because they get rid of range flexibility from
networks by normalizing the features. Furthermore, the amount of GPU memory used during
processing was reduced approximately 40% with the removal of batch normalization, allowing
the implementation of more complex networks.

The final architecture of the EDSR is composed of 32 layers interleaved between the convo-

1NTIRE 2017: http://www.vision.ee.ethz.ch/ntire17/
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(a) Original (b) SRResNet (c) EDSR

Figure 3.3: Image presented by Lee et al. [39] to compare the different residual blocks.

lution layer and residual block layer totaling 256 filters, and the loss function used is the least
absolute deviation (L1) [39]. The EDSR architecture is shown in Figure 3.4.

Figure 3.4: EDSR architecture [39].

3.3 Multi-scale Deep Super Resolution - MDSR

Lee et al. [39], creators of the EDSR, identified in their tests the possibility of another version
of the architecture that uses multiple scales. Thus, they developed the Multi-scale Deep Super-
Resolution (MDSR), a merge of EDSR with multi-scale models to have a single main branch.

The pre-processing modules are used to reduce the variance from input images of different
scales, which is composed of two residual blocks. At the end of the MDSR, the scale-specific
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upsampling model is located in parallel to handle the multi-scale reconstruction. The MDSR
model has 80 residual blocks and 64 filters and using the L1 as the loss function [39]. Figure 3.5
shows the MDSR architecture.

Figure 3.5: MDSR architeture [39].

3.4 Deep Back-Projection Networks - DBPN

The Deep Back-Projection Network (DBPN), developed by Hais et al. [27], presented a different
approach from the SR, for instance, the back-projection layers, connections up-down-sampling,
and MSE loss function.

According to Hais et al. [27], the back-projection [30] is an efficient interactive procedure to
minimize the reconstruction error. Originally, the back-projection was been thought to multiple
LR inputs. However, given one LR input, the updating procedure can be obtained with the
up-sampling.

Unlike other architectures, the DBPN does not map directly the LR input image to HR output
image, but alternates between up-down-sampling stages, ending with the up-sampling stage.
Figure 3.6 shows this architecture, where the up-sampling is the blue box and the down-sampling
is the gold box.

The DBPN architecture is composed of three parts: (i) the initial, where is extracted the
features; (ii) the back-projection stages with the alternating sequence of up and down sampling;
and (iii) the reconstruction part, which unites the output images of the intermediate part.

Hais et al. [27] presented some versions for their architecture, however, the main and final
version is the Deep Dense Back-Projection Network (DDBPN), which used dense connections
between the projection units. Figure 3.7 illustrates the DDBPN architecture.
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Figure 3.6: Up-down-sampling in the DBPN architecture [27].

Figure 3.7: DDBPN architecture [27].
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Chapter 4

Proposed Method

In this chapter, we explain the proposed architecture and loss function for image super-resolution.
Initially, we analyze the state-of-the-art frameworks, where different architectures and number of
layers are identified, however, none of them with focus on the image edges. The loss functions
commonly employed in these approaches are L1, L2 and PSNR, which do not explore the edges
since they are average error functions.

Our proposal is an edge enhanced super-resolution framework, which consists of a ResNet-
based architecture, referred here to as EESR [21], as well as a combination of existing loss
functions with a new function based on the pencil sketch technique. According to our experiments,
the preservation of the image edges was able to improve the super-resolution results.

4.1 Data Sets

A typical problem found in the deep learning solutions is the low number of images available to
training and testing. In this work, we evaluated our results in four data sets (Set5 [5], Set14 [78],
B100 [45], and Urban100 [29]). It is worth mentioning that we used the Div2K [1] only for
training and validation, since the test images are reserved for the associated challenges. Table 4.1
shows the highest and lowest resolutions of the images in each data set.

Data Set Train Validation Test Highest Resolution Lowest Resolution

Div2k 800 100 - (2040, 2040) (648, 2040)

Set5 - - 5 (512, 512) (256, 256)

Set14 - - 14 (576, 720) (276, 276)

B100 - - 100 (321, 481) (321, 481)

Urban100 - - 100 (963, 1280) (1024, 567)

Table 4.1: Summary of the image dimensions for the evaluated data sets.

The Div2K [1] data set was launched in 2017 with the aim of training and evaluating super-
resolution algorithms. It has 800 images for training and 100 images for validation. These images
are given in pairs, where high-resolution images have a resolution of 2K and low-resolution
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images are reduced versions 2, 3 and 4 times. Figure 4.1 shows Div2K image samples for HR
and LR at two downscaling factors.

(a) (2040, 2040) (b) (1020, 1020) (c) (2040, 648) (d) (1020, 324)

Figure 4.1: Samples from the Div2K data set.

There are also other known data sets, such as Set5 [5], Set14 [78], B100 [45], and Ur-
ban100 [29], which are considered small, containing 5, 14, 100 and 100 pairs of HR and LR
images, respectively, and are commonly used as benchmark for the comparison between algo-
rithms. Figures 4.2, 4.3, 4.4, and 4.5 illustrate samples from Set5, Set14, B100, and Urban100
data sets for HR and LR at two downscaling factors.

(a) (512, 512) (b) (256, 256) (c) (256,256) (d) (128, 128)

Figure 4.2: Samples from the Set5 data set.

4.2 Loss Functions

According to Kautz et al. [83], the loss functions derived from the L2 function assume that noise
in the entire image is equivalent to the localized noise. In other words, the loss functions do
not consider the location of the error [74]. The sensitivity of the human visual system to noise
depends on the local luminance, contrast, and structure.

Kautz et al. [83] proposed a mix of loss functions, adding MS-SSIM and L1 [82] to optimize
the image restoration results. This relation between the loss function and the super-resolution
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(a) (720, 576) (b) (360, 288) (c) (276, 276) (d) (138, 138)

Figure 4.3: Samples from the Set14 data set.

(a) (481, 321) (b) (240, 160)

Figure 4.4: Samples from the B100 data set.

(a) (1280, 963) (b) (640, 481) (c) (567, 1024) (d) (283, 512)

Figure 4.5: Samples from the Urban data set.

result is shown in Figure 4.6, where (a) and (e) are LR, and the remaining images are super-
resolution results using (b) and (f) L2 loss function, (c) and (g) L1 loss function, and (d) and (h)
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the mixed loss functions proposed by Kautz et al. [83].

Figure 4.6: Comparison of the loss function effects performed by Kautz et al. [83], where (a)
and (e) are LR, and the remaining images are super-resolution results using (b) and (f) L2 loss
function, (c) and (g) L1 loss function, and (d) and (h) the mixed loss functions proposed by
Kautz et al. [83].

Although this mix achieved the best results and the MS-SSIM function already has an em-
phasis on the structure of the image, this focus is still subtle and does not contribute significantly
to enhance the edges. Our proposal is to use the pencil sketch method as a loss function added to
the combination MS-SSIM, L1 and PSNR.

The pencil sketch loss function consists of two steps. Initially, the RGB images are converted
to the YCbCr space, and the Y-luma is used to create the sketched pencil images. We choose
to use the YCbCr space because the Y-luma represents the luminance in an image. The other
spaces and variables were tested and the results were not better; these other approaches will
be discussed in the following sections. Then, the PSNR value of the pencil sketch images is
calculated, resulting in a loss value. Equation 4.1 denotes the process, where IHR

(i,j) and ISR
(i,j)

correspond to the Y-luma values of the HR and SR images, whereas PS() is the pencil sketch
method.

L(Pencil Sketch) = PSNR(PS(IHR),PS(ISR) (4.1)

Equation 4.2 denotes the final mixed loss function composed of the pencil sketch sum,
MS-SSIM, L1, and PSNR terms, each of them with weight 1.

Loss = 1× L1 + 1× PSNR + 1×MS-SSIM + 1× L(Pencil Sketch) (4.2)
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4.3 Residual Block

The ResNet is a CNN architecture proposed by He et al. [28] to solve the problem of image
degradation present in other architectures based on CNNs. In order to do that, ResNet uses
residual layers, where the output of one layer is sent to the next two layers. The layers are
composed of sequence blocks with convolution, batch normalization, ReLU, and pooling, which
receive the output image from the previous layers. Figure 4.7a shows the diagram of an original
residual block.

Based on ResNet, Lim et. al. [39] proposed the architecture EDSR, a simplified version of
the residual block, where batch normalization was removed. This simplification is possible since
the tensor values are always standardized in the super-resolution problem. Without normalization
steps, the network presents an improvement in time and values for PSNR/SSIM metrics. The
residual block proposed in the EDSR is shown in Figure 4.7b.

Based on the simplified residual block and aiming to improve the edges, our proposed
Residual Unsharp Blocks (RUB) consists of a block without normalization, but adding two
filtering steps using unsharp mark filters, thus creating a simplified residual block and focused
on the edges, as shown in Figure 4.7c.

The unsharp mask filter was tested with varying kernel sizes, although the results were not
substantially different and no visible differences were observed in the final images. An 11×11
size kernel was applied to images with 256×256 pixels. These layers are not intended to modify
the size of the image by simply filter out noise from the edges.

Conv

Relu

Batch normalization

Conv

Batch normalization

Relu

(a) Residual block (ResNet)

Conv

Relu

Conv

(b) Simplified residual block (EDSR)

Conv

Relu

Unsharp

Conv

Unsharp

(c) RUBs (EESR)

Figure 4.7: Residual block and some modifications.
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4.4 EESR Architecture

The human visual system is based on specific information (luminance, contrast, and struc-
ture) [83]. Therefore, a more robust super-resolution architecture requires to address this
information. Our proposed architecture, based on EDSR and ResNet, shapes a new point of view
on the existing architectures.

From a global point of view, the proposed model has as input the LR images, being processed
by the model that results in SR images. These images, in turn, are compared to the original HR
images.

The first step of the proposed model is the data augmentation. We reuse the geometric
self-ensemble strategy created by Lim et al [39], where, during the testing process, LR images
are flipped and rotated in order to generate eight images, including the identity image. These, in
turn, are processed by the network, which generates eight images HR. The network applies the
inverse transformation and returns all images in the same position. Finally, the eight images in
HR will compose the resulting image by averaging them. The steps of data augmentation are
shown in Figure 4.8.

EESR Network

Geometric 
transformations

SR image 
output

Geometric 
re-transformation

Mean of 
outputs

LR image 
input

Super-resolution 
process

Figure 4.8: Geometric self-ensemble scheme for data augmentation.

Then, the architecture starts with a convolution 3×256 layer, then a simple residual block
composed of two 256×256 convolutions and one Relu activation, then 5 RUB layers with two
256×256 convolutions, one Relu activation, and two unsharp mask filters, then 26 simple residual
layers.

The residual layers are added and the result sent to the upsampling layer with one 256×256
convolution and a pixel shuffle. At the end, the last 256×3 convolution layer provides the final
image. Figure 4.9 shows the described architecture scheme. Such scheme is relative to a 2×
upscaling. EESR uses the ADAM [33] optimizer with β1 = 0.9, β2 = 0.999, and ε = 1e− 8, a
learning rate starting from 1e− 4, and the new mixed loss function. The approximate number of
parameters is 2.5M. Table 4.2 compares the parameters between our architecture and state of the
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art models.
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Figure 4.9: EESR architecture using unsharp residual blocks in 1 to 5 layers only.

VDSR EDSR MDSR DBPN EESR

Residual blocks - 32 80 - 32
Filters 64 256 64 - 256

Parameters - 43M 8M 16 M 2.5M
Loss function Euclidean distance L1 L1 MSE/L1 Mix

Table 4.2: Parameter comparison for different architectures.

Finally, the upsampling layer uses a convolution and pixel shuffle technique to group all the
layers generated by the network in an interspersed manner. This technique is presented by Shi et
al. [59] and illustrated in Figure 4.10.

Figure 4.10: Pixel shuffle technique.

The convolution is 256×1024 for 2× and 4× upsampling, whereas the convolution is
256×2304 for the 3× upsampling. Figure 4.11 shows the differences between the upsampling
layers.

Our approach allows the use of N layers, which may or may not contain Residual Unsharp
Blocks (RUB), allowing to switch between RUB layers, simplified residual layers, or layers with
other characteristics. In a simplified test, an architecture with more RUB layers required more
computational time and had similar results to the architecture with less RUB layers.
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Figure 4.11: Different upsampling layers.

Table 4.3 presents the results for PSNR and SSIM metrics and corresponding computational
time after the execution of 500 epochs for two architectures EESR1 to 5 with RUB in layers from
1 to 5 and EESR1 to 15 with RUB in layers from 1 to 15. Based on these results, the final tests
were performed with the EESR1 to 5.

EESR1 to 5 EESR1 to 15

Computational Time ± 1day 18h ± 3days 5h
PSNR 33.919 33.935
SSIM 0.9931 0.9931

Table 4.3: Computational time required for each proposed architecture.

The explanation for the EESR1 to 5 and EESR1 to 15 to have similar results resides in the RUB
goal since these blocks are responsible for filtering out basic information from the low-resolution
images, such as lines and edges, accelerating the process of network convergence. Thus, the next
layers learn about less blurred information. Nevertheless, many consecutive filtering operations,
in the case of the sharpness filter, do not generate better results by stagnating and becoming
redundant operations. However, these operations are relatively time consuming and unnecessary
when overlapped numerous times.
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Chapter 5

Experimental Results

In this chapter, we present the experiments and results for the proposed EESR method [21]. The
results are compared to leading-edge architectures. We describe the settings and parameters used
to generate the EESR results along with the images and metrics for 2×, 3× and 4× downscaling.
Finally, we present other approaches studied and evaluated throughout this work, but not used in
the last version.

5.1 Experiments

In our experiments, we use three different types of equipments, two desktop computers and an
Oracle VM Cloud1. The main computer consists of an Intel R© CoreTM i5-7400 CPU 3.0GHz,
16GB of memory and NVidia GeForce GTX 1060 with 6GB, which was used to develop, test
and generate the first results. The secondary computer consists of an Intel R© CoreTM i7-3770K
CPU 3.50GHz, 32GB of memory and NVidia Titan V with 12GB of memory, which was used to
obtain the final EESR results. The VM used in Oracle Cloud consists of a VM.GPU3.1 with an
Intel R© Xeon R© Platinum 8167M CPU 2.0 GHz, 90GB of memory and an NVidia Tesla V100
with 16GB of memory, which was used to compare the results presented in the paper [21].

In the training stage, we used the DIV2K training data set by loading the LR and HR images,
where the LR images used are different versions with 2×, 3× and 4× downscaling. The final
tests executed 500 epochs and the best results were presented around the 475th epoch. For a fair
comparison, the start-of-the-art architectures executed 500 epochs, but their results were similar
to those using 300 times, having their best results around the 300th epoch.

The code has many parameters to configure, however, many of them are maintained as their
default values presented in the option.py file. The main parameters used to run the EESR are
the number of epochs 500 and the mixed loss function formed by the sum of L1, PencilSketch,
PSNR, and MS_SSIM, all with weight 1. The color space used is the YCrCb and the loss
function is applied in the channel zero, the block numbers are 32 with RUB in the layers 1 to 5.

The comparative tables that will be shown in the next sections were created based on the
PSNR and SSIM values presented in the analyzed state of the art architectures. Some resulting
images were made available by the authors along with the source code, whereas others were
generated using the instructions presented by the authors in their papers or code repositories.

1https://cloud.oracle.com/compute/gpu/features
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5.2 Results

The main strategies for comparing the images in the SR problem employ the PSNR and SSIM
metrics, which attempt to condense all errors in the comparison between the SR image and
corresponding HR image. However, the visual comparison is the only one so far that can
determine the actual human perception of the difference between the images. For comparison
purpose, we used four well-known and challenging data sets to SR: Set14, Set05, B100 and
Urban100.

Two images resulting from our EESR architecture are presented for each benchmark data set
in Appendix A. The images are enlarged from 2×, 3× and 4× downscaling factors.

5.2.1 2× Downscaling

The 2× downscaling is considered easier and the first step of the SR algorithms, such that
many methods available in the literature, based or not on machine learning, presented results for
this problem. Table 5.1 shows the PSNR and SSIM values for the benchmark data sets with a
downscaling factor of 2×, where is possible to observe that our model presented competitive
results for the PSNR metric, achieving first place in the Set5 data set and second in the Set14
data set, but having worse results for the B100 and Urban100 data sets. From the SSIM results,
it is possible to observe that our model exhibited significant improvement in all benchmark data
sets, with a mean improvement of 6.44% to the second algorithm.

DDBPN VDSR EDSR MDSR EESR

2×

Set05 38.09
0.9600

37.53
0.9587

38.20
0.9606

38.17
0.9605

38.21
0.9965

Set14 33.85
0.9190

33.03
0.9124

34.02
0.9204

33.92
0.9203

33.92
0.9931

B100 32.27
0.9000

31.90
0.8960

32.37
0.9018

32.34
0.9014

32.32
0.9926

Urban100 33.02
0.9310

30.76
0.9140

33.10
0.9363

33.03
0.9362

32.74
0.9946

Table 5.1: Results for PNSR / SSIM metrics on the evaluated data sets for 2× downscaling. The
first and second best results are highlighted in blue and red colors, respectively.

Figures 5.1 5.2 5.3 5.4 show the comparison between the images resulting of the state of
the art (VDSR, EDSR. MDSR, and DDBPN) networks, the image resulting of ours network
(EESR), and the HR image, all to for 2× downscale. The images are respectively to the data sets
Set14, Set05, B100 and Urban100.

From Figure 5.1, it is possible to observe the differences between the state of the art results
and our architecture results for the Set14 benchmark. From the images, we can see that red text
became clearer in the image resulting from the EESR and, when we look at the blue text, more
precisely the word “presentations”, it is possible to notice that, in all results, the letters “n” appear
blurry and, in the DDBPN result, this effect is more subtle and can allow the understanding of
the word. In our result, the first “n” is confused with the next letter “t”. Overall in this example,
our architecture obtained a slightly better result.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.1: Comparative results for ppt3.png image with downscaling of 2× for the Set14
data set.

Figure 5.2 shows the super-resolution results for an image from the Set5 data set. In this
figure, it is possible to observe the differences on the edges, when the change is abrupt (on the top
of the bird head with the background and the black band in the start of itsr beak) and when it is
gradual (around eyes and in its chest). In this case, the VDSR, DDBPN and EESR architectures
obtained similar results and, when compared to the HR image, we notice that the main difference
is the perception of color intent and brightness.

Figure 5.3 compares the results for an image from Urban100 data set. The original image has
different textures, reflections, and colors, which make imaging challenging for super-resolution
architectures. From the results, it is possible to see the difference between processing smooth
surfaces and rough surfaces, where all architectures had an acceptable result for the part of the
image that is smooth, but lost a lot of quality on the rough surface. Another detail to notice in
this comparison is the difference in color tone, where the VDSR and EDSR results are closer to
the HR image. However, our architecture and the EDSR had better results for the reflections in
the smooth surface, which is observed on the bottom left of the results.

As mentioned in Chapter 1, surveillance is one of the areas that can be benefited from
the super-resolution techniques. In this context, a related task is the identification of people
and objects. The original image in Figure 5.4 has two common pieces of information in the
surveillance area, a face and a hand holding an object. When comparing the results of the
architectures to the HR image, we observe a difficulty in identifying features located on the face,
such as eyes, nose and ear. However, when observing the hand and the object in the images, it is
possible to see a slight difference between the results, mainly in the separation of the fingers and
in the contrast between the violin’s black arm and the black background suit.

5.2.2 3× Downscaling

Since the algorithms can address the 2× downscaling, a natural step is also to apply a 3×
downscaling to the images. However, an odd scale usually requires a different approach to obtain
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.2: Comparative results for Bird.png image with downscaling of 2× for the Set5 data
set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.3: Comparative results for Img060.png image with downscaling of 2× for the
Urban100 data set.

good results, as described in Chapters 3 and 4. In our EESR architecture, as well as the EDSR
and MDSR architectures, there are specific layers to handle 3× resolution.

In this section, we will compare the results for the 3× downscaling. The DDBPN is not
presented in this comparison because its authors [27] did not present the results for this scale in
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.4: Comparative results for 119082.png image with downscaling of 2× for the B100
data set.

their paper. Table 5.2 reports the PSNR and SSIM values for the benchmark data sets with a 3×
downscaling factor, where it is possible to see close results between our model and the first and
second best architectures (in blue and red, respectively) for the PSNR values. However, for the
SSIM values, our architecture had the best results for all data sets.

VDSR EDSR MDSR EESR

3×

Set05 33.66
0.9213

34.76
0.9290

34.76
0.9288

34.68
0.9882

Set14 29.77
0.8314

30.66
0.8481

30.53
0.8465

30.56
0.9710

B100 28.82
0.7976

29.32
0.8104

29.30
0.8101

29.25
0.9642

Urban100 27.14
0.8279

29.02
0.8685

28.99
0.8683

28.71
0.9755

Table 5.2: Results for PNSR / SSIM metrics on the evaluated data sets for 3× downscaling. The
first and second best results are highlighted in blue and red colors, respectively.

Figure 5.5 shows the results for the ppt3.png image from the Set14 data set of the 3×
downscaling. It is possible to observe that these results are more difficult for a person to
understand the text in the image. However, it is still possible to identify some words such as:
“Make”, “point” and “in”. If we consider the same observation made for the 2× downscaling and
look at the word “presentations”, we can see from the EESR result that this word still holds some
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separation between the letters, while the other results merged these letters into a single blob.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.5: Comparative results for ppt3.png image with downscaling of 3× for the Set14
data set.

From Figure 5.6, it is possible to observe a slight difference between the results. Comparing
the results with the HR image, we can observe a sensation of the image blur and the loss of some
details, for instance, the white spot in the bird eye, which was not preserved in the upscaling
process. The EDSR and VDSR results presented the colors more similar to the original image.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.6: Comparative results for Bird.png image with downscaling of 3× for the Set5 data
set.

Figure 5.7 compares the results of the SR process for an image from the Urban100 data
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set. These results are similar to those presented in Figure 5.6. The images are blurred, making
it difficult to perceive the texture of the image. However, the result of the EDSR architecture
showed better detail on the left side of the image that contains some reflection effects.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.7: Comparative results for Img060.png with downscaling of 3× for the Urban100
data set.

Two noticeable pieces of information are present in Figure 5.8, the face and the hand with the
object. The VDSR presented the most blurred result when compared to the others. The EESR
and MDSR presented a slight improvement in the highlighting of the part of the object above the
hand. This improvement is a slightly lighter coloration in the object, which allows a highlighting
against the black background.

5.2.3 4× Downscaling

In this section, we will present and compare the results for the 4× downscaled images. These
images present a more difficult scenario for the SR to process since they are even smaller. Unlike
the 3× downscaling, most algorithms support this resolution because it is a direct multiple of the
first 2× downscaling case.

Table 5.3 reports the PSNR and SSIM results for the 4× downscaling for all the architectures.
Again, our architecture EESR is competitive compared to the other state of the art architectures.
The EESR obtained better results for PSNR in all data sets and achieved the second better results
on the Set14 and B100 data sets, however, the EDSR obtained the better results for PSNR. When
we consider the SSIM results, our architecture maintained a good effectiveness in the other
resolutions presented in the previous sections.

The results presented in Figure 5.9 show that, for a 4× downscaling, it is practically impossi-
ble to read the information after the SR process. However, the EESR and DDBPN architecture
were able to maintain some separation between letters, which is not so often in the other results.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) EESR

Figure 5.8: Comparative results for 119082.png with downscaling of 3× for the B100 data
set.

DDBPN VDSR EDSR MDSR EESR

4×

Set05 32.47
0.8980

31.35
0.8838

32.62
0.8984

32.60
0.8982

32.48
0.9806

Set14 28.82
0.7860

28.01
0.7674

28.94
0.7901

28.82
0.7876

28.83
0.9538

B100 27.72
0.7400

27.29
0.7251

27.79
0.7437

27.78
0.7425

27.72
0.9434

Urban100 27.08
0.7950

25.18
0.7524

26.86
0.8080

26.86
0.8082

26.57
0.9590

Table 5.3: Results for PNSR / SSIM metrics on the evaluated data sets for 4× downscaling. The
first and second best results are highlighted in blue and red colors, respectively.

Figure 5.10 shows very similar results across the architectures, which makes it difficult for
people to identify the best image, but there is a slight difference among the results, such as in the
black line on the bird’s beak, where lines in the EDSR, VDSR and MDSR architectures became
more blurred and there is a continuity between the top and bottom of the beak that is not in the
original image. In the EESR and DDBPN results, the lines are more defined and the continuity
practically does not exist.

The focus of Figure 5.11 is to compare textural features. It is possible to observe that the
rough texture on the right side and the vertical lines on the mirrored texture on the left side were
completely lost in all SR images. Another point to notice is the vertical line separating the two
textures, where it is best viewed in the EESR and EDSR results.

Figure 5.12 shows the results for an image from the B100 data set, where several details of
the image were lost, making it virtually impossible to identify them in the resulting images.
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.9: Comparative results for ppt3.png image with downscaling of 4× for the Set14
data set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.10: Comparative results for Bird.png image with downscaling of 4× for the Set5
data set.

5.3 Additional Experiments and Results

The results presented in the previous section were obtained from the latest version of our
architecture and, consequently, are the best results obtained during this research work. However,
several other ideas and approaches were studied, such that some of them are presented in this
section.

In these early tests, we set a small number of epochs to obtain fast results. We chose a state
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(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.11: Comparative results for Img060.png image with downscaling of 4× for the
Urban100 data set.

(a) Original image

(b) HR (c) VDSR (d) EDSR

(e) MDSR (f) DDBPN (g) EESR

Figure 5.12: Comparative results for 119082.png image with downscaling of 4× for the B100
data set.

of the art architecture to perform the same small number of epochs and compare the results. All
results were compared through the PSNR value on the Set14 data set and all tests used the Div2K
for training. In this case, the number of epochs was 40 and the architecture chosen was EDSR.

The initial approaches explored the idea of using data augmentation focused on image edges.
Thus, we used two classic edge extraction algorithms, Sobel [61] and Laplacel [51]. In these
tests, the number of input images was 12,800 images: the original Div2K training set with 800
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images, added to 800 images using Sobel [61] or Laplace algorithms, and all images multiplied
by 8 original EDSR geometric transformations. PSNR results for these tests were 32.531 for
Sobel [61] and 31.961 for Laplace, but the result to be surpassed was 33.314 for EDSR. Another
technique used for data augmentation was mathematical morphology, where the methods eroded
and dilated to obtain the edges, but their results were similar to those of Sobel [61]. Continuing
the data augmentation approach, we implemented other filters and normalization strategies, and
then combined these approaches, however, the best result was obtained using only the histogram
normalization, where we achieved the value of 33.207. Finally, we implemented the Pencil
Sketch technique, whose best result was obtained in the EDSR, with a PSNR value of 33.335.

The loss function is essential for deep neural network training. Since originally the EDSR
uses the L1 loss function, another approach considered was the use of other loss functions such as
PSNR, SSIM, and MS-SSIM. Initially, we explored these functions individually, but we obtained
results inferior to the previous ones, being the best for the PSNR loss function, which obtained
a value of 13.824. However, when we combined the loss functions, some improvements were
produced, where the combinations (MS-SSIM and L1), (PSNR and L1), and (PSNR, MS-SSIM
and L1) resulted, respectively, in 33.490, 33.508, and 33.510. By observing the best results for
the combined loss function and the Pencil Sketch, we created the mixed loss function presented
in our architecture.

After defining our loss function, we began to investigate approaches to modify the architecture,
first by changing the color space used in the network, such that the results were not satisfactory.
We then explored the modification in the residual blocks, converging to the model described in
Chapter 4.
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Chapter 6

Conclusions and Future Work

Super-resolution using single images is a classic problem in the image processing area, affecting
other knowledge domains such as medicine, security and surveillance, entertainment, and remote
sensing. Thus, it is necessary that the resulting images be adequate to the human visual system,
including information essential to our vision, such as luminance, contrast and structure. The aim
of this work was to create an architecture that would take these visual aspects into consideration
and give greater focus to the edges of the images.

This work presented a novel deep neural network architecture and a novel mixed loss function
for the single image super-resolution problem, named EESR [21], which is based on the state of
the art EDSR architecture, however, with focus on the image edges. The proposed architecture
implemented the unsharp mask filter in the layers and a loss function using the Pencil Sketch
technique. The EESR is composed of a network with 32 residual layers, where the first five use
a novel residual block, named Residual Unsharp Blocks (RUB), and a combined loss function
composed of the sum of L1, PSNR, MS-SSIM, and Pencil Sketch functions. These techniques
allowed the network to focus on the edges during learning step.

To validate the EESR improvement capability, an extensive evaluation was conducted on four
different benchmark data sets: Set05 (five images), Set14 (fourteen images), B100 (one hundred
images), and Urban100 (one hundred images) for three different downscaled input images
(factors of 2×, 3×, and 4×). To compare the results against other architectures, we employed the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values, as well as visual
inspection. The achieved results demonstrated to be promising for the super-resolution problem.
The novel edge-focused architecture is competitive when compared to the current state of the art,
surpassing some approaches in certain scenarios.

Three hypotheses were elaborated in this work. The first explored the possibility of an
edge-focused loss function to aid network effectiveness. Although a more detailed analysis may
be required, we could observe that using only one edge-focused loss function did not produce the
desired effect. However, when coupled with other more general loss functions, the combination
resulted in greater network attention at the image edges.

The second hypothesis verified the effectiveness of using specialized edge layers in a deep
neural network architecture. Experiments demonstrated that using these layers helps the network
significantly, however, their use in many layers made the processing very heavy and, consequently,
slow to use these layers at the end of the network, achieving worse results. These results are
acceptable because neural networks use the first layers to extract simpler features, forcing the
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network to interpret the image edges throughout the process. It fails to learn other information,
such as color and position, even when we use it at the end of the architecture. The last layers
already have the image edge representation defined and the effect interrupts the definition of
other information.

Finally, the third hypothesis investigated the use of other image edge information passed
as input to the network. This hypothesis proved to be false, because when using different
information to increase the data, we did not obtain results similar or better to the state of the art.
However, there are other valid approaches to this process that have not been addressed in this
dissertation and which may be explored in future work.

This research work has opened several possibilities for future directions. The use of different
filters could be investigated in the architecture by adding layers focused, for instance, on color,
contrast, luminance, and spatial structure. A detailed analysis of the impact of the edge-focused
loss function could be conducted in our architecture, as well as in other models available in
the literature. Qualitative metrics based on visual inspection could be used to evaluate the
super-resolution results. In addition, input images could be used as an additional channel or
stream containing edge information [2, 3, 4, 38, 41].
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Appendix A

Complete Results for EESR

Throughout this work, specific clippings of images resulting from our architecture were presented.
These clippings were shown in order to highlight differences among our results and state-of-the-
art results, or even to present certain limitations of the algorithms.

In this appendix, two images resulting from our architecture are presented for each benchmark
data set. These images are enlarged from three evaluated downscaling factors (2×, 3× and 4×).

(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.1: EESR results for img060.png on B100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.2: EESR results for img044.png on B100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.3: EESR results for 119082.png on Urban100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.4: EESR results for 103070.png on Urban100 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.5: EESR results for ppt3.png on Set14 data set.



62

(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.6: EESR results for comic.png on Set14 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.7: EESR results for bird.png on Set5 data set.
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(a) HR (b) 2×

(c) 3× (d) 4×

Figure A.8: EESR results for butterfly.png on Set5 data set.
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