
Universidade Estadual de Campinas
Faculdade de Engenharia Elétrica e de

Computação

Bruno Luis Pires de Azevedo

A Proposal for Traceability in Software Development

Uma Proposta para Rastreabilidade no

Desenvolvimento de Software

CAMPINAS

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296905331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bruno Luis Pires de Azevedo

A Proposal for Traceability in Software Development

Uma Proposta para Rastreabilidade no Desenvolvimento de

Software

Dissertation presented to the School of
Electrical and Computer Engineering of the
University of Campinas in partial ful�llment of
the requirements for the degree of Doctor in
Electrical Engineering, in the Area of
Computer Engineering.

Tese apresentada à Faculdade de Engenharia
Elétrica e de Computação da Universidade
Estadual de Campinas como parte dos
requisitos para a obtenção do título de Doutor
em Engenharia Elétrica, na Área de Engenharia
da Computação.

Supervisor/Orientador: Prof. Dr. Mario Jino

Este exemplar corresponde à versão �nal da
Tese defendida por Bruno Luis Pires de
Azevedo e orientada pelo Prof. Dr. Mario
Jino.

CAMPINAS

2019

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Elizangela Aparecida dos Santos Souza - CRB 8/8098

 Azevedo, Bruno Luis Pires de, 1977-
 Az25p AzeA proposal for traceability in software development / Bruno Luis Pires de

Azevedo. – Campinas, SP : [s.n.], 2019.

 AzeOrientador: Mario Jino.
 AzeTese (doutorado) – Universidade Estadual de Campinas, Faculdade de

Engenharia Elétrica e de Computação.

 Aze1. Rastreabilidade. 2. Software (Engenharia). I. Jino, Mario, 1943-. II.

Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de
Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Uma proposta para rastreabilidade no desenvolvimento de
software
Palavras-chave em inglês:
Traceability
Software (Engineering)
Área de concentração: Engenharia de Computação
Titulação: Doutor em Engenharia Elétrica
Banca examinadora:
Mario Jino [Orientador]
Nandamudi Lankalapalli Vijaykumar
Selma Shin Shimizu Melnikoff
Léo Pini Magalhães
Romis Ribeiro de Faissol Attux
Data de defesa: 14-11-2019
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-3640-3250
- Currículo Lattes do autor: http://lattes.cnpq.br/4274571546762055

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Faculdade de Engenharia Elétrica e de

Computação

Bruno Luis Pires de Azevedo

A Proposal for Traceability in Software Development

Uma Proposta para Rastreabilidade no Desenvolvimento de

Software

Banca Examinadora:

• Prof. Dr. Mario Jino
Universidade Estadual de Campinas

• Prof. Dr. Nandamudi Lankalapalli Vijaykumar
Instituto Nacional de Pesquisas Espaciais

• Prof.a Dra. Selma Shin Shimizu Melniko�
Universidade de São Paulo

• Prof. Dr. Léo Pini Magalhães
Universidade Estadual de Campinas

• Prof. Dr. Romis Ribeiro de Faissol Attux
Universidade Estadual de Campinas

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 14 de novembro de 2019

Acknowledgements

This study was �nanced in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior � Brasil (CAPES) � Finance Code 001 � Programa de Excelência
Acadêmica (PROEX) 0487 � Processo 1142618.

Resumo

Rastreabilidade tem sido um tópico de pesquisa no desenvolvimento de software por pelo
menos 40 anos, sendo adicionada a muitos padrões, como o DOD-STD-2167A e o IEEE
830-1998. Este último, por exemplo, a�rma que uma boa especi�cação de requisitos de
software deve ser rastreável. A rastreabilidade fornece muitos benefícios para projetos de
software, tais como: identi�cação das razões para decisões de design, prevenção de pro-
blemas de dependência, identi�cação de responsabilidades em um projeto, estimação de
impacto e de custo de modi�cações, e medição do progresso de desenvolvimento. Sucin-
tamente, a rastreabilidade permite a geração de um produto de melhor qualidade. Dois
principais focos surgiram na literatura nos últimos anos: desenvolvimento baseado em
modelo e geração automática de rastros. O primeiro trata da modelagem de rastrea-
bilidade, de�nindo relações e elementos de um projeto; o segundo trata da descoberta
automática de relações entre elementos. Vários conceitos foram de�nidos até agora, como
rastreabilidade bidirecional, rastreabilidade de especi�cações pré e pós-requisitos, rastre-
abilidade horizontal e vertical, e rastreabilidade explícita e implícita. Embora haja um
consenso geral sobre a maioria dos conceitos relacionados a rastreabilidade, há uma falta
de consenso sobre como, e o quê, deve ser rastreado; não há consenso sobre: quais re-
lações são relevantes para os projetos de desenvolvimento de software, quais elementos
devem ser rastreados, como as mudanças nos elementos de um projeto afetam as rela-
ções existentes, ou como atualizar as relações dadas certas mudanças. Os modelos de
rastreabilidade visam responder a essas questões fornecendo um padrão para ser usado
como uma guia em projetos de desenvolvimento de software; entretanto, não há consenso
sobre o que um modelo deve conter. Existe uma variedade de modelos, cada um consi-
derando diferentes tipos de relações, elementos, e possuindo diferentes focos. Além disso,
a maioria dos modelos possui problemas que tornam o seu uso difícil, ou até mesmo im-
possível; por exemplo, existem modelos que não descrevem � su�cientemente ou em nada
� as ligações de rastreabilidade que propõem. Este trabalho visa a ajudar nesta questão,
fornecendo uma contribuição dupla: um modelo de referência para criar e avaliar modelos
de rastreabilidade, e um metamodelo abrangente, construído em cima do modelo de refe-
rência, para adicionar rastreabilidade a projetos de desenvolvimento de software. Nosso
Modelo de Referência para rastreabilidade de�ne os elementos básicos em um modelo de
rastreabilidade e de�ne conjuntos básicos de: ações, tipos de ligações, tipos de artefatos,
e processos. Propriedades necessárias para o conjunto de tipos de ligações e o conjunto
de tipos de artefatos também são fornecidas. Nosso Metamodelo para rastreabilidade
é composto por: um modelo conceitual descrevendo e organizando os elementos de ras-
treabilidade; um conjunto de tipos de artefatos representando as atividades de�nidas no
Modelo de Referência, além de um conjunto de tipos de artefatos criados para registrar
decisões de design; um conjunto de tipos de ligações que modelam diferentes relações de
rastreabilidade; e um conjunto de processos para garantir a consistência de projetos.

Abstract

Traceability has been a topic of research in software development for at least 40 years,
being added to many standards, such as the DOD-STD-2167A and the IEEE 830-1998.
The latter, for instance, states that a good software requirements speci�cation should be
traceable. Traceability provides many bene�ts to software projects, such as: identi�cation
of the reasons for design decisions, avoidance of dependency issues, identi�cation of ac-
countability in a project, estimation of impact and cost of modi�cations, and measurement
of development progress. Succintly, traceability allows the generation of a better quality
product. Two main focuses have emerged in the literature in recent years: model-based
development and automated trace generation. The former concerns modeling traceability
by de�ning relations and elements in a project; the latter concerns automatic discovery of
relations between elements in a project. Several concepts have been de�ned so far, such as
bidirectional traceability, pre and post-requirements speci�cation traceability, horizontal
and vertical traceability, and explicit and implicit traceability. While there is general
consensus on most concepts related to traceability, there is a lack of consensus on how,
and what, should be traced; there is no consensus on which relations are relevant for
software development projects, which elements should be traced, how changes in elements
of a project a�ects existing relations, or how to update relations given certain changes.
Traceability models aim to answer these questions by providing a standard to be used
as a guide in software development projects; however, there is no consensus on what a
model should contain. There is a variety of models, each considering di�erent types of
relations, elements, and having distinct focuses. Also, the majority of models have issues
which makes them di�cult or even impossible to use; for instance, there are models which
do not describe � su�ciently or at all � traceability links which they propose. This work
aims to help in this issue by providing a twofold contribution: a reference model for creat-
ing and evaluating traceability models, and a comprehensive metamodel, built on top of
the reference model, to add traceability to software development projects. Our Reference
Model for traceability de�nes the basic elements in a traceability model and de�nes basic
sets of: actions, link types, artifact types, and processes. Necessary properties for the
sets of link types and artifact types are also provided. Our Metamodel for traceability is
composed of: a conceptual model describing and organizing the elements of traceability;
a set of artifact types representing the activities of the Reference Model, plus a set of
artifact types created to record design decisions; a set of link types modeling di�erent
traceability relations; and a set of processes to ensure project consistency.

Contents

I Introduction and Literature Review 12

1 Introduction 13
1.1 Bene�ts of Traceability . 15
1.2 Terminology . 16
1.3 Contribution . 17
1.4 Structure . 18

2 Literature Review 20
2.1 Research Questions . 20
2.2 Protocol . 20

2.2.1 Data Sources and Research Strategy 21
2.2.2 Inclusion and Exclusion Criteria � Initial Selection 21
2.2.3 Paper Analysis Strategy . 22

2.3 Search Results . 22
2.3.1 Results of the Initial Selection . 23
2.3.2 Most Relevant Papers � Final Selection 23

2.4 Conclusions . 28
2.4.1 Issues Identi�ed in the Literature 28
2.4.2 Evaluating the Final Selection of Papers 29

II A Reference Model for Traceability 32

3 Reference Model 33
3.1 Basic Elements in a Traceability Model . 34
3.2 Basic Actions on Artifacts . 35

3.2.1 De�ning Each Basic Action . 36
3.2.2 Why a Reference Model Should Establish

the Basic Actions on Artifacts . 37
3.3 Link Types . 38

3.3.1 Link Types Must Be Described . 38
3.3.2 Basic Link Types . 38
3.3.3 About the Basic Link Types . 43
3.3.4 Justifying the Relations Modeled by the Reference Model 43

3.4 Artifact Types . 45
3.4.1 Pre-Requirements . 46
3.4.2 Requirements . 46
3.4.3 Design . 46
3.4.4 Implementation . 46

3.4.5 Veri�cation & Validation and Testing 46
3.4.6 Actors Are Not Artifacts But... 46

3.5 Ensuring Traceability and System Consistency 47
3.5.1 Basic Processes . 47

3.6 Necessary Properties of Link Types and Artifact Types 48
3.6.1 Comprehensiveness . 48
3.6.2 Speci�city . 48
3.6.3 Artifact Coverage . 49
3.6.4 About the Necessary Properties . 49

4 Using the Reference Model 50
4.1 Evaluation Strategy . 50
4.2 Ramesh and Jarke . 51

4.2.1 Classi�cation of the Link Types . 52
4.2.2 Description Level of the Link Types 52
4.2.3 Evaluation of the Necessary Properties of Link Types 53
4.2.4 Classi�cation of the Artifact Types 53
4.2.5 Description Level of the Artifact Types 55
4.2.6 Evaluation of the Necessary Properties of Artifact Types 55
4.2.7 Processes . 55
4.2.8 Strengths & Limitations . 55

4.3 Goknil et al. 56
4.3.1 Classi�cation of the Link Types . 57
4.3.2 Description Level of the Link Types 57
4.3.3 Evaluation of the Necessary Properties of Link Types 57
4.3.4 Classi�cation of the Artifact Types 58
4.3.5 Description Level of the Artifact Types 58
4.3.6 Evaluation of the Necessary Properties of Artifact Types 58
4.3.7 Processes . 58
4.3.8 Strengths & Limitations . 59

4.4 Closing Remarks . 59

III A Metamodel for Traceability 60

5 An Overview of the Metamodel 61
5.1 Traceability Space . 61
5.2 Artifact Types . 62
5.3 Link Types . 62
5.4 Processes . 62
5.5 Outline by Chapter . 62

6 The Traceability Space 63
6.1 Interactions Between the Elements of Each Space 65
6.2 Actors Space . 65

6.2.1 Meta-Actor . 65
6.3 Rules Space . 66
6.4 Processes space . 66
6.5 System Space . 67

6.5.1 Not Using the Homologation Process 68
6.6 Traceability Space: De�nition . 68
6.7 Actions: De�nitions . 70

6.7.1 Modi�cation . 71
6.7.2 Removal . 71
6.7.3 Application . 71
6.7.4 Decomposition . 72
6.7.5 Rei�cation . 72
6.7.6 Creation . 72
6.7.7 Homologation . 73
6.7.8 Activation . 73

6.8 The Traceability Space and Metrics . 74

7 Artifact Types 75
7.1 Non-Rationale Artifact Types . 75
7.2 Rationale Artifact Types . 76

7.2.1 Rationale for Modi�cation . 76
7.2.2 Rationale for Removal . 76
7.2.3 Rationale for Decomposition . 76
7.2.4 Rationale for Homologation or Rejection 77
7.2.5 Rationale for Creation . 77
7.2.6 Rationale for Application . 77
7.2.7 Rationale for Activation . 78

8 Relations Modeled as Link Types 79
8.1 Relations Modeled as One or Two Link Types? 80
8.2 Link Types . 81

8.2.1 Evolution Link Types . 81
8.2.2 Constraint Link Types . 83
8.2.3 Accountability Link Types . 86
8.2.4 Permission Link Types . 91
8.2.5 Characterize Action Link Types . 94
8.2.6 Action Outcome Link Types . 101
8.2.7 Composition Link Types . 102

8.3 Closing Remarks . 104

9 Processes for Traceability 105
9.1 Homologation Process . 106

9.1.1 Algorithm . 106
9.1.2 Textual Description . 108
9.1.3 Assessing the Impact of Homologating a Rationale for Modi�cation

or a Rationale for Removal . 111
9.1.4 Why is the Homologation Process Useful? 117

9.2 Modi�cation Process . 117
9.2.1 Algorithm . 117
9.2.2 Textual Description . 118

9.3 Decomposition Process . 119
9.3.1 Algorithm . 119
9.3.2 Textual Description . 121

9.4 Creation Process . 123
9.4.1 Algorithm . 123
9.4.2 Textual Description . 125

9.5 Removal Process . 126
9.5.1 Algorithm . 126
9.5.2 Textual Description . 127

9.6 Activation Process . 127
9.6.1 Algorithm . 128
9.6.2 Textual Description . 129

9.7 Application Process . 130
9.7.1 Algorithm . 130
9.7.2 Textual Description . 131

9.8 Processes and Permissions . 131
9.8.1 Creating and Updating Permissions 131

9.9 Change Impact Analysis and Processes . 132

10 Using the Metamodel 133
10.1 Con�icts Between Requirements . 133

10.1.1 Removing Requirement R18 . 135
10.1.2 Modifying Requirement R74 . 136
10.1.3 Removing Requirement R18 and Requirement R74 137

10.2 Closing Remarks . 138

IV Conclusion 139

11 Conclusions, Limitations, and Future Work 140
11.1 Reviewing the Contribution . 141
11.2 Simplifying the Metamodel . 143
11.3 Future Work and Limitations . 144

Bibliography 146

A List of Papers of the Initial Selection 153

12

Part I

Introduction and Literature Review

13

Chapter 1

Introduction

Traceability is the ability to keep track of elements of a system throughout its life cycle [26];
this involves the knowledge of the origins of each element and the rationale for its existence.
Elements relate to other elements in many ways; to add traceability information is to
expose such relations.

Traceability has been a topic of research in software development for at least 40 years.
The concept �rst appears in a paper by Randell [55] published in a NATO conference
in 1968; the author examines computer system design methodologies and praises three
projects for making the systems being designed �contain explicit traces of the design
process�. Eight years later, the term traceability is �rst used in a survey of the state of art
and future trends of software engineering by Boehm [7]: �Other capabilities are currently
missing, such as support for con�guration control, traceability to design and code, detailed
consistency checking, and automatic simulation generation�. Traceability is �nally de�ned
in 1978 by Greenspan and McGowan [27]: �This is the property of a system description
technique which allows changes in one of the three system descriptions � requirements,
speci�cation, implementation � to be traced to the corresponding portions of the other
descriptions. The correspondence should be maintained throughout the lifetime of the
system�.

By the 1980s, traceability started being added to many standards [11], such as the
United States defense standard DOD-STD-2167A, published in 1988. Research on the
topic begins to grow in the 1990s; Cleland-Huang et al. [11] atribute this growth as being
driven by two new events: the IEEE International Symposium on Requirements Engineer-
ing and the IEEE International Conference on Requirements Engineering. Several authors
have contributed to a better understanding of traceability in this decade: Ramesh and
Edwards [52] highlight several important issues in the subject; Gotel and Finkelstein [26]
analyze the problem, identifying the need for pre-requirements traceability; P�eeger and
Bohner [50] propose traceability graphs and metrics for vertical and horizontal traceability
in the context of impact analysis; Lindvall and Sandahl [40] seek to characterize practical
implications of traceability by studying an industrial-scale project, and propose a two-
dimensional classi�cation of traceability; Ramesh et al. [51] propose a simple framework
for developing traceability models containing a general traceability model and presents
a detailed traceability model for requirements management; among others. Published in
this same decade, the IEEE Standard 830-1998 [34] de�nes that a good software require-

14

ments speci�cation (SRS) should be traceable, and recommends backwards and forwards
traceability as desirable properties; a de�nition is also provided: �An SRS is traceable if
the origin of each of its requirements is clear and if it facilitates the referencing of each
requirement in future development or enhancement documentation�.

Two main focuses can be found in the research of the last two decades on the subject:
model-based development [24, 13, 25, 2] and automated trace generation [9, 56, 10, 12].
The former concerns modeling traceability, de�ning relations and elements of traceability
in a project; the latter concerns automatic discovery of relations between elements in a
project. Many contributions for the topic were published from the 00s to recent day, such
as: Ramesh and Jarke [53] propose two traceability models based on extensive empirical
work; Goknil et al. [21] provide a traceability model with formally de�ned traceability
links; Mäder et al. [41] highlight a few basic concepts which traceability models should
take into account; Berenbach and Wolf propose a traceability model integrating di�erent
modeling techniques; Cleland-Huang et al. [11] composed a book containing various works
discussing concepts and the state-of-art in traceability; Dubois et al. [16] propose a model
for requirement traceability connecting the requirement model, the solution model, and
the V&V model; Rochimah et al. [57] assess several traceability approaches concerning
their contributions to software evolution; Mäder et al. [43] propose a link model for the
Uni�ed Process and a set of veri�cation rules for links; Galvao and Goknil [19], and
Winkler and Pilgrim [70] present surveys on the topic of model-driven traceability; among
many others.

Several concepts have been de�ned so far: bidirectional traceability refers to the abil-
ity to trace forwards and backwards between elements of di�erent development activi-
ties [52]. Pre-requirements speci�cation traceability and post-requirements speci�cation
traceability refers to tracing related pre-requirements and post-requirements elements, re-
spectively [26]; i.e., the identi�cation of the elements which contributed to the creation of
the requirements, and the identi�cation of the elements created from rei�ed information
from the requirements. Traceability matrix refers to a matrix recording all the traceability
links between elements in a project [11]. Horizontal and vertical traceability refers to the
relations between elements of the same development activity, or between distinct devel-
opment activities, respectively [52]; for instance, a relationship between two requirements
is considered horizontal traceability and a relationship between a requirement and a de-
sign element is considered vertical traceability. Manual tracing, automated tracing, and
semi-automated tracing refers to traceability being established by a human tracer, by an
automated methods and tools, and by a combination of automated methods and tools, and
humans, respectively [11]. However, there is no de�nition consensus for some concepts.
For instance, explicit and implicit traceability links may describe: links which are iden-
ti�ed by using models, and links which are generated automatically, respectively [48]; or
links which are explicitly established, and the relations existing between the elements [42].

While there is general consensus on most concepts related to traceability, there is
no consensus on how and what should be traced; for instance, consider the following
questions: which relations are relevant for software development projects? Which elements
should be traced? How changes in elements of a project a�ects existing relations? How to
update relations given certain changes? These are some of the relevant questions which

15

should be answered when using traceability in a development project. Traceability models
aim to answer these questions by providing a standard to be used as a guide in software
development projects. However, there is no consensus on what a model should contain, or
trace. There is a variety of models, each considering di�erent types of relations, elements,
and focuses. Also, the majority of models have issues which makes them di�cult, or even
impossible, to use; for instance, there are models which do not describe � su�ciently or
at all � traceability links which they propose.

This work aims to help by providing a twofold contribution: a reference model for
creating, and evaluating, traceability models, and a comprehensive metamodel, built on
top of the reference model, to add traceability to software development projects.

1.1 Bene�ts of Traceability

A relevant question when evaluating if traceability should be added to a project is: what
are the bene�ts of having traceability? Traceability provides many bene�ts, some of which
will be discussed in this section.

Traceability enables the identi�cation and collection of reasons for design decisions.
Decisions are made during the development process; sometimes, there may be multiple
options to choose from. It may not be feasible to choose all of them; they may be exclusive,
they may contradict each other, or it may be too costly to implement all existing options.
Given enough time, the rationale for these decisions may be lost. For instance, suppose
a project where a requirement violates a newly added business rule. In order to resolve
this con�ict, it is decided to modify the requirement according to this new rule. At the
time this decision is made, the group of people involved may be able to justify why they
modi�ed the requirement; they will explain how the previous version of the requirement
violated a certain business rule. However, after a while, this information may be forgotten
and, consequently, the modi�cation will lose its justi�cation. Traceability can solve this
problem by tracing the rationale for design decisions throughout the product life cycle.

Avoidance of dependency issues is another advantage provided by traceability. Trace-
ability enables tracing dependency relations between artifacts; by maintaining this infor-
mation throughout the product life cycle, it is possible to avoid dependency issues due
to changes in the project. For instance, consider one artifact which depends on another
artifact. The knowledge of this relation may avoid the removal of the necessary artifact,
or may result in its replacement by another artifact which will keep the project consistent.

Traceability enables accountability for actions in a project. For instance, suppose an
artifact which will be modi�ed. The group of people in charge of this task can discover,
through traceability links, those responsible for the most recent modi�cation, or those who
created the artifact. This information may facilitate their work; exchanging information
with those other actors may generate greater knowledge of the artifact and possibly reduce
the insertion of defects in the system.

The identi�cation of who performed an action also enables rewarding good actions
or recognizing the need for reallocation or personnel training. In the former, relevant
contributions may be identi�ed and those accountable may be rewarded accordingly; in

16

the latter, contributions having serious �aws may indicate the need to reallocate personnel
to better suited work or the need to provide further training.

Accountability for actions is also useful to identify overworked personnel and reallocate
roles accordingly. For instance, having information that a group of developers is account-
able for signi�cantly more artifact creations than other developers enables reallocating
personnel to reduce their workload.

Traceability facilitates the estimation of the impact of a change; it enables identi�-
cation of the elements which will be a�ected by a change by tracing relations between
them. To exemplify, consider a modi�cation to be performed on a requirement; it is pos-
sible to �nd the design and code artifacts which originated from the requirement, and
consequently which may be a�ected, by traversing the relevant traceability links. Hence,
traceability is essential for change impact analysis.

Traceability also enables checking if all requirements have been implemented, and if
they were implemented correctly. If each requirement can be traced to code artifacts,
it is a matter of verifying the corresponding artifacts. In the same way, it is possible
to traverse the links in the opposite direction, and �nd out the origins of each artifact.
The former ensures that all requirements were implemented; this is specially useful for
safety-critical products. The latter provides rationale for the existence of the artifact.

By tracing artifacts which originated from requirements, traceability also enables the
measurement of progress during development; i.e., it makes possible to �nd out how
far the information from a requirement has evolved in the development process. For
instance, given a set of requirements, by traversing the relevant links to code artifacts, it is
possible to discover how many of the requirements are: completely implemented, partially
implemented, and not implemented yet. This information may be used to estimate the
completion status of the project.

Traceability may be used to perform assessments on the project. For instance, an
evaluation of elements by its connection degree may reveal highly complex elements.
These may be analyzed to �nd out if there is too much concentrated functionality; if so,
the identi�ed elements may be broken into smaller parts.

In conclusion, there are many bene�ts to using traceability in a project. Traceability
enables the generation of a higher quality product, and any added costs can be recovered
due to the bene�ts it provides.

1.2 Terminology

In this section, we de�ne a few terms which are used throughout this text; some of these
terms are de�ned in more detail later on.

De�nition 1.2.1. Traceability is the ability to track elements in a project, and their
relations, throughout its life cycle. Elements relate to other elements in many ways; to
add traceability is to expose such relations.

De�nition 1.2.2. A traceable element, or element, is a unit of information; e.g., a use
case diagram, a code fragment, a requirement document, a method in a class, etc. The
granularity of the element de�nes

17

De�nition 1.2.3. An artifact type is a conceptual representation of an element from a
project; i.e., requirement as a concept is an artifact type. An existing requirement in a
project is not an artifact type.

De�nition 1.2.4. A traceability artifact, or artifact, is an instance of an artifact type.
Each artifact in a project belongs to a speci�c artifact type; e.g., a requirement in a project
which describes a desired feature is an artifact belonging to the requirement artifact type.

De�nition 1.2.5. A relation describes how two artifacts are connected; how they a�ect,
or are relevant, to each other.

De�nition 1.2.6. A link type is a conceptual representation of a relation between two
artifacts; e.g., a relation of dependency between artifacts may be modeled by a link type
which represents this relation.

De�nition 1.2.7. A traceability link, or link, is an instance of a link type. Each trace-
ability link in a project belongs to a speci�c link type; e.g., consider two artifacts which
have a relation of dependency between them; a link, belonging to a link type which models
this relation, connects these two artifacts.

De�nition 1.2.8. To trace an element is the ability of �nding an element by traversing
traceability links.

De�nition 1.2.9. A traceability process, or process, is a mechanism to ensure consistency
after changes; it is composed of an action and instructions to ensure consistency given
this action.

De�nition 1.2.10. Traceability information is information which relates to traceability;
e.g., the semantics of a traceability link is traceability information.

1.3 Contribution

Our contribution is twofold: we propose a Reference Model for traceability and a Meta-
model for traceability. Also, several new concepts are de�ned throughout the text.

A literature review was done to �nd out the past and current state of research in
modeling traceability for software development; it revealed common issues found in trace-
ability models. The Traceability Reference Model intends to help with these issues. The
Traceability Metamodel implements the Reference Model and expands substantially on
what it de�nes.

The Reference Model de�nes the basic elements in a traceability model and de�nes
basic sets of: actions, link types, artifact types, and processes. Necessary properties for
the sets of link types and artifact types are also provided. The Reference Model has two
distinct uses: it may be used to evaluate traceability models or it may be used to create
traceability models. The Reference Model is used to evaluate two relevant contributions
in the literature and as a basis to create our Metamodel for traceability.

The Metamodel is composed of: (i) a conceptual model describing and organizing
the elements of traceability � the conceptual model and the actions contemplated by the

18

Metamodel are formally de�ned; (ii) a set of artifact types representing the activities of
the Reference Model, plus a set of artifact types created to record design decisions; (iii)
a set of link types modeling di�erent traceability relations � each link type is formally
de�ned and semantically described to avoid ambiguities in practical use; and (iv) a set
of processes to ensure project consistency � each process is described by an algorithm
and by a textual description. The Metamodel has one main use: to add traceability to a
software development project. We apply the Metamodel on requirements from a course
management system as a proof of concept.

1.4 Structure

This dissertation is structured as follows.
Chapter 2 describes the literature review; it contains the following sections: Section 2.1

provides the goals of the review; Section 2.2 details the protocol used to structure the
review; Section 2.3 shows the results obtained by using the protocol; and conclusions for
the review are shown in Section 2.4.

Chapter 3 details the Reference Model; it contains the following sections: Section 3.1
summarizes the basic elements of a traceability model; Section 3.2 describes the set of
basic actions; Section 3.3 describes the set of basic link types; Section 3.4 details the
set of basic artifact types; Section 3.5 discusses how to ensure consistency in a project
and lists the minimum set of processes a traceability model should have; and Section 3.6
establishes three necessary properties of sets of link types and sets of artifacts types for a
traceability model.

Chapter 4 shows an application of the Reference Model � the Reference Model is used
to evaluate two contributions found in the literature; it contains the following sections:
Section 4.1 speci�es the strategy used to perform the evaluation; Section 4.2 shows the
evaluation of the contribution by Ramesh and Jarke; Section 4.3 shows the evaluation
of the contribution by Goknil and other authors; and Section 4.4 provides a few closing
remarks about the evaluations.

Chapters 5�9 describe the Metamodel. Chapter 5 outlines the main components of
the Metamodel. Chapter 6 describes and de�nes the conceptual model; it contains the
following sections: Section 6.1 details the interactions between the basic elements of the
Metamodel, given the conceptual model; Sections 6.2�6.5 describe the elements of the
conceptual model; Section 6.6 de�nes the conceptual model; Section 6.7 de�nes the basic
actions used in the Metamodel; and Section 6.8 brie�y discusses possible metrics enabled
by the Metamodel. Chapter 7 details the artifact types of the Metamodel; it contains
the following sections: Section 7.1 lists the non-rationale artifact types of the Metamodel,
and Section 7.2 de�nes the rationale artifact types of the Metamodel. Chapter 8 describes
the link types of the Metamodel; it contains the following sections: Section 8.1 discusses
two possible ways to model relations between artifacts, Section 8.2 de�nes each link type
of the Metamodel, and Section 8.3 provides closing remarks on the subject. Chapter 9
describes the processes of the Metamodel; it contains the following sections: Sections 9.1�
9.7 describe each process of the Metamodel; Section 9.8 summarizes necessary updates to

19

links in a project, given certain processes; and Section 9.9 discusses how processes relate
to change impact analysis.

Chapter 10 shows a partial application of the Metamodel on requirements of a course
management system; it contains the following sections: Section 10.1 shows the issues
found and how to �x them by using the Metamodel; and Section 10.2 provides a few
closing remarks.

Chapter 11 provides our conclusions about the work done; it contains the following sec-
tions: Section 11.1 provides a review of our contribution divided by chapter; Section 11.2
provides some observations about simplifying the Metamodel; and Section 11.3 discuss
current limitations of the contribution and possibilities for future work.

20

Chapter 2

Literature Review

A literature review was performed to �nd out the past and current state of research in
modeling traceability for software development.

This chapter is structured as follows: Section 2.1 provides the goals of the review;
Section 2.2 details the protocol used to structure the review; Section 2.3 shows the results
obtained by using the protocol; and Section 2.4 shows our conclusions.

2.1 Research Questions

This literature review was done to answer the following questions:

1. What contributions are part of the history of modeling traceability for software
development?

2. What is the state of the art in modeling traceability for software development?

3. What shortcomings and/or limitations are there in current traceability models?

The �rst two questions were intended to generate knowledge on traceability. The third
question is aimed at unveiling shortcomings and/or limitations for which we could propose
solutions, or create a discussion; this question is the focus of this chapter, since it led to
our contribution.

2.2 Protocol

The protocol used in the literature review is composed of four parts: (i) de�nition of data
sources, (ii) de�nition of the research strategy, (iii) de�nition of criteria for inclusion and
exclusion of papers, and (iv) de�nition of the analysis strategy. The research strategy is
used to search the data sources, and the papers are �ltered according to the criteria using
the analysis strategy.

21

2.2.1 Data Sources and Research Strategy

The following bibliographic databases were searched: ACM Digital Library 1, ScienceDi-
rect 2, IEEE Xplore Digital Library 3, and Springer Link 4. All journals and conferences
of these databases were considered. Two searches were carried out: the �rst search con-
sidered all results until the end of 2015; two years later, these results were updated by a
search considering all papers from January 2016 to December 2017. The results of both
searches were then joined.

The terms used in the searches were updated iteratively several times. The knowledge
gained by performing multiple search variations enabled the improvement of the search;
for instance, we observed that searching for traceability models generated many results
having information retrieval as main subject, since there are papers focusing on automatic
generation of traceability from source code. This new knowledge enabled us to reduce the
size of the initial selection by adding the exclusion of the related term.

The �nal set of terms is shown in the Table 2.1. The search terms used when updating
the results of the ACM Digital Library and ScienceDirect had to be changed to re�ect
changes in their search engines; these are shown in Table 2.2. The search terms used for
the IEEE Xplore Digital Library and Springer Link were not changed.

Table 2.1: Search Terms.

Database Search Terms

ACM DL (Abstract:traceability) and (Abstract:model or Abstract:metamodel
or Abstract:framework or Abstract:modelling) and (not Ab-
stract:retrieval), (Title:traceability) and (Title:model or Ti-
tle:metamodel or Title:framework or Title:modelling) and (not Ti-
tle:retrieval)

ScienceDirect TITLE-ABSTR-KEY(traceability) AND (TITLE-ABSTR-
KEY(model) OR TITLE-ABSTR-KEY(metamodel) OR TITLE-
ABSTR-KEY(framework) OR TITLE-ABSTR-KEY(modelling))
AND NOT TITLE-ABSTR-KEY(retrieval)

IEEE XDL (traceability AND (model OR metamodel OR framework OR mod-
elling) AND NOT retrieval)

Springer Link traceability AND (model OR metamodel OR framework OR mod-
elling) AND NOT retrieval. Filters applied: Software Engineering
and English.

2.2.2 Inclusion and Exclusion Criteria � Initial Selection

The main criteria for this initial selection were: papers containing traceability models,
traceability frameworks, traceability links, traceability applied to software development

1http://dl.acm.org/.
2http://www.sciencedirect.com/
3http://ieeexplore.ieee.org/
4http://link.springer.com/.

http://dl.acm.org/
http://www.sciencedirect.com /
http://ieeexplore.ieee.org/
http://link.springer.com/

22

Table 2.2: Updated Search Terms for the 2016-2017 Interval.

Database Search Terms

ACM DL recordTitle:(model metamodel framework modelling -retrieval
+traceability), recordAbstract:(model metamodel framework mod-
elling -retrieval +traceability)

ScienceDirect TITLE-ABSTR-KEY(traceability) AND (TITLE-ABSTR-
KEY(model) OR TITLE-ABSTR-KEY(metamodel) OR TITLE-
ABSTR-KEY(framework) OR TITLE-ABSTR-KEY(modelling))
AND NOT TITLE-ABSTR-KEY(retrieval)[All Sources(Computer
Science,Engineering)]

projects, properties of traceability link types, and traceability concepts. Papers not
strongly focusing on traceability but having interesting link types were also selected.

Systematic reviews on the topic of traceability were also selected to identify relevant
work in the literature and discarded afterwards; snowballing was not restricted to system-
atic reviews, being also done on other papers.

Abstracts, slides, very short versions of current papers were investigated to identify
and evaluate their correspondent works and then discarded.

However, not every paper in this selection needed to have traceability as its main
focus or to have traceability applied to software development; the goal of this initial
selection was to �nd the most relevant work but also to learn more about the topic, even
if the papers did not directly relate to our work. Therefore, as a secondary criteria, we
considered: works loosely related to traceability but having interesting concepts; papers
having traceability link types, even if they are not treated as such; traceability applied to
other areas; papers focusing on design rationale, which is relevant for traceability; papers
not focused on traceability but having novel relations between elements; papers containing
requirements models; interesting actions on elements, e.g., decomposing requirements;
metrics for traceability; traceability applied to domain-speci�c projects, e.g., safety.

In conclusion, relevant papers, plus papers which could add to our knowledge on the
topic, and in related topics, were added to this initial selection.

2.2.3 Paper Analysis Strategy

The examination of papers adhered to the following sequence: evaluation of abstract,
evaluation of the introduction and conclusion, evaluation of the complete article; if the
evaluation was not enough to exclude the article, we proceeded to the next evaluation
in the sequence. Most articles required evaluating the introduction and conclusion to be
selected or excluded.

2.3 Search Results

Using the search terms and the data sources de�ned in the protocol, we obtained 1111,
497, 1092, and 3933 papers in ACM Digital Library, ScienceDirect, IEEE Xplore Digital

23

Library, and Springer Link, respectively, for a total of 6633 papers; from these, 6147
papers were found in the �rst search and 486 were found in the update. Table 2.3 shows
the number of papers found organized by database and year interval.

Table 2.3: Search Results + Search Update Results.

Database Results Until 2015 Results 2016-2017 Total

ACM DL 952 159 1111

ScienceDirect 449 48 497

IEEE XDL 920 172 1092

Springer Link 3826 107 3933

2.3.1 Results of the Initial Selection

Using the criteria and the analysis strategy described previously, the full set of 6633 papers
was investigated; snowballing was also used to �nd relevant papers. We found a selection
of 212 papers of direct interest; Table 2.4 shows the number of papers found organized by
database. The complete list of papers in this selection can be found in Appendix A.

Table 2.4: Results of the Initial Selection.

Database Initial Selection

ACM DL 21

ScienceDirect 27

IEEE XDL 94

Springer Link 70

This initial selection was used to �nd papers which are strongly related to our work
but also to learn more about traceability; as mentioned previously, we also considered
papers which added to our knowledge on traceability and related subjects.

The �rst criteria was used to �nd the most relevant papers, but many useful and
interesting works were also found by using the secondary criteria; e.g., traceability and
agile development [65, 6, 3], traceability in software product lines [14, 4, 18], a work
identifying four types of dependency relations [71], traceability and safety critical sys-
tems [46, 49, 58], design rationale [63, 61, 64], traceability applied to detection of attacks
by intrusion detection systems [33], traceability modeling social interactions [59], tools
supporting traceability [29, 32, 31, 17], a seminal work [27], among many other contribu-
tions.

2.3.2 Most Relevant Papers � Final Selection

A deeper inspection was performed in the initial selection to �nd the papers most closely
aligned to our work; papers containing traceability models and frameworks, basic concepts

24

of traceability, and distinctive traceability link types were selected. The following 22
papers were considered the most relevant to our research interest.

Concepts and important issues to be taken into account when developing a model for
traceability are highlighted in [52] and [41].

Most papers in this selection contain models for traceability: a model derived from a
real case scenario is presented in [54]; empirical approaches were used in [51] and [53] to
create models; a case study was used to develop a model integrating traceability and Soft-
ware Con�guration Management in [45]; a model integrating di�erent modeling techniques
is described in [5]; in [13], a model relating the requirements model to the architecture
model is proposed; a model and an approach for automatic generation of link types is
described in [35]; a traceability management method for modeling traceability with Multi
perspectives View is proposed in [20]; a feature-oriented traceability model for software
product line development is presented in [60]; a four step traceability management pro-
cess and a model for traceability are proposed in [28]; in [16], a model for requirement
traceability linking the requirement model, the solution model, and the V&V model is
described; a model which integrates textual speci�cations with UML speci�cations is pro-
posed in [39]; a model-driven approach for supporting the evolution of design decisions
is described in [44]; a link model for the Uni�ed Process and a set of link veri�cation
rules are proposed in [43]; in [23], a metamodel having a set of formalized link types is
proposed and is used in a subsequent work to support di�erent goals: consistency check-
ing [21], reasoning about requirements [22], validation of traces between requirements and
architecture [24], and change impact analysis [25]; a framework containing mechanisms
for model slicing and a model for traceability are proposed in [47].

2.3.2.1 Brief Description Plus Links and Artifact Types

Each paper listed previously is succintly described and, if the work has a traceability
model, we list the link types and artifact types it proposes.

Ramesh and Edwards [52] highlights several important issues when developing a model
for requirements traceability; these are: bidirectional traceability, criticality of require-
ments, design rationale, project tracking and management, accountability, humanware,
documents/manuals, dependencies, horizontal and vertical traceability, and automated
support for traceability.

Ramesh et al. [54] present a case study of a system development organization; the
subject system has 75,000 code lines and 3,000 requirements. A traceability model derived
from the case study is proposed. It contains artifact types and link types. Artifact types:
Change Proposal, Rationale, Test, Simulation, Requirements, Stakeholder, Constraints,
Design, Compliance Veri�cation Procedure, System Components, Resources, External
System, and Source Document. Link types: Initiates, Modify, Based on, Derive, Is a,
Create, Satis�es, Veri�es, Allocated to, Dictates, De�nes, Assigned to, Interfaces/Depends
on, Interfaces, and Reference.

Ramesh et al. [51] propose a framework for traceability models containing a high level
traceability model, and presents a detailed traceability model for requirements manage-
ment: the high level requirements traceability model and the detailed traceability model.

25

The detailed traceability model contains artifact types and link types. Artifact types:
Assumptions, Rationale, Alternatives, Derived Requirement, Decisions, Issues, Critical
Success Factors, Requirements, and Standards/Policies/Methods. Link types: based-on,
supported-by, evaluates, leads-to, considers, is-a, tracking-by, generates, and validate.

Ramesh and Jarke [53] conducted empirical studies on 26 software development or-
ganizations and developed two reference models for traceability: a low-end model and
a high-end model, for users of di�erent pro�les. Two case studies were performed using
the proposed models. The low-end model contains four artifacts types and seven link
types. The high-end model is composed of four submodels: Requirements Management
submodel, Rational Submodel, Design Allocation Submodel, and Compliance Veri�cation
Submodel. The Requirements Management submodel contains fourteen artifact types and
fourteen link types. The Rational Submodel contains eleven artifact types and seventeen
link types. The Design Allocation Submodel contains eleven artifact types and thirteen
link types. The Compliance Veri�cation Submodel contains thirteen artifact types and
six link types. The traceability link types used in the reference models are classi�ed into
four categories: Satisfaction links, Evolution links, Rational links, and Dependency links.

Berenbach and Wolf [5] propose an uni�ed requirements model integrating di�erent
modeling techniques; it supports traceability in features modeling, use cases modeling, re-
quirements analysis, requirements and hazard analysis, detailed requirements, and system
design. The four models shown have nineteen artifact types and twenty �ve link types.
The artifact types are: AbstractFeature, Feature, Stakeholder Request, Alternative, Use
case, Stakeholder, Actor, Sequence Diagram, State Diagram, Activity Diagram, Class,
Object, Requirement, Nonfunctional Requirement, Functional Requirement, Mitigation,
Hazard, Cause, and SystemModel Element. The link types are: Requires, Con�icts,
May become, Parents, Subfeatures, Alternative, Participating, Iniciating, Described by,
Includes, Extends, Inherits, Expose in, Participates, Participating Objects, Detailed in,
Constrained by, Constraints, Re�nes, Instance, Involved Entity, Target, Triggers, Miti-
gates, and Hazardous Element.

Dermeval et al. [13] propose an uni�ed metamodel for architectural design decisions;
it relates the requirements model to the architecture model allowing the estimation of the
impact of requirements changes on the architecture. The metamodel contains eighteen
artifact types and �fteen link types. The artifact types are: NFR, Contribution, Ratio-
nale, Alternative, Requirement, Functional, Stakeholder, DecisionDependency, Decision,
DesignFragment, ArchitecturalArtifact, Artifact, ManagementArtifact, Implementation-
Artifact, RequirementsArtifact, Consequence, OrganizationActo, and SystemActor. The
link types are: contributedBy, contributionTarget, contributions, contributionSource, al-
ternatives, rationales, proposes, isProposedBy, appends, dependencySource, dependency-
Target, consequences, produces, isRelatedTo, and modi�ed.

Jirapanthong and Zisman [35] propose a rule-based approach allowing automatic gen-
eration of traceability link types between feature-based object-oriented documents (arti-
facts), intended to support product line engineering. A reference model for traceability
having di�erent types of relationships and documents, and an approach for automatic
generation of traceability link types are described. The reference model contains eight ar-
tifact types and ten link types. The artifact types are: Feature Model, Subsystem Model,

26

Process Model, Module Model, Use Case, Class Diagram, Statechart Diagram, and Se-
quence Diagram. The link types are: Re�nes, Satis�es, Depends_on, Similar, Overlaps,
Di�erent, Contains, Evolves, Implements, and Encompasses. A prototype tool was also
developed.

Mäder et al. [43] propose a traceability link model for the Uni�ed Process and a set
of traceability link veri�cation rules; these rules allow semi-automatic establishment and
veri�cation of links for the Uni�ed Process development projects. The model contains
four link types: Re�ne, Realize, Verify, and De�ne.

El ghazi [20] proposes a traceability management method for modeling traceability
with Multi perspectives View; it is composed of a metamodel used to describe traceabil-
ity information and a process for guidance when constructing the model. The metamodel
contains the following perspectives: Actors, Products, Process, Evolution, and Traceabil-
ity Link; the latter perspective contains the following link types: Satisfaction, Dependency,
Evolution, Rationale, Containment, and Contribution.

Shen et al. [60] propose a feature-oriented traceability model for software product
line development; it provides traceability representations during the goal model, feature
model, feature implementation model, and program implementations. The model con-
tains the following link types, classi�ed into two categories: intra-level and inter-level.
The intra-level links are: Decompose, HasElement, subClassOf, and con�gDepend. The
inter-level links are: Support, Dynamic-operationalize, Static-operationalize, Realize, and
Instantiate.

Haidrar et al. [28] propose a framework for requirement traceability composed of a
management process and a metamodel. The process is composed of four steps: spec-
i�cation process, traceability identi�cation, links elicitation, and links generation. The
metamodel contains the following link types: Development Link, Contribution Link, and
Justi�cation Link. The Development Link is specialized into four subtypes: Re�ne, De-
riveReqt, Verify, and SatisfyReqt. The Contribution Link is specialized into two subtypes:
ResOf and Modi�ed. The Justi�cation Link is specialized into one subtype: Justi�edBy.

Dubois et al. [16] propose a metamodel for requirement traceability linking three mod-
els: the requirement model, the solution model, and the V&V model. The metamodel
contains the following link types: Copy, Derive, Re�ne and Decompose for the require-
ment model; Satisfy for the solution model; Verify for the V&V model. A case study was
performed using an ABS system for a vehicle.

Nejati et al. [47] propose a framework for specifying and extracting design aspects rele-
vant to safety requirements; to achieve this goal, two components are used: a metodology
to determine traceability between design and safety requirements, and an algorithm to
extract � given a safety requirement � the corresponding design fragment. The frame-
work contains a metamodel for traceability containing twenty �ve artifact types and six
link types. The artifact types are: Assumption, System Context, OCL Constraint, En-
vironment Block, System Block, Parametrics, Standard, Recommended Practice, Stake-
holder, Law/Regulation, Source, System-Level Safety Requirement, Block-Level Safety
Requirement, Block-Level Requirement, Block-Level Safety-Relevant Requirement, Use
Case, Mapping, Block, Block Relationship, Activity Partition, Block State, ACtivity

27

Node, Block Operation, and Activity Edge. The link types are: derive, derive/justify,
re�ne, decompose, trace, and allocate.

Mäder et al. [41] highlight some concepts in which traceability models should take into
account. The authors propose a simple way to de�ne a traceability model and a set of
analysis to be done in projects having traceability; these are: validating traces (ensuring
traces represent correct relations), impact analysis and change propagation (changes being
propagated only to dependent elements), coverage analysis (knowing cardinalities for links
and checking if elements are missing), and relation count analysis (evaluating if elements
are too connected to others, similar to cohesion in software development).

Mohan et al. [45] propose a traceability reference model aiming to integrate traceabil-
ity and Software Con�guration Management (SCM), focusing on change management. A
tool was developed to help the integration of traceability and SCM. The reference model
contains twenty four artifact types and sixteen link types. The artifact types are: Object,
Stakeholder, Source, Process Object, Rationale, Activities, Product Object, Emails, Tech
Notes, Document, Requirement Document, Code Document, Design Document, Require-
ment, Change Request, Component, Decision, Issue, Assumption, Argument, Alternative,
Change, Version, and Con�guration. The link types are: traces to, has role in, manages,
documents, depends on, maps to, justi�es, is tracked by, leads to, resolves, addresses,
evaluates, selects, supports, opposes, and is derived from.

Letelier et al. [39] propose a requirements traceability metamodel which integrates
textual speci�cations with UML speci�cations. The metamodel contains the following
link types: Rationale Of, Trace To, Part Of, Responsible Of, Modi�es, Validated By,
Veri�ed By, and Assigned To. The metamodel was de�ned as an UML pro�le allowing
the application in a CASE tool; a con�guration process � based on the proposed UML
pro�le � for requirements traceability is provided. A tool was developed to implement the
UML pro�le.

Malavolta et al. [44] propose a model-driven approach for supporting the evolution
of design decisions. The approach includes: a metamodel for evolving design decisions;
support for impact analysis for the evolution of artifacts through bidirectional traceability
links between design decisions, requirements and artifacts; a technique for identi�cation
of design decisions. The metamodel contains the following link types: con�ictsWith,
alternatives, excludes, overrides, enables, constraints, relatedTo, dependsOn, subsumes,
boundsTo, comprises, rationale, addresses, decision, raises, pertainsTo, responsibleFor,
and interestedIn. An Eclipse plugin was developed to support the approach.

Goknil et al. [23] propose a metamodel for requirements models and an approach for
customizing this metamodel to support di�erent requirements speci�cation techniques.
The semantics of the concepts and of the relations are de�ned, allowing the detection of
implicit relations and inconsistencies. The metamodel contains the following link types:
Requires, Re�nes, Contains, and Con�icts. The link types are formalized using �rst-order
logic. A case study was performed using an industrial mobile service application.

Goknil et al. [21] uses the previous work [23], adding a new link type, for consis-
tency checking and to infer new relationships. A tool was developed to perform these
activities [68]. The metamodel contains the following link types: Requires, Re�nes, Par-
tiallyRe�nes, Contains, and Con�icts.

28

Goknil et al. [22] propose a �metamodeling approach which allows reasoning about
requirements and their relations on the whole/composed models expressed in di�erent
modeling notations�. The proposed metamodel is specialized for Product-line and SysML,
providing a common semantic domain, allowing reasoning on the composition of models
expressed in these languages. The metamodel contains the link types de�ned in the
previous work [21] plus the new link type Equals.

Goknil et al. [24] propose an approach for automatic trace generation and validation of
traces between requirements and architecture. A metamodel is proposed, having the same
link types as de�ned in a previous work [21] plus two new link types: AllocatedTo and
Satis�es. The semantics of the proposed link types are used for generating and validating
traces, supported by a tool based on the Eclipse Modeling Framework, the ATL model
transformation language and the Maude tool set.

Goknil et al. [25] propose a change impact analysis approach for requirements. A
classi�cation of changes in requirements is provided. The formalized semantics of rela-
tionships and change types enables identi�cation of alternative changes, identi�cation of
incorrect positive impacts, and checking of change consistency. A tool (TRIC) [68] was
extended to support the proposed activities.

Signi�cant contributions for traceability are given by these papers; there is a rich-
ness of traceability link types and artifact types. On the other hand, there are several
shortcomings which are discussed in the next section.

2.4 Conclusions

We conclude our literature review by discussing issues identi�ed in the literature and
provide a table with an evaluation and comparison of the �nal selection of papers given
these issues.

2.4.1 Issues Identi�ed in the Literature

The following issues were identi�ed: lack of description of link types and artifact types;
lack of mechanisms to ensure consistency; missing link types for modeling common re-
lations; missing common activities of development processes; and lack of concepts or
properties of traceability.

2.4.1.1 Lack of Description

Most papers propose traceability links which are not described properly, leaving the reader
to guess the semantics of each type just by its name or by a brief sentence. The practi-
cal application of a model is dependent on identifying the modeled elements in real life
projects so that mapping is possible. If a model has link types which are not semanti-
cally described it may be di�cult, or even not possible, to use the model. Describing
link types reduces, or may even eliminate, ambiguity when assigning link types from a
model to relations between elements in a project. For instance, consider a traceability
model having two link types called �address� and �resolve�, shown in a graphical manner,

29

without a textual description. These link types seem to have a similar meaning, since
the �rst one addresses an issue and the second one resolves an issue. Without a clear
description it would be di�cult, if even possible, to map these link types to relations in
a project. Many models found in the literature have link types shown only graphically
(e.g., [54, 13, 28, 39, 44, 45]).

The same issue of lacking semantics also happens with artifact types; most papers
found do not describe the modeled artifacts.

2.4.1.2 Lack of Mechanisms to Ensure Consistency

Another issue identi�ed in traceability models is the lack of mechanisms to ensure trace-
ability consistency whenever a change happens; for instance, if a necessary artifact is
removed, what steps should be taken to ensure the project is: (i) still working as it
should, and (ii) not missing, or having incorrect, traceability links connecting its arti-
facts? The non-existence of such mechanisms make it di�cult to use a model in a project.
If a change happens, a process should be provided to ensure that traceability links are up-
dated accordingly. A more comprehensive process would also ensure system consistence,
since one of the bene�ts of using traceability is the avoidance of consistency issues; i.e.,
it would use traceability links to identify possible issues whenever changes are made in a
project.

2.4.1.3 Missing Link Types

Most traceability models lack link types for modeling common relations, such as relations
to represent accountability for actions and authorization for actions; hence, these models
are not able to trace, for instance, who modi�ed an artifact and if an actor is allowed to
modify a speci�c artifact.

2.4.1.4 Missing Common Activities of Development

Most papers focus on the requirements engineering activity of development; they do not
consider elements from other activities. For instance, veri�cation, validation and testing is
an activity rarely considered by traceability-themed papers; thus, relations and elements
of this activity are usually not modeled.

2.4.1.5 Lack of Concepts

There is also a lack of concepts and properties for traceability in the studied literature;
most papers consider the use of traceability but do not provide a conceptual basis for it,
and for its elements.

2.4.2 Evaluating the Final Selection of Papers

In Table 2.5 we evaluate the papers highlighted in Section 2.3.2. Each paper is evalu-
ated regarding �ve issues discussed previously: Link Description, Artifact Description,
Diversity of Relations, Mechanisms to Ensure Consistency, and Development Activities.

30

Link description is classi�ed as None (name only), Minimal (usually a sentence containing
its name), Informal (informal description), or Formal (well-de�ned traceability relation,
described formally); Artifact Description is analogous to Link Description; Diversity of
Relations is classi�ed as Lacking (e.g., do not consider common relations such as de-
pendency) or Su�cient; Mechanisms to Ensure Consistency is classi�ed as having (then
listing which actions are considered) or not having; Development Activities lists which
development activities are covered by the model.

Papers which are thoroughly evaluated in Chapter 3 are not discussed here (Ramesh
and Jarke [53] and Goknil et al. [23, 21, 22, 24, 25]).

Table 2.5: Evaluation of the Final Selection.

Authors and Cita-

tion

Link

Description

Artifact

Description

Mechanisms

to Ensure

Consis-

tency

Diversity

of Rela-

tions

Development

Activities

Ramesh et al. [54] None None None Lacking Requirements
and Imple-
mentation1

Ramesh et al. [51] Minimal Minimal None Lacking Requirements

Berenbach et al. [5] Minimal Informal None Lacking Requirements
and Design

Dermeval et al. [13] None Minimal None Lacking Requirements

Jirapanthong et al. [35] Informal None None Lacking Design2

Mäder et al. [43] Minimal None None Lacking Requirements,
Design, and
Implementa-
tion

El ghazi [20] Informal Minimal None Lacking Requirements

Shen et al. [60] Minimal Minimal None Lacking Requirements
and Imple-
mentation3

Haidrar et al. [28] None None None Lacking Requirements

Dubois et al. [16] Informal Minimal None Lacking Requirements
and V&V

Letelier et al. [39] None None None Lacking Requirements,
V&V, and
Design

Malavolta et al. [44] None4 Informal None Lacking Design

Nejati et al. [47] Informal5 None None Lacking Requirements
and Design

Mohan et al. [45] None6 Minimal None Lacking Requirements

1Contains an artifact named �design� modeling �design rationale� instead of artifacts of the design phase; has a �System Com-
ponents� artifact, a very general artifact representing �hardware, software, humanware, manuals, policies, and procedures�,
to model implementation artifacts. 2Plus Documents of the Feature-Oriented Reuse Method given it is a Feature-Oriented
work. 3Plus Feature Level and Feature Implementation Level; it is a Feature-Oriented work, thus it has di�erent activities
than classical software development. 4Refers to another paper. 5A very succint description, but provides the semantics of
each link type. 6Uses Ramesh et al. [53] model.

31

Ten out of fourteen papers have None or Minimal description of links; for instance,
Mäder et al. [43] provides a very brief description of four link types, using the link name
as part of the description, and Haidrar et al. [28] provides a succint description of two
general link types while providing no description of the speci�c six link types.

Lack of description is even worse for artifact types; only two papers provide informal
descriptions of the modeled artifact types: Berenbach et al. [5] and Malavolta et al. [44].

Every paper has Diversity of Relations classi�ed as Lacking since they all lack at
least one basic relation between elements, such as con�ict or accountability relations.
Dermeval et al. [13] and Berenbach et al. [5] are the only papers which take into account
Stakeholders in their model; the latter does not have direct relations between Actors and
Artifacts and the former and has a relation � represented by two link types in opposite
directions � modeling who proposed a requirement. On the other side, it does not record
accountability for modi�cation or decomposition of requirements, for instance.

No papers in this selection provide mechanisms to ensure traceability consistency
whenever a change happens.

Only two papers take into account the V&V phase of development: Dubois et al. [16]
and Letelier et al. [39]; the latter considers veri�cation of requirements, having the �verify�
relation, and the former has �Validated by� and �Veri�ed by� link types connecting to a
�Test Speci�cation� artifact.

32

Part II

A Reference Model for Traceability

33

Chapter 3

Reference Model

As shown in Chapter 2, most papers having traceability models: (i) lack well-de�ned
traceability link types, i.e., a traceability link type is shown, or named, but never described
semantically, making di�cult or impossible to use; (ii) provide incomplete coverage of
situations, i.e., link types do not model the most common relations such as dependency,
accountability, or authorization; (iii) do not provide mechanisms to ensure consistency of
traceability, i.e., processes are not provided to keep traceability and system consistency
after system changes; (iv) consider only requirements traceability, ignoring other activities
of the development process such as design or implementation, i.e., artifact types do not
model the most common artifacts and the model ends lacking the corresponding relations;
and (v) lack concepts and properties for traceability; i.e., most papers do not provide a
conceptual basis for traceability.

To address issues such as these, a Reference Model is needed. A Reference Model
for traceability helps by describing the basic elements and properties necessary to enable
the practical use of a traceability model in a project; it may be used as a basis to create
traceability models or to evaluate traceability models.

In this chapter, we propose a Reference Model for traceability. Our Reference model
de�nes the basic elements in a traceability model and provides a conceptual model showing
how these elements interact with each other. Given these basic elements, it de�nes basic
sets for actions, link types, artifact types, and processes. These sets contain the minimum
necessary elements for general use. Lastly, necessary properties for the sets of link types
and artifact types are de�ned.

The basic elements are the building blocks of a traceability model. The conceptual
model helps to visualize the roles of each element. The set of actions de�ne the minimum
set of actions which should be considered by a model; these are intrinsically related to
the sets of link types, artifact types, and processes, and are used in their construction.
The set of link types de�nes the minimum set of relations which should be considered by
a model. The set of artifact types de�nes a set of traceable elements for general use; e.g.,
a design diagram or a requirement may be traceable elements in common development
projects. The set of processes de�nes the minimum set of mechanisms which should be
provided to ensure consistency in a project. Three basic properties are proposed for link
types and artifact types; these are useful if a model creator wants to create these sets
from scratch, or to evaluate sets of a traceability model.

34

This chapter is structured as follows: Section 3.1 summarizes the basic elements of
a traceability model; Section 3.2 describes the set of basic actions; Section 3.3 describes
the set of basic link types; Section 3.4 details the set of basic artifact types; Section 3.5
discusses how to ensure consistency in a project and lists the minimum set of processes
a traceability model should have; and Section 3.6 establishes three necessary properties
which sets of link types and sets of artifacts types should have in a traceability model.

3.1 Basic Elements in a Traceability Model

The three basic elements in a traceability model are artifacts, links, and processes. Actors
interact with these elements directly or indirectly.

De�nition 3.1.1. Artifacts are the workproducts of the software development process [66].
Artifacts can be classi�ed into di�erent types, each one modeling speci�c points of view
of a project. Design documents, requirement documents and source code are examples of
artifact types. An artifact can be a set of elements, a single element or part of an element;
it also can be of any complexity or size as desired. For instance, an artifact can represent
a source code document, a class or a single method of a class.

De�nition 3.1.2. Links represent relationships between artifacts and artifacts, artifacts
and actors, and actors and actors. Links can be classi�ed into di�erent types, each
having speci�c semantics regarding the relationship between the elements it connects.
For instance, a link connecting an actor and an artifact could express an author-product
relationship.

De�nition 3.1.3. Processes aim to maintain consistency of traceability information in the
software system. Whenever an action happens, a process provides the instructions needed
to maintain consistency. System consistency is directly related to traceability consistency;
hence, a traceability process should also provide for system consistency. For instance, if
a given artifact is removed and other artifacts depend on it, a process should provide
the actions necessary to keep traceability and system consistency; i.e., the traceability
elements should be updated accordingly.

De�nition 3.1.4. Actors are representations of agents interacting with the project. Usu-
ally they are people but not necessarily, since other systems may interact with the target
system.

Figure 3.1 shows how these elements relate to each other.

35

Actors

Artifacts Links

Processes

Pe
rfo
rm

Ma
nip
ula
te

Handle Hand
le

Trace

Trace

Figure 3.1: Conceptual model.

Actors perform processes; actors are agents who are able to execute processes and fol-
low its instructions. Actors manipulate artifacts1, performing actions on them. Processes
handle artifacts and links; processes de�ne the creation of new artifacts, generation of
new links, deletion of links, etc. Links trace artifacts and actors; traceability links are the
main element of traceability models, enabling the tracing of elements in a project.

3.2 Basic Actions on Artifacts

Actors cause changes in a project by manipulating artifacts. This manipulation can take
various forms; for instance, to add a new feature to a project, an actor can create a new
artifact or modify an artifact. Creation and modi�cation are common actions which can
happen in most projects. Removal is another common action, enabling actors to discard
artifacts from the working project.

There are other actions which are also commonly needed. For instance, to test software
it is necessary to apply test cases on source code. It may also be necessary to apply a
checklist on the set of test cases to determine if everything is correct to proceed to the test
execution phase. Hence, application of artifacts on other artifacts is another commonly
needed action when developing software.

Artifacts sometimes are too big and complex, having a lot of unrelated information
inside. For instance, a C++ class which goes through many modi�cations may end
accomplishing several di�erent functions, reducing its cohesion. To increase its cohesion
it is necessary to break it into smaller classes. The action of decomposing bigger elements
into smaller elements is another common action in software development.

Development processes work by gathering initial information and reifying this informa-
tion continuously until it becomes working software. For instance, a requirement written
in natural language becomes design artifacts written in a design language which, in turn,
become code artifacts written in a programming language; i.e., the information located in
the requirement was rei�ed until becoming code. Each step in this sequence of evolutions

1From this point on, we will use the word manipulate to also mean �create�.

36

brings the information closer to the desired goal, the software. This action of rei�cation
is another typical action when developing software.

It may be desirable to check for quality and correctness of actions performed by actors
on artifacts. The addition of artifacts to the working project without evaluating it may
generate problems. This evaluation may be very simple, such as the actor who performed
the action reviewing its own work or discussing the changes which were made with another
actor. It also may be more thorough, by having an action veri�ed by an independent
group of actors before implementing it on the working project. To exemplify, consider a
modi�cation performed in a C++ class to add a new feature; this modi�cation breaks
another functionality which the performing actor is not aware of. The evaluation by
another set of actors may identify this issue before its addition to the working project.
We will denominate this action of evaluating changes before adding them to the working
project as homologation. This is a very useful action in the context of traceability, since
traceability has as one of its major bene�ts the avoidance of dependency and con�ict issues
by tracing relevant relations between artifacts. The homologation may also occur before
an action takes place; i.e., the desired action is proposed and has to be homologated before
it is done. This enables the assessment of the impact of the action, given the knowledge
of the relations between elements provided by traceability, and consequently enables the
informed decision on whether to proceed with it; it may be too costly or time consuming
to perform the action, given the knowledge of the relations between the related artifacts.
If it is decided to perform the action, the sequence of steps necessary to avoid consistency
problems will be known during the homologation of this change. Homologating before
an action takes place also reduces the work needed in a project, since actions can be
discarded before being implemented. Succintly, homologation is an action which provides
many bene�ts to projects when used together with traceability.

In conclusion, we establish the following seven actions as basic: creation, modi�cation,
removal, application, decomposition, rei�cation and homologation; hence, a traceability
model should take these into account when tracing actions on artifacts.

3.2.1 De�ning Each Basic Action

De�nition 3.2.1. Creation is the action through which an artifact comes into existence;
an artifact is created by a group of actors.

De�nition 3.2.2. Modi�cation is the action of changing an artifact. To modify an
artifact, a copy is created; the modi�cation is done on this copy and the old version of
the artifact is kept for future reuse or historical purposes.

De�nition 3.2.3. Removal is the action of removing an artifact from the working project.
Removal does not destroy an artifact; a removed artifact is kept for future reuse or his-
torical purposes.

De�nition 3.2.4. Application is the action of executing a procedure, de�ned in an arti-
fact, on another artifact.

De�nition 3.2.5. Decomposition is the action of decomposing an artifact into two, or
more, artifacts. All the information from the original artifact is kept in the new artifacts,

37

no new information is added or removed. If adding or removing information is necessary,
it can be done by concatenating the actions of modi�cation and decomposition.

De�nition 3.2.6. Rei�cation is the action through which information evolves, becoming
more structured and re�ned, in the development process, towards the goal of creating
working software. A new artifact may be created by reifying information from other
artifacts; thus, the rei�cation action may be considered a special case of the creation
action.

De�nition 3.2.7. Homologation is the action of evaluating the addition of an artifact,
or change, to the working project.

3.2.1.1 Are All Created Artifacts Rei�cations?

The actions of creation and rei�cation are intrinsically connected since most artifacts
created in a project are rei�cations of previously existing artifacts. For instance, a code
artifact is a rei�cation of parts of one, or more, design artifacts; a design artifact is a
rei�cation of parts of one, or more, requirements. However, not every new artifact in a
project is a rei�cation of another artifact; for instance, a test case is an artifact created
to test artifacts in a project, and it is not a rei�cation of existing information.

As mentioned previously, the rei�cation action may be considered a particular case of
the creation action, where a new artifact is constructed by reifying information of other
artifacts which are not at the same rei�cation level.

De�nition 3.2.8. The rei�cation level describes how close an artifact is to the �nal
product; it is usually related to the development activity which produced the artifact.
For instance, a code artifact is at a higher rei�cation level than a requirement artifact.

3.2.1.2 Rei�cations Occur Vertically

A rei�cation may only happen vertically; i.e., an artifact can not be rei�ed into another
artifact from the same rei�cation level. For instance, a requirement can not be rei�ed into
another requirement. Modifying an artifact by adding more speci�c, detailed, information,
is not reifying it; rei�cation only happens when there is an evolution of the rei�cation
level.

3.2.2 Why a Reference Model Should Establish the Basic Actions

on Artifacts

The establishment of the basic actions performed by actors on artifacts enables the def-
inition of the basic link types and basic processes for traceability models. For instance,
it is helpful to trace who performed a certain action; it allows an actor to contact the
related actor to obtain more information about the action which was performed. Hence,
the set of basic link types should have types concerning the authorship of this particular
action. Without the establishment of a set of basic actions, it is not possible to de�ne
which actions should be traced when identifying authorship. The set of basic actions is

38

also needed when associating rationale for actions. The establishment of this set enables
the de�nition of which link types are necessary to trace rationale.

The same is true for processes. Processes seek to maintain consistency in the project; to
achieve this goal, each process is associated to a speci�c action being performed by actors
on artifacts. For each particular action, the process provides the necessary instructions to
avoid issues such as con�icts and unful�lled dependencies. Therefore, the establishment of
the common actions performed by actors enables the de�nition of the set of basic processes
needed for a traceability model.

3.3 Link Types

A link type is a conceptual representation of a relationship between two elements. Trace-
ability links are instances of link types. A project having traceability contains links
connecting its elements, each link being of a link type.

3.3.1 Link Types Must Be Described

A traceability model must describe the semantics of each proposed link type to enable
mapping each type to a relationship in the project. It may not be possible, or may be
di�cult, to use a traceability model on a project if link types are not described since the
user will have to deduce the semantics of each type only by its name. Even if it is possible,
ambiguity may generate errors when mapping link types to relationships.

This description does not have to be formal, but should be clear enough to reduce
ambiguity and ease mapping each type to a relationship.

3.3.2 Basic Link Types

A software project may have many di�erent types of relationships between its elements.
Some link types may be relevant only to a very narrow set of domain-speci�c projects;
other link types may be relevant to a larger set of projects. The latter is the set pertinent
to this Reference Model.

A basic link type should be relatively common between projects and generic enough
to enable the creation of more speci�c link types. Each link type in the Reference Model
works as a general category from which a developer of a traceability model can use to
create sets of speci�c link types within this category. The link types may also be used to
evaluate a traceability model, identifying missing basic link types.

3.3.2.1 Evolution

A project is composed of information which changes and is propagated from one artifact
to another. This information may become better structured and more detailed after being
propagated, or it may just go through changes keeping the same structure and level of
detail. As an example of the former, consider the information in a requirement which
evolved until becoming a set of code artifacts. As an example of the latter, consider the
creation of a new version of a code artifact after it is modi�ed.

39

The evolution of information in artifacts, to more structured and re�ned versions, is
typical in software development. As exempli�ed previously, requirements have information
which evolves to become code; i.e., code is a rei�ed version of information propagated
from requirements. There may be intermediate artifacts, in which their information went
through the same process. Each interconnected artifact in this sequence has this relation
of propagation of rei�ed information.

Another common relation happens between di�erent versions of the same artifact;
artifacts may go through many changes during its lifecycle generating a sequence of pre-
vious versions. Each connected artifact in this sequence has this relation of propagation
of changed information, which is composed of smaller unchanged and changed blocks of
information.

A traceability model lacking Evolution link types is not able to identify the origin and
destination of information which was rei�ed and propagated. It is not possible to identify
from which requirements a certain code fragment evolved from or if a requirement was
realized in other development phases. Consequently, it is di�cult to do impact analysis,
since we can not evaluate which artifacts are a�ected by a change; for instance, the
addition of a new feature, changing a requirement, may impact several code artifacts,
but without link types modeling these relations this information is lost. Another issue is
losing previous versions of an artifact.

Link types of the Evolution link type convey that information was rei�ed, or changed,
and propagated from one artifact to another. It connects a previous version to a new
version of an artifact which will have rei�ed or changed information.

3.3.2.2 Constraint

Artifacts may constrain other artifacts in at least two ways: (i) an artifact may con�ict
with another artifact � e.g., a requirement which details the need for Apache servers and
another requirement which details the need for IIS servers; (ii) an artifact may require
another artifact � e.g, a requirement which details the need for IIS servers is dependent
on another requirement detailing the need for the Windows Operating System in the
machines for the servers. These are common relations found in software projects.

A traceability model lacking Constraint link types is not able to identify dependencies
and con�icts between artifacts, risking the generation of consistency issues in projects.
For instance, suppose a project which uses a traceability model without Constraint link
types; an actor decides to remove a requirement which is necessary for other requirements,
leaving the project inconsistent. This removal may not be identi�ed until going to the
next development phases, generating new costs and time spent �xing something which
should be identi�ed before the removal of the necessary requirement.

Link types of the Constraint link type enable the ability to identify artifacts which
constrain other artifacts. It connects an artifact to another artifact which is constrained
by it.

Types of Con�ict: There are at least two types of con�ict between artifacts: (i) contra-
dictory information or (ii) redundant information. The former was exempli�ed previously;

40

the latter occurs when an artifact contains information su�ciently similar to that of an-
other artifact. For instance, two requirements which detail the same functionality using
di�erent words; or, maybe one of these provides a more detailed account of the function-
ality and the other provides a less detailed account of the functionality. Nonetheless, the
same information is provided; thus, there is redundant information in the project.

Usually, redundant information exists because of bad design or because of errors when
creating or modifying artifacts. However, redundant information is not always an issue
which must be �xed; there may be redundant information which is necessary or unavoid-
able. Each case must be evaluated individually to assess if it is an issue which needs to
be dealt with.

3.3.2.3 Accountability

There is someone accountable whenever a change happens in a project; a single actor
or a group of actors are responsible for changes performed during development. If a
change happens and there is no record of who performed the change, useful traceability
information is lost. Not having this information means not having: (i) identi�cation of
someone to be accountable for good or bad actions � good actions may be rewarded, and
bad actions enables the recognition of a need for further training or maybe even identifying
malicious actors inside the project; (ii) identi�cation of someone who is able to explain
details of the actions performed, enabling the transference of knowledge to a new group
of actors � e.g., a code developer who previously performed a change may be invited to
help with a new change which relates, or is similar, to the former change; (iii) a list of
artifacts which an actor acted on � i.e., given an actor, being able to know which changes
an actor took part in, enabling performance analysis or enabling a better distribution of
responsabilities if an actor is identi�ed as being overworked.

Link types of the Accountability link type enable the ability to assign authorship for
actions. They connect artifacts to an actor which acted on them. Ideally, a traceability
model should have link types which assign authorship to at least six of the seven basic
actions described in Section 3.2; these actions are: creation, modi�cation, removal, ap-
plication, decomposition, and homologation. Rei�cation is a special case of the creation
action; thus, accountability for the rei�cation action is established by the creation action;
i.e., the actors who created a rei�ed artifact are the actors who performed the action of
rei�cation.

3.3.2.4 Permission

Not every actor should be allowed to manipulate every artifact; manipulation of artifacts
should be restricted according to roles and positions held by actors. For instance, a front-
end developer should not be allowed to modify the same artifacts as a back-end developer.
Restricting actions on artifacts according to roles, or individuals, is typical in software
projects.

If a project does not restrict actors from manipulating artifacts which they should
not manipulate, problems may arise by errors and maybe even by malicious reasons. To

41

record these restrictions is to trace them; i.e., if a project records this set of relations, it
is generating traceability links of the Permission link type.

A project which does not have this set of relations is not able to restrict actors from
manipulating artifacts which they should not manipulate. A project which has this set
of relations, but uses a traceability model without Permission link types is not modeling
useful relations; thus, they may not be considered during traceability related tasks, such as
tasks performed by traceability processes. This may cause loss of traceability information
and generation of consistency problems. For instance, it may be necessary to update
permissions after a change (see Section 9.8 in Chapter 9).

Link types of the Permission link type convey information on authorization to perform
actions on artifacts. It connects an artifact to an actor which has permission to perform
a certain action on it. Ideally, a traceability model should have link types which convey
information on authorization to perform at least six of the seven basic actions described in
Section 3.2; these actions are: creation, modi�cation, removal, application, decomposition,
and homologation. Missing one of these six basic actions means not tracing an existing
relation and not restricting, or restricting, actors from performing this action. Analogously
to the previous link type, permission for the rei�cation action is established by the creation
action.

3.3.2.5 Characterize Action

Traceability enables the identi�cation of rationale for actions. This may occur in many
ways, from simpler ones such as a comment in source code, to more detailed ones such as
a document explaining why a modi�cation took place. To avoid losing this rationale it is
necessary to have links modeling the relations between the artifact which went through
the action and the artifact which justi�es the action.

Sometimes a rationale is not enough; it may be desirable to have a rationale for the
action and also a description of how the action should be done. For instance, an artifact
may justify why a modi�cation is necessary and describe how the modi�cation should
be performed; there may be essential steps to be done during the modi�cation to avoid
breaking some other functionality, or the modi�cation should be done in a certain way
to ensure it is done properly. On the other hand, only a description of an action may be
necessary; for instance, a test case describing how it should applied on a code fragment.
There are three possible con�gurations: (i) justifying and describing an action; (ii) solely
justifying an action; and (iii) solely describing an action. The �rst provides rationale and
describes an action; the second only justi�es an action without providing instructions on
how to perform the action; the third describes the action to be performed.

A traceability model lacking Characterize Action link types can not connect rationales
and/or descriptions for actions performed on artifacts. Hence, a project using this trace-
ability model does not have the ability to justify and/or describe actions; if the project
has rationales for actions, the model fails at modeling existing relations.

Link types of the Characterize Action link type convey the rationale and/or descrip-
tion (what and how) concerning an action. It connects the artifact acted on to the
rationale/description artifact for the action. Ideally, a traceability model should have link

42

types which convey the rationale and/or description to perform an action for at least the
seven basic actions described in Section 3.2.

3.3.2.6 Action Outcome

Sometimes artifacts are created by actions performed on other artifacts. These artifacts
are usually strongly related to the artifact which caused the action and/or the artifact
acted on. For instance, a set of test cases applied on a program produces a test log
containing the results of the test; this resulting artifact relates to both the program and
the test cases. A traceability model may choose to connect the resulting artifact to
the artifact which caused the action, to the artifact acted on, or to both. In these three
options, traceability information is not lost, and the resulting artifact may be easily found.

A traceability model lacking Action Outcome link types can not connect artifacts
created by actions to its closely related artifacts. Hence, a project using this traceability
model does not have the ability to identify which artifact is the result of the action and
which artifact caused the action (or was acted on). This traceability model is missing a
typical relation between artifacts.

Link types of the Action Outcome link type convey the outcome of an action. It
connects the resulting artifact to the artifact which caused the action and/or the artifact
acted on.

3.3.2.7 Composition

During development it may be necessary to break artifacts into smaller parts. As men-
tioned in Section 3.2, this is a common action in software development which may be
done, for instance, to increase cohesion. It may be interesting to keep the decomposed
artifact for historical reasons, to enable the possibility of redoing its decomposition in a
di�erent way, among other reasons. To be able to identify this artifact it is necessary to
have traceability links connecting it to its decomposed parts.

Traceability enables the possibility of tracing information having any size, or form,
since an artifact contains information which may be divided into smaller pieces of infor-
mation. To enable identi�cation of parts of a working artifact without decomposing it, a
link type which models the relation connecting the whole artifact to its parts is necessary.
For instance, if an artifact is a class and another artifact is a method of this class, it is
not possible to know from which class the method artifact is part of without a link type
modeling the relation between them.

A traceability model lacking Composition link types can not connect decomposed
artifacts to its decomposed parts. Hence, a project using this traceability model does not
have the ability to identify the original artifact from which an artifact was decomposed
from and vice versa.

A traceability model lacking Composition link types also can not connect an artifact
to its parts. Hence, a project using this traceability model does not have the ability to
identify if an artifact is part of another artifact or which artifact a �part� artifact belongs
to.

43

Link types of the Composition link type convey the information that an artifact was,
or is, part of another artifact; i.e., these link types convey that: (i) an artifact was
decomposed into two or more artifacts, or (ii) an artifact is part of another artifact. It
connects an artifact to the artifact from which it was decomposed from or connects an
artifact to one of its parts.

3.3.3 About the Basic Link Types

These link types are proposed following our investigation on the subject of traceability in
software development; there may be relations which are not modeled by this set of link
types. Also, there is subjectivity involved when de�ning if a relation is basic �enough� to
be represented in the Reference Model.

We do not argue that this set of basic link types is complete or �nal. It is possible
that there are other basic relations which we did not consider and that can be added in
the future. On the other hand, we consider these link types to be necessary, and extensive
enough, for most software projects.

There may be speci�c contexts which demand additional link types. For instance,
new link types may be necessary for security focused projects. However, the proposed
link types are still valid for these speci�c contexts, since, as argued, they correspond to
basic relations.

3.3.4 Justifying the Relations Modeled by the Reference Model

When creating a Reference Model, it must be decided which relations should be repre-
sented by link types and which relations do not need representation. A Reference Model
should be useful; thus, the attribute being considered is usefulness. Usefulness depends
on context; a Reference Model for a speci�c domain is di�erent from a Reference Model
for general use.

This Reference Model was created with the goal of being useful for general use; i.e.,
common development projects. When considering general use, the metric of usefulness
is directly related to how common the relations being modeled by the Reference Model
are. A relation should be modeled if it occurs commonly in projects of software devel-
opment. Also, a Reference Model which models a common relation has more usefulness
than a Reference Model which does not, even if considering speci�c domains. A speci�c
domain Reference Model will probably use common relations; e.g., a Reference Model for
traceability in safety-focused development also uses the dependency relation.

The proposed link types are common enough, modeling know relations between ele-
ments, and modeling relations which occur in typical software development projects. This
is discussed next, where each modeled relation is evaluated on being typical enough to
belong to this Reference Model. We also brie�y explain how we identi�ed each link type.

3.3.4.1 Evolution

Information is propagated during software development. The creation of new artifacts,
in most cases, happens from the propagation of information. We identi�ed two types of

44

propagation of information, given two of the basic actions we have identi�ed previously:
modi�cation and rei�cation. In the former, information is propagated and updated; in
the latter, information becomes rei�ed.

Being a common occurrence in software development, and by associating to two of the
basic actions, we consider this relation to be common enough to be represented by a link
type in the Reference Model.

3.3.4.2 Constraint

Many of the papers found [5, 67, 44, 23, 52, 53, 35] highlight two distinct constraints
between artifacts: dependency and con�ict. In the former, an artifact requires another
artifact; in the latter, it is the opposite situation, where an artifact requires the non-
existence, or absence, or another artifact. These are common relations, and are not
exclusive to software development.

3.3.4.3 Accountability

The literature review revealed that the vast majority of models do not consider actors
interacting in the project. Consequently, there is no modeling of the relations between
actors and artifacts. To solve this issue, we have evaluated the possible relations between
actors and artifacts in a project. Given our conceptual model, actors manipulate artifacts
and perform processes. This manipulation of artifacts is done by performing actions.
Thus, there is a relation of accountability between the actor who performs an action and
the artifact in which the action is performed; i.e., the relation identi�es who performed the
action. Every project has actors manipulating artifacts; consequently, this is a common
relation.

3.3.4.4 Permission

After identifying the accountability relation, we identi�ed another relation concerning
actors and artifacts: the relation of authorization regarding manipulation of artifacts.
In software development, and in many other areas of development, determining who may
perform an action is essential. This is essential for security reasons or to prevent personnel
from accessing artifacts which they are not trained to manipulate. Not restricting access
to certain actors may cause security issues or the generation of severe errors.

This is a typical relation between actors and artifacts in development projects; a
software tester usually do not have authorization to modify code, for instance.

3.3.4.5 Characterize Action

One of the bene�ts of traceability is that it enables the possibility of keeping rationale for
decisions made during development. Many of the papers found focus on traceability and
design decisions [72, 8, 69, 13, 44].

Each action performed in the project has a rationale behind it; thus, the relation be-
tween the rationale and the subject of an action is common in projects. The Characterize
Action link type models this relation.

45

3.3.4.6 Action Outcome

Another issue found in the literature review was that the activities of veri�cation &
validation and testing are rarely considered in traceability-themed papers. Testing is a
common activity in software development and, when performed, results in the creation
of artifacts; e.g., test logs. It is not possible to trace these new artifacts without a link
type modeling the relation between generated elements and the elements which generated
them. The Action Outcome link type models this relation and other possible relations in
which an artifact creates another artifact as a result of an action being performed. Given
how typical software testing is, we consider this relation as common.

3.3.4.7 Composition

There are two types of composition relations: the part-of relation and the decomposition
relation. The part-of relation is a very common relation in software development; e.g.,
the composition relationship in the class diagram of UML.

The concept of decomposition of requirements is ubiquitous in the literature [15, 36,
37, 1, 30]; also, decomposition is a basic action, commonly occurring when developing
software. This action is not restricted to requirements, being useful for other types of
artifacts; e.g. decomposing code artifacts to increase cohesion. In conclusion, this is a
typical relation.

3.4 Artifact Types

Artifact types model di�erent types of products created during the development process.
These products are represented by artifacts, which are instances of artifact types.

Unlike link types, the basic set of artifact types may change drastically from a devel-
opment process to another. A classical development process may produce requirements,
design documents, test cases, and other products; an agile development process may not
produce, for instance, design documents. Given the intrinsic relation between the process
used and the set of created products, it is di�cult to identify basic artifact types which
are common to all development projects. An ample set of basic artifact types is able
to model di�erent activities in software development but may have unused artifacts for
certain processes; a minimal set of basic artifact types may not have unused artifacts
but may fail to model typical artifacts. Hence, it is more desirable to create a set which
models the most typical artifacts in software development.

To de�ne the set of basic artifact types we used the most common activities in software
development described in the Software Engineering Body of Knowledge [62]. Certain
development processes, such as agile processes, may not have all of these activities; in this
case, the user of the Reference Model just needs to discard the artifact types modeling
the unused activities. These artifact types are generic enough to contain more speci�c
artifacts used in most development processes.

46

3.4.1 Pre-Requirements

Artifact types within this category are created in the activities preceding the requirements
engineering activity. Documents describing organizational needs and system objectives
are examples of artifacts in this category.

3.4.2 Requirements

Artifact types within this category are created in the requirements engineering activity.
This activity being de�ned as �the process of de�ning, documenting and maintaining
requirements� [38]. Requirements speci�cations and requirements elicitation documents
are examples of artifacts in this category.

3.4.3 Design

Artifact types within this category are created in the design activity. This activity being
de�ned as �the process of de�ning the architecture, components, interfaces, and other
characteristics of a system or component� [62]. UML diagrams and documents detailing
user interfaces are examples of artifacts in this category.

3.4.4 Implementation

Artifact types within this category are created in the implementation activity. This
activity being de�ned as the creation of software through coding and the generation of
related elements. Source-code, code documentation and instruction manuals are examples
of artifacts in this category.

3.4.5 Veri�cation & Validation and Testing

Artifact types within this category are created for the activities of veri�cation & validation
and testing. Veri�cation & validation determines if a product conforms to its set of
speci�cations and whether it ful�lls its intended purpose; testing is de�ned as �the dynamic
veri�cation that a program provides expected behaviors on a �nite set of test cases,
suitably selected from the usually in�nite execution domain� [62]. A document used to
verify & validate requirements and a set of, or individual, test cases are examples of
artifacts in this category.

3.4.6 Actors Are Not Artifacts But...

Actors are not bona�de artifacts, however, for traceability purposes, they may be treated
as such. Hence, they deserve to be listed as a � special kind of � artifact type in a
traceability model.

An actor may be a digital representation of a person (the exception are automated
systems interacting with the project), therefore it has an artifact-like representation in a
project using a traceability model. An actor modeling a developer will have all relevant
information about this person; for instance: identi�able number, personal data, and so on.

47

Changes in the project may cause changes in the actor �artifact�, adding new traceability
information.

3.5 Ensuring Traceability and System Consistency

It is not enough for a traceability model to provide link types and artifact types. A
project with integrated traceability may become inconsistent, and have wrong traceability
information, if it goes through changes. Erroneous traceability information can not be
used to ensure system consistency, one of the main bene�ts of having traceability. For
instance, suppose an artifact, which is necessary for another artifact, is modi�ed and this
modi�cation nulls its capacity to solve the dependency, leaving the system with another
artifact having an unful�lled dependency. If the relevant links are not updated accordingly,
it may not be possible to identify, and consequently solve the issue. Hence, a traceability
model must be able to ensure traceability consistency to ensure system consistency.

De�nition 3.5.1. Traceability consistency is the property by which all links in a project
are always up to date despite changes. All traceability information must be in sync to
the current system state; for instance, if an artifact β is created to replace a previous
version α, the traceability links arriving in α should be redirected to β 2 . Traceability
consistency is an essential property to ensure system consistency.

De�nition 3.5.2. System consistency is the property by which elements of a project are
coherent among themselves. For instance, if a system has an unful�lled dependency, it is
not consistent. A traceability model must ensure system consistency. If a model ensures
only traceability consistency it is not using the updated traceability information to keep
the project working correctly.

Traceability processes are the mechanisms used to ensure traceability consistency and
system consistency.

3.5.1 Basic Processes

The goal of a traceability process is to maintain traceability consistency and system consis-
tency. Consistency may be broken by actions done throughout the development process.
For instance, suppose an artifact α is necessary for another artifact β; α undergoes a
modi�cation which removes its capacity to ful�ll the dependency of β. In this example,
both the system, and the traceability information of the system, became inconsistent; the
artifact β has an unful�lled dependency and there is a link representing a relation which
does not exist anymore.

Since consistency is broken by actions performed in the project, a traceability model
should have processes for, at least, all the basic actions on artifacts.

Additional processes may be needed given speci�c contexts, but this set of processes
is also useful for speci�c contexts since they correspond to basic actions.

2Not necessarily all links.

48

3.6 Necessary Properties of Link Types and Artifact

Types

When discovering shortcomings in the traceability models found in the literature, we
established three basic properties which link types and artifact types should have. All
papers lacked these properties to some extent; most papers lacked all three properties,
and some papers lacked two of these properties. The three necessary properties of link
types and artifact types are: Comprehensiveness, Speci�city, and Coverage.

3.6.1 Comprehensiveness

Comprehensiveness is the property of taking into account a wide range of situations when
modeling an element. A set of link types having the property of comprehensiveness is
able to model the most common relations between artifacts and artifacts, and artifacts
and actors in a software development project. Analogously, a set of artifact types having
comprehensiveness is able to model the most common artifacts in a project. For instance,
consider a set composed of three link types, L1, L2 and L3, modeling three di�erent
relations: permission, con�ict, and accountability, respectively. This set is unable to
model a relation of dependency between two artifacts; it is not comprehensive enough. A
set of link types lacking comprehensiveness fails to cover certain relations. This property
also applies to sets of artifact types. A set of artifact types which does not have a type
to model code elements may not be comprehensive enough for software development.

For link types and artifact types this property may be ful�lled by creating very general
types. For instance, a set may de�ne that a �Trace� link type models every single possible
relation. However, this leads the traceability model to lack the next property, speci�city.

3.6.2 Speci�city

Speci�city is the property of being capable to model speci�c elements. Consider the
previous example of a set having the Trace link type; this set has the property of com-
prehensiveness, to perfection, since it represents every existing relation. However, this
set fails to characterize any speci�c relation, resulting in losing too much traceability
information and consequently rendering this set useless for traceability purposes. For in-
stance, a traceability link of the Trace link type would model both a dependency relation
(Constraint link type) and an accountability relation (Accountability link type), but we
are unable to identify which one is being modeled. Hence, a set having comprehensive-
ness but lacking speci�city is able to model a diversity of relations, or artifacts, but loses
traceability information.

Ideally, a set should have comprehensiveness by modeling a substantial number of
relations by di�erent types, instead of using types which are too generic; i.e., creating
a set having too much speci�city may cause it to lose comprehensiveness if there is not
enough distinct link types modeling the relations.

The property of speci�city is more relevant for link types than for artifact types; link
types are the primary providers of traceability while artifacts add to the traceability infor-

49

mation. Having high speci�city artifact types may increase the traceability information in
a project, but not to the same extent as speci�c link types. Artifact types add information
to the semantics of link types since link types may have more detailed descriptions taking
into account which artifact types they connect; artifact types are also used in traceability
processes.

3.6.3 Artifact Coverage

Artifact Coverage is the property by which each link type in a set covers all the artifact
types they should cover. A set of link types having artifact coverage is able to represent
the necessary relations for every tuple of artifacts.

This property is lacking in most graphical models found in the literature, in which the
model has rigid relations between artifacts. For instance, consider a traceability model
having a link type which expresses authorship on the creation of artifacts; this link type
connects actors to two types of artifacts, but does not connect actors to a third type;
i.e., the author of the third artifact is not being traced. Since it is desirable to have the
knowledge of the author of each created artifact, this traceability model lacks artifact
coverage.

3.6.4 About the Necessary Properties

There is a degree of subjectivity when evaluating all three properties, which probably can
not be avoided. Consequently, these are guidelines to be taken into consideration when
creating sets of elements in a traceability model.

Domain and context should be considered during the evaluation; not every link type
is necessary for every domain and context. On the other hand, certain link types may be
absolutely necessary in certain domains and contexts.

These properties are also useful to evaluate current traceability models; they enable
assessing how complete is a set of link types or artifact types of a model, given a certain
domain and context. For instance, a traceability model for general software development
which does not have link types to represent dependency and accountability relations will
be considered incomplete in many contexts.

50

Chapter 4

Using the Reference Model

The Reference Model may be used to create traceability models or to evaluate traceability
models. A model may be evaluated given the basic properties and elements de�ned by
the Reference Model; for instance, by mapping the link types of a model to the basic link
types of the Reference Model, we are able to assess if there are basic relations not being
considered by the model.

In this chapter, we use the Reference Model to evaluate two relevant contributions
in the literature: a paper by Ramesh and Jarke [53] and a set of papers by Goknil et
al. [23, 21, 22, 24, 25]; these are the papers we consider most closely related to our
research.

The contribution by Ramesh and Jarke is an empirical work cited by many papers
in the literature; the contribution by Goknil et al. is composed of papers containing a
traceability model applied to di�erent subjects while going through a few changes.

This chapter is structured as follows: Section 4.1 speci�es the strategy used to perform
the evaluation; Section 4.2 shows the evaluation of the contribution by Ramesh and Jarke;
Section 4.3 shows the evaluation of the contribution by Goknil et al.; and Section 4.4
provides a few closing remarks on the evaluations.

4.1 Evaluation Strategy

The evaluation takes into account the three basic elements in a traceability model: link
types, artifact types, and processes.

First, the link types and artifact types are mapped into the types in the Reference
Model. Then, the link types and artifact types are evaluated on: (i) description level;
i.e., how well each type is described � we use the classi�cation de�ned in Section 2.4.2:
None (name only), Minimal (usually a sentence containing its name), Informal (informal
description), or Formal (well-de�ned traceability relation, described formally); (ii) the
three basic properties of comprehensiveness, speci�city, and coverage � these properties
are detailed in Section 3.6.

The processes are evaluated on: (i) covering all basic actions; and (ii) capacity to
ensure consistency � i.e., how well a process ensures consistency, identi�cation of visible
de�ciencies.

51

Lastly, strengths and/or limitations of the contributions are discussed.

4.2 Ramesh and Jarke

Ramesh and Jarke [53] propose a traceability model grounded in empirical work in �Toward
Reference Models for requirements traceability� from 2001; while being empirical, this
paper was in�uenced by three previous papers from one of the authors:

• Issues in the development of a requirements traceability model (1993) [52];

• Towards requirements traceability models (1995) [51];

• Implementing requirements traceability: a case study (1995) [54];

these papers are discussed in Chapter 2.
The paper resulted from an empirical work; interviews were done in 26 software de-

velopment companies. Two traceability models are proposed: a simple model (Low-End
Model) and a detailed model (High-End Model). These are meant to be used according
to each organization traceability needs. The Low-End Model contains the following link
types: derive, developed for, allocated to, satisfy, performed on, depend on, and interface
with. The Low-End Model contains the following artifact types: requirements, compliance
veri�cation procedures, system/subsystems/components, and external systems.

The High-End Model consists of four submodels: Requirements Management Sub-
model, Rationale Submodel, Design Allocation Submodel, and Compliance Veri�cation
Submodel.

The Requirements Management Submodel contains the following link types: derive,
describe/describes, justify, identify, generate/generates, managed by, modify, elaborate,
based on, part of, and depend on. The Requirements Management Submodel contains the
following artifact types: organizational needs, operational needs, strategic needs, scenar-
ios, system objectives, critical success factors, change proposal, resource, requirements,
constraints and mandates; this last artifact is derived into standards, policies, and meth-
ods.

The Rationale Submodel contains the following link types: traces to, derive, based on,
a�ect, generate, depend on/depends on, resolve, in�uence, evaluate, select, address, op-
pose, and support. The Rationale Submodel contains the following artifact types: object,
components, requirements, designs, rationale, decisions, issues or con�icts, assumptions,
critical success factors, alternatives, and arguments.

The Design Allocation Submodel contains the following link types: address, perform,
depend on/depends on, part of, allocated to, satisfy, derive, create, de�ne, used by, drive,
modify, and based on. The Design Allocation Submodel contains the following arti-
fact types: functions, external systems, requirements, system/subsystems/components,
resources, design, change proposals, and mandates; this last artifact is derived into stan-
dards, policies, and methods.

The Compliance Veri�cation Submodel contains the following link types: used by, gen-
erate, derive, based on, veri�ed by, developed for, and satisfy. The Compliance Veri�cation

52

Submodel contains the following artifact types: resources, change proposals, compliance
veri�cation procedures, inspection, test, prototype, simulation, system/subsystems/components,
requirements, and mandates; this last artifact is derived into standards, policies, and
methods.

Also, four general link types are proposed: satisfaction, evolution, rationale, and de-
pendency; each link type from the submodels corresponds to one or more of these general
types. However, the authors do not provide a complete classi�cation of the speci�c link
types; only a few examples are shown.

4.2.1 Classi�cation of the Link Types

In Table 4.1, the general link types plus the speci�c examples shown in the paper are clas-
si�ed into the link types of the Reference Model. The �rst and second columns show the
general link type and the related speci�c link type, from Ramesh and Jarke, respectively;
the third column shows the corresponding link type from the Reference Model.

Table 4.1: Classi�cation of the Link Types - Ramesh and Jarke.

Ramesh and Jarke Link Type Reference Model Link Type

General Link Type Speci�c Link Type

Satisfaction drive, allocated, satisfy, per-

form, address, developed for,

veri�ed by

Evolution

Evolution generate, justify, describe, mod-

ify, identify, based on, derive,

elaborate, a�ect, drive, de�ne,

create

Evolution

Rationale based on, generate, address,

support, oppose, depend on, se-

lect, evaluate, resolve, in�uence,

managed by, use

Characterize Action

Dependency depend on

is a, part of

Constraint

Composition

The Satisfaction and Evolution link types from Ramesh and Jarke are classi�ed as
Evolution; these represent rei�cations and modi�cations, both subtypes of the Evolu-
tion link type of the Reference Model. Rationale conveys rationale; thus, it is classi�ed
as Characterize Action. Dependency is classi�ed as Constraint, since it represents the
dependency subtype of the Constraint link type.

4.2.2 Description Level of the Link Types

The general link types are semantically described. There is no formalization of their
description. Hence, their description level is informal.

The speci�c link types are not semantically described, and consequently there is no
formalization of their description. Hence, their description level is minimal; all link types

53

are described in a sentence containing artifacts and using the name of the link type as a
verb.

4.2.3 Evaluation of the Necessary Properties of Link Types

The set of link types lacks comprehensiveness and coverage. The set of link types may,
or may not, have speci�city, depending on which set of link types is evaluated.

The set of link types lacks comprehensiveness; it ful�lls only four of the seven basic
link types of the Reference Model. Moreover, these four basic link types are not com-
pletely ful�lled. For instance, the Constraint link type contains two subtypes, con�ict
and dependency; the model does not model con�ict1.

The link types seem to have speci�city; it is not trivial to deduce this information
given the minimal description provided for the speci�c link types. If we consider only the
four general link types, the set does not have speci�city.

The set of link types lacks coverage. Here are some of the many issues found: the
depend on and depends on link types do not cover design artifacts; hence, the model
does not enable modeling dependency relations between design artifacts. The modify link
type covers only design and requirement artifacts, precluding tracing the modi�cation
of other artifact types. The part-of link type models only the relation between system,
subsystem, and requirement artifact types, not covering design artifacts, for instance;
thus, it precludes tracing composition relations between design artifacts.

4.2.4 Classi�cation of the Artifact Types

The artifact types shown in the paper, organized by submodel, are classi�ed into the
artifact types from the Reference Model in Tables 4.2�4.5. The �rst column shows the
artifact type from Ramesh and Jarke, and the second column shows the corresponding
artifact from the Reference Model.

Table 4.2: Classi�cation of the Artifact Types - Ramesh and Jarke - Requirements Man-
agement Submodel

Ramesh and Jarke Artifact Type Reference Model Artifact Type

organizational needs, operational needs, strategic

needs, scenarios, system objectives, critical suc-

cess factors, resource, mandates

Pre-Requirements

requirements, constraints, change proposal Requirements

In the Requirements Management Submodel, the change proposals artifact modi�es
only requirements artifacts; hence, it is classi�ed as a Requirement artifact type from the
Reference Model.

1Con�ict is only modeled as an artifact; for instance, a list of con�icts.

54

Table 4.3: Classi�cation of the Artifact Types - Ramesh and Jarke - Rationale Submodel

Ramesh and Jarke Artifact Type Reference Model Artifact Type

requirements Requirements

designs Design

components Implementation

decisions, issues or con�icts, assumptions, critical

success factors, alternatives, arguments

Requirements, Implementation, Design

rationale Rationale

The artifact type object from the Rationale Submodel was not classi�ed since it is a
meta-type from which all other artifact types derive.

The artifact types rationale, decisions, issues or con�icts, assumptions, critical success
factors, alternatives, and arguments occur in three distinct development activities, hence,
they are classi�ed as three artifact types from the Reference Model.

Table 4.4: Classi�cation of the Artifact Types - Ramesh and Jarke - Design Allocation
Submodel

Ramesh and Jarke Artifact Type Reference Model Artifact Type

mandates Pre-Requirements

requirements Requirements

design, change proposals Design

functions, external systems,

system/subsystems/components

Implementation

In the Design Allocation Submodel, the change proposals artifact modi�es only design
artifacts; hence, it is classi�ed as a Design artifact type from the Reference Model.

The artifact type resources is not classi�ed since it models elements which are exter-
nal to the development and non-actor people; quote from the paper: �...money, weight,
personnel, power...�.

Table 4.5: Classi�cation of the Artifact Types - Ramesh and Jarke - Compliance Veri�-
cation Submodel

Ramesh and Jarke Artifact Type Reference Model Artifact Type

mandates Pre-Requirements

requirements Requirements

system/subsystems/components Implementation

test, compliance veri�cation procedures, inspec-

tion, prototype, simulation

Veri�cation & Validation and Testing

change proposals Requirements, Implementation, Design

55

In the Compliance Veri�cation Submodel, the compliance veri�cation procedures ar-
tifact generates change proposals artifacts for requirements, design, and implementation;
hence, it is classi�ed as Requirements, Implementation, and Design artifact types from
the Reference Model.

4.2.5 Description Level of the Artifact Types

The artifact types are described in sentences; sometimes there are examples to help explain
the type. They are described, but not with detail. There is no formalization of their
description. Hence, their description level is classi�ed as informal.

4.2.6 Evaluation of the Necessary Properties of Artifact Types

The set of artifact types from this work does not have comprehensiveness but have speci-
�city.

The set of artifact types does not have (complete) comprehensiveness; it ful�lls �ve
of the six artifact types of the Reference Model but does not model actors interacting in
the project. Since it does not model actors, there are no link types representing relations
between actors and artifacts.

Given that the paper does not focus on a speci�c domain, the proposed artifact types
are speci�c enough.

4.2.7 Processes

The authors do not propose processes to ensure Traceability Consistency and System
Consistency.

4.2.8 Strengths & Limitations

This contribution has a strong empirical basis; thus, it provides practical perceptions
of traceability. It also has artifacts modeling the most common activities in software
development, which it not true for the majority of studied papers. Finally, it contains a
rationale submodel, enabling the tracing of reasons for actions performed in the project.

On the other hand, there are several limitations. It models the most common activities
of development but does not models actors; consequently it is not capable of modeling
any relation between actors and artifacts. The descriptions of the speci�c link types is
minimal; it does not describe each link type. There are four general link types which
are described, but the speci�c link types are not classi�ed into these more general types.
Therefore, when utilizing this model, a user has to deduce the semantics of each speci�c
link types to map these to relations in a project. For instance, design creates or de�nes
systems/subsystems/components; what is the di�erence when design de�nes a component
versus when design creates a component? That is, what are the semantic di�erences
between these two link types?

The link types also lack comprehensiveness and coverage; this restricts the traceability
information acquired when using the model.

56

No processes are provided; hence, it can not ensure traceability and system consistency
whenever a change occurs in a project using this model.

4.3 Goknil et al.

Goknil et al. [23, 21, 22, 24, 25] contribution is composed of �ve distinct papers, all of
which use the same traceability model to achieve di�erent goals. This model is proposed
in [23] and goes through improvements and changes from one work to another. Not all
papers use the complete model. The �ve papers are:

• A Metamodeling Approach for Reasoning about Requirements (2008) [23];

• Semantics of trace relations in requirements models for consistency checking and
inferencing (2011) [21];

• Ametamodeling approach for reasoning on multiple requirements models (2013) [22];

• Generation and validation of traces between requirements and architecture based
on formal trace semantics (2014) [24];

• Change impact analysis for requirements: A metamodeling approach (2014) [25].

�A Metamodeling Approach for Reasoning about Requirements� [23] proposes a model
for requirements and a strategy to customize the model to support di�erent techniques
for requirement speci�cation. Four link types are proposed: Requires, Re�nes, Contains,
and Con�icts. These are formalized in �rst-order logic. An industrial mobile service
application is used in a case study.

�Semantics of Trace Relations in Requirements Models for Consistency Checking and
Inferencing� [21] proposes a method for consistency checking and inference of new rela-
tions, given the model proposed in [23]. TRIC [68] is a tool developed to support these
activities. A new link type � PartiallyRe�nes � is added to the model; this link type is a
variation of the Re�nes link type.

�A Metamodeling Approach for Reasoning on Multiple Requirements Models� [22]
expands the contribution from 2008 by adding support to di�erent approaches of re-
quirements modeling. A new link type � Equals � is added to the model; this link type
identi�es a copy of a requirement. This was probably added to enable mapping the model
to SysML. A more useful link type would identify equal parts of requirements, instead
of whole requirements. This link type was removed from all subsequent works using the
same model.

�Generation and Validation of Traces Between Requirements and Architecture Based
on Formal Trace Semantics� [24] proposes an approach to automatically generate traces
between requirements and architecture; the relations de�ned in previous works are used
to achieve this goal. Two new link types are added to the model, to support tracing
between requirements and architecture: AllocatedTo and Satis�es. These were taken
from the contribution by Ramesh and Jarke [53]. A tool based on the Eclipse Modeling

57

Framework, ATL modeling transformation language and the Maude tool set, is proposed
to support the generation and validation of traces.

The paper �Change impact analysis for requirements: A metamodeling approach� [25]
provides a formal classi�cation of changes in requirements; the formal de�nitions of re-
lations and the formal de�nition of types of changes enable: identi�cation of alternative
changes, identi�cation of incorrect positive impacts, and consistency checking of changes.
This is used to create a change impact analysis approach for requirements; TRIC [68],
proposed in [21], is expanded to support this new approach.

4.3.1 Classi�cation of the Link Types

The link types are classi�ed into the link types from the Reference Model in Table 4.6.
The �rst columns shows the link type from Goknil et al. contribution; the second column
shows the corresponding link type from the Reference Model.

Table 4.6: Classi�cation of the Link Types - Goknil et al.

Goknil et al. Link Type Reference Model Link Type

requires, con�icts Constraint

re�nes, partially re�nes, allocatedTo, satis�es Evolution

contains Composition

The requires link type and the con�icts link type are classi�ed as Constraint; they
model the dependency relation and the con�ict relation of the Constraint link type, re-
spectively. The link types re�nes and partially re�nes are classi�ed as Evolution; they
model a re�nement between requirements. The link types allocatedTo and satis�es are
classi�ed as Evolution; they model re�nements between elements of the requirements
model and the architectural model. The di�erence between the allocatedTo link type and
the satis�es link types is how they are assigned: the former is assigned automatically and
the latter is assigned manually by an actor. The contains link type is classi�ed as Compo-
sition; it refers to requirements which are part of other requirements (relation whole/part
of).

4.3.2 Description Level of the Link Types

The link types are semantically described and are formalized in �rst-order logic. Hence,
their description level is formal.

4.3.3 Evaluation of the Necessary Properties of Link Types

The set of link types lacks comprehensiveness; it ful�lls only three of the seven basic link
types of the Reference Model. Moreover, these three basic link types are not completely
ful�lled, since the Evolution link type has two subtypes and only one is ful�lled; the model
does not model modi�cation.

58

The set of link types has speci�city, being speci�c enough for general use in software
development. For example, consider the re�nes link type: it models a rei�cation relation
but does not model the modi�cation relation (both are subtypes of the Evolution link
type).

The set of link types have coverage, since there is only one artifact to cover; all link
types model relations between requirements.

4.3.4 Classi�cation of the Artifact Types

The proposed link types model only relations between requirements. In two of the pa-
pers, they provide a model containing other types of artifacts such as StakeHolder and
TestCase; however, these are not considered for traceability. One of the papers considers
an architectural view of development, but no speci�c elements are provided. Therefore,
there is only one artifact type to be classi�ed.

Table 4.7 shows the classi�cation. The �rst column shows the artifact type from
Goknil et al., and the second column shows the corresponding artifact from the Reference
Model.

Table 4.7: Classi�cation of the Artifact Types - Goknil et al.

Goknil et al. Artifact Type Reference Model Artifact Type

requirements Requirements

If we consider elements which are not traced, Stakeholder is classi�ed as Actor and
TestCase is classi�ed as Veri�cation & Validation and Testing.

4.3.5 Description Level of the Artifact Types

There is only one artifact type: requirements; it is semantically described and formalized.
Hence, its description level is formal.

4.3.6 Evaluation of the Necessary Properties of Artifact Types

The set of artifact types lacks comprehensiveness; it ful�lls only one of the six basic
artifact types of the Reference Model.

The set of artifact types has speci�city; it models an element which is used in practical
development (requirement).

4.3.7 Processes

The authors do not propose processes to ensure Traceability Consistency and System
Consistency. However, the authors provide an algorithm in [25] to evaluate the impact
of changes caused by the modi�cation of an requirement. It was not created to ensure
consistency but could be adapted accordingly; if such adaptation was done, the resulting
process would have some �aws: it would not take into consideration system breaking

59

issues such as unsatis�ed dependencies, or con�icts, between elements, given a certain
change; it would not consider di�erent actions, such as the decomposition of an element;
also, the limited types of relations being considered would weaken the algorithm, since it
would not consider relations such as those between elements and rationales for actions,
or elements and byproducts of their application; among other issues.

4.3.8 Strengths & Limitations

The link types are de�ned formally in �rst-order logic. The requirement artifact type
is also de�ned formally. This contribution is superior to all other works investigated in
Chapter 2 when taking into account the quality of descriptions of elements. Every link
type and artifact type is well-de�ned; thus, there would be no ambiguity when using the
proposed types in a project.

On the other hand, this model is limited to requirements, not considering all other
activities in software development. It also does not model actors which interact with the
project. While having speci�city, the set of link types lacks in comprehensiveness even
more than the contribution by Ramesh and Jarke [53]; e.g., using this set of link types
it is not possible to trace reasons for actions done in the project. It does not propose
processes to ensure consistency; however, it is the only contribution studied which contains
an algorithm which could be adapted to become a process. Still, this process would have
�aws and would only cover, at most, two of the basic actions (modi�cation and rei�cation).

4.4 Closing Remarks

This evaluation intends to illustrate the use of the Reference Model as an evaluating tool.
During this evaluation, we have gained knowledge about common �aws of traceability
models and improved our understanding of traceability.

We consider these to be the strongest contributions in the literature review. The work
by Ramesh and Jarke considers the most common development activities and contains
many link types; however, it does not provide proper descriptions of the proposed link
types. The contribution by Goknil et al. contains formally de�ned elements; on the other
hand, it considers only the requirement engineering activity and proposes few link types.

60

Part III

A Metamodel for Traceability

61

Chapter 5

An Overview of the Metamodel

The Reference Model described in Chapter 3 de�nes the basic elements in a traceability
model: artifact types, link types, processes, and actors. Artifact types model products
from development activities. Link types model relations between the artifacts. Processes
ensure consistency given changes, caused by actors, on the artifacts. These four elements
are intrinsically related to actions which occur in a development project; e.g., if an action
of modi�cation is performed by an actor on an artifact, a link type may provide account-
ability for this action, and a process may be needed to ensure the project does not become
inconsistent.

The Reference Model determines sets of: (i) actions, (ii) link types, (iii) artifact types,
and (iv) processes. Each set is basic; i.e., contains the minimum necessary elements
for general use. Therefore, the Reference Model answers the following questions about
traceability models: which actions should be considered? Which link types and artifact
types are necessary? Which properties these sets of types should have? Which processes
are necessary? As mentioned previously, all these elements relate strongly to each other;
for instance, the set of basic actions in�uences the elements of the set of types and the
set of processes. If modi�cation is an action in the set of basic actions, there should
be: accountability, permission, characterize action and evolution link types covering this
action, and a process which ensures consistency whenever this action is performed. Each
set was de�ned, and in some cases, subtypes were also determined as necessary; e.g., the
accountability link type should cover six of the seven basic actions.

In the following chapters, we present a Metamodel for traceability constructed by
using the Reference Model from Chapter 3; the Metamodel is presented by detailing its
four main components: the Traceability Space, the Artifact Types, the Link Types, and
the Processes.

5.1 Traceability Space

The Traceability Space is the conceptual visualization of the Metamodel; it describes and
organizes the elements of traceability. The Traceability Space contemplates the seven
basic actions of the Reference Model plus the Activation action, which enables bringing
unused artifacts into the working project.

62

5.2 Artifact Types

This is the set of Artifact Types of the Metamodel. As discussed in Chapter 3, a trace-
ability model should de�ne a set of Artifacts Types representing the products of the de-
velopment process. Artifacts � instances of Artifact Types � are manipulated by Actors,
handled by Processes, and traced by Traceability Links.

The Metamodel contains a set of 12 Artifact Types which represent the most common
activities of development and record valuable traceability information.

5.3 Link Types

This is the set of Link Types of the Metamodel. As discussed in Chapter 3, a traceability
model should de�ne a set of Link Types modeling the relations between the products of
the development process. Links � instances of Link Types � trace Actors and Artifacts,
and are handled by Processes.

The Metamodel contains a set of 59 Link Types describing di�erent traceability re-
lations, created by taking into account the three necessary properties determined in the
Reference Model.

5.4 Processes

This is the set of Processes of the Metamodel. As discussed in Chapter 3, a traceabil-
ity model should de�ne a set of Processes to ensure consistency. Consistency is broken
by actions; thus, a model should have a Process for each Action contemplated by the
Metamodel. Processes are performed by Actors, and handle Artifacts and Links.

The Metamodel contains 8 traceability processes to enable the maintenance of trace-
ability consistency and system consistency.

5.5 Outline by Chapter

The conceptual model and the actions contemplated by the Metamodel are de�ned in
Chapter 6. The set of Artifact Types is de�ned in Chapter 7. The set of Link Types is
de�ned in Chapter 8. The set of Processes is de�ned in Chapter 9. An application of the
Metamodel on requirements of a course management system is shown in Chapter 10.

63

Chapter 6

The Traceability Space

The Traceability Space describes and organizes the elements of traceability. The Trace-
ability Space of a project is composed of four subspaces: Actors Space, Rules Space,
System Space and Processes Space. The Actors Space contains abstractions of the agents
that interact with the project; the Rules Space contains rules limiting the actions which
can be performed by the Actors; the System Space contains Artifacts (instances of Artifact
types), which are the products of the development process; the Processes Space contains
a collection of processes used to maintain consistency. Traceability links (instances of link
types) are also part of the Traceability Space; they connect Artifacts to Artifacts within
the System Space, and Artifacts in the System Space to actors in the Actors Space.

Actors Space Rules Space

System Space Processes Space

Active system

Inactive system

Active system
 boundary

Figure 6.1: The Subspaces of the Traceability Space.

64

Actors Space Rules Space

System Space Processes Space

Active system

Inactive system

Active system
 boundary

αβ

Modification

Traceability
 link

Permission
assignment

Indicates
Process
performed

M
odified

M
od

if
ie

dB
y

DependsOn

NecessaryFor

Figure 6.2: A Traceability Space.

A Traceability Space is depicted in Figure 6.2. An actor in the Actors Space, hav-
ing permission given by the Rules Space, performed the Modi�cation Process, from the
Processes Space, on artifact α in the System Space. The resulting Accountability links
Modi�edBy and Modi�ed connect the actor and the artifact. The Constraint links De-
pendsOn and NecessaryFor connect artifacts α and β.

This chapter is structured as follows: Section 6.1 details the interactions between the
basic elements of traceability given this conceptual model; Sections 6.2�6.5 describe the
elements of the Traceability Space; Section 6.6 de�nes the Traceability Space; Section 6.7
de�nes the basic actions used in the Metamodel; and Section 6.8 brie�y discusses possible
metrics enabled by Metamodel.

65

6.1 Interactions Between the Elements of Each Space

The Reference Model de�nes three basic elements of a traceability model: Artifacts, Links,
and Processes; Actors are agents which interact with these elements.

The Artifacts in the System Space are instances of the Artifact types from the set of
Artifact types of the Metamodel. These are manipulated by Actors in the Actors Space.

Actors perform actions on Artifacts in the System Space; these are the actions con-
templated and de�ned by the Metamodel.

Actors are able to manipulate Artifacts if they have authorization de�ned by the Rules
Space. This authorization may be fully, partially, or not at all, expressed by traceability
links connecting the Actors to the Artifacts. For instance, a rule from the Rules Space
may determine that a certain Actor may modify a speci�c Artifact, and another rule from
the Rules Space may determine that another Actor may create Artifacts of a certain type
during a speci�c time window. The former is expressed by traceability links; the latter is
not expressed by traceability links.

Traceability links are instances of link types from the set of link types of the Meta-
model; these connect: Actors in the Actors Space to Artifacts in the System Space, and
Artifacts in the System Space to other Artifacts in the System Space.

The processes from the Processes Space contain actions to be performed and the
instructions necessary to ensure traceability and system consistency. The Actors use the
processes to enact changes in the System Space.

6.2 Actors Space

The Actors Space contains the actors participating or interacting with the project. Actors
are digital representations of real life agents and can represent people or digital systems.
Actors are connected to artifacts in the System Space by Traceability links; these links
may be permissions or accountability for actions previously performed. Permissions give
actors power to manipulate the artifacts in the System Space; e.g., a link which allows
actor a to modify artifact α. Accountability enables identifying the actor's participation
in actions performed on an artifact; e.g., a link which identi�es that actor a took part in
modi�cating artifact α.

The actor is a digital representation, hence it is able to store information. For instance,
an actor in the Actor Space may have information on itself such as name, employee identi-
�able number, position held, etc.; all this information is stored in the actor representation
in the Actors Space.

6.2.1 Meta-Actor

A meta-actor is an actor who is able to manipulate the Rules Space, the Processes Space,
and the Actors Space by creating rules or assigning permissions manually, by creating,
modifying, or removing processes, and by creating, modifying, or removing actors, respec-
tively. An example would be a project manager who de�nes rules for the Rules Space of
a project.

66

Traceability links may be used to trace accountability for the actions of the meta-actor
in the subspaces of the Traceability Space.

6.3 Rules Space

The Rules Space contains rules concerning actions which may be performed in the System
Space. The rules determine permissions which are assigned to each actor, establishing the
set of allowed actions of an actor in the System Space.

The addition of new actors to the Actors Space or new artifacts to the System Space
may bring the assignment of new permissions and may bring new rules. Permissions will
be assigned to allow the new actor to manipulate current artifacts or to allow current
actors to manipulate the new artifact. New rules may be created to adapt the Rules
Space to the new actor or artifact; e.g., given a new artifact of a type not yet added to
the System Space, a new rule would allow actors to manipulate artifacts of this speci�c
type. Rules may be generated automatically or manually.

Rules can be as simple, or complex, as desired; each project establishes its set of rules
according to its needs. For instance, a simple rule could be: actor a can modify artifact
β. A more complex rule could be: actor a can modify and decompose all artifacts of type
A1 during a time window t. An even more complex rule could be: actor a can create
artifacts of type A1, under the condition that these can only be applied to artifacts of
type A2 created after a date d, during a time window t. Rules may also be generic, for
instance: every new actor having position held ph can create and modify artifacts of type
A1.

6.4 Processes space

The Processes Space contains the processes necessary to maintain consistency. It contains
a process for each action which may break traceability or system consistency. Whenever
an actor performs an action, a process determines the required steps to be taken to
ensure consistency. To satisfy the Reference Model, a Processes Space should have at
least six processes covering six of the seven basic actions. In our Metamodel, there are
seven processes: the Homologation Process, the Modi�cation Process, the Decomposition
Process, the Creation Process, the Removal Process, the Activation Process, and the
Application Process.

The Homologation Process evaluates and enables artifacts to be added to the set of
working artifacts of the project; an artifact which goes through the Homologation Process
may be homologated or rejected.

The Modi�cation Process evaluates and enables the modi�cation of artifacts. An
artifact which goes through the Modi�cation Process is copied and this copy is subjected
to the desired modi�cation; after its modi�cation, the new version takes the place of the
original artifacts between the working artifacts of the project.

The Decomposition Process evaluates and enables artifacts to be decomposed into
parts. The information from the artifact is kept in the created artifacts and no information

67

is added or removed. To add new information, the Modi�cation Process should precede
or succeed the Decomposition Process.

The Creation Process evaluates and enables the creation of new artifacts.
The Removal Process evaluates and enables the removal of artifacts from the set of

working artifacts of the project. Artifacts are never destroyed, but instead are kept for
future reuse, preserving rationale, or for historical purposes.

The Activation Process evaluates and enables artifacts, which were previously removed
or rejected, to be added to the set of working artifacts.

The Application Process evaluates and enables artifacts to be applied on other arti-
facts. For instance, a test case is applied on a certain code fragment.

6.5 System Space

The System Space contains the products of the development process; i.e., it has all the
artifacts produced during each phase of a given development process. It is separated
into two parts: the Active System and the Inactive System. The Active System contains
the artifacts currently being used in the project, the active artifacts. Examples of active
artifacts are requirements which represent currently desirable, and approved, features and
source code derived from these requirements. The Inactive System contains the artifacts
not currently being used in the project, the inactive artifacts; these artifacts are stored
for future reuse, rationale preservation, or for historical purposes. Examples of inactive
artifacts are discarded requirements or previous versions of source code.

A new artifact starts in the Inactive System and, through the process of homologation,
becomes part of the Active System; i.e., it starts o� as an inactive artifact and may become
an active artifact. The activation of an inactive artifact may happen by going through
the Homologation Process directly or by going through other processes which use the
Homologation Process to try to activate artifacts.

Currently inactive artifacts which were removed by the Removal Process or were pre-
viously rejected during the Homologation Process may become active by going through
the Activation Process; this process uses the Homologation Process to activate artifacts.

An active artifact becomes inactive by going through the Removal Process, the De-
composition Process, the Modi�cation Process, or by direct deactivation. In the �rst case,
an artifact is simply removed from the Active System; in the second case, a decomposed
artifact becomes inactive as it is replaced by its decomposed parts; in the third case, a
modi�ed artifact becomes inactive as it is superseded by a new version of itself.

The artifacts in the System Space are interconnected through traceability links. Trace-
ability links in the System Space connect: (i) active artifacts and active artifacts, (ii) active
artifacts and inactive artifacts, and (iii) inactive artifacts and inactive artifacts. There
may be Permission links and Accountability links leaving or entering the System Space
to/from the Actors Space.

68

6.5.1 Not Using the Homologation Process

The System Space is unchanged if a project chooses not to use the Homologation Process.
Its division into Active System and Inactive System is still valid, since it is a concept
modeled on existing practices; a development process has elements which are not used
anymore (inactive) and elements which are part of the project �in development� (active).
If a project discards the Homologation Process, it may activate artifacts directly, after an
action takes place; for instance, after an artifact is created it is automatically added to the
Active System. The same is true for the Removal Process; artifacts may be deactivated
directly.

6.6 Traceability Space: De�nition

De�nition 6.6.1. A Traceability Space is a �ve-tuple TS = (AS, SS,RS, PS, IEL),
where:

• AS is an Actors Space;

• SS is a System Space;

• RS is a Rules Space;

• PS is a Processes Space;

• IEL is a set of Inter-Space Traceability Links.

De�nition 6.6.2. A Traceability Space k (TSk) represents a speci�c Traceability Space
belonging to a project k; i.e., TSk is an instance of a Traceability Space.

De�nition 6.6.3. An Actors Space is a two-tuple AS = (A, IAL), where: A is a set of
Actors and IAL is a set of Intra-Space Traceability Links.1

The set of Actors A = {a1, . . . , an}, n ≥ 1, is composed of all Actors interacting in
the Traceability Space; i.e., Actors participating in the project being modeled by the
Traceability Space. An Actor ai, i ≤ n, is a representation of an agent in the project. An
Actor is modeled as a set a = {ia1, . . . , iam}, m ≥ 1, where each iaj, j ≤ m, is a Block
of Information containing identi�able information about the entity it represents. For
instance, ia1 may contain the name of the Actor, ia2 may contain its employee number,
etc. The concept of Blocks of Information will be discussed in more detail in the de�nition
of the next Space.

The set of Intra-Space Traceability Links IAL = {ial1, . . . , ialp}, p ≥ 1, contains all
links which interconnect the Actors in A. Each link iall, l ≤ p, is a Traceability Link
representing a relation between two distinct Actors in the Actors Space. The concept of
Traceability Link will be discussed in more detail in the de�nition of the next Space.

1The Metamodel currently does not have intra-space traceability links for the Actors Space; these
exist as a concept and may be added in the future.

69

De�nition 6.6.4. A System Space is a three-tuple SS = (AcS, InS, IESL), where: AcS
is the Active System, InS is the Inactive System, and IESL is a set of Inter-System
Traceability Links.

The Active System is a two-tuple AcS = (Art, IASL), where: Art is a set of Ar-
tifacts and IASL is a set of Intra-System Traceability Links. The set of Artifacts
Art = {α1, . . . , αn}, n ≥ 1, contains all active Artifacts in the project; i.e., Artifacts
which are currently in use by the project. An Artifact αi, i ≤ n, is a representation of
an product of the project. Each Artifact α = {i1, . . . , im}, m ≥ 1, is a set of Blocks of
Information. A Block of Information is a sequence of arbitrary types, such as characters,
forming an unit of relevant information. The granularity of a block of information may be
highly variable, depending on necessity, context, domain, and so on; e.g., a Block of Infor-
mation may be: a method in a C++ class, a C++ class, a .cpp �le, part of a requirement
document, etc. The set of Intra-System Traceability Links IASL = {iasl1, . . . , iaslp},
p ≥ 1, contains all links which interconnect the Artifacts in AcS. Each link iasll, l ≤ p,
is a Traceability Link representing a relation between two distinct Artifacts in the Ac-
tive System. A Traceability Link is a three-tuple tl = (Source, Target, Extra), where:
Source and Target are the origin artifact and the destination artifact, respectively, of
the Traceability Link. Extra is a set of Blocks of Information containing extra informa-
tion contained in the link; e.g., an Accountability link may have a Block of Information
containing a date which indicates when the action took place.

The Inactive System is a two-tuple InS = (Art, IASL), where: Art is a set of Artifacts
and IASL is a set of Intra-System Traceability Links. These are de�ned analogously to
the previously de�ned sets having the same initialism: the set of Artifacts Art contains all
inactive Artifacts in the project; the set of Intra-System Traceability Links IASL contains
all links which interconnect the Artifacts in InS.

The set of Inter-System Traceability Links IESL = {iesl1, . . . , ieslq}, q ≥ 1, contains
all links which interconnect the Artifacts in the Active System and the Artifacts in the
Inactive System; i.e., each Traceability Link iesll, l ≤ q, is a Traceability Link representing
a relation between two distinct Artifacts: one Artifact which belongs to the Active System
and another Artifact which belongs to the Inactive System.

De�nition 6.6.5. A Rules Space RS = {r1, . . . , rn}, n ≥ 1, contains a set of Rules for
actions in the System Space. Each Rule is a 5-tuple r = (Who,Actions,What,When),
where: Who lists the Actors to whom the Rules applies. It may be a set of Actors, a set
of roler, or a set of properties which Actors may have. The Rule is valid for all actors
in the set or having the roles or properties described; e.g., Actor a, the set of Actors A,
Actors who are �Developers�, Actors who worked for more than 5 years in the company,
Actors who held the position hp for the last 2 years, etc. Who can not be an empty set
of elements, be Actors, roles, or properties.

Actions de�nes the set of actions allowed by the Rule; e.g., the actions of decomposi-
tion and modi�cation. Actions can not be an empty set of elements.

What de�nes the allowed target Artifacts for the elements of Actions. It may be a
set of Artifacts, or a property which Artifacts may have; e.g., Artifact α, Artifacts having
property pr, Artifacts not modi�ed during the last year, Artifacts of type ty, etc. What

can not be an empty set of elements.

70

When de�nes a date, or time window, in which the actions listed in Actions may
occur; e.g., the actions may only happen during a certain time window t or at date d.

De�nition 6.6.6. A Processes Space PS = {p1, . . . , pn}, n ≥ 1, contains a set of Pro-
cesses done by Actors in the Actors Space to ensure Traceability Consistency and System
Consistency (see Section 3.6 in Chapter 3). Processes and actions are integrated; i.e.,
Processes will not happen after an action is done. Each process combines an Action and
the necessary instructions to ensure consistency given this action. Each Process pi, i ≤ n,
is a two-tuple p = (Act, Inst), where: Act is the action being performed in the Process
and Inst is the sequence of instructions to be done whenever the action de�ned by Act is
performed.

Act de�nes the action which the Actor(s) in the Actors Space wishes to do; e.g.,
Modi�cation or Creation.

Inst determines the necessary steps to ensure consistency, given: (i) the action being
performed, and (ii) the current state of the System Space; e.g., given the action of Re-
moval, it is necessary to create a new Artifact, taking into account the current System
Space, to avoid leaving two Artifacts in the Active System in the System Space with
missing dependencies.

De�nition 6.6.7. The Inter-Space Traceability Links is a two-tuple IEL = (AL,PL),
where: AL is a set of Accountability links and PL is a set of Permission links (see
Section 3.3 in Chapter 3).

The set of Accountability links AL = {al1, . . . , aln}, n ≥ 1, contains all Accountability
links which interconnect the Actors in the Actors Space and the Artifacts in the System
Space. Each link ali, i ≤ n, is a Traceability Link representing a relation of Accountability
between an Actor in the Actor Space and an Artifact for an Action performed in the
System Space; e.g., Actor a performed the Action of modi�cation on Artifact α.

The set of Permission links PL = {pl1, . . . , plm}, m ≥ 1, contains all Permission links
which interconnect the Actors in the Actors Space and the Artifacts in the System Space.
Each link pli, i ≤ m, is a Traceability Link representing a relation of Permission between
an Actor in the Actor Space and an Artifact in the System Space; e.g., Actor a may
perform the Action of modi�cation on Artifact α.

6.7 Actions: De�nitions

Actions are strongly related to other elements of the traceability model; the actions con-
sidered by a traceability model determine many of its link types and all of its processes.
For instance, link types may trace accountability for actions, and a process is necessary
for each action performed in the System Space (see Section 3.2.2 in Chapter 3).

Given the de�nition of the Traceability Space, each action contemplated by the Meta-
model is de�ned in this section.

71

6.7.1 Modi�cation

De�nition 6.7.1. The Action of Modi�cation is de�ned by the function Modification:
(TSk, {a1, . . . , an} ∈ ASk, {i1, . . . , im} ∈ α ∈ SSk, {j1, . . . , jp})→ TS ′k, where: TSk is the
Traceability Space where the Action will be performed, {a1, . . . , an} is the set of Actors
who will perform the Action, {i1, . . . , im} is the set of Blocks of Information to be modi�ed,
and {j1, . . . , jp} is the set of Blocks of Information which describes the modi�cation to be
performed on {i1, . . . , im}.

Let Mod: (x, y) → x
′
be a function which, given two sets of Blocks of Information

as arguments, returns a modi�cation of the �rst set according to instructions from the
second set.

The function Modification leads to changes in SSk and IELk resulting in TS ′k =

(ASk, SS
′
k, RSk, PSk, IEL

′
k), where: InS

′
k ∈ SS ′k = InSk ∪ α. LetMod(α, {j1, . . . , jp}) =

α′; AcS ′k ∈ SS ′k = (AcSk \ α) ∪ α′. IESL′k ∈ SS ′k = IESLk ∪ {new_iesl1, new_iesl2},
where {new_iesl1, new_iesl2} are Evolution links between α and α′. AL′k ∈ IEL′k =

{new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . . , new_alq}, q = 2 ·n, are Account-
ability links between {a1, . . . , an} and α′.

6.7.2 Removal

De�nition 6.7.2. The Action of Removal is de�ned by the function Removal: (TSk,
{a1, . . . , an} ∈ ASk, α ∈ SSk) → TS ′k. where: TSk is the Traceability Space where the
Action will be performed, {a1, . . . , an} is the set of Actors who will perform the Action,
and α is the Artifact to be removed.

The function Removal leads to changes in SSk and IELk resulting in TS ′k = (ASk,
SS ′k, RSk, PSk, IEL

′
k), where: InS

′
k ∈ SS ′k = InSk ∪ α and AcS ′k ∈ SS ′k = AcSk \ α.

AL′k ∈ IEL′k = {new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . . , new_alq}, q =

2 · n, are Accountability links between {a1, . . . , an} and α.

6.7.3 Application

De�nition 6.7.3. The Action of Application is de�ned by the function Application:
(TSk, {a1, . . . , an} ∈ ASk, α ∈ SSk) → TS ′k, where: TSk is the Traceability Space where
the Action will be performed, {a1, . . . , an} is the set of Actors who will perform the Action,
and α is the Artifact to be applied.

The Action of Application may result in the creation of one, or more, Artifacts.
If the Action of Application results in the creation of Artifacts, let {β1, . . . , βm},

m ≥ 1, be the set of these Artifacts. The function Application leads to changes in
SSk and IELk resulting in TS ′k = (ASk, SS ′k, RSk, PSk, IEL

′
k), where: AcS ′k ∈

SS ′k = AcSk ∪ {β1, . . . , βm}, IESL′k ∈ SS ′k = IESLk ∪ {new_iesl1, . . . , new_ieslp},
where {new_iesl1, . . . , new_ieslp}, p = 2 ·m are Action Outcome links between α and
{β1, . . . , βm}. AL′k ∈ IEL′k = {new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . .,
new_alq}, q = 2 · n, are Accountability links between {a1, . . . , an} and α.

If the Action of Application does not result in the creation of Artifacts: the function
Application leads to changes in IELk resulting in TS ′k = (ASk, SSk, RSk, PSk, IEL′k),

72

where: AL′k ∈ IEL′k = {new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . . , new_alq},
q = 2 · n, are Accountability links between {a1, . . . , an} and α.

6.7.4 Decomposition

De�nition 6.7.4. The Action of Decomposition is de�ned by the function Decompositi-
on: (TSk, {a1, . . . , an} ∈ ASk, α ∈ SSk, {j1, . . . , jp}) → TS ′k, where: TSk is the Trace-
ability Space where the Action will be performed, {a1, . . . , an} is the set of Actors who
will perform the Action, α is the Artifact to be decomposed, and {j1, . . . , jp} is the set of
Blocks of Information which describes the decomposition.

Let Dec: (γ, {l1, . . . , lp}) → {γ1, . . . , γn} be the function which, given two sets of
Blocks of Information, returns a decomposition of the �rst set, according to instructions
from the second set.

The function Decomposition leads to changes in SSk and IELk resulting in TS ′k =

(ASk, SS
′
k, RSk, PSk, IEL

′
k), where: InS

′
k ∈ SS ′k = InSk ∪ α and AcS ′k ∈ SS ′k =

AcSk \ α. Let Dec(α, {l1, . . . , lp}) = {α1, . . . , αm}, m ≥ 2; AcS ′k ∈ SS ′k = AcSk ∪
{α1, . . . , αm}. IESL′k ∈ SS ′k = IESLk ∪ {new_iesl1, . . . , new_ieslr}, r = 2 ·m, where
new_iesli and new_iesl(r/2)+i, i ≤ r, are Composition links between α and αi. AL′k ∈
IEL′k = {new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . . , new_alq}, q = 2 · n, are
Accountability links between {a1, . . . , an} and α.

6.7.5 Rei�cation

De�nition 6.7.5. The Action of Rei�cation is de�ned by the function Reification: (TSk,
{a1, . . . , an} ∈ ASk, {j1, . . . , jp}) → TS ′k, where: TSk is the Traceability Space where the
Action will be performed, {a1, . . . , an} is the set of Actors who will perform the Action,
{j1, . . . , jp} is the set of Blocks of Information which will be used to create a new Artifact.
The set {j1, . . . , jp} is composed of Blocks of Information from one, or more, Artifacts.

Let Reif : ({j1, . . . , jp})→ α be a function in which, given a set of Blocks of Informa-
tion, returns a new Artifact composed of rei�cations of all Blocks of Information given as
argument. A resulting rei�ed Block of Information may be created by using one, or more,
Blocks of Information.

The function Reification leads to changes in SSk resulting in TS ′k = (ASk, SS ′k, RSk,
PSk, IELk), where: let Reif({j1, . . . , jp}) = α; AcS ′k ∈ SS ′k = AcSk ∪ α. Let β =
{β1, . . . , βm} be the set of Artifacts where ∀βi ∈ β, ∃jl ∈ βi, l ≤ p; IESL′k ∈ SS ′k =

IESLk ∪ {new_iesl1, . . . , new_ieslr}, r = 2 ·m, where new_iesli and new_iesl(r/2)+i,
i ≤ r, are Evolution links between βi and α.

6.7.6 Creation

De�nition 6.7.6. The Action of Creation is de�ned by the function Creation: (TSk,
{a1, . . . , an} ∈ ASk) → TS ′k, where: TSk is the Traceability Space where the Action will
be performed and {a1, . . . , an} is the set of Actors who will perform the Action.

Let Cre: a→ x be a function which, given a set of Actors as argument, returns a set
of Blocks of Information; i.e., it returns a new Artifact created by the Actors.

73

The function Creation leads to changes in SSk and IELk resulting in TS ′k = (ASk,
SS ′k, RSk, PSk, IEL

′
k), where: let Cre({a1, . . . , an}) = α; AcS ′k ∈ SS ′k = AcSk ∪ α,

and AL′k ∈ IEL′k = {new_al1, . . . , new_alq} ∪ ALk, where {new_al1, . . . , new_alq},
q = 2 · n, are Accountability links between {a1, . . . , an} and α.

6.7.7 Homologation

De�nition 6.7.7. The Action of Homologation is de�ned by the function Homologation:
(TSk, {a1, . . . , an} ∈ ASk, α ∈ SSk) → TS ′k, where: TSk is the Traceability Space where
the Action will be performed, {a1, . . . , an} is the set of Actors who will perform the Action
and α is the Artifact to be homologated.

The function Homologation is not used directly by Actors, instead it is used by other
functions to homologate Artifacts; Artifacts which are homologated are added to the
Active System of a Traceability Space. For instance, the Modification function uses the
Homologation function to activate α′, the modi�ed version of α.

If {a1, . . . , an} approves the homologation of α, the function Homologation leads to
changes in SSk and IELk resulting in TS ′k = (ASk, SS ′k, RSk, PSk, IEL

′
k), where: InS

′
k ∈

SS ′k = InSk \ α, AcS ′k ∈ SS ′k = AcSk ∪ α, andAL′k ∈ IEL′k = {new_al1, . . . , new_alq} ∪
ALk, where {new_al1, . . . , new_alq}, q = 2·n, are Accountability links between {a1, . . . , an}
and α.

6.7.8 Activation

De�nition 6.7.8. The Action of Activation is de�ned by the function Activation: (TSk,
{a1, . . . , an} ∈ ASk, α ∈ SSk, {j1, . . . , jp})→ TS ′k, where: TSk is the Traceability Space
where the Action will be performed, {a1, . . . , an} is the set of Actors who will perform the
Action, α is the Artifact to be Activated, and {j1, . . . , jp} is an optional set of Blocks of
Information which describes the modi�cation to be performed on α.

The Action of Activation may be contingent upon a modi�cation of the target Artifact;
if {j1, . . . , jp} = ∅, α will be activated without changes.

The function Activation is used by Actors to add inactive Artifacts to the Active
System; these are new Artifacts or Artifacts which were previously rejected by the function
of Homologation.

If {j1, . . . , jp} = ∅, the function Activation leads to changes in SSk resulting in TS ′k
= (ASk, SS ′k, RSk, PSk, IELk), where: InS

′
k ∈ SS ′k = InSk \ α and AcS ′k ∈ SS ′k =

AcSk ∪ α. The Accountability for this Action is provided by the Homologation function,
thus there are no changes to IELk for this function.

If {j1, . . . , jp} 6= ∅, the function Activation leads to changes in SSk resulting in TS ′k
= (ASk, SS ′k, RSk, PSk, IELk), where: let α′ be the result of the modi�cation of α2;
AcS ′k ∈ SS ′k = AcSk ∪ α′. The Artifact α stays in the Inactive System.

2The Artifact α′ is created as a result of the Modification function.

74

6.8 The Traceability Space and Metrics

Relevant information may be inferred by analyzing the Traceability Space of a project in
development; for instance: an Actor having a signi�cant number of Accountability links
to Artifacts in the Active System, when compared to other Actors, may be overworked;
an Actor having a signi�cant number of Accountability links to Artifacts in the Inactive
System is someone who contributed substantially to the project in the past; an Artifact
having a signi�cant number of Constraint links of the dependency type is highly relevant
to a project and its removal may be costly; and the decision to modify an Artifact may be
in�uenced by how highly connected it is to other Artifacts in the Active System; a high
number of rejected Artifacts in the Inactive System, belonging to the same Actor, may
be investigated to evaluate the necessity of providing training for this Actor.

75

Chapter 7

Artifact Types

Artifacts are the products generated during the software development process; there may
be di�erent activities (or phases) of development, given the development model used.
Thus, Artifacts may be classi�ed according to the development activity they belong to.
For instance, an Artifact modeling a requirement and an Artifact modeling a test case
belong to the requirements engineering activity and the Veri�cation & Validation and
Testing activity, respectively.

Our Reference Model described in Chapter 3 suggests �ve basic Artifact types for
traceability: Pre-Requirements, Requirements, Design, Implementation, and Veri�cation
& Validation and Testing; these cover the most common activities in software develop-
ment. Our Metamodel uses the same Artifact types and adds a sixth type: the Rationale
Artifact.

The Rationale Artifact provides rationale and/or description concerning an action; the
rationale is a justi�cation (why) for an Action, and the description contains instructions
to perform an Action (what and how). Therefore, it enables the possibility of saving the
reasons for actions performed in the System Space, and details about how the actions
where done.

Since the Rationale Types justify and/or describe actions, it is necessary to have a
Rationale type for each Action being traced. Seven Rationale Types are de�ned in this
chapter.1

This chapter is structured as follows: Section 7.1 lists the non-rationale artifact types
of the Metamodel, and Section 7.2 de�nes the rationale artifact types of the Metamodel.

7.1 Non-Rationale Artifact Types

The Non-Rationale Artifact Types of the Metamodel are: Pre-Requirements Engineering
Artifact, Requirements Engineering Artifact, Design Artifact, Implementation Artifact,
and Veri�cation & Validation and Testing Artifact. These are described in Chapter 3.

1The Traceability Space of the Metamodel considers eight actions; however, the same Rationale type
is used for the Action of creation and the Action of rei�cation.

76

7.2 Rationale Artifact Types

The Rationale Artifact types of the Metamodel are: Rationale for Modi�cation (RM),
Rationale for Removal (RR), Rationale for Decomposition (RD), Rationale for Homolo-
gation or Rejection (RHR), Rationale for Creation (RC), Rationale for Application (RAp),
and Rationale for Activation (RAc). The Rationale for Creation and the Rationale for
Application are optional types.

7.2.1 Rationale for Modi�cation

A Rationale for Modi�cation provides rationale for the modi�cation of an Artifact and
describes the modi�cations to be made. The description contain what changes are to be
done in the Artifact and how they should be done.

The Rationale for Modi�cation is de�ned as: RM = R ∪ (DW ∪ DH), where R,
DW , and DH are sets of Blocks of Information. The set R is the justi�cation for the
modi�cation. The sets DW e DH are the description of the modi�cation, where: DW
de�nes what changes should be done and DH de�nes how the changes should be done.
The set DH is optional.

The Rationale for Modi�cation becomes part of the Active System when an Action of
modi�cation is being done; when the Action is �nalized, the Rationale for Modi�cation
is moved to the Inactive System.

7.2.2 Rationale for Removal

A Rationale for Removal provides rationale for the removal of an Artifact and may describe
how the removal should be done; the removal may require changes to other Artifacts, thus,
a Rational for Removal may describe which Artifacts should be modi�ed, what should be
modi�ed, and how.

The description is optional; it may be necessary if the removal requires changes to
related Artifacts. For instance, the removal of a function in an Implementation Artifact
may require removing calls in other Artifacts. Consequently, the Rationale for Removal
has two possible formats: RR = R, or RR = R ∪ (DW ∪ DH), where R, DW , and
DH are sets of Blocks of Information. The set R is the justi�cation for the removal. The
sets DW e DH are the description of the removal, where: DW de�nes which Artifacts
should be modi�ed and what changes should be done, and DH de�nes how these changes
should be done. In the second format, the set DH is optional.

The Rationale for Removal becomes part of the Active System when an Action of
removal is being done; when the Action is �nalized, the Rationale for Removal is moved
to the Inactive System.

7.2.3 Rationale for Decomposition

A Rationale for Decomposition provides rationale for the decomposition of an Artifact
and describes how the decomposition should be made. The description contains which
information should go into each new Artifact. For instance, let α be a Rationale for

77

Decomposition and let β = {i1, . . . , in} be an Artifact to be decomposed; the description
in α could de�ne the creation of two artifacts β1 and β2, where: β1 = {i1, . . . , ip}, p < n,
and β2 = {ip+1, . . . , in}.

The Rationale for Decomposition is de�ned as: RD = R ∪ D, where R and D are sets
of Blocks of Information. The set R is the justi�cation for the decomposition. The set D
de�nes how many Artifacts should be created and which Blocks of Information from the
decomposed Artifact should go to each new Artifact.

The Rationale for Decomposition becomes part of the Active System when an Action of
decomposition is being done; when the Action is �nalized, the Rationale for Decomposition
is moved to the Inactive System.

7.2.4 Rationale for Homologation or Rejection

A Rationale for Homologation or Rejection provides rationale for the Homologation or
Rejection of an Artifact; i.e., an Artifact which went through the Action of Homologation.
The Rationale for Homologation or Rejection explains why an Artifact was homologated,
and added to the Active System, or why an Artifact was rejected, and stayed in the
Inactive System.

The Rationale for Homologation or Rejection is de�ned as: RHR = R, where R is a
set of Blocks of Information. The set R is the justi�cation for the homologation or the
rejection of the Artifact.

The Rationale for Homologation or Rejection never becomes part of the Active Sys-
tem; it is kept in the Inactive System. It can be conferred through its relation to the
homologated, or rejected, Artifact.

7.2.5 Rationale for Creation

A Rationale for Creation is an optional Rationale type which provides rationale for the
creation of an Artifact and may describe the Artifact to be created. This Rationale Type
is created to justify the creation of an Artifact, or to justify the creation of an Artifact and
describe how this new Artifact should be; i.e., detail the content of the desired Artifact.

The description is optional; a Rationale for Creation may provide reasons for the
creation of an Artifact without providing instructions for its creation. Consequently, the
Rationale for Creation has two possible formats: RC = R, or RC = R ∪ D, where R
and D are sets of Blocks of Information. The set R is the justi�cation for creating the
Artifact and the set D is the description of the Artifact to be created.

This Artifact type is optional; it is provided to enable users to justify, or justify and
describe, the creation of Artifacts. It is not used in the processes in Chapter 9.

A Rationale for Creation may also be used to provide justi�cations concerning the
creation of a rei�ed Artifact.

7.2.6 Rationale for Application

A Rationale for Application is an optional Rationale Type which provides rationale for
the application of an Artifact.

78

The Rationale for Application is de�ned as: RAp = R, where R is a set of Blocks of
Information. The set R is the justi�cation for the application.

This Artifact type is optional; it is not used in the processes in Chapter 9.

7.2.7 Rationale for Activation

A Rationale for Activation provides rationale for the activation of an Artifact and may
also describe modi�cations to be done to the Artifact; i.e., the activation of an Artifact
may be contingent on a modi�cation which makes it useful for the Active System.

The description is optional; an Artifact can be activated without being modi�ed.
Consequently, the Rationale for Activation has two possible formats: RAc = R, or RAc =
R ∪ (DW ∪ DH), where R, DW , and DH are sets of Blocks of Information. The set
R is the justi�cation for the activation. The sets DW e DH are the description of the
modi�cation, where: DW de�nes what changes should be done and DH de�nes how the
changes should be done. The set DH is optional.

The Rationale for Activation becomes part of the Active System when an Action of
activation is being done; when the Action is �nalized, the Rationale for Activation is
moved to the Inactive System.

79

Chapter 8

Relations Modeled as Link Types

Link types are one of the main elements of traceability; they model the relations between
artifacts and actors in a project. Each modeled relation has particular semantics concern-
ing the elements it connects, and link types must be described taking into account these
semantics.

Our Reference Model described in Chapter 3 suggests seven basic link types for trace-
ability; these are generic link types having the goal of covering common relations between
elements in a software development project. The link types of the Reference Model are:
Evolution, Constraint, Accountability, Permission, Characterize Action, Action Outcome,
and Composition. Since they are generic link types, most may be broken into more speci�c
link types.

The Accountability link type should be divided into at least six types, one for each
basic action (these are also discussed in the Reference Model); having link types for
each basic action ensures accountability for actors every time an action is performed.
The Evolution link type should be divided into at least two types; one link type to
model propagation and change of information and one link type to model propagation
and rei�cation of information. The Constraint link type should be divided into at least
two types: a link type modeling dependency between artifacts and another link type
modeling con�ict between artifacts. The Permission link type should be divided into at
least six types, one for each basic action; this enables the ability to regulate, and trace,
authorization to perform each basic action. The Characterize link type should be divided
into at least six types, one for each basic action; having link types for each basic action
ensures the possibility to trace rationale for each action performed. The Composition link
type should be divided into at least two types; one link type to model the decomposition
relation and one link type to model the �part of� relation between artifacts.

Each link type is semantically described and formalized to avoid ambiguities and enable
its mapping to real relations.

A total of 59 link types are de�ned, satisfying the roles of each of the seven link types
of the Reference Model; there are 30 distinct relations being represented by these link
types. Table 8.1 shows the complete list of link types organized by its correspondent link
type in the Reference Model.

80

Table 8.1: Link Types of the Reference Model × Metamodel Link types.

Reference Model Metamodel

Evolution Rei�edFrom, Rei�edTo, Modi�edFrom, and Modi�edTo.

Constraint DependsOn, NecessaryFor, DependsOnPartial, NecessaryForPartial, and

Con�ictsWith.

Accountability HomologatedBy, Homologated, RejectedBy, Rejected, CreatedBy, Cre-

ated, Modi�edBy, Modi�ed, AppliedBy, Applied, DecomposedBy, De-

composed, RemovedBy, and Removed.

Permission MayHomologate, MayBeHomologatedBy, MayModify, MayBeModi-

�edBy, MayRemove, MayBeRemovedBy, MayDecompose, MayBeDe-

composedBy, MayApply, MayBeAppliedBy, MayActivate, and MayBe-

ActivatedBy.

Characterize Action De�nesModi�cationOf, Modi�cationDe�nedBy, De�nesDecomposi-

tionOf, DecompositionDe�nedBy, De�nesRemovalOf, RemovalDe-

�nedBy, De�nesActivationOf, ActivationDe�nedBy, De�nesCre-

ationOf, CreationDe�nedBy, SubjectToApplicationOf, AppliesTo, Jus-

ti�esHomologationOf, HomologationJusti�edBy, Justi�esRejectionOf,

RejectionJusti�edBy, Justi�esApplicationOf, and ApplicationJusti-

�edBy.

Action Outcome ApplicationProduced, and ProducedByApplicationOf.

Composition DecomposedFrom, DecomposedTo, PartOf, and ComprisedOf.

This chapter is structured as follows: Section 8.1 discusses two possible ways to model
relations between artifacts, Section 8.2 de�nes each link type of the Metamodel, and
Section 8.3 provides closing remarks on the subject.

8.1 Relations Modeled as One or Two Link Types?

A relation may be interpreted as a single link type or as two link types, one in each
opposite direction; however, a directed edge should be used to represent the relation. For
instance, if a relation of dependency is modeled as an undirected edge, connecting both
artifacts, it is not expressing what depends on what. If a directed edge is used, it is
possible to know which element depends on another and which element is needed to ful�ll
this dependency.

Both representations � single link type and two link type � are equally valid to model
relations between elements and are able to express the same quantity of traceability
information. It may seem that using two link types is a richer way to represent relations
but this is not true. To verify that, it is enough to read a single link type representing a
relation as a sentence; for instance, �artifact α depends on artifact β�. From this sentence
we are able to gather the information that α depends on β, and β is dependent on α; this
is the same information recorded by a model using two link types.

81

On the other hand, (i) it may be counterintuitive to interpret a directed edge in its
opposite direction, and (ii) it may give more �exibility to have two link types modeling a
relation when constructing speci�c representations in a traceability model. To exemplify
the latter, suppose that a traceability model creator wants to discard traceability informa-
tion which connects Active System artifacts to Inactive System artifacts, but only in this
direction; i.e., information going from the Active System to the Inactive System. Having
two link types enables this possibility, since an inactive artifact is able to reference an
active artifact without the opposite being true. Graphically, there is an edge leaving the
Inactive System to the Active system but there is not an edge in the opposite direction.

This Metamodel models relations as two link types, one in each direction.

8.2 Link Types

Descriptions of the proposed link types, ful�lling the basic link types of the Reference
Model, plus necessary de�nitions, are shown in this section. The link types are organized
by link type of the Reference Model; i.e., each subsection is a link type of the Reference
Model and contains the link types of the Metamodel which realize it.

Two starting de�nitions are necessary, given that each relation is modeled by two link
types: opposite link types and opposite links.

De�nition 8.2.1. Two link types are said to be opposite link types if they convey the
same information in opposite directions.

For instance, let A1 and A2 be two artifact types and let L1 be a link type starting
in A1 and having A2 as its destination. Let L1 convey the information that an instance
of A1 may depend on an instance of A2; a link type L2 starting in A2 and having A1 as
its destination conveying the information that an instance of A2 may be necessary for an
instance of A1 is an opposite link type to L1.

De�nition 8.2.2. Two links are said to be opposite links if they are instances of opposite
link types and connect the same pair of artifacts.

For instance, let α and β be two artifacts and let e be a link starting in α and having
β as its destination. Let e conveys the information that α depends on β; a link f starting
in β and having α as its destination conveying the information that β is necessary for α
is an opposite link to e.

The link types of the Metamodel are shown next. De�nitions are provided as needed.

8.2.1 Evolution Link Types

The following link types belong to the Evolution link type of the Reference Model: Rei-
�edFrom, Rei�edTo, Modi�edFrom, and Modi�edTo.

Table 8.2 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

82

Table 8.2: Evolution Link Types.

Link Type Opposite Link Type

Rei�edFrom Rei�edTo

Modi�edFrom Modi�edTo

De�nition 8.2.3. An artifact α was rei�ed from an artifact β if part of, or all of, α was
constructed in a structured way from all of, or part of, β. Implicit information from β

may be made explicit in α. Conversely, β was rei�ed into α.

Rei�edFrom Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a Rei�edFrom link type if it conveys the information that α was rei�ed from
β.

For instance, let α1 and α2 be Requirements Engineering Artifacts and let β be a
Design Artifact. Let all of α1 and part of α2 be used in the construction of β, i.e.,
information written in natural language from α1 and α2 was transformed into information
written in a design representation language in β. Hence, there are two Rei�edFrom links
which start in β and have α1 and α2 as their destination.

Formalization. Given De�nition 8.2.3, let Reif : γ → γ
′
be the function which, given a

set of blocks of information, returns a rei�cation of this set. Let α = {i′1, . . . , i′n}, n ≥ 1,
and β = {i1, . . . , im}, m ≥ 1, be artifacts where α 6= β. Let SSk be a System Space k,
ASk be the Active System of SSk, and ISk be the Inactive System of SSk. If α ∈ ASk,
α ⊆ {i′p, . . . , i′q}, 1 ≤ p ≤ q ≤ n, then ∃β ∈ ASk, β ⊆ {ir, . . . , is}, 1 ≤ r ≤ s ≤ m :
Reif(ir, . . . , is) = (i′p, . . . , i

′
q). If α ∈ ISk, α ⊆ {i′p, . . . , i′q}, 1 ≤ p ≤ q ≤ n, then ∃β ∈ ISk,

β ⊆ {ir, . . . , is}, 1 ≤ r ≤ s ≤ m : Reif(ir, . . . , is) = (i′p, . . . , i
′
q).

Rei�edTo Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a Rei�edTo link type if it conveys the information that α was rei�ed into β.

The link type Rei�edTo is an opposite link type to the Rei�edFrom link type.

Formalization. Let α = {i1, . . . , in}, n ≥ 1, and β = {i′1, . . . , i′m}, m ≥ 1, be artifacts
where α 6= β. Let SSk be a System Space k, ASk be the Active System of SSk, and
ISk be the Inactive System of SSk. If α ∈ ASk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then
∃β ∈ ASk, β ⊆ {i′r, . . . , i′s}, 1 ≤ r ≤ s ≤ m : Reif(ip, . . . , iq) = (i′r, . . . , i

′
s). If α ∈ ISk,

α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then ∃β ∈ ISk, β ⊆ {i′r, . . . , i′s}, 1 ≤ r ≤ s ≤ m :
Reif(ip, . . . , iq) = (i′r, . . . , i

′
s).

De�nition 8.2.4. An artifact α was modi�ed from an artifact β if α was created by
copying β and subsequently modi�cating this copy according to previously de�ned in-
structions; i.e., α is a new, modi�ed, version of the artifact β. Conversely, it is said β was

83

modi�ed into α. The modi�cation of an artifact may change existing information and/or
add new information.

Modi�edFrom Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a Modi�edFrom link type if it conveys the information that α was modi�ed
from β; α is the new version of β.

Formalization. Given De�nition 8.2.4, let Mod: (x, y)→ x
′
be the function which, given

two sets of blocks of information as arguments, returns a modi�cation of the �rst set
according to instructions from the second set. Let α = {i1, . . . , ip} ∪ {i′q, . . . , i′n}, 1 < p <

q ≤ n, and β = {j1, . . . , jm}, m ≥ 1, be artifacts, where α 6= β and {i1, . . . , ip} may be
empty. Let {l1, . . . , lp}, p ≥ 1, be a set of blocks of information describing a modi�cation.
Let SSk be a System Space k. If α ∈ SSk, then ((∃β ∈ SSk : β ⊆ {jr, . . . , js}, 1 ≤ r ≤
s ≤ m) ∧ (∃{l1, . . . , lp} ∈ SSk)) : Mod({jr, . . . , js}, {l1, . . . , lp}) = {i′q, . . . , i′n}.

The set of blocks {i1, . . . , ip} represents unadultered information from β in α; therefore,
if {i1, . . . , ip} = ∅ =⇒ {jr, . . . , js} = {j1, . . . , jm}.

Modi�edTo Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a Modi�edTo link type if it conveys the information that α was modi�ed
into β; α is the previous version of β.

The link type Modi�edTo is an opposite link type to the Modi�edFrom link type.

Formalization. Let α = {i1, . . . , in}, n ≥ 1 and β = {j1, . . . , jp} ∪ {j′q, . . . , j′m}, 1 < p <

q ≤ m be artifacts, where α 6= β and {j1, . . . , jp} may be empty. Let {l1, . . . , lp}, p ≥ 1,
be a set of blocks of information describing a modi�cation. Let SSk be a System Space
k. If α ∈ SSk, α ⊆ {ir, . . . , is}, 1 ≤ r ≤ s ≤ n, then ((∃β ∈ SSk) ∧ (∃{l1, . . . , lp} ∈ SSk))
: Mod({ir, . . . , is}, {l1, . . . , lp}) = {j′q, . . . , j′m}.

These four link types ful�ll the Evolution link type of the Reference Model by con-
veying that information was rei�ed, or modi�ed, and propagated from one artifact to
another.

8.2.2 Constraint Link Types

The following link types belong to the Constraint link type of the Reference Model:
DependsOn, NecessaryFor, DependsOnPartial, NecessaryForPartial, and Con�ictsWith.

Table 8.3 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

84

Table 8.3: Constraint Link Types.

Link Type Opposite Link Type

DependsOn NecessaryFor

DependsOnPartial NecessaryForPartial

Con�ictsWith Con�ictsWith

De�nition 8.2.5. An artifact α is satis�ed by an artifact β if a condition, or a set of
conditions, required by α is ful�lled by β.

DependsOn Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a DependsOn link type if it conveys the information that α is satis�ed by β.

Dependency relations may appear in many ways, such as: an artifact may depend on
characteristics of another artifact to run correctly (existential dependency); the applica-
tion of an artifact may depend on the previous application of other artifacts (depends on
previous actions); among other kinds of dependencies.

Formalization. Given De�nition 8.2.5, let Sat: (x, y) → {True, False} be a predicate,
which given two sets of blocks of information as arguments, returns True if the second
set satis�es the �rst set and returns False otherwise. Let α = {i1, . . . , in}, n ≥ 1, and
β = {j1, . . . , jm}, m ≥ 1, be artifacts where α 6= β. Let SSk be a System Space k. If
α ∈ SSk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then ∃β ∈ SSk, β ⊆ {jr, . . . , js}, 1 ≤ r ≤ s ≤ m

: Sat({ip, . . . , iq}, {jr, . . . , js}) = True.

NecessaryFor Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a NecessaryFor link type if it conveys the information that α satis�es β.

The link type NecessaryFor is an opposite link type to the to the DependsOn link
type.

Formalization. Let α = {i1, . . . , in}, n ≥ 1, and β = {j1, . . . , jm}, m ≥ 1, be artifacts
where α 6= β. Let SSk be a System Space k. If α ∈ SSk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n,
then ∃β ∈ SSk, β ⊆ {jr, . . . , js}, 1 ≤ r ≤ s ≤ m : Sat({jr, . . . , js}, {ip, . . . , iq}) = True.

DependsOnPartial Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a DependsOnPartial link type if it conveys the information that α is satis�ed
by β, but not only by it.

This link type is a variation of the DependsOn link type. Every artifact identi�ed by
DependsOnPartial links is able to, independently, satisfy another artifact. For instance,

85

suppose an artifact α has two DependsOnPartial links having artifacts β1 and β2 as their
destination; the removal of β1 does not cause issues for α, since it is also satis�ed by β2.

A DependsOnPartial link exists if there are at least two artifacts satisfying the same
artifact by using the same information; i.e., the existence of this link type implies that
there is redundant information in the System Space.

Formalization. Let α = {i1, . . . , in}, n ≥ 1, β = {j1, . . . , jm}, m ≥ 1, and γ = {l1, . . . , lw},
w ≥ 1, be artifacts where α 6= β, α 6= γ, and β 6= γ. Let SSk be a System Space k. If α ∈
SSk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then (∃β ∈ SSk, β ⊆ {jr, . . . , js}, 1 ≤ r ≤ s ≤ m)

∧ (∃γ ∈ SSk, γ ⊆ {jr, . . . , js}, 1 ≤ r ≤ s ≤ w) : Sat({ip, . . . , iq}, {jr, . . . , js}) = True.

NecessaryForPartial Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a NecessaryForPartial link type if it conveys the information that α satis�es
β, but α is not the only artifact which satis�es β.

The link type NecessaryForPartial is an opposite link type to the to the DependsOnPartial

link type.

Formalization. Let α = {i1, . . . , in}, n ≥ 1, β = {j1, . . . , jm}, m ≥ 1, and γ = {l1, . . . , lw},
w ≥ 1, be artifacts where α 6= β, α 6= γ, and β 6= γ. Let SSk be a System Space k. If α ∈
SSk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then (∃β ∈ SSk, β ⊆ {jr, . . . , js}, 1 ≤ r ≤ s ≤ m)

∧ (∃γ ∈ SSk, γ ⊆ {ip, . . . , iq}, 1 ≤ r ≤ s ≤ w) : Sat({jr, . . . , js}, {ip, . . . , iq}) = True.

De�nition 8.2.6. Two artifacts are in con�ict with one another if they should not coexist
in the Active System.

Con�ictsWith Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a Con�ictsWith link type if it conveys the information that α is in con�ict
with β.

There are two types of con�icts: contradictory information and redundant information;
not all redundant information should be classi�ed as con�ict. Each type may be speci�ed
in the Blocks of Information, set apart for extra content, in traceability links.

The Con�ictsWith link type is opposite to itself; hence, it does not have a distinct
opposite link type. The Metamodel represents this relation as two Con�ictsWith link
types in opposite directions.

Formalization. Given De�nition 8.2.6, let Cflt: (x, y) → {True, False} be a predicate,
which given two sets of blocks of information as arguments, returns True if they con-
�ict with each other and returns False otherwise. Let α = {i1, . . . , in}, n ≥ 1, and
β = {j1, . . . , jm}, m ≥ 1, be artifacts where α 6= β. Let SSk be a System Space
k, ASk be the Active System of SSk, and ISk be the Inactive System of SSk. If
α ∈ ASk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n, then ∃β ∈ ISk, β ⊆ {jr, . . . , js} :
Cflt({ip, . . . , iq}, {jr, . . . , js}) = True. If α ∈ ISk, α ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n,

86

then ∃β ∈ SSk, β ⊆ {jr, . . . , js} : Cflt({ip, . . . , iq}, {jr, . . . , js}) = True.

These �ve link types ful�ll the two roles of the Constraint link type of the Reference
Model: the dependency constraint and the con�ict constraint.

8.2.2.1 Multiple Dependencies to the Same Artifact

There may be artifacts which depend on multiple distinct information contained in a
single artifact. For instance, an artifact α depends on two sets of distinct information in
an artifact β. This situation may be modeled by: (i) using composition links and multiple
constraint links for each identi�ed part; or (ii) by using the Blocks of Information � set
apart for extra content � in traceability links to identify which sets of information satisfy
the artifact.

8.2.2.2 Transformation Between Non-Partial and Partial Links

DependsOn and NecessaryFor links become their partial versions if redundant � and
necessary for an artifact � information is added to the System Space; conversely, Depends-
OnPartial and NecessaryForPartial link types become their non-partial versions if they are
the only links left indicating a speci�c necessary information in the System Space.

To exemplify, let α, β1 and β2 be artifacts in the Active System. Artifact α depends
on information contained in β1; thus, there is a NecessaryFor/DependsOn pair of links
between α and β1. If β2 is modi�ed to contain the same information contained in β1
which is necessary for α, a DependsOnPartial/NecessaryForPartial pair of links should be
created between α and β2, and the NecessaryFor/DependsOn pair of links between α and
β1 becomes a DependsOnPartial/NecessaryForPartial pair of links.

If β1 is modi�ed to remove the information necessary for α, the DependsOnPartial/Nec-
essaryForPartial pair of links between α and β1 is deleted and the DependsOnPartial/Neces-
saryForPartial pair of links between α and β2 becomes a NecessaryFor/DependsOn pair of
links.

8.2.3 Accountability Link Types

The following link types belong to the Accountability link type of the Reference Model:
CreatedBy, Created, Modi�edBy, Modi�ed, RemovedBy, Removed, AppliedBy, Applied,
DecomposedBy, Decomposed, HomologatedBy, Homologated, RejectedBy, and Rejected.

Table 8.4 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

87

Table 8.4: Accountability Link Types.

Link Type Opposite Link Type

CreatedBy Created

Modi�edBy Modi�ed

RemovedBy Removed

AppliedBy Applied

DecomposedBy Decomposed

HomologatedBy Homologated

RejectedBy Rejected

CreatedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a CreatedBy link type if it conveys the information that β
was created by a.

Formalization. Let β = {i1, . . . , in}, n ≥ 1, be an artifact and let a be an actor. Let TSk =
(ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If β ∈ SSk, β ⊆ {ip, . . . , iq},
1 ≤ p ≤ q ≤ n, then ∃a ∈ ACk : {ip, . . . , iq} was created by a.

Created Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is a Created link type if it conveys the information that a
created β.

The link type Created is an opposite link type to the CreatedBy link type.

Formalization. Let a be an actor and β = {i1, . . . , in}, n ≥ 1, be an artifact. Let
TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If a ∈ ACk, then
∃β ∈ SSk, β ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n : a created {ip, . . . , iq}.

Modi�edBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a Modi�edBy link type if it conveys the information that β
was modi�ed by a.

Formalization. Let β = {i1, . . . , ip} ∪ {i′q, . . . , i′n}, 1 < p < q ≤ n, be an artifact,
{i1, . . . , ip} may be empty, and let a be an actor. Let TSk = (ACk, SSk, RSk, PSk,

IELk) be a Traceability Space k. If β ∈ SSk, {i′q, . . . , i′n} ⊆ {ir, . . . , is}, q ≤ r ≤ s ≤ n,

88

then ∃a ∈ ACk : {ir . . . , is} was modi�ed by a.

Modi�ed Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is a Modi�ed link type if it conveys the information that a
modi�ed β.

The link type Modi�ed is an opposite link type to the Modi�edBy link type.

Formalization. Let a be an actor and let β = {i1, . . . , ip} ∪ {i′q, . . . , i′n}, 1 < p < q ≤ n,
be an artifact, and {i1, . . . , ip} may be empty. Let TSk = (ACk, SSk, RSk, PSk, IELk)

be a Traceability Space k. If a ∈ ACk, then ∃β ∈ SSk, {i′q, . . . , i′n} ⊆ {ir, . . . , is},
q ≤ r ≤ s ≤ n : a modi�ed {ir . . . , is}.

RemovedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a RemovedBy link type if it conveys the information that β
was removed by a.

Formalization. Let β = {i1, . . . , in}, n ≥ 1, be an artifact, {jq, . . . , jn} be the set of
information concerning β on other artifacts1, and let a be an actor. Let TSk = (ACk,

SSk, RSk, PSk, IELk) be a Traceability Space k. If β ∈ SSk and {jq, . . . , jn} ∈ SSk,
{i1, . . . , in} ∪ {jq, . . . , jn} ⊆ {l1, . . . , lp}, p ≥ 1, then ∃a ∈ ACk : {l1, . . . , lp} was removed
by a.

Removed Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a Removed link type if it conveys the information that a
removed β.

The link type Removed is an opposite link type to the RemovedBy link type.

Formalization. Let a be an actor and let β = {i1, . . . , in}, n ≥ 1, be an artifact,
{jq, . . . , jn} be the set of information concerning β on other artifacts. Let TSk = (ACk,

SSk, RSk, PSk, IELk) be a Traceability Space k. If a ∈ ACk, then ∃β ∈ SSk and
∃{jq, . . . , jn} ∈ SSk, {i1, . . . , in}∪{jq, . . . , jn} ⊆ {l1, . . . , lp}, p ≥ 1: a removed {l1, . . . , lp}.

AppliedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is an AppliedBy link type if it conveys the information that β
was applied by a.

1For instance, a call to a function from β.

89

Formalization. Let β = {i1, . . . , in}, n ≥ 1, be an artifact and let a be an actor. Let TSk =
(ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If β ∈ SSk, β ⊆ {ip, . . . , iq},
1 ≤ p ≤ q ≤ n, then ∃a ∈ ACk : {ip, . . . , iq} was applied by a.

Applied Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is an Applied link type if it conveys the information that a
applied β.

The link type Applied is an opposite link type to the AppliedBy link type.

Formalization. Let a be an actor and β = {i1, . . . , in}, n ≥ 1, be an artifact. Let
TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If a ∈ ACk, then
∃β ∈ SSk, β ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ n : a applied {ip, . . . , iq}.

DecomposedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a DecomposedBy link type if it conveys the information that
β was decomposed by a.

Formalization. Let β be an artifact decomposed to the set of artifacts β1, . . . , βn. Let
β1 ∪ . . . ∪ βn = {i′1, . . . , i′m}, m ≥ 1. Let a be an actor and let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If {i′1, . . . , i′m} ∈ SSk, {i′1, . . . , i′m} ⊆ {ip, . . . , iq},
1 ≤ p ≤ q ≤ m, then ∃a ∈ ACk : {ip, . . . , iq} was created by a.2

Decomposed Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a Decomposed link type if it conveys the information that a
decomposed β.

The link type Decomposed is an opposite link type to the DecomposedBy link type.

Formalization. Let a be an actor and let β be an artifact decomposed to the set of
artifacts β1, . . . , βn. Let β1 ∪ . . . ∪ βn = {i′1, . . . , i′m}, m ≥ 1, and let TSk = (ACk, SSk,

RSk, PSk, IELk) be a Traceability Space k. If a ∈ ACk, then ∃{i′1, . . . , i′m} ∈ SSk,
{i′1, . . . , i′m} ⊆ {ip, . . . , iq}, 1 ≤ p ≤ q ≤ m : a created {ip, . . . , iq}.

2There is no new relevant information added during a decomposition; however, it may be necessary to
add structural data to create the new artifacts. For instance, suppose a requirement is broken into three
di�erent requirements; each one needs a new header. Thus, an actor which decomposes an artifact has
to create new artifacts by using existing information and by adding and removing structural data.

90

HomologatedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a
as its destination. The link e is a HomologatedBy link type if it conveys the information
that β was homologated by a.

Formalization. Let β be an artifact and let a be an actor. Let A be a group of actors
where a ∈ A. Let TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If
β ∈ SSk, then ∃A ∈ ACk : β was homologated by A.

Homologated Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a Homologated link type if it conveys the information that
a homologated β.

The link type Homologated is an opposite link type to the HomologatedBy link type.

Formalization. Let a be an actor and β be an artifact. Let A be a group of actors where
a ∈ A. Let TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If A ∈ ACk,
then ∃β ∈ SSk : A homologated β.

RejectedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a RejectedBy link type if it conveys the information that β
was rejected by a.

Formalization. Let β be an artifact and let a be an actor. Let A be a group of actors
where a ∈ A. Let TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If
β ∈ SSk, then ∃A ∈ ACk : β was rejected by A.

Rejected Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is a Rejected link type if it conveys the information that a
rejected β.

The link type Rejected is an opposite link type to the RejectedBy link type.

Formalization. Let a be an actor and β be an artifact. Let A be a group of actors where
a ∈ A. Let TSk = (ACk, SSk, RSk, PSk, IELk) be a Traceability Space k. If A ∈ ACk,
then ∃β ∈ SSk : A rejected β.

These fourteen link types ful�ll the Accountability link type of the Reference Model
by enabling the atribution of authorship to the basic actions of creation, modi�cation,
removal, application, decomposition, and homologation. The accountability for the action
of homologation was divided into two pairs of opposite link types: HomologatedBy and

91

Homologated, and RejectedBy and Rejected; this enables the identi�cation of the result
of the action by link type.

8.2.4 Permission Link Types

The following link types belong to the Permission link type of the Reference Model:
MayModify, MayBeModi�edBy, MayRemove, MayBeRemovedBy, MayApply, MayBeAp-
pliedBy, MayDecompose, MayBeDecomposedBy, MayHomologate, MayBeHomologatedBy,
MayActivate, and MayBeActivatedBy.

Table 8.5 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

Table 8.5: Permission Link Types.

Link Type Opposite Link Type

MayModify MayBeModi�edBy

MayRemove MayBeRemovedBy

MayApply MayBeAppliedBy

MayDecompose MayBeDecomposedBy

MayHomologate MayBeHomologatedBy

MayActivate MayBeActivatedBy

MayModify Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a MayModify link type if it conveys the information that a
is allowed to modify β.

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to modify β.

MayBeModi�edBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a MayBeModi�edBy link type if it conveys the information
that β may be modi�ed by a.

The link type MayBeModi�edBy is an opposite link type to the MayModify link type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri

92

allows a to modify β.

MayRemove Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a MayRemove link type if it conveys the information that a
is allowed to remove β.

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to remove β.

MayBeRemovedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a MayBeRemovedBy link type if it conveys the information
that β may be removed by a.

The link type MayBeRemovedBy is an opposite link type to the MayRemove link type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri
allows a to remove β.

MayApply Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a MayApply link type if it conveys the information that a is
allowed to apply β.

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to apply β.

MayBeAppliedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a MayBeAppliedBy link type if it conveys the information
that β may be applied by a.

The link type MayBeAppliedBy is an opposite link type to the MayApply link type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri
allows a to apply β.

93

MayDecompose Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is a MayDecompose link type if it conveys the information
that a is allowed to decompose β.

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to decompose β.

MayBeDecomposedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as its
destination. The link e is a MayBeDecomposedBy link type if it conveys the information
that β may be decomposed by a.

The link type MayBeDecomposedBy is an opposite link type to the MayDecompose
link type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri
allows a to decompose β.

MayHomologate Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β
as its destination. The link e is a MayHomologate link type if it conveys the information
that a is allowed to homologate β.3

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to participate in the process of homologation of β.

MayBeHomologatedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as its
destination. The link e is a MayBeHomologatedBy link type if it conveys the information
that β may be homologated by a.

The link type MayBeHomologatedBy is an opposite link type to the MayHomologate
link type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri
allows a to participate in the process of homologation of β.

3�To homologate β� is used in the sense of participating in the homologation process of β, instead of
automatically adding β to the Active System.

94

MayActivate Link Type

Let a be an actor and let β be an artifact. Let e be a link starting in a and having β as
its destination. The link e is a MayActivate link type if it conveys the information that a
is allowed to activate β.4

Formalization. Let a be an actor and let β be an artifact. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If a ∈ ACk, then (∃β ∈ SSk) ∧ (∃ri ∈ RSk) : ri
allows a to participate in the process of activation of β.

MayBeActivatedBy Link Type

Let β be an artifact and let a be an actor. Let e be a link starting in β and having a as
its destination. The link e is a MayBeActivatedBy link type if it conveys the information
that β may be activated by a.

The link type MayBeActivatedBy is an opposite link type to the MayActivate link
type.

Formalization. Let β be an artifact and let a be an actor. Let TSk = (ACk, SSk, RSk,

PSk, IELk) be a Traceability Space k. If β ∈ SSk, then (∃a ∈ ACk) ∧ (∃ri ∈ RSk) : ri
allows a to participate in the process of activation of β.

Permission links connecting actors in the Actors Space to artifacts in the System Space
are generated by the application of rules from the Rules Space. For instance, aMayModify

link connecting an actor a to an artifact β of type A1 may have been generated by the
application of a rule de�ning that a may modify artifacts of type A1; links may be also
generated manually. There are rules in the Rules Space which do not generate permission
links connecting actors to artifacts; for instance, there may be a rule de�ning that an actor
a may create artifacts of type A1 but it does not generate a corresponding permission link.

These twelve link types ful�ll the Permission link type of the Reference Model by con-
veying information on authorization to perform the basic actions of creation, modi�cation,
removal, application, decomposition, and homologation, plus the activation action. The
activation action is the addition of inactive artifacts which were previously removed or
rejected during homologation, to the Active System (see Chapter 9 for more details).

8.2.5 Characterize Action Link Types

The following link types belong to the Characterize Action link type of the Reference
Model: De�nesModi�cationOf, Modi�cationDe�nedBy, De�nesDecompositionOf, Decom-
positionDe�nedBy, De�nesRemovalOf, RemovalDe�nedBy, De�nesActivationOf, Activa-
tionDe�nedBy, De�nesCreationOf, CreationDe�nedBy, SubjectToApplicationOf, AppliesTo,
Justi�esHomologationOf, HomologationJusti�edBy, Justi�esRejectionOf, RejectionJusti-
�edBy, Justi�esApplicationOf, and ApplicationJusti�edBy.

4�To activate β� is used in the sense of participating in the activation process of β.

95

Table 8.6 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

Table 8.6: Characterize Action Link Types.

Link Type Opposite Link Type

De�nesModi�cationOf Modi�cationDe�nedBy

De�nesDecompositionOf DecompositionDe�nedBy

De�nesRemovalOf RemovalDe�nedBy

De�nesActivationOf ActivationDe�nedBy

De�nesCreationOf CreationDe�nedBy

SubjectToApplicationOf AppliesTo

Justi�esHomologationOf HomologationJusti�edBy

Justi�esRejectionOf RejectionJusti�edBy

Justi�esApplicationOf ApplicationJusti�edBy

Each pair of opposite Characterize Action link types may convey three types of infor-
mation concerning an action: justi�cation and description, solely justi�cation, or solely
description. These link types may convey up to two types of information, given the con-
tent of the related Rationale Artifact. Table 8.7 shows the link types organized by the
type of information they convey. The �rst column shows the information conveyed; the
second column shows the link types.

Table 8.7: Characterize Action Link Types by Information Conveyed.

Information Conveyed Link Types

Justi�cation and Description De�nesModi�cationOf, Modi�cationDe�nedBy, De-
�nesDecompositionOf, DecompositionDe�nedBy

Justi�cation, or Justi�cation
and Description

De�nesRemovalOf, RemovalDe�nedBy, De�nesActi-
vationOf, ActivationDe�nedBy, De�nesCreationOf,
CreationDe�nedBy

Description SubjectToApplicationOf, AppliesTo

Justi�cation Justi�esHomologationOf, HomologationJusti�edBy,
Justi�esRejectionOf, RejectionJusti�edBy, Justi-
�esApplicationOf, ApplicationJusti�edBy

96

De�nesModi�cationOf Link Type

Let α and β be artifacts where α is a Rationale for Modi�cation; let e be a link starting
in α and having β as its destination. The link e is a De�nesModi�cationOf link type
if it conveys the information that β is the target of α, and α justi�es and describes a
modi�cation of β.

Formalization. Let Jmod: (x, y)→ {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set justi�es the modi�cation
of the second set and returns False otherwise. Let Dmod: (x, y) → {True, False} be
a predicate, which given two sets of blocks of information as arguments, returns True
if the �rst set describes the modi�cation of the second set and returns False otherwise.
Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let SSk be
a System Space k. If α ∈ SSk, then ∃β ∈ SSk : ((Jmod({i1, . . . , ip},β) = True) ∧
(Dmod({iq, . . . , in},β) = True)).

Modi�cationDe�nedBy Link Type

Let α and β be artifacts where α is a Rationale for Modi�cation; let e be a link starting
in β and having α as its destination. The link e is a Modi�cationDe�nedBy link type
if it conveys the information that α targets β, and β has its modi�cation justi�ed and
described by α.

The link type Modi�cationDe�nedBy is an opposite link type to the De�nesModi�ca-
tionOf link type.

Formalization. Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let
SSk be a System Space k. If β ∈ SSk, then ∃α ∈ SSk : ((Jmod({i1, . . . , ip},β) = True) ∧
(Dmod({iq, . . . , in},β) = True)).

De�nesDecompositionOf Link Type

Let α and β be artifacts where α is a Rationale for Decomposition; let e be a link starting
in α and having β as its destination. The link e is a De�nesDecompositionOf link type
if it conveys the information that β is the target of α, and α justi�es and describes a
decomposition of β.

Formalization. Let Jdec: (x, y) → {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set justi�es the decomposition
of the second set and returns False otherwise. Let Ddec: (x, y) → {True, False} be a
predicate, which given two sets of blocks of information as arguments, returns True if the
�rst set describes the decomposition of the second set and returns False otherwise. Let
α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let SSk be a System
Space k. If α ∈ SSk, then ∃β ∈ SSk : ((Jdec({i1, . . . , ip},β) = True) ∧ (Ddec({iq, . . . , in},β)
= True)).

97

DecompositionDe�nedBy Link Type

Let α and β be artifacts where α is a Rationale for Decomposition; let e be a link starting
in β and having α as its destination. The link e is a DecompositionDe�nedBy link type
if it conveys the information that α targets β, and β has its decomposition justi�ed and
described by α.

The link type DecompositionDe�nedBy is an opposite link type to the De�nesDecom-
positionOf link type.

Formalization. Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let
SSk be a System Space k. If β ∈ SSk, then ∃α ∈ SSk : ((Jdec({i1, . . . , ip},β) = True) ∧
(Ddec({iq, . . . , in},β) = True)).

The link types De�nesRemovalOf and RemovalDe�nedBy are di�erent to the above
link types since they have two possible roles: they may only justify, or justify and describe,
an action.

De�nesRemovalOf Link Type

Let α and β be artifacts where α is a Rationale for Removal; let e be a link starting in α
and having β as its destination. The link e is a De�nesRemovalOf link type if it conveys
the that β is the target of α, and α justi�es, or justi�es and describes, a removal of β.

Formalization. Let Jrem: (x, y) → {True, False} be a predicate, which given two sets
of blocks of information as arguments, returns True if the �rst set justi�es the removal
of the second set and returns False otherwise. Let Drem: (x, y) → {True, False} be a
predicate, which given two sets of blocks of information as arguments, returns True if
the �rst set describes the removal of the second set and returns False otherwise. Let
α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let SSk be a System
Space k. If α ∈ SSk, then ∃β ∈ SSk : ((Jrem({i1, . . . , ip},β) = True) ∧ ({iq, . . . , in} = ∅))
∨ ((Jrem({i1, . . . , ip},β) = True) ∧ (Drem({iq, . . . , in},β) = True)).

RemovalDe�nedBy Link Type

Let α and β be artifacts where α is a Rationale for Removal; let e be a link starting
in β and having α as its destination. The link e is a RemovalDe�nedBy link type if it
conveys the information that α targets β, and β has its removal justi�ed, or justi�ed and
described, by α.

The link type RemovalDe�nedBy is an opposite link type to the De�nesRemovalOf
link type.

Formalization. Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let
SSk be a System Space k. If β ∈ SSk, then ∃α ∈ SSk : ((Jrem({i1, . . . , ip},β) = True) ∧
({iq, . . . , in} = ∅)) ∨ ((Jrem({i1, . . . , ip},β) = True) ∧ (Drem({iq, . . . , in},β) = True)).

98

De�nesActivationOf Link Type

Let α and β be artifacts where α is a Rationale for Activation; let e be a link starting in α
and having β as its destination. The link e is a De�nesActivationOf link type if it conveys
the information that β is the target of α, and α justi�es, or justi�es and describes, the
activation of β.

Formalization. Let Jact: (x, y) → {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set justi�es the activation
of the second set and returns False otherwise. Let Dact: (x, y) → {True, False} be a
predicate, which given two sets of blocks of information as arguments, returns True if
the �rst set describes the activation of the second set and returns False otherwise. Let
α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let SSk be a System
Space k. If α ∈ SSk, then ∃β ∈ SSk : ((Jact({i1, . . . , ip},β) = True) ∧ ({iq, . . . , in} = ∅))
∨ ((Jact({i1, . . . , ip},β) = True) ∧ (Dact({iq, . . . , in},β) = True)).

ActivationDe�nedBy Link Type

Let α and β be artifacts where α is a Rationale for Activation; let e be a link starting in
β and having α as its destination. The link e is an ActivationDe�nedBy link type if it
conveys the information that α targets β, and β has its activation justi�ed, or justi�ed
and described, by α.

The link type ActivationDe�nedBy is an opposite link type to the De�nesActivationOf
link type.

Formalization. Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let
SSk be a System Space k. If β ∈ SSk, then ∃α ∈ SSk : ((Jact({i1, . . . , ip},β) = True) ∧
({iq, . . . , in} = ∅)) ∨ ((Jact({i1, . . . , ip},β) = True) ∧ (Dact({iq, . . . , in},β) = True)).

De�nesCreationOf Link Type

Let α and β be artifacts where α is a Rationale for Creation; let e be a link starting in α
and having β as its destination. The link e is a De�nesCreationOf link type if it conveys
the that β is the target of α, and α justi�es, or justi�es and describes, the creation of β.

Formalization. Let Jcre: (x, y) → {True, False} be a predicate, which given two sets
of blocks of information as arguments, returns True if the �rst set justi�es the creation
of the second set and returns False otherwise. Let Dcre: (x, y) → {True, False} be a
predicate, which given two sets of blocks of information as arguments, returns True if
the �rst set describes the creation of the second set and returns False otherwise. Let
α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let SSk be a System
Space k. If α ∈ SSk, then ∃β ∈ SSk : ((Jcre({i1, . . . , ip},β) = True) ∧ ({iq, . . . , in} = ∅))
∨ ((Jcre({i1, . . . , ip},β) = True) ∧ (Dcre({iq, . . . , in},β) = True)).

99

CreationDe�nedBy Link Type

Let α and β be artifacts where α is a Rationale for Creation; let e be a link starting
in β and having α as its destination. The link e is a CreationDe�nedBy link type if it
conveys the information that α targets β, and β has its creation justi�ed, or justi�ed and
described, by α.

The link type CreationDe�nedBy is an opposite link type to the De�nesCreationOf
link type.

Formalization. Let α = {i1, . . . , ip} ∪ {iq, . . . , in}, 1 ≤ p ≤ q ≤ n, and β be artifacts. Let
SSk be a System Space k. If β ∈ SSk, then ∃α ∈ SSk : ((Jcre({i1, . . . , ip},β) = True) ∧
({iq, . . . , in} = ∅)) ∨ ((Jcre({i1, . . . , ip},β) = True) ∧ (Dcre({iq, . . . , in},β) = True)).

The link types De�nesCreationOf and CreationDe�nedBy are optional5, not being
considered by the processes in Chapter 9; these are provided to enable users to justify,
or justify and describe, the creation of artifacts. For instance, an user who creates an
artifact may choose to create a Rationale for Creation explaining why it is needed; or, the
user may create the Rationale for Creation justifying and describing the artifact. In this
case, if the Rationale for Creation is homologated, the artifact will be created given the
instructions in the Rationale for Creation. In both cases, the artifact will be connected
to the Rationale by De�nesCreationOf and CreationDe�nedBy link types.

The link types AppliesTo and SubjectToApplicationOf are di�erent to the above link
types since they only describe an action; they do not connect an artifact to a Rationale,
but two non-rationale artifacts, one which should be applied onto another.

AppliesTo Link Type

Let α and β be artifacts. Let e be a link starting in α and having β as its destination.
The link e is an AppliesTo link type if it conveys the information that α describes the
application of α on β.

For instance, a test case describes how it should be applied to a piece of code.

Formalization. Let Dapl: (x, y)→ {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set describes its application
on the second set and returns False otherwise. Let α and β be artifacts. Let SSk be a
System Space k. If α ∈ SSk, then ∃β ∈ SSk : Dapl(α,β) = True.

SubjectToApplicationOf Link Type

Let α and β be artifacts. Let e be a link starting in α and having β as its destination.
The link e is an SubjectToApplicationOf link type if it conveys the information that α is
subjected to the application of β, which describes its own application.

5Every link type is optional, given that an user may choose to customize the Metamodel as desired;
however, these link types are provided as useful options.

100

The link type SubjectToApplicationOf is an opposite link type to the AppliesTo link
type.

Formalization. Let α and β be artifacts. Let SSk be a System Space k. If β ∈ SSk, then
∃α ∈ SSk : Dapl(α,β) = True.

The link types Justi�esHomologationOf and Justi�esHomologationOf are di�erent to
the above link types since they only justify an action.

Justi�esHomologationOf Link Type

Let α and β be artifacts where α is a Rationale for Homologation or Rejection; let e be a
link starting in α and having β as its destination. The link e is a Justi�esHomologationOf
link type if it conveys the information that β is the target of α, and α justi�es the
homologation of β.

Formalization. Let Jhom: (x, y)→ {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set justi�es the homologation
of the second set and returns False otherwise. Let α and β be artifacts. Let SSk be a
System Space k. If α ∈ SSk, then ∃β ∈ SSk : Jhom:(α,β) = True.

HomologationJusti�edBy Link Type

Let α and β be artifacts where α is a Rationale for Homologation or Rejection; let e be a
link starting in β and having α as its destination. The link e is a HomologationJusti�edBy
link type if it conveys the information that α targets β, and β has its homologation justi�ed
by α.

The link type HomologationJusti�edBy is an opposite link type to the Justi�esHomolo-
gationOf link type.

Formalization. Let α and β be artifacts. Let SSk be a System Space k. If β ∈ SSk, then
∃α ∈ SSk : Jhom:(α,β) = True.

Justi�esRejectionOf Link Type

Let α and β be artifacts where α is a Rationale for Homologation or Rejection; let e be a
link starting in α and having β as its destination. The link e is a Justi�esRejectionOf link
type if it conveys the information that β is the target of α, and α justi�es the rejection
of β.

Formalization. Let Jrej: (x, y) → {True, False} be a predicate, which given two sets
of blocks of information as arguments, returns True if the �rst set justi�es the rejection
of the second set and returns False otherwise. Let α and β be artifacts. Let SSk be a
System Space k. If α ∈ SSk, then ∃β ∈ SSk : Jrej:(α,β) = True.

101

RejectionJusti�edBy Link Type

Let α and β be artifacts where α is a Rationale for Homologation or Rejection; let e be
a link starting in β and having α as its destination. The link e is a RejectionJusti�edBy

link type if it conveys the information that α targets β, and β has its rejection justi�ed
by α.

The link type RejectionJusti�edBy is an opposite link type to the Justi�esRejectionOf
link type.

Formalization. Let α and β be artifacts. Let SSk be a System Space k. If β ∈ SSk, then
∃α ∈ SSk : Jrej:(α,β) = True.

Justi�esApplicationOf Link Type

Let α and β be artifacts where α is a Rationale for Application; let e be a link starting
in α and having β as its destination. The link e is a Justi�esApplicationOf link type if it
conveys the information that β is the target of α, and α justi�es the application of β.

Formalization. Let Japl: (x, y) → {True, False} be a predicate, which given two sets of
blocks of information as arguments, returns True if the �rst set justi�es the application
of the second set and returns False otherwise. Let α and β be artifacts. Let SSk be a
System Space k. If α ∈ SSk, then ∃β ∈ SSk : Japl:(α,β) = True.

ApplicationJusti�edBy Link Type

Let α and β be artifacts where α is a Rationale for Application; let e be a link starting
in β and having α as its destination. The link e is an ApplicationJusti�edBy link type if
it conveys the information that α targets β, and β has its application justi�ed by α.

The link type ApplicationJusti�edBy is an opposite link type to the Justi�esApplica-
tionOf link type.

Formalization. Let α and β be artifacts. Let SSk be a System Space k. If β ∈ SSk, then
∃α ∈ SSk : Japl:(α,β) = True.

The link types Justi�esApplicationOf and ApplicationJusti�edBy are optional; these
are provided so that every basic action has a corresponding Rationale artifact. These link
types may be utilized if an user needs to justify the application of artifacts.

These eighteen link types (including four optional link types) ful�ll the Characterize
Action link type of the Reference Model by conveying the rationale and/or description
for the basic actions of creation, modi�cation, removal, application, decomposition, and
homologation, plus the activation action.

8.2.6 Action Outcome Link Types

The following link types belong to the Action Outcome link type of the Reference Model:
ApplicationProduced, and ProducedByApplicationOf.

102

Table 8.8 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

Table 8.8: Action Outcome Link Types.

Link Type Opposite Link Type

ApplicationProduced ProducedByApplicationOf

ApplicationProduced Link Type

Let α and β be artifacts. Let e be a link starting in α and having β as its destination.
The link e is an ApplicationProduced link type if it conveys the information that the
application of α on another artifact resulted in the creation of β.

Formalization. Let Apply: (x, y) → z be the function which, given two artifacts, applies
the �rst artifact on the second artifact and returns a resulting artifact. Let α, β, and γ
be artifacts. Let SSk be a System Space k. If ((α ∈ SSk) ∧ (β ∈ SSk)), then ∃γ ∈ SSk :
Apply(α, β) = γ.

ProducedByApplicationOf Link Type

Let α and β be artifacts. Let e be a link starting in β and having α as its destination.
The link e is an ProducedByApplicationOf link type if it conveys the information that β
was created as the result of the application of α on another artifact.

The link type ProducedByApplicationOf is an opposite link type to the Application-
Produced link type.

Formalization. Let α, β, and γ be artifacts. Let SSk be a System Space k. If γ ∈ SSk,
then (∃α ∈ SSk) ∧ (∃β ∈ SSk) : Apply(α, β) = γ.

These two link types ful�ll the Action Outcome link type of the Reference Model by
conveying the outcome of the action of application; it is not as common to have outcome
artifacts created as the result of the remaining basic actions. If it is necessary to model
the creation of outcome artifacts given other actions, new link types may be created
accordingly; for instance, if an user needs to have an artifact created as the outcome of
an activation action, a pair of opposite link types should be created to connect the action
starter, or the action target, to an outcome artifact.

8.2.7 Composition Link Types

The following link types belong to the Composition link type of the Reference Model:
DecomposedFrom, DecomposedTo, PartOf, and ComprisedOf.

Table 8.9 matches each link type to its opposite link type; the column assignment is
not relevant, i.e., both link types are opposite to each other.

103

Table 8.9: Composition Link Types.

Link Type Opposite Link Type

DecomposedFrom DecomposedTo

PartOf ComprisedOf

DecomposedFrom Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its
destination. The link e is a DecomposedFrom link type if it conveys the information that
α was decomposed from β. i.e., the artifact β was decomposed to two or more artifacts,
and α is one of these artifacts.

Formalization. Let Dec: (γ, {l1, . . . , lp}) → {γ1, . . . , γn} be the function which, given
two sets of blocks of information, returns a decomposition of the �rst set, according
to instructions from the second set. Let α and β be artifacts, where |β| > |α|. Let
{l1, . . . , lp}, p ≥ 1, be a set of blocks of information describing a decomposition. Let
Dec(β, {l1, . . . , lp}) = {β1, . . . , βn}. Let SSk be a System Space k. If α ∈ SSk, then
(∃β ∈ SSk) ∧ (∃{l1, . . . , lp} ∈ SSk) : ∃i, βi = α.

DecomposedTo Link Type

Let α and β be two artifacts and let e be a link starting in β and having α as its
destination. The link e is a DecomposedTo link type if it conveys the information that β
was decomposed to α.

The link type DecomposedTo is an opposite link type to the DecomposedFrom link
type.

Formalization. Let β and α be artifacts, where |β| > |α|. Let {l1, . . . , lp}, p ≥ 1, be a set of
blocks of information describing a decomposition. Let Dec(β, {l1, . . . , lp}) = {β1, . . . , βn}.
Let SSk be a System Space k. If β ∈ SSk, then (∃α ∈ SSk) ∧ (∃{l1, . . . , lp} ∈ SSk) : ∃i,
βi = α.

De�nition 8.2.7. Let α be an artifact where α = {α1, α2, . . . , αn}, n ≥ 1; each αi,
1 ≤ i ≤ n, is part of α; conversely, the artifact α is comprised of αi.

PartOf Link Type

Let α and β be two artifacts and let e be a link starting in α and having β as its destination.
The link e is a PartOf link type if it conveys the information that α is part of β.

Formalization. Let α = {i1, . . . , in}, n ≥ 1, and β be artifacts. Let SSk be a System
Space k. If α ∈ SSk, then ∃β ∈ SSk : ∀j, ij ∈ β.

104

ComprisedOf Link Type

Let α and β be two artifacts and let e be a link starting in β and having α as its destination.
The link e is a ComprisedOf link type if it conveys the information that β is comprised
of α.

The link type ComprisedOf is an opposite link type to the PartOf link type.

Formalization. Let β and α = {i1, . . . , in}, n ≥ 1, be artifacts. Let SSk be a System
Space k. If β ∈ SSk, then ∃α ∈ SSk : ∀j, ij ∈ β.

PartOf and ComprisedOf link types are useful to increase the level of detail of traceabil-
ity relations. For instance, given two C++ classes having a dependency relation between
themselves, these relations enable the identi�cation of the speci�c method which ful�lls
the dependency.

These link types are also useful when having complex artifacts which, for some reason,
may not be broken into smaller artifacts. For instance, suppose an artifact α is a set of
test cases. One of these test cases is applied to a code fragment, resulting in the creation
of a test log connecting to α. If α is classi�ed into parts by using the PartOf link type
and the ComprisedOf link type, it is possible to identify which speci�c test case resulted
in the test log.

These four link types ful�ll the Composition link type of the Reference Model by
conveying the information that an artifact was decomposed to two or more artifacts, or
that an artifact is part of another artifact.

8.3 Closing Remarks

The proposed link types ful�ll the roles of the seven link types of the Reference Model.
These are comprehensive, speci�c, and provide artifact coverage in the context of common
development projects.

Some link types may be changed to become more speci�c, if necessary. For instance,
each link type of the Characterize Action which is able to convey justi�cation or justi�ca-
tion and description may be split into two link types: a link type conveying justi�cation,
and a link type conveying justi�cation and description. This change may result in changes
to the related artifact types; i.e., splitting the corresponding artifact types. It is possible
to keep the artifact types unchanged; thus, their speci�ty will not match the link type
speci�ty.

Certain Constraint link types may also be split into more speci�c link types. There are
several types of dependency relations which may be modeled by traceability link types;
for instance, existential dependencies, dependencies on previous actions, etc.

There are also speci�c contexts which may demand additional link types; e.g., a safety-
focused development project. However, this Metamodel is intended for general use, and we
consider the proposed link types to be useful for common and domain-speci�c development
projects alike.

105

Chapter 9

Processes for Traceability

The purpose of a traceability process is to maintain traceability consistency and system
consistency. It achieves this purpose by prescribing a sequence of steps to be taken in
di�erent situations. These steps may be composed of: generation, reallocation, or deletion
of traceability links; creation, modi�cation, decomposition, homologation, application,
activation, or removal of artifacts; and de�ning the characteristics of sets of actors needed
to perform certain actions.

Furthermore, processes are essential for assessing the impact of actions performed
in the System Space; the evaluation of actions before their implementation enables the
possibility of choosing to avoid an action, or to replace it by a less impactful choice; e.g.,
the modi�cation of an artifact may result in the generation of con�icts which will be more
costly to solve than, for example, creating a new artifact which achieves the desired goal
without the generation of the same issues. This is possible since the processes describe the
necessary steps given each particular issue which may arise given an action, enabling the
user to make an informed decision before implementing it. Also, processes o�er general
guidelines to be followed, being highly adaptable to particular cases.

We have created 7 processes satisfying the basic processes required by the Reference
Model plus a non-basic process; these are: the Homologation Process, the Modi�cation
Process, the Decomposition Process, the Creation Process, the Removal Process, the
Application Process, and the Activation Process. These cover all actions contemplated
by the Metamodel; the action of rei�cation is addressed by the Creation Process. Each
process is de�ned in two ways: as an algorithm written in pseudocode similar to C, and as
a detailed textual description; the algorithm provides the instructions to be followed, and
the textual description provides the instructions to be followed plus related commentary.

Each process combines an action and the steps necessary to ensure consistency given
this action; for instance, the Modi�cation Process is composed of the action of modi�ca-
tion and the necessary steps to avoid inconsistencies after the modi�cation is performed.
Every process uses the Homologation Process to approve artifacts; therefore traceability
and system consistency may be ensured completely, or partially, by this process. To ex-
emplify: the Removal Process performs only the action of removal, leaving the consistency
management to the Homologation Process; on the other hand, the Decomposition Pro-
cess uses the Homologation Process but also provides instructions to ensure traceability
consistency given the new artifacts created during the process.

106

The homologation of modi�cations and removals may cause signi�cant issues in the
project; to manage these issues, a process to be used of together with the Homologation
Process is provided. This process enables assessing the impact of homologating modi�-
cations and removals by identifying possible issues and providing matching solutions. Its
bene�ts are twofold: (i) it enables the maintenance of traceability and system consistency
if the action is performed, and (ii) it enables the user to make an informed decision on
going through the action or not, given the corresponding consequences.

The processes are shown next; a general explanation of the process, an algorithm,
and a textual description are provided. Observations on permissions and processes, and
discussions on change impact analysis and the automatization of processes, are also pro-
vided.

Whenever checking for the existence of traceability links, only links connecting to
artifacts in the Active System are considered; inactive artifacts do not cause consistency
issues. Thus, every traceability link checked by a process is assumed to connect to an
artifact in the Active System.

Partial links should be treated as non-partial links if they are the only intra-system
partial links in the Active System concerning a certain dependency; e.g., if a dependency
in the Active System is satis�ed by two artifacts, and one of these artifacts is moved
to the Inactive System, the partial link connecting the remaining artifact in the Active
System and the dependent artifact should be treated as if it was a non-partial link. Also,
transformations between non-partial and partial links are assumed to be done whenever
applicable.

This chapter is structured as follows: Sections 9.1�9.7 describe each process of the
Metamodel; Section 9.8 summarizes necessary updates to links in a project, given certain
processes; and Section 9.9 discusses how processes relate to change impact analysis.

9.1 Homologation Process

Every newly created artifact starts o� inactive; it has to go through the homologation
process to become active. Let α be an artifact which goes through the Homologation
Process and A be the group of actors who created it. Let B be a group of actors disjoint
fromA, which performs the homologation process on α. The group B evaluates the artifact
α to determine whether it is added to the Active System. There are two possible outcomes:
α is homologated becoming part of the Active System, or it is rejected remaining in the
Inactive System.

9.1.1 Algorithm

Let α be an artifact which goes through the homologation process andA= {a1, a2, . . . , an},
where n ≥ 1, be the group of actors who created it. Let B = {b1, b2, . . . , bq}, where q ≥ 1,
be the group of actors which performs the Homologation Process on α.

107

Algorithm 1 Homologation Process - Part 1/2
1: procedure HomologationProcess(Artifact α, Group of Actors B)
2: ACTION: α is evaluated for homologation by the group B.1
3: if α.homologated == False then . The Artifact is rejected.

4: for each b[i] ∈ B do2

5: α.RejectedBy[i] ← b[i] . Identi�es who rejected the Artifact.

6: b[i].Rejected ← α3 . Adds α to the list of Artifacts rejected by b[i].

7: end for

8: CreationProcess(Group of Actors B, New Artifact RHR R) . B creates a new Rationale for Homologation or

Rejection (RHR).

9: α.RejectionJusti�edBy ← R . Identi�es the Rationale which justi�es the rejection of α.

10: R.Justi�esRejectionOf ← α

11: Return NULL

12: end if

13: if α.homologated == True then . The Artifact is homologated.

14: for each b[i] ∈ B do

15: α.HomologatedBy[i] ← b[i] . Identi�es who homologated the Artifact.

16: b[i].Homologated ← α . Adds α to the list of Artifacts homologated by b[i].

17: end for

18: CreationProcess(Group of Actors B, New Artifact RHR R) . B creates a new Rationale for Homologation or

Rejection.

19: α.HomologationJusti�edBy ← R . Identi�es the Rationale which justi�es the homologation of α.

20: R.Justi�esHomologationOf ← α

21: . It may be necessary to generate more traceability links for speci�c situations, as follows.

22: if α.newlyCreated == True AND α.hasRei�edFromLinks == True then . Newly created Artifact and has

Rei�edFrom links starting from it.

23: for each α.Rei�edFrom[i] do . For each Artifact α is rei�ed from.

24: α.Rei�edFrom[i].Rei�edTo ← α . Create a Rei�edTo link type having α as its destination.

25: end for

26: end if

27: switch α.Type do

28: case RM

29: α.De�nesModi�cationOf.Modi�cationDe�nedBy ← α . Identi�es α as a Rationale having β as its target.

30: case RR

31: α.De�nesRemovalOf.RemovalDe�nedBy ← α

32: case RD

33: α.De�nesDecompositionOf.DecompositionDe�nedBy ← α

34: case RAc

35: α.De�nesActivationOf.ActivationDe�nedBy ← α

36: case RAp

37: α.Justi�esApplicationOf.ApplicationJusti�edBy ← α

38: end switch

39: if α.hasDecomposedFromLinks == True then . α is a decomposition of another Artifact.

40: α.DecomposedFrom.DecomposedTo ← α

41: end if

42: if α.newlyCreated == True AND α.hasAppliesToLinks == True then . Newly created Artifact which should

be applied to other artifacts.

43: for each α.AppliesTo[i] do . For each Artifact α applies to.

44: α.AppliesTo[i].SubjectToApplicationOf ← α

45: end for

46: end if

47: if α.newlyCreated == True AND α.hasDependsOnLinks == True then

48: for each α.DependsOn[i] do . For each Artifact α depends on.

49: α.DependsOn[i].NecessaryFor ← α

50: end for

51: end if

52: if α.newlyCreated == True AND α.hasDependsOnPartialLinks == True then

53: for each α.DependsOnPartial[i] do

54: α.DependsOnPartial[i].NecessaryForPartial ← α

55: end for

56: end if

108

Algorithm 1 Homologation Process - Part 2/2
57: if α.newlyCreated == True AND α.hasNecessaryForLinks == True then

58: for each α.NecessaryFor[i] do

59: α.NecessaryFor[i].DependsOn ← α

60: end for

61: end if

62: if α.newlyCreated == True AND α.hasNecessaryForPartialLinks == True then

63: for each α.NecessaryForPartial[i] do

64: α.NecessaryForPartial[i].DependsOn ← α

65: end for

66: end if

67: if α.newlyCreated == False AND α.NumberOfUnful�lledDependencies > 0 then

68: ListOfNewDependencies[] ← GetsListOfNewDependencies(α) . Dependencies which are solvable by active

artifacts.

69: for each ListOfNewDependencies[i] do

70: α.DependsOn = ListOfNewDependencies[i]

71: ListOfNewDependencies[i].DependsOn ← α

72: α.NumberOfUnful�lledDependencies�

73: end for

74: if α.NumberOfUnful�lledDependencies > 0 then . If there are dependencies which could not be solved by

current artifacs.

75: ACTION: Create, modify, or activate Artifacts to ful�ll the dependencies.

76: end if

77: end if

78: if α.newlyCreated == True AND α.hasCon�ictsWithLinks == True then

79: ACTION: Modify or remove the con�icting artifacts from the Active System to solve the con�icts.

80: end if

81: if α.newlyCreated == False AND (ListOfNewCon�icts ← ReturnsListOfNewCon�icts(α)4) IS NOT NULL

then . The Artifact is a new version of a modi�ed Artifact and its modi�cation resulted in the generation of con�icts.

82: for each ListOfNewCon�icts[i] do

83: α.Con�ictsWith ← ListOfNewCon�icts[i]

84: ListOfNewCon�icts[i].Con�ictsWith ← α

85: end for

86: ACTION: Modify or remove the con�icting artifacts from the Active System to solve the con�icts.

87: end if

88: if α.newlyCreated == False AND (ListOfSolvedCon�icts ← ReturnsListOfSolvedCon�icts(α)) IS NOT NULL

then

89: for each ListOfSolvedCon�icts[i] do

90: RemoveArtifactFromList(ListOfSolvedCon�icts[i].Con�ictsWith, α)5

91: RemoveArtifactFromList(α.Con�ictsWith, ListOfSolvedCon�icts[i])

92: end for

93: end if

94: Activate(α) . α is added to the Active System.

95: Return Success

96: end if

97: end procedure

9.1.2 Textual Description

Every newly created artifact starts o� inactive; it has to go through the Homologation
Process to become active. Let α be an artifact which goes through the homologation
process and A = {a1, a2, . . . , an}, where n ≥ 1, be the group of actors who created it. Let

1Statements starting with ACTION de�ne actions to be performed which are beyond the scope of the
process description; e.g., the actual action of modifying a code fragment.

2The loop For increases its index by one automatically.
3To simplify, we de�ne: artifact1.list ← artifact2 means artifact2 is assigned to the last index of

artifact1.list; artifact1.list[prede�nedIndex] ← artifact2 means artifact2 is assigned to prede�nedIndex of
artifact1.list.

4Returns the new con�icts resulting from the modi�cation of α.
5A function which, given a lists of elements and an Artifact, removes the Artifact from the list.

109

B = {b1, b2, . . . , bq}, where q ≥ 1, be a group of actors disjoint from A, i.e., A ∩ B = ∅,
which performs the homologation process on α. The group B evaluates the artifact α to
determine whether it is added to the Active System. There are two possible outcomes:
α is homologated becoming part of the Active System, or it is rejected remaining in the
Inactive System.

If α is homologated, two sets of links are generated: E = {e1, e2, . . . , eq} and F =

{f1, f2, . . . , fq}. Each ei ∈ E, 1 ≤ i ≤ q, is an HomologatedBy link starting in α and
having bi ∈ B as its destination. Each fi ∈ F , 1 ≤ i ≤ q, is an Homologated link
starting in bi ∈ B and having α as its destination. Then, the group of actors B creates
an RHR artifact R � which will not be activated � and two links are generated: eα
and eR. Link eα is an HomologationJusti�edBy link starting in α and having R as its
destination. Link eR is a Justi�esHomologationOf link starting in R and having α as
its destination. The artifact R does not undergo the Creation Process but its creators
must be identi�ed; therefore, two sets of links are generated: U = {u1, u2, . . . , uq} and
W = {w1, w2, . . . , wq}. Each ui ∈ U , 1 ≤ i ≤ q, is a CreatedBy link starting in R and
having bi ∈ B as its destination. Each wi ∈ W , 1 ≤ i ≤ q, is a Created link starting in
bi ∈ B and having R as its destination. The artifact R justi�es the homologation of α.

If α is rejected, two sets of links are generated: E = {e1, e2, . . . , eq} and F =

{f1, f2, . . . , fq}. Each ei ∈ E, 1 ≤ i ≤ q, is a RejectedBy link starting in α and hav-
ing bi ∈ B as its destination. Each fi ∈ F , 1 ≤ i ≤ q, is a Rejected link starting in bi ∈ B
and having α as its destination. Then, the group of actors B creates an RHR artifact
R � which will not be activated � and two links are generated: eα and eR. Link eα is
a RejectionJusti�edBy link starting in α and having R as its destination. Link eR is a
Justi�esRejectionOf link starting in R and having α as its destination. The artifact R
does not undergo the creation process but its creators must be identi�ed; therefore, two
sets of links are generated: U = {u1, u2, . . . , uq} and W = {w1, w2, . . . , wq}. Each ui ∈ U ,
1 ≤ i ≤ q, is a CreatedBy link starting in R and having bi ∈ B as its destination. Each
wi ∈ W , 1 ≤ i ≤ q, is a Created link starting in bi ∈ B and having R as its destination.
The artifact R justi�es the rejection of α.

It may be necessary to generate more traceability links for speci�c situations, as fol-
lows.

If α is homologated, is a newly created artifact, and a rei�cation of other artifacts,
having Rei�edFrom links starting from it, it will be necessary to generate opposite links.
Let β = {β1, β2, . . . , βm} be the set of m artifacts rei�ed into α; a set of links E =

{e1, e2, . . . , em} is generated, where each ei ∈ E, 1 ≤ i ≤ m, is a Rei�edTo link starting
in βi ∈ β and having α as its destination.

If α is homologated and is a rationale type, having a De�nesModi�cationOf, De�nes-
DecompositionOf, De�nesRemovalOf, De�nesActivationOf, or Justi�esApplicationOf link
starting from it, it will be necessary to generate an opposite link. Let β be the target
of α. If α is an RM, a Modi�cationDe�nedBy link is generated starting in β and having
α as its destination. If α is an RD, a DecompositionDe�nedBy link is generated start-
ing in β and having α as its destination. If α is an RR, a RemovalDe�nedBy link is
generated starting in β and having α as its destination. If α is an RAc, an ActivationDe-

110

�nedBy link is generated starting in β and having α as its destination. If α is an RAp,
an ApplicationJusti�edBy link is generated starting in β and having α as its destination.

If α is homologated and a decomposition of another artifact, having a DecomposedFrom
link starting from it, it will be necessary to generate an opposite link. Let β be the parent
of α. A DecomposedTo link is generated starting in β and having α as its destination.

If α is homologated, is not a newly created artifact (it is a new version of a modi�ed
artifact), having a Modi�edFrom link starting from it, it will be necessary to generate an
opposite link. Let β be the previous version of α. A Modi�edTo link is generated starting
in β and having α as its destination.

If α is homologated, is a newly created artifact, and should be applied to other artifacts,
having AppliesTo links starting from it, it will be necessary to generate opposite links. Let
β = {β1, β2, . . . , βm} be the set ofm target artifacts of α; a set of links E = {e1, e2, . . . , em}
is generated, where each ei ∈ E, 1 ≤ i ≤ m, is a SubjectToApplicationOf link starting in
βi ∈ β and having α as its destination.

If α is homologated, is a newly created artifact, and depends on other artifacts, having
DependsOn links starting from it, it will be necessary to generate opposite links. Let β =

{β1, β2, . . . , βm} be the set ofm artifacts necessary for α; a set of links E = {e1, e2, . . . , em}
is generated, where each ei ∈ E, 1 ≤ i ≤ m, is a NecessaryFor link starting in βi ∈ β and
having α as its destination. If there are other artifacts satisfying βi ∈ β, given a certain
dependency, a NecessaryForPartial link must be created instead of a NecessaryFor link.

If α is homologated, is a newly created artifact, and is necessary for other artifacts,
having NecessaryFor links starting from it, it will be necessary to generate opposite links.
Let β = {β1, β2, . . . , βm} be the set of m artifacts dependent on α; a set of links E =

{e1, e2, . . . , em} is generated, where each ei ∈ E, 1 ≤ i ≤ m, is a DependsOn link starting
in βi ∈ β and having α as its destination. If there is more than one artifact satisfying
α, given a certain dependency, a DependsOnPartial link must be created instead of a
DependsOn link.

If α is homologated, is not a newly created artifact (it is a new version of a modi�ed
artifact), and has new dependencies on other artifacts, it will be necessary to generate
links. Let β = {β1, β2, . . . , βm} be the set of m artifacts necessary for α. Two sets of links
are generated: E = {e1, e2, . . . , em} and F = {f1, f2, . . . , fm}. Each ei ∈ E, 1 ≤ i ≤ m,
is a DependsOn link starting in α and having βi ∈ β as its destination. Each fi ∈ F is a
NecessaryFor link starting in βi ∈ β and having α as its destination.

The artifact α, after being homologated, may have dependencies which are not ful�lled
by any artifact in the Active System. These dependencies may be ful�lled through the
creation, modi�cation, or activation of artifacts.

If α is homologated, is a newly created artifact, and has con�icts with other artifacts
in the Active System, having Con�ictsWith links starting from it, it will be necessary to
remove the destination artifacts or to modify them to solve the con�icts.

If α is homologated, is a new version of a modi�ed artifact, and its modi�cation
resulted in the generation of con�icts with other artifacts, it will be necessary to generate
the corresponding links. Let β = {β1, β2, . . . , βm} be the set of m artifacts in con�ict
with α. Two sets of links are generated: E = {e1, e2, . . . , em} and F = {f1, f2, . . . , fm}.
Each ei ∈ E, 1 ≤ i ≤ m, is a Con�ictsWith link starting in α and having βi ∈ β as

111

its destination. Each fi ∈ F is a Con�ictsWith link starting in βi ∈ β and having α
as its destination. If any of the con�icting artifacts are in the Active System, it will be
necessary to remove or to modify them to solve the con�icts.

If α is homologated, is a new version of a modi�ed artifact, and its modi�cation solved
previous con�icts with other artifacts, it will be necessary to delete the corresponding
links.

9.1.3 Assessing the Impact of Homologating a Rationale for Mod-

i�cation or a Rationale for Removal

The decision to homologate a Rationale for Modi�cation (RM) or a Rationale for Removal
(RR) is contingent upon the impact in the Active System; it may be necessary to perform
a sequence of actions to deal with the problems arisen from the actions of modi�cation
or removal. Hence, the homologation may not occur if the impact is undesirable. This
process provides the necessary steps to be taken given each particular situation, enabling
the user to assess the impact, and consequently the cost, of homologating a Rationale for
Modi�cation or a Rationale for Removal in a project.

9.1.3.1 Algorithm

Let α be an RM or RR, and β be the target of α. Let G = {g1, g2, . . . , gr}, where r ≥ 1, be
the set of all links starting in β and C = {c1, c2, . . . , cr} be the set of destination artifacts
of the links in G. Let H = {h1, h2, . . . , hr} be the set of opposite links to G, having β
as its destination, where gi, 1 ≤ i ≤ r, is opposite to hi. Each artifact ci ∈ C must be
examined to decide whether α should be homologated.

Algorithm 2 Assessing the Impact of Homologating a Rationale for Modi�cation or a
Rationale for Removal - Part 1/4
1: procedure AssessmentRMAndRR-HomologationProcess(Artifact α, Group of Actors B)
2: β ← α.RationaleTarget

3: if α.type == RM then

4: for each β.NecessaryFor[i] do

5: if β.NecessaryFor[i] will not be able to depend on β after the modi�cation then

6: ACTION: Three alternatives: (i) modify β.NecessaryFor[i] to end its dependency to β, (ii) deactivate

β.NecessaryFor[i], or (iii) create, modify, or activate artifacts to ful�ll β.NecessaryFor[i] dependency.

7: if It was decided to solve the issue without deactivating β.NecessaryFor[i] then

8: DeleteLink(g[i])

9: DeleteLink(h[i])

10: end if

11: end if

12: end for

13: for each β.NecessaryForPartial[i] do

14: if β.NecessaryForPartial[i] will not be able to depend on β after the modi�cation then

15: DeleteLink(g[i])

16: DeleteLink(h[i])

17: end if

18: end for

112

Algorithm 2 Assessing the Impact of Homologating a Rationale for Modi�cation or a
Rationale for Removal - Part 2/4
19: for each β.DependsOn[i] do

20: if β.DependsOn[i] will not be necessary for β after the modi�cation then

21: DeleteLink(g[i])

22: DeleteLink(h[i])

23: ACTION: β.DependsOn[i] should be removed if it only exists to ful�ll the dependency of β.

24: end if

25: end for

26: for each β.DependsOnPartial[i] do

27: if β.DependsOnPartial[i] will not be necessary for β after the modi�cation then

28: DeleteLink(g[i])

29: DeleteLink(h[i])

30: ACTION: β.DependsOnPartial[i] should be removed if it only exists to ful�ll the dependency of β.

31: end if

32: end for

33: for each β.Rei�edFrom[i] do

34: if β will not have information from β.Rei�edFrom[i] after the modi�cation then

35: ACTION: β.Rei�edFrom[i] should be removed if it only propagates information to β. If not, it should be

modi�ed to remove the related information.

36: end if

37: end for

38: for each β.Rei�edTo[i] do

39: if The modi�cation will remove information corresponding to all of β.Rei�edTo[i] then

40: ACTION: β.Rei�edFrom[i] should be removed.

41: else if The modi�cation will remove information corresponding to part of β.Rei�edTo[i] then

42: ACTION: The corresponding information should be removed by modifying β.Rei�edTo[i].

43: else if The modi�cation will add new information to β then

44: ACTION: The corresponding information should be propagated to other artifacts, by creation or modi�-

cation.

45: end if

46: end for

47: for each β.AppliesTo[i] do

48: if β can not apply to β.AppliesTo[i] after the modi�cation. then

49: if It is not necessary that β, or another artifact, applies to β.AppliesTo[i] then

50: DeleteLink(g[i])

51: DeleteLink(h[i])

52: else if It is necessary that β applies to β.AppliesTo[i] then

53: ACTION: β.AppliesTo[i] should be modi�ed accordingly.

54: DeleteLink(g[i])

55: DeleteLink(h[i]) . These links should be regenerated later, after the modi�cation.

56: else if It is necessary that another artifact applies to β.AppliesTo[i] then

57: ACTION: Such an artifact must be created, modi�ed, or activated.

58: DeleteLink(g[i])

59: DeleteLink(h[i])

60: end if

61: end if

62: end for

63: for each β.SubjectToApplicationOf[i] do

64: if β can not be subject to the application of β.SubjectToApplicationOf[i] after the modi�cation then

65: if It is not necessary that β is subjected to the application of β.SubjectToApplicationOf[i] then

66: DeleteLink(g[i])

67: DeleteLink(h[i])

68: else if It is necessary that β is subjected to the application of β.SubjectToApplicationOf[i] then

69: ACTION: β.SubjectToApplicationOf[i] should be modi�ed accordingly.

70: DeleteLink(g[i])

71: DeleteLink(h[i]) . These links should be regenerated later, after the modi�cation.

72: else if It is necessary that β is subjected to the application of other artifact then

73: ACTION: Such artifact must be created, modi�ed, or activated.

74: DeleteLink(g[i])

75: DeleteLink(h[i])

76: end if

77: end if

78: end for

113

Algorithm 2 Assessing the Impact of Homologating a Rationale for Modi�cation or a
Rationale for Removal - Part 3/4
79: for each β.ComprisedOf[i] do

80: ACTION: reclassify parts of β as needed.

81: end for

82: if New dependencies will be generated after the modi�cation then

83: if There are dependencies which can not be ful�lled by Artifacts from the Active System then

84: ACTION: Create, modify, or activate Artifacts to ful�ll the dependencies.

85: end if

86: end if

87: if Dependencies will be solved after the modi�cation then

88: if There are Artifacts which exist only to ful�ll these dependencies then

89: ACTION: Remove the corresponding Artifacts from the Active System.

90: end if

91: end if

92: if New con�icts will be generated after the modi�cation then

93: ACTION: Modify or remove the corresponding Artifacts to solve the con�icts.

94: end if

95: if Con�icts will be solved after the modi�cation then

96: ACTION: Delete the corresponding links.

97: end if

98: end if

99: if α.type == RR then

100: for each β.NecessaryFor[i] do

101: ACTION: Three alternatives: (i) modify β.NecessaryFor[i] to end its dependency to β, (ii) deactivate

β.NecessaryFor[i], or (iii) create, modify, or activate artifacts to ful�ll β.NecessaryFor[i] dependency.

102: end for

103: for each β.DependsOn[i] do

104: if β.DependsOn[i] exists only to ful�ll a dependency from β then

105: ACTION: β.DependsOn[i] should be removed from the Active System

106: end if

107: end for

108: for each β.DependsOnPartial[i] do

109: if β.DependsOnPartial[i] exists only to ful�ll a dependency from β then

110: ACTION: β.DependsOnPartial[i] should be removed from the Active System

111: end if

112: end for

113: for each β.Rei�edFrom[i] do

114: if The information propagated to β should be kept in the Active System then

115: DeleteLink(g[i])

116: DeleteLink(h[i])

117: ACTION: Create, modify, or activate Artifacts to propagate the information.

118: else

119: ACTION: Modify β.Rei�edFrom[i] to remove the information. If it corresponds to the entirety of

β.Rei�edFrom[i], β.Rei�edFrom[i] should be removed instead.

120: end if

121: end for

122: for each β.Rei�edTo[i] do

123: ACTION: Modify β.Rei�edTo[i] to remove the information propagated from β. If it corresponds to the

entirety of β.Rei�edTo[i], β.Rei�edTo[i] should be removed instead.

124: end for

125: for each β.AppliesTo[i] do

126: if It is not necessary that another artifact applies to β.AppliesTo[i] then

127: DeleteLink(g[i])

128: DeleteLink(h[i])

129: else

130: ACTION: Such an artifact must be created, modi�ed, or activated.

131: DeleteLink(g[i])

132: DeleteLink(h[i])

133: end if

134: end for

114

Algorithm 2 Assessing the Impact of Homologating a Rationale for Modi�cation or a
Rationale for Removal - Part 4/4
135: for each β.SubjectToApplicationOf[i] do

136: if It is not necessary that another artifact is subjected to the application of β.SubjectToApplicationOf[i]

then

137: DeleteLink(g[i])

138: DeleteLink(h[i])

139: else

140: ACTION: Such artifact must be created, modi�ed, or activated.

141: DeleteLink(g[i])

142: DeleteLink(h[i])

143: end if

144: end for

145: end if

146: if There are necessary modi�cations on associated artifacts then . It may be necessary to modify artifacts

related to β; e.g., removing function calls in other artifacts.

147: ACTION: Perform, or concatenate, modi�cations on the associated artifacts.

148: end if

149: end procedure

9.1.3.2 Textual Description

Let α be an RM or RR and β be the target of α. Let G = {g1, g2, . . . , gr} be the set of
all links starting in β and C = {c1, c2, . . . , cr} be the set of destination artifacts of the
links in G. Let H = {h1, h2, . . . , hr} be the set of opposite links to G, having β as its
destination, where gi is opposite to hi. If ∃gi ∈ G, 1 ≤ i ≤ r, gi being a NecessaryFor,
DependsOn, NecessaryForPartial, DependsOnPartial, Con�ictsWith, Rei�edFrom, Rei�edTo,
AppliesTo, SubjectToApplicationOf, PartOf, or ComprisedOf link, each artifact ci ∈ C
must be examined to decide whether α should be homologated.

If α is an RM and it is going to be homologated, for each NecessaryFor link gi,
unful�lled dependencies resulting from the homologation of α must be dealt with. I.e., is
there any ci which can not depend on β after the modi�cation de�ned by α? If there is,
each ci having an unful�lled dependency: (i) must be modi�ed to end its dependency to
β; (ii) be removed from the Active System; or (iii) artifacts must be created, modi�ed, or
activated to ful�ll the dependencies. If ci is not removed, gi and hi must be deleted, since
ci will not depend on β anymore. If ci is removed, the dependency information between
ci and the previous version of β, now in the Inactive System, should be kept; therefore,
the corresponding gi and hi will not be deleted, being kept for historical reasons or to be
useful in a future activation.

If α is an RR and it is going to be homologated, for each NecessaryFor link gi, there
is going to be an unful�lled dependency resulting from the homologation of α. Artifact ci
still depends on β, but since β is being moved to the Inactive System, it can not satisfy
ci. To solve this: (i) ci must be modi�ed to end its dependency to β; (ii) ci be removed
from the Active System; or (iii) artifacts must be created, modi�ed, or activated to ful�ll
the dependency of ci.

If α is an RM and it is going to be homologated, for each NecessaryForPartial link gi,
if there is any ci which can not depend on β after the modi�cation de�ned by α, the links
gi and hi must be deleted. It is not necessary to perform more actions since there is at
least one other artifact ful�lling the same dependency.

115

If α is an RR and it is going to be homologated, for each NecessaryForPartial link gi, it
is not necessary to perform more actions since there is at least one other artifact ful�lling
the same dependency.

If α is an RM and it is going to be homologated, for each DependsOn or Depend-

sOnPartial link gi, ful�lled dependencies resulting from the homologation of α must be
taken into account; i.e., is there any ci which is not anymore necessary for β after the
modi�cation de�ned by α? If there is, the corresponding gi and hi must be deleted. If ci
exists only to ful�ll a dependency of β, ci should be removed. In this case, the dependency
information between ci and the previous version of β, now in the Inactive System, should
be kept; therefore, the corresponding gi and hi will not be deleted.

If α is an RR and it is going to be homologated, for each DependsOn or Depend-

sOnPartial link gi, for each ci which exists only to ful�ll a dependency of β1, ci should be
removed. The gi and hi links between ci and β will not be deleted.

If α is an RM and it is going to be homologated, for each Rei�edFrom link gi where
β, after its modi�cation, will not have any information from the corresponding ci, ci will
have to be modi�ed or removed. The former happens when the modi�cation removes
part of the information from ci; i.e., ci propagates information to other artifacts in the
Active System. The links gi and hi will remain connecting the previous versions of ci and
β, but there will not be gi and hi links connecting the new versions of ci and β. The
latter happens when the modi�cation removes, from β, all the information from ci, and ci
only propagates information to β. The links gi and hi will remain connecting ci and the
previous version of β, both of them in the Inactive System. No unful�lled dependencies
will arise from the removal of ci since β is a rei�cation from ci. If ci is necessary for an
artifact, β is necessary too; removal of information from β means that dependencies have
been, or will be, ful�lled.

If α is an RR and it is going to be homologated, for each Rei�edFrom link gi, it
must be evaluated whether the information propagated from ci to β should be kept in
the Active System. (i) If that is not the case, ci should be modi�ed to remove the
corresponding information propagated to β; the links gi and hi will remain connecting
the previous version of ci and β, both of them in the Inactive System. If the information
in β corresponds to all the information from ci, ci should be removed too. The links gi
and hi will remain connecting ci and β, both of them in the Inactive System. (ii) If the
information should be kept, the links gi and hi should be removed and the information
should be added by: the creation of new artifacts; the modi�cation of current artifacts;
or the activation of inactive artifacts. New Rei�edFrom and Rei�edTo links should be
generated to connect ci to these artifacts.

If α is an RM and it is going to be homologated, for each Rei�edTo link gi where ci is
a�ected by the modi�cation of β: (i) if the modi�cation removes information correspond-
ing to all of ci, ci should be removed. The links gi and hi will remain connecting ci and
the previous version of β, both of them in the Inactive System. (ii) If the modi�cation
removes information corresponding to part of ci, ci should be modi�ed accordingly; i.e.,
this information should be removed from ci. The links gi and hi will remain connecting

1This should not occur with DependsOnPartial links; however, this is a possible situation.

116

the previous versions of ci and β, but there will not be gi and hi links connecting the
new versions of ci and β. (iii) If the modi�cation adds new information to β, it should be
propagated to other artifacts; these can be new or current artifacts.

If α is an RR and it is going to be homologated, for each Rei�edTo link gi, ci should
be modi�ed to remove the information from β. If the information from β corresponds
to all of ci, ci should be removed. The links gi and hi will remain connecting ci and β,
both of them in the Inactive System. If the information from β corresponds to part of ci,
ci should be modi�ed accordingly; i.e., this information should be removed from ci. The
links gi and hi will remain connecting the previous versions of ci and β, both of them in
the Inactive System.

If α is an RM and it is going to be homologated, for each AppliesTo link gi where β
does not apply to ci anymore: (i) if it is not necessary that β, or another artifact, applies
to ci, links gi and hi should be deleted; (ii) if it is necessary that β applies to ci, the
artifact ci should be modi�ed accordingly, and links gi and hi should be deleted to be
regenerated later; (iii) if it is necessary that another artifact applies to ci, such an artifact
must be created, modi�ed, or activated, and links gi and hi should be deleted.

If α is an RR and it is going to be homologated, for each AppliesTo link gi: (i) if it is
not necessary that another artifact applies to ci, links gi and hi should be deleted; (ii) if it
is necessary that another artifact applies to ci, such an artifact must be created, modi�ed,
or activated, and links gi and hi should be deleted.

If α is an RM and it is going to be homologated, for each SubjectToApplicationOf

link gi where β is not subject to the application of ci after the modi�cation: (i) if it is
not necessary that β is subjected to the application of ci, or another artifact, links gi
and hi should be deleted; (ii) if it is necessary that β is subjected to the application of
ci, the artifact ci should be modi�ed accordingly, and links gi and hi should be deleted
to be regenerated later; (iii) if it is necessary that β is subjected to the application of
some artifact, such an artifact must be created, modi�ed, or activated, and links gi and
hi should be deleted.

If α is an RR and it is going to be homologated, for each SubjectToApplicationOf link
gi: (i) if it is not necessary that another artifact is subjected to the application of ci, links
gi and hi should be deleted; (ii) if it is necessary that another artifact is subjected to the
application of ci, such an artifact must be created, modi�ed, or activated, and links gi
and hi should be deleted.

If α is an RM and it is going to be homologated, if there are ComprisedOf links starting
in β, β should have its parts reclassi�ed accordingly; it may be necessary to classify new
parts or remove existing parts, adding or deleting PartOf and ComprisedOf links.

If α is an RR and it is going to be homologated, for each ComprisedOf link gi, no
action is necessary since each ci is part of β.

If α is an RM and it is going to be homologated, for each PartOf link gi, no action
is necessary since the modi�cation of β has no e�ect in the relationship with the parent
artifact.

If α is an RM and it is going to be homologated, it should be assessed if dependencies
are generated or solved by the modi�cation on β described in α. (i) If dependencies
are generated and there are dependencies which can not be ful�lled by artifacts in the

117

Active System, it will be necessary to modify, activate, or create artifacts to solve these
dependencies. (ii) If dependencies are solved by the modi�cations described in α and
there are artifacts which exist only to ful�ll β dependencies, these should be removed
from the Active System.

If α is an RM and it is going to be homologated, it should be assessed if con�icts are
generated or solved by the modi�cation on β described in α. (i) If con�icts are generated,
it will be necessary to modify or remove the con�icting artifacts to solve the con�icts. (ii)
If con�icts are solved, nothing should be done besides deleting the corresponding links.

If α is an RR and it is going to be homologated, it should be assessed if there are
necessary modi�cations on other artifacts as the result of removing β (see Section 9.5); if
so, it will be necessary to modify the corresponding artifacts after the removal process.

9.1.4 Why is the Homologation Process Useful?

Homologation avoids the introduction of inconsistencies in the Active System; e.g., the
removal of a necessary artifact could occur without the evaluation prescribed by the
homologation process, leaving the system inconsistent. Furthermore, it enables the evalu-
ation of an action before it is performed. Therefore, the decision whether to proceed with
an action may be guided through the assessment of its impact; e.g., during the homolo-
gation process it may be found that the cost of the removal of an artifact outweighs its
bene�ts.

9.2 Modi�cation Process

Let α be an artifact which goes through the Modi�cation Process. A group of actors A
creates an Rationale for Modi�cation P having α as its target. The artifact P should be
homologated for the Modi�cation process to take place. Following the homologation of
P , an identical copy of α (α1) is created. An identical copy of an artifact has the same
contents and structure; the links originating in the artifact are also copied, having the
same destination artifacts, but the links having α as their destination will not be copied.
It is possible to trace from the new version to the previous version and vice-versa.

A group of actors B performs the modi�cation described in P on α1 (the group B is
not necessarily disjoint from A). The artifact α1 was created and modi�ed but it is still
in the Inactive System; it must be homologated to become part of the Active System.
The modi�cation must be evaluated and validated, i.e. homologated, according to what
was proposed in P , by a group of actors disjoint of B. The successful homologation of α1

results in moving it from the Inactive System to the Active System, and moving α from
the Active System to the Inactive System. Finally, P is moved to the Inactive System
since it has ful�lled its role.

9.2.1 Algorithm

Let α be an artifact which goes through the Modi�cation Process. A group of actors A
= {a1, a2, . . . , an}, where n ≥ 1, creates an Rationale for Modi�cation P having α as its

118

target. A group of actors D = {d1, d2, . . . , dl}, where l ≥ 1, homologates artifact P for
the Modi�cation process to take place. Following its homologation, a group actors B =
{b1, b2, . . . , bm}, where m ≥ 1, performs the modi�cation described in P .

Algorithm 3 Modi�cation Process
1: procedure ModificationProcess(Artifact α, Group of Actors B, Group of Actors D, Rationale for Modi�cation P)

2: α1 ← CreatesCopy(α) . Creates an identical copy of the Artifact.

3: α1.Modi�edFrom ← α . Indicates its previous version.

4: ACTION: The group B performs the modi�cation described in P to α1.

5: for each b[i] ∈ B do

6: α1.Modi�edBy[i] ← b[i] . Identi�es who modi�ed the Artifact.

7: b[i].Modi�ed ← α1 . Adds α1 to the list of Artifacts modi�ed by b[i].

8: end for

9: HomologationProcess(α1, D) . The group of actors D will consider the homologation of α1.

10: if α1.homologated == True then

11: Deactivate(P) . α1 was added to the Active System and P is moved to the Inactive System.

12: RedirectLinks(α,α1) . Redirect the links arriving in α to α1.

13: Return α1

14: else

15: Return NULL . The homologation failed.

16: end if

17: end procedure

9.2.2 Textual Description

The modi�cation of an artifact is the process of copying it and performing the modi�-
cation on this copy. This process is composed of two steps: generation of new links and
rearrangement of existing links.

Generating Links

Let α be an artifact which goes through the Modi�cation Process. A group of n actors
A = {a1, a2, . . . , an}, where n ≥ 1, creates an Rationale for Modi�cation P having α as
its target. The artifact P should be homologated for the Modi�cation process to take
place. Following the homologation of P , α1 � an identical copy of α � is created. An
identical copy of an artifact has the same contents and structure; the links originating in
the artifact are also copied, having the same destination artifacts, but the links having α
as their destination will not be copied. A new Modi�edFrom link is generated, starting
in α1 and having α as its destination; i.e., the new version of the artifact indicates its
previous version. A group of q actors B = {b1, b2, . . . , bq}, where q ≥ 1, performs the
modi�cation described in P on α1 (the group B is not necessarily disjoint from A). As a
result, two sets of links are generated: E = {e1, e2, . . . , eq} and F = {f1, f2, . . . , fq}. Each
ei ∈ E is a Modi�edBy link starting in α1 and having bi ∈ B as its destination. Each
fi ∈ F is a Modi�ed link starting in bi ∈ B and having α1 as its destination. The artifact
α1 was created and modi�ed but it is still in the Inactive System; it must be homologated
to become part of the Active System. The modi�cation must be evaluated and validated,
i.e. homologated, according to what was proposed in P , by a group of actors disjoint of
B.

119

The successful homologation of α1 results in moving it from the Inactive System to
the Active System, and moving α from the Active System to the Inactive System. Finally,
P is moved to the Inactive System since it has ful�lled its role.

Rearranging Links

Rearrangement of links may be necessary after the replacement of α by α1. Some of the
links having α as their destination should be rearranged to have α1 as their destination.

De�nition 9.2.1. Let α, β and γ be distinct artifacts and let e be a link starting in α
and having β as its destination. The redirection of e to γ is the generation of a new link
e∗, of the same type and having the same information as e, starting in α and having γ as
its destination. The link e is then deleted to complete the redirection.

Let G = {g1, g2, . . . , gr} be the set of links having α as its destination and H =

{h1, h2, . . . , hr} be the set of links starting in α1. Decisions should be made during the
homologation of P regarding artifacts connected to α; these artifacts may be removed,
kept unchanged or modi�ed. For the artifacts whose modi�cation ended the relationship,
it is necessary to delete the corresponding gi and hi links; e.g., a dependency relationship
which is not ful�lled by the current versions of the artifacts. For the artifacts whose
modi�cation did not not change the relationship, it may be necessary to redirect the
related gi.

9.3 Decomposition Process

Let α be an artifact which goes through the Decomposition Process. A group of actors
A creates a Rationale for Decomposition P having α as its target. The artifact P should
be homologated for the decomposition process to take place. Following the homologation
of P , the new artifacts de�ned in P � the resulting artifacts of the decomposition � are
created (each artifact will go through the Creation Process). Let β be the set of these
artifacts. The successful homologation of each βi ∈ β, done by a group of actors disjoint
of B, is necessary for the decomposition process to be complete. The parent artifact α
and P are moved to the Inactive System following the homologation of all the artifacts
in β.

9.3.1 Algorithm

A group of actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a Rationale for Decom-
position P having an artifact α as its target. A group of actors D = {d1, d2, . . . , dl},
where l ≥ 1, homologates artifact P for the Decomposition Process to take place. Fol-
lowing its homologation, a group actors B = {b1, b2, . . . , bq}, where q ≥ 1, performs the
decomposition described in P .

Let G = {g1, g2, . . . , gr} be the set of links starting in α and let C = {c1, c2, . . . , cr}
the set of destination artifacts of G. Let H = {h1, h2, . . . , hr} be the set of opposite links
to G, starting in C, where gi is opposite to hi.

120

Algorithm 4 Decomposition Process - Part 1/2
1: procedure DecompositionProcess(Artifact α, Group of Actors B, Group of Actors D, Rationale for Modi�cation P)

2: ACTION: B decomposes α into the group of Artifacts β = {β1, β2, . . . , βr} as described in P .

3: for each b[i] ∈ B do

4: α.DecomposedBy[i] ← b[i] . Identi�es who decomposed the Artifact.

5: b[i].Decomposed ← α . Adds α to the list of Artifacts decomposed by b[i].

6: end for

7: Count ← 0

8: for each β[i] ∈ β do

9: HomologationProcess(β[i], D)
10: Count++

11: end for

12: Deactivate(P)

13: if Count < β.size then . Not all β[i] were homologated.

14: Deactivate(β) . Deactivate each β[i] successfully homologated.

15: Return NULL . Indicates the decomposition was not successful.

16: end if

17: for each g[i] ∈ G do

18: if g[i].type == Rei�edFrom then

19: for each β[j] do

20: if HaveInformationFrom(β[j], c[i]) then . Did c[i] propagate information to α and this information was

assigned to β[j]?

21: β[j].Rei�edFrom ← c[i] . Adds c[i] to the list of Artifacts β[j] was rei�ed from.

22: c[i].Rei�edTo ← β[j]

23: end if

24: end for

25: DeleteLink(h[i]) . Delete the link which indicated c[i] was rei�ed into α.

26: end if

27: if g[i].type == Rei�edTo then

28: for each β[j] do

29: if HaveInformationFrom(β[j], c[i]) then

30: β[j].Rei�edTo ← c[i]

31: c[i].Rei�edFrom ← β[j]

32: end if

33: end for

34: DeleteLink(h[i])

35: end if

36: if g[i].type == DependsOn then

37: for each β[j] do

38: if Dependency(β[j], c[i]) then6 . If β[j] inherited dependency to c[i] from α.

39: β[j].DependsOn ← c[i]

40: c[i].NecessaryFor ← β[j]

41: end if

42: end for

43: DeleteLink(h[i])

44: end if

45: if g[i].type == DependsOnPartial then

46: for each β[j] do

47: if Dependency(β[j], c[i]) then

48: β[j].DependsOnPartial ← c[i]

49: c[i].NecessaryForPartial ← β[j]

50: end if

51: end for

52: DeleteLink(h[i])

53: end if

54: if g[i].type == NecessaryFor then

55: for each β[j] do

56: if Dependency(c[i], β[j] then . If c[i] depends on information in β[i] propagated from α.

57: β[j].NecessaryFor ← c[i]

58: c[i].DependsOn ← β[j]

59: end if

60: end for

61: DeleteLink(h[i])

62: end if

121

Algorithm 4 Decomposition Process - Part 2/2
63: if g[i].type == NecessaryForPartial then

64: for each β[j] do

65: if Dependency(c[i], β[j] then

66: β[j].NecessaryForPartial ← c[i]

67: c[i].DependsOnPartial ← β[j]

68: end if

69: end for

70: DeleteLink(h[i])

71: end if

72: if g[i].type == AppliesTo then

73: for each β[j] do

74: if Application(β[j], c[i]) then6 . If β[j] applies to c[i].

75: β[j].AppliesTo ← c[i]

76: c[i].SubjectToApplicationOf ← β[j]

77: end if

78: end for

79: DeleteLink(h[i])

80: end if

81: if g[i].type == SubjectToApplicationOf then

82: for each β[j] do

83: if Application(c[i], β[j] then

84: β[j].SubjectToApplicationOf ← c[i]

85: c[i].AppliesTo ← β[j]

86: end if

87: end for

88: DeleteLink(h[i])

89: end if

90: if g[i].type == Con�ictsWith then

91: for each β[j] do

92: if Con�ict(β[j], c[i]) then . If β[j] con�icts with c[i].

93: β[j].Con�ictsWith ← c[i]

94: c[i].Con�ictsWith ← β[j]

95: end if

96: end for

97: end if . The link h[i] is not deleted since the con�ict between α and c[i] should still be indicated, even with α

in the Inactive System.

98: end for

99: Deactivate(α)

100: Return Success

101: end procedure

9.3.2 Textual Description

Artifacts may be broken into two, or more, artifacts through the decomposition process.
This process is composed of two steps: generation of new links and rearrangement of
existing links.

Generating Links

A group of n actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a Rationale for Decompo-
sition P having an artifact α as its target. The artifact P should be homologated for the
Decomposition Process to take place. Following the homologation of P , the r artifacts
de�ned in P � the resulting artifacts of the decomposition � are created (each artifact will
go through the Creation Process); let β = {β1, β2, . . . , βr} be the set of these artifacts.
For each βi ∈ β, a DecomposedFrom link starting in βi and having α as its destination is

6A function which, given two artifacts, returns if the �rst artifact depends on the second artifact.

122

generated. Let B = {b1, b2, . . . , bq} be the group of actors who created β. For each bj ∈ B,
two links are generated: a Decomposed link starting in bj and having α as its destination
and a DecomposedBy link starting in α and having bj as its destination. The successful
homologation of each βi ∈ β, done by a group of actors disjoint of B, is necessary for the
decomposition process to be complete. The parent artifact α and P are moved to the
Inactive System following the homologation of all the artifacts in β.

Rearranging links

Rearrangement of links may be necessary after the replacement of α by the set of artifacts
β. Every link starting, or having α as its destination, should be evaluated.

Let G = {g1, g2, . . . , gr} be the set of links starting in α and let C = {c1, c2, . . . , cr}
the set of destination artifacts of G. Let H = {h1, h2, . . . , hr} be the set of opposite links
to G, starting in C, where gi is opposite to hi.

For each Rei�edFrom link gi, for each βj which contains information propagated from
ci to α, two links are generated: a Rei�edFrom link g∗i starting in βj and having ci as its
destination and a Rei�edTo link h∗i starting in ci and having βj as its destination. All
the information from gi and hi is copied into g∗i and h∗i , respectively. No redirection is
done as it may be necessary to generate multiple copies of hi. Link hi is deleted after the
generation of the last h∗i link.

For each Rei�edTo link gi, for each βj which contains information propagated to ci, two
links are generated: a Rei�edTo link g∗i starting in βj and having ci as its destination and
a Rei�edFrom link h∗i starting in ci and having βj as its destination. All the information
from gi and hi is copied into g∗i and h∗i , respectively. No redirection is done. Link hi is
deleted after the generation of the last h∗i link.

For each DependsOn or DependsOnPartial link gi, for each βj which depends on ci, two
links are generated: a DependsOn or DependsOnPartial link g∗i starting in βj and having
ci as its destination and a NecessaryFor or NecessaryForPartial link h∗i starting in ci and
having βj as its destination. All the information from gi and hi is copied into g∗i and h

∗
i ,

respectively. No redirection is done. Link hi is deleted after the generation of the last h∗i
link.

For each NecessaryFor or NecessaryForPartial link gi, for each βj which is necessary for
ci, two links are generated: a NecessaryFor or DependsOnPartial link h∗i link g

∗
i starting in

βj and having ci as its destination and a DependsOn or DependsOnPartial link h∗i starting
in ci and having βj as its destination. All the information from gi and hi is copied into
g∗i and h

∗
i , respectively. No redirection is done. Link hi is deleted after the generation of

the last h∗i link.
For each AppliesTo link gi, for each βj which applies to ci, two links are generated:

an AppliesTo link g∗i starting in βj and having ci as its destination and a SubjectToAppli-
cationOf link h∗i starting in ci and having βj as its destination. All the information from
gi and hi is copied into g∗i and h

∗
i , respectively. No redirection is done. Link hi is deleted

after the generation of the last h∗i link.
For each SubjectToApplicationOf link gi, for each βj which is subject to the application

of ci, two links are generated: a SubjectToApplicationOf link g∗i starting in βj and having

123

ci as its destination and an AppliesTo link h∗i starting in ci and having βj as its destination.
All the information from gi and hi is copied into g∗i and h∗i , respectively. No redirection
is done. Link hi is deleted after the generation of the last h∗i link.

For each Con�ictsWith link gi, for each βj which contains information con�icting with
ci, two links are generated: a Con�ictsWith link g∗i starting in βj and having ci as its
destination and a Con�ictsWith link h∗i starting in ci and having βj as its destination.
All the information from gi and hi is copied into g∗i and h∗i , respectively. No redirection
is done.

Classi�cation of parts should be redone for each βj; the classi�cation of α into parts
is kept unchanged.

9.4 Creation Process

Let α be an artifact created by a group of actors A. Every newly created artifact starts in
the Inactive System; therefore, α has to go through the Homologation Process to become
part of the Active System; Rationale for Homologation or Rejection artifacts don't go
through the Homologation Process, never being added to the Active System, since they
are kept only for historical reasons. The successful homologation of α results in moving
it from the Inactive System to the Active System.

9.4.1 Algorithm

Let α be an artifact created by a group of actors A = {a1, a2, . . . , an}, where n ≥ 1.
Let List of Artifacts ArtifactsRei�edFrom[] be the set of artifacts from which α was
rei�ed from. Let List of Artifacts ArtifactsAppliesTo[] be the set of artifacts which α

applies to. Let List of Artifacts ArtifactsDependsOn[] be the set of artifacts which α

depends on. Let List of Artifacts ArtifactsDependsOnPartial[] be the set of artifacts which
depends on, but there other artifacts satisfying the same dependency. Let List of Artifacts
ArtifactsNecessaryFor[] be the set of artifacts which α is necessary for. Let List of Artifacts
ArtifactsNecessaryForPartial[] be the set of artifacts which is necessary for, but there other
artifacts satisfying the same dependency. Let List of Artifacts ArtifactsCon�ictsWith[]
be the set of artifacts which α con�icts with. Let Type RationaleType be the type of
rationale α is, if α is a rationale artifact. Let Artifact RationaleTarget be the target
artifact of α, if α is a rationale artifact. Let Artifact ArtifactDecomposedFrom be the
artifact from which α was decomposed from. Let List of ArtifactsComprisedOf[] be the
set of artifacts α is comprised of; i.e., artifact α should be classi�ed into parts. Let
Artifact RationaleForCreation be the Rationale for Creation which justi�es, or justi�es
and described, the creation of α. Any of these parameters may be empty (NULL).

124

Algorithm 5 Creation Process - Part 1/2
1: procedure CreationProcess(Artifact α, Group of Actors A, List of Artifacts ArtifactsRei�edFrom[], Type Rationale-

Type, Artifact RationaleTarget, Artifact ArtifactDecomposedFrom, List of Artifacts ArtifactsAppliesTo[], List of Arti-

facts ArtifactsDependsOn[], List of Artifacts ArtifactsDependsOnPartial[], List of Artifacts ArtifactsNecessaryFor[], List

of Artifacts ArtifactsNecessaryForPartial[], List of Artifacts ArtifactsCon�ictsWith[], List of ArtifactsComprisedOf[],

Artifact RationaleForCreation)

2: for each a[i] ∈ A do

3: α.CreatedBy[i] ← a[i]

4: a[i].Created ← α

5: end for

6: if ArtifactsRei�edFrom[] IS NOT NULL then . Is a rei�cation of other Artifacts.

7: for each ArtifactsRei�edFrom[i] do

8: α.Rei�edFrom[i] ← ArtifactsRei�edFrom[i] . The opposite link is created in the Homologation Process.

9: end for

10: end if

11: if RationaleType IS NOT NULL then . Is a Rationale.

12: α.Type ← RationaleType

13: switch α.Type do

14: case RM

15: α.De�nesModi�cationOf ← RationaleTarget

16: case RR

17: α.De�nesRemovalOf ← RationaleTarget

18: case RD

19: α.De�nesDecompositionOf ← RationaleTarget

20: case RAc

21: α.De�nesActivationOf ← RationaleTarget

22: case RAp

23: α.Justi�esApplicationOf ← RationaleTarget

24: end switch

25: end if

26: if ArtifactDecomposedFrom IS NOT NULL then . Is a decomposition of an Artifact.

27: α.DecomposedFrom ← ArtifactDecomposedFrom

28: end if

29: if ArtifactsAppliesTo[] IS NOT NULL then . Should be applied to other Artifacts.

30: for each ArtifactsAppliesTo[i] do

31: α.AppliesTo[i] ← ArtifactsAppliesTo[i]

32: end for

33: end if

34: if ArtifactsDependsOn[] IS NOT NULL then . Depends on other Artifacts.

35: for each ArtifactsDependsOn[i] do

36: α.DependsOn[i] ← ArtifactsDependsOn[i]

37: end for

38: end if

39: if ArtifactsDependsOnPartial[] IS NOT NULL then

40: for each ArtifactsDependsOnPartial[i] do

41: α.DependsOnPartial[i] ← ArtifactsDependsOnPartial[i]

42: end for

43: end if

44: if ArtifactsNecessaryFor[] IS NOT NULL then . Is necessary for other Artifacts.

45: for each ArtifactsNecessaryFor[i] do

46: α.NecessaryFor[i] ← ArtifactsNecessaryFor[i]

47: end for

48: end if

49: if ArtifactsNecessaryForPartial[] IS NOT NULL then

50: for each ArtifactsNecessaryForPartial[i] do

51: α.NecessaryForPartial[i] ← ArtifactsNecessaryForPartial[i]

52: end for

53: end if

54: if ArtifactsCon�ictsWith[] IS NOT NULL then . Con�icts with other Artifacts.

55: for each ArtifactsCon�ictsWith[i] do

56: α.Con�ictsWith[i] ← ArtifactsCon�ictsWith[i]

57: ArtifactsCon�ictsWith[i].Con�ictsWith ← α

58: end for

59: end if

125

Algorithm 5 Creation Process - Part 2/2
60: if ArtifactsComprisedOf[] IS NOT NULL then . Identifying components of α.

61: for each ArtifactsComprisedOf[i] do

62: α.ComprisedOf[i] ← ArtifactsComprisedOf[i]

63: ArtifactsComprisedOf[i].PartOf ← α

64: end for

65: end if

66: if RationaleForCreation IS NOT NULL then . If it was necessary to justify the creation of α.

67: α.CreationDe�nedBy ← RationaleForCreation

68: RationaleForCreation.De�nesCreationOf ← α

69: end if

70: end procedure

9.4.2 Textual Description

It is necessary to generate traceability links for a newly created artifact. Let α be an
artifact created by a group of actors A = {a1, a2, . . . , an}, where n ≥ 1. For each ai ∈ A,
two links are generated: a CreatedBy link starting in α and having ai as its destination
and a Created link starting in ai and having α as its destination. It may be necessary to
generate more links, as follows.

If α is a rei�cation of other artifacts it will be necessary to generate links. Let β =

{β1, β2, . . . , βm} be the set of m artifacts rei�ed into α. A set of links E = {e1, e2, . . . , em}
is generated, where each ei ∈ E, 1 ≤ i ≤ m, is a Rei�edFrom link starting in α and having
βi ∈ β as its destination.

If α is a rationale type artifact, it will be necessary to generate a link. Let β be the
target of α. If α is an RM, a De�nesModi�cationOf link is generated starting in α and
having β as its destination. If α is an RD, a De�nesDecompositionOf link is generated
starting in α and having β as its destination. If α is an RR, a De�nesRemovalOf link is
generated starting in α and having β as its destination. If α is an RAc, a De�nesActiva-

tionOf link is generated starting in α and having β as its destination. If α is an RAp, a
Justi�esApplicationOf link is generated starting in α and having β as its destination.

If α is a decomposition from another artifact, it will be necessary to generate a link.
Let β be the parent of α; a DecomposedFrom link is generated starting in α and having
β as its destination.

If α should be applied to other artifacts, it will be necessary to generate links. Let
β = {β1, β2, . . . , βm} be the set of m artifacts which α should be applied to; a set of links
E = {e1, e2, . . . , em} is generated where each ei ∈ E, 1 ≤ i ≤ m, is an AppliesTo link
starting in α and having βi ∈ β as its destination.

If α depends on other artifacts, it will be necessary to generate links. Let β =

{β1, β2, . . . , βm} be the set ofm artifacts necessary for α; a set of links E = {e1, e2, . . . , em}
is generated where each ei ∈ E, 1 ≤ i ≤ m, is a DependsOn link starting in α and having
βi ∈ β as its destination. If there is more than one artifact satisfying α, given a certain
dependency, a DependsOnPartial link must be created instead of a DependsOn link.

If α is necessary for other artifacts, it will be necessary to generate links. Let β =

{β1, β2, . . . , βm} be the set ofm artifacts dependent on α; a set of links E = {e1, e2, . . . , em}
is generated where each ei ∈ E, 1 ≤ i ≤ m, is a NecessaryFor link starting in α and having

126

βi ∈ β as its destination. If there are other artifacts satisfying βi ∈ β, given a certain
dependency, a NecessaryForPartial link must be created instead of a NecessaryFor link.

An artifact α may have dependencies which are not ful�lled by any artifact in the
Active System. These dependencies may be ful�lled � after its homologation � through
the creation, modi�cation, or activation of artifacts.

If α has con�icts with other artifacts in the Active or in the Inactive System, it
will be necessary to generate links. Let β = {β1, β2, . . . , βm} be the set of m artifacts
which con�ict with α; two sets of links are generated: E = {e1, e2, . . . , em} and F =

{f1, f2, . . . , fm}. Each ei ∈ E, 1 ≤ i ≤ m, is a Con�ictsWith link starting in α and having
βi ∈ β as its destination. Each fi ∈ F is a Con�ictsWith link starting in βi ∈ β and
having α as its destination.

If it is necessary to identify α's components, let β = {β1, β2, . . . , βm} be the set
of α's components; two sets of links are generated: E = {e1, e2, . . . , em} and F =

{f1, f2, . . . , fm}. Each ei ∈ E, 1 ≤ i ≤ m, is a ComprisedOf link starting in α and
having βi ∈ β as its destination. Each fi ∈ F is a PartOf link starting in βi ∈ β and
having α as its destination.

If it is necessary to justify α's creation, let β be an RC; two links are generated: a Cre-
ationDe�nedBy link starting in α and having β as its destination and a De�nesCreationOf
link starting in β and having α as its destination.

Every newly created artifact starts in the Inactive System; it has to go through the
Homologation Process to become part of the Active System. Rationale for Homologation
or Rejection artifacts don't go through the Homologation Process, never being added to
the Active System, since they are kept only for historical reasons.

9.5 Removal Process

The Removal Process moves an artifact from the Active System to the Inactive System.
Artifacts are never destroyed, they are kept for historical reasons or for possible future
activations. Let α be an artifact which goes through the Removal Process. A group of
actors A creates a Rationale for Removal P having α as its target. The rationale P should
be homologated for the removal process to take place. After the successful homologation
of P , a group of actors B performs the removal described in P by deactivating α. The
removal process may require changes on artifacts related to the removed artifact; for
instance, the removal of a code fragment, e.g. a function, may require removing calls in
other artifacts. The artifact P is then moved to the Inactive System.

9.5.1 Algorithm

A group of actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a Rationale for Removal P
having α as its target. The artifact P should be homologated for the Removal Process to
take place. A group of actors B performs the removal of α.

127

Algorithm 6 Removal Process
1: procedure RemovalProcess(Artifact α, Group of Actors A, Group of Actors B, Rationale for Removal P)

2: ACTION: B performs the removal of α as described in P .7

3: Deactivate(α)

4: for each b[i] ∈ B do

5: α.RemovedBy[i] ← b[i]

6: b[i].Removed ← α

7: end for

8: Deactivate(P)

9: end procedure

9.5.2 Textual Description

Artifacts may be moved from the Active System to the Inactive System through the
Removal Process. A group of n actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a
Rationale for Removal P having α as its target. The artifact P should be homologated
for the Removal Process to take place.

A group of n actors B = {b1, b2, . . . , bq}, where q ≥ 1, performs the removal described
in P by deactivating α. Two sets of links are generated: E = {e1, e2, . . . , eq} and F =

{f1, f2, . . . , fq}. Each ei ∈ E, 1 ≤ i ≤ q, is a RemovedBy link starting in α and having
bi ∈ B as its destination. Each fi ∈ F is a Removed link starting in bi ∈ B and having α
as its destination. The artifact P is then moved to the Inactive System.

The removal process may require changes on artifacts related to the removed artifact;
for instance, the removal of a code fragment (e.g. a function) may require removing calls
in other artifacts.

9.6 Activation Process

The Activation Process enables the activation of inactive artifacts which were previously
rejected during the Homologation Process or removed by the Removal Process. Let α be
an artifact which goes through the Activation Process. A group of actors A creates a
Rationale for Activation P having α as its target. The artifact P should be homologated
for the Activation Process to take place; i.e., a group of actors disjoint from A will decide
if α should be part of the Active System. Following the homologation of P , α is moved
into the Active System. The artifact P is then moved out to the Inactive System.

The activation of an artifact may be contingent upon its modi�cation; i.e., the modi-
�cation makes the artifact useful for the Active System. In this case, the rationale P not
only justi�es the activation of α but also describes the modi�cations to be done on α. The
artifact P should be homologated for the activation process to take place. Following the
homologation of P , a Rationale for Modi�cation Q is created containing the modi�cations
described in P . It is optional to homologate Q; it may be added to the Active System soon
after its creation or it may go through the Homologation Process to ensure it contains the
exact information described in P . The artifact α goes through the Modi�cation Process

7The removal may involve more than just deactivating the Artifact; e.g., the removal of a function
may require removing calls in other artifacts. This example would generate a sequence of modi�cations
in related artifacts.

128

started by Q. A successful modi�cation and homologation of the new version of α results
in the activation of α and the deactivation of P and Q.

9.6.1 Algorithm

A group of actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a Rationale for Activation P
having α as its target. The artifact P should be homologated for the activation process
to take place. If P indicates a modi�cation to be performed on α, let Group of Actors
B and Group of Actors C be the groups of actors which performs and homologates the
modi�cation, respectively.

Algorithm 7 Activation Process - Part 1/2
1: procedure ActivationProcess(Artifact α, Group of Actors A, Group of Actors B, Group of Actors C, Rationale for

Activation P)

2: New Artifact αToBeActivated

3: if P .hasModi�cation == True then . The activation is contingent upon a modi�cation.

4: CreationProcess(Q, A, NULL, "RM", α, NULL, NULL, NULL, NULL, NULL, NULL, NULL) . Creates the

Rationale for Modi�cation Q using information from P .

5: Activate(Q) . Alternatively, Q may go through the Homologation Process to ensure it contains the exact

information described in P .

6: α1 ← Modi�cationProcess(α, B, C, Q) . B performs the modi�cation and C homologates the modi�cation.

7: if α1 != NULL then

8: αToBeActivated ← α1

9: Activate(αToBeActivated)

10: Deactivate(P)

11: Deactivate(Q)

12: else

13: Return NULL

14: end if

15: else

16: αToBeActivated ← α

17: Activate(αToBeActivated)

18: end if

19: if P .ListOfDependents IS NOT NULL then . αToBeActivated is being activated to ful�ll dependencies.

20: for each ListOfDependents[i] do

21: αToBeActivated.NecessaryFor = ListOfNewDependencies[i]

22: ListOfDependents[i].DependsOn ← αToBeActivated

23: end for

24: end if

25: if αToBeActivated.NumberOfUnful�lledDependencies > 0 then . αToBeActivated has unful�lled dependencies.

26: ListOfNewDependencies[] ← GetsListOfNewDependencies(αToBeActivated)

27: for each ListOfNewDependencies[i] do

28: if ListOfNewDependencies[i].partialDependency == False then . Is the only active artifact capable of

satisfying this dependency.

29: αToBeActivated.DependsOn = ListOfNewDependencies[i]

30: ListOfNewDependencies[i].NecessaryFor ← αToBeActivated

31: else

32: αToBeActivated.DependsOnPartial = ListOfNewDependencies[i]

33: ListOfNewDependencies[i].NecessaryForPartial ← αToBeActivated

34: end if

35: αToBeActivated.NumberOfUnful�lledDependencies�

36: end for

37: if αToBeActivated.NumberOfUnful�lledDependencies > 0 then

38: ACTION: Create, modify, or activate Artifacts to ful�ll the dependencies.

39: end if

40: end if

129

Algorithm 7 Activation Process - Part 2/2
41: if αToBeActivated.hasRei�edToLinks == True then . Not the �nal artifact in a rei�cation sequence.

42: ACTION: Create, modify, or activate Artifacts to propagate the information to the Active System.

43: end if

44: if αToBeActivated.hasCon�ictsWithLinks == True then

45: for each αToBeActivated.Con�ictsWith[i] do

46: ListOfActiveArtifacts = IsActive(αToBeActivated.Con�ictsWith[i]) . Checks if any of the con�icting

artifacts are in the Active System.

47: end for

48: if ListOfActiveArtifacts IS NOT NULL then

49: ACTION: Modify or remove the con�icting artifacts from the Active System to solve the con�icts.

50: end if

51: end if

52: Return Success

53: end procedure

9.6.2 Textual Description

Inactive artifacts which were previously rejected during the homologation process, or
removed from the Active System by the Removal Process, may become active through
the Activation Process.

A group of n actors A = {a1, a2, . . . , an}, where n ≥ 1, creates a Rationale for Acti-
vation P having α as its target. The artifact P should be homologated for the activation
process to take place; i.e., a group of actors disjoint from A will decide if α should be
part of the Active System. Following the homologation of P , α is moved into the Active
System. The artifact P is then moved out to the Inactive System.

9.6.2.1 About the Rationale for Activation

The Rationale for Activation stores the reason for the activation of the target artifact,
therefore, it may also store information identifying artifacts related to the target artifact;
e.g., if an artifact is being activated to ful�ll dependencies in the Active System, the
Rationale for Activation will have the list of Artifacts which the target artifact is necessary
for.

An activation may also require the modi�cation of the target artifact; in this case, the
Rationale for Activation stores a complete Rationale for Modi�cation in its description.

9.6.2.2 Activation Contingent upon Modi�cation

The activation of an artifact may be contingent upon its modi�cation; i.e., the modi�ca-
tion makes the artifact useful for the Active System.

A group of n actors A = {a1, a2, . . . , an}, where n ≥ 1, creates an RAc P having α as
its target. The RAc P describes a modi�cation to be done on α. The artifact P should
be homologated for the activation process to take place. Following the homologation of
P , an RM Q is created containing the modi�cations described in P . It is optional to
homologate Q; it may be added to the Active System soon after its creation or it may go
through the homologation process to ensure it contains the exact information described
in P . The artifact α goes through the modi�cation process started by Q. A successful
modi�cation results in the activation of α and the deactivation of P and Q.

130

Generating Links

It may be necessary to generate links after the activation of α, as follows.
If α is being added to the Active System to ful�ll dependencies, links should be gener-

ated. Let β = {β1, β2, . . . , βm} be the set of active artifacts having unful�lled dependencies
which will be ful�lled by α. Two sets of links are generated: E = {e1, e2, . . . , em} and
F = {f1, f2, . . . , fm}. Each ei ∈ E, 1 ≤ i ≤ m, is a NecessaryFor link starting in α and
having βi ∈ β as its destination. Each fi ∈ F is a DependsOn link starting in βi ∈ β and
having α as its destination.

If α has unful�lled dependencies, these should be addressed. If there are artifacts
in the Active System ful�lling all, or part of, α dependencies, the corresponding links
should be generated. Let β = {β1, β2, . . . , βm} be the set of active artifacts capable of
ful�lling dependencies of α; two sets of links are generated: E = {e1, e2, . . . , em} and
F = {f1, f2, . . . , fm}. Each ei ∈ E, 1 ≤ i ≤ m, is a DependsOn or DependsOnPartial link
starting in α and having βi ∈ β as its destination. Each fi ∈ F is a NecessaryFor or
NecessaryForPartial link starting in βi ∈ β and having α as its destination. If there are
still unful�lled dependencies, artifacts must be created, modi�ed, or activated to ful�ll
the remaining dependencies.

If α is not the �nal artifact in a rei�cation sequence, having Rei�edTo links starting
from it, it has information which should be propagated. Since α is in the Inactive System,
the artifacts having their propagated information are also in the Inactive System; hence,
artifacts must be created, modi�ed, or activated to propagate the information contained
in α to the Active System.

If α has Rei�edFrom links starting from it, no action is necessary since the destination
artifacts are in the Inactive System. These links will be kept for historical reasons.

If α has NecessaryFor or NecessaryForPartial links starting from it, having artifacts in
the Inactive System as destination, no action is necessary. These links will be kept for
historical reasons; they may be useful if any of the destination artifacts are activated in
the future.

If α has Con�ictsWith links starting from it, having artifacts in the Active System as
destination, it will be necessary to modify or remove the destination artifacts to solve the
con�icts.

9.7 Application Process

Certain artifacts may be applied to other artifacts. For instance, the application of a test
case on a part of code. Let α be an artifact which goes through the Application Process.
A group of actors A applies α on its targets. The application of α may result in the
creation of one, or more, artifacts; e.g., running a test case may create a log �le recording
the outcome of the test.

9.7.1 Algorithm

A group of actors A = {a1, a2, . . . , an}, where n ≥ 1, applies an artifact α on its targets.

131

Algorithm 8 Application Process
1: procedure ApplicationProcess(Artifact α, Group of Actors A, Rationale for Application P)
2: ACTION: α is applied on its targets. If Artifacts are generated, these are assigned to ListOfArtifacts[].

3: for each a[i] ∈ A do

4: α.AppliedBy[i] ← a[i]

5: a[i].Applied ← α

6: end for

7: if ListOfArtifacts IS NOT NULL then . One or more Artifacts were created during the application of α.

8: for each ListOfArtifacts[i] do

9: α.ApplicationProduces[i] ← ListOfArtifacts[i]

10: ListOfArtifacts[i].ProducedByApplicationOf ← α

11: end for

12: end if

13: end procedure

9.7.2 Textual Description

Certain artifacts may be applied to other artifacts. The application of an artifact may
result in the creation of one, or more, artifacts. For instance, running a test case may
create a log �le recording the outcome of the test.

A group of n actors A = {a1, a2, . . . , an}, where n ≥ 1, applies an artifact α on its
targets. After the application of α, two sets of links are generated: E = {e1, e2, . . . , en}
and F = {f1, f2, . . . , fn}. Each ei ∈ E, 1 ≤ i ≤ n, is an AppliedBy link starting in α and
having ai ∈ A as its destination. Each fi ∈ F is an Applied link starting in ai ∈ A and
having α as its destination.

If the application of α results in the creation of one, or more, artifacts: let β =

{β1, β2, . . . , βm} be the set of m artifacts created as a result of α's application; two sets
of links are generated: G = {g1, g2, . . . , gm} and H = {h1, h2, . . . , hm}. Each gi ∈ G,
1 ≤ i ≤ m, is an ApplicationProduces link starting in α and having βi ∈ β as its
destination. Each hi ∈ H, is a ProducedByApplicationOf link starting in βi ∈ β and
having α as its destination.

9.8 Processes and Permissions

For every action performed by actors in each process, it is assumed the actors involved
have the necessary permission to carry out the action. For instance, if a group of actors
modify an artifact it is presumed they have the permission to do so.

9.8.1 Creating and Updating Permissions

It may be necessary to automatically create or update permissions whenever a process is
performed. General guidelines when assigning permissions to artifacts, for each process,
are shown next.

9.8.1.1 Creation Process

New permissions are assigned to the newly created artifact; the Rules Space from a project
will have the set of rules de�ning which permissions each new artifact should receive. A

132

basic rule would connect permissions between actors and the new artifact, since actors
must be able to manipulate the new artifact which was added to the System Space.

9.8.1.2 Modi�cation Process

The new version inherits the whole, or partial, set of permissions from the old version.
New permissions may also be assigned to the new version; i.e., a modi�ed artifact may
have new characteristics which demand the inclusion of new actors to handle its added
modi�cations, hence, a new group of actors will receive permissions to manipulate it.

9.8.1.3 Decomposition Process

Each of the new artifacts will be assigned the whole, or partial, set of permissions from
its parent artifact. Some permissions may be related to speci�c information in the parent
artifact, hence, these should be inherited only by the artifacts to which this information
was propagated.

9.8.1.4 Homologation, Removal, Activation, and Application Processes

Permissions are unchanged for the processes of homologation, removal, activation and
application.

9.9 Change Impact Analysis and Processes

Traceability processes are very useful for change impact analysis because, while providing
instructions to avoid issues of traceability consistency and system consistency, they reveal
the consequences of actions.

A process may be evaluated as a decision tree; a change may result in multiple paths,
each leading to a leaf node. A leaf node represents the consequences of the change. For
instance, the modi�cation of an artifact α having a DependsOn link connected to artifact
β1 and a Rei�edFrom link connected to artifact β2 generates two paths (see Section 9.1.3):
in the DependsOn path, if β1 is not necessary after the proposed modi�cation, the leaf
node instructs us to delete traceability links and evaluate the usefulness of β1 and maybe
remove it; in the Rei�edFrom path, if α does not contain information from β2 after the
proposed modi�cation, the leaf node instructs us to modify or remove β2, depending if it
propagates, or not, information to other artifacts, respectively.

The assortment of leafs, obtained by following each path caused by a change, provides
the complete set of consequences of an action. This set can be used to evaluate the cost
of a change in the System Space.

Traceability processes, together with traceability links, enable the possibility of eval-
uating the cost of a change, and consequently cancelling a change � having costs which
outweigh its bene�ts � before its implementation; thus, these elements are very useful for
change impact analysis.

133

Chapter 10

Using the Metamodel

In this chapter, we illustrate a partial application of the Metamodel by using it on re-
quirements of a course management system found in [25].1 We found a few problems with
these requirements; we will discuss possible solutions in this chapter.

This chapter is structured as follows: Section 10.1 shows the issues found and how to
�x them by using the Metamodel; and Section 10.2 provides a few closing remarks about
this chapter.

10.1 Con�icts Between Requirements

Issues were found when identifying relations between certain requirements; there are Con-
�ictsWith links connecting the requirements R17 and R74, and requirements R17 and R18.
The requirement R74 determines that only lecturers are allowed to create teams; how-
ever, the requirement R17 allows students to create teams. Requirement R18 provides, in
a more detailed way, the same information as requirement R17; i.e., there is redundant
information in the project. Since every requirement in the document is assumed active,
there are inconsistencies in the System Space; these requirements can not be in the Active
System at the same time (see De�nition 8.2.6 in Chapter 8).

Table 10.1 shows the description of each relevant requirement.

1The complete list of requirements is available at http://bit.ly/reqcms.

134

Table 10.1: Selected Requirements

Requirement Number Requirement Description

R07 The system shall provide a messaging system.

R16 The System shall allow sending messages to individuals, teams or all course

participants at once.

R17 The system shall allow students to create teams.

R18 Teams are created by students inviting other students in the same course

using the messaging system.

R74 The system shall allow only lecturers to create new teams.

R75 The system shall allow lecturers to insert students into teams.

R76 The system shall allow lecturers to remove students from teams.

R77 The system shall allow lecturers to delete teams.

R78 The system shall allow lecturers to assign (assistant) lecturers to teams.

R79 The system shall allow lecturers to name and rename teams.

First, let's identify relevant relations; Table 10.2 shows the pairs of traceability links
connecting the requirements. The �rst and the third column show the requirement num-
ber; the second column shows the pair of traceability links connecting the requirements
from the �rst and second column.

Table 10.2: Requirements - Traceability Links.

Requirement Number Traceability Link Pair Requirement Number

R07 NecessaryFor/DependsOn R16, R18

R16 NecessaryFor/DependsOn2 R18

R17 Con�ictsWith/Con�ictsWith R18, R74

R17 NecessaryForPartial/DependsOnPartial R75, R76, R77, R78, R79

R18 Con�ictsWith/Con�ictsWith R74

R18 NecessaryForPartial/DependsOnPartial R75, R76, R77, R78, R79

R74 NecessaryForPartial/DependsOnPartial R75, R76, R77, R78, R79

There are NecessaryFor/DependsOn pairs of links between requirements R07 and
R16, and between requirements R07 and R18; a messaging system must exist to en-
able sending messages to individuals and to invite students to a team. There is a
NecessaryFor/DependsOn pair of links between requirements R16 and R18; a student
must be allowed to send messages to invite other students. Requirement R18 also al-
lows students to create teams and details how they can do it; thus, there is a Con-
�ictsWith pair of links between R17 and R18 indicating redundant information. There

2Invitation is considered a message.

135

are Con�ictsWith links between R74 and R17 since they are contradictory; require-
ment R74 determines that only lecturers should be allowed to create teams and R17
allows students to create teams. Con�ictsWith links also exist between R74 and R18,
for the same reasons there are Con�ictsWith links between R74 and R17. There are
NecessaryForPartial/DependsOnPartial pairs of links between requirements R74 and re-
quirements R75 to R79; student teams must exist to be managed by the lecturer. Analo-
gously, there are NecessaryForPartial/DependsOnPartial pairs of links between requirements
R17 and requirements R75 to R79, and between requirements R18 and requirements R75
to R79. These are partial links because three requirements � R17, R18, and R74 � ensure
the existence of student teams.

There are no Accountability or Permission links since there are no identi�cation of
actors in the document. There are no Evolution links of the rei�cation type since there is
only one activity being represented by the artifacts. Evolution links of the modi�cation
type, Characterize Action links, and Action Outcome links could exist if the document
was created in the context of the Metamodel. There are no Composition links identi�ed
in this particular set of requirements.

The con�icts must be solved; there are several ways to �x these inconsistencies. Con-
cerning the con�ict between requirements R17 and R18, a simple solution would be to
remove requirement R17; i.e., keeping the requirement which provides more information,
comparatively. This action also solves the con�ict between R17 and R74. Given this set of
requirements, there are no necessary actions resulting from removing R17. After remov-
ing requirement R17, the con�ict between R18 and R74 must be solved. Let's evaluate
possible solutions for the remaining con�ict

10.1.1 Removing Requirement R18

A possible solution is to remove requirement R18, disallowing students from creating
teams. A Rationale for Removal is created having R18 as its target; this Rationale
has to be homologated for the removal to occur. The process �Assessing the Impact of
Homologating a Rationale for Modi�cation or a Rationale for Removal� is used to evaluate
possible consequences and solutions for this action (see Section 9.1.3 in Chapter 9). A
Rationale for Removal is being assessed, so we go from line 2 of Algorithm 2 to line
99; there are DependsOn links starting in R18 (line 103). Requirement R18 depends on
requirements R07 and R16; however, since these requirements do not exist exclusively to
ful�ll R18's dependency, no action is necessary (line 104); the messaging system has other
uses besides inviting students to teams, and students should be able to send messages
even if they are not allowed to create teams. There are NecessaryForPartial links starting
in R18. The assessment process determines that no action is necessary; there are other
artifacts to satisfy the same dependency, given it is a partial link (�fth paragraph of the
textual description of Algorithm 2).

136

10.1.2 Modifying Requirement R74

Another solution is to modify requirement R74 to allow non-lecturers to create teams.
The word �only� would be deleted from the requirement description. However, the project
would then allow lecturers to create empty teams and students would be able to create
teams by inserting other students into them. A more elegant solution is to modify R74
by removing the word �only�, adding students to its description, and removing require-
ment R18. This solution is also simpler if we decide to allow students to perform the
team management activies speci�ed by requirements R75, R76, R77, and R79. However,
this would generate Con�ictsWith links between requirements R75 and R18; both would
contain the information that students may insert other students into teams.

A Rationale for Modi�cation is created having R74 as its target; this Rationale has
to be homologated for the modi�cation to occur. The process �Assessing the Impact of
Homologating a Rationale for Modi�cation or a Rationale for Removal� is used. There are
NecessaryForPartial links starting in R74, having requirements R75�R79 as their destina-
tion; however, the modi�cation does not a�ect the dependency relation between R74 and
these requirements; thus, no action is necessary (line 14 of Algorithm 2). The modi�ed
requirement R74 is shown next.

R74 The system shall allow lecturers and students to create new teams.

Requirement R18 must be removed; this action was described in Section 10.1.1. This
leads to every NecessaryForPartial/DependsOnPartial pair of links connected to requirement
R74 to be treated as non-partial; there are no other partial pair of links in the Active
System representing the same information.

Requirements R75, R76, R77, and R79 deal with team management; it makes sense
to allow students to perform these tasks, given that they are allowed to create teams.
In this case, Rationales for Modi�cation should be created targeting these requirements.
The modi�cation would add students as agents in these requirements. The modi�ed
requirements are shown next.

R75 The system shall allow lecturers and students to insert students into teams.

R76 The system shall allow lecturers and students to remove students from teams.

R77 The system shall allow lecturers and students to delete teams.

R79 The system shall allow lecturers and students to name and rename teams.

This modi�cation generates a con�ict, as mentioned previously: the new version of
requirement R75 is in con�ict with requirement R18. Lines 81 to 86 of Algorithm 1
(Homologation Process) determine the generation of Con�ictsWith between requirements
R75 and R18. Since requirement R18 was removed, there are no con�icts between artifacts
in the Active System; thus, no more actions are necessary.

137

10.1.3 Removing Requirement R18 and Requirement R74

A reestructuring of the requirements, to improve their quality and solve the con�icts,
could lead to removing both requirements R18 and R74; however, students teams should
still exist and someone should be able to create them.

First, requirement R18 is removed; this was described in Section 10.1.1. A Ratio-
nale for Removal is created having R74 as its target; this Rationale has to be homolo-
gated for the removal to occur. Given the removal of requirements R17 and R18, the
NecessaryForPartial/DependsOnPartial pairs of links connecting requirement R74 to re-
quirements R75 to R79 should be treated as non-partial.

The Removal Process will happen after the homologation of the Rationale for Re-
moval having requirement R74 as its target. Its homologation should be assessed by
Algorithm 2. Requirement R74 is necessary for requirements R75 to R79. Line 101 pro-
poses three alternatives: modify R75�R79 to end their dependency to requirement R74,
remove requirements R75�R79 from the Active System, or create/modify/activate arti-
facts to satisfy R75�R79. These requirements will not be modi�ed or removed. Thus, a
new artifact will be created containing the information from requirements R17, R18, and
R74; i.e., an artifact will be created to satisfy requirements R75�R79.

After the removal of requirement R74, a Rationale for Creation is created containing
the following information: (i) it should satisfy R75 to R79 by allowing the creation of
teams, (ii) it should allow lecturers and students to create teams, and (iii) students are
added to teams by invitation (students) or by being added manually (lecturers). Since
requirement R75 already provides (iii) for lecturers, this requirement will have to be
removed to avoid a redundancy con�ict. The new requirement is shown next.

R74-2 The system shall allow lecturers and students to create new teams; teams are

�lled by students invited by the team creator (if student) or by direct assignment

(if lecturer).

Traceability links must be created: lines 44�48 of Algorithm 5 (Creation Process)
determine the generation of four NecessaryFor links starting in requirement R74-2 and
having requirements R76, R77, R78, and R79, as their destination. The opposite links
are generated during the homologation of requirement R74-2; lines 57�61 of Algorithm 1
(Homologation Process) determine the generation of four DependsOn links starting in
requirements R76, R77, R78 and R79, and having requirement R74-2 as their destination.

Also, lines 54�59 of Algorithm 5 determine the generation of a Con�ictsWith pair
of links between requirement R74-2 and requirement R75; both requirements describe
the insertion of students into teams. The subsequent homologation of requirement R74-
2 identi�es the con�ict and determines the removal of requirement R75 (lines 78�80 of
Algorithm 1). Therefore, a Rationale for Removal is created having requirement R75 as
its target; after its homologation the artifact is removed from the Active System.

138

10.2 Closing Remarks

This chapter intends to illustrate the use of the Metamodel in a project. The Metamodel
may be used to �x existing issues, as it was used here; however, the issues found in these
artifacts could be avoided by using the Metamodel from the beginning of this project.
These con�icts would be identi�ed previously, during the Creation Process of the related
artifacts, avoiding the generation of con�icts altogether.

These redundancy con�icts resulted in the generation of partial links; it may seem
that partial links occur only whenever there is redundant information. However, it is
not always the case; distinct sets of blocks of information may satisfy the same artifact.
For instance, a contradictory information con�ict may generate partial links of depen-
dency. Consider this example provided in Chapter 3: two distinct requirements require
the project to use exclusively IIS servers and Apache Servers, respectively. These require-
ments provide contradictory information in which a third requirement is dependent on;
thus, two NecessaryForPartial/DependsOnPartial pairs of links would connect these three
requirements.

Finally, this chapter also shows how the Metamodel enables the comparison of di�erent
solutions; the impact of a change may be assessed beforehand, enabling an informed
decision regarding changes. In this case, we have proposed three di�erent solutions to
solve the con�icts found; each solution could be evaluated by itself, or comparatively,
before being implemented.

139

Part IV

Conclusion

140

Chapter 11

Conclusions, Limitations, and Future

Work

We have identi�ed a number of issues in current traceability models, such as: lack of
description of link types and artifact types; lack of mechanisms to ensure consistency;
missing link types for modeling common relations; and missing common activities of
software development processes. These issues make most models incomplete or even un-
usable; for instance, link types lacking clear descriptions can not be mapped into relations
in a project, and lack of mechanisms result in erroneous � and consequently unusable �
traceability information after changes.

To address these issues we have devised a traceability Reference Model to support
the creation, and evaluation, of traceability models. We identi�ed the basic elements of
traceability, basic properties, and basic sets of these elements. For instance, we have
noticed how actions are intrinsically connected to link types and processes; thus, estab-
lishing the actions being contemplated by a model is essential to de�ne these elements.
We have de�ned the most common actions in software development and used them in the
construction of sets of link types and processes for traceability. We have also established
basic properties for the sets of link types and artifact types; these are useful when creating
new sets or when evaluating existing sets.

The Reference Model was used to build a Metamodel for traceability; the Metamodel
implements the Reference Model and expands on what it de�nes. The Metamodel is
composed of a detailed conceptual model describing and organizing the elements of trace-
ability; a set of artifact types to represent the most common activities of development
or to record valuable traceability information; a set of link types describing di�erent
relations; and traceability processes to ensure traceability and system consistency. The
Metamodel contemplates the seven actions de�ned in the Reference Model plus the action
of Activation.

Both models were used as evaluation tools: the Reference Model was used to evaluate
two relevant contributions in the literature; the Metamodel was used to evaluate a set of
requirements of a course management system. In the former, we have gained knowledge
about common �aws of traceability models; in the latter, we have gained knowledge on
the usefulness of the Metamodel, and how partial link types and con�icts relate to each

141

other. By using the models, we intended to exemplify how to use them and also provide
a basic proof of concept.

We have also proposed new concepts and de�nitions for traceability, such as trace-
ability consistency and comprehensiveness of types; these are provided throughout this
text. We have also discussed topics we could not �nd in the literature, such as modeling
relations by using one or two link types.

11.1 Reviewing the Contribution

In Chapter 2, we describe a literature review focused on traceability. We did not aim
for the review to be all-encompassing; i.e., �nding all existing works in traceability. It
had two goals: to provide su�cient understanding on the topic, and to enable us to
discover existing issues for which we could propose solutions. A set of 6633 papers was
discovered and evaluated; a selection of 212 papers was considered of direct interest. A
deeper inspection led to selecting a set of 22 papers that we deemed to be the most closely
aligned to our research interest.

As a result of the review, we have found that most model-based papers: (i) lack well-
de�ned traceability link types, making the model di�cult or even impossible to use; (ii)
provide incomplete coverage of situations by not modeling the most common relations be-
tween elements; (iii) do not provide mechanisms to ensure traceability and system consis-
tency after changes; (iv) consider only requirements traceability, ignoring other activities
of the development process; and (v) lack new concepts and properties for traceability.

In Chapter 3, we propose a Reference Model for traceability; it aims to help with the
issues identi�ed in the literature review by de�ning: the basic elements in a traceability
model, how they interact with each other, and the necessary properties to enable the
practical use of a model in a software development project. Given these basic elements,
it de�nes basic sets of actions, link types, artifact types, and processes; each set contains
the minimum necessary elements for general use. The set of actions de�nes the minimum
set of actions which should be considered by a model. The set of link types de�nes the
minimum set of relations which should be considered by a model. The set of artifact
types contains a set of traceable elements which are common in development processes.
The set of processes is the minimum set of mechanisms � which a model should have �
to ensure consistency in a project. Finally, necessary properties for the sets of link types
and artifact types are also de�ned.

In Chapter 4, we use the Reference Model to evaluate two relevant contributions in
model-based traceability: an empirical paper from Ramesh and Jarke [53] and a set of
papers by Goknil et al. [23, 21, 22, 24, 25]. Our evaluation focuses on the basic elements
in a traceability model: link types, artifact types, and processes. The link types and
artifact types of the contribution are mapped to the basic types de�ned in our Reference
Model and evaluated on: level of description and the how they ful�ll the three necessary
properties. The processes are evaluated on coverage of basic actions and capacity to
ensure consistency. We also discuss strengths and/or limitations of each contribution.

142

In Chapters 5�9, we propose a Metamodel for traceability constructed on top of the
Reference Model proposed in Chapter 3. By using the Reference Model as a basis, we
hope to provide a model which does not have the issues found in the literature review.
The Metamodel also expands on what was de�ned in the Reference Model by providing: a
conceptual model and abstractions of its elements, more speci�c link types, a new action,
a complementary process for one of the basic processes, formalizations of the link types
built on the elements de�ned in the conceptual model, and new artifact types which are
useful to record valuable traceability information.

The conceptual model is de�ned in detail, where each abstraction is described to its
smallest elements. This enabled the formal de�nition of the actions, the artifact types,
and the link types. The general link types of the Reference Model are expanded to speci�c
types. Also, a new subtype is proposed: the partial link type; this subtype is useful for
situations where multiple artifacts provide the same information. The Activation action
is a new action in the Metamodel, being useful to bring inactive artifacts to the Active
System. The process for assessing the homologation of two types of Rationales is added to
the set of processes of the Metamodel; this process is essential for change impact analysis
and to avoid the introduction of inconsistencies in the System Space. Each link type of
the set of link types is described and formalized given the basis provided by the conceptual
model; this is done to help avoiding ambiguities when mapping the link types to relations
between elements of a project. The new artifact types � the Rationale types � are provided
to enable recording traceability information such as rationale and description of actions.

The Metamodel is described in the following chapters: in Chapter 5, an outline of the
Metamodel is provided. In Chapter 6, the conceptual model is described and de�ned;
the actions contemplated by the Metamodel are also de�ned here. In Chapter 7, seven
new artifact types are de�ned. In Chapter 8, all �fty-nine link types of the Metamodel,
realizing the general link types of the Reference Model, are described in detail. Finally,
in Chapter 9, eight processes, realizing the basic processes of the Reference Model, are
described as algorithms and as detailed textual descriptions.

In Chapter 10, we use the Metamodel to identify issues with a set of requirements for
a course management system. This chapter aims to illustrate the use of the Metamodel
and exemplify how to use the processes. However, this example is not robust enough to
detail every single aspect of the Metamodel; a working project having used the Meta-
model from the beginning, containing a speci�c state of development (having active and
inactive artifacts), actors which interacted with the project, and prede�ned rules, would
be necessary to demonstrate all details of our contribution. Still, we hope this illustration
of how to use the Metamodel helps in its understanding.

In conclusion, we hope this contribution helps to strengthen common practice of trace-
ability; the Reference Model aims to provide guidelines to create, or evaluate, traceability
models by providing concepts, de�ning basic elements, and describing how these elements
relate to each other. The Metamodel works as a proof of concept of the Reference Model
and aims to provide a useful traceability model for software development projects.

143

11.2 Simplifying the Metamodel

The Metamodel may be simpli�ed according to the speci�c needs of a project. Some
projects may need a leaner approach, choosing to change, or not to use, certain elements
of the Metamodel.

Rationale artifact types may be simpli�ed according to necessity. For instance, a
Rationale for Modi�cation can be changed to describe only a modi�cation, removing the
justi�cation of the action; however, this simpli�cation results in traceability information
loss and, by describing only the modi�cation, the Rationale artifact loses the property
that makes it a Rationale type.

Simplifying an element may result in customizations of other related elements; e.g., if
the Rationale for Modi�cation is changed to describe only the modi�cation, it is necessary
to adapt the de�nitions of a few related link types accordingly.

Link types may be discarded according to the needs of a project. Discarding certain
elements may also cause the need to discard related link types. For instance, a project
may choose not to use Rationale artifacts and, consequently, it will not use link types
which connect rationales to other elements; or a project may choose not to allow the
decomposition of artifacts and, therefore, it will not use decomposition-related link types.

Simpli�cation of the link types may incur in traceability information loss; hence, de-
cisions should take into account the traceability cost of removing certain link types.

Like the previous elements, processes may be customized as needed. A few examples:
a project may avoid homologating newly created artifacts; a project may use the Homolo-
gation Process but not the assessment of RMs and RRs; a project may not use Rationale
types, modifying the processes accordingly; a project may not keep previous versions of
modi�ed artifacts by customizing the modi�cation process.

There are simpli�cations which do not truly reduce e�ort; there is information which
will still exist, and be necessary, even if the decision to simplify the Metamodel is taken.
For instance, if a project does not uses Rationale types and a decomposition occurs, it loses
the capacity to record the justi�cation for the decomposition and the description of how
the decomposition should be made; however, the actors in charge of the decomposition still
need to know how the artifact should be broken into multiple artifacts. Hence, removing
the Rationale for Decomposition may not really ease the e�ort since the information it
records is still needed for the action to be taken. The information will subsequently be
lost, but it will exist while the action is being performed. Succintly, the information
exists, and is needed, independently of using this artifact type; thus, there is only loss of
traceability information by choosing not to use it.

Other customizations may simplify the Metamodel at the expense of added risks.
For instance, if a project does not use the Homologation Process and the corresponding
rationale type, there is a higher risk of generating problems such as broken dependencies
or con�icts. Moreover, the justi�cation for adding an artifact to the system (homologating
a non-rationale type), or the justi�cation to perform an action (homologating a rationale
type), will also not be recorded. This lost information may be essential to avoid related
issues in the future.

144

On the other hand, there are certain aspects of the Metamodel which may not be
possible or desirable for every project. For instance, the Homologation Process requires
another actor(s) checking for correctness, necessity, impact on other artifacts, generation
of consistency issues, and so on. This kind of veri�cation by another group of actors is not
always possible or desirable for smaller projects; thus, each project should decide which
parts of the Metamodel are useful for them.

In conclusion, each project should assess which loss of information, and added risks,
are acceptable when simplifying the Metamodel. Some simpli�cations do not really ease
the e�ort of using the Metamodel, some simpli�cations incur loss of traceability informa-
tion and/or added risks as consequences, and some simpli�cations are needed for speci�c
projects.

11.3 Future Work and Limitations

Improving the Properties of Link Types and Artifact Types. There are limi-
tations in the proposed work. The properties of link types and artifact types are well
de�ned but lack formalism; also, there is substantial subjectivity when identifying if a set
lacks, and how much it lacks, a property. A more formal de�nition and more detailed, and
rigorous, rules to perform evaluations by using the properties are needed. This should be
investigated in the future.

Using the Metamotel in a Project in the Industry. The application of the Meta-
model on requirements of a course management system serves as basic proof of concept;
however, a more thorough application of the Metamodel � by using it in a working project
from the industry � would be useful to identify weaknesses, missing link types, missing
concepts and elements in the Traceability Space, etc. It would be easier to use the Meta-
model from the beginning of a project; depending on the size of a project, inserting the
Metamodel in a working project could cause a considerable amount of e�ort, since all
existing relations, artifacts, and if they are active or inactive, would have to be identi�ed
before any changes are done, or changes would have to be recorded in detail to update
the Traceability Space accordingly.

Proposing Metrics Taking Into Account the Traceability Space. There are sev-
eral aspects which may be improved and developed in our proposal. Metrics could be
created by taking into account information which may be inferred from the Traceability
Space of a project; a few starting suggestions are provided in Section 6.8 in Chapter 6, such
as: the identi�cation of overworked actors by comparing each actor number of Account-
ability links, or identi�cation of relevant Artifacts in a project by counting the number of
NecessaryFor links starting in it; this also enables the possibility of selecting this Artifact
for decomposition.

Developing Supporting Tools. Tools could be developed to support the Reference
Model and the Metamodel. A tool to support the Reference Model could help in the

145

evaluation and creation of traceability models; a tool to support the Metamodel could
provide: semi-automated use of the processes, recording of all traceability links between
artifacts and actors, change impact analysis, among other functionalities. A simple tool
for the Metamodel would record the artifacts, the links between them, and identify a
few common inconsistencies; a more useful tool would provide the steps necessary to
ensure consistency given a change, automatically update traceability links, rate the cost
of a change taking into account each di�erent recommended path to keep the project
consistent, and identify inconsistencies in a working project.

Extending the Sets of Link Types and Artifact Types. The sets of link types and
artifact types of the Metamodel could be extended to cover more domains, such as safety-
focused projects, or to increase its comprehensiveness and speci�city; e.g., the dependency
relation could be modeled by more link types, representing di�erent types of dependency
between artifacts. Currently, the dependency relation is not speci�ed; however, there may
be several types of dependencies which could be identi�ed, such as existential dependency
and dependency on the previous application of an artifact.

Investigating the Graph Structure of the System Space. New angles could be
explored given the graph structure of the System Space. Paths, or trees, built by trace-
ability links could be studied for change impact analysis; for instance, do homogeneous
paths � same link type, or similar link type � and heterogeneous paths � di�erent link type
� have di�erent properties concerning impact of changes? That is, are there properties
which may be assessed from a System Space graph that could be useful for change impact
analysis? Are there properties which may be assessed given other types of analysis?

Adding New Concepts. Finally, new concepts and elements to enrich traceability
focusing in reducing subjectivity could be investigated; traceability, while being a topic
of research for over 40 years, still does not have a strong conceptual basis.

146

Bibliography

[1] F. Abbors, A. Bäcklund, and D. Truscan. Matera - an integrated framework for
model-based testing. In 2010 17th IEEE International Conference and Workshops

on Engineering of Computer Based Systems, pages 321�328, March 2010.

[2] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model traceabil-
ity. IBM Systems Journal, 45(3):515�526, 2006.

[3] G. Alaa and Z. Samir. A multi-faceted roadmap of requirements traceability types
adoption in scrum: An empirical study. In 2014 9th International Conference on

Informatics and Systems, pages SW�1�SW�9, Dec 2014.

[4] Joachim Bayer and Tanya Widen. Introducing traceability to product lines. In Frank
van der Linden, editor, Software Product-Family Engineering, pages 409�416, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[5] B. Berenbach and Timo Wolf. A uni�ed requirements model; integrating features, use
cases, requirements, requirements analysis and hazard analysis. In Global Software

Engineering, 2007. ICGSE 2007. Second IEEE International Conference on, pages
197�203, Aug 2007.

[6] A. F. Binti Arbain, I. Ghani, and W. M. N. Wan Kadir. Agile non functional re-
quiremnents (nfr) traceability metamodel. In 2014 8th. Malaysian Software Engi-

neering Conference (MySEC), pages 228�233, Sep. 2014.

[7] B. W. Boehm. Software engineering. IEEE Trans. Comput., 25(12):1226�1241, De-
cember 1976.

[8] Rafael Capilla, Olaf Zimmermann, Uwe Zdun, Paris Avgeriou, and Jochen M. Küster.
An enhanced architectural knowledge metamodel linking architectural design deci-
sions to other artifacts in the software engineering lifecycle. In Ivica Crnkovic, Volker
Gruhn, and Matthias Book, editors, Software Architecture, pages 303�318, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[9] J. Cleland-Huang, G. Zemont, and W. Lukasik. A heterogeneous solution for im-
proving the return on investment of requirements traceability. In Requirements En-

gineering Conference, 2004. Proceedings. 12th IEEE International, pages 230�239,
Sept 2004.

147

[10] Jane Cleland-Huang, Carl K. Chang, and Je�rey C. Wise. Automating performance-
related impact analysis through event based traceability. Requir. Eng., 8(3):171�182,
2003.

[11] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. Software and Systems Trace-
ability. Springer Publishing Company, Incorporated, 2012.

[12] Jane Cleland-Huang and David Schmelzer. Dynamically tracing non-functional re-
quirements through design pattern invariants. Workshop on Traceability in Emerging

Forms of Software Engineering, in conjunction with IEEE International Conference

on Automated Software Engineering, 2003.

[13] Diego Dermeval, Jaelson Castro, Carla Silva, João Pimentel, Ig Ibert Bittencourt,
Patrick Brito, Endhe Elias, Thyago Tenório, and Alan Pedro. On the use of meta-
modeling for relating requirements and architectural design decisions. In Proceedings

of the 28th Annual ACM Symposium on Applied Computing, SAC '13, pages 1278�
1283, New York, NY, USA, 2013. ACM.

[14] Jessica Díaz, Jennifer Pérez, Juan Garbajosa, and Alexander L. Wolf. Change im-
pact analysis in product-line architectures. In Ivica Crnkovic, Volker Gruhn, and
Matthias Book, editors, Software Architecture, pages 114�129, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[15] A. J. J. Dick. Evidence-based development - coupling structured argumentation with
requirements development. In 7th IET International Conference on System Safety,

incorporating the Cyber Security Conference 2012, pages 1�5, Oct 2012.

[16] H. Dubois, M. A. Peraldi-Frati, and F. Lakhal. A model for requirements traceability
in a heterogeneous model-based design process: Application to automotive embedded
systems. In 2010 15th IEEE International Conference on Engineering of Complex

Computer Systems, pages 233�242, March 2010.

[17] A. P. . Eberlein, M. J. Crowther, and F. Halsall. Rats: a software tool to aid the tran-
sition from service idea to service implementation. In Proceedings of GLOBECOM'96.

1996 IEEE Global Telecommunications Conference, volume 3, pages 1991�1995 vol.3,
Nov 1996.

[18] Angelina Espinoza, Goetz Botterweck, and Juan Garbajosa. A formal approach to
reuse successful traceability practices in spl projects. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC '10, pages 2352�2359, New York, NY, USA,
2010. ACM.

[19] I Galvao and A Goknil. Survey of traceability approaches in model-driven engineer-
ing. In Enterprise Distributed Object Computing Conference, 2007. EDOC 2007.

11th IEEE International, pages 313�313, Oct 2007.

[20] H. E. ghazi. Mv - tmm: A multi view traceability management method. In 2008

32nd Annual IEEE International Computer Software and Applications Conference,
pages 247�254, July 2008.

148

[21] Arda Goknil, Ivan Kurtev, Klaas Berg, and Jan-Willem Veldhuis. Semantics of trace
relations in requirements models for consistency checking and inferencing. Software
and Systems Modeling (SoSyM), 10(1):31�54, February 2011.

[22] Arda Goknil, Ivan Kurtev, and Jean-Vivien Millo. A metamodeling approach for
reasoning on multiple requirements models. In Proceedings of the 2013 17th IEEE

International Enterprise Distributed Object Computing Conference, EDOC '13, pages
159�166, Washington, DC, USA, 2013. IEEE Computer Society.

[23] Arda Goknil, Ivan Kurtev, and Klaas van den Berg. A Metamodeling Approach for

Reasoning about Requirements, pages 310�325. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[24] Arda Goknil, Ivan Kurtev, and Klaas Van Den Berg. Generation and validation
of traces between requirements and architecture based on formal trace semantics.
Journal of Systems and Software, 88:112�137, February 2014.

[25] Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Wietze Spijkerman. Change
impact analysis for requirements: A metamodeling approach. Information & Software

Technology, 56(8):950�972, 2014.

[26] O. C Z Gotel and A C W Finkelstein. An analysis of the requirements traceability
problem. In Requirements Engineering, 1994., Proceedings of the First International

Conference on, pages 94�101, Apr 1994.

[27] Sol J. Greenspan and Clement L. McGowan. Structuring software development for
reliability. Microelectronics Reliability, 17(1):75 � 83, 1978.

[28] S. Haidrar, A. Anwar, and O. Roudies. Towards a generic framework for require-
ments traceability management for sysml language. In 2016 4th IEEE International

Colloquium on Information Science and Technology (CiSt), pages 210�215, Oct 2016.

[29] J. Han. Tram: a tool for requirements and architecture management. In Proceedings

24th Australian Computer Science Conference. ACSC 2001, pages 60�68, Jan 2001.

[30] D. Hetherinton. Sysml requirements for training game design. In 17th International

IEEE Conference on Intelligent Transportation Systems (ITSC), pages 162�167, Oct
2014.

[31] E. Horowitz and R. C. Williamson. Sodos: A software documentation support envi-
ronment - its use. IEEE Transactions on Software Engineering, SE-12(11):1076�1087,
Nov 1986.

[32] E. Horqwitz and R. C. Williamson. Sodos: A software documentation support envi-
ronment - its de�nition. IEEE Transactions on Software Engineering, SE-12(8):849�
859, Aug 1986.

149

[33] Y. Hu and B. Panda. Two-dimensional traceability link rule mining for detection of
insider attacks. In 2010 43rd Hawaii International Conference on System Sciences,
pages 1�9, Jan 2010.

[34] IEEE. 830-1998 - IEEE recommended practice for software requirements speci�ca-
tions. Acessed February 21 2015.

[35] W. Jirapanthong and A. Zisman. Supporting product line development through
traceability. In 12th Asia-Paci�c Software Engineering Conference (APSEC'05),
pages 9 pp.�, Dec 2005.

[36] M. Kassab, O. Ormandjieva, and M. Daneva. A traceability metamodel for change
management of non-functional requirements. In 2008 Sixth International Conference

on Software Engineering Research, Management and Applications, pages 245�254,
Aug 2008.

[37] M. Kassab, O. Ormandjieva, and M. Daneva. A metamodel for tracing non-functional
requirements. In 2009 WRI World Congress on Computer Science and Information

Engineering, volume 7, pages 687�694, March 2009.

[38] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Processes and

Techniques. Wiley Publishing, 1st edition, 1998.

[39] Patricio Letelier, Elena Navarro, and Víctor Anaya. Customizing traceability in a
software development process. In Olegas Vasilecas, Wita Wojtkowski, Joºe Zupan£i£,
Albertas Caplinskas, W. Gregory Wojtkowski, and Stanisªaw Wrycza, editors, Infor-
mation Systems Development, pages 137�148, Boston, MA, 2005. Springer US.

[40] Mikael Lindvall and Kristian Sandahl. Practical implications of traceability. Softw.
Pract. Exper., 26(10):1161�1180, October 1996.

[41] P. Mäder, O. Gotel, and I Philippow. Getting back to basics: Promoting the use
of a traceability information model in practice. In Traceability in Emerging Forms

of Software Engineering, 2009. TEFSE '09. ICSE Workshop on, pages 21�25, May
2009.

[42] Patrick Mäder, Ilka Philippow, and Matthias Riebisch. Customizing traceability links
for the uni�ed process. In Sven Overhage, Clemens A. Szyperski, Ralf Reussner, and
Judith A. Sta�ord, editors, Software Architectures, Components, and Applications,
pages 53�71, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[43] P. Maeder, I. Philippow, and M. Riebisch. A traceability link model for the uni�ed
process. In Eighth ACIS International Conference on Software Engineering, Arti-

�cial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007),
volume 3, pages 700�705, July 2007.

[44] Ivano Malavolta, Henry Muccini, and V. Smrithi Rekha. Supporting architectural de-
sign decisions evolution through model driven engineering. In Elena A. Troubitsyna,

150

editor, Software Engineering for Resilient Systems, pages 63�77, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[45] Kannan Mohan, Peng Xu, Lan Cao, and Balasubramaniam Ramesh. Improving
change management in software development: Integrating traceability and software
con�guration management. Decision Support Systems, 45(4):922 � 936, 2008. Infor-
mation Technology and Systems in the Internet-Era.

[46] Sunil Nair, Jose Luis de la Vara, Alberto Melzi, Giorgio Tagliaferri, Laurent de-la
Beaujardiere, and Fabien Belmonte. Safety evidence traceability: Problem analysis
and model. In Camille Salinesi and Inge van de Weerd, editors, Requirements En-

gineering: Foundation for Software Quality, pages 309�324, Cham, 2014. Springer
International Publishing.

[47] Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel Briand, and Thierry Coq.
A sysml-based approach to traceability management and design slicing in support
of safety certi�cation: Framework, tool support, and case studies. Information and

Software Technology, 54(6):569 � 590, 2012.

[48] Richard F. Paige, Gøran K. Olsen, Dimitrios S. Kolovos, Ste�en Zschaler, and
Christopher Power. Building model-driven engineering traceability classi�cations.
In ECMDA Traceability Workshop (ECMDA-TW) 2008 Proceedings, pages 49�58,
2008.

[49] R. K. Panesar-Walawege, M. Sabetzadeh, L. Briand, and T. Coq. Characterizing
the chain of evidence for software safety cases: A conceptual model based on the
iec 61508 standard. In 2010 Third International Conference on Software Testing,

Veri�cation and Validation, pages 335�344, April 2010.

[50] S. L. P�eeger and S. A. Bohner. A framework for software maintenance metrics. In
Proceedings. Conference on Software Maintenance 1990, pages 320�327, Nov 1990.

[51] B. Ramesh, D. Dwiggins, G. DeVries, and M. Edwards. Towards requirements trace-
ability models. In Systems Engineering of Computer Based Systems, 1995., Proceed-

ings of the 1995 International Symposium and Workshop on, pages 229�232, 1995.

[52] B. Ramesh and M. Edwards. Issues in the development of a requirements traceabil-
ity model. In Requirements Engineering, 1993., Proceedings of IEEE International

Symposium on, pages 256�259, Jan 1993.

[53] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
Software Engineering, IEEE Transactions on, 27(1):58�93, Jan 2001.

[54] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Implementing requirements
traceability: a case study. In Requirements Engineering, 1995., Proceedings of the

Second IEEE International Symposium on, pages 89�95, Mar 1995.

[55] Brian Randell. Towards a methodology of computing system design. NATO Software

Engineering Conference, pages 204�208, October 1968.

151

[56] J. Richardson and J. Green. Automating traceability for generated software artifacts.
In Automated Software Engineering, 2004. Proceedings. 19th International Confer-

ence on, pages 24�33, Sept 2004.

[57] S. Rochimah, W.M.N.W. Kadir, and AH. Abdullah. An evaluation of traceability
approaches to support software evolution. In Software Engineering Advances, 2007.

ICSEA 2007. International Conference on, pages 19�19, Aug 2007.

[58] P. Sanchez, D. Alonso, F. Rosique, B. Alvarez, and J. A. Pastor. Introducing safety
requirements traceability support in model-driven development of robotic applica-
tions. IEEE Transactions on Computers, 60(8):1059�1071, Aug 2011.

[59] Maurício Serrano and Julio Cesar Sampaio do Prado Leite. A rich traceability model
for social interactions. In Proceedings of the 6th International Workshop on Trace-

ability in Emerging Forms of Software Engineering, TEFSE '11, pages 63�66, New
York, NY, USA, 2011. ACM.

[60] L. Shen, X. Peng, and W. Zhao. A comprehensive feature-oriented traceability model
for software product line development. In 2009 Australian Software Engineering

Conference, pages 210�219, April 2009.

[61] Scott Sigman and Xiaoqing Frank Liu. A computational argumentation methodol-
ogy for capturing and analyzing design rationale arising from multiple perspectives.
Information and Software Technology, 45(3):113 � 122, 2003.

[62] IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. Guide to the Soft-

ware Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer
Society Press, Los Alamitos, CA, USA, 3rd edition, 2014.

[63] A. Tang and J. Han. Architecture rationalization: a methodology for architecture
veri�ability, traceability and completeness. In 12th IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems (ECBS'05), pages
135�144, April 2005.

[64] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software, 80(6):918 � 934, 2007.

[65] Masoumeh Taromirad and Richard F. Paige. Agile requirements traceability using
domain-speci�c modelling languages. In Proceedings of the 2012 Extreme Modeling

Workshop, XM '12, pages 45�50, New York, NY, USA, 2012. ACM.

[66] Bedir Tekinerdo§an, Christian Hofmann, Mehmet Ak³it, and Jethro Bakker. Meta-

model for Tracing Concerns Across the Life Cycle. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[67] Huy Tran, Uwe Zdun, and Schahram Dustdar. Vbtrace: using view-based and model-
driven development to support traceability in process-driven soas. Software & Sys-

tems Modeling, 10(1):5�29, Feb 2011.

152

[68] Jan-Willem Veldhuis. Tool for requirements inferencing and consistency checking
(tric). Accessed May 8 2018.

[69] Rainer Weinreich and Georg Buchgeher. Integrating requirements and design deci-
sions in architecture representation. In Muhammad Ali Babar and Ian Gorton, edi-
tors, Software Architecture, pages 86�101, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[70] Stefan Winkler and Jens Pilgrim. A survey of traceability in requirements engineering
and model-driven development. Softw. Syst. Model., 9(4):529�565, September 2010.

[71] Wei Zhang, Hong Mei, and Haiyan Zhao. Feature-driven requirement dependency
analysis and high-level software design. Requirements Engineering, 11(3):205�220,
Jun 2006.

[72] L. Zhu and I. Gorton. Uml pro�les for design decisions and non-functional require-
ments. In Second Workshop on Sharing and Reusing Architectural Knowledge - Ar-

chitecture, Rationale, and Design Intent (SHARK/ADI'07: ICSE Workshops 2007),
pages 8�8, May 2007.

153

Appendix A

List of Papers of the Initial Selection

Table A.1: Papers Obtained in the Initial Selection � Springer Link

Name Year

Automatic Support for Traceability in a Generic Model Management Framework 2005

An Adaptable ORM Metamodel to Support Traceability of Business Requirements across System Development

Life Cycle Phases

2008

Metamodel for Tracing Concerns Across the Life Cycle 2007

Development of a Metamodel to Foster Interoperability along the Product Lifecycle Traceability 2006

Rigorous identi�cation and encoding of trace-links in model-driven engineering 2011

Engineering a DSL for Software Traceability 2009

Traceability Links in Model Transformations between Software and Performance Models 2013

NFR+ framework method to support bi-directional traceability of non-functional requirements 2012

An Enhanced Architectural Knowledge Metamodel Linking Architectural Design Decisions to other Artifacts

in the Software Engineering Lifecycle

2011

A model for tracing variability from features to product-line architectures: a case study in smart grids 2014

A Metamodeling Approach for Reasoning about Requirements 2005

Managing requirements uncertainty with partial models 2013

Safety Evidence Traceability: Problem Analysis and Model 2014

Customizing Traceability Links for the Uni�ed Process 2007

A Trace Management Platform for Risk-Based Security Testing 2014

Introducing Traceability to Product Lines 2002

Incorporating Traceability in Conceptual Models for Data Warehouses by Using MDA 2011

Automating the Trace of Architectural Design Decisions and Rationales Using a MDD Approach 2008

A Metamodeling Approach for Reasoning about Requirements 2008

Change Impact Analysis in Product-Line Architectures 2011

Enterprise Modeling and Decision-Support for Automating the Business Rules Lifecycle 2002

A Visual Traceability Modeling Language 2010

An Automated Approach to Transform Use Cases into Activity Diagrams 2010

Integrating ontologies, model driven, and CNL in a multi-viewed approach for requirements engineering 2011

Managing Data Warehouse Traceability: A Life-Cycle Driven Approach 2015

Requirements Traceability in Agent Oriented Development 2003

Using Rules for Traceability Creation 2012

Aspects at the Right Time 2007

Continued on next page

154

Supporting Architectural Design Decisions Evolution through Model Driven Engineering 2011

A Meta-model for Requirements Engineering in System Family Context for Software Process Improvement Using

CMMI

2005

A Pattern-Based Approach towards the Guided Reuse of Safety Mechanisms in the Automotive Domain 2014

Requirements-Driven Software Service Evolution 2013

The Change Impact Analysis in BPM Based Software Applications: A Graph Rewriting and Ontology Based

Approach

2014

DO-333 Certi�cation Case Studies 2014

Requirements Management: The HOOD Capability Model for Requirements Management (Book Chapter) 2008

Feature-driven requirement dependency analysis and high-level software design 2006

Integrating Requirements and Design Decisions in Architecture Representation 2010

The Decision View of Software Architecture 2005

Adaptive socio-technical systems: a requirements-based approach 2013

An intelligent assistant for requirements validation 1995

KBRE: a framework for knowledge-based requirements engineering 2014

Methods for Creating Co-models of Embedded Systems 2014

The PLUSS Approach � Domain Modeling with Features, Use Cases and Use Case Realizations 2005

Software Quality Engineering: The Leverage for Gaining Maturity 2008

Requirements-Based Estimation of Change Costs 2000

Tracking Design Dependencies to Support Con�ict Management 2007

Industry evaluation of the Requirements Abstraction Model 2007

A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design 2009

Combining Architectural Design Decisions and Legacy System Evolution 2014

Requirements Engineering: Advanced Traceability (Book Chapter) 2011

Tracing Non-Functional Requirements 2011

A System Requirements Traceability Model: An Industrial Application 1998

Understanding Model Transformations 2015

Application of an Extended SysML Requirements Diagram to Model Real-Time Control Systems 2013

User Driven Evolution of User Interface Models � The FLEPR Approach 2011

Macro-level Traceability Via Media Transformations 2008

Development of a Software Tool to Support Traceability-Based Inspection of SOFL Speci�cations 2015

VbTrace: using view-based and model-driven development to support traceability in process-driven SOAs 2011

SCADE: A Comprehensive Framework for Critical System and Software Engineering 2012

MDI: A Rule-based Multi-document and Tool Integration Approach 2006

Application of Quality Standards to Multiple Artifacts with a Universal Compliance Solution 2010

Towards a Practical Approach to Check UML/fUML Models Consistency Using CSP 2011

A Deductive View on Process-Data Diagrams 2011

Supporting �ne-grained traceability in software development environments 2006

Requirements Traceability across Organizational Boundaries - A Survey and Taxonomy 2013

A Survey on Usage Scenarios for Requirements Traceability in Practice 2013

An Ontology for Quality Management � Enabling Quality Problem Identi�cation and Tracing 1999

Model-Based Requirements Engineering for Product Lines 2000

A Metamodeling Approach for Reasoning about Requirements 2008

Semantics of trace relations in requirements models for consistency checking and inferencing 2011

155

Table A.2: Papers Obtained in the Initial Selection � ScienceDirect

Name Year

Transforming and tracing reused requirements models to home automation models 2013

A method and tool for tracing requirements into speci�cations 2014

Autonomic tracing of production processes with mobile and agent-based computing 2011

Integrating visual goal models into the Rational Uni�ed Process 2006

Model-Driven Engineering as a new landscape for traceability management: A systematic literature review 2012

A SysML-based approach to traceability management and design slicing in support of safety certi�cation:

Framework, tool support, and case studies

2012

Towards automated traceability maintenance 2012

Improving reviews of conceptual models by extended traceability to captured system usage 2000

A computational argumentation methodology for capturing and analyzing design rationale arising from mul-

tiple perspectives

2003

System Requirements Analysis: Requirements Traceability Relationships (Book Chapter) 2006

A document driven methodology for developing a high quality Parallel Mesh Generation Toolbox 2009

A trace metamodel proposal based on the model driven architecture framework for the traceability of user

requirements in data warehouses

2012

Introducing requirements traceability support in model-driven development of web applications 2009

Linking requirements and design data for automated functional evaluation 1996

Structuring software development for reliability 1978

Medical device standards' requirements for traceability during the software development lifecycle and imple-

mentation of a traceability assessment model

2013

Software Patterns for Traceability of Requirements to Finite State Machine Behavior 2012

Automated traceability analysis for UML model re�nements 2009

Specifying and building interoperable eHealth systems: ODP bene�ts and lessons learned 2013

DRAMA: A framework for domain requirements analysis and modeling architectures in software product

lines

2008

A scoped approach to traceability management 2009

Improving change management in software development: Integrating traceability and software con�guration

management

2008

A rationale-based architecture model for design traceability and reasoning 2007

Rule-based generation of requirements traceability relations 2004

Traceability-centric model-driven object-oriented engineering 2010

Generation and validation of traces between requirements and architecture based on formal trace semantics 2014

Change impact analysis for requirements: A metamodeling approach 2014

Table A.3: Papers Obtained in the Initial Selection � IEEE Xplore Digital Library

Name Year

A Proposal for De�ning a Set of Basic Items for Project-Speci�c Traceability Methodologies 2008

SOMA-ME: A platform for the model-driven design of SOA solutions 2008

A model-driven visualization tool for use with Model-Based Systems Engineering projects 2014

A Model for Requirements Traceability in a Heterogeneous Model-Based Design Process: Application to

Automotive Embedded Systems

2010

Validation of data warehouse requirements - model traceability metrics using a formal framework 2015

Towards an integrated systems engineering environment 2004

Continued on next page

156

Traceability in digital forensic investigation process 2011

Incorporating Multimedia Source Materials into a Traceability Framework 2006

Hidden Implementation Dependencies in High Assurance and Critical Computing Systems 2006

A framework for software maintenance metrics 1990

Integration of Requirements Engineering and Test-Case Generation via OSLC 2014

Migration from Procedural Programming to Aspect Oriented Paradigm 2009

A structured goal based measurement framework enabling traceability and prioritization 2010

A metamodel for tracing requirements of real-time systems 2013

Model-based protocol engineering: Specifying Kerberos with object-process methodology 2014

Formalizing "Traceability' [sic] for Architectural Evolutions 2010

Traceability management framework for patient data in healthcare environment 2010

Executable architecture modeling and validation 2010

Meta-modelling approach to traceability for avionics: a framework for managing the engineering of computer

based aerospace systems

2003

Toward reference models for requirements traceability 2001

Model-based traceability 2009

An Ontology-Based Approach for Multiperspective Requirements Traceability between Analysis Models 2010

A tactic-centric approach for automating traceability of quality concerns 2012

A Traceability Link Model for the Uni�ed Process 2007

Towards requirements traceability models 1995

Softgoal Traceability Patterns 2006

An approach to carry out consistency analysis on requirements: Validating and tracking requirements through

a con�guration structure

2013

Extension Features-Driven Use Case Model for requirement traceability 2009

A Study on the E�ect of Traceability Links in Software Maintenance 2013

A Comprehensive Feature-Oriented Traceability Model for Software Product Line Development 2009

Two-Dimensional Traceability Link Rule Mining for Detection of Insider Attacks 2010

Analyzing and Systematizing Current Traceability Schemas 2006

Introducing Safety Requirements Traceability Support in Model-Driven Development of Robotic Applications 2011

Examining Communication Media Selection and Information Processing in Software Development Traceabil-

ity: An Empirical Investigation

2009

A means of establishing traceability based on a UML model in business application development 2011

Getting back to basics: Promoting the use of a traceability information model in practice 2009

A multi-faceted roadmap of requirements traceability types adoption in SCRUM: An empirical study 2014

A uni�ed requirements model; integrating features, use cases, requirements, requirements analysis and hazard

analysis

2007

Requirement traceability: A model-based approach 2014

MV - TMM: A Multi View Traceability Management Method 2008

Implementing requirements traceability: a case study 1995

Ontology-based model for Rational Uni�ed Process artifacts traceability 2012

Supporting product line development through traceability 2005

A software model for impact analysis: a validation experiment 1999

An Integrated Decision Model For E�cient Requirement Traceability In SPICE Compliant Development 2007

A multi view based traceability management method 2008

Continued on next page

157

A decision model for managing and communicating resource restrictions in embedded systems design 2008

Relational-model based change management for non-functional requirements: Approach and experiment 2011

Traceability between Software Architecture Models 2006

Integrating UML, MARTE and SysML to improve requirements speci�cation and traceability in the embed-

ded domain

2014

An exploratory case study of the maintenance e�ectiveness of traceability models 2000

Issues in the development of a requirements traceability model 1993

Characterizing the Chain of Evidence for Software Safety Cases: A Conceptual Model Based on the IEC

61508 Standard

2010

Improving Software Quality through Requirements Traceability Models 2006

A Tool-Based Methodology for System Testing of Service-Oriented Systems 2010

Requirements engineering in a model-based methodology for embedded automotive software 2008

Managing requirements uncertainty with partial models 2012

Dynamic traceability links supported by a system architecture description 1997

Architecture rationalization: a methodology for architecture veri�ability, traceability and completeness 2005

Towards a uni�ed Requirements Modeling Language 2010

Experiences from a model-based methodology for embedded electronic software in automobile 2008

Agile non functional requiremnents [sic] (NFR) traceability metamodel 2014

Systematic requirements recycling through abstraction and traceability 2002

Supporting evolutionary development by feature models and traceability links 2004

Architecting for evolvability by means of traceability and features 2008

Modeling and design of service-oriented architecture 2004

Using tactic traceability information models to reduce the risk of architectural degradation during system

maintenance

2011

Enhancing requirements and change management through process modelling and measurement 2011

SODOS: A software documentation support environment � Its use 1986

Ontology-based user requirements decomposition for component selection for highly available systems 2014

Managing Evolution by Orchestrating Requirements and Testing Engineering Processes 2012

A Feature-Oriented Requirements Tracing Method: A Study of Cost-bene�t Analysis 2006

Bridging the gap between past and future in RE: a scenario-based approach 1999

A product data dependencies network to support con�ict resolution in design processes 2006

UML Pro�les for Design Decisions and Non-Functional Requirements 2007

Evidence-based development - coupling structured argumentation with requirements development 2012

A Traceable Maturity Assessment Method Based on Enterprise Architecture Modelling 2014

Requirements Management Tool with Evolving Traceability for Heterogeneous Artifacts in the Entire Life

Cycle

2010

SODOS: A software documentation support environment � Its de�nition 1986

The evolution support environment system 1990

Agent-based knowledge keep tracking 2003

A Traceability Metamodel for Change Management of Non-functional Requirements 2008

A scenario-driven approach to trace dependency analysis 2003

Breaking the big-bang practice of traceability: Pushing timely trace recommendations to project stakeholders 2012

MATERA - An Integrated Framework for Model-Based Testing 2010

RATS: a software tool to aid the transition from service idea to service implementation 1996

Continued on next page

158

TRAM: a tool for requirements and architecture management 2001

SysML requirements for training game design 2014

A Metamodel for Tracing Non-functional Requirements 2009

Formalizing standards and regulations variability in longlife projects. A challenge for Model-driven engineer-

ing

2011

Requirements view for enterprise architectures 2017

Towards a generic framework for requirements traceability management for SysML language 2016

A metamodeling approach for reasoning on multiple requirements models 2013

An exploratory case study of the maintenance e�ectiveness of traceability models 2000

Table A.4: Papers Obtained in the Initial Selection � ACM Digital Library

Name Year

Mind the gap: assessing the conformance of software traceability to relevant guidelines 2014

A state-based approach to traceability maintenance 2010

A rich traceability model for social interactions 2011

A hierarchical model for traceability between requirements and architecture 2014

Requirements engineering: from craft to discipline 2008

Requirement traceability in safety critical systems 2010

Reconstructing requirements coverage views from design and test using traceability recovery via LSI 2005

A taxonomy for requirements engineering and software test alignment 2014

A reusable traceability framework using patterns 2005

Mining and analysing security goal models in health information systems 2009

On the use of metamodeling for relating requirements and architectural design decisions 2013

Agile requirements traceability using domain-speci�c modelling languages 2012

Use of Semi-Formal and Formal Methods in Requirement Engineering of ILMS 2015

Analysis of crosscutting features in software product lines 2008

Requirements variability models: meta-model based transformations 2005

A formal approach to reuse successful traceability practices in SPL projects 2010

Traceability and model checking to support safety requirement veri�cation 2014

Transforming trace information in architectural documents into re-usable and e�ective traceability links 2011

Tool support for generation and validation of traces between requirements and architecture 2010

Automated change impact analysis between SysML models of requirements and design 2016

Tarski: a platform for automated analysis of dynamically con�gurable traceability semantics 2017

	I Introduction and Literature Review
	Introduction
	Benefits of Traceability
	Terminology
	Contribution
	Structure

	Literature Review
	Research Questions
	Protocol
	Data Sources and Research Strategy
	Inclusion and Exclusion Criteria – Initial Selection
	Paper Analysis Strategy

	Search Results
	Results of the Initial Selection
	Most Relevant Papers – Final Selection

	Conclusions
	Issues Identified in the Literature
	Evaluating the Final Selection of Papers

	II A Reference Model for Traceability
	Reference Model
	Basic Elements in a Traceability Model
	Basic Actions on Artifacts
	Defining Each Basic Action
	Why a Reference Model Should Establish the Basic Actions on Artifacts

	Link Types
	Link Types Must Be Described
	Basic Link Types
	About the Basic Link Types
	Justifying the Relations Modeled by the Reference Model

	Artifact Types
	Pre-Requirements
	Requirements
	Design
	Implementation
	Verification & Validation and Testing
	Actors Are Not Artifacts But...

	Ensuring Traceability and System Consistency
	Basic Processes

	Necessary Properties of Link Types and Artifact Types
	Comprehensiveness
	Specificity
	Artifact Coverage
	About the Necessary Properties

	Using the Reference Model
	Evaluation Strategy
	Ramesh and Jarke
	Classification of the Link Types
	Description Level of the Link Types
	Evaluation of the Necessary Properties of Link Types
	Classification of the Artifact Types
	Description Level of the Artifact Types
	Evaluation of the Necessary Properties of Artifact Types
	Processes
	Strengths & Limitations

	Goknil et al.
	Classification of the Link Types
	Description Level of the Link Types
	Evaluation of the Necessary Properties of Link Types
	Classification of the Artifact Types
	Description Level of the Artifact Types
	Evaluation of the Necessary Properties of Artifact Types
	Processes
	Strengths & Limitations

	Closing Remarks

	III A Metamodel for Traceability
	An Overview of the Metamodel
	Traceability Space
	Artifact Types
	Link Types
	Processes
	Outline by Chapter

	The Traceability Space
	Interactions Between the Elements of Each Space
	Actors Space
	Meta-Actor

	Rules Space
	Processes space
	System Space
	Not Using the Homologation Process

	Traceability Space: Definition
	Actions: Definitions
	Modification
	Removal
	Application
	Decomposition
	Reification
	Creation
	Homologation
	Activation

	The Traceability Space and Metrics

	Artifact Types
	Non-Rationale Artifact Types
	Rationale Artifact Types
	Rationale for Modification
	Rationale for Removal
	Rationale for Decomposition
	Rationale for Homologation or Rejection
	Rationale for Creation
	Rationale for Application
	Rationale for Activation

	Relations Modeled as Link Types
	Relations Modeled as One or Two Link Types?
	Link Types
	Evolution Link Types
	Constraint Link Types
	Accountability Link Types
	Permission Link Types
	Characterize Action Link Types
	Action Outcome Link Types
	Composition Link Types

	Closing Remarks

	Processes for Traceability
	Homologation Process
	Algorithm
	Textual Description
	Assessing the Impact of Homologating a Rationale for Modification or a Rationale for Removal
	Why is the Homologation Process Useful?

	Modification Process
	Algorithm
	Textual Description

	Decomposition Process
	Algorithm
	Textual Description

	Creation Process
	Algorithm
	Textual Description

	Removal Process
	Algorithm
	Textual Description

	Activation Process
	Algorithm
	Textual Description

	Application Process
	Algorithm
	Textual Description

	Processes and Permissions
	Creating and Updating Permissions

	Change Impact Analysis and Processes

	Using the Metamodel
	Conflicts Between Requirements
	Removing Requirement R18
	Modifying Requirement R74
	Removing Requirement R18 and Requirement R74

	Closing Remarks

	IV Conclusion
	Conclusions, Limitations, and Future Work
	Reviewing the Contribution
	Simplifying the Metamodel
	Future Work and Limitations

	Bibliography
	List of Papers of the Initial Selection

