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Abstract

In this work we propose the development of a three-dimensional Navier-Stokes solver
for analysis of turbulent reacting flows in complex geometries. Concepts of Porosity Dis-
tributed Resistance were coupled with Computational Fluid Dynamics (CFD) techniques
and the Gilbert-Johnson-Keerthi distance algorithm was applied to describe geometrical
models as porous media. The solver was based on an initial two dimensional compress-
ible Euler solver and has been improved until becomes a three-dimensional solver capable
to compute the Navier-Stokes equations. The numerical modelling was conducted within
the framework of traditional Reynolds-Averaged Navier Stokes (RANS) approach and the
turbulence closure model was addressed via Boussinesq formulation. The solver was cus-
tomized to a specific class of turbulent reacting flow by modelling combustion process
as gas explosion. The approach was demonstrated to handle complex geometries within
feasible computational time. Numerical findings for simulation of non-reacting flows and
reacting flows present the main features of the fluid flow and good agreement with exper-
imental data was observed.

Keywords: Gas Explosion; Porosity Distributed Resistance; Computational Fluid Dy-
namics; Gilbert-Johnson-Keerthi algorithm.



Resumo

Este trabalho tem como objetivo o desenvolvimento de um solver tridimensional de Navier-
Stokes para análise de escoamentos turbulentos reativos em geometrias complexas. Os
conceitos de Resistência Distribuída por Porosidade foram acoplados às técnicas de Flui-
dodinâmica Computacional (CFD) e o algoritmo de distância de Gilbert-Johnson-Keerthi
foi aplicado para descrever modelos geométricos como meios porosos. O programa com-
putacional foi desenvolvido com base em um solver Euler compressível e bidimensional
e foi melhorado até se tornar um solver tridimensional capaz de resolver as equações de
Navier-Stokes. A modelagem numérica foi conduzida dentro da abordagem tradicional de
Reynolds-Averaged Navier Stokes (RANS) e o modelo de fechamento de turbulência foi
abordado através da formulação de Boussinesq. O solver desenvolvido foi customizado
para uma classe específica de escoamentos turbulentos reativos, modelando o processo
de combustão como uma explosão de gás. Foi demonstrado que esta abordagem é capaz
de manipular geometrias complexas dentro de um tempo computacional viável. Resul-
tados numéricos para simulação de escoamento não-reativos e reativos apresentaram as
principais características previstas para o escoamento de fluidos e foi observado uma boa
concordância com dados experimentais disponíveis na literatura.

Palavras-chaves: Explosão de gases; Resistência Distribuída por Porosidade; Fluidodi-
nâmica Computacional; Algoritimo de Gilbert-Johnson-Keerthi.
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1 Introduction

Accidents involving fire and explosions represent a considerable hazard in in-
dustrial plants, particularly in oil and gas industry due to the presence of installations
with congested areas and large quantities of flammable materials. Therefore, gas explosion
might constitute a potential hazard for drilling, production and processing activities.

The release of flammable substances is the first step in the accidental chain
of events. The next step is the generation and ignition of flammable clouds, resulting in
explosions, which may in turn cause damage to the process plant (and in adjacent process
areas), financial and human losses (ECKHOFF, 2005).

The prevention of gas explosion and the mitigation of its effects are crucial to
ensure safety. The gas explosion hazard assessment can be very helpful to improve the
design of the existing or new installations and characterise the extent of the hazard.

Making realistic predictions of the effects of an accidental explosion is a dif-
ficult task due to the complexity of the physical and chemical processes involved. There
are limitations to experimental data available and full-scale experimental tests are often
impracticable or prohibitively expensive (CANT, 2007). Thus, theoretical modelling and
simulation have been employed to assess gas explosion hazards.

The numerical simulation using Computational Fluid Dynamics (CFD) is con-
sidered the best available approach when modelling gas explosion. The main strategy of
CFD is to replace a continuous domain by a discrete computational domain using a grid
where the differential equations that govern the flow are solved by using a numerical
method.

In this context, the finite volume method (FVM) is the most popular numerical
method for modelling of fluid flow transport problems as gas explosion. Following the FVM
procedure, the computational domain of a given problem is discretised in a mesh of finite
volumes where the conservation equations are solved.

Although the conventional finite volume method is well established and allows
prediction of complex flows, a great deal of engineering problems requires a customised
numerical technique. Thus, different approaches have been developed over the recent
years to improve FVM formulation and bridge the gap between physical phenomena and
numerical methods. In gas explosion analysis, as in a wide range of transport process, the
geometrical model ranges from small length scales (a few inches) to large length scales.
Such condition poses an additional challenge once details of the geometry are required for
proper solution of the problem. In these cases, the mesh procedure requires a very fine
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resolution and extensive computational effort to handle the complex geometry details.
Figure 1 shows examples of complex geometries, which are characterized by the presence
of different object scales and congestion.

Figure 1 – Examples of complex geometries with the presence of different object scales
and congestion.

To model complex geometries and assess the great level of geometrical details,
sub-grid models and Porosity Distributed Resistance (PDR) method have been applied in
CFD simulations. The PDR method stands out as no mesh refinement is required around
small scale geometry. By using this method, the large-scale geometry is fully represented
and resolved, while the small-scale objects are taken together locally and approximated
in terms of their effective porosity and resistance to the flow.

The Porosity Distributed Resistance (PDR) method is widely used for numer-
ical simulations of gas explosion process and has been successful within the constraints of
its modelling approximations.

This work presents a new procedure to obtain the porous mesh that takes into
account all geometrical objects in the core of CFD (Computational Fluid Dynamics) sim-
ulations. The method is based on Gilbert – Johnson – Keerthi (GJK) distance algorithm
(collision algorithm). The original formulation of the GJK algorithm is in accordance
with the work reported by Gilbert, Johnson and Keerthi (GILBERT et al., 1988), which
was formulated to check collision between convex objects. The GJK algorithm is applied
to check the collision between an element of the computational mesh and the primitive
geometry. As a result of porosity calculation, the area and volume of each mesh element
are calculated taking into account the availability for fluid flow. The developed method
is applied for simulation of gas explosion in complex geometries.
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1.1 General Goal

The present work aimsat to developing a three-dimensional Navier-Stokes
solver for prediction of gas explosion in complex geometries by using the Gilbert - Johnson
- Keerthi distance algorithm to parametrize complex geometries as porous media.

1.2 Specific Goals

The specific goals of this work are:

∙ Create an initial three-dimensional Euler solver and verify how the flux over the
boundaries of the computational cells are predicted by the method proposed in the
framework of this research;

∙ Apply the solver to calculate flow fields by using parametrised geometries by the
GJK algorithm;

∙ Couple the viscous effects and the extra resistance and turbulence models with the
amended fluxes in the FVM formulation;

∙ Evaluate the Damkhöler hypothesis for reacting flows under the influence of GJK
parametrisation;

∙ Verify the code implementation and validate the proposed model against a set of
experimental data for cold and reacting flows.

1.3 This Doctor Thesis

The thesis is organised as follows:

In Chapter 1 a brief introduction is presented highlighting the motivations and
the aim of this study.

The literature review is covered along the thesis, in Chapters 2 and 3.

Chapter 2 includes the main phenomena associated with gas explosion and the
factors that influence its behaviour. The models that are used for gas explosion analysis
are also discussed here.

Chapter 3 presents the governing equations that must be solved to describe
the combustion process. The turbulence and combustion models applied in this work are
also introduced.
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In Chapter 4 the structure of the developed solver is discussed. The geometry
and the mesh discretisation process as well as the solver architecture are fully explored in
this part of the document.

Chapter 5 shows the numerical results using the developed solver. The code
was initially tested for simulation of non-reacting flows. A sensitive analysis of the main
simulation parameters is also presented.

Chapter 6 covers the simulation findings for turbulent reacting flows. It ad-
dresses different case studies.

Conclusions and future work are drawn in Chapter 7.
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2 Gas Explosion

An explosion comprises a sudden increase in volume associated with an increase
in temperature and pressure (ECKHOFF, 2005). During the explosion, large quantities
of energy are released, causing considerable damage.

Due to highly destructive power of a gas explosion, the risk analysis from such
accident is of paramount importance as far as process safety is concerned.

The physical description of the explosion phenomena and its mathematical
modelling is presented in this chapter.

2.1 Combustion and Explosion

Combustion is defined as a reaction process in which a fuel is oxidized (usually
by air) and involves heat release and often light emission. The products from a complete
combustion of a hydrocarbon fuel are mainly water (vapour) and carbon dioxide.

Concerning gas explosion modelling, combustion is often treated as a single
step irreversible chemical reaction with finite reaction rate (HJERTAGER, 1989). Ac-
cording to this concept, the reaction scheme may be written as:

1kg fuel + s kg oxigen → (1+s) kg products

where s is the stoichiometric oxygen requirement to burn 1 kg of fuel.

The combustion process between air and a gaseous fuel can occur in two dif-
ferent ways: non-premixed and premixed combustion. In the first case, fuel and oxygen
are mixed during the combustion process. It occurs in many industrial systems, for safety
reasons. Non-premixed combustion is applied for example in furnaces, diesel engines or
gas turbines.

The second case comprises the situation where fuel and air are premixed and
the fuel concentration must be within the flammability limits. Such mixing should be com-
pleted until the molecular level before combustion takes place. In premixed combustion
the fuel burnes faster when compared with non-premixed process.

In accidental gas explosion, the gas cloud is formed from the mixture between
air and the gas released. If such mixture is within the flammability limits, it can ig-
nite yielding an explosion. Hence, the phenomenon is frequently modelled based on the
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concepts of premixed combustion. In the current research, the same approach has been
adopted.

2.1.1 Gas Explosion Phenomenon

During the gas explosion, a strong positive feedback mechanism occurs. The
flame is accelerated and when the flammable mixture of fuel and air is burning, the
temperature increases and the gases expand. As consequence, the unburned gas is pushed
ahead of the flame and a turbulent flow field is generated. The turbulence enhances
the mixing and the reaction rate is increased. The combustion process is therefore also
enhanced and a higher speed flow is produced, a higher turbulent field is generated and
the process repeats.

The consequences of the gas explosion depends on a number of factors, such
as maximum pressure, duration of shock wave, interaction with structures, etc. These
factors, in turn, depend on a number of variables (LEA; LEDIN, 2002):

∙ The gas cloud characteristics: type of fuel, fuel concentration, and gas cloud size;

∙ The ignition point: location and strength of the ignition source;

∙ The geometrical characteristics of the process area: number, size, shape and location
of obstacles;

∙ The degree of confinement.

The last parameter (the degree of confinement) has been used to classify the
gas explosions as confined, partially confined, and unconfined explosions.

2.1.1.1 Confined Gas Explosions

Confined explosions are also known as internal explosions. Explosions within
tanks, process equipment, pipes, in closed rooms and in underground installations are
classified as confined. An important characteristic of this kind of explosion is that even if
the flame speed is slow, the overpressure can be high and the consequences can be severe.

2.1.1.2 Partly Confined Explosions

Partly confined gas explosions occurs in installations that are partly opened,
such as compression rooms and explosion modules. The building walls will confine the
explosions and the pressure can be relieved through the open areas (as vents and flexible
walls).
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2.1.1.3 Unconfined Gas Explosions

The explosions that occur in open areas, such as large process plants, are
understood as unconfined. Generally, this type of explosion produces small overpressure.
However, partly confined and obstructed local areas may be present in process plants and
in these cases high pressures can occur. Another important consideration is that even
if the area is unconfined, there have been evidence that a detonation mode may occur
yielding high overpressure values.

2.1.1.4 Deflagration and Detonation

The overpressure generated by the combustion wave depends on how fast the
flame propagates and how the pressure can expand away from the gas cloud. When a cloud
is ignited the flame can propagate in two different manners: deflagration and detonation
(BJERKETVEDT et al., 1997).

The deflagration occurs when the combustion wave propagates at subsonic
velocity relative to unburned gas ahead of the flame. It is the most common mode of
flame propagation in accidental gas explosions.

The detonation is defined as a combustion wave propagating at sonic velocity
relative to the unburned gas. It can also be described as a shock wave immediately followed
by a flame (BJERKETVEDT et al., 1997). The overpressure generated by a detonation
is much higher than a deflagration.

2.1.2 Combustion modelling for gas explosion

2.1.2.1 Premixed Flames

The most important behaviour characteristic of premixed flames is the "propa-
gation". A premixed flame moves spontaneously in a normal direction to itself to consume
the available reactant mixture. This is in contrast to a non-premixed flame which remain
attached to the stoichiometric surface between fuel and oxidizer and cannot propagate
(CANT; MASTORAKOS, 2008).

The rate of propagation in premixed flames quantifies the rate at which the
flame can process reactants into products and the rate of heat release. According to this
parameter, premixed flames can be classified as laminar or turbulent.

2.1.2.2 Laminar Premixed Flames

In laminar premixed flames, the propagation rate is specified in terms of the
velocity of advance of the flame relative to reactants, also known as "laminar burning ve-
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locity" 𝑢𝐿 (CANT; MASTORAKOS, 2008). Considering a planar, unstretched, adiabatic
laminar flame, 𝑢𝐿 depends on only the thermochemistry of reactant mixture:

𝑢𝐿 = 𝑢𝐿 (p, 𝑇𝑅, 𝑌1, 𝑌2, ..., 𝑌𝑁)

where p is the pressure, 𝑇𝑅 is the reactant temperature and 𝑌𝜂 is the mass fraction of
the chemical species.

A laminar flame presents the following main features:

∙ The preheat zone - where the temperature of reactants is raised by heat conducted
forwards from the reaction zone.

∙ The reaction zone - where most of chemical reaction occurs. This is a very thin zone
and the reaction rates are fast due to the high temperature and the presence of
many reactive radical species.

∙ The equilibrium zone - where most heat release occurs. The temperature is high
and chemical equilibrium is achieved.

Different theoretical approaches can be used for laminar flames, specially to un-
derstand their structure and the instabilities that can be developed on its front (POINSOT;
VEYNANTE, 2005). However, in most studies, laminar premixed flames are applied in
turbulent combustion modelling as the elementary step of turbulent flames. Considering
numerical techniques, computing laminar premixed flames is the first step towards more
complex configurations.

2.1.2.3 Turbulent premixed flames

When the turbulent flow enters a flame front, the laminar flame is replaced by
a regime where turbulence and combustion interact. Eddies of different length scales act
to wrinkle the planar flame surface, leading to the increasing of the flame surface area
and hence to faster propagation. Some eddies may perturb the local internal structure
of the flame and cause changes within the reactive-difusive balance that sustains the
propagation. This may lead to a reduced local burning rate and slower propagation. In
some cases, the turbulence may be strong enough to cause local extinction of the flame.

As described for laminar premixed flames, a turbulent burning velocity can
be defined for turbulent premixed flames. Here, the turbulent burning velocity comprises
the velocity of advance of the turbulent flame relative to the reactants, in the normal
direction to itself and towards to reactants. The turbulent burning velocity is not a purely
thermochemical quantity and it depends on the turbulence properties as the turbulence
velocity fluctuation magnitude and length scale.
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2.1.2.4 Dimensionless numbers in Turbulent Premixed Flames and Regimes Diagram

In different fluid flow analysis, it is often helpful to describe flow features in
terms of dimensionaless numbers. To characterise turbulent premixed flames, a set of three
main dimensionaless numbers are applied. Such numbers are listed as follow:

∙ Turbulent Reynolds number

The Turbulent Reynolds number describes the ratio between the convective
flux of momentum and the diffusive flux of momentum, and is obtained by:

𝑅𝑒𝑡 = 𝑢𝐿𝑡𝑢𝑟𝑏

𝜈
(2.1)

where 𝑢 is the flame propagation velocity, 𝐿𝑡𝑢𝑟𝑏 is the integral turbulent length scale and
𝜈 is the kinematic viscosity (difusivity of momentum)

∙ Damköhler number

The Damköhler number describes the ratio between the turbulence large-eddy
turn-over time-scale and the chemical time-scale representative of the laminar flame, so:

𝐷𝑎 = 𝐿𝑡𝑢𝑟𝑏𝑢𝐿

𝛿𝐿𝑢
(2.2)

where 𝛿𝐿 is the laminar flame thickness.

∙ Karlovitz number

The Karlovitz number describes the ratio between the laminar-flame chemical
time-scale and the time scale of turbulent straining. Mathematically, Ka can be obtained
by relation 1/𝐷𝑎, or:

𝐾𝑎 = 𝛿𝐿𝑢

𝑢𝐿𝜆𝑇

(2.3)

where 𝜆𝑇 is the Taylor micro-scale 1.

Turbulent premixed flames behave on different ways depending on turbulence
intensity and length scale, chemical properties of reactants and products and the intensity
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Figure 2 – Regime diagram for turbulent premixed combustion (CANT; MASTORAKOS,
2008). The turbulence length scale normalised by the laminar flame thickness
are presented in axis "x" and is plotted against the turbulence intensity nor-
malised by the laminar flame speed in axis "y".

of flame interaction. Such behaviours can be summarised in a regime diagram called Borghi
diagram presented in Figure 2.

By analysing the Borghi diagram, the flame structure is divided into five main
regions based on the ratio of the size of turbulent eddies to the laminar flame thickness
on the x-axis 𝐿𝑇 /𝛿𝐿, and the ratio of turbulent velocity fluctuations to the laminar flame
speed on the y-axis 𝑢′/𝑢𝐿. The five regions are sub-divided by lines representing values of
the three dimensionless numbers: the turbulent Reynolds number (𝑅𝑒𝑇 ), the Damköhler
number (Da) and Karlovitz number (Ka).

Following the diagram (Figure 2), the laminar flames are present where the
turbulent Reynolds number is low (ReT < 1). The other four regions apply to turbu-
lent flames. The diagram region where Reynolds and Damköhler numbers are high and
Karlovitz number is low indicates moderately strong turbulence with fast chemistry and
low turbulence strain rates, and comprises the known laminar flamelet regime. The lam-
inar flamelets can exist in two subdivided regions of Borghi diagram: wrinkled flamelet
regime (for values of 𝑢′/𝑢𝐿 less than a unit) and corrugated flamelet regime (where the
turbulence intensity is higher). For values of Karlovitz number greater than a unity, the
flame reaction zone is thin and presents a similar laminar structure, so this region is called
thin reaction zone regime. The last flame regime is known as broken reaction zone and
lies in the region of the diagram where the Karlovitz number based on the reaction zone
1 Length scale where the effects of viscosity are relevant, as opposite to length scales where viscous

effects can be neglected
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thickness becomes greater than a unity, which indicates that local flame extinction can
occur.

2.1.3 Turbulent premixed flames modelling

2.1.3.1 Eddy Break-Up Model (EBU)

The Eddy Break-Up model (EBU) is one of the simplest and widely-used
models for mean turbulent reaction rate in turbulent premixed flames. The model is
based on the assumption that the chemistry is fast compared to the rate of turbulent
transport, so the mean reaction rate is controlled by the rate at which the turbulence can
bring fresh reactants into contact to hot products.

Combustion models based on EBU concepts are very simple to implement and
are useful to represent flame behaviour for the particular cases of fast-chemistry limit of
turbulent premixed flames.

2.1.3.2 Flamelet Model

In some turbulent premixed flames, the chemical reaction rate cannot be con-
sidered infinitely fast. To some extent, for the flames which are not severely disturbed by
the turbulence, the local structure of the flame at each point of the flame front is supposed
to be similar to a laminar flamelet.

The flamelet approach is based on the description of the turbulent flame as a
collection of laminar flame elements embedded in a turbulent flow and interacting with
it. In the flamelet theory, the laminar flamelet consists in a thin and wrinkled reaction
surface in which the combustion chemistry, as well as the heat release and mass transfer,
takes place (CANT; MASTORAKOS, 2008). This interface propagates just like a strained
and curved laminar flame.

The flamelet modelling has become well accepted for premixed flames and it
has proved successful in many different applications.

2.2 Models to describe the gas explosion phenomena

The correct modelling of explosion involves the relevant parameters such as
geometrical design and physical effects. Based on these characteristics, the available mod-
els to describe gas explosions behaviour are empirical and phenomenological models and
numerical models using Computational Fluid Dynamics (CFD).
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2.2.1 Empirical and Phenomenological models

The empirical and phenomenological models are concentrated on describing
the major physical effects as much as possible, while the geometry is simplified. Such
approaches require low computational effort and enable the analysis of different explosion
scenarios in a short time.

Empirical models comprise the simplest class of models for gas explosion. They
are based on correlations obtained by experimental results and includes venting guidelines,
TNT equivalence model, TNO model, multi-energy and Congestion Assessment (CA)
model.

The the TNT and TNO models are the most traditional empirical models
for gas explosion analysis (WANG et al., 2017) (KUHL et al., 1994) (GUO et al., 2016)
(PITBLADO et al., 2014). In TNT model the combustion energy is assumed to convert
into an equivalent charge weight of TNT (2,4,6-trinitrotoluene) while TNO model assumes
that all combustion energy present in the flammable part of a gas cloud contributes to
explosion.

Even though, both TNT and TNO, as other empirical models, are easy to
apply and give quickly initial responses, they are very conservative methods. They always
assume that a detonation shock wave occurs when a gas explosion at the stoichiometry
condition happens which gives low accurate results. Furthermore, using these empirical
methods, some essential parameters must be selected by experience.

Phenomenological models are simplified physical models which attempt to de-
scribe the main physical process of an explosion based on idealized geometry and empirical
correlation. The most representative tools for this class of models are CHICÉ and SCOPE
(PARK; LEE, 2009). Phenomenological models give reasonable results with simple geo-
metrical structures but are not useful for complex geometries.

2.2.2 CFD models

Computational Fluid Dynamic (CFD) models are based on the fundamental
differential formulations that govern the explosion process. By using the Finite Volume
Method, these equations are integrated over control volumes surrounding the relevant grid
points in both space and time.

The numerical analysis using CFD is capable to account the geometrical details
which are not possible when applying empirical or phenomenological models. The CFD
solutions contain a great amount of information about the flow field (pressure, velocity,
specific mass, etc...) which enables the understanding of its behaviour. However, the results
must be analysed with care. Some errors can be generated during the numerical solution
and the model will have low representation compared with the real problem (VERSTEEG;
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MALALASEKERA, 2007).

2.2.2.1 CFD Codes for Gas Explosion

Due to the complexity of gas explosion, the CFD codes available for modelling
such phenomena rely heavily on sub-models for the representation of small-scale objects,
coupled with relatively simple numerical schemes for solution of the governing equations.
Lea e Ledin (2002) point out some CFD codes for gas explosion analysis. Such codes are
listed below:

∙ EXSIM

The EXSIM (EXplosion SIMulator) is a semi-implicit, finite volume code that uses
a structured Cartesian grid. PDR (Porosity / Distributed Resistance) is used for
modelling the small-scale geometries. The first and second order upwind schemes
are applied to discretize the governing equations. The set of algebraic equations is
solved using the TDMA (tri-diagonal matrix algorithm) method and the pressure
correction method is used to correct the velocity components, pressure, and den-
sity, and guarantee mass conservation in the subsequent time step. Turbulence is
modelled via the 𝑘− 𝜀 model and combustion is considered to take place in a single
step mechanism (SAETER, 1998). The EXSIM code can be found into the 𝐾𝐹𝑋 c○

CFD package, a ComputIT program (ComputIT).

∙ FLACS

FLACS (FLame ACceleration Simulator) code has been developed by CMR-GEXCOM.
It is a finite volume code based on a structured Cartesian grid. The PDR approach
is also used to model sub-grid scale obstacles. The turbulence is modelled by the
𝑘− 𝜀. The discretization of the governing equations follows a upwind/central differ-
encing scheme (second order accurate) and the combustion model treats the flame
as a collection of flamelets (ARNTZEN, 1998).

∙ AUTOREAGAS

AutoReaGas is a three-dimensional finite volume code is also based on a structured
Cartesian grid and that uses the PDR concepts to model small-scales geometries.
The first order accurate Power Law scheme is used to discretize the governing equa-
tions and SIMPLE algorithm is implemented for pressure correction. The turbulence
is modelled via the standard two equation 𝑘 − 𝜀. The combustion model assumes
that the combustion reaction takes place as a single step process. Euler equations
are solved for blast wave propagation (BERG et al., 1994).

∙ COBRA
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COBRA belongs to a class of advanced CFD explosion codes that uses unstructured
grids and adaptive mesh algorithms. The code apply an explicit or implicit, second
order accurate, finite volume integration scheme. The grid is unstructured and may
be refined automatically locally within the flow. The PDR approach is used for
modelling small-scale obstacles. Turbulence is modelled also using a 𝑘−𝜀 turbulence
model.

∙ NEWT and MCNEWT-PDR

NEWT is also an unstructured adaptive mesh, three dimensional, finite volume code.
A second-order accurate discretization scheme is used for the convective fluxes and a
fourth-stage Runge-Kutta time integration approach is used for the time dependent
calculations. The NEWT code uses a variant of the 𝑘 − 𝜀 turbulence model where
the near wall damping function is dependent on the turbulence Reynolds number
(WATTERSON et al., 1998). The combustion is modelled using the eddy break-
up model or a laminar flamelet model. The original NEWT solver was developed
at the Engineering Department of the Cambridge University for turbo-machinery
applications. The code has been improved over the years to include the PDR method
to account for the resistance of small scales objects in gas explosion simulations
(VIANNA; CANT, 2010).

Some of codes described above have been improved over the years while others
have become obsolete. The available CFD codes for gas explosion analysis comprise com-
mercial tools and most of them use the PDR concepts to assess the geometry. Even though
the PDR modelling considerably reduces the computational costs in CFD simulation of
gas explosion, there is no available literature concerning how to obtain the porosity values
for a mesh calculation. In this work a new technique is presented to obtain a porous mesh
for CFD calculations based on the Gilbert-Johnson-Keerthi distance algorithm.
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3 RANS Numerical Modelling for Turbulent
Premixed Combustion

In CFD, to solve any physical problem, the first step is to know well the
phenomena and the system under study. It will allow the development of a mathematical
model and to choose the best numerical tool. In mathematical modelling, it is important
to include the identification of the system variables and their applications as well as the
conditions of the study.

The equations that govern the flow are obtained applying the principle of
conservation to the main quantities, such as mass, momentum and energy. Considering
the Reynolds-Averaged Navier Stokes (RANS) approach, the equations that govern the
flow are computed for mean quantities by averaging the instantaneous balance equations.
This averaging procedure introduces unclosed quantities that have to be accounted by
using additional models as well as for turbulence and combustion.

The modified governing equations and the dedicated developed models are
described in this chapter. Particular attention is paied to the various source terms and
the closure of the combustion reaction rate in the equation for the conservation of a scalar,
namely progress variable.

This chapter presents the numerical formulation applied to handle the com-
bustion process as gas explosion.

3.1 Mass and momentum equations

3.1.1 The mass conservation equation

The mass conservation in the differential form is shown below. The equation
is also known as the Continuity equation:

𝜕𝜌

𝜕𝑡
+∇ · (𝜌 u) = 0 (3.1)

The first term in the left hand side represents the rate of change of fluid density
with time. For flows in steady state this term is equal to zero. The second term is the
divergence term. It indicates the rate of change of the specific mass with respect to the
spacial coordinates.
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3.1.2 The momentum conservation equation

The momentum equation, expressed by Equation 3.2, originates from the ap-
plication of Newton’s second law of motion to an element of fluid. It includes the principle
of angular momentum and represents the variation of momentum as function of resultant
forces acting on the fluid.

𝜕

𝜕𝑡
(𝜌 u) +∇ · (𝜌 u u) = 𝜌𝑔 −∇𝑃 + [∇𝜏 ] (3.2)

Equation 3.2 can be applied to all directions of fluid flow as long as an equation
for the stress tensor is provided. Such equation that relates the stress tensor with the rate
of fluid deformation is called a constitutive equation.

The first term in the left represents the rate of increase of momentum while the
second takes into account the rate of momentum addition by convection and molecular
transport.

The terms in the right represent the body force and pressure gradient, respec-
tively. The last term in Equation 3.2 is a second order tensor that computes the viscous
effects.

Similarly to Continuity Equation, the equation of motion can be simplified
according to some flow features:

∙ The Navier-Stokes Equations applied to a Newtonian fluid and incompressible flow
can be written as:

𝜕

𝜕𝑡
(𝜌 u) + u · (∇𝜌 u) = 𝜌𝑔 −∇𝑃 + 𝜇∇2 u (3.3)

∙ For an inviscid flow, the viscous effects could be negligible (𝜇 = 0), giving the "Euler
Equation":

𝜕

𝜕𝑡
(𝜌 u) + u · (∇𝜌 u) = 𝜌𝑔 −∇𝑃 (3.4)

3.2 Elementary Description of turbulence

Because turbulence fluctuations increase the combustion reaction rate by en-
hancing the mixture between fuel and air, the turbulence plays an important role on gas
explosion process.

Turbulence can be defined as an irregular motion of fluid flow in which the
various quantities show a random variation with time and space coordinates, so that
statistically distinct average values can be discerned (WILCOX et al., 1993).
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Kundu e Cohen (2002) mention some characteristics of turbulent flows:

∙ Irregularity - The flow is irregular, random and chaotic and consists a spectrum of
different scales (eddy sizes). The largest eddies are of the order of the flow geometry
and the smallest eddies are given by viscous forces.

∙ Large Reynolds Number - Turbulence occurs at high values of Reynolds number,
when inertial forces become more important than the viscous forces.

∙ Effective transport - In turbulent flows, the fluid particles are fast mixed while they
are moving through the flow. As consequence, the transport and fluid mixture is
much more effective compared with laminar flow.

∙ Three dimensional - Turbulent flow is always three-dimensional. The motion of
fluid particles occurs due to fluctuations in position and time in a three dimensional
velocity field.

∙ Dissipation - Turbulent flow is dissipative, which means that kinetic energy in small-
est eddies are transformed in internal energy. The kinetic energy is transferred
through different sizes of eddies from the largest to the smallest. The process of
energy transfer is called energy cascade process.

∙ Continuum - The turbulent flow can be treat as continuum, even though the smallest
turbulent scales in the flow are larger than the molecular scale.

The available methods to solve the turbulence and calculate the quantities of
interest are classified into two main groups.

In the first group, it can be found the models capable to completely solve math-
ematically the transport equations and, consequently, the turbulence. The main method
used in these models are the Direct Numerical Simulation (DNS).

In DNS, the equations are directly solved for all length and time scales of fluid
flow. This method can capture all relevant phenomena without approximation or simpli-
fication, including the smallest scales. DNS can be considered the best way to solve the
turbulence, but because all length-scales and time-scales are solved, DNS is computation-
ally expensive. As the computational cost increases with Reynolds number (≃ 𝑅𝑒3), DNS
is restricted to flows with low to moderate Re.

Other turbulence models as Reynolds Averaged Navier-Stokes (RANS) and
Large Eddy Simulation (LES) are not able to capture all phenomena that are involved at
the the fluid flow. They are used to solve the transport equations for a mean velocity flow
field and require less computational effort than DNS.
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In RANS models all turbulent effects are modelled and the quantities are
calculated based on their average values. Because RANS simulations do not directly solve
the transport equations and turbulence scale, it is expected to be less accurate and reliable
than LES and DNS. However, it has presented good performance for many engineering
studies with low computational costs. RANS methods are the most widely used approach
in CFD simulations of industrial flows.

The Large Eddy Simulation is a method that partly solve the transport equa-
tions. Andrey Kolmogorov has defined the small length scale as the ones that could exist
in a fluid flow without energy dissipation (Kolmogorov scale). In LES, the equations are
directly solved (as in DNS) for large turbulent eddies, with length down to the Kolmogorov
scale. The effects in smallest eddies are modelled using a sub-grid model.

Concerning combustion process, DNS is applied for very simple systems to bet-
ter understand and recognize the flame structure and flow regimes (as described in section
2.1.2.3). Both LES and RANS models are applicable for turbulent premixed combustion
modelling. In principle, LES has the potential to provide more accurate and realistic re-
sults than RANS, but it is limited by the use of refined meshes and also computational
costs. Thus most of turbulent premixed combustion modelling is conducted within the
framework of traditional RANS approach.

3.3 RANS turbulence modelling

As consequence of the irregularity, the properties of a turbulent flow exhibit
random fluctuations. Their behaviour can be defined as the sum of an average field and its
fluctuations. Figure 3 shows an example of an instantaneous velocity and its fluctuations
around the mean velocity in a turbulent flow.

Figure 3 – Fluctuations in a turbulent flow - example of a velocity field.
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Following the example shown in Figure 3, mathematically, the instantaneous
value for any quantity can be expressed as the sum of the average values and their re-
spective fluctuations:

𝜑 = 𝜑 + 𝜑′ (3.5)

where 𝜑 is the value of the variable in a specific time, 𝜑 is its average time and 𝜑′ is the
turbulent fluctuation in an instant.

To illustrate the influence of turbulence fluctuations on the mean flow, the
instantaneous equation for any quantity 𝜑 of interest is considered:

𝜕(𝜌𝜑)
𝜕𝑡

+∇ · (𝜌𝑢𝜑) = ∇ · (Γ𝜑∇𝜑) + 𝑆𝜑 (3.6)

where Γ𝜑 is the diffusion coefficient and 𝑆𝜑 is the source term.

Considering the Reynolds averaged approach, the quantity 𝜑 can be expressed
as a mean value 𝜑 and its fluctuating component 𝜑′ , so 𝜑 = 𝜑 + 𝜑′. Starting from an
instantaneous balance (Equation 3.6):

𝜕(𝜌𝜑)
𝜕𝑡

+∇ · (𝜌𝑢𝜑)→ 𝜕(𝜌𝜑)
𝜕𝑡

+∇ · (𝜌�̄�𝜑 + 𝜌′𝑢′𝜑′) (3.7)

Here, the unclosed quantity 𝜌′𝑢′𝜑′ represents the turbulent flux of the property
𝜑 and need to be modelled.

Following the averaging procedure, the momentum equation (Equation 3.2)
for the mean velocity component is modified:

𝜕

𝜕𝑡
(𝜌u) +∇ · (𝜌uu) = 𝜌𝑔 −∇𝑃 + [∇(𝜏 − 𝜌 u′ u′)] (3.8)

In Equation 3.8, 𝜏 is the Newton stress for the mean flow. The additional term
due to the fluctuations, 𝜌 u′ u′ is identified as an additional stress due to turbulence called
Reynolds Stress. Therefore to handle this term turbulence models are applied.

The RANS turbulence models are divided into two main classes: the eddy
viscosity models and Reynolds stresses models.

Eddy viscosity models consider that turbulence consists a small eddies which
are continuously forming and dissipating. They also assume that Reynolds stresses are
proportional to mean velocity gradients.
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In Reynolds stresses turbulent models, all components of Reynolds stress tensor
and the dissipation rate are presented in transport equations. Such equations are solved
for the individual stress components. Here, the most common models are:

The correct choice of the most appropriate turbulence model is crucial to a
successful modelling and CFD simulation of a real problem as turbulent and reactive flow.

3.3.1 Eddy Viscosity turbulence models

The eddy viscosity turbulence models are based on Boussinesq assumption
(WILCOX et al., 1993) which makes an analogy between the Newton stress and the
Reynolds stress.

According to the Newton’s law of viscosity, the viscous stress are proportional
to the strain rate:

𝜏 = 𝜇∇u (3.9)

Following the same idea, according to the Boussinessq assumption, the Reynolds
Stress are proportional to the mean strain rate:

𝜌 u′ u′ = 𝜇𝑡∇ū (3.10)

where 𝜇𝑡 is defined as turbulent or eddy viscosity.

The Boussinesq formulation needs a relationship to express the Reynolds tensor
from the mean velocity gradient, and other quantities as the turbulent kinetic energy 𝑘

, to achieve the closure of the mean equations. Therefore, a linear constitutive equation
was defined:

𝑅 = −2𝜈𝑡𝑆 (3.11)

where 𝜈𝑡 is the turbulent kinematic viscosity; R is the anisiotropic tensor, and S is the
strain rate tensor.

The strain rate tensor 𝑆 computes the mean velocity gradient:

𝑆 = 1
2∇ū (3.12)
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The anisiotropc tensor 𝑅 accounts for the turbulent kinetic energy 𝑘. Consider-
ing Cartesian co-ordinates so that the velocity vector u has x-component 𝑢, y-component
𝑣 and z-component 𝑤, the value of 𝑘 can be obtained through:

𝑘 = 1
2(𝑢2 + 𝑣2 + 𝑤2) (3.13)

so,

𝑅 = u′ u′ − 2
3𝑘𝐼 (3.14)

here, 𝐼 is the unit tensor.

The main Eddy Viscosity turbulence models are:

∙ Zero-Equation or algebraic model;

∙ One-Equation models;

∙ Two-Equation models: 𝑘-𝜀, RNG 𝑘-𝜀 and 𝑘-𝜔.

As the name suggests, the algebraic model describe the stresses by means of
simple algebraic formulae for 𝜇𝑡 as a function of the spatial position, while the One-
Equation models solve one turbulent transport equation, usually the turbulent kinetic
energy.

The two-equation turbulence models comprises a complete turbulence ap-
proach based on the Boussinesq assumption. They have been widely used to simulate
the turbulent flows in different engineering applications. These models have two indepen-
dent transport equations, one for turbulent kinetic energy, and the other for turbulent
dissipation rate (for the 𝑘-𝜀 model) or specific dissipation rate (for the 𝑘-𝜔 model).

A briefly explanation of the 𝑘-𝜔 model is presented below. Dedicated section,
with more details, is given to the 𝑘-𝜀 model, once it is adopted in this work.

3.3.1.1 The 𝑘-𝜔 turbulence model

The standard 𝑘-𝜔 turbulence model was introduced by Wilcox (1988). The
model formulation is given by:

𝜇𝑡 = 𝜌𝑘

𝜔
(3.15)



Chapter 3. RANS Numerical Modelling for Turbulent Premixed Combustion 43

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ · (𝜌 u 𝑘) = ∇ ·

⎛⎝ 𝜇𝑡

𝜎𝑘

∇𝑘

⎞⎠ + 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 − 𝐶𝜇𝜌𝑘𝜔 (3.16)

𝜕

𝜕𝑡
(𝜌 𝜔) +∇ · (𝜌 u 𝜔) = ∇ ·

⎛⎝ 𝜇𝑡

𝜎𝜔

∇𝜔

⎞⎠ + 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗
𝛼𝜌

𝜇𝑡

− 𝛽𝜌𝜔2 (3.17)

where 𝜎𝑘, 𝐶𝜇, 𝛼, and 𝛽 are the model constants.

The main advantage of the 𝑘 − 𝜔 model is the near wall treatment. However,
the model has a potential to overprediction of eddy viscosity in large normal-strain flow
regions. The model has been improved during the years to account for a better approach
away from the surface (MENTER, 1994).

3.3.2 The 𝑘-𝜀 turbulence model

The 𝑘-𝜀 model is considered the industry standard model and has proven to be
stable and numerically robust. For general purpose simulations, this model offers a good
compromise of accuracy and robustness. The main drawbacks in 𝑘-𝜀 turbulence model
includes low accuracy for unconfined flows and weak shear layers (for wakes and mixing
layers) (VERSTEEG; MALALASEKERA, 2007).

The 𝑘-𝜀 turbulence model was developed based on the mechanisms that af-
fect the turbulent kinetic energy (LAUNDER; SPALDING, 1983). The two independent
transport equations applied in this model computes the turbulent kinetic energy 𝑘 and
the turbulence dissipation rate 𝜀. The terms 𝑘 and 𝜀 are used to define the velocity scale
𝜗 and length scale 𝑙 for large scale turbulence representation:

𝜗 = 𝑘1/2 (3.18)

𝑙 = 𝑘3/2

𝜀
(3.19)

defined

Based on the velocity scale 𝜗 and length scale 𝑙 defined by Equations 3.18 and
3.19, the turbulent eddy viscosity can be specified:

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
(3.20)

where 𝐶𝜇 is a constant of the model.
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The values of 𝑘 and 𝜀 can be obtained from differential transport equations as
follows:

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ · (𝜌 u 𝑘) = ∇ ·

⎛⎝ 𝜇𝑡

𝜎𝑘

∇𝑘

⎞⎠ + 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 − 𝜌 𝜀 (3.21)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ · (𝜌 u 𝜀) = ∇ ·

⎛⎝𝜇𝑡

𝜎𝜀

∇𝜀

⎞⎠ + 𝜀

𝑘
(𝐶1𝜀 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 − 𝐶2𝜀 𝜌 𝜀) (3.22)

where 𝐶1𝜀, 𝐶2𝜀, 𝜎𝑘 and 𝜎𝑘 are constants. 𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 represent the turbulence production
due to viscous forces and 𝜌𝜀 is the viscous dissipation.

Considering Equations 3.20 - 3.22, it is observed that the 𝑘-𝜀 model presents
five adjustable parameters. For the standard model, they assume the values listed in Table
1.

Table 1 – Constant values for the standard 𝑘-𝜀 turbulence model (LAUNDER; SPALD-
ING, 1983).

Constant Value
𝐶𝜇 0.09
𝐶1𝜀 1.44
𝐶2𝜀 1.92
𝜎𝜀 1.00
𝜎𝑘 1.30

In the current research, the wrinkling of the flame area is due to the turbulent
velocity fluctuations. The turbulence model is coupled to the rate of reaction via Equation
3.48. The fluctuating part of the velocity is calculated using the kinetic turbulent energy
𝑘.

3.3.2.1 Turbulence close to walls

Due to the presence of the boundary layer near the walls, 𝑘 and 𝜀 assumes a
specific behaviour in this region. The approach to describe the quantities depends on the
Reynolds number.

At high Reynolds number, the standard 𝑘 − 𝜀 model uses the "log-law" ve-
locity behaviour and considers that the rate of turbulence production equals the rate of
dissipation. Therefore wall functions are defined:

𝑢+ = 𝑈

𝑢𝜏

= 1
𝜅

ln(𝐸𝑦𝑝
+) (3.23)
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𝑘 = 𝑢𝜏
2√︁

𝐶𝜇

(3.24)

𝜀 = 𝑢𝜏
3

𝜅𝑦
(3.25)

where 𝜅 is the Von Karman’s constant, taken as 0.41; and E is the wall roughness
parameter E = 9.8.

At low Reynolds number, the log-law is not valid and 𝑘 − 𝜀 model must be
modified (VERSTEEG; MALALASEKERA, 2007) to couple the effect of low Reynolds
number into the model equations. Therefore, Equations 3.20 to 3.22 become:

𝜇𝑡 = 𝐶𝜇𝜌𝑓𝜇
𝑘2

𝜀
(3.26)

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ · (𝜌 u 𝑘) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝑘

⎞⎠∇𝑘

⎞⎠ + 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 − 𝜌 𝜀 (3.27)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ · (𝜌 u 𝜀) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝜀

⎞⎠∇𝜀

⎞⎠ + 𝜀

𝑘
(𝐶1𝜀 𝑓1 2𝜇𝑡 𝐸𝑖,𝑗 𝐸𝑖,𝑗 − 𝐶2𝜀 𝑓2 𝜌 𝜀) (3.28)

Here, 𝑓𝜇, 𝑓1 and 𝑓2 are wall damping functions modelled according to Lam e
Bremhorst (1981):

𝑓𝜇 = 1− exp(−0.0165𝑅𝑒𝑡)2
(︂

1 + 20.5
𝑅𝑒𝑡

)︂
(3.29)

𝑓1 =
(︂

1 + 0.05
𝑓𝜇

)︂3
(3.30)

𝑓2 = 1− exp(−𝑅𝑒𝑡
2) (3.31)

The same line of reasoning applied to low Reynolds flows at regions near the
wall is suggested in the current work for the initial phase of burning in the reacting flow.

As it will be discussed next, the initial phase of the kernel formation of the
reaction zone is modelled balancing the contribution from laminar flow and turbulent
flow up to a pre-stablished ratio between inertial effects and viscous forces. Equation
3.53 allows for a smooth transition where the damp function 𝑓𝜇 has been inspired in the
formulation discussed above.
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3.4 Favre averaging

When using Reynols Averaged approach, the unclosed quantity 𝜌′𝑢′𝜑′ present
in the left hand side of Equation 3.7 can act as a source term of 𝜑 for the mean flow field
and consequently the average quantity may not be conserved in a steady flow (POINSOT;
VEYNANTE, 2005). Specially for flows with significant density variation, such a condition
is difficult and also awkard to handle in CFD. To solve this problem, the concept of Favre
averages can be used instead Reynolds averages.

The Favre averages comprise mass-weighted averages (FAVRE, 1969), so each
quantity 𝜑 is density-weighted before averaging:

𝜑 = 𝜌𝜑

𝜌
(3.32)

and the fluctuation from Favre average is given as: 𝜑′′ = 𝜑− 𝜑

The main advantage of using Favre averages is that the terms contain correla-
tions with density fluctuations, thus leading to a simplification of the averaged equations
(CANT; MASTORAKOS, 2008).

Considering the Favre average concept, the mean balance equation for mass
conservation becomes:

𝜕𝜌

𝜕𝑡
+∇ · (𝜌 ũ) = 0 (3.33)

Starting from the complete Navier-Stokes equation (Eq. 3.2), the averaged
balance equation for momentum conservation is given as:

𝜕

𝜕𝑡
(𝜌 ũ) +∇ · (𝜌 ũ ũ) = 𝜌𝑔 −∇𝑃 + [∇(𝜏 − 𝜌 ũ′′ u′′)] (3.34)

3.5 Numerical Combustion Modeling

As previously discussed in Section 2.1.2, for most explosion simulations the
combustion process is modelled as a single step reaction. The Flamelet model stands out
in this approach by considering that reactions take place in a thin and wrinkled surface
separating the unburned reactants from the fully burned products.
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3.5.1 Turbulent premixed combustion modelling by Bray-Moss-Libby

Considering the classical flamelet approach developed by Bray et al. (1985), a
reaction progress variable "c" is assigned zero value in the unburned reactants region and
a value of unity in the fully burned products stabilisation zone. Thus:

𝑐 = (𝑌𝐹 − 𝑌𝐹 𝑅)
(𝑌𝐹 𝑃 − 𝑌𝐹 𝑅) (3.35)

where 𝑌𝐹 is the fuel mass fraction and the subscripts R and P refer to reactants and
products, respectively.

The transport equation for the Favre-average reaction progress variable is given
as:

𝜕

𝜕𝑡
𝜌̃︀𝑐 +∇ · (𝜌̃︀ũ︀𝑐) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝑐

⎞⎠∇̃︀𝑐
⎞⎠ + �̄� (3.36)

In Equation 3.36 above, the summ 𝜇 + 𝜇𝑡 denotes the effective viscosity and
𝜎𝑐 is the turbulent Schmidt number for the reaction progress variable. The last term �̄�

describes the mean reaction rate source term.

Similarly, for the mixture fraction (air and fuel), the transport equation for
the mixture fraction ̃︀𝐹 is expressed as:

𝜕

𝜕𝑡
𝜌 ̃︀𝐹 +∇ · (𝜌̃︀u ̃︀𝐹 ) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝑓

⎞⎠∇ ̃︀𝐹
⎞⎠ (3.37)

Here, 𝜎𝑓 is the turbulent Schmidt number for the mixture fraction. Both 𝜎𝑐

and 𝜎𝑓 are assumed to have a value equal to 0.7.

3.5.1.1 Thermodynamics and Equation of State

Following the BML formulation, the main thermodynamic variables must be
coupled to the reaction progress variable. Because in explosion phenomena the Mach num-
ber may not be always considered to be low, such link can not be done under assumptions
of constant enthalpy. Hence, an additional transport equation must be included to take
into account the total energy �̃� (CANT; BRAY, 1989):

𝜕

𝜕𝑡
𝜌�̃� +∇ · 𝜌𝑢

⎛⎝�̃� + 𝑃

𝜌

⎞⎠ = ∇ ·
⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝐸

⎞⎠∇
⎛⎝�̃� + 𝑃

𝜌

⎞⎠⎞⎠ +∇u𝜏 (3.38)

where the total energy �̃� is defined as:
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�̃� = 𝑒 + 1
2 �̃�2 + 𝑘 (3.39)

in which 𝑒 is the internal energy, so that:

𝑒 =
∫︁ ̃︀𝑇

𝑇0
𝐶𝑣𝑑𝑇 + 𝐻(𝑌𝐹 𝑅(1− ̃︀𝑐) + 𝑌𝐹 𝑃 ̃︀𝑐) (3.40)

where T is the temperature, 𝐶𝑣 is the constant volume specific heat capacity and H is
the energy of combustion.

The pressure 𝑃 is obtained from a equation of state of ideal gas, valid for small
changes in molar mass:

𝑃 = 𝜌𝑅 ̃︀𝑇
�̄�𝑀

(3.41)

Here, R is the universal gas constant, ̃︀𝑇 is the Frave mean temperature and
�̄�𝑀 is the mean molar mass. The Frave mean temperature and the mean molar mass can
be obtained by Equations 3.42 and 3.43 bellow, respectively:

̃︀𝑇 = 𝑒

𝐶𝑉 𝑃

+ 𝑇𝑅(1− ̃︀𝑐)
⎛⎝1− 𝐶𝑉 𝑅

𝐶𝑉 𝑃

⎞⎠− 𝐻

𝐶𝑉 𝑃

[(1− ̃︀𝑐)𝑌𝐹 𝑅 + ̃︀𝑐𝑌𝐹 𝑃 ] (3.42)

�̄�𝑀 = 𝑊𝑅(1− ̃︀𝑐) + 𝑊𝑃 ̃︀𝑐(1 + 𝜏)
1 + 𝜏 ̃︀𝑐 (3.43)

In Equations 3.38 and 3.43 𝜏 is the heat release parameter, defined as:

𝜏 =
⎛⎝𝜌𝑅

𝜌𝑃

⎞⎠− 1 (3.44)

3.5.1.2 Reaction rate modelling

To close the set of equations in the turbulent premixed combustion modelling
it is necessary to define the reaction rate source term �̄� present in Equation 3.36.

The Bray-Moss-Libby flamelet model requires the specification of a probability
density function to model the reaction rate. The formulation considers that during the
turbulent reaction phase, the mean reaction rate in a probe location is defined as follow:

�̄� = 𝜌𝑅𝑢𝐿

∑︁
(3.45)
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Here, 𝜌𝑅 is the density of the reactants, 𝑢𝐿 is the laminar flame speed and ∑︀
is the flame surface area per unit of volume. This last variable is obtained by considering
that the passage of laminar flamelets in a specific point is a stochastic process (CANT;
BRAY, 1989):

∑︁
= 𝑔̃︀𝑐(1− ̃︀𝑐)
|̂︀𝜎𝑦|̂︀𝐿𝑦

(3.46)

In Equation 3.46 above, 𝑔 is a constant and |̂︀𝜎𝑦| the orientation factor, both
evaluated from experimental data, therefore 𝑔 ≃ 1.5 and |̂︀𝜎𝑦| ≃ 0.5. ̂︀𝐿𝑦 is the integral
length scale of wrinkling and is linked with the laminar flamelet length scale:

̂︀𝐿𝑦 = 𝑐𝐿𝑙𝐿𝑓

⎛⎝ 𝑢′

𝑢𝐿

⎞⎠ (3.47)

where the constant 𝑐𝐿 ≃ 1.0 and 𝑙𝐿 = (𝜈/𝑢𝐿).

The function 𝑓 in Equation 3.47 is obtained based on experimental observa-
tions. The factor ∑︀ increases with 𝑢′/𝑢𝐿 up to a maximum value and tends to decrease
when the reaction rate is reduced by flame stretch (CANT; BRAY, 1989), so:

𝑓

⎛⎝ 𝑢′

𝑢𝐿

⎞⎠ =
[︂ 1
1 + 𝑐𝑤1

(𝑢′/𝑢𝐿)

⎛⎝1− 𝑒𝑥𝑝
[︂ −1
1 + 𝑐𝑤2(𝑢′/𝑢𝐿)

]︂)︂]︂−1

(3.48)

The function 𝑓 is used to obtain the flame length scale, based on the fact that
such parameter is defined in response to perturbations from the turbulent velocity field.
Such function is calibrated from experimental data and the values of constants 𝐶𝑤1 and
𝐶𝑤2 are taken as 1.5 and 4.0, respectively.

The laminar flame speed 𝑢𝐿 is obtained by empirical correlation(ABU-ORF,
1996), which eliminates the need of flamelet libraries:

𝑢𝐿 = 𝑎Φ𝑏𝑒𝑥𝑝[−𝑐(Φ− 𝑑)2]
(︂

𝑇𝑅

𝑇0

)︂𝛼(︂
𝑃

𝑃0

)︂𝛽

(3.49)

Here, Φ is the equivalence ratio (between the mass of fuel and air within the
flammability limits) and a, b, c, d, 𝛼 and 𝛽 are fuel dependent constants. Table 2 presents
the values of such constants for methane and propane.

3.5.2 Initial phase laminar combustion

As addressed in Chapter 2, the overall behaviour of combustion phenomena
during an explosion is based on the turbulent mechanisms. However, it is important to
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Table 2 – Constant values for the laminar flame speed correlation (ABU-ORF, 1996).

fuel a b c d 𝛼 𝛽
Methane 0.6097 -2.554 7.3105 1.2303 2.0 -0.42
Propane 0.4243 0.7345 4.5003 0.9813 1.77 -0.25

understand that an initial burn phase is present at the beginning of the process. Once
ignition has occurred, the flame develops initially at the laminar speed. As the kernel
grows, the laminar flames instabilities cause the flame to wrinkled and accelerate until
the turbulent combustion is set. Therefore, to model the explosion phenomena, a special
treatment must be given to this initial phase.

Birkby et al. (2000) propose a numerical approach to represent the initial
laminar flame behaviour. The flame burns at laminar speed by scaling the sum of the
reaction rates in each node and it is equal to the total reaction rate of a laminar flame
with the same total surface area. Therefore, Equation 3.45 becomes:

�̄�𝑙𝑎𝑚 = 𝜌𝑅𝑢𝐿𝐴𝑓𝑙𝑎𝑚𝑒 (3.50)

The flame surface area (𝐴𝑓𝑙𝑎𝑚𝑒) is obtained on a geometrical basis for spherical
flames, until the flame reaches an obstacle and distorted. This geometrical relation to
obtain the flame area for a given volume of a sphere (ARNTZEN, 1998) is given by:

𝐴𝑓𝑙𝑎𝑚𝑒 = 𝜋1/3(6𝑉 )2/3 (3.51)

In Equation 3.51 the area of the flame is calculated by identifying all cells
contain the progress variable 𝑐 = 0.5 contour.

The reaction rate for each node is calculated in the same way for the standard
turbulent combustion model, since the proportion to the total laminar burning rate is
calculated for each node. In this case, the source term in equation 3.36 is given as:

�̄� = 𝜌𝑅𝑢𝐿𝐶𝐴𝑓 𝑙𝑎𝑚𝑒
𝑐(1− 𝑐)∑︀

𝑛𝑜𝑑𝑒𝑠 𝑐(1− 𝑐)𝑉 (3.52)

where C is a fuel dependent constant.

Another method has been proposed by Vianna e Cant (2014) in order for the
transition from laminar to turbulent combustion. The model assumes that such transition
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occurs when the turbulent Reynolds number is equal to a predefine value (𝑅𝑒 =≈ 500).
By using this model, the reaction rate source term (equation 3.36) is calculated as follows:

�̄� = 𝑓𝜇𝜔𝑡𝑢𝑟𝑏 + (1− 𝑓𝜇)𝜔𝑙𝑎𝑚 (3.53)

where 𝜔𝑡𝑢𝑟𝑏 is the original source term of BML model given in equation 3.45 and 𝜔𝑙𝑎𝑚 is
the laminar source term proposed by Arntzen (1998) (Equation 3.52).

In this case the area of the flame is given as:

𝐴𝑓𝑙𝑎𝑚𝑒 = 𝜋4/9(𝑉 )2/3 (3.54)

and 𝑓𝜇 = max(0; 1− exp(−0, 008(𝑅𝑒𝑡𝑢𝑟𝑏 −𝑅𝑒500))), as previously discussed.

3.6 The Porosity Distributed Resistance Method (PDR)

The concept of Porosity Distributed Resistance (PDR) was introduced by
Patankar e Spalding (1974) to handle multi obstacles flows. Initially, the method was
implemented in heat exchanger geometries and was progressively applied for complex
geometries.

The main idea of PDR is to consider the small scales objects that are not solved
by the computational mesh as a porous media. This medium would offer a resistance to
the fluid flow (SAVILL; SOLBERG, 1994). This technique allows the use of a much coarser
computational mesh than the one required to resolve the fine scales of the geometry, which
in turn permits the use of a less detailed specification of the geometry.

The PDR model has been used in several different models to assess gas ex-
plosion in complex geometries (HJERTAGER et al., 1992), (VIANNA; CANT, 2010),
(SAVILL; SOLBERG, 1994) and (FOTHERGILL et al., 2003).

3.6.1 PDR Formulation

In PDR formulation, the presence of small scales objects modifies the governing
equations. Due to the presence of obstructions in the computational cell, only part of the
total volume is available to the flow. Moreover, the small objects offer additional resistance
to flow and also turbulence production (HJERTAGER et al., 1992).
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Considering a typical control volume, shown in Figure 4, the porosity or volume
fraction occupied by the fluid can be defined as:

𝛽𝑣 = 𝑉𝑓

𝑉𝑓 + 𝑉𝑠

= 𝑉𝑓

△𝑥△ 𝑦△ 𝑧
(3.55)

where 𝛽𝑆 is the porosity volume, 𝑉𝑓 is the volume of fluid and 𝑉𝑠 is the volume of a solid
geometry.

Figure 4 – Typical computational cell partially occupied by a solid object and the pro-
jected area in the cell faces.

The volume porosity is calculated based on the volume of solid not resolved
by the mesh and the volume of the computational cell itself. In a similar manner an area
porosity is calculated using the projected area of the the obstacle on the cell face. The
area porosity is defined in each of the three directions (x, y and z). The expression for x
direction is given as:

𝛽𝑥 =
∫︀

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑦𝑑𝑧

△𝑦△ 𝑧
(3.56)

Similar expressions can be obtained for porosities in y and z directions. All
the volume/area porosities will have values ranging from 0 (completely blocked) to 1
(completely open). Such porosity is taken into account by the governing equations to
calculate the fluid flow properties only in the region of the computational cell that is
available to the flow.

3.6.2 Modified Conservation Equations by Using the Porosity Distributed
Resistance (PDR) Model

According to the porosity distributed resistance method, porosity values are
assigned to faces and volume of each computational cell and must be considered in each
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conservation equation. Thus, the terms of equations that contain area and volume are
amended by a new variable, namely 𝛽.

Furthermore, the presence of obstacles that are not solved by the mesh cause
an additional resistance to the flow and also the production of turbulence that must be
accounted for.

3.6.2.1 Additional resistance to the flow

The resistance that unresolved obstacles offer to the mean flow is modelled as
a frictional resistance (SHA; LAUNDER, 1979):

𝑅𝑗 = −𝑓𝑗𝐴𝑤
1
2𝜌𝑈𝑗

2 (3.57)

Here 𝐴𝑤 is the wetted area per unit volume: 𝐴𝑤 = 𝐴𝑗(𝛽−1 − 1.0)2. The friction
factor 𝑓𝑗 depends on different parameters such as velocity, porosity value, characteristic
length or hydraulic diameter, shape and orientation.

Patankar e Spalding (1974) present two different models to calculate the fric-
tion factor based on the flow orientation to an obstacle. For flows parallel to an obstacle
𝑓𝑗 is calculated through Equation 3.58 while for normal flows 𝑓𝑗 is given by Equation 3.59

𝑓𝑗 = 0.048𝑅𝑒𝐷
−0.2 (3.58)

𝑓𝑗 = 0.23 + 0.11[︂(︂
3 𝑃

𝐷

)︂0.5
− 1

]︂1.08 𝑅𝑒𝐷
−0.15 (3.59)

In both equations, 𝑅𝑒𝐷 is the Reynolds number based on the hydraulic diam-
eter. In Equation 3.59 the term 𝐷 represents the diameter of an obstacle and 𝑃 the space
between the obstacles.

As consequence of this additional resistance to the flow, the momentum equa-
tion is modified. Hence, Equation 3.2 becomes:

𝜕

𝜕𝑡
(𝛽𝑣𝜌 u) + u · ∇(𝛽𝑖𝜌 u) = 𝛽𝑣𝜌𝑔 − 𝛽𝑣∇𝑃 + [𝛽𝑖∇ · 𝜏 ] + 𝛽𝑖𝑅 (3.60)

3.6.2.2 Turbulence production due to resistance

The presence of a porous media also represents an additional source of turbu-
lence fluctuations. Sha e Launder (1979) have proposed two models in order to describe
this additional turbulence production.
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The first model takes into account the turbulence production due to the pres-
ence of shear layers on the sides of the unresolved obstacles. The modified formulation,
suggested by Vianna e Cant (2010) and given by:

𝑆𝑘1 = 𝐶𝑆𝜇𝑡𝛽𝑣[(𝑈 − 𝑈𝑆)2 + (𝑉 − 𝑉𝑆)2 + (𝑊 −𝑊𝑆)2]𝐴𝑤
2 (3.61)

where 𝑈𝑆, 𝑉𝑆 and 𝑊𝑆 represents the slip velocities and are taken to be a fraction of the
values at cell faces was used in the current research.

In the second model, the turbulence production due to the wakes of the unre-
solved obstacles is calculated:

𝑆𝑘2 = 𝐶𝐵𝜌𝑈𝑗
3𝐴𝑤 (3.62)

The constants 𝐶𝑆 and 𝐶𝐵 present in Equations 3.61 and 3.62 are adjustable
parameters (𝐶𝐵 = 𝐶𝑆/2).

The additional production terms described here 𝑆𝑘1 and 𝑆𝑘2 are introduced in
the 𝑘− 𝜀 turbulence model by increasing the turbulence production term. Equations 3.27
and 3.28 become:

𝜕

𝜕𝑡
(𝜌 𝑘) +∇ · (𝜌 u 𝑘) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝑘

⎞⎠∇𝑘

⎞⎠ + 𝑆𝑇 − 𝜌 𝜀 (3.63)

𝜕

𝜕𝑡
(𝜌 𝜀) +∇ · (𝜌 u 𝜀) = ∇ ·

⎛⎝⎛⎝𝜇 + 𝜇𝑡

𝜎𝜀

⎞⎠∇𝜀

⎞⎠ + 𝜀

𝑘
(𝐶1𝜀 𝑓1 𝑆𝑇 − 𝐶2𝜀 𝑓2 𝜌 𝜀) (3.64)

where 𝑆𝑇 represents the source of turbulence production and is given by
𝑆𝑇 = 2𝜇𝑡𝐸𝑖,𝑗𝐸𝑖,𝑗 + 𝑆𝑘1 + 𝑆𝑘2
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4 Porosity Flow Solver (PFS)

In gas explosion, as well as in almost all real problems, the solution of the
differential equations that represent the fluid dynamics is not straightforward, even when
using numerical techniques.

Specifically for the momentum conservation, the presence of the non-linear
terms in the Navier-Stokes equations greatly increases the complexity of the numerical
solution.

The strategy adopted in this work relied on a bi-dimensional solver where the
Euler equation is used to solve the momentum conservation as basis for the development of
the three-dimensional Navier-Stokes. The initial code, called Euler Solver, is customised to
solve compressible flows in sonic and supersonic flow regimes (GONÇALVES; VIANNA,
2014).

The Euler Solver was improved step by step until the complete three-dimensional
Navier-Stokes solver for gas explosion in complex geometries was engineered. For the sake
of clarity, the 3D Navier-Stokes is named PFS (Porosity Flow Solver) and this abbrevia-
ture will be used along the remaining of this thesis.

The four main steps considered were:

∙ First, a three-dimensional Euler code was developed based on the existing 2D Euler
Solver. Since there is no need for calculation of the viscous term, the implementation
of the Euler solver is easier than the implementation of the complete Navier-Stokes
equations. It can also serve as the framework for future development of the detona-
tion module of the code.

∙ In the second part, the PDR (Porosity Distributed Resistance) was included in the
code to represent the geometry under study.

∙ Step three embedded the development of the three-dimensional Navier-Stokes code.
The viscous effects were included into the momentum equation so that the complete
Navier-Stokes equations were solved. In this step, the turbulence model was also
implemented;

∙ In the fourth and last part, the combustion modelling was coupled with the porosity
concept and was coded into the framework of the 3D Navier-Stokes program. The
flamelet concept was used at this step.
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As result of the process listed above, the three-dimensional CFD code was
developed. The main features of the code and details of the architecture are discussed in
this chapter. More information about the code routines and the link between them are
found in Apendix .

4.1 Structure of PFS

The CFD codes generally present four main elements: the geometry generator,
the pre-processor (mesh and set up), the solver, and the post-processor. This section
outlines the various aspects of the development of the computational tool.

4.1.1 Geometry

Although the utilisation of PDR techniques are focused on the small scales of a
geometry that is not resolved by the computational mesh, the current research investigates
how the full geometry can be parametrised using the collision algorithm for convex sets.

The initial step of the simulation using PFS comprises the conversion of the
geometry in a porous media. The area and volume porosities are calculated as described in
Section 3.6. The porosity calculation is performed by the supporting code, namely PrePro
PFS. The porosity code was developed to check the collision between two convex sets.
In this particular case, the computational mesh was assumed to be a convex set and the
Cartesian coordinates of the geometrical model was model as a second set (MOREIRA et
al., 2015). Stereolithography CAD files in "stl" format can be read in PrePro PFS that
uses the Gilbert-Johnson-Keerthi Distance algorithm (GJK algorithm) to parametrise the
geometry as porous media.

The outputs of this process are data files containing values for the areas and
volumes porosities. It also provides the parameters used to build the porous mesh (di-
mensions of the computational domain and size of the cells) (MOREIRA et al., 2015).

4.1.1.1 Fundamentals of the GJK Algorithm

The Gilbert-Johnson-Keerthi Distance algorithm (GJK algorithm) is a method
for obtaining the minimum distance between two convex objects based on the concept
of the Minkowski difference ((GILBERT; FOO, 1989), (GILBERT et al., 1988)). The
algorithm can also be used to check for collision between two convex objects.

Given two sets 𝐴, 𝐵 in 𝑅𝑛 of position vectors in the Euclidean space, the
Minkowski addition is formed by adding every vector in A to every vector in B (Equation
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4.1).

𝐴 + 𝐵 = {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (4.1)

Similarly, the Minkowski difference is formed by subtracting ever vector in B
from every vector in A (Equation 4.2).

𝐴−𝐵 = {𝑎− 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (4.2)

In Minkowski difference, if the two sets are colliding, the resulting difference
will contain the zero vector.

The main advantages of the GJK algorithm is the computational velocity and
stability. There are many techniques that make possible to further increase the efficiency
of the algorithm (ERICSON, 2004), (BERGEN, 1999). The algorithm also relies on a
support function that makes possible to check for collisions between any kind of discrete
and analytical objects, in any kind of format.

One important idea of the GJK algorithm is to try to interactively build a
polytope, polygon (2D) or polyhedron (3D), on the Minkowski difference that encapsulates
the origin. This polygon or polyhedron can be defined as a simplex. The simplex is build
using a support function, that returns a point on shape that is furthest in a direction
𝐷. Using the furthest point in one direction is important because it creates the simplex
with the largest area (or volume) and increases the chance of the algorithm to converge
quickly. The furthest point in a direction of the Minkowski difference of two sets of vectors
𝑃 and 𝑄 is the maximum of the dot product of the direction and the Minkowski difference
(Equation 4.3).

support = max((𝑃 −𝑄) ·𝐷)

= {max((𝑝− 𝑞) ·𝐷) | 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄}

= {max(𝑝 ·𝐷 − 𝑞 ·𝐷) | 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄}

= {max(𝑝 ·𝐷)−max(𝑞 · (−𝐷)) | 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄}

= support(𝑃, 𝐷)− support(𝑄,−𝐷)

(4.3)

To initialise the algorithm, the supported function is set up using a random
direction and its result is added to the simplex. After that, the negative vector is used as
initial direction vector for the main loop. The main loop of the function performs three
actions. First it adds a new vector 𝐴 to the simplex by calling the support function using
the direction vector 𝐷. Then, it checks if this new vector 𝐴 is in the same direction as
the direction vector 𝐷. If it is not, then the algorithm tries to get to a point as far as
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possible in the direction 𝐷 but could not get pass the origin. This means that there are
no points past the origin, otherwise the simplex will never be able to build a polytope
that encapsulates the origin. If the check return true, then the point 𝐴 is added to the
the simplex 𝑆 and the function Nearest is called.

The last step of the main loop is the Nearest function. This function first
checks if the origin is inside the polytope. If this is true, then the function returns true
and the algorithm ends. If this is false, it may removes old points of the simplex 𝑆 that
are no longer required and a new direction 𝐷 to search for. This function is build based
on the dimension (2D or 3D) of the problem. Algorithm 4.1 is a resumed explanation of
the GJK algorithm.

Algorithm 4.1 GJK Algorithm
Require: 𝑃 = list of points of solid 1
Require: 𝑄 = list of points of solid 2
Require: 𝐷0 = initial search direction

function GJK(𝑃, 𝑄, 𝐷0)
Initialize: 𝐴← Support(𝑝, 𝐷0)− Support(𝑞,−𝐷0)
Initialize: 𝑆 ← {𝐴} ◁ 𝑆 is the simplex list
Initialize: 𝑉 ← −𝐴
loop

𝐴 = Support(𝑝, 𝐷)− Support(𝑞,−𝐷)
if dot(𝐴, 𝐷) < 0 then

return False
end if
𝑆 ← 𝐴
𝑆, 𝐷, 𝑐𝑜𝑙 := Nearest(𝑆)
if 𝑐𝑜𝑙 then

return True
end if

end loop
end function
function Support(X,D)

return max(𝑋, 𝐷)
end function

4.1.1.2 Porosity Mesh Calculation

The parametrised geometry can be obtained using the GJK algorithm to check
for a collision between a mesh element and each geometric object. This process is described
in Figure 5 and is conducted in three main steps. In the first step a geometric object is
placed into a domain; on step 2 a structured mesh is created over the domain; and in
the last step 3 the GJK technique is used to calculate the porosity of the mesh. In this
approach, every element fully occupied by a solid has a value of 0.0, while every empty
element has a value of 1.0. If an element of the mesh is half full the value of 0.5 is assigned
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for the local porosity of the computational cell.

Figure 5 – Steps of porosity mesh calculation.
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∙ Porosity Volume

The porosity volume is obtained applying the 3D GJK algorithm and the
procedure described above. As the method uses a structured mesh, each computational
element will be a hexahedron (cube). Algorithm 4.2 below describes the process.

Algorithm 4.2 Volume Porosity Algorithm
Require: 𝑆 = list of solids in the geometry
Require: 𝑁 = list of elements of the mesh
Require: 𝑃 = list of porosity values

Initialize: 𝑃 ← 1
for all 𝑠 ∈ 𝑆 do

for all 𝑛 ∈ 𝑁 do
𝑃 (𝑛) := 𝑃 (𝑛)− collision3D(𝑛, 𝑠) ◁ collision returns 1.0 or 0.0

end for
end for

∙ Porosity Area

The values of porosity area are obtained by "slicing” each geometric solid on
the required plane. A trivial slicing method, described by Gregori Neri Volpato e Silva
(2014) is used. As a structured mesh is used, the values of porosity area are calculated
on the faces of the hexahedrons. Algorithm 4.3 describes the process for calculation of
porosity area over x direction.

Algorithm 4.3 Area Porosity Algorithm (x direction)
Require: 𝑆 = list of solids in the geometry
Require: 𝑁𝑥 = list of elements of the mesh in the x direction
Require: 𝑃𝑥 = list of area porosity values in the x direction

Initialize: 𝑃𝑥 ← 1
for all 𝑠 ∈ 𝑆 do

for all 𝑛𝑥 ∈ 𝑁𝑥 do
𝑠𝑥 := slice(𝑠, 𝑛𝑥)

◁ slice the solid 𝑠 at the (𝑥, 0, 0) coordinate of 𝑛 on the 𝑥 direction
◁ slice the solid 𝑠 at the (𝑥, 0, 0) coordinate of 𝑛𝑥 on the 𝑥 direction

𝑃𝑥(𝑛) := 𝑃𝑥(𝑛)− collision2D(𝑛𝑥, 𝑠𝑥, 1) ◁ collision returns 1.0 or 0.0
end for

end for

∙ Recursion

Because the GJK algorithm can only return true or false, a recursive division
approach is applied to obtain refined porosity values. An example of this procedure is
presented in Figure 6 where two mesh elements are shown near a solid obstacle. In na
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first step the GJK algorithm identifies that the solid object is in contact with the bottom
element but is not in contact with the top element, so the top element is immediately
assigned a porosity value of 1.0 while recursion starts at the bottom element. On the next
step, the bottom element is divided into 𝑘 sub-elements and each sub-element is checked
with the GJK algorithm again. To obtain the final porosity value each sub-element is
subtracted from the main element according to its value. If it is not in contact, the value
is zero. If it is in contact, the value is 1

𝑘𝑛 .

Figure 6 – Porosity recursion.

The refined porosity volumes are obtained breaking every mesh element (cube)
in 8 equal elements, while the refined porosity areas are obtained dividing each face of
the mesh (square) into 4 equal faces. The new collision function is described by algorithm
4.4, with 𝑘 = 8 for the 3D problem and 𝑘 = 4 for the 2D problem.

Algorithm 4.4 Collision Recursion
1: function collision(𝑛, 𝑠, 𝑖𝑛𝑡) ◁ int is the number of the interaction
2: 𝑐𝑜𝑙 := GJK(𝑛, 𝑠) ◁ GJK return true or false for collision
3: if col = true then
4: if int ≤ int𝑚𝑎𝑥 then
5: 𝑀 := divide(𝑛, 𝑘) ◁ divide 𝑛 into 𝑘 sub-elements
6: ◁ 𝑀 = list of sub-elements
7: sum := 0
8: for all 𝑚 ∈𝑀 do
9: sum := sum + collision(𝑚, 𝑠, 𝑖𝑛𝑡 + 1)

10: end for
11: return sum/𝑘
12: else
13: return 1
14: end if
15: else
16: return 0
17: end if
18: end function

∙ Results for Porosity mesh calculation
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Figure 7 shows the developed porosity method applied to a simplified oil plat-
form STL model. The model is composed of 26 convex objects (cylinders, spheres and
hexahedrons), mesh size is 100x100x64 (617463 cells). Using a FORTRAN OMP code,
with 8 cores, the simulation took around 10 seconds to complete (MOREIRA et al.,
2015).

(a) (b)

(c) (d)

Figure 7 – Porosity applied to a simple oil platform model: (a) the STL geometry; (b)
Platform geometry and mesh; (c) Platform porosity volume; (d) Platform
porosity area (in X direction). Results are post-processed using Paraview.

4.1.2 Preprocessing

In PFS code, all the partial differential equations are integrated over a control
volume, following the Finite Volume Method (FVM).

The Finite Volume Method is a spatial discretization technique for partial
differential equations. By using this method, the approximate equations are obtained by
integration of the governing equation in its conservative form. This discretization process
gives rise to a linear system of algebraic equations for the variables that can be numerically
solved (MALISKA, 2004). The FVM is in common use for discretizing computational fluid
dynamics equations once the resulting of the process is similar to perform a balance of
the property over a discrete control volume.

4.1.2.1 Variable Storage

In finite volume method the control volumes can be defined in two different
ways: cell-centred and cell-vertex. In the cell centred approach the element mesh is used as
a control volume and the computational nodes are considered as the centre of this control
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volume, where the unknowns are stored. In the cell vertex approach the unknowns are
defined at the corners of the cell and the control volume is defined by all computational
cells surrounding a specific node. Figure 8 presents an example of a mesh with these two
different approaches.

Figure 8 – General grid in finite volume method: nodes (a); cell-centred control volumes
(b) and cell-vertex control volume (c).

The cell-centred approach is an obvious choice for control volumes, once they
coincide with the mesh cells. However the cell-vertex methodology presents more flexibil-
ity for the definition of control volume. The advantages of cell-vertex approach include
more accuracy; less CPU time and memory requirement and easy treatment of bound-
ary conditions (DISKIN et al., 2010) (HEJRANFAR; AZAMPOUR, 2015). In PFS, the
cell-vertex approach was considered to represent the control volumes.

4.1.2.2 PFS Mesh

Due to the complexity of the phenomenon, structured grids have been used
in almost of all CFD codes for gas explosion ((LEA; LEDIN, 2002), (WATTERSON et
al., 1998), (HJERTAGER et al., 1992) ). Hirsch (2007) emphasizes that structured grids,
compared with unstructured grids, are often more efficient from CFD point of view, in
terms of accuracy, CPU time and memory requirement. In this work the structured grid
is adopted.

In PFS code, the mesh is built on a Cartesian coordinate system with X, Y,
Z (i,j,k) being the right-handed set. The overall strategy of mesh generation is illustrated



Chapter 4. Porosity Flow Solver (PFS) 64

in Figure 9. The final mesh is structured and composed by discrete cells defined by a set
of vertices, faces, and edges as shown in Figure 10 (vertices - (a), faces - (b) and elements
-(c)).

Figure 9 – The hexahedral computational cell in PFS code.

Figure 10 – Two-Dimensional Mesh Discretization: nodes (a); faces (b) and elements (c).

The geometric information about each cell is stored into a matrix that is used to
make the elements connectivity (as decribed in Moukalled F.; Mangani e Darwish (2016)).
It is possible to identify the neighbour cells and vertex and the shared and boundary faces.
In Figure 10 (c), for example, the element 7 is composed by the vertex: 8, 9, 14 and 13;
by the faces: 16, 12, 17, 21; and has the elements 3, 8, 6 and 11 as neighbours.

The area of each cell face and the volume of each computational cell are eval-
uated according to Hirsch (2007). Following this strategy, the area of a quadrilateral
element is calculated as a half of the vector cross products of the diagonals. The area
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vector attached to a cell face is derived from the divergence theorem which indicates that
the sum over all surface normals of any closed cell must be zero. Such condition is as-
sessed when calculating the cell face areas. Another important consideration is that all
areas must come out positive as a way to ensure the flow through the computational cell.

To obtain the volume of the computational cell, simple formulae are used
for basic cells such as tetrahedra, pyramids or hexahedral. For the calculation of the
volume of an hexahedron, its volume can be divided into three pyramids with a specific
point as summit. The volume of each pyramid is described as a third of the product
between the area of the pyramid base and the vector orthogonal to the associated surface.
The hexahedral volume is obtained by the sum of the volume of the three pyramids. As
example, in Figure 11, the hexahedron 1-2-3-4-5-6-7-8 is divided into three pyramids with
point 4 as summit.

Figure 11 – Subdivision of an hexahedral volume in pyramids.

The volume of the hexahedron given above is calculated as:

𝑉 𝑜𝑙𝐻𝐸𝑋𝐴 = 𝑉 𝑜𝑙1573−4 + 𝑉 𝑜𝑙5687−4 + 𝑉 𝑜𝑙1265−4 (4.4)

4.1.3 PFS Solver

The solution technique adopted in PFS is the Lax-Friedrichs method described
in Hirsch (2007). This method consists in a central difference scheme that is modified to
stabilise the unstable forward in time marching approach.

The traditional second order central discretisation in space and first order
explicit forward difference in time, for one dimension, is defined as:

𝜑𝑖
𝑛+1 = 𝜑𝑖

𝑛 − 𝛼

2 (𝜑𝑖+1
𝑛 − 𝜑𝑖−1

𝑛) (4.5)

where 𝜑 represents the value of the variable of interest, 𝑖 represents the point position in
space and 𝑛 is the time level. The parameter 𝛼 represents the Courant Number (CFL),
the unique parameter of the scheme.
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In Equation 4.5, if the term 𝜑𝑖 in the right hand side is replaced by (𝜑𝑖−1 +
𝜑𝑖+1)/2, an error of the order of Δ𝑥 is introduced, reducing this scheme to first order in
space, so:

𝜑𝑖
𝑛+1 = 1

2(𝜑𝑖+1
𝑛 + 𝜑𝑖−1

𝑛)− 𝛼

2 (𝜑𝑖+1
𝑛 − 𝜑𝑖−1

𝑛) (4.6)

Equation 4.6 above describes the Lax-Friedrichs method, which is first order
accuracy in space and time. Because it is explicit in time, this scheme is computationally
efficient and simple to implement. However the scheme tends to give solutions containing
non-physical oscillations or wiggles in regions where high gradients are experienced. The
solution might be stabilised by adding artificial viscosity (smoothing).

4.1.4 Postprocessing

All the postprocessing in PFS (the grid and the results visualization) is con-
ducted in the open source tool Kitware Paraview.

The mains steps of a simulation using the developed code are presented in
Figure 12. Following the CFD modelling, the blocks in gray represent the pre-processing
step, the blue blocks represent the solver and the red one is used to describe the post-
processing.

Figure 12 – Main steps of a simulation using PFS code.

It is possible to observe that the output of the PrePro PFS (files contain mesh
parameters and porosity values for a specific geometry) is the input of the first subroutine
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of PFS called "check grid". In this subroutine, the computational grid is rebuild and
porosity values are attached for each computational cell.

4.2 Discretisation Process

During the PFS discretisation process, the variables are stored at the vertex
cells (as described in Section 4.1.2). Figure 13 shows a typical set of hexahedral cells
surrounding and influencing a node.

Figure 13 – Set of hexahedral computational cells surrounding and influencing a node in
PFS code.

For better visualisation, Figure 13 shows only four cells. However it is possible
to understand that in three dimensions a specific node is influenced by eight cells (four
in each plane).

4.2.1 Discretisation of the Conservation Equations

The conservation equations of mass, momentum, energy and reaction progress
variable, described in Chapter 3, have a similar format. Using a generic variable 𝜑, all
these quantities can be expressed as:

𝜕(𝜌𝜑)
𝜕𝑡

+ 𝜕(𝜌𝑢𝑗𝜑)
𝜕𝑥𝑗

= 𝜕

𝜕𝑥𝑗

(Γ𝜑
𝜕𝜑

𝜕𝑥𝑗

) + 𝑆𝜑 (4.7)

The integration of the Equation 4.7 over a control volume V gives:

∫︁
𝑉

𝜕(𝜌𝜑)
𝜕𝑡

𝑑𝑉 = −
∫︁

𝑉

𝜕(𝜌𝑢𝑗𝜑)
𝜕𝑥𝑗

𝑑𝑉 +
∫︁

𝑉

𝜕

𝜕𝑥𝑗

(Γ𝜑
𝜕𝜑

𝜕𝑥𝑗

)𝑑𝑉 +
∫︁

𝑉
𝑆𝜑𝑑𝑉 (4.8)

In Equation 4.8, the convection and diffusion terms can be transformed into
surface integrals by using the Gauss Divergence Theorem. The integral form of the equa-
tion is written as:

∫︁
𝑉

𝜕(𝜌𝜑)
𝜕𝑡

𝑑𝑉 = −
∫︁

𝑆
(𝜌𝑢𝑗𝜑)𝑑𝑆𝑗 +

∫︁
𝑆

Γ𝜑
𝜕𝜑

𝜕𝑥𝑗

𝑑𝑆𝑗 +
∫︁

𝑉
𝑆𝜑𝑑𝑉 (4.9)
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The terms in Equation 4.9 represents the unsteady on the left hand side and
the convection, diffusion and source terms on the right hand side, respectively.

As previously described, when the PDR method is applied, the transport equa-
tions are modified to take into account the porosity values of volume and areas for each
computational cell. Hence, Equation 4.9 above becomes:

∫︁
𝑉

𝜕(𝜌𝜑)
𝜕𝑡

𝛽𝑉 𝑑𝑉 = −
∫︁

𝑆
(𝜌𝑢𝑗𝜑)𝛽𝑗𝑑𝑆𝑗 +

∫︁
𝑆

Γ𝜑
𝜕𝜑

𝜕𝑥𝑗

𝛽𝑗𝑑𝑆𝑗 +
∫︁

𝑉
𝑆𝜑𝛽𝑉 𝑑𝑉 (4.10)

where 𝛽 is the assigned cell porosity.

4.2.1.1 The Unsteady Term

The unsteady term in the left hand side of the Equation 4.10 is discretised
considering the value at node shared by the eight computational cells surrounding it. The
central approximation is used as described in Section 4.1.3.

4.2.1.2 The Convection Term

For the convection term, the variables are assumed to have a piece-wise linear
variation over the cell faces between the vertices. The flux sum for a given cell is computed
as:

𝜕(𝜌𝑢𝑖𝜑)
𝜕𝑥𝑗

=
6∑︁

𝑛𝑓=1
(𝜌𝑢𝑖𝜑𝐴𝑖) (4.11)

4.2.1.3 The Diffusion Term

The derivative terms in the viscous stresses are piece-wise constant over the
cell and are computed by simple application of the Gauss divergence theorem:

(︂
𝜕𝜑

𝜕𝑥𝑗

)︂
= 1

𝑉 𝑂𝐿

6∑︁
𝑛𝑓=1

𝜑Δ𝐴𝑥𝑗 (4.12)

where 𝑛𝑓 indicates the face number of the control volume.

In Equation 4.12, the sum over the volume include the six (6) faces that belongs
the hexahedral computational cell.
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Using all the cells surrounding a specific node as control volume, the viscous
stress terms at such node can be evaluated:

𝜕

𝜕𝑥𝑗

(︂
𝜇

(︂
𝜕𝜑

𝜕𝑥𝑗

)︂)︂
= 1

𝑉 𝑂𝐿

8∑︁
𝑛𝑐=1

𝜇
(︂

𝜕𝜑

𝜕𝑥𝑗

)︂
Δ𝐴𝑥𝑗 (4.13)

Here, 𝑛𝑐 represents the number of cells surrounding a node. Once the domain
is discretised in hexahedral cells with cell vertex storage variable, in three dimensions,
each node will receive the contribution of the eight surrounding cells (as vizualized in
Figure 13).

4.2.1.4 The Source Term

The source term is different for each variable in individual conservation equa-
tion and it depends on what is being transported.

Numerically, for the momentum conservation, the source term represents the
effect of pressure gradient. In case of the energy equation, it includes contributions due
to pressure work, viscous dissipation and chemical source term.

4.2.1.5 The Complete Discretised Conservation Equation

Considering the discretisation of each term of the Equation 4.10, the discretised
generic equation solved in PFS is:

Δ(𝜌𝜑𝛽𝑉 𝑉 )
Δ𝑡

= −
6∑︁

𝑛𝑓=1
(𝜌𝑢𝑖𝜑𝛽𝑖𝐴𝑖) +

6∑︁
𝑛𝑓=1

⎛⎝𝜌Γ𝜑𝛽𝑖𝐴𝑖
𝜕𝜑

𝜕𝑥𝑗

⎞⎠ + 𝑆𝜑𝛽𝑉 𝑉 (4.14)

4.2.2 The time Advancement

The discretised equations are time-marched using a fourth order Runge-Kutta
algorithm with residual smoothing as suggested by Jameson e Baker (1987). The variable
of interest is updated by:

𝑓 0
𝜑 = 𝑓𝑛

𝜑

𝑓 1
𝜑 = 𝑓 0

𝜑 + 𝛼1Δ𝑡𝑓𝜑𝑣
0

𝑓 2
𝜑 = 𝑓 0

𝜑 + 𝛼2Δ𝑡𝑓𝜑𝑣
1

𝑓 3
𝜑 = 𝑓 0

𝜑 + 𝛼3Δ𝑡𝑓𝜑𝑣
2

𝑓 4
𝜑 = 𝑓 0

𝜑 + 𝛼4Δ𝑡𝑓𝜑𝑣
3

𝑓𝑛+1
𝜑 = 𝑓 4

𝜑



Chapter 4. Porosity Flow Solver (PFS) 70

The values of 𝑓𝑛
𝜑 and 𝑓𝑛

𝜑 + 1 corresponding to the values at the beginning and
the end of the 𝑛𝑡ℎ time step, while 𝑓𝜑𝑣 represents the net fluxes of the variable in a time
step. The coefficients of the scheme are: 𝛼1 = 1/4; 𝛼2 = 1/3; 𝛼3 = 1/2 and 𝛼4 = 1.

4.2.2.1 Time Step

The PFS code runs in the unsteady form so a constant time step is applied.
The time step is calculated based on the size of smallest computational cell and its value
can be modified in accordance with the Courant number.

Δ𝑡 = 𝐶𝐹𝐿× Δ𝑥

2× 𝑠𝑠
(4.15)

Here, Δ𝑡 is the time step, Δ𝑥 is the smallest size of the computational grid,
and 𝑠𝑠 is the local sound speed. 𝑠𝑠 is calculated based on the properties of the fluid
(calorific capacity and specific heats).

4.2.2.2 Iterative Convergence

As PFS runs in unsteady form, for steady problems, the code solve the un-
steady form of the governing equations and "march" the solution in time until the solution
converges to a steady solution.

In steady state, the value of a specific variable 𝜑𝑛 tends to be similar to the
value calculated at the previous time step, 𝜑𝑛−1, and the errors tend to zero. Hence, the
iteration process continues until the measure of the difference between 𝜑𝑛−1 and 𝜑𝑛 is
"small enough ". Such difference known as residual is calculated in each grid point for
each variable of interest as:

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

√︁∑︀𝑁
𝑖=1 (𝜑𝑖

𝑛 − 𝜑𝑖
𝑛−1)2∑︀𝑁

𝑖=1 𝜑𝑖
𝑛 (4.16)

4.2.3 Artificial Viscosity/Dissipation

The concept of artificial dissipation or artificial viscosity is introduced in nu-
merical simulations to remove the oscillations around discontinuities in central differencing
schemes. This additional term simulates the effects of the physical viscosity by introducing
an error that is proportional to the second order derivatives of the variables.

In PFS, the artificial viscosity is applied to the variables after each time-step.
The additional term is obtained by: 𝑆𝐹 ×Δ2𝜑, where 𝑆𝐹 represents a smooth factor that
is proportional to the time step and the CFL number.
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4.3 Boundary Conditions

∙ Inflow

At the inlet, the total pressure, temperature, turbulent kinetic energy and
dissipation and velocity are specified. The derivative of the static pressure in the stream-
wise is set to zero.

∙ Outflow

At the outflow boundary the static pressure is specified and the other variables
are extrapolated from interior points.

∙ Solid Surfaces

Solid surfaces are set to have zero normal fluxes of mass, momentum and
energy. The turbulent kinetic energy and the normal gradient of dissipation rate are also
imposed to be zero on the surfaces.

∙ Porosity Regions

At the porosity regions the variables are modelled as solid surfaces (with zero
normal gradient). Specifically for turbulence, the equations of 𝑘 − 𝜀 model are modelled
considering the approach of low Reynolds number described in Section 3.3.2.1.

4.3.1 Initial Condition

For the initial condition values of static pressure (P), density (𝜌) and temper-
ature (T) are set in the computational domain. The pressure and temperature are set as
reference values equal to 105 Pa and 300 K, respectively, while the gas density is set ac-
cording to the fuel that is used in the simulation. The velocity field is obtained according
to a specified pressure gradient.

4.3.1.1 Ignition

The ignition starts by initialising a predefined ignition region (or point) where
the fraction of the products is set (the progressive variable is equal to 1). The presence of
products increases the temperature and decreases the density and hence a flow is induced
in front of the flame and the combustion process is initialised. The initial flame speed and
combustion process is handled by the laminar combustion model as explained in Section
3.5.2.
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4.4 Set up and solver parameters

The "set up" comprises the pre-processor step where both, the physical and
mathematical modelling are specified for the simulation. In the developed code, the "set
up" is introduced by a text file that contains some thermodynamics properties of the fluid,
flow conditions and solver parameters. Table 3 displays these main inputs.

Table 3 – Main set up features for PFS simulations.

Parameter Condition
Fluid Type 0 or 1: Set zero to set air or 1 to set other fluid.
𝐶𝑝, 𝛾 and 𝜇 Fluid properties

𝑃𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓
Reference Pressure and temperature, normally set as 100
kPa and 300K, respectively.

𝑃𝑑𝑜𝑤𝑛 Pressure specified at the outlet boundary.
𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Prescribed velocity specified at the inlet boundary

CFL, SF and Residual Values of CFL number, Smooth Factor and convergence
criteria are specified here.

NSTEP and DUMP Maximum number of iterations and number of iterations
to dump a result

NS 0 or 1: Set 1 to solve the viscous term.
COMB 0 or 1: Set 1 to solve a combustion flow.
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5 Case Studies for non-reacting flows

As described in Chapter 4, the Porosity Flow Solver has emerged from the
bi-dimensional Euler solver and it was improved step by step until becoming a three-
dimensional Navier-Stokes code customised for gas explosion modelling. It turns out,
however, that fluid mechanics must be correctly modelled to be able to handle reacting
flows.

This Chapter presents the results obtained for various flows in the absence of
chemical reactions.

The simulations were performed using the 3D Euler solver considering both
a standard geometry and a parametrised geometry as porous media. The chapter also
comprises detailed analysis of the main parameters concerning the discretised equations.
Particular attention is given to the smooth factor that is responsible for smoothing out
the wiggles generated by the central difference scheme.

Prior to starting the comparison with experimental data for cold flows, nu-
merical findings for a flow over bluff body were compared with simulations conducted by
ANSYS-CFX. The point here was to verify if the implementation of the finite volume
method and the associated models were properly implemented.

In the second part of the tests, simulations of turbulent flows were conducted
for different parametrised geometry by solving the Navier-Stokes equations coupled with
the 𝑘 − 𝜀 turbulence model and the results were compared with experimental data.

5.1 Verification Procedure

5.1.1 3D Euler simulations

Since the initial 2D Euler solver was tested for different conditions of compress-
ible flow and high Mach number and came out with satisfactory results (GONÇALVES;
VIANNA, 2014), the same tests were performed with the 3D solver.

The 3D duct geometry with a stricture in the centre was considered bounded
by upper and lower solid walls. The size of the channel was set as 10m × 3.0m × 3.0m
in x, y and z directions, respectively, and it was divided into computational cells with
0.15m of length. Initially, a subsonic air flow with 35 m/s was set from left to right in x
direction. Figure 14 shows the computational mesh and the simulation results.

Analysis of Figure 14 (b) shows that the Mach number (ratio between the local
velocity and the local sound speed) is less than one, which corresponds to the simulation
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Figure 14 – Simulation of a subsonic flow in a three dimensional channel with a stricture
in the center by solving Euler equation. Computational domain divided into
hexahedral cells (a). (b) values of Mach number (b) and density field (c).

of subsonic flow. By analysing the Mach number values, it is also verified that the velocity
increases at the bump region where the channel area available to the flow decreases. A
slight variation in the density field is observed (Figure 14 (c)), which indicates minor
compressibility effects when low velocities are applied.

An additional test considered supersonic flow. For gas flow, the compressible
effects become relevant when the flow speed is high enough to allow the Mach number
increase above 0.3.

Air flow with velocity of 280 m/s was assigned at the same lefthand boundary
as shown in Figure 14 (a). Figure 15 shows the results of such simulation. In this case, a
shockwave is observed downstream the channel strangulation (Figure 15 (a) ). Shockwaves
are characterised by abrupt changes in flow conditions thus giving rise to discontinuity re-
gions. Such regions appear under sonic and supersonic conditions. Furthermore significant
changes in the density field is also verified (Figure 15 (b) ).

5.1.2 Verification of the 3D Euler code with a parametrised geometry

To analyse how the geometry parametrised by the GJK algorithm could be
coupled with the 3D Euler solver and used in fluid flow simulations, a flow around a bluff
body (a squared cylinder) was considered. At this stage of the development of PFS code,
the porosity values associated with each computational cell was modelled in the set of
conservation equations of mass, momentum (Euler) and energy. The additional resistance
to the flow described in Section 3.6.2.1 was also included in the momentum equation.
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Figure 15 – Simulation of a supersonic flow in a three dimensional channel with a stricture
in the center by solving Euler equation (b) values of Mach number (b) and
density field (c) for an incompressible flow.

A "box" .stl geometry was created in the open source "Blender" CAD tool
measuring 1.0m of length in each direction (x, y and z). The PrePro PFS tool was
used to built the computational domain and to calculate the porosity values. The domain
comprised a rectangular box with 12 m in x direction and 3m in y and z directions.
The cube was placed in the computational domain and computational cells (0.15m) were
considered. Figure 16 shows the .stl CAD geometry and its corresponding parametrised
version.

Figure 16 – Parametrisation of the cube .stl CAD file used as the bluff body in the fluid
flow simulation using the 3D Euler solver. (a) Cube (CAD file) in the compu-
tational domain. (b) Uniform hexahedral cells of the computational domain.
(c) Porosity field calculated by the GJK algorithm os shown in the central
plane of the computational domain

In Figure 16 (c) the dark blue region represents the cube geometry. The com-
putational cells in this region were assigned zero porosity. Hence, the flow is not allowed
in this region of the computational domain. The red part represents the region avail-
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able to the flow. The computational cells coloured between dark blue and red present
intermediated porosity values (0.0 < 𝛽𝑣 < 1.0).

The air flow with inlet velocity of 160 m/s was evaluated. The inflow boundary
conditions was set on the left boundary 𝑥. The outlet boundary condition, with pressure
gradient equal to zero, was considered at the right boundary x. The other boundaries of
the computational domain were set as wall, where zero normal fluxes of mass, momentum
and energy are imposed. This strategy to set the boundary conditions was also applied
to all simulations using the PFS code. Table 4 presents the values of solver parameters
applied in this simulation and the results are shown in Figure 17.

Table 4 – Solver parameters used in the simulation of a flow over a parametrized squared
geometry by using the 3D Euler solver.

Parameter Value
Fluid 0 (air)

Inlet Velocity 160 m/s
CFL 0.01

Smooth Factor 0.05
Convergence Criterion 10−4

Figure 17 shows that the velocity profile is similar to what is expected for
a fluid flow over an object. The velocity increases where the area of flow decreases. By
considering the PDR model, Figure 17 (a) shows that there is no flow in the computational
domain region set with porosity values equal to zero (dark blue square in Figure 16 (c) ).
It is also verified that the presence of the box blocks the flow and produces a re-circulation
zone (17 (b)) . The stagnation zone is observed in front of the cube.

Once the code was able to solve the Euler equation in a three-dimensional
porous mesh for flow around a squared box, a series of tests were performed to verify the
influence of the simulation parameters in the results.

5.1.3 Simulation Parameters Analysis

In Chapter 4, the structure of PFS code was introduced. It was reported that
the code runs under the unsteady condition and the time-step is obtained by the relation
between mesh size and velocity, being adjustable by CFL number. It was also pointed
out that an additional artificial viscosity must be included to reduce the numerical oscil-
lations provided by the central difference scheme. Thus, a series of tests were performed
to evaluate the influence of these parameters on the numerical solution.

The cubic parametrised geometry shown in Figure 16 was used here with the
same fluid flow condition (air flow with 160 m/s). In all tests, the velocity profile was
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Figure 17 – Simulation of a flow over a parametrized squared geometry by using the 3D
Euler solver: velocity field (a) and recirculation zone behind the geometry
(b).

evaluated at a distance of 1.0 m downstream the squared box. The number of time-steps
to achieve the steady condition and the computational time were also analysed.

5.1.3.1 Mesh Test

To evaluate the influence of the mesh on the numerical solution, 3 different
sizes of computational cells were considered: 0.3m (Mesh 01), 0.15m (Mesh 02) and 0.075m
(Mesh 03) of length. In Mesh 03, the squared geometry could be solved by 3.3 compu-
tational cells, 6.7 cells were applied for the intermediate mesh Mesh 02 and for the last
mesh (Mesh 03) slightly more than 13 cells were used. The CFL number and the smooth
factor were taken as 0.01 and 0.05 (Table 4). Figure 18 shows the result of the simulation.

It is possible to observe in Figure 18 (a) that the velocity profile is similar for
all three considered meshes. The values obtained by using the intermediary and refined
meshes (Mesh 02 and Mesh 03, respectively) are very close, while the coarse mesh (Mesh
01) under-predicts the flow velocity in the region behind the squared box. In Figure 18
(b) it is verified that reducing the computational cell size greatly increases the number
of iterations to achieve the steady state flow (with a maximum residual equal to 10−4).
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Figure 18 – Mesh test applied to a simulation of a flow over a parametrised squared ge-
ometry by using the 3D Euler solver: Mesh 01 represents the coarse mesh
(computational cells with 0.3m of length), Mesh 02 is the intermediary mesh
(computational cells with 0.15m of length) and Mesh 03 is the refined mesh
(computational cells with 0.075m of length). (a) Velocity profile at the dis-
tance equal to 1 meter behind the squared box. (b) Number of iterations and
computational time

When reducing the computational cell size, the time-step is reduced and the flow variables
take a smaller increment in each iteration. Furthermore the number of grid points also
increases and the computational time to complete an iteration is longer.

5.1.3.2 CFL Analysis

Different values of Courant number (CFL) were also considered to understand
the influence of this parameter on the numerical solution of the developing code: 0.05,
0.01 and 0.005. In this case the mesh with computational cell size equal to 0.1 m and
smooth factor 0.05 was adopted. The results of such analysis are presented in Figure 19.

Figure 19 shows (a) that, in this case, the CFL number has no influence on the
final solution that represents the steady state condition of the flow. Velocity profile taken
at a distance equal to 1m downstream the box is equal for the simulations with three
different CFL numbers. However, CFL greatly influences the number of iterations and
computational time, as observed in Figure 19 (b). Similar to reduce the computational
cell size, when reducing CFL, the time-step also reduces, therefore in each iteration the
flow variables take a smaller increment and more iterations are necessary to achieve the
steady state.
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Figure 19 – CFL test applied to a simulation of a flow over a parametrised squared ge-
ometry by using the 3D Euler solver.

5.1.3.3 Smooth Factor Analysis

Considering mesh with computational cells size equal to 0.1 m and CFL 0.05,
different values of smooth factor were also analysed ranging from 0.025 - 0.1. Figures 20
and 21 present the results of this analysis.

Figure 20 – Numerical test with different values of smooth factor applied to a simulation
of a flow over a parametrised squared geometry by using the 3D Euler solver.

Figure 20 shows that when using larger values of smooth factor, the number
of iterations and computational time to achieve the stead flow is lower than when smaller
values of smooth factor are considered.

Analysis of Figure 21 shows that when small values of smooth factor are applied
oscillations on velocity field are noticed, particularly in front of the box (Figure 21 (a)
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Figure 21 – Qualitative analysis of different values of smooth factor applied to a simula-
tion of a flow over a parametrised squared geometry by using the 3D Euler
solver. Smooth values: 0.025 (a), 0.05(b) and 0.1 (c)

). Such oscillations are reduced when higher values of smooth factor are applied. As
previously discussed in Section (4.2.3), the artificial viscosity is applied to reduce the
oscillations commonly found on numerical solution when the central difference scheme is
used. When higher values of smooth factor are used, the effect of artificial viscosity is
more effective, and the numerical oscillations present on the velocity field in Figure 21 (a)
are reduced, as observed in Figure 21 (c). On the other hand, when introducing artificial
viscosity, the physical behaviour of the phenomenon is also affected. As observed in Figure
Figure 21 (c), the recirculation zone behind the squared box is smaller than in Figure 21
(a), where artificial viscosity is less pronouced.

The utilisation of artificial viscosity is always dodgy and it is a compromise
between accuracy and stability.
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5.1.4 Verification of the 3D Navier-Stokes code

The complete set of the Navier-Stokes equations was implemented and coupled
with the 𝑘 − 𝜀 turbulence model. To evaluate the code implementation at this step, the
flow over a squared box, described in section 5.1.2, was simulated again considering the
air flow with 100m/s at the entrance of the computational domain. Similar geometry and
simulation conditions were reproduced in the commercial CFD code ANSYS CFX 15.0.
Figure 22 and 23 present the comparison between these two numerical results.

Figure 22 – Time mean velocity profile at different distances upstream and downstream
the rectangular box. (a) x = 2m before the rectangular box; (b) x = 1m before
the rectangular box; (c) x = 1m downstream the rectangular box; (d) x =
2m downstream the rectangular box.

In Figure 22 the velocity profile is analysed at two distances upstream ( (a)
and (b)) and two distances downstream ( (c) and (d)) the rectangular box. Additionally,
in Figure 22 the velocity profile is taken at the centreline downstream of the squared box.
In both cases, the numerical results provided by the developed code describes velocity
profiles similar to the ones obtained when using the commercial code.
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Figure 23 – Time mean velocity profile at the centreline downstream of the rectangular
box.

5.2 Analysis of turbulent flows in simplified geometries

Once the code was verified and able to solve the set of Navier-Stokes equations
coupled with the 𝑘−𝜀 turbulence model, traditional cases of turbulent flows were simulated
based on literature review.

5.2.1 Flow over a backward facing step

In many engineering applications it is necessary to understand the physics of
the phenomenon of separation and reattachment of turbulent flow. Such a phenomenon
can be analysed in a simple way through the study of turbulent flow over a backward-
facing. To evaluate how the PFS code reproduces the separation and reattachment of a
turbulent flow, a turbulent flow over a step was considered.

Based on an experimental study (KIM et al., 1980) and a numerical simulation
(YOO et al., 1989), a fluid flow at Reynolds number equal to 44,000 was simulated over a
step with 10 mm of height (H) and 40 mm of length. The computational domain used in
this case comprises a rectangular box with 340 mm in x direction, 3 mm in z direction and
10 mm in y direction. Air flow with velocity of 70m/s (𝑈∞) was imposed at the entrance
of the computational domain. Figure 24 shows the schematic representation of such study.

The solver parameters can be found in Table 5.

Initially the simulation was conducted considering three different meshes: the
first one with hexahedral cells measuring 1.5 mm of length, the second mesh with cells
length of 1.0mm and the third one with cells of 0.5 mm of length. Figure 25 shows the
mean velocity profile in the region downstream of the cylinder at a distance x/H equal
to 7. The values were taken along a vertical line. Mesh 01 represents the mesh with
computational cells with 1.5 mm of length (the coarse mesh), while Mesh 02 represents
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Figure 24 – Schematic representation of the simulation of a turbulent flow over a
backward-facing step.

Table 5 – Solver parameters used in the simulation of a flow over a backward facing step
by solving the set of Navier-Stokes equations.

Parameter Value
Fluid 0 (air)

Inlet Velocity 70 m/s
CFL 0.5

Smooth Factor 0.05
Convergence Criterion 10−4

the mesh with computational cells with 1.0 mm of length (intermediary mesh) and Mesh
03 represents the mesh with computational cells with 0.5 mm of length (refined mesh).

Figure 25 shows that the results provided by Mesh 01 are very different from
those obtained using Mesh 02 and Mesh 03. The profiles yielded by Mesh 02 and 03 are
slightly different for the region just after the step (that represents the re-circulation zone),
but they become similar for the region of the developed flow. Because of the complexity of
the flow at the re-circulation zone, the results provided in such a region are very sensitive
to the mesh parameters, so the refined mesh provided better results than the coarse meshes
at the re-circulation zone.

Based on the analysis of Figure 25, a mesh with computational cell size equal
to 1.0 mm was chosen for the study of turbulent flow over a backward facing a step.
The results of the simulation are presented in Figures 26 to 28. It is possible to observe
the presence of a re-circulation zone downstream the step which characterises flow sepa-
ration in turbulent flows over a step . An analysis here is to compute the reattachment
length. Experimental study conducted by Kim et al. (1980) presents a mean reattachment
distance of 𝑥/𝐻 = 7 ± 1 for turbulent flow over backward-facing step. The PFS simula-
tion provides a reattachment length of 𝑥/𝐻 = 8.5 which is close to the value observed
experimentally.

Figures 27 and 28 show the local mean velocity profiles and turbulence intensity
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Figure 25 – Time mean velocity profile at the distance x/H = 7 downstream the step for
three different sizes of mesh. Mesh 01 is the coarse mesh (computational cells
size = 1.5mm); Mesh 02 is the intermediary mesh (computational cells size
= 1.0mm) and Mesh 03 is the refined mesh (computational cells size = 0.5
mm).

Figure 26 – Simulation of a turbulent flow over a backward-facing step. Velocity field (a)
and velocity vectors at the recirculation zone (b)

at four different locations from the step.

Figure 27 shows that the velocity profiles provided by PFS code are similar
to the experimental data at the re-circulation region (Figure 27 (a) and (b) ), which
indicates that PFS code is able to represent the velocity behaviour at the separation zone
of a turbulent flow over a step. However, such an agreement is not observed for the region
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Figure 27 – Non-dimensional velocity profile of a turbulent flow over a backward-facing
step at x/H = 2.67 (a); 5.33 (b); 9.78 (c) and 16 (d).

far from the step (Figure 27 (c) and (d) ). For distances where x/H = 9.78 and 16 the
PFS simulation results differs from experimental data especially in the region near the
floor. Similar profiles are observed in other numerical simulation using 𝑘 − 𝜀 turbulence
model (YOO et al., 1989). The lack of agreement in this region suggests that in PFS code
the boundary layer modelling may be enhanced.

Figure 28 shows that the PFS code over-predicts the turbulence intensity for
flow over a backward facing. The same behaviour is observed in the numerical study of
Yoo et al. (1989) that also uses the 𝑘 − 𝜀 equations to model turbulence. At the region
closer to step (x/H = 2.33) the PFS results over predicts almost 2 times the turbulence
intensity provided by the other 𝑘 − 𝜀 simulation but such difference tends to reduce as
the flow moves away from step (x/H = 5.88 and 8.53). A different behaviour is observed
for the region far from the step (x/H = 15.67) where the PFS simulation under-predicts
the turbulence intensity.

An important consideration here is that because PFS code solves all geome-
try as porous media, the viscous boundary layer is not adequately modelled. There is no
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Figure 28 – Turbulence intensity of a turbulent flow over a backward-facing step at x/H
= 2.33 (a); 5.88 (b); 8.53 (c) and 15.67 (d).

implementation of wall boundary conditions for velocity profile and therefore the viscous
stress at the region near wall can take greater values. This behaviour affects both diffusive
terms (for all quantities) and the production term of turbulent kinetic energy. The influ-
ence on diffusive terms can be lower in problems where the convection is predominant (as
is this study of turbulent flow over a step).

5.2.2 Flow past a rectangular cylinder

To evaluate how the PFS code describes the fluid flow around bluff bodies, a
squared cylinder with length of 10 mm in each direction (z, y and z) was used as geometry
under study and air flow was considered. Therefore, the flow at Reynolds number equal
to 22,000 was simulated. This value of Reynolds number is similar to that considered in
the experimental work conducted by (LYN et al., 1995) and (DURAO et al., 1988) and
in the numerical simulation (RODI, 1997) of flow around a rectangular cylinder.

The computational domain used in this study comprised a rectangular box
with 200 mm in x direction and 80 mm in y and z directions. The rectangular cylinder
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was placed into the computational domain by considering the distance of 40 mm from y
and z direction and 30 mm from x direction. The schematic representation of this analysis
can be visualized in Figure 29.

Figure 29 – Schematic representation of the geometry used in the study of a flow around
a rectangular cylinder

As in the previous analysis for simulation of turbulent flow over a step, the
simulation was conducted considering three different meshes: a coarse mesh (Mesh 01)
with hexahedral cells with 1.5 mm of length, an intermediary mesh (Mesh 02) with cells
length of 1.0mm and a refined mesh (Mesh 03) with computational cells size of 0.5 mm.
Figure 30 shows the time mean velocity profile along the centreline of the square cylinder
for three different mesh sizes. The solver parameters used in these simulation were the
same applied to the previous study of a flow over a step (CFL number equal to 0.5 and
smooth factor of 0.05).

Figure 30 shows that the results provided by the three meshes are slightly
different for the region right behind the cylinder (that represents the re-circulation zone),
but they become very similar for the region far from the square cylinder (when the dis-
tance from the cylinder is greater than 4 times the square length). It is also verified that
the profile provided by the coarse mesh (Mesh 01) presents some oscillations. Such be-
haviour can be explained by the presence of insufficient artificial viscosity to minimize
the numerical oscillations inherent to the central difference discretisation method used
in PFS solver. The amount of artificial viscosity depends on many characteristics of the
simulation such as the velocity gradient and the property increment in each iteration. In
all three simulated meshes the velocity gradient were the same (Reynolds number equal
to 22,000). However, the property increment increases as the mesh increases, so that the
amount of artificial viscosity used in the simulation of the refined mesh could be not
enough to minimize the oscillations when a coarse mesh was used.

Based on the analysis of Figure 30, a mesh with computational cell size equal
to 1.0 mm was chosen for the study of the flow around a squared cylinder. Figure 31
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Figure 30 – Time mean velocity profile along the centreline of a square cylinder for three
different sizes of mesh. Mesh 01 is the coarse mesh (computational cells size
equal to 1.5mm); Mesh 02 is the intermediary mesh (computational cells size
equal to 1.0mm) and Mesh 03 is the refined mesh (computational cells size
equal to 0.5 mm).

shows the result of the simulation. The velocity profile is similar to what is expected for
a turbulent flow over a rectangular cylinder. The velocity increases where the area of the
fluid flow decreases. By considering the PDR model, there is no flow in the computational
domain region set with porosity values equal to zero. The presence of the squared cylinder
blocks the fluid flow and produces a re-circulation zone. A resistance region is observed
in front of the rectangular cylinder.

Figure 32 shows the comparison between the PFS simulation results by using
the intermediary mesh (MESH 02) and experimental data provided by two different au-
thors: Lyn et al. (1995) and Durao et al. (1988). Both works have investigated turbulent
flows over rectangular cylinder, but Lyn et al. (1995) used a Reynolds number equal to
22,000 in the experiments, while for Durao et al. (1988) experiment the Reynolds num-
ber was equal to 14,000. The non-dimensional velocity and turbulence intensity profiles
provided by PFS simulation are similar to the experimental data.

Concerning the non-dimensional velocity present in Figure 32 (a), the PFS
results are close to both experimental data in the region near the cylinder, but is slightly
different from Lyn et al. (1995) experimental data as the flow moves away from the
cylinder. The turbulence intensity is visualized in Figure 32 (b). Here, the turbulence
intensity provided by PFS is a little different from the experimental data especially in the
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Figure 31 – Velocity field of a turbulent flow by considering the geometry of a rectangular
cylinder as a porous media.

region near the cylinder (that represents the recirculation zone). Such a difference can be
explained by the drawbacks in 𝑘−𝜀 turbulence model in dealing with recirculation zones.

5.2.3 Flow over a mounted rectangular cylinder

The analysis of turbulent flow over a mounted cylinder was also considered.
Following Rodi (1997) study, the same squared cylinder analysed in Section 5.2.2 was
used here and placed on the lower wall (floor) of a wind channel (computational domain).

The channel height was set as the double of cube size (H) and the calculation
domain was built considering the distances of 3 ×H upstream, 10×H downstream and
7×H laterally of the rectangular cylinder. Following the mesh test analysis provided in
section 5.2.2, the size of the computational cells was chosen to be equal to 1.0 mm, so the
cube geometry could be represented by at least 10 cells (similar strategy was considered
in the other PFS simulations). A Reynolds number of 40,000 was considered. The inlet
velocity was set to 53 m/s at the entrance of the computational domain. Figures 33
presents the schematic representation of this study.

Simulation results are observed considering streamlines and vector fields in a
symmetry plane (Figure 34) and near the channel floor (Figure 35). Both views shows
the separation zone at the region behind the cylinder. Considering the symmetry plane,
the extension of the recirculation zone obtained by numerical simulation was close to x/H
= 2.0 while experimental study (RODI, 1997) provides a recirculation zone extension
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Figure 32 – Comparison between PFS simulation results and experimental data along the
centreline of a square cylinder. Axis "x" presents the non-dimensional distance
from the cylinder, while axis "y" presents the the non-dimensional velocity (a)
and turbulence intensity (b)

Figure 33 – Schematic representation of the simulation of a turbulent flow over a mounted
squared cylinder.

equal to x/H = 1.6. Thus, as observed for previous studies of flow with separation zone
(section 5.2.1), the results obtained by the developed solver over-predicts the extent of
the separation region behind an obstacle (20%). Such a lack of agreement is also observed
in other RANS simulations, where the standard 𝑘 − 𝜀 turbulence model can predicts the
separation region (35%) (RODI, 1997).

Figure 36 compares profiles of streamwise velocity U and turbulent kinetic
energy 𝑘 at different downstream locations in the symmetry plane. Here, the dimensionless
distances x/H were obtained by considering the point x = 0.0 at the beginning of geometry.

By analysing the velocity profiles (Figure 36 (a) ), it is observed that the
present numerical simulation is capable to describe the overall flow behaviour provided
by experimental data (RODI, 1997) at the three considered distances, although the lack of
agreement is verified at the regions close to the channel walls. As previously discussed in
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Figure 34 – Velocity field of a turbulent flow over a mounted cylinder in a longitudinal
symmetry plane.

Figure 35 – Velocity field of a turbulent flow over a mounted cylinder near the channel
floor.

the turbulent flow over a step, the developed solver does not account for the viscous effect
near the wall. It is clear that an enhanced boundary layer model for porosity parametri-
sation is required.

Concerning the turbulent kinetic energy profiles given in Figure 36 (b), it
is also observed a good agreement between simulation results and experimental data
(RODI, 1997), specially for the two initial distances (x/H = 0.5 and x/H = 1.0). The
third turbulence profile (x/H = 2.0) deals with the reattachment region and numerical
findings present a slight different behaviour compared to experimental data.

5.2.4 Flow around cylinders

Geometries with circular shape were also analised when evaluating PFS code
to describe turbulent flows behaviour. In this case, a set of experiments conducted by
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Figure 36 – Velocity and a turbulence intensity profiles in a symetry plane at different
distances from the beginning of the mounted squared cylinder.

British Gas and CMR (Cristian Michelsen Research) and reported by Arntzen (1998) was
considered.

The geometries described in this study have been used to validate different
CFD codes ((ARNTZEN, 1998), (VIANNA; CANT, 2010)) and consist of one single
pipe(with 0.5m of diameter) and a array of five pipes (each pipe with 0.17m of diameter).
For both cases, the computational domain was built measuring 12.0m × 3.0m × 1.0m
(in x, y and z directions, respectively). The computational mesh was built for each case
considering that at least 10 computational volumes are used to describe the geometry.
Figure 37 shows the schematic representation of these studies.

The simulation of a turbulent flow was conducted considering air flowing at
of 25 m/s at the entrance of computational domain (x left hand side) for both cases and
the results are presented in Figure 38. The main features of a turbulent flow over an
obstacle are also verified here. The stagnation region is observed in the front of the single
cylinder and the bank of cylinders. Recirculation zones are also presented downstream
the obstacles in both cases.

The velocity profile and the turbulent velocity fluctuation were analysed at the
region downstream the cylinders in both cases. The velocity profile was taken as the mean
velocity in flow direction while the turbulent velocity fluctuation was obtained from the
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Figure 37 – Schematic representation of the simulation of flow around cylinders - CMR
tests. (a) one single pipe with 0.5m of diameter; (b) bank of five pipes, each
one with 0.17m of diameter.

Figure 38 – Velocity flow field for CMR experiments. (a) one single pipe with 0.5m of
diameter; (b) bank of five pipes, each one with 0.17m of diameter.

turbulent kinetic energy (k). For one single pipe (Figure 37 (a)), the results were taken
1.0 m downstream the pipe, while for the bank of five pipes, the results were obtained
0.66 m downstream the last row of pipes. The comparison between experimental data and
numerical results provided by PFS are presented in Figure 39.

The PFS simulation is capable of reproducing the overall trend of mean velocity
and turbulence intensity at the considered flow region. Concerning the velocity profile,
the numerical results slightly differ from the experimental data at the wake region which
indicates that, in these cases, the porosity model offers a higher resistance to the flow.
When analysing the turbulent velocity fluctuation, it is verified that numerical results
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Figure 39 – Comparison between PFS simulation and experimental data (ARNTZEN,
1998) considering the mean velocity profile and the turbulent velocity fluc-
tuation at the region downstream the considered geometries: (a) one single
pipe with 0.5m of diameter; (b) bank of five pipes, each one with 0.17m of
diameter.

under-predict the turbulence intensity, which is more evident in the simulation with one
single cylinder.

The lack of agreement between the numerical results and experimental data
can be explained by the fact that in these cases, the porous region representing each
cylinder is not circular as the real geometry. The porosity model is capable to filter and
represent the overall shape of geometry but can not reproduce it exactly. Furthermore
the turbulence model used at the developed code to account the effects of non-resolved
obstacles (described in Section 3.6.2.1) is very simple and accounts mainly the turbulence
production due to shear.

Although the differences between numerical and experimental data, the PFS
results seems to be in accordance with others RANS simulations of turbulent flows using
PDR method coupled with 𝑘− 𝜀 equations (ARNTZEN, 1998) (VIANNA; CANT, 2010)
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(SAVILL; SOLBERG, 1994).

5.3 Analysis of turbulent flows in complex geometries

Once the developed model was evaluated for flows around simplified geome-
tries, complex geometries have been considered. Two differente scenarious of complex ge-
ometry were built in the FreeCad tool and simulations were performed using the ANSYS-
CFX CFD tool and the PFS developed tool.

Some illustrative examples of the technique developed in the current research,
to solve flow in complex geometries in a real scale, can be found in Appendix B.

5.3.1 Turbulent cross-flow in a staggered tube bundle

The first case study of PFS simulation in complex geometries comprises the
investigation of turbulent cross-flow in a tube bundle. In this case, a set of tubes with
2.54 mm of diameter (D) was staggered positioned in a wind channel with dimensions of
2500× 191× 191 mm, as shown in Figure 40.

Figure 40 – Schematic representation of the simulation of turbulent cross-flow in a stag-
gered tube bundle.

By applying the GJK algorithm, the geometric stl model was converted in
a porous hexahedral mesh considering cells with size of 0.254 mm. Figure 41 shows the
volume porosity obtained for each computational cell in a slice plane of the computational
domain. A three-dimensional view of the tube bank represented by their porosity values
is presented in Figure 41 (b). In this case, intermediate porosity values (between 0.0 and
1.0) were obtained for cells at the tubes contour.

An inlet air flow of 50 m/s was set at the entrance of the computational domain
(x left hand side, as vizualized in Figure 40). The simulation was performed considering
the PFS parameters: Courant number (CFL) = 0.5; smooth factor = 0.1, and convergence
criterion = 10−4. The scalar velocity field obtained as result of this simulation is presented
in Figure 42.
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(a)

(b)

Figure 41 – Porous mesh obtained for a staggered tube bundle: slice plane view (a) and
three-dimensional view (b).

Figure 42 – Scalar velocity field obtained as result of the PFS simulation of turbulent
cross-flow in a staggered tube bundle.

A simulation was also performed using the ANSYS-CFX commercial CFD tool.
Similar flow and boundary conditions were considered, however, the CFX simulation uses
the upwind advection scheme to solve the discretized equations.

The PFS results were compared with those ones provided by CFX simulation.
Considering the origin of the coordinate system at the centre of the first cylinder, monitor
lines were positioned at four different zones of the tube bundle: x/D = 1.25; x/D = 3.35;
x/D = 5.45; and x/D = 7.55. The velocity profile was taken at these lines for both PFS
and CFX simulation and are presented in Figure 43. The flow behaviour provied by PFS
are very similar to the one yelds by CFX simulation.
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(a) (b)

(c) (d)

Figure 43 – Comparison of the simulation of a turbulent cross-flow in a staggered tube
bundle by the developed PFS tool and ANSYS-CFX. Velocity profiles were
taken at four different regions of the domain: x/D = 1.25 (a); x/D = 3.35
(b); x/D = 5.45 (c); and x/D = 7.55 (d).

5.3.2 Flow in an offshore module

The second investigation of flow in complex geometry comprises the ventilation
analysis in an idealized offshore module. The geometric model used here can be visualized
in Figure 44 (a) and comprises an oil platform with size of 32× 28 m and composed of 80
convex objects. The stereolithography model was converted in a porous hexahedral mesh
by the application of the GJK algorithm. The computational domain size was 91×76×19
m and three different mesh sizes were initially considered: with cells of 0.60 m (215,000
cells); 0.30 m (1,782,246 cells) and 0.20 m (5,987,280 cells). Figure 44 (b) shows the
volume porosity obtained for each computational cell by using the mesh size of 0.30 m.
This mesh size was chosen based on a previous mesh test.

By considering the porous model presented in Figure 44 (b), a fluid flow of air
at was simulated using the developed PFS tool. At the an air entrance at 70 m/s was
considered, while the opposite side was set as outflow boundary (specified static pressure
and the other variables extrapolated from interior nodes). All the other boundaries of the
computational domain were set as solid surface as well as the contours of the geometric



Chapter 5. Case Studies for non-reacting flows 98

(a) (b)

Figure 44 – Idealized offshore module adopted for flow simulation in a complex geometry:
in STL format (a) and parametrized geometry as porous media using a mesh
of 0.3 m size (b).

objects.

Figure 45 (a) shows the velocity field in the process area of the platform given
by PFS simulation. The results were taken in a plane 1.0 m over the platform floor. The
streamlines that contorns all objects in the process are are presented in Figure 45 (b).

(a)

(b)

Figure 45 – Ventilation in a ofshore module provided by PFS simulation: scalar velocity
field (a) and streamlines (b).

A similar simulation was performed considering the traditional CFD method-
ology (that solves a fluid mesh) by using the ANSYS-CFX CFD tool. The stl geometric
model shown in Figure 44 was adopted and the computational domain size was the same
one applied in PFS simulation. A tetrahedral mesh was used with the minimum and
maximum mesh size set as 0.075 m and 2.0 m, respectively, which yield 1,400,364 com-
putational cells. The domain boundary conditions applied here were also similar to the
ones set in PFS simulation: an entrance of air at 70m/s at the x left side; an outflow
condition (static pressure equal to zero) at the x right side and solid surface at the other
sides of the computational domain. Another important feature is that the upwind scheme
was applied here.
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A quantitative analysis was performed considering both PFS and CFX simu-
lations. Velocity profiles were taken in different regions of the process area. The regions
were defined by considering 5 monitor lines into the process area. Each line was addressed
with 100 monitor points that covers the y direction from the beggining until the end of
the computational domain. The lines were positioned based on the origin of the platform
deck (floor) in the coordinate x and z equal to (0,0), therefore: Monitor Line 01 - x = 10
m and z = 3 m; Monitor Line 02 - x = 10 m and z = 5 m; Monitor Line 03 - x = 16 m
and z = 3 m Monitor Line 04 - x = 21 m and z = 1 m; Monitor Line 05 - x = 21 m and
z = 5 m.

Figure 46 presents the comparison between PFS and CFX simulation results.
For all considered regions, the velocity profile given by the PFS is very similar to the
profile provided by CFX simulation, so the developed tool is also capable to capture the
turbulent flow behaviour in complex geometries in a real scale.
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(a) (b)

(c) (d)

(d)

Figure 46 – Comparison of the simulation of air flow in a offshore module provided by
the developed PFS tool and ANSYS-CFX. Velocity profiles were taken at five
different regions of the process area. Monitor Line 01 (a); Monitor Line 02
(b); Monitor Line 03 (c); Monitor Line 04 (d); Monitor Line 05 (e).
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6 Case Studies of reacting flows: Gas Explo-
sion

Once the PFS code was capable to solve three-dimensional turbulent flows
by solving the Navier-Stokes equations coupled with the 𝑘 − 𝜀 turbulence model, the
combustion modelling was implemented into the code in accordance with the modelling
described in Section 3.5.

This chapter presents the simulations for reacting flows. Initially, a series of
tests was conducted to analyse how the combustion model implemented in the code be-
haves with the novel approach for the parametrisation of the geometry. The second part
comprises the comparison of numerical findings with available experimental data.

6.1 Preliminary combustion test

The main features of the combustion process are investigated in this section.
The adopted approach follows the parameters of pre-mixed combustion as described in
Chapter 2).

Initially, typical reacting flows were simulated in a rectangular chamber with
no obstruction or porous region preventing flow. The computational domain was built
measuring 0.5 m in length (x direction) and 0.11 m in y and z directions. It was considered
that all domain was fully loaded with a flammable mixture of methane and air and
the ignition point was placed at a distance equal to 0.1 m from the beginning of the
computational domain. Figure 47 shows the schematic representation of this simulation.
Table 6 presents the variables for the set up.

Figure 47 – Schematic representation of a preliminary combustion simulation. The com-
putational domain presents no obstruction and is fully load with a flammable
mixture of methane and air.

Following the initial conditions for combustion simulation (Section 4.3.1.1) the
reaction progress variable was set to zero in all domain and its value was ramped to a
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Table 6 – Main set up features for a preliminary combustion simulation.

Parameter Condition
Fluid Type 1 - with methane properties
𝑃𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓 100 kPa and 300K, respectively
𝑃𝑑𝑜𝑤𝑛 99.9 kPa
CFL, Smooth Factor and Residual 0.4; 0.05 and 10−4

value close to 1.0 at the ignition point. Solid boundary conditions were applied at the
beginning of the computational domain (left side on x direction) and the lateral walls.
Results of this simulation can be visualised in Figures 48 - 50. Considering the reaction
progress variable ranging from 0.0 to 1.0, the value of "c" close to 0.5 means the flame
surface region where the combustion reaction takes place. The reaction zone can be easily
identified based on the progress variable value.

Figure 48 – Three-dimensional flame countour (c=0.4) and vector field at 4.6ms after
ignition.

Figure 48 shows that the flame presents a spherical shape, which is in accor-
dance with the literature description of a flame surface and also with the combustion
model applied in this work (section 3.5). Besides that, the presence of vectors in the three
directions of the velocity field indicates that, as expected for an explosion process, the
flame propagates in all directions.

Figure 49 shows the reaction progress variable "PV" (a), fuel fraction "FF" (b),
pressure (c) and temperature (c) fields. When analysing the reaction progress variable
and fuel fraction, in the kernel of the explosion, the reaction progress variable achieves
its maximum value while the fuel fraction takes minimum values. Such a behaviour is
explained by the fact that when the explosion starts, near the ignition point, the reagent
is converted into products, so the variable PV assume values close to a unit and fuel
fraction decreases, once the fuel is consumed during combustion reaction. When analysing
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the pressure and temperature fields (Figure 49 (c) and (d) it is observed that both pressure
and temperature are increased near the ignition point. Such a behaviour is in accordance
with literature that describes the explosion as a process with an increase in volume,
pressure and temperature (ECKHOFF, 2005). The literature also indicates that during
an explosion process the temperature can achieve values close to 2,000 K, which is very
close to the maximum value obtained in this preliminary simulation (1,850K).

Figure 49 – Preliminary explosion simulation using PFS code: reaction progress variable
(a), fuel fraction (b), pressure (c) and temperature field (d) at 4.6ms after
ignition.

The last consideration concerns the analysis of the main dimensionless numbers
applied to characterise the premixed turbulent flames: Damköler and Karlovitz number.
As described in Section 2.1.2.3 and visualised in Figure 2 the flamelet regime is achieved
when Karlovitz number is less than or close to a unit. When analysing Figure 50 (b),
it is possible to observe that the Karlovitz number assumes values less than 1.0 at the
flame region (PV ≈ 0.5 in Figure 49 (a)), which ensures that the numerical simulation
of an explosion is conducted during a flamelet regime. Concerning Damköler’s number,
it is mathematically inverse to Karlovitz, so at the same region that represents the flame
surface, the maximum values of Damköler are achieved, as observed in Figure 50 (a).
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Figure 50 – Preliminary explosion simulation using PFS code: non-dimensional Damköler
(a) and Karlovitz (b) numbers at 4.6ms after ignition.

6.1.1 Sensitive tests of combustion model

Sensitive tests were also conducted to understand the explosion behaviour
when changing some parameters of the adopted combustion model. The same computa-
tional domain presented in Figure 47 was used here, however the ignition point was placed
at its beginning. The flame advancement was analysed by considering its position into
the domain with time.

∙ Influence of the initial laminar modelling

As explained in Section 3.5.2, even though the overall behaviour of an explosion
is turbulent, a laminar phase is present at the beginning of the process. To analyse the
influence of this initial laminar phase two simulations were conducted: the first one with all
combustion modelled as a 100% turbulent process and the second one with a laminar initial
phase. The transition from laminar to the turbulent phase was modelled as suggested
by Vianna e Cant (2014) (Equation 3.53) . Figure 51 presents the comparison between
these two simulations by considering the flame position into the computational domain
with time. For the same instant of time, the distance travelled by the flame into the
computational domain when modelling a initial laminar phase is smaller than when all
process is modelled as turbulent. As explained in Section 2.1.1 the flame speed is enhanced
by turbulence mechanisms so when a initial laminar phase is included in combustion
modelling, the flame advancement is delayed, the results presented in Figure 51 are in
accordance with this behaviour.

∙ BML combustion model parameters analysis



Chapter 6. Case Studies of reacting flows: Gas Explosion 105

Figure 51 – Comparison between numerical simulations using a turbulent combustion
modelling and a combustion model with an initial laminar phase.

The reaction rate modelling provided by the Bray-Moss-Libby (BML) com-
bustion model, used in this work, presents different adjustable parameters, as shown by
equations 3.46 - 3.48. The variable 𝑐𝐿 stands up among them since it directly affects the
reaction rate. Bray et al. (1985) pointed out that the variable 𝑐𝐿 must be increased to
bring down the reaction rate. In this part of the study, a sensitive test was conducted to
evaluate the response of developed solver for explosion simulations when different values
are applied to the variable 𝑐𝐿: 1.0; 2.5 and 5.0. The result of such analysis is shown in
Figure 52.

Figure 52 – Analysis of the influence of adjustble variable 𝑐𝐿 of BML reaction rate model
on flame propagation.

When increasing the value of 𝑐𝐿, the flame advance into the chamber becomes
slow, which indicates that this variable affects the flame propagation velocity. It also
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confirms the influence of 𝑐𝐿 on reaction rate when the BML combustion model is used.
As expected the reaction rate is decreasing when 𝑐𝐿 take great values.

6.2 Case studies of combustion flows

6.2.1 Study of a turbulent premixed flame past over an obstacle

To analyse the explosion behaviour when a turbulent premixed flame interacts
with a parametrised geometry, a combustion chamber obstructed by a single obstacle was
initially considered Gubba et al. (2011). Following the PFS methodology to define the
geometry under study and the computational domain, a squared box with 12 mm of size
was placed into a computational domain with 50 × 50 × 250 mm of dimensions, which
yield a blockage ratio of 25%. The squared obstacle was located at a distance equal to
100 mm from the chamber basis. Figure 53 presents a schematic representation of the this
situation.

Figure 53 – Schematic representation of a combustion chamber obstructed by a single
obstacle.

The lateral sides and the chamber bottom were fully closed, so wall boundary
conditions were set up at these regions, while the top of the chamber was opened. The
chamber was loaded with a stoichiometric mixture of propane and air and the ignition
point was placed at its bottom, as shown in Figure 53. Computational cells with 1.2 mm
of length were used to build the numerical grid and the simulation parameters were the
same presented in Table 6. A value of variable 𝑐𝐿 equal to 2.0 was applied.

The flame position and overpressure time series are presented in Figure 54. The
numerical results provided by PFS simulation were plotted against experimental data.
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Figure 54 – Time histories of flame position and overpressure of a combustion chamber
obstructed by a single obstacle.

Figure 54 (a) shows that the flame goes through the chamber relatively slowly
until it reaches the obstacle (about 12 ms after ignition stars) for both experimental and
numerical findings, although the PFS RANS predicts earlier flame propagation. When
considering the overpressure generated during the explosion (Figure 54 (b)), numerical
results also present a good agreement with experimental data. Experimental test shows
that the overpressure peak of 34 mbar peak occurs about 13.5 ms after ignition. PFS
simulation predicts an overpressure peak of 28 mbar at 12.3 ms which is of about 17%
lower than the value given by the experimental test.

Figure 55 presents the flame position into combustion chamber at different time
instants after ignition starts. The flame locations were obtained through the calculated
reaction rate progressive variable "c". The series of images is compared with experimental
data Gubba et al. (2011). The PFS RANS simulation is capable to reproduce the turbulent
flame structure and the flame propagation.
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Figure 55 – Flame position into a combustion chamber obstructed by a single obstacle at
different time instants after ignition starts. Experimental results are observed
in (a) while simulation results provided by the developed solver are presented
in (b)

6.2.2 Analysis of a turbulent premixed flame accelerated by a sequence
of obstacles

The second study of an explosion process was based on Patel et al. (2002) and
Sarli et al. (2009) work, who have studied combustion in a chamber with obstacles. The
chamber comprised a rectangular box with size of 150 × 150 × 500 mm. Three obstacles
(75×150×12 mm) were positioned at 100 mm spacings within the chamber. The bottom
end of the chamber was fully closed while the upper end was open. The chamber was
filled with a flammable mixture of methane and air and the ignition point was placed on
its base. Figure 56 presents the schematic representation of this study.

The simulations were performed considering the bottom end and the lateral
sides of the chamber as wall (with zero fluxes of any quantity), the upper end was set
as open boundary (pressure gradient equal to zero) and the obstacles were described as
porous region. The simulation parameters are in Table 6 and the adjustable parameter for
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Figure 56 – Schematic representation of a combustion chamber with three obstacles po-
sitioned at 100 mm spacings within the chamber.

the combustion model 𝑐𝐿 was taken as 3.0. Figure 57 shows the flame structure within the
combustion chamber at different time-steps. The flame surface in numerical images was
obtained by considering the reaction progress variable (𝑐) equal to 0.4. Numerical results
are compared with experimental data provided by Patel et al. (2002) .

Figure 57 – Time sequence of the flame position at the central plane of the chamber:
experimental data (PATEL et al., 2002) (a) and numerical simulation (b).

The present RANS simulation predicts the features of the flame propagation.
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As observed in the experiment (Figure 57 (a)), the flame front achieves the first obstacle
with an incomplete consumption of the fuel mixture in the upstream region of the chamber
and then it is separated into two opposite flame fronts. The flame advances through
downstream the object as a jet behaviour and tends to curl at the centreline of the
chamber. The same sequential behaviour is verified for the following two obstacles. In
the numerical simulation, the flame front impinging onto the first obstacle at the time
equal to 23 ms, while experimental data indicates that such interaction occurs 28 ms after
ignition. Such a difference between numerical finds and experimental observations for the
flame position with time tends to reduce as the flame goes through the chamber. Figure
58 shows the comparison between numerical results and experimental data (PATEL et al.,
2002) for time evolution of the flame location inside the chamber. The flame location was
obtained by considering the maximum axial distance of the flame front from the ignition
point.

Figure 58 – Comparison between numerical simulation and experimental data for the
flame location inside the chamber.

Figure 58 shows that, at the first 20 milliseconds after ignition, the flame
propagates slowly into the chamber and the numerical findings agree with experimental
data. In the second propagation stage, the flame tip reaches the first obstacle and as
observed in Figure 57 the numerical simulation early predicts this arrival (within almost
23 seconds). In the last propagation phase, the flame interacts with obstacles and it
is accelerated. A slop is observed on the curves. Here, it is verified that the numerical
simulation provides a slower flame propagation compared with experimental data.

The flame speed profile provided by numerical results was also compared with
experimental data and is presented in Figure 59. The present simulation is able to capture
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the overall flame speed behaviour presented in the experimental test although, quantita-
tively, there is a lack of agreement between the trend curves.

Figure 59 – Experimental data and corresponding numerical predictions for the flame
speed profile along the axial distance from the ignition point.

As described for turbulent combustion process, the reaction rate is increased
by turbulence effects, which is enhanced by the presence of obstacles in a fluid flow.
Thus, when the flame front reaches an obstacle, its velocity is increased and then tends
to decrease. This trend is repeated in each chamber obstacle as visualized in Figure 59.
Numerical simulation provides greater values of flame speed than the experimental data
at the beginning of ignition. The intensity tends to decrease as the flame moves through
the other obstacles.

The analysis confirms the flame advancement trend discussed above, wherein
the flame tip interacts with the first chamber obstacle earlier on the numerical simulations
than in the experimental observations. For both numerical and experimental results, the
flame arrives at last obstacles at similar time. This behaviour can be explained by the
fact that the porosity distributed model applied in this work to describe the geometrical
obstacles may not produce enough turbulent kinetic energy, so the turbulence effect on
the flame speed is not observed in numerical findings as well as in experimental data.

The last quantitative analysis of this study comprises the verification of the
overpressure generated during the explosion. Figure 60 shows the pressure time history
at the bottom end of the chamber for both RANS simulation and experimental data.
Numerical data were obtained by considering the mean pressure field in a defined region
at the end of chamber domain. It is possible to observe that the numerical model predicts
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the dominant peak pressure as observed in experimental test. The maximum overpressure
was 27% lower than experimental data, which can be due by the presence of a sealing
membrane that was not considered in numerical simulations. However, for both experi-
mental and numerical results, the pressure peak was found at around 38 ms after ignition
starts which occurs when the flame tip reaches the third obstacle.

Figure 60 – Time pressure history at the bottom end of the chamber - comparison between
numerical results and experimental data.

Figure 61 shows the dimensionless 𝐷𝑎𝑚𝑘𝑜𝑙𝑒𝑟 and Karlovitz numbers at the
flame front region. In the presented images, the contour lines were obtained for values of
reaction progress variable "c" ranging from 0.2 to 1.0. It is possible to observe that the
values of Ka at the flame front are close to unity, which is in accordance with the Bourghi
diagram (Figure 2) when flamelet modelling is applied to combustion problems.
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Figure 61 – Dimensionless 𝐷𝑎𝑚𝑘𝑜𝑙𝑒𝑟 and Karlovitz numbers at the flame front region for
different time instants.

6.2.3 Study of turbulent combustion in a chamber with different obstacles
blockage ratio (OBR)

The combustion process in a chamber with obstacles at different blockage
ratios (BR) reported by Chen et al. (2016) was also analysed by numerical simulation
using the developed code. The chamber consists of a rectangular vessel with dimensions
of 500×80×110 mm. The left side (the beginning of chamber) was considered fully closed
and was used as basis to the ignition point while the right end was set up as opening vent.
A rectangular obstacle 40mm thick was placed at about 210 mm from ignition point. The
blockage ratio (BR) is related to the gap between the obstacle size H and the channel
height h, so:

𝐵𝑅 = 1− 𝐻

ℎ
(6.1)

Following the relation given in Equation 6.1, three obstacles blockage ratio were
analysed by varying the obstacle height, so BR = 0.3; 0.5 and 0.7. Figure 62 presents the
three different chamber configurations considered in this study.

As shown in Figure 62, the combustion chamber was considered fully loaded
with a stoichiometric mixture of methane/air. The boundary and initial conditions and
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Figure 62 – Schematic representation of a combustion chamber with three different ob-
stacles blockage ratios: BR = 0.3 (a); BR = 0.5 (b) and BR = 0.7 (c).

simulation parameters were the same used before (section 6.2.2). A mesh grid with 4mm
of length was used and the variable 𝑐𝐿 was set up with a value equal to 5.0. Figures 63 to
65 presents the flame propagation into the chamber obstructed by obstacle with different
blockage ratios. The numerical results given by simulation using the developed PFS code
are compared with experimental data provided by Chen et al. (2016) when the chamber
blockage ratio was 0.3 (Figure 63), 0.5 (Figure 64) and 0.7 (Figure 65).

Analysis of the sequence of flame propagation shown in Figures 63 to 65 al-
lows the identification of four main stages for the flame propagation. The first stage occurs
just after ignition until t=10 ms and the flame presents a spherical shape with laminar
propagation behaviour. At the second stage, the flame goes through the chamber and as-
sumes an extended-shape with a greatly increase on its surface area. A third stage occurs
when the flame reaches the obstacle and assumes a jet behaviour by passing through a
throttled channel. The last stage is characterized by the presence of large recirculation
zones behind the obstacle and the vortex interaction with flame. For all considered block-
age ratio, numerical results can predicts the flame shape and also its propagation stages.
However, as observed in previous numerical simulation of turbulent combustion flows, the
PFS simulation tends to predicts an early interaction between flame front and obstacle.

Figure 66 shows the numerical vector field obtained by the present RANS
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Figure 63 – Premixed air/methane flame propagation in a combustion chamber ob-
structed by an obstacles with BR = 0.3: comparison between experimental
data (CHEN et al., 2016) and the PFS RANS combustion simulation.

simulation in a chamber with blockage ratio equal to 0.5. Recirculation zones appears
behind the obstacle accompanied by the flame transition. The vortex starts to appears
at t = 19 ms as a consequence of the expansion of the combustion products which forces
the unburned mixture to accelerate through the chamber. Following the time sequence,
the vortex size grows with the increase of the flame speed. At the time instant equal to
25 ms, the flame tip starts to interact with the vortex.
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Figure 64 – Premixed air/methane flame propagation in a combustion chamber ob-
structed by an obstacles with BR = 0.5: comparison between experimental
data (CHEN et al., 2016) and the PFS RANS combustion simulation.

Figure 65 – Premixed air/methane flame propagation in a combustion chamber ob-
structed by an obstacles with BR = 0.7: comparison between experimental
data (CHEN et al., 2016) and the PFS RANS combustion simulation.
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Figure 66 – Vector velocity field generated by the obstacle for the blockage ratio equal to
0.5.
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7 Conclusions and Future Work

7.1 Conclusions

The combination of Gilbert - Johson - Keerti distance algorithm and the finite
volume method was proposed for parametrisation of complex geometries. Regions of the
computational domain where obstacles were located, were assigned zero porosity while
free zones of the computational domain were assigned unity porosity. Any other region of
the computational domain was treated as intermediate porosity following the procedure
that checks for collisions between the computational mesh and each primitive solid of
the geometrical model. The developed method was applied to describe conventional CAD
geometrical models.

Initially, a three-dimensional Euler solver was developed based on the initial
two-dimensional Euler solver. Flows over a bump were investigated and it was verified
the flux calculations over the boundaries and computational cells. The numerical findings
in this stage were consistent to the literature description for the solution of compressible
flows.

In the next step, the developed three-dimensional Euler solver was applied to
calculate flow fields using parametrised geometries by the GJK algorithm. Flows over a
buff body were analyzed and it was verified that the flow moves away from parametrised
geometries in a similar manner to the conventional geometries, which indicates that the
proposed parametrisation method can be used to represent geometries in fluid flow studies.

Some tests were conducted to verify the code implementation. The main sim-
ulation parameters (mesh size, smooth factor and CFL number) were investigated. Their
influence in the numerical convergence and in the flow solution proved to be consistent
with what is expected when considering the solver features. A comparison was also per-
formed between the developed solver and an established commercial CFD code.

The modelling approach used at the 𝑘−𝜀 turbulence model was applied in the
third part of this work to account for the viscous effects and extra turbulence generation
in parametrised geometries. Dedicated turbulent flows over buff bodies were investigated.
The numerical findings were in accordance with experimental data for the velocity field.

As far as the turbulent kinetic energy and the fluctuating velocity go, the
approach has been able to reproduce the overall trend. However, numerical findings tend
to over-predict the experimental results for flow over a step. For the flow over cylindrical
obstacles the results are under predicted when compared with experimental data.
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Comparison of the turbulent features of the current work with other numer-
ical results where RANS approach and 𝑘 − 𝜖 turbulence model has been applied show
similar behaviour. Considering that the velocity field is in accordance with the current
understanding of fluid flow and that the numerical results agree with the experimental
data, it is likely that the lack of agreement between the numerical results for the fluctu-
ating velocity and experimental data is due to limitations of the 𝑘 − 𝜖 formulation. The
presence of circulating flow at the wake of obstacles poses an additional challenge when
two-equations models concerning the turbulent kinetic energy and the rate of dissipation
of the turbulent kinetic energy are considered.

Regarding the simulation of reacting flows, the analysis of three different cases
of turbulent combustion process has shown that the developed method is capable of
describing the flame structure and its propagation behaviour within the framework of
traditional laminar flamelet model.

As expected for the turbulent combustion process, overpressure peaks were
captured by the numerical simulations. The results calculated by the developed solver
tends to underpredict the maximum pressure values (≈ 20%) achieved in experimental
tests.

A slight lack of agreement was observed between numerical findings and exper-
imental data when analysing the flame speed. The presented method tends to predict a
faster flame propagation for unobstructed flows and a slower propagation when the flame
interacts with an obstacle. These trends may indicate the necessity of improvement on
turbulence model, once the combustion reaction rate mainly depends on the turbulent
field.

The Damkhöler hypothesis for reacting flows were verified under the influence
of GJK parametrisation. For all considering combustion simulations, the Damkhöler (Da)
number was greater than a unity, which indicates that the chemistry is very fast com-
pared to fluid mechanical scales. Therefore, the combustion process occurs in the laminar
flamelet regime, assumed as basis for the combustion modelling in this work.

7.2 Future Work

The combination of the finite volume method and the Gilbert - Johson - Keerti
distance algorithm for parametrisation of geometries in numerical simulations provides
satisfactory results. Findings have shown that a promising approach has emerged, how-
ever, further work is necessary to improve the developed solver.

Implementation of a high order numerical method, such as eno or weno scheme,
can be used to provide a better solution of the governing equations. The use of a high
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order method will replace the application of artificial viscosity, an adjustable factor that
reduces the oscillations generated by the central difference scheme.

Besides that, a better turbulence approach is required to improve the predic-
tions of turbulence generated by the porous mesh.

The reaction rate in the BML combustion model (BRAY et al., 1985), used in

this work, depends on the empirical correlation 𝑓

⎛⎝ 𝑢′

𝑢𝐿

⎞⎠ (Equation 3.48) to compute the in-

tegral length scale of the flame wrinkling. Therefore, as in any empirical function, different
adjustable parameters are applied here. As future work, it is suggested the replacement
of such an empirical correlation to reduce the necessity of adjustable parameters in the
BML combustion model. A possible solution was already proposed by Matos (2014), who
pointed out that the integral length scale of wrinkling can be computed based on the
turbulence dissipation rate (𝜀). The model was successfully implemented in a spreadsheet
for explosion calculations in a large-scale chamber with a vent.

The developed approach works well for all selected cases of non-reacting and
reacting turbulent flows. However, in this research, only simple and small scales geometries
were deeper investigated. It is proposed to evaluate the solver performance for a large range
of length scales, as in a real process plant. Another suggestion comprises the analysis of
different cases of turbulent reacting flows, since only the combustion process was addressed
here.

At least, it would be interesting to compare the numerical findings of the
developed solver with an establish CFD tool for gas explosion, as FLACS, for example.
Since FLACS uses the Porosity Distributed Resistance model to represent a geometry
under study, the comparison could provide a consistent analysis of the implementation of
turbulence and combustion models considered in this work.
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Appendix A

This Appendix A presents the logical sequence and relationship among the
different subroutines making up the Porosity Flow Solver PFS as illustrated in Figure 67.

Data Acquisition

The "Data Acquisition" comprises the first step when running PFS code. In this
step the code will read the "set up" file and the PrePro output files: "mesh.parameters" and
"porosity". Three different subroutines are included here: "read data", "read parameters"
and "read porosity"

Read Data

The subroutine "Read Data" reads data from the input set up file. The set up
file is named "flow" and contains the flow conditions and the simulation parameters as
shown in table 3.

Read Parameters

The "Read Parameters" subroutine reads the mesh parameters from the PrePro
output file identified by the case name with the extension ".parameters.dat". This is a text
file containing the mesh parameters are as follows:

∙ x, y, z: overall index size of the computational domain.

∙ gapx, gapy, gapz: size of the computational cells.

∙ xtrans, ytrans, ztrans: computational domain offset based on the origin of the
coordinate system.

∙ DNI, DNJ, DNK: number of computational cells in each direction.

∙ NI, NJ, NK: number of grid points in each direction.

∙ numcell: total number of computational cells.
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Read Porosity

The subroutine "Read Porosity" reads the porosity files from PrePro. These
are also text files and they contain the porosity values attached to each computational
cell when running PrePro. The files are identified by the case name with the extensions
".porosity.asc", ".porosity.areaX.asc", ".porosity.areaY.asc" and ".porosity.areaZ.asc". The
contents of these files are the volume porosity, the area porosity in "x" direction, the area
porosity in "y" direction and the area porosity in "z" direction, respectively.

Check Grid

In the subroutine "Check Grid" the computational grid is rebuild based on the
mesh parameters given by the "parameters" file. The computational cells are defined as
well as it is identified the connectivities between nodes, edges, faces and neighbor cells.
The cells face areas and volumes are also computed here.

Once the computational cells are defined, the porosity values are attached to
each one based on the content of the porosity files.

Inguess

The subroutine "Inguess" provides initial values for the main flow variables in
all grid. These variables are defined based on the fluid properties and flow features given
by the set up "flow" input file.

The main variable defined here are as follows:

∙ P: initial pressure of the system, taken as the reference pressure 𝑃𝑟𝑒𝑓 .

∙ RO: initial fluid density, obtained by using isentropic correlations.

∙ E: initial fluid internal energy.

∙ Vx, Vy, Vz: velocity components in each direction. By default, the values of Vy and
Vz are taken to zero, while Vx is calculated based on the pressure field (difference
between 𝑃𝑟𝑒𝑓 and 𝑃𝑑𝑜𝑤𝑛)

∙ TK, TE: values of turbulent kinetic energy (TK) and eddy dissipation (TE) are
set in accordance with suggested by (ARNTZEN, 1998).

∙ FF, PV: values of fuel fraction (FF) and reaction progress variable (PV). The value
of FF is set according to the fuel type, based on its molecular weight, while PV is
set to be zero.



It is important to underline here that, as the Favre average is used in the
developed code, the variables E, Vx, Vy, Vz, TK, TE, FF and PV are weighted by the
fluid density, so their values are multiplied by "RO".

Once the main variables are defined, the secondary variables are obtained by
using the subroutine "Set Others".

Set Others

The "Set Others" routine calculates the secondary flow variables (temperature,
static pressure and the stagnation enthalpy) from the primary ones at every grid point.

This routine assumes two different types: "Set Others Cold" and "Set Others
Hot". The first one is used for cold flow simulation (without combustion), while the second
one is used for hot flow simulation (with combustion). The choice of which subroutine
will be applied depending on the "Fluid Type" specified at the set up file.

For cold flow simulation, the "Fluid Type" in the set up file must be zero.
Thus the subroutine "Set Others Cold" takes the air properties and solves the traditional
equations for compressible flows.

For combustion simulation, the "Fluid Type" in the set up file must be an
integer non-zero number: one (1) or two (2). The number (1) must be set when using
methane in the combustion simulation, while the number (2) indicates that propane will
be used. In this configuration, the "Set Others Hot" subroutine is used and solves the
equations given in section 3.5.1.1 to obtain the secondary variables.

Set Time Step

This routine calculates the Time Step Δ𝑡 for the simulation based on the
minimum mesh size and the CFL number (as shown in equation 4.15).

Solver

In the "Solver" routine the iteration process is performed. It comprises the main
loop and the sequence of subroutines that are assembled in order to solve the discretized
differential equations. The "Solver" routine returns the final flow solution to the main
program.

Turbulence

The subroutine "Turbulence" is performed when setting "1" to the "NS" term
in the set up file. It calculates the viscous stress and adds it to the diffusion terms of the



conservation equations. The turbulence kinetic energy and eddy dissipation source terms
are also computed here.

Combustion

The subroutine "Turbulence" is performed when setting "1" to the "COMB"
term in the set up file. Therefore, the combustion model equations (given in section
3.5.1.2) are computed. The reaction rate progress variable and fuel fraction source terms
are also obtained here.

Flux Mass/Energy

The convective fluxes of mass and energy are computed here, into the subrou-
tine "𝑓𝑙𝑢𝑥−𝑚𝑎− 𝑒𝑛𝑒𝑟𝑔𝑦".

Wall BC

The wall boundary conditions are set up by performing two subroutines: "𝑤𝑎𝑙𝑙−
𝑏𝑐" and "𝑤𝑎𝑙𝑙 − 𝑏𝑐 − 𝑝𝑜𝑟". In both cases a solid surface (with zero normal fluxes) is im-
posed, as explained in section 4.3. However, in the first case this condition is applied at
the computational domain boundaries set as wall, while in the second case, the condition
is defined at the computational cells attached with porosity values equal to zero.

It is important to underline here that two different index can be attached when
performing the wall routines: "1" and "2". The index "1" is used in the first application of
the subroutines, just after the computation of mass and energy convective fluxes, so the
wall condition is defined for the variables RO, E, FF and PV. The index "2" is used in
the second application of the subroutines, after the computation of momentum convective
fluxes, so the wall condition is defined for the variables VX, VY, VZ, TK and TE.

Spread Prop

The subroutine "Spread Prop" calculates the changes in the variable "PROP"
(RO, E, FF, PV, VX, VY, VZ, TK and TE) based on the time step.

Update / Smooth

The subroutine "Update" distributes the changes in each variable to the grid
nodes.

The subroutine "Smooth" adds artificial viscosity to each variable based on the
value of Smooth Factor (SF) given in the set up file.



Flux Momentum

The convective fluxes of momentum, turbulent kinetic energy and eddy dis-
sipation are computed here, into the subroutine "𝑓𝑙𝑢𝑥 −𝑚𝑜𝑛". This routine is preceded
by the subroutine "𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒" which calculates the resistance that unresolved obstacles
offer to a mean flow.

In / Out BC

The inflow and outflow boundary conditions are specified in the subroutine
"𝑎𝑝𝑝𝑙𝑦 − 𝑏𝑐". The values of the variables are defined according to the section 4.3. This
routine also presents an additional function "𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑣" that removes the normal com-
ponents of velocity at the wall boundaries.

Check Convergence

The subroutine "𝑐ℎ𝑒𝑐𝑘−𝑐𝑜𝑛𝑣" checks the changes in all primary variables over
the last 5 (five) steps. The convergence criteria defined by the user at the set up input file
is compared with the variables changes and a residual is calculated as shown in equation
4.16.

Output

The "𝑜𝑢𝑡𝑝𝑢𝑡" routine writes the flow solution in a ".vtk for use by the Kitware
Paraview Program. The frequency of writing flow solution is defined by the user at the
"DUMP" term of the input set up file.

Figure 68 presents a summary of the subroutines in the developed code and
the main link between them.



Figure 68 – Routines of the developed code and the main link between them.



Appendix B

Appendix B comprises examples of the application of the technique developed
in the current research. There have been presented results for the application of the GJK
algorithm and how it works through utilisation of the stereolithography CAD file (STL)
and the hexahedrical mesh. The appendix also presents the flow solution calculated using
the GJK methodology coupled to the modified finite volume method (FVM).

Figures 69 to 71 present three examples of the application of the developed
method to calculate the flow over complex geometries.

Figure 69 – Parametrization of a industrial module as porous model by using the GJK
algorithm and its corresponding flow solution for an onshore site

Figures 72 and 73 present an example of the application of the developed
method to explosion simulation in a complex geometry.



Figure 70 – Parametrization of process deck and associated flow solution.



Figure 71 – Parametrization of a gas plant including details of the pipe-rack. Lower plot
shows the streamlines for the velocity field.



Figure 72 – Parametrization of a gas plant including details of the pipe-rack. Lower plot
shows a flammable cloud (green region) inside the process area.



Figure 73 – Explosion simulation in a process area. The pressure wave is shown at different
times after the ignition: (a) t = 35ms; (b) t = 70ms; (c) t = 105ms; (d) t =
180ms.
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