
UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA MECÂNICA

Augusto Yoshio Horita

Automation Approaches for Embedded Systems
Design Flows Based on Formal Models of

Computation

Estratégias de Automação para Desenvolvimento
de Projetos de Sistemas Embarcados Baseados em

Modelos Formais de Computação

CAMPINAS
2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296905277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Augusto Yoshio Horita

Automation Approaches for Embedded Systems
Design Flows Based on Formal Models of

Computation

Estratégias de Automação para Desenvolvimento
de Projetos de Sistemas Embarcados Baseados em

Modelos Formais de Computação

Dissertation presented to the School of Me-
chanical Engineering of the University of
Campinas in partial fulfillment of the require-
ments for the degree of Master in Mechanical
Engineering, in the area of Mechatronics.

Dissertação apresentada à Faculdade de En-
genharia Mecânica da Universidade Estadual
de Campinas como parte dos requisitos exigi-
dos para obtenção do tı́tulo de Mestre em En-
genharia Mecânica, na Área de Mecatrônica.

Orientador: Prof. Dr. Denis Silva Loubach

ESTE EXEMPLAR CORRESPONDE À VERSÃO
FINAL DA DISSERTAÇÃO DEFENDIDA PELO
ALUNO AUGUSTO YOSHIO HORITA, E ORIEN-
TADA PELO PROF. DR. DENIS SILVA LOUBACH.

CAMPINAS
2019

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

 Horita, Augusto Yoshio, 1987-
 H782a HorAutomation approaches for embedded systems design flows based on

formal models of computation / Augusto Yoshio Horita. – Campinas, SP : [s.n.],
2019.

 HorOrientador: Denis SIlva Loubach.
 HorDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Mecânica.

 Hor1. Sistemas embarcados (Computadores). 2. Computabilidade e modelos

de computação. I. Loubach, Denis Silva, 1982-. II. Universidade Estadual de
Campinas. Faculdade de Engenharia Mecânica. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Estratégias de automação para desenvolvimento de projetos de
sistemas embarcados baseados em modelos formais de computação
Palavras-chave em inglês:
Embedded systems (Computers)
Computability and models of computation
Área de concentração: Mecatrônica
Titulação: Mestre em Engenharia Mecânica
Banca examinadora:
Denis Silva Loubach
Eurípedes Guilherme de Oliveira Nóbrega
Romis Ribeiro de Faissol Attux
Data de defesa: 17-10-2019
Programa de Pós-Graduação: Engenharia Mecânica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-2805-8530
- Currículo Lattes do autor: http://lattes.cnpq.br/1738569966447609

Powered by TCPDF (www.tcpdf.org)

UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA MECÂNICA

COMISSÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
DEPARTAMENTO DE MECÂNICA COMPUTACIONAL

DISSERTAÇÃO DE MESTRADO ACADÊMICO

Automation Approaches for Embedded Systems
Design Flows Based on Formal Models of

Computation

Estratégias de Automação para Desenvolvimento
de Projetos de Sistemas Embarcados Baseados em

Modelos Formais de Computação

Autor: Augusto Yoshio Horita
Orientador: Prof. Dr. Denis Silva Loubach

A banca examinadora composta pelos membros abaixo aprovou esta dissertação:

Prof. Dr. Denis Silva Loubach, Presidente
Departamento de Sistemas de Computação/ITA

Prof. Dr. Eurı́pedes Guilherme de Oliveira Nóbrega
FEM/Unicamp

Prof. Dr. Romis Ribeiro de Faissol Attux
FEEC/Unicamp

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de
Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 17 de Outubro de 2019

This work is dedicated to my wife

and kids, who have inspired and

supported me.

Acknowledgements

First, I thank God for all the blessings I have got, including wonderful people around me,
besides the opportunities and virtues I was given to which made this work possible.

I thank Prof. Dr. Denis Silva Loubach, who has always been attentive and patient with my
difficulties, giving me all the support and sharing his expertise that led me to finish this work.
Besides, I thank Ricardo Bonna for promptly sharing his knowledge whenever I needed.

I thank Unicamp for affording me the opportunity to complete my MSc. study here.
I thank my parents, brother and sister, who are part of my being, teaching me how to be better
and never give up.

I deeply thank my wife, for always giving me the necessary support and being by my side.
I thank my children for giving me the inspiration to be a better person.

I humbly extend my thanks to all my friends and persons who co-operated in any manner
with me in this work.

Resumo

Sistemas embarcados de alta performance estão presentes em cada vez mais áreas de aplicação.
Com o aumento da complexidade, se torna mais difı́cil atender ao requisito de se projetar o sis-
tema mais otimizado utilizando menos recursos. Nesse contexto, os métodos de projeto de sis-
temas embarcados baseados em modelos formais têm sido estudados para tornar esse processo
mais robusto e escalável. O uso de modelos de computação (MoC), que consistem na mode-
lagem de uma aplicação utilizando um alto nı́vel de abstração com base formal, possibilita uma
análise sistemática do sistema antes de sua implementação. Ferramentas e frameworks têm sido
desenvolvidos para a modelagem baseada em MoCs. Algumas dessas ferramentas suportam a
simulação dos modelos, possibilitando a verificação das funcionalidades do sistema antes das
próximas fases do projeto. O aumento do nı́vel de abstração, proporcionado pelo uso dos MoCs,
dificulta a fase de implementação pela falta de detalhes nos modelos de alto nı́vel de abstração.
Nesse sentido, esta pesquisa tem como objetivo identificar possı́veis estratégias de automação
para o desenvolvimento de sistemas embarcados baseado em modelos formais de computação.

Palavras-chave: Sistemas embarcados, Modelos de computação, Projeto baseado em modelos
formais, Modelagem, Simulação, Programação funcional.

Abstract

Sophisticated and high performance embedded systems are present in an increasing number
of application domains. As the complexity grows, it gets harder to satisfy the requirement of
getting the most optimized system using less development resources. In this context, formal-
based design methods have been studied to make the development process robust and scalable,
using the correct-by-construction approach. Models of computation (MoC), which consists on
modeling an application at a high abstraction level by using a formal base, enables a system-
atic application analysis before its implementation. Different tools and frameworks have been
developed supporting MoCs. Some of them can simulate the models and also verify its func-
tionality and feasibility before the next design steps. As MoC elevates the abstraction level, the
implementation steps get more complex, creating an abstraction gap. In view of this, the present
research aims to identify possible automation approaches for embedded systems design flows.

Keywords: Embedded systems, Models of computation, Formal-based design flow, Modeling,
Simulation, Functional programming.

List of Figures

1.1 Synthesis process from specification model to system implementation (Sander,
2003). 17

2.1 A possible CPS structure (Lee, 2010). 21
2.2 SY process representation, adapted from (Jantsch, 2003). 23
2.3 SDF example, adapted from (Lee and Messerschmitt, 1987). 24
2.4 Modal model example. 25
2.5 H.263 encoder graph generated and visualized with SDF3 (Stuijk, 2018). 26
2.6 ForSyDe Design Process (Sander, 2003). 28
2.7 PtolemyII architecture based on (Ptolemaeus, 2014). 28
2.8 Process built by a Process Constructor (Sander et al., 2016). 30
2.9 ForSyDe models of computation. 31
2.10 MoCs Chart, according to (University of California, Berkeley-online, 2018). . 32
2.11 Compiler architecture based on (Bourke et al., 2015). 36

3.1 Analysis and identification of possible automation approaches (AIPAA) appli-
cable to embedded systems design flow. AIPAA needs the “problem statement”
as a given input, and aids to produce a model, which is verified and executable,
as output. This output can be used as entry point in the implementation domain,
e.g., “implementation details” and “implement system”. 40

3.2 EDS system flow chart. 51
3.3 Encoder-decoder system SY graph. 53

4.1 LZMA compression and decompression schemes, based on (Leavline, 2013). . 59
4.2 SADF actor types, both with m inputs and n outputs (Bonna et al., 2019). . . . 62
4.3 LZMA high level modeling dataflow graph based on SADF MoC. Initial tokens

are represented by • . 64

5.1 Formal-based models dataflow graphs. 79

List of Tables

2.1 Functional and Imperative Paradigms Comparison (Moraes and Loubach, 2017).
. 35

4.1 Sliding Window Encoding Output Packages, based on source code (Pavlov,
2019). The symbol ⊕ represents concatenation of binary values. 61

4.2 σsr possible token formats. 66
4.3 l variable possible sizes. 66
4.4 SWEk Scenarios and token rates discrimination. 66
4.5 MATd output control channels token rates and scenarios discrimination. 66
4.6 Feasible LZMA system static scheduling. 75

List of Symbols and Abbreviations

AIPAA Analysis and Identification of Possible Automation Approaches

ALU Arithmetic Logic Unit

ARM Advanced RISC Machine

CPS Cyber-Physical Systems

CSDF Cycle-Static Dataflow

CSP Communicationg Sequential Processes

CT Continuous Time

DSL Domain Specific Language

EDS Encoder-Decoder System

EDSL Embedded DSL

ForSyDe Formal System Design

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FSM Finite State Machine

GHC Glasgow Haskell Compiler

GHCi GHC interactive environment

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

iCyPhy Industrial Cyber-Physical Center

IEEE Institute of Electrical and Electronics Engineers

MoC Model of Computation

MoML Modeling Markup Language

NASA National Aeronautics and Space Administration

OSMC Open Source Modelica Consortium

PASS Periodic Admissible Sequential Schedule

R2D2C Requirements to Design Code

RISC Reduced Instruction Set Computer

SADF Scenario-Aware Dataflow

SDK Software Development Kit

SDF Synchronous Dataflow

SDF3 Synchronous Dataflow For Free

SOL Sequential Object Language

SR Synchronout Reactive

SY Synchronous

TSM Tagged Signal Model

XML eXtensible Markup Language

Contents

1 Introduction 16
1.1 Research Objective . 17
1.2 Research Scope . 17
1.3 Research Requirements . 18
1.4 Expected Results . 18
1.5 Document Structure . 19

2 Background 20
2.1 Embedded and Cyber-Physical Systems . 20
2.2 Models of Computation (MoC) . 21

2.2.1 Tagged Signal Model (TSM) . 21
2.2.2 Timed Models of Computation . 22
2.2.3 Untimed Models of Computation . 23
2.2.4 Hybrid Models . 25

2.3 Frameworks supporting formal MoCs . 25
2.3.1 Formal System Design (ForSyDe) . 27
2.3.2 PtolemyII . 27

2.4 MoCs Perspective under PtolemyII and ForSyDe 29
2.4.1 ForSyDe Overview . 29
2.4.2 PtolemyII Overview . 31

2.5 Functional Programming Paradigm . 33
2.5.1 Haskell Programming Language . 33

2.6 Imperative Programming Paradigm . 34
2.6.1 Java Language . 34

2.7 Straightforward Paradigms Comparison . 35
2.8 Properties Verification . 35
2.9 Automatic Code Generation . 36
2.10 Main Related Works . 37
2.11 Summary . 38

3 A Method for Possible Automation Exposure 39
3.1 Analysis and Identification of Possible Automation Approaches - The AIPAA

Method . 39

3.1.1 Problem Characterization . 40
3.1.2 MoC Definition . 41
3.1.3 Framework Selection . 42
3.1.4 Modeling and Simulation . 43
3.1.5 Properties Verification . 44
3.1.6 Directions to Implementation Details and System Implementation . . . 47

3.2 Analysis of Possible Automation Approaches 48
3.2.1 Proposed Automation to Properties Verification 48
3.2.2 Automatic Code Generation . 50

3.3 Illustrative Example . 50
3.3.1 Problem Characterization . 51
3.3.2 MoC Definition . 52
3.3.3 Framework Selection . 52
3.3.4 Modeling and Simulation . 52
3.3.5 Properties Verification . 56
3.3.6 Implementation Details and Implement System 56

3.4 Summary . 57

4 AIPAA Method Application 58
4.1 LZMA - The Problem Statement . 58
4.2 Problem Characterization . 59

4.2.1 Sliding Window Encoding . 59
4.2.2 Range Encoding . 60

4.3 MoC Definition . 61
4.3.1 Scenario-Aware Dataflow (SADF) MoC 62

4.4 Framework Selection . 63
4.5 Modeling and Simulation . 63

4.5.1 SADF LZMA Model Description . 64
4.5.2 LZMA Modeling with ForSyDe SADF MoC 66
4.5.3 Model Simulation . 71

4.6 Properties Verification . 73
4.6.1 SADF MoC Properties and Verification Methods 73
4.6.2 LZMA Model Properties Verification 74

4.7 Implementation Details and Implement System 75
4.8 Summary . 76

5 Results, Analysis and Discussion 77
5.1 Literature Review . 77
5.2 Case Studies Specification . 77
5.3 Framework Selection Criteria . 78

5.4 Case Study Modeling Based on Formal Methods 78
5.5 Analysis Identifying Steps to be Automated 79

5.5.1 Properties Verification with “Quickcheck” 79
5.5.2 Automatic Code Generation . 80

5.6 Scientific Publications . 80
5.7 Summary . 81

6 Conclusion 82
6.1 Specific Conclusions . 82

6.1.1 Work Requirements Traceability . 83
6.2 Main Contributions . 83
6.3 General Conclusions . 84
6.4 Recommendations and Future Works . 84

16

1 INTRODUCTION

Embedded systems are present in a growing number of different application areas, which in-
cludes a wide complexity range, from simple wearable gadgets to aerospace and biomedical.
Power consumption, performance, and cost usually figure as key constraints to these systems.
Real-time embedded systems, specifically, have as a critical requirement predictable and de-
terministic response time. A design error in these cases can cost whole projects or even lives
(Buttazzo, 2011).

Besides the growing number of embedded systems applications, their integration and con-
nectivity, aiming to improve control and monitoring methods, have created the concept of cyber-

physical systems (CPS), which represents the integration of computation and physical processes
controlled by embedded computers and its networks, generally, by using feedback loops. There-
fore, computation and physical systems affect one another (Lee, 2010).

As embedded systems and CPS complexities grow, it gets harder and harder to specify,
model and simulate them, therefore making the system implementation phase more complex.
In this sense, formal-based design methods have been developed to make this process reliable,
robust and scalable together with design space exploration (DSE).

Towards the correct-by-construction development, optimizing the available resources, Ed-
wards et al. (1997) argue that systems should be implemented at a high abstraction level, using
formal models. This implementation consists on an executable model which makes no refer-
ences to implementation code or platforms. In this context, models of computation (MoC) are
presented as a key approach to formal-based system modeling and simulation. There is a range
of existing MoCs, some illustrated in Fig. 2.10, where each one represents and captures differ-
ent aspects and semantics of system’s functionalities. Therefore, one should carefully choose
the MoC to use based on the type of application being modeled, besides the modeling and
simulation methods (Jantsch and Sander, 2005).

Considering the design phase, a range of frameworks were developed aiming to aid the
modeling and simulation of systems on a formal base. Examples are Ptolemy II (Ptolemaeus,
2014), ForSyDe (Sander et al., 2016), SDF3 (Stuijk et al., 2006), and Simulink (MathWorks,
2019a). Each framework focuses on different design methodologies aspects and has its own
profits and drawbacks when compared to the others.

Although formal models with a high abstraction level have advantages, making possible the
early detection of inconsistencies and ambiguities in the specification model step, they have a
counter-part known as abstraction gap, caused by its absence of implementation details. This

Augusto Yoshio Horita

CHAPTER 1. INTRODUCTION 17

leads to a wider design space possibilities, defined as the range of implementations options
related to the initial model. Fig. 1.1 illustrates the synthesis process and that abstraction gap
(Sander, 2003).

Figure 1.1. Synthesis process from specification model to system implementation (Sander,
2003).

Research works are continuously presenting methods to optimize and overcome the abstrac-
tion gap, composing the design space exploration concept (Sinaei and Fatemi, 2016; Li et al.,
2017).

1.1 Research Objective

This research work objective is to identify possible automation approaches for design flows
based on formal models of computation, aiming to assist in a future implementation of auto-
matic code generation and also a trustable, robust and scalable embedded systems design flow.

1.2 Research Scope

The present research considers both the design and the high level implementation, i.e., in the
specification domain, of an embedded system case study, following formal design methods to
model and simulate the system.

Augusto Yoshio Horita

CHAPTER 1. INTRODUCTION 18

Basically, two types of MoCs with different timing abstraction, as discussed in (Horita et al.,
2019a), are used here. One is the synchronous (SY) MoC, representing the timed classification
of MoCs, and the other is the synchronous dataflow (SDF), representing the untimed. A third
MoC, named scenario-aware dataflow (SADF) is also addressed in the present work. SADF is
a generalization of SDF to model dynamic systems.

Based on the defined high level abstraction models and their simulation and high level im-
plementations, it should be possible to identify which are the main intermediate steps candidate
to be automated.

1.3 Research Requirements

This research work addresses the following requirements:

R0 Literature review with respect to the main concepts and theory on MoC and high level
modeling;

R1 Complete specification of embedded systems case studies;

R2 A formal-based modeling framework selection criteria and list of candidates tools;

R3 Embedded system case study modeling and high level implementation, based on formal
design methods; and

R4 An analysis identifying implementation steps to be automated.

1.4 Expected Results

The expected results are the formal-based modeling, simulation and high level implementation
of case studies. Besides that, this research aims to present an analysis of refinement steps taken
during the design space exploration, pointing out possible automation approaches in the design
flow, that can be implemented as a future works.

The validation of this research will be based on the verification of the correct manual system
implementation, following the selected MoC semantics.

Augusto Yoshio Horita

CHAPTER 1. INTRODUCTION 19

1.5 Document Structure

The remainder of this document is organized as follows. Chapter 2 presents a background
on the main concepts used in this work. In Chapter 3, it is described a proposed method for
possible automation identification together with an illustrative example. Next, Chapter 4 shows
the implementation of a case study based on the introduced method, demonstrating its potential
and applicability. Chapter 5 introduces a discussion regarding the case study development and
results. Finally, Chapter 6 summarizes the research conclusions, contributions and possible
future works.

Augusto Yoshio Horita

20

2 BACKGROUND

This chapter presents the main concepts involved in this research, including embedded and
cyber-physical systems, models of computation, functional programming paradigm and auto-
matic code generation, together with related works.

2.1 Embedded and Cyber-Physical Systems

Embedded systems can be defined as computing systems designed to perform a dedicated func-
tion, in which hardware and software are tightly coupled (Li and Yao, 2003). One of the main
components of these systems is the processing unit, i.e., microcontrollers or microprocessors, in
which application instructions are executed. As the technology advances, different processor’s
architectures are developed, optimizing their performance by increasing their capabilities, e.g.,

runtime reconfiguration, or resources, e.g., multiple processing cores.
Despite those performance improvements, a range of complex applications requires embed-

ded system’s networks to monitor and control physical variables or processes based on logical
computational algorithms, usually using feedback loops. This intersection of cyber and phys-
ical components is named cyber-physical systems (CPS). It combines engineering models and
methods from mechanical, electrical, and chemical engineering with models and methods from
computer science (Lee, 2015). CPS applications include modern transportation systems, secu-
rity systems, and distributed robotics, for instance.

A possible CPS structure is illustrated in Fig. 2.1, representing a network of three platforms
composed by actuators, sensors and embedded computers, as computation blocks. As an exam-
ple, (Lee, 2010) describes it as an automation application, in which controllers for high-speed
printing presses are modeled as the actuators and sensors represent disruptions detection. The
control algorithms, modeled as computation blocks, handle rapid shutdown modes to prevent
damage to the equipment in case of paper jams.

As the applications complexity grows, the number of components included in the CPS net-
work and the computational algorithms can exponentially increase. In a scalable perspective,
the greater and more complex the CPS gets, the harder it is to specify, simulate and imple-
ment these systems. In view of this, formal-based design methodologies are adopted aiming the
correct-by-construction development.

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 21

Figure 2.1. A possible CPS structure (Lee, 2010).

2.2 Models of Computation (MoC)

According to Jantsch (2003), a model is a simplification of another entity, which can be a
physical entity or even another model. It describes only the characteristics that are relevant for
a given task.

In the present research context, formal models of computation (MoCs) are used to model
embedded systems. These MoCs elevate the abstraction level of the modeled systems, mak-
ing no reference to implementation platforms or implementation languages, but capturing func-
tional behaviors regarding communication, synchronization and processes interactions (Fernández,
2009; Jantsch, 2005). Essentially, MoCs are collections of abstract rules that dictate the seman-
tics of execution and concurrency in heterogeneous computational systems.

2.2.1 Tagged Signal Model (TSM)

As MoCs abstract the system functionality, which are relevant for a specific task, a range of
different models have been developed. As a consequence, the selection of a MoC is not a trivial
design step. For that reason, many researches have presented different comparison methods and
MoC’s classification (University of California, Berkeley-online, 2018; Lee and Sangiovanni-

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 22

Vincentelli, 1998; Paul and Thomas, 2005).
In this sense, Lee and Sangiovanni-Vincentelli (1998) presented a meta-model/framework

named tagged signal model (TSM) for reasoning about MoCs definitions and properties. A
range of MoCs, studies and frameworks share the main concepts contained in that research
work (University of California, Berkeley-online, 2018; Sander, 2002; Jantsch, 2003). Within
TSM, systems are regarded as a collection of processes. A process communicates through
signals, composed by events, having the following definitions.

Definition 1 (Event) An event e, is an elementary unit of information composed by a tag ti ∈ T
and a value vi ∈ V.

Definition 2 (Signal) A signal s, belonging to the set of signals S, is a set of events ei = (ti,vi),

responsible for processes communication.

Definition 3 (Process) A process P is a set of possible behaviors, and can be viewed as rela-

tions between input signals SI and output signals SO. The set of output signals is given by the

intersection between the input signals and the process SO = SI∩P. A process is functional when

there is a single value mapping f : SI→ SO which describes it. Therefore, a functional process

has either one behavior or no behavior at all.

TSM classifies the MoCs within two categories, timed and untimed, which are described as
follows.

2.2.2 Timed Models of Computation

In a timed MoC, the set of tags T is totally ordered. For that reason, the tags are also considered
the timestamp of each event. As a consequence, it is possible to order every event in every
signal of the MoC based on its tag. As examples of timed MoCs, TSM presents continuous
time, discrete-event, synchronous and sequential systems (Jantsch, 2003).

The synchronous MoC was one of the first to be defined and also is a widely used timed
MoC. For those reasons, it is object of study in the present research.

Synchronous (SY) MoC

The synchronous MoC is based on the perfect synchrony hypothesis, which states that neither
computation nor communication takes time. The time is abstracted by dividing its axis into
slots. Everything that happens inside a specific slot occurs synchronized by a global time clock

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 23

(Jantsch, 2003). For a system to attend the perfect synchrony hypothesis, the time slot must be
selected in a manner that all the model’s process are able to respond fast enough, i.e., inside the
same time slot.

Fig. 2.2 represents a SY process, composed by two sub-process. The signals are composed
by the events ux and vx, where x is the tag of these events, which in turn are inputs to the
Process P. The Process P1 sub-process consumes ux and vx, producing the intermediate
signals composed by u′x and v′x. The last are consumed by Process P2, generating the Process
P output signals composed by the events u′′x and v′′x . According to synchrony hypothesis, v′1 and
v′′1 are outputted at the same instant, i.e., the first time slot or first execution cycle of the system.
The next events of each signal also follow the same behavior.

Process P

Process P1 Process P2

..., u3, u2, u1

..., v3, v2, v1

..., u′
3
, u′

2
, u′

1

..., v′
3
, v′

2
, v′

1

..., u′′
3
, u′′

2
, u′′

1

..., v′′
3

, v′′
2

, v′′
1

Figure 2.2. SY process representation, adapted from (Jantsch, 2003).

A wide range of systems can be modeled using synchronous MoC due to its behavior, in
which the processes read inputs, compute outputs and communicate with other processes, e.g.,

reactive systems and CPS composed by sensors and actuators (Lee and Sangiovanni-Vincentelli,
1998).

2.2.3 Untimed Models of Computation

In an untimed MoC, the set of tags T are partially ordered, denoting causality or synchroniza-
tion, as a consequence, only local groups of events can be ordered based on their tags, rather
than all set T . Some examples of untimed MoCs are Kahn process networks (KPN), dataflows
and Petri Nets (Lee and Sangiovanni-Vincentelli, 1998).

The dataflows can be divided into a range of MoCs. They are represented by directed
graphs, where each node represents a process and the arcs represent the communication paths.
A process can only execute, i.e., fire, if it has the necessary events, i.e., tokens, available in all
of its input ports.

One special case of dataflow is the synchronous dataflow (SDF). It was first presented in
1987 (Lee and Messerschmitt, 1987) and is widely used due to its performance characteristics,
as the inputs and outputs rates are defined at compile time, and its modeling simplicity compared

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 24

to others MoCs from the dataflows family.

Synchronous Dataflow (SDF) MoC

SDF MoC was first presented as dataflows graphs composed by synchronous nodes (Lee and
Messerschmitt, 1987). A node is defined as synchronous if the number of tokens consumed
by the input ports and produced by the output ports are constant and possible to be defined at
compile time.

The SDF graph must be non-terminating, which means that the model must be able to run
without any deadlock. To check if a model is consistent, it is possible to perform a formal
analysis based on the periodic admissible sequential schedule (PASS).

Fig. 2.3a illustrates how a system may be modeled using the SDF MoC graph. To prove the
existence of the system PASS, it is necessary to assemble its topology matrix, in which the (x,y)
entry represents the amount of data produced by the node y on the arc x. Fig. 2.3b identifies the
arcs and nodes of the example system and the Eq. (2.1) represents its topology matrix.

α β

γ

b j

h

c e

d

f g

i

(a) Regular representation of SDF graph.

1 2

3

c 1 e

d

2

f g

3

i

(b) SDF with identified nodes and paths.

Figure 2.3. SDF example, adapted from (Lee and Messerschmitt, 1987).

Γ =

c −e 0
d 0 − f

0 i −g

 (2.1)

A set of lemmas and equations (Lee and Messerschmitt, 1987) demonstrates a necessary
condition for a system model containing s nodes to hold the PASS:

rank(Γ) = s−1 (2.2)

The SDF MoC is suitable to model streaming processing due to the possibility to previously
define the periodic processing cycle and the token rate of the input and output processes ports.

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 25

2.2.4 Hybrid Models

As the CPS complexity grows, it comprehends more processes and variables that do not follow
the same semantics when compared to each other, composing the concept of heterogeneous
systems. As a consequence, it is not possible to model the whole system using only one MoC,
as each MoC represents only one aspect of the entire system (Eker et al., 2003). In this sense,
frameworks and modeling domain specific language (DSL) included tools to model these sys-
tems by enabling the use of multiple MoCs in one single model, generating the hybrid models

concept.
A typical example of hybrid models application is the modal model, in which the top level

represents a finite state machine (FSM) and each state is refined into models that can be driven
by different MoCs. An example is illustrated in Fig. 2.4, in which the states are represented by
stt nodes, the sub-models by MoC nodes, and environment inputs by In. This type of model can
be used with systems that dynamically changes it behavior depending on user or environment
inputs, such as sensor data (Lee and Tripakis, 2010).

sttastart

sttb

sttc

MoC1

MoC2

MoC3

In1 = on

In1 = off

In2 = on

Figure 2.4. Modal model example.

2.3 Frameworks supporting formal MoCs

There is a wide range of formal-based development frameworks that differs on a series of as-
pects, such as available MoCs, user interface, functionality, underlying programming paradigm

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 26

and language, and license styles.
Simulink is considered one of the most powerful and complete available framework, being a

block diagram environment for simulation and model-based design that is integrated to Matlab
(MathWorks, 2019a). Simulink includes tools for modeling, simulating and automatic code
generation, among other features. It also checks the model compatibility with industry standards
such as DO-178C, DO-331 and ISO 26262. Its main disadvantage, if one can point that, is the
commercial license style, besides being a proprietary code framework.

Regarding open source frameworks, Modelica is presented as a modeling language alterna-
tive targeting CPS, which was formalized in 1997, and is supported by a global and non-profit
association (Association, 2019). It also provides a modeling and simulation environment, the
OpenModelica, also maintained by a non-profit association, the OSMC (Open Source Modelica
Consortium (OSMC), 2019).

SDF3 (Stuijk et al., 2006), read as “SDF For Free”, is presented as a tool that aims the
generation, analysis and visualization of SDF graphs, as illustrated in Fig. 2.5. Its analysis
computes parameters of the SDFG, such as the repetition vector, which represents the number
of times each actor should be fired to bring the system back to beginning state. In this context,
an actor is the representation of an SDF node. The source code of this framework is accessible
under the SDF3 proprietary license conditions. One disadvantage of this framework is the lack
of a system simulation tool.

Figure 2.5. H.263 encoder graph generated and visualized with SDF3 (Stuijk, 2018).

A variety of other frameworks can be found in the literature, e.g., EWD framework (Math-
aikutty et al., 2008) and the SystemC modeling framework presented in (Herrera and Villar,
2007).

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 27

To reduce the multitude of frameworks and select a couple to work with, the next criteria
were proposed and followed in the present work. A framework must support both modeling
and simulation of embedded systems, besides the open source code license style (Horita et al.,
2019a). Based on this, the framework used in this research case study were ForSyDe and
PtolemyII, which are presented in Sections 2.3.1 and 2.3.2.

2.3.1 Formal System Design (ForSyDe)

Aiming the elevation of model abstraction level, and still based on formal design methods,
formal systems design (ForSyDe) was first presented in 1999 (Sander and Jantsch, 1999) as
a methodology based on a purely functional language, Haskell, and on the perfect synchrony
hypothesis, thus supporting only synchronous MoC at first. Its main modeling and simulation
tool is the ForSyDe-Shallow, implemented as a Haskell embedded domain specific language
(EDSL). Nowadays, ForSyDe methodology framework has evolved, including new MoCs, such
as continuous time, SDF, and scenario-aware dataflow (SADF) (Bonna et al., 2019), besides
other branches and frameworks, e.g., ForSyDe-SystemC, a modeling framework based on the
IEEE standard language SystemC (Sander et al., 2016).

The ForSyDe methodology is illustrated in Fig. 2.6. Its synthesis process is divided into two
phases: the refinement of the high abstraction level specification model into the implementation
model, and the mapping of the implementation model into a system architecture.

The refinement phase is performed in the functional domain through the application of
formal-based design transformations. As a consequence, the model semantics is prevailed and,
the formal verification and validation methods applied to these models can be the same.

The mapping phase is allocated in the implementation domain, in which the model processes
are mapped to allocation of resources, platform partitioning and code generation.

The main purpose of the refinement phase is to refine the high abstraction specification
model, including implementation information, in order to optimize the mapping phase.

The ForSyDe formal based modeling representation and classification is presented in Sec-
tion 2.4.1.

2.3.2 PtolemyII

The PtolemyII framework is part of the Ptolemy Project, that has been developed at the Univer-
sity of California at Berkeley, starting in the 80’s. It aims the formal modeling and simulation
of heterogeneous cyber-physical systems and is based on the imperative paradigm and object-

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 28

Figure 2.6. ForSyDe Design Process (Sander, 2003).

oriented design, using Java as base language. This provides multi-threading and graphical user
interface (Ptolemaeus, 2014).

Since PtolemyII is based on a strongly typed and objected-oriented language, i.e., Java, its
architecture has a well-defined package structure and packages functionality, as illustrated in
Fig. 2.7.

kernel data
actor

math graph gui

vergil moml

actorgui

1

Figure 2.7. PtolemyII architecture based on (Ptolemaeus, 2014).

PtolemyII architecture:

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 29

• The kernel package defines the structure of MoCs and the relationship among compo-
nents and domains, besides their hierarchy;

• Data package includes classes responsible for data transfer among models. The main
class in this package is the Token, which represents the base for all units of data ex-
changed among components;

• Math package treats operations with matrices and vectors;

• Graph package provides support to plot, analyze and manipulate mathematical graphs;

• The actor package implements I/O ports and actors, which are executable entities that
exchange data through ports. This package contains the Director class, which are cus-
tomized to drive the model semantics, i.e., it is the MoC representation inside the appli-
cation;

• Graphical user interface - GUI package offers user interface methods to parameterize and
customize the model components. It also provides user interface sub-packages, i.e., vergil
package which implements Vergil, the GUI for PtolemyII; and

• moml package provides a parser for modeling markup language (MoML) files, which is
the XML schema used to store models.

Nowadays, Ptolemy project has grown and includes different branches based on PtolemyII,
some sponsored by commercial partners, having as main purpose the application of formal
based design methodologies. This set of branches composes the Industrial Cyber-Physical

Systems Center (iCyPhy) (University of California, 2018).

2.4 MoCs Perspective under PtolemyII and ForSyDe

As the MoCs variety and complexity grows, some concepts and implementation methods can
slightly differ from one framework to another, each one having its benefits and drawbacks.
This section presents how PtolemyII and ForSyDe classify models of computation and how the
MoCs are represented in their system model.

2.4.1 ForSyDe Overview

ForSyDe implements its models of computation based on the TSM. The signals are modeled
as list of events, where the tags can either be implicitly given by the event position in the list

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 30

or explicitly specified by a list of tuples, depending on which MoC is used. Two events from
different signals with the same tag do not necessarily happen at the same time, their tags only
represent the order of events in their specific signal.

In ForSyDe, infinite signals can be modeled thanks to Haskell lazy evaluation mechanism,
as shown in Listing 2.1. That evaluates the necessary number of events by using the takeS

function applied to the signal {5,5,5} (Sander et al., 2016).

Listing 2.1. Haskell Lazy Evaluation.

1 constS x = x :- constS x

2 takeS 3 (constS 5)

The ForSyDe processes modeling methodology is mainly based on the concept of process
constructors, illustrated in Fig. 2.8. This are basically higher-order functions that take side
effect-free functions and values as arguments to create processes. Each MoC implemented in
ForSyDe is essentially a collection of process constructors that enforce the semantics of that
specific MoC.

Process constructors are classified as follows.

1. combinational – process that has no state;

2. delay – process delays input; and

3. sequential – process that has an internal state and contains a delay process.

The implementation of heterogeneous systems can be done by using process constructors
from different MoC libraries.

Process

f1 fk

v1 vl

pc

i1

im

O1

On

Function

Value

Figure 2.8. Process built by a Process Constructor (Sander et al., 2016).

ForSyDe MoCs classification is derived from the TSM framework, which means they can
be divided into timed and untimed MoCs, as shown in Fig. 2.9.

ForSyDe defines the untimed MoCs by sets of process constructors and combinators, char-
acterized by the way its processes communicate and synchronize with each other, and in partic-
ular, by the absence of timing information available to and used by processes. It operates on the

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 31

Timed MoCs

SY CT

Untimed MoCs

U

DF

SDF CSDF

SADF

Figure 2.9. ForSyDe models of computation.

causality abstraction of time. Only the order of events and cause and effect of events are rel-
evant (Jantsch, 2003). ForSyDe includes the following MoCs in this category: dataflow (DF);
synchronous dataflow (SDF); cycle-static dataflow (CSDF); scenario-aware dataflow (SADF);
and the untimed MoC (U) (ForSyDe Group, 2019).

In the timed MoCs, on the other hand, timing information is conveyed on the signals by
absent events transmitted in regular time intervals, allowing the processes to know when a par-
ticular event has occurred and when no event has occurred. The sole sources of processes
information are input signals, without the need of access to a global state variable. ForSyDe in-
cludes two timed MoCs, the synchronous (SY) and the continuous time (CT) (ForSyDe Group,
2019).

2.4.2 PtolemyII Overview

The main way to model and simulate systems using PtolemyII is using its GUI, called Vergil.
The models are represented as a set of actors, that communicates through interconnected ports.
The model semantics are driven by an special actor called Director, which is the graphical
representation of the selected MoC.

The actors represent the system processes and can be classified into two groups: opaque
and transparent. The opaque actor has its intern logic invisible to the outside model, i.e., the
sub-model inside it can be driven by a different Director, composing a hierarchical and hetero-
geneous system model. The transparent actor semantics are driven by the Director included in
the model they belong to. All the actors have its source code available and are customizable.

PtolemyII includes a wider set of MoCs when compared to ForSyDe. Fig. 2.10 illustrates the
most commonly used and their relationship, considering their behavior and heritage, according
to (University of California, Berkeley-online, 2018).

In PtolemyII, synchronous-reactive (SR) MoCs execution follows ticks of a global clock.
At each tick, each variable, represented visually in Vergil by the wires that connect the actors,
may or may not have a value. Its value, or absence of value, is given by an actor output port
connected to the wire. The actor maps the values at its input ports to the values at its output

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 32

MoC

ConcurrentSequentialFunctional

Untimed TimedEvent Graphs State Machines

Petri Nets Threads

Rendezvous Process Networks Dataflow

Dynamic
Dataflow

Synchronous
Dataflow

Synchronous
Reactive

Continuous Time Discrete Events

Equational

Figure 2.10. MoCs Chart, according to (University of California, Berkeley-online, 2018).

ports, using a given function. The function can vary from tick to tick.
The PtolemyII SR MoC is by default untimed, but it can optionally be configured as timed,

in case there is a fixed time interval between ticks.
In PtolemyII dataflow MoCs, the execution of an actor consists of a sequence of firings,

where each firing occurs as a reaction to the availability of input data. A firing is a computation
that consumes the input data and produces output data.

Considering the SDF domain, when an actor is executed, it consumes a fixed amount of
data from each input port, and produces a fixed amount of data to each output port. As a
consequence, the potential for deadlock and boundedness can be statically checked, and its
schedules can be statically computed. PtolemyII SDF MoC can be timed or untimed, though it
is usually untimed.

An example of non-concurrent MoC included in PtolemyII is the FSM, which is considered
as a sequential MoC. In that case, the graphical components are not actors, but states, and their
relationships represent transitions between those states. Transitions have guards that determine
when state transitions can occur.

An FSM can be used to define the behavior of an actor used in other domains. When that
actor executes, the FSM reads the inputs, evaluates the guards to determine which transition to
take, and produces outputs as specified on the selected transition.

FSM is also used to create a class of hierarchical models, the modal models. In this case, the
states of an FSM contain submodels that process inputs and produce outputs. Each state of the
FSM represents a mode of execution, that can be driven by different MoCs. When a submodel
is not active, its local time does not advance.

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 33

2.5 Functional Programming Paradigm

Considering that systems should be first modeled at a high abstraction level during the spec-
ification phase of a project (Edwards et al., 1997), the present work focus is on functional
programming paradigm-based framework, i.e., ForSyDe.

The reason is that functional paradigm features elevate the model abstraction level. It is
possible to list higher-order and side-effect free functions, data abstraction, lazy evaluation and
pattern-matching as useful features.

Functional programming base was first introduced in 1936, when Alonzo Church et al.

presented the main concepts of Lambda Calculus (Turner, 2013). In that paradigm, all the
computation functions of a program are mathematical expressions to be evaluated.

Some languages were then created based on that paradigm, including Lisp, Miranda, Scheme
and Haskell. ForSyDe has as its main programming language Haskell.

2.5.1 Haskell Programming Language

Haskell had its first official report issued in 1990, having an update in 1998, named Haskell

98 Report (Hudak et al., 2007). During the first years of existence, Haskell was mainly used
in the academic area. During the 2000’s, with the advents of multi-core processors and logical
parallelism needs, it gained visibility and developers began to contribute with several libraries,
having a full language revision in 2010.

Haskell is a pure functional language, which means it is exclusively based on the concepts
of this paradigm. Its main characteristics can be briefly described as follows.

• Laziness: all the function and variables evaluation are done only when needed. As a
consequence, it is possible to declare infinite lists in Haskell, taking the necessary values
only when they require to be used;

• Statically Typed: all variables and functions types are known at compile time. Besides,
types can also be inferred by the compiler. If it cannot infer or identify a variable or
function type, an error is raised at compile time;

• Referential transparency: functions always return the same value considering they have
the same inputs. As a consequence, all functions can be replaced by their returning value;

• Immutable state: functions do not implicitly modify variables or states, and cannot affect
other functions, i.e., they are side-effects free;

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 34

• High level: complex algorithms can be implemented through simpler syntax when com-
pared to other paradigms, e.g., imperative or object-oriented.

As Haskell becomes more popular, more tools and packages are developed. Its main com-
piler is the Glasgow Haskell Compiler (GHC), commonly used with its interactive environment,
the GHCi, which supports different operational systems and platforms. Besides, the environ-
ment has an useful system used for building and packages libraries called cabal. It builds the
applications in a portable way. The main tools can be found in the Haskell home page (Haskell,
2018).

2.6 Imperative Programming Paradigm

Although the imperative programming paradigm has not the same abstraction level as the func-
tional one, it has characteristics that can contribute in model-based design, e.g., concurrency
programming or classes inheritance. The imperative paradigm representation is directly de-
rived from the way digital hardware works, by signals changing state over time. The machine
code works in an imperative way, without abstractions. This paradigm can be explained as a
sequential execution of commands over time, producing a program that behaves as a state func-
tion of time (Scott, 2009). Some widely used pure imperative languages are C, Pascal, Basic
and Fortran.

Imperative programming paradigm can be divided into some subsets, depending on the re-
search, this classification can differ. Scott (2009) includes into these subsets the von Neumann,
scripting and object-oriented paradigms.

2.6.1 Java Language

Java, the PtolemyII base language, is classified as an object-oriented programming language.
The main feature of this paradigm is the modularity and encapsulation, improving the scalability
when compared to other languages, like C.

The Java attributes allows the modeling of concurrent or parallel process of a system, using
threads. This facilitates the creation of new classes, due to its inheritance feature, and allows
the development of graphical user interfaces.

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 35

2.7 Straightforward Paradigms Comparison

Although imperative paradigm has its advantages, allowing a low level software tuning, the
functional paradigm enforces safer programming and higher abstraction level, attending one of
the model-based development methodology targets. Moraes and Loubach (2017) briefly lists
benefits and drawbacks of these paradigms when programming real-time systems, as shown in
Table 2.1.

Table 2.1. Functional and Imperative Paradigms Comparison (Moraes and Loubach, 2017).

Imperative Functional

Memory Manage-
ment

Allocation and deallocation are done as
the developer implements.

Functional languages are interpreted/-
compiled and high-level, the compiler
itself implements garbage collection.

Determinism To ensure determinism, all state muta-
tions must be covered, which is com-
plex in imperative programs.

Functional programs have referential
transparency and force explicit nota-
tion on code that mutates state, mak-
ing validation on functional determin-
ism much easier.

Time Measure Due to their proximity with machine
language, imperative languages are
straightforward regarding time measur-
ing.

Due to garbage collection’s non deter-
minism, it can be hard to measure time
for specific functions.

Concurrency Concurrency adds yet another level of
complexity regarding state mutations,
since the number of possible interac-
tions between threads is exponential on
the number of processors.

Immutable state allows for concurrent
independent computation without af-
fecting the functional determinism.

2.8 Properties Verification

Working with formal-based models and targeting the correct-by-construction design requires
the model to be simulated and tested in different procedure steps. One of these steps consists
on the verification whether the model holds all the required system properties it should, or not.

The exhaustive test of each property, comprehending all the possible errors, is a hard and
labor intensive task, costing a considerable portion of the software development. In this sense,
a range of tools have been presented towards the automatic generation of test cases for model
properties verification (Claessen and Hughes, 2000; Naylor and Runciman, 2007; Runciman
et al., 2008; Castagna and Gordon, 2017).

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 36

Quickcheck (Claessen and Hughes, 2000) was first presented in 2001 as a DSL, implemented
in Haskell, targeting the test of program properties and was used as base for other similar tools
having the same purpose, e.g., SmallCheck (Runciman et al., 2008), Reach (Fowler and Huttom,
2016), and Luck (Castagna and Gordon, 2017). Besides, it has also been emulated in many other
programming languages, including Scala, F# and Google Go (Horváth et al., 2010).

To accomplish the properties verification, Quickcheck uses pre-defined checkable formal
system specifications, called properties, as inputs and automatically generates random values
test cases for each one, indicating if the model holds the desired property or not.

2.9 Automatic Code Generation

With the elevation of the model abstraction level, aiming the verification and simulation of
the system functionality, there is a lack of implementation details. Towards a more robust,
scalable and formal-based design, researches have been presenting alternatives for automatic
code generation based on formal models of computation.

A synchronous-based code generator for explicit hybrid systems languages, which includes
discrete and continuous time semantics, was presented by Bourke et al. (2015). A compiler was
created to generate statically scheduled sequential code having as inputs a formal model based
on Scade 6 synchronous languages using ordinary differential equations. Fig. 2.11 illustrates
the presented compiler flowchart. It passes through some consistency analysis and optimization.
The code is then translated into a sequential object language (SOL), having its output sliced
into functions and again optimized by removing dead-code from the source. Finally, the SOL
is translated into C language.

parsing typing causality
control

encoding
optimization

scheduling
SOL

generation
slicing

deadcode

removal

C code

generation

Figure 2.11. Compiler architecture based on (Bourke et al., 2015).

Another automatic code generation tool was presented by Grabmüeller and Kleeblatt (2007),
called Harpy. It is a domain-specific language for runtime code generation targeting x86 archi-
tectures. Its main base language is Haskell, taking advantage of the its features for needed
abstractions and language extensions, e.g., meta-programming. Harpy was added to the Haskell
community’s central package archive, which is called Hackage (Community, 2019).

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 37

2.10 Main Related Works

In the context of higher abstraction level models and abstraction gap, frameworks and method-
ologies have been developed towards possible automation approaches for formal model-based
design flows. Those tools differ in aspects such as input modeling language, output implemen-
tation language and target design step.

Simulink is one of the most powerful and commercially used tools for model-based design
of systems. One of its design flow automation tool is the Embedded Coder, which generates C
and C++ code for embedded processors in mass production. The generated code is intended to
be portable and can be configured to attend standards such as MISRA C, DO-178, IEC 61508
and ISO 26262 (MathWorks, 2019b). Studies have used that tool to test and implement code
into customized applications.

The work presented in (Krizan et al., 2014) discusses Simulink usage for automatic gener-
ation of C code in critical applications, according to DO-178C and DO-331 standards. They
also discussed the possibility of automatic code generation of a whole application or of separate
parts, or tasks.

The main difficulties when working with Simulink tools are related to its license costs and
proprietary implementation source code, commonly making it impracticable for researchers and
developers to perform a deeper analysis of its capabilities and algorithms.

The present research advocates to open source frameworks and tools, making it possible to
take advantage of researches collaborative environment and deeper code analysis.

Related to open source software, Copilot is presented as a DSL, based on Haskell, targeting
runtime verification (RV) programs for real-time, distributed and reactive embedded systems
(Pike et al., 2013). Runtime verification programs are applications which runs in parallel with
the systems application, monitoring its correctness ans consistency at the runtime. Copilot
is implemented throughout a range of packages, including automatic generations of C code:
copilot-c99, based on Atom Haskell package, and copilot-sbv, based on SBV Haskell package.
Although Copilot is a powerful tool for safe C code generation, even for critical systems, it
mainly targets a specific application type, the RVs. The present work aims to address a wider
range of application and cyber-physical systems.

Requirements to Design Code (R2D2C) project was first presented by NASA aiming full
formal development, from requirements capture to automatic generation of provable correct
code (Rash et al., 2006). Its approach takes the specifications defined as scenarios using DSLs,
or UML cases, infers a corresponding process-based specification expressed in communicating
sequential processes (CSP), and finally transforms this design to Java programming language.
That tool also makes it possible to apply reverse engineering, extracting models from program-
ming language codes. The present research aims to analyze possible automation strategies for

Augusto Yoshio Horita

CHAPTER 2. BACKGROUND 38

embedded systems design flows having as inputs formal MoCs implemented through a frame-
work or an EDSL

Some challenges, advances and opportunities of embedded systems design automation were
presented in (Seshia et al., 2017). According to that research, some CPS characteristics were
listed as obstacles for this automation, including: heterogeneity, dynamic and distributed sys-
tems, large-scale and existence of human-in-the-loop. They argued that, for design automa-
tion tools, a series of features would be necessary, e.g.,. cross-domain, learning-based, time-
awareness, trust-aware and human-centric. One of the possible presented approaches was the
combination of model-based design (MBD), contributing with formal mathematical models,
and data-driven learning, which inputs data resulted from extensive field testing.

The present work represents an effort on contributions to the embedded design automation
based on MBD research. A case study is designed, modeled, simulated, verified and imple-
mented in high level, targeting the identification of automation approaches to help overcoming
the listed difficulties.

2.11 Summary

This chapter presented the main concepts used along with the research, starting with embed-
ded and cyber-physical systems, followed by models of computation and the programming
paradigms. In addition, it presented examples of frameworks that support formal CPS model-
ing. Automatic code generation tools and methodologies were also considered in this chapter.

Finally, the main related works targeting formal embedded systems design automation were
presented, highlighting the main differences to this research.

Next chapter describes the methodology and analysis introduced in the present research,
representing its contribution proposal.

Augusto Yoshio Horita

39

3 A METHOD FOR POSSIBLE AUTOMATION EXPOSURE

This chapter presents the proposed method for analysis and identification of possible automa-

tion approaches (AIPAA) applicable to embedded systems design flow supported by formal
models of computation.

Towards the automation approaches identification, the introduced method uses a design
methodology, separated into well-defined steps, as described in Section 3.1. Next, the de-
sign steps are analyzed, resulting in a set of possible automation approaches, presented in
Section 3.2. An illustrative example representing the methodology application is presented
in Section 3.3.

3.1 Analysis and Identification of Possible Automation Approaches

- The AIPAA Method

One of the first steps when designing an embedded system is the system description in the
form of problem statement. This includes functionalities, behaviors, capabilities and constraints
of the system. An accurate and detailed problem statement leads to an effective, robust and
optimized design flow.

Elaborating the embedded system detailed problem statement is not a trivial task. The
present research work considers a design flow methodology assuming the problem statement
is already described. The problem statement is considered to be an input for the system design
flow under use.

The AIPAA method takes into account only the system specification domain. The imple-
mentation domain comprehends a variety of concepts and tools other than this research scope.
However, the present work presents straightforward guidelines on how the implementation do-
main can take advantage of the AIPAA outputs.

Fig. 3.1 illustrates the proposed method, i.e., AIPAA. Each one of the five steps are detailed
in the next subsections.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 40

AIPAA

Problem
Statement

1. Problem
Charac-

terization

2. MoC
Definition

3. Framework
Selection

4. Model
& Simulate

Implies in
problem state-
ment changes?

5. Properties
Verification

Properties
hold?

Implementation
Details

Implement
System

yes

no

no

ye
s,

re
co
n
si
d
er Input/Ouput

Regular step

Possible of automation

Figure 3.1. Analysis and identification of possible automation approaches (AIPAA) applica-
ble to embedded systems design flow. AIPAA needs the “problem statement” as
a given input, and aids to produce a model, which is verified and executable, as
output. This output can be used as entry point in the implementation domain, e.g.,

“implementation details” and “implement system”.

3.1.1 Problem Characterization

This first step, problem characterization, aims to conduct an initial analysis on the “problem
statement” input aiming the identification of its relevant behaviors and characteristics towards
the design of the system.

To facilitate the identification of problem semantics, both the problem procedures and pro-
cessing must be separated into functions, also defining how they should execute and communi-
cate to each other.

These definitions allow for the problem analysis and characterization, which will aid in the

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 41

further MoC definition. When applying the method, the following questions must be answered.

Q1 - Does the problem have concurrent or only sequential processes?

Q2 - Are the problem communication paths totally or partially ordered?

Q3 - Is the problem a dataflow problem?

Q4 - Are the inputs and processing cyclic?

Q5 - Can a single clock be used to synchronize all the involved processes?

Step Required Inputs

This step requires the following inputs:

1. Problem statement describing the problem functionalities, behaviors, inputs and desired
outputs.

Step Expected Output

After the application of this step considering the required inputs, the expected outputs are:

1. Problem separation into functions and their relationship definition; and

2. A list of well-defined problem characteristics according to the previously stated questions.

3.1.2 MoC Definition

As stated in Section 2.2, models of computation describe only the characteristics that are rel-
evant for a given task. In this sense, it is needed to analyze the problem characterization step

results aiming the identification of relevant behaviors and functionality that permits its seman-
tics classification into one or more MoCs.

A range of complex applications comprehends behaviors that may not be possible to be
modeled using just a single MoC. As a consequence, the model semantics must be split into
more than one MoC, generating the concept of heterogeneous systems modeling. In that case, a
second phase should be included into this step, defined as MoC division, which classifies each
problem characteristic into a MoC that better fits it.

The present research work only addresses the study of a single MoC at a time within a
system, i.e., using either SY or SDF MoCs. For this limitation, an analysis on the available
MoCs was performed and just two MoCs were selected, based on the criteria that they had to
be representative, widely used and should differ on timing abstractions.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 42

As stated in Section 2.2.2, SY is a timed MoC, i.e., its signals are totally ordered, and it is
based on the perfect synchrony hypothesis. The SDF, on the other hand, is an untimed MoC,
i.e., its signals are partially ordered, composed by nodes with fixed token rates and it is non-
terminating, as described in Section 2.2.3.

Step Required Inputs

This step requires the following input:

1. List of problem characteristics.

Step Expected Output

After the application of this step, the expected outputs is:

1. The definition of a MoC to be used in the system design flow.

3.1.3 Framework Selection

A support framework is an important tool that aids in the system modeling and simulation step
of the design flow. There is a number of facts to be considered when selecting a formal-based
framework. The proposed AIPAA method considers the following.

• License style: The framework license style must comply with the project requirements.
It can vary from open source or freeware to a proprietary and paid license style;

• Included MoCs: The set of available MoCs can drastically differ when comparing frame-
works. e.g., SDF3 only supports SDF, SADF and CSDF, on the other hand, Simulink,
ForSyDe or PtolemyII supports a range of MoCs, as illustrated in Fig. 2.10. The selected
MoC, in Section 3.1.2, must be part in the framework supported MoC list;

• Capabilities: The frameworks varies on its capabilities, including system simulation and
heterogeneous system modeling. In this sense, model simulation figure as an interesting
feature for a framework to have;

• Interfaces: Frameworks differ on its modeling and simulation interfaces. It ranges from
a script environment to a GUI. The simulation input and output interfaces varies from
files, predefined or user inputted and must also be considered;

• Scalability: Towards scalable models, some frameworks are implemented based on pro-
gramming languages and have interfaces that facilitates the modeling of large or dis-
tributed systems;

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 43

• Programming language paradigm: Frameworks are based on a wide range of program-
ming languages, leading to a variation on its programming paradigm, e.g., imperative or
functional. Each paradigm has its own benefits. Functional can lead to a better model
scalability and higher abstraction level, on the other hand, imperative paradigm facilitates
new MoCs modeling due to inheritance capability.

A research on available frameworks must be performed, submitting them to a posterior
analysis considering the previously listed criteria, as a minimum one. Each framework has
its own benefits and drawbacks, and as a consequence the framework that best suits the system
modeling and simulation varies from one application to another. (Horita et al., 2019a) conducted
a research with respect to the framework selection considering a list of predefined parameters
and criteria. That work parameters are used in the present research.

Step Required Inputs

This step requires the following inputs:

1. Problem characterization; and

2. Selected MoC.

Step Expected Output

After the application of this step, the expected output is:

1. The definition of the framework to be used for system modeling and simulation.

3.1.4 Modeling and Simulation

The modeling and simulation step next to the properties verification are fundamental steps
towards the correct-by-construction design. After the application of these steps, the model
correctness can be verified and the system is ready for advancing to the implementation domain.

Based on the problem characterization, the first part of this step is to model the target system,
using the previously selected MoC with the aid of the defined support framework.

Aiming the model consistency verification, some frameworks detects model errors during
compile time, such as inconsistent types in a communication path and processes missing infor-
mation, e.g., types or number of ports. Besides, a synthetic input data set must be simulated as
the last part of this step, aiming the detection of runtime inconsistencies, such as model infinite
loops or model acceptance of unwanted inputs types, leading to unexpected behaviors.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 44

In case any model inconsistency is detect, it is necessary to modify and fix the model,
recompile and re-simulate it, within an iterative way. After testing boundary conditions and
different input types and sizes, resulting in expected outputs and system behavior, the model
can be submitted to the next step in the AIPAA context.

Step Required Inputs

This step requires the following inputs:

1. Problem characterization;

2. Selected MoC; and

3. Selected framework.

Step Expected Output

After the application of this step, the expected output is:

1. System formally modeled, compiled and simulated aiming its further properties verifica-
tion.

3.1.5 Properties Verification

After the model consistency is verified, it is necessary to check whether the system model prop-

erties, with respected to the chosen MoC, hold. This is performed by checking a list of minimum
defined system properties.

In this sense, the first part of this step is to identify the minimum properties set that the
system must hold. Each MoC comprehends a set of properties that needs to be verified. Besides
the in-use MoC specific properties, it is also possible to verify system particular properties in
this step. Focusing on the MoCs included in this work scope, the following properties must
hold.

• For the SY MoC:

PSY 1 signals synchronized and totally ordered;

PSY 2 well-defined absent value for an event; and

PSY 3 absence of zero-delay feedback, i.e., for each loop-back, a delay must be imple-
mented, avoiding algebraic loop. In SY MoC, there are some options to handle
loop-backs (Sander, 2003). The AIPAA method adopts the strategy of forbidden
zero-delay loop-backs.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 45

• For the SDF MoC:

PSDF1 buffer size determination based on a feasible schedule, i.e., the buffers must be in
accordance with token rates, so that there is nor data loss neither overflows;

PSDF2 system is non-terminating, i.e., it cannot have deadlocks;

PSDF3 schedulability, i.e., it must be possible to extract a valid single-core schedule as a
finite sequence of actor firings; and

PSDF4 fixed model token rates. As SDF blocks have fixed token rates, the model also will
not vary its rates.

The last part of this step consists of verifying whether the system holds the minimum listed

properties. Some properties are verified by explicit analysis, they are simply MoC intrinsic. For
the others, there are different methods for property verification, including mathematical proof,
model analysis or test cases application, which is selected based on the property to be verified.

• For the SY MoC:

VSY 1 Signals are synchronized and totally ordered.
This property is MoC intrinsic for SY. As long as the system is modeled following
the SY MoC abstraction, this property holds. It is important that the input signals is
correctly ordered considering this property, not having unexpected model behaviors.
This verification is carried out by explicit model analysis;

VSY 2 Well-defined absent value for an event.
This property is also MoC intrinsic for SY. The framework must handle the absent
value for an event towards the maintenance of the perfect synchrony hypothesis;
This verification is through explicit model analysis;

VSY 3 For each loop-back, a delay must be implemented.
The verification of this property must be through the model implementation code or
interface analysis. First, it is necessary to check whether the model has any loop-
back, and in positive case, check the existence of the at least one cycle delay in it.
This verification is possible to be automated by using a regular expression checker.

• For the SDF MoC:

VSDF1 Buffer size determination based on feasible schedule.
The verification of this property can be mathematically demonstrated, as presented
by Lee and Messerschmitt (1987):

(a) Find the model topology matrix Γ; and

(b) Check if rank(Γ) = s−1.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 46

VSDF2 System is non-terminating.
The absence of deadlocks is mathematically proven, as demonstrated by Lee and
Messerschmitt (1987). To verify this property it is necessary to prove the existence
of a PASS, which can be done by performing the following:

(a) Check whether the model holds PSDF1 . If not, the system has no PASS;

(b) Find a positive integer vector q belonging to null space Γ;

(c) Create a list L containing all model blocks;

(d) For each block α ∈ L, schedule a feasible one, just once;

(e) If each node α has been scheduled qα times, go to next feasible α; and

(f) If no block in L can be scheduled, the system has a deadlock.

VSDF3 Schedulability analysis;
For a model to be schedulable, property PSDF1 must hold. Moreover, the model graph
must be connected (Lee and Messerschmitt, 1987). This must be verified through
model analysis.

VSDF4 Fixed model token rate.
The fixed token rate property is verified by submitting the model to test cases. Dif-
ferent input values and signal sizes must be used to verify the model robustness.

This is the last step of the system specification domain. This last AIPAA method step pro-
duces a possible entry point for the system implementation domain. For this reason, the system
properties verification must be performed until the system correctness is proven. The output of
this step must be a verified correct simulateable system, which must be also in accordance to
the input problem statements.

Step Required Inputs

This step requires the following inputs:

1. MoC minimum properties list; and

2. Simulateable system model.

Step Expected Output

After the application of this step, the expected output is:

1. A formal-based system executable model with its stated correctness and properties veri-
fied.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 47

3.1.6 Directions to Implementation Details and System Implementation

This section provides some possible directions to the implementation details, as the AIPAA
method does not contemplate this domain. System implementation includes complex and ex-
tensive procedures and methods that can be considered in future works.

Here, an analysis of systems model and functionalities implementation possibilities is per-
formed, defining a list of implementation details.

1. Division of the functionalities implemented in hardware and the ones in software, i.e.,

hardware and software co-design;

2. Communication interfaces, methods and protocols;

3. Hardware architecture comprehending:

(a) Necessary resources e.g., memories, processors, power; and

(b) Necessary units, such as arithmetic logic unit (ALU), floating point unit (FPU),
graphics processing unit (GPU), or reconfigurable hardware (FPGA).

4. Software architecture comprehending:

(a) Implementation programming language; and

(b) Programming frameworks and tool-chains to be used.

Implementation models can be developed to assist in this analysis (Loubach, 2016). This
step represents the base of the system implementation. Related to correct-by-construction
methodologies, the definition of implementation details can only proceed when modeling, sim-
ulation, and properties checking are already verified.

Step Required Inputs

This step requires the following inputs:

1. Problem characterization;

2. Verified system model; and

3. Hardware, software and communication requirements.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 48

Step Expected Output

After the application of this step, the expected outputs are:

1. System implementation architecture description;

2. Hardware platforms to be used;

3. Low-level programming language to be used; and

4. Software tool-chains to be used.

Based on the listed implementation details, and on the system model from Section 3.1.4, the
system can be implemented using hardware description languages, e.g., VHDL or Verilog, and
software implementation languages, e.g., C, C++ or Assembly.

3.2 Analysis of Possible Automation Approaches

This section introduces two main possibilities identified through the AIPAA method elabora-
tion. The first one is about the properties verification, and the second about automatic code

generation.

3.2.1 Proposed Automation to Properties Verification

As stated in Section 2.8, the properties verification through test cases application is a labor
intensive task. For that reason, AIPAA considers the use of a partial automated verification tool
towards a faster, more scalable, robust and trustable process.

In this sense Quickcheck can be employed. It is a widely used tool to aid in the process
of automatic verification of the system properties generating test cases to evaluate whether the
system behaves as expected.

Considering the MoC properties verification methods listed in Section 3.1.5, the Listing 3.1
presents the use of Quickcheck to verify the previously defined property PSDF4 , which is based
on the application of test cases. This example assumes the verification of a model containing 2
input signals and 1 output signal. The verification is based on two requirements:

1. The output signal length divided by its corresponding token rate must be equal to the
number of model firing cycles, which is calculated by selecting the smaller division result
among the input signal length and its token rates; and

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 49

2. The output signal length should be multiple of its corresponding token rate.

The Haskell verification code (Listing 3.1) comprehends the following variables definitions:

• propFixTr21: Fixed token rate property to be verified;

• c1 and c2: Input signals token rates;

• p: Output signal token rate;

• a1 and a2: Quickcheck automatic generated model test cases; and

• actor: The model to be tested.

Listing 3.1. Quickcheck usage example.

1 -- Property to be verified: Model fixed token rates.

2

3 module PropsSDF (propFixTr21

4) where

5

6 import ForSyDe.Shallow

7 import Test.QuickCheck

8

9 -- Fixed token rate property for actor with 2 inputs and 1 output

10 propFixTr21 :: (Signal a -> Signal b -> Signal c) -> (Int , Int) -> Int

11 -> [a] -> [b] -> Bool

12 propFixTr21 actor (c1 , c2) p a1 a2 =

13 minimum [div (lengthS in1) c1 , div (lengthS in2) c2] == div (lengthS out) p

14 && lengthS out ‘mod ‘ p == 0

15 where in1 = signal a1

16 in2 = signal a2

17 out = actor in1 in2

To illustrate the presented Quickcheck verification usage, Listing 3.2 presents a minimal
model example based the SDF MoC, consisting of a system which interpolates the events of
two input signals into one output signal.

Listing 3.2. SDF based system model example.

1 -- Example: An SDF based model which interpolates two input signal events into

2 -- an output signal.

3

4 module InterpolateSDF (interpolate

5) where

6

7 import ForSyDe.Shallow

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 50

8 import Test.QuickCheck

9 import PropsSDF

10

11 -- System Model

12 interpolate :: Signal a -> Signal a -> Signal a

13 interpolate = actor21SDF (1,1) 2 (\[x1] [x2] -> [x1,x2])

14

15 -- Property Verification

16 main = quickCheck (propFixedTr21 interpolate (1,1) 2 :: [Int] -> [Int] -> Bool)

17

18 -- If model holds the property , True value will be returned

3.2.2 Automatic Code Generation

The AIPAA output consists on a verified high level abstraction model, in the specification do-
main. One of the strategies adopted to overcome the abstraction gap in a more robust and
scalable manner is a semantic preservation mapping and transformation leading to an automatic
code generation using as input the verified formal system model, as the one resulted in the
AIPAA.

Automatic code generation is an extensive and complex subject that have been studied and
implemented by researches such as (Bourke et al., 2015; Grabmüeller and Kleeblatt, 2007;
MathWorks, 2019b). In this context, ForSyDe framework includes a deep-embedded DSL,
named ForSyDe-Deep (Acosta, 2008). That tool is able to compile and analyze the model,
automatically transforming it to be embedded into the hardware target platform.

3.3 Illustrative Example

This section presents an illustrative minimum work example of the AIPAA method application
showing the inputs and outputs of each step. The example considered is an encoder-decoder
system (EDS), based on the one presented in (Horita et al., 2019a; Loubach et al., 2016).

The EDS takes as input a sequence of values to be encrypted and then decrypted, and a
sequence of encryption keys, which is used to generate encryption and decryption functions
to be in turn applied to the input values. The EDS outputs two sequences, one containing the
decrypted values, i.e., this output sequence must be the same as the input sequence, and the
other contains the encrypted values.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 51

3.3.1 Problem Characterization

This step performs an initial analysis on the problem statement, identifying its functionalities
and characteristics.

The EDS can be divided into 4 functions: the generation of encryption and decryption
functions and the encryption and decryption of the input values. The developed flowchart of the
system is presented in Fig. 3.2.

EDS

Input Values
Encryption

Keys

Input Values

Encryption
Encryption

Generation

Values

Decryption
Decryption

Generation

Encrypted
Values

Output
Values

Figure 3.2. EDS system flow chart.

Considering these defined functions and their relationship, it is possible to define the char-
acteristics listed in Section 3.1.1 for the EDS:

Q1 - The problem has concurrent processes, i.e., encryption and decryption function genera-
tion can be executed simultaneously;

Q2 - Its communication paths are totally ordered, i.e., the signal can only be encrypted or
decrypted after their base functions are generated. Therefore the problem is timed;

Q3 - The input sequence is encrypted and decrypted and the process is finished, as a conse-
quence, this is not a dataflow problem, which is non-terminated;

Q4 - The inputs and processing are not cyclic; and

Q5 - A clock can be used to synchronize all involved processes, considering the absent value
is well-defined in the used framework.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 52

3.3.2 MoC Definition

This step aims the definition of one or more MoCs that best suits the target system. Based on
the proposed characterization, the EDS is classified as timed, containing concurrent processes
and with synchronized functions. In this sense, the system can be modeled based on the perfect
synchrony hypothesis, using the SY MoC.

3.3.3 Framework Selection

This step takes into consideration the points listed in Section 3.1.3 to select the modeling and
simulation framework:

• License style: the present research work focus is on open source tools;

• Included MoCs: the framework must include the selected MoC, i.e., SY;

• Capabilities: the proposed design includes both modeling and simulation;

• Interfaces: this illustrative example accepts inputs and output from an user interface or
from files;

• Scalability: this illustrative example targets model high scalability. In this sense, a text-
based coding interface is better than a GUI;

• Programming language paradigm: towards a higher level of abstraction, Haskell, a pure
functional programming language, was selected as the framework base language.

Based on the listed points, ForSyDe was selected as the modeling and simulation frame-
work for this illustrative example, since it conforms with all the elicited requirements for the
framework tool selection.

3.3.4 Modeling and Simulation

This step comprehends the system formal-based modeling and its simulation.
The EDS SY model graph is illustrated in Fig. 3.3.
Based on the Section 3.3.1 characterization, the system has 2 inputs and 2 output, which is

modeled by using ForSyDe signals.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 53

genEnc genDec

apEnc apDec

skey

sinput soutput

sencF sdecF

senc

Figure 3.3. Encoder-decoder system SY graph.

• sinput: input signal that is encrypted and then decrypted;

• skey: input signal used to generate the encryption and decryption functions;

• senc: output signal composed by the encrypted values; and

• soutput: output signal composed by the values that are encrypted and decrypted, i.e., it
must contain the same values as sinput.

The described problem functions are modeled through processes in ForSyDe, having the
following definitions:

• genEnc: generates an encryption function signal sencF based on skey signal;

• apEnc: encrypts the input signal sinput using the encryption function;

• genDec: generates the decryption function signal sdecF, based on skey; and

• apDec: decrypts the encrypted signal senc using the decryption function.

The ForSyDe/Haskell code implementing the EDS system is shown in Listing 3.3.

Listing 3.3. EDS SY MoC in ForSyDe/Haskell code.

1 module EDS where

2 import ForSyDe.Shallow

3 -- Process Definitions

4 genEnc = combSY (+)

5 genDec = combSY (\x y -> y-x)

6 ap_enc = zipWithSY ($)

7 ap_dec = zipWithSY ($)

8 -- EDS process network

9 eds s_keys s_input = (s_enc , s_output)

10 where s_enc = ap_enc s_encF s_input

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 54

11 s_output = ap_dec s_decF s_enc

12 s_encF = genEnc s_keys

13 s_decF = genDec s_keys

14

15 -- to execute the model:

16 -- eds s_keys_sig s_input_sig

To verify consistency, the model was compiled using the GHC, which did not indicated any
compilation warnings or errors.

Next, some input data sets are used to check whether the system behaves as expected. The
first one is presented in Listing 3.4. The inputs are signals with the same number of events. The
system behaved as expected, outputting the encrypted signal and the output signal, equals to the
input signal.

Listing 3.4. EDS input example #1.

1 -- Input Example 1

2 s_keys_one = signal [1, 4, 6, 1, 1]

3 s_input_one = signal [1..5]

4 -- result: ({2,6,9,5,6},{1,2,3,4,5})

In the second input data set, two signals containing different number of events are inputted,
as shown in Listing 3.5. In that case, the inputs are not totally synchronized, as SY MoC
property states. ForSyDe handles this situation by taking the number of events contained in the
smaller input signal. The output has the same number of events as the smaller input signal, as
expected.

Listing 3.5. EDS input example #2.

1 -- Input Example 2

2 s_keys_two = signal [1, 4, 6]

3 s_input_two = signal [1, 2, 3, 4, 5]

4 -- result: ({2,6,9},{1,2,3})

Empty signals were used as input in the third data set. In that case, a runtime error was
raised, generating the output shown in Listing 3.6.

Listing 3.6. EDS input example #3.

1 -- Input Example 3

2 s_keys_three = signal []

3 s_input_three = signal []

4 -- result:

5 -- <interactive >:22:5: error:

6 -- • Couldn ’t match expected type ’Signal Integer ’

7 -- with actual type ’[t0]’

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 55

8 -- • In the first argument of ’eds ’, namely ’s_keys_three ’

9 -- In the expression: eds s_keys_three s_input_three

10 -- In an equation for ’it ’: it = eds s_keys_three s_input_three

11

12 -- <interactive >:22:11: error:

13 -- • Couldn ’t match expected type ’Signal Integer ’

14 -- with actual type ’[t1]’

15 -- • In the second argument of ’eds ’, namely ’s_input_three ’

16 -- In the expression: eds s_keys_three s_input_three

17 -- In an equation for ’it ’: it = eds s_keys_three s_input_three

The last test detected a system inconsistency due to the lack of empty input signals pat-
tern handling. The model was revisited to fix this problem, resulting in the code presented in
Listing 3.7.

Listing 3.7. Revised EDS code.

1 module EDS where

2 import ForSyDe.Shallow

3 import Data.Maybe

4 import Data.Char

5

6 -- Process Definitions

7 genEnc = combSY (+)

8 genDec = combSY (\x y -> y-x)

9 ap_enc = zipWithSY ($)

10 ap_dec = zipWithSY ($)

11

12 -- EDS process network

13 eds:: Signal Int -> Signal Int -> Maybe (Signal Int , Signal Int)

14 eds s_keys s_input =

15 case s_keys of

16 NullS -> Nothing

17 x -> case s_input of

18 NullS -> Nothing

19 y -> Just (s_enc , s_output)

20 where s_enc = ap_enc s_encF y

21 s_output = ap_dec s_decF s_enc

22 s_encF = genEnc x

23 s_decF = genDec x

24 eds_fix key inp =

25 case eds key inp of

26 Nothing -> putStrLn "Empty Input Signal"

27 Just q -> putStrLn (show q)

After the model review, it was recompiled, and the same tests were performed, generating
no errors at the end, as a consequence, its consistency verification is finished.

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 56

3.3.5 Properties Verification

This step aims to identify the required properties for the system to comply with the selected
MoC, and then verify whether the system holds the listed properties.

For the EDS, the minimum listed properties that must hold, and the verification code are
presented as follows.

VSY 1 Signals are synchronized and totally ordered.
Property verification – the used framework ForSyDe-Shallow represents the events only
by its values, omitting the tags. For that reason, the signals are read and produced in a
totally ordered manner, following the SY MoC semantics. If an input signal has less
events than others, ForSyDe will process the smallest number of events, and the system
signals will be synchronized. This verification was done by explicit model analysis, and
model simulation;

VSY 2 Well-defined absent value for an event.
Property verification – the used framework ForSyDe-Shallow manages absent values
using the ForSyDe.AbsentExt type. Then, this verification was done by explicit model
analysis, i.e., as long as the system is modeled using the SY MoC semantics, this property
holds;

VSY 3 For each loop-back, a delay must be implemented.
Property verification – the EDS system does not comprehend any loop-back, i.e., this
property is not applicable for this example.

Besides the MoC properties, system specific properties can also be verified in this step,
based on the problem statement:

• VSY4: System Output soutput must be equal to input signal sinput:

vsy4 :: Signal Int -> Signal Int -> Bool

vsy4 s_keys s_input = s_input == snd $ eds s_keys s_input

3.3.6 Implementation Details and Implement System

These steps are not included in AIPAA scope. However, the implementation of the EDS system
including other behaviors such as runtime reconfiguration is presented in (Loubach et al., 2016).

Augusto Yoshio Horita

CHAPTER 3. A METHOD FOR POSSIBLE AUTOMATION EXPOSURE 57

3.4 Summary

This chapter presented the proposed analysis and identification of possible automation ap-

proaches (AIPAA) method, dividing the embedded system design flow into well-defined steps,
analyzing and identifying its possible automation approaches. AIPAA comprehends just the
specification domain, having as input the “problem statements” and as output the verified, sim-
ulateable and correct system model.

To illustrate the AIPAA application, a minimal example was presented, following the de-
scribed method steps.

Next chapter presents a more detailed and complex system design case study to demonstrate
the potential and applicability of the proposed AIPAA method.

Augusto Yoshio Horita

58

4 AIPAA METHOD APPLICATION

This chapter presents a comprehensive case study demonstrating the potential and applicabil-
ity of the proposed AIPAA method. Here, it is considered a more complex algorithm when
compared to the illustrative example introduced in the last chapter.

The selected algorithm is a widely used lossless data compression one, namely Lempel-Ziv-

Markov Chain Algorithm (LZMA), first used in 7z file format (Pavlov, 2019), and presented as
a CPU benchmark by Standard Performance Evaluation Corporation (SPEC) (2019). LZMA
intends to generate a compressed file based on the processing of a general data stream input.

4.1 LZMA - The Problem Statement

LZMA is composed by two compression algorithms. The first one is based on an optimized
sliding window encoding (SWE), first presented in LZ77 algorithm (Ziv and Lempel, 1977).
The second algorithm is based on the range encoding (RE) (Martin, 1979). An additional data
filter can be added prior to LZMA default phases1 towards the optimization of the compression
rate, such as the delta encoding (DE) algorithm, which encodes each byte of the input stream
as its difference from the previous byte. In this case, the first byte is not encoded.

The next sections presents the AIPAA method steps application to LZMA.

1. Problem characterization (Section 4.2);

2. MoC definition (Section 4.3);

3. Framework selection (Section 4.4);

4. Model and simulate (Section 4.5); and

5. Properties verification (Section 4.6).
1Here the word phase is in lieu of step, thus making step reserved for the AIPAA.

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 59

4.2 Problem Characterization

This step aims to divide the problem into functions and identify how they behave and commu-
nicate with each other. In this sense, the LZMA flowchart is illustrated in Fig. 4.1. Each LZMA
encoding phase is described next.

LZMA

Input Data
Stream

Uncompressed
Data

Delta Encoding Delta Decoding

Sliding

Dictionary

Encoding (LZ77)

Sliding

Dictionary

Decoding (LZ77)

Range Encoding Range Decoding

Compressed
Data

Figure 4.1. LZMA compression and decompression schemes, based on (Leavline, 2013).

4.2.1 Sliding Window Encoding

The first compression phase is based on LZ77, which searches for a match string of the current
look-ahead buffer inside a determined maximum length window already processed. As the bytes
are compressed, the look-ahead buffer shifts to the right, together with the search window, thus
the name sliding window. For each compression cycle, the LZ77 outputs a tuple containing:

1. a distance representing the distance between the current byte and its match in the search
window. It is equal to 0 if no match was found and it will be flushed in that case;

2. a length representing the match length, i.e., how many bytes on the look-ahead buffer
were repeated on its match located in the search window. It is equal to 0 if no match was
found; and

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 60

3. a next symbol representing the next symbol in the look-ahead buffer to be processed.

The LZMA sliding window encoding implements additional features towards a higher com-
pression rate, as presented next.

Dictionary Structure

When comparing LZMA to LZ77, the sliding window encoding supports larger dictionaries,
which demands an optimized search structure targeting a faster algorithm. The LZMA imple-
ments two structure options that can be configured prior to the compression start, the hash-chain

and binary trees (Salomon, 2007). Both of them are based on arrays of dynamically allocated
lists, called hash-arrays. Each index of the array corresponds to a number N of bytes that are
hashed from the input stream at each compression cycle.

The hash-chain array comprehends an array of linked lists. The nodes list contains the
positions of the corresponding N hashed bytes of that array index in the input stream. The
linked list can be long, and searching for the best match would result in a slow algorithm. For
that reason, LZMA only checks for matches considering the 24 most recent positions.

In the binary tree, the nodes of its structure contains the same information as the hash-chain,
with an optimized search structure, the binary tree. The most recent occurrences are closer to
the tree root. Besides, the tree adopts the lexicographic ordering algorithm.

Without loss of generality, the present case study adopts the hash-chain array dictionary.
When compared to the binary tree, the dictionary structure is simpler and the search algorithm
is faster, since it limits the number of previously processed hash bytes analysis when finding a
match.

Besides the dictionary structure, LZMA also employs an array containing the 4 last used
match distances. If the distance of a match is equal to one of this array entries, the 2-bit array
index is used to encode this variable (Salomon, 2007).

Output Format

The LZMA sliding window encoding comprehends a range of compressed packages possibili-
ties that depends on the identified matches. Table 4.1 lists the output alternatives, presenting a
brief description of each tuple.

4.2.2 Range Encoding

The range encoding algorithm was first presented by Martin (1979). It consists of a context-
based compression algorithm in which the compressed range in each iteration is estimated based

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 61

Table 4.1. Sliding Window Encoding Output Packages, based on source code (Pavlov, 2019).
The symbol ⊕ represents concatenation of binary values.

Package Code
[base 2]

Package Name Package Description

0⊕byteCode LIT One byte encoded using an adaptive binary range coder
10⊕ len⊕dist MATCH An LZ77 tuple describing sequence length and distance
1100 SHORTREP One-byte LZ77 tuple. Distance is equal to the last used
1101⊕ len LONGREP[0] An LZ77 tuple. Distance is equal to the last used
1100⊕ len LONGREP[1] An LZ77 tuple. Distance is equal to the second last used
11110⊕ len LONGREP[2] An LZ77 tuple. Distance is equal to the third last used
11111⊕ len LONGREP[3] An LZ77 tuple. Distance is equal to the fourth last used

on probabilistic algorithms, and it can form a set of predefined types of packages depending on
the input range size.

The LZMA range encoding performs a bit-wise compression of a sliding window tuple out-
put at each fire cycle, outputting encoded bytes to the final output stream. It can be configured
to update its bit probability at each process cycle, or to use fixed compression probability.

Based on the described LZMA functions and their relation, the analysis of the problem
behavior is based on the listed questions in Section 3.1.1, which are answered as follows:

Q1 - The problem has no concurrent processes, i.e., the functions are sequentially executed;

Q2 - The problem communication paths are partially ordered, i.e., it is not possible to deter-
mine the sequence of tokens considering different data paths;

Q3 - the model does not have any deadlock and will be finished only when there is no data in
the input stream;

Q4 - the processing of the input streams are cyclic and non-terminating; and

Q5 - The functions cannot be synchronized by a clock, they depend on the data tokens out-
putted by other functions.

4.3 MoC Definition

An analysis of the problem characterization was performed to the MoC definition step. The
LZMA compression comprehends the processing of an input stream, through defined phases,
resulting in a compressed output stream. This behavior is classified as untimed and concurrent,
which is according to dataflow MoC family semantics.

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 62

A first simplified LZMA model was introduced by the author of the present research in
(Horita et al., 2019b) using the SDF MoC. That simplified LZMA modeling considered a set
of assumptions to be valid. It was assumed that predefined fixed token rates for each actor
port applies. Although it models the system process flow, it does not fully address the dynamic

behavior of each compression phase, i.e., both the sliding window and the range encoding.
In this sense, the dynamic LZMA behavior can be better modeled based on the scenario-

aware dataflow (SADF) MoC.

4.3.1 Scenario-Aware Dataflow (SADF) MoC

The SADF semantics was first presented by Theelen et al. (2006). It consists of a SDF gen-
eralization able to model dynamic system aspects by including the scenarios concept. SADF
scenarios describe distinct modes of processes operation where the execution times and amounts
of data can vary at each fire cycle. In this context, SADF classifies actors into two types: kernels

and detectors.
Kernels are reconfigurable actors responsible for computation. Each kernel k has a set Ψk

of scenarios. The scenarios ψ ∈ Ψk selection is controlled by tokens consumed from an input
control channel γk at each fire cycle. The kernel control channel input consumption token rate
is always 1. At each kernel scenario, its data channels inputs consumption token rates ck and
outputs production token rates pk can vary, ensuring the computation dynamism modeled by
the kernels (Bonna et al., 2019). Fig. 4.2a illustrates a kernel.

Detectors are the actors responsible for determining the kernel scenarios. A detector d

can have multiple data input channels σd , containing fixed token rates cd , and multiple output
channels, which can only be control channels γk, with production rates pd , which serves as
control inputs for kernel (Bonna et al., 2019). A detector is illustrated in Fig. 4.2b.

Kernel
m× n

...
...

σky1pk1σkx1 ck1

σkynpknσkxm ckm

γk

1

(a) Kernel

Detector
m× n

...
...

γk1pd1σd1 cd1

γknpdnσdm cdm

control channel
data channel

(b) Detector

Figure 4.2. SADF actor types, both with m inputs and n outputs (Bonna et al., 2019).

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 63

4.4 Framework Selection

The framework selection consideration criteria were based on the same requirements of the
illustrative example previously presented in Section 3.3.3. Thus, ForSyDe was used for the
LZMA modeling and simulation.

For the sake of convenience, the points from Section 3.1.3 are also listed next.

• License style: the present research work focus is on open source tools;

• Included MoCs: the framework must include the selected MoC, i.e., SADF;

• Capabilities: the proposed design includes both modeling and simulation;

• Interfaces: this case study accepts inputs and output from an user interface or from files;

• Scalability: this case study targets model high scalability. In this sense, a text-based
coding interface is better than a GUI;

• Programming language paradigm: towards a higher level of abstraction, Haskell, a pure
functional programming language, was selected as the framework base language.

A functional model for the scenario-aware dataflow (SADF) model of computation (MoC),
as well as a set of abstract operations for simulating it was introduced in (Bonna et al., 2019).
That MoC library is implemented on top of ForSyDe, and it is used in the present research to
model and simulate the LZMA according to the SADF semantics.

4.5 Modeling and Simulation

The system case study is formal modeled in this step, using the previously selected MoC and
framework, i.e., SADF and ForSyDe. The model consistency is verified through its simulation
aiming a correct-by-construction design, as described in Section 3.1.4.

This case study considers only the LZMA compression phase. Assuming that the decom-
pression phase comprehends similar processes, it will not be modeled here.

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 64

4.5.1 SADF LZMA Model Description

The LZMA compression takes an input data stream, processes it through two compression
phases and produces a compressed data output stream, as previously illustrated in Fig. 4.1.

When modeling LZMA using SADF MoC library from ForSyDe, the data streams are rep-
resented by signals, and the processing components by kernels. Besides, a detector is used
to control the LZMA dynamic behavior. Fig. 4.3 illustrates the LZMA high level modeling
dataflow graph based on SADF MoC.

SWEk
REk

MATd

γswe

1

1

1

σsm

1

σin ρin ρsw 1σsr

1

σss

1

γre

1

ρmr

1

σrr

1

1

σprob

1

1 σout

control channel
data channel
optional channel

Figure 4.3. LZMA high level modeling dataflow graph based on SADF MoC. Initial tokens are
represented by • .

Kernels, detector, signal paths, token rates and types in the model (Fig. 4.3) are defined as
follows:

• MATd is the match detector, which controls the scenarios from both kernels, SWEk and
REk. In this sense, MATd comprehends two scenarios, i.e., S1 and S2, as described in
Table 4.5;

– The input signal σsm transmits the current status of SWEk;

– The SWEk scenarios, ψswe, are outputted to the signal γswe, according to Table 4.4;

– Although REk contains a single scenario, ψre, the control channel γre is needed for
detector MATd to reach a system feasible schedule. To model this behavior, its
output token rate ρmr can vary from 0 to 1;

• SWEk is the sliding window encoding kernel, which compresses the input stream by
outputting processed tokens. Without loosing system main behavior and properties, the

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 65

present modeling adapts the SWEk dictionary structure to a sliding window method based
on the original LZ77 algorithm, aiming a simple model however preserving its behavior
and properties.

– The σin is an input signal, representing a stream to be compressed;

– The consumption token rate ρin depends on the current SWEk scenario, as described
in Table 4.4. It can vary from 0 to 1 Char. Each Char represents a character from
the input stream;

– The feedback signal σss carries tuples FBsw = (Wind,Str,Dist). In this context,
Wind represents the window dictionary, Str represents a SWEData package which is
being processed, and Dist models the latest four used distances vector;

– σsr is a signal which carries the SWEk produced tokens to REk;

– The production token rate ρsw can vary depending on the kernel scenario, from 0 to
1 SWEData, as described in Table 4.4. The possible SWEData formats are described
in Tables 4.2 and 4.3;

– The control channel, signal γswe, carries tokens comprehending the possible SWEk

scenarios ψswe; and

– The signal σsm carries Boolean values that are either true, if a SWEData package
was processed and is ready to be outputted, or false otherwise.

• REk is the range encoding kernel, which performs a bit-wise compression of SWEData

packages, outputting encrypted bytes to LZMA output stream. Although its token rates
are all constants, its fire cycles are controlled by the detector MATd;

– The REk input port, connected to the signal σsr, has a fixed consumption token rate
equals to 1 SWEData;

– The input control port, connected to the signal γre, has a fixed consumption token
rate of 1;

– The output signal σout carries the LZMA output stream, composed by encrypted
bytes produced by REk. The REk fixed output token rate is 1 Byte, consisting on a
signal of bytes;

– Signal σrr carries tuples that contains the relevant variables for the range encoding,
i.e., FBre = (Range,Low,Cache). In this context, Range represents the considered
range when encoding the next bit. Low represents the lower limit of the considered
range for the next bit encoding. Cache represents a processed value to be outputted
to σout in the next range encoder token production;

– Signal σprob (dashed line in Fig. 4.3) represents the bit probabilities updated at each
REk compression cycle, in case the variable probability is configured. Although the

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 66

fixed probability configuration has a reduction in the compression rate performance
taking into account some cases where the bits patterns are often repeated, there is no
loss of generality when considering fixed bit probabilities. In this sense, the present
work assumes the range encoder configured to use fixed probability encoding; and

– The initial token in the σout signal is the compressed file header, which includes
LZMA configuration, dictionary size and decompressed file size.

Table 4.2. σsr possible token formats.

Package Model SWEData System Code

LIT LIT ⊕Char 0⊕byteCode
MATCH MAT ⊕ Int⊕ Int 10⊕ l⊕dist
SHORTREP SREP 1100
LONGREP[0] LREP0⊕ Int 1101⊕ l
LONGREP[1] LREP1⊕ Int 1100⊕ l
LONGREP[2] LREP2⊕ Int 11110⊕ l
LONGREP[3] LREP3⊕ Int 11111⊕ l

Table 4.3. l variable possible sizes.

l format len range

0⊕3 bits 2 < len < 9
10⊕3 bits 10 < len < 17
11⊕8 bits 18 < len < 273

Table 4.4. SWEk Scenarios and token rates
discrimination.

Ψswe Scenarios Rates

ρin ρsw

Search 1 0
Flush 0 1

Table 4.5. MATd output control channels
token rates and scenarios dis-
crimination.

Ψmat

Scenarios
Rates [Kernel Scenario]

γswe γre

S1 1 [Search] 0
S2 1 [Flush] 1 [Read]

Based on the described definitions, this modeling considers two system scenarios, which are
controlled by the detector MATd.

4.5.2 LZMA Modeling with ForSyDe SADF MoC

ForSyDe is used to system modeling based on the model description previously stated and
illustrated in the dataflow graph from Fig. 4.3. The model main definitions and processes (i.e.,

kernel, detector, actor) signatures are presented in Listing 4.1, using the process constructors
from the ForSyDe SADF MoC library. In this context, the following concepts are used:

• SWEData represents de kernel SWEk output token type, which can be derived to all the
SWEData package types;

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 67

• SWEkScenario and REkScenario models the kernels SWEk and REk scenarios, respec-
tively;

• RangeVars models the tokens contained in the feedback signal FBre, which comprehends
the current encoding Range, its LowerLimit value and the Cache, representing a stored
byte to be outputted when the next output token is produced;

• matD models the detector MATd using the detector12SADF, with one input port and two
control output ports;

• sweK models kernel SWEk using the process constructor kernel23SADF, indicating it
contains two data input ports and three data output ports; and

• rek represents the range encoder kernel REk, modeled using the kernel22SADF, indicat-
ing it contains two data input ports and two data output ports;

Listing 4.1. LZMA model signatures and definitions in ForSyDe.

1 -------------------------- SWEData definition --------------------------

2 data SWEData = LIT Char | MAT Int Int | SREP |

3 LREP0 Int | LREP1 Int | LREP2 Int | LREP3 Int deriving (Eq , Show)

4

5 ------------- SWE and RE Kernels and MAT detector definitions -------------

6 -- SWE scenarios definition

7 type SWEkScenario = ((Int , Int), (Int , Int , Int), [Char] -> [(String , String , [Int])]

8 -> ([Bool], [SWEData], [(String , String , [Int])]))

9

10 -- Range Encoder Feedback = (range , Lower Limit , cache)

11 type RangeVars = (Int ,Int ,Char)

12

13 -- RE scenarios definition

14 type REkScenario = ((Int , Int), (Int , Int), [SWEData]

15 -> [RangeVars] -> ([Char], [RangeVars]))

16

17 -- matD (Match Detector) definition

18 -- Input: identifier of the SWEk current status

19 -- Output: matStateOut containing SWEk and REk scenarios

20 matD :: Int -> Int -> Signal Bool -> (Signal SWEkScenario , Signal REkScenario)

21 matD b_size w_size = detector12SADF 1 matStateTran (matStateOut b_size w_size) Search

22

23 -- sweK (Sliding Window Encoding Kernel) definition

24 -- Input: Control Channel , Input Stream , feedback signal

25 -- Output: SWEData , feedback signal , Current status

26 sweK :: Signal SWEkScenario -> Signal Char -> Signal (String , String , [Int])

27 -> (Signal Bool , Signal SWEData , Signal (String , String , [Int]))

28 sweK = kernel23SADF

29

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 68

30 -- reK (Range Encoding Kernel) definition.

31 -- Input: Control Channel , SWEData from SWEk, feedback signal

32 -- Output: Compressed Bytes Signal , feedback signal

33 reK :: Signal REkScenario -> Signal SWEData -> Signal RangeVars

34 -> (Signal Char ,Signal RangeVars)

35 reK = kernel22SADF

Each actor is then presented in separate listings. The LZMA detector model MATd main
functions and definitions are presented in Listing 4.2, with the following definitions:

• FDscenario represents the detector scenario, comprehending the output token rates of
the control channels ports and the sent kernels scenarios. FDstate models the detector
state, based on the kernel SWEk boolean output through σsm; and

• matStateTran represents the detector function to select the MATd scenarios based on a
Boolean input, and matStateOut outputs the SWEk and REk scenarios.

Listing 4.2. LZMA detector MATd model functions in ForSyDe.

1

2 ----------- Detector State transition and output functions ------------

3 -- data SWEState = Search | Flush

4 -- data REState = ReRead

5 type FDscenario = ((Int , Int), ([SWEkScenario], [REkScenario]))

6 data FDstate = Search | Flush

7

8 matStateOut :: Int -> Int -> FDstate -> (FDscenario) -- (Int , [SWEkScenario],Maybe [

REkScenario])

9 matStateOut b_size _ Search =

10 ((1 ,1), ([((1 ,1), (1,0,1), sweSearch b_size)], [((0 ,0) ,(0,0), rekStdBy)]))

11 matStateOut _ w_size Flush =

12 ((1 ,1), ([((0 ,1), (1,1,1), sweFlush w_size)], [((1 ,1) ,(1,1), rekRead)]))

13

14 matStateTran :: FDstate -> [Bool] -> (FDstate)

15 matStateTran _ [True] = (Search)

Listing 4.3 introduces the main functions used to model the LZMA sliding window kernel
SWEk , with the following definitions:

• sweSearch and sweFlush model the functions executed by sweK depending on its sce-
nario, where:

– sweSearch represents the scenario in which SWEk consumes a character from input
signal when searching for a match; and

– sweFlush models the output of a found SWEData package to signal σsr.

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 69

Listing 4.3. LZMA Sliding Window Kernel main functions in ForSyDe.

1

2 ------------------------ SWE Kernel functions ----------------------------

3 sweSearch :: Int -> [Char] -> [(String , String , [Int])]

4 -> ([Bool], [SWEData], [(String , String , [Int])])

5 sweSearch b_size [c] [(win , buff , distList)]

6 | stringRFind (buff ++[c]) win == Nothing || length (buff ++[c]) > b_size =

7 ([False], [], [(win , buff ++[c], distList)])

8 | otherwise = ([True], [], [(win , buff ++[c], distList)])

9

10 sweFlush :: Int -> [Char] -> [(String , String , [Int])]

11 -> ([Bool], [SWEData], [(String , String , [Int])])

12 sweFlush w_size [] [(win , buff , distList)]

13 | l == 0 = ([True], [LIT (head buff)], [(drop n (win ++ buff), "", distList)])

14 | l == 1 = if isNothing (stringRFind (init buff) win)

15 then ([True], [LIT (head buff)], [(win ’, [last buff], distList)])

16 else if head distList == dist

17 then ([True], [SREP], [(win ’, [last buff], distList)])

18 else ([True], [LIT (head buff)], [(win ’, [last buff], distList)])

19 | distList !! 0 == dist = ([True], [LREP0 l], [(win ’, [last buff], distList)])

20 | distList !! 1 == dist = ([True], [LREP1 l], [(win ’, [last buff], distList)])

21 | distList !! 2 == dist = ([True], [LREP2 l], [(win ’, [last buff], distList)])

22 | distList !! 3 == dist = ([True], [LREP3 l], [(win ’, [last buff], distList)])

23 | otherwise = ([True], [MAT dist l], [(win ’, [last buff], take 4 (dist:distList))])

24 where n = max 0 $ length (win ++ buff) - w_size

25 win ’ = drop (max 0 $ length (win ++ init buff) - w_size) (win ++ init buff)

26 dist = fromJust (stringRFind (init buff) win)

27 l = length buff - 1

The range encoder main functions and definitions are presented in Listing 4.4 with the fol-
lowing definitions:

• encBit models the bit-wise processing of the SWEData tokens, updating the RangeVars
variables;

• normRange models the normalization procedure, executed when the range reaches its
lower limit and needs to be re-scaled, producing one byte that will be outputted to the
σout signal, temporarily stored in Cache;

• rekStdBy models the standby state of kernel REk, while waiting for a SWEData token;
and

• rekRead models the function to read a SWEData token and encrypt it to σout.

Listing 4.4. LZMA Range Kernel main functions in ForSyDe.

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 70

1 k = x ‘div ‘ m

2 ------------------- RE Kernel functions -------------------

3 normRange :: [Char] ->[RangeVars] -> ([Char], [RangeVars])

4 normRange nSout [(nRan ,nL,nC)]

5 | nRan < rangeLimit =

6 if low < 0xFF000000 then

7 (nSout ++ [nC], [(nRan * 0x100 , low * 0x100 , chr cache)])

8 else if nL > 0xFFFFFFFF then

9 (nSout ++ [chr (ord nC + 1)], [(nRan * 0x100 , low * 0x100 , chr cache)])

10 else

11 (nSout ,[(nRan * 0x100 ,nL,nC)])

12 | otherwise = (nSout ,[(nRan ,nL,nC)])

13 where high = quot (nL .&. 0xFFFFFF00000000) 0x100000000

14 low = (nL .&. 0xFFFFFFFF)

15 cache = quot (nL .&. 0xFF000000) 0x1000000

16

17 encBit :: [Bool] -> ([Char],[RangeVars]) -> ([Char], [RangeVars])

18 encBit [] (a,b) = (a,b)

19 encBit eIn (encSigOut , [(eRan ,eL ,eC)])

20 | head eIn == True =

21 encBit (tail eIn) (normRange encSigOut [(newRan ,eL + (newRan),eC)])

22 | head eIn == False =

23 encBit (tail eIn) (normRange encSigOut [(newRan ,eL,eC)])

24 where newRan = quot eRan 2

25

26 toSigSig :: ([Char],[RangeVars]) -> ([[Char]],[RangeVars])

27 toSigSig ([],b) = ([],b)

28 toSigSig (a,b) = ([a],b)

29

30 rekStdBy :: [SWEData] -> [RangeVars]-> ([[Char]],[RangeVars])

31 rekStdBy _ fb = ([],fb)

32

33 rekRead :: [SWEData] -> [RangeVars]-> ([[Char]],[RangeVars])

34 rekRead [] s_rr = ([],s_rr)

35 rekRead [(LIT lit)] s_rr =

36 toSigSig (encBit ([False] ++ (toBitsBySize 8 (fromEnum lit))) ([] , s_rr))

37 rekRead [(MAT x y)] s_rr =

38 toSigSig (encBit ([True ,False] ++ (toBitsBySize 8 x) ++ (toBitsBySize 32 y)) ([] ,

s_rr))

39 rekRead [(SREP)] s_rr =

40 toSigSig (encBit [True ,True ,False ,False] ([] , s_rr))

41 rekRead [(LREP0 x)] s_rr =

42 toSigSig (encBit ([True ,True ,False ,True] ++ (toBitsBySize 8 x)) ([] , s_rr))

43 rekRead [(LREP1 x)] s_rr =

44 toSigSig (encBit ([True ,True ,True ,False] ++ (toBitsBySize 8 x)) ([] , s_rr))

45 rekRead [(LREP2 x)] s_rr =

46 toSigSig (encBit ([True ,True ,True ,True ,False] ++ (toBitsBySize 8 x)) ([] , s_rr))

47 rekRead [(LREP3 x)] s_rr =

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 71

48 toSigSig (encBit ([True ,True ,True ,True ,True] ++ (toBitsBySize 8 x)) ([] , s_rr))

49 rekRead _ s_rr =

Finally, the complete process network is introduced in Listing 4.5. The lzmaCompressPn

process models the LZMA compression, connecting the sweK output to the reK input. The
compressed stream is modeled as sig out and the input stream as sig in. In addition, the
sliding window encoder process network is also presented as swePn to illustrate and test this
compression step separately.

Listing 4.5. LZMA compression process network.

1 ----------------------- SWE process network --------------------------

2 swePn :: Int -> Int -> Signal Char -> Signal SWEData

3 swePn b_size w_size s_in = s_out

4 where (s_det , s_out , s_fb) = sweK ct s_in s_fb ’

5 (ct ,rect) = matD b_size w_size s_det ’

6 s_det ’ = delaySADF [True] s_det

7 s_fb ’ = delaySADF [("","" ,[-1,-1,-1,-1])] s_fb

8

9 ----------------------- LZMA process network --------------------------

10 lzmaCompressPn :: Int -> Int -> Signal Char -> Signal [Char]

11 lzmaCompressPn b_size w_size sig_in = sig_out ’

12 where (sig_out ,s_rr) = reK ctRe s_swetok s_rr ’

13 (s_det , s_swetok , s_sweFb) = sweK ctSwe sig_in s_sweFb ’

14 (ctSwe ,ctRe) = matD b_size w_size s_det ’

15 s_det ’ = delaySADF [True] s_det

16 s_sweFb ’ = delaySADF [("","" ,[-1,-1,-1,-1])] s_sweFb

17 s_rr ’ = delaySADF [(rangeInit , 0 , chr 0)] s_rr

18 sig_out ’ = delaySADF [([defConfig] ++ (inttoCharList 4 defDictSize)

19 ++ (inttoCharList 8 (lengthS sig_in)))] sig_out

4.5.3 Model Simulation

Towards the verification of system consistency and behaviors in accordance to expected, some
input stream examples are used to test the LZMA model. This step is based on the GHCi usage.

Listing 4.6 introduces the defined processes to simulate the model. sweOutTest models
the sliding window output, and lzmaOutTest the LZMA compression output. For a printable
character set, lzmaOutTest in outputted as Integer values, based on the ASCII table.

Listing 4.6. LZMA compression test processes.

1 sweOutTest = swePn buffer_size window_size inputTest

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 72

2 lzmaOutTest = mapSY ord (lzmaCompressPn buffer_size window_size inputTest)

The first example consists on a sequence of five characters, non repeated. Its simulation was
successfully accomplished, as presented in Listing 4.7. The model behaves as expected. The
SWEk outputs the correct packages, i.e., literals, as it have no repetitions. The LZMA outputs
the expected stream of encoded bytes, composed by an initial header followed by a sequence of
byte lists, grouped by the output of each REk cycle.

Listing 4.7. LZMA compression input example #1.

1 inputTest = signal "12345\ x00"

2 -- SWE output

3 sweOutTest

4 {LIT ’1’,LIT ’2’,LIT ’3’,LIT ’4’,LIT ’5’}

5 -- LZMA output

6 lzmaOutTest

7 {[93 ,48 ,48 ,48 ,49 ,48 ,48 ,48 ,48 ,48 ,48 ,48 ,53] ,[0] ,[23] ,[139] ,[133] ,[96]}

The second example comprehends the inclusion of a SWEData package of a found match.
Listing 4.8 presents the simulation results. The model also behaves as expected in this example,
identifying the match in the previous buffer and successfully encoding all the packages.

Listing 4.8. LZMA compression input example #2.

1 inputTest = signal "abracadabra\x00"

2 -- SWE output

3 sweOutTest

4 {LIT ’a’,LIT ’b’,LIT ’r’,LIT ’a’,LIT ’c’,LIT ’a’,LIT ’d’,MAT 6 4}

5 -- LZMA output

6 lzmaOutTest

7 {[93 ,48 ,48 ,48 ,49 ,48 ,48 ,48 ,48 ,48 ,48 ,48 ,99] ,[0] ,[47] ,[151] ,[141] ,[67] ,

8 [122] ,[138] ,[253 ,54 ,123 ,233 ,181 ,61]}

In the third example, the empty input boundary situation is tested, as presented in Listing 4.9.
The SWEk outputs an empty package to REk, which in turn, just outputs the header, without any
data to be compressed, as expected.

Listing 4.9. LZMA compression input example #3.

1 inputTest = signal ""

2 -- SWE output

3 sweOutTest

4 {}

5 -- LZMA output

6 lzmaOutTest

7 {[93 ,48 ,48 ,48 ,49 ,48 ,48 ,48 ,48 ,48 ,48 ,48 ,48]}

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 73

As the model compiles with no errors and behaves as expected in all the presented simula-
tions, its consistency verification is finished.

4.6 Properties Verification

As stated in Section 3.1.5, this step aims to check whether the system model holds the required
properties, with respect to the in-use MoC. In this sense, this section introduces the SADF MoC
properties and their verification methods, also presenting the LZMA model verification.

4.6.1 SADF MoC Properties and Verification Methods

According to Theelen et al. (2006), a model based on SADF MoC must hold the following
properties:

PSADF1 Boundedness: this property is similar to the PSDF1 , presented in Section 3.1.5. The system
model production and consumption token rates must be designed in a manner that the
number of buffered tokens are bounded;

PSADF2 Absence of deadlocks: As SDF, the SADF must be also non-terminating, i.e., it must not
have deadlocks; and

PSADF3 Determinacy: the model performance depends on probabilistic choices that determine the
sequence of scenarios selected by each detector. As discussed by Bonna et al. (2019), in
the performance SADF model a detector’s behavior is represented by a Markov chain.
On the other hand, in the functional SADF model, representing the detector’s behavior
as a Markov chain would violate the tagged signal model definition’s of functional pro-

cess, since a Markov chain describes more than one behavior, i.e., it is non-deterministic.
In view of this, the functional model is used in the present work, where the detector’s
behavior is dictated by a deterministic finite-state machine.

Yet, Theelen et al. (2006) introduces the described properties verification methods, as pre-
sented next:

VSADF1 The boundedness verification considers three aspects:

(a) Boundedness in fixed scenarios case: In case all processes only operate in a fixed
scenario, the system behaves as a SDF based model, and the boundedness verifica-
tion is performed as described in Section 3.3.5;

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 74

(b) The boundedness of control channels: For each kernel k, controlled by a detector
d, the inequality Ed,s ≥ γ(k,s)×Ek,s must hold for every scenario s in which k is
inactive, where Ed,s represents the duration of d to detect and send the scenario s

to kernel k, γ(k,s) represents how many cycles the k computation is executed in the
scenario s, and Ek,s is the duration of each k computation cycle; and

(c) The effect of the scenario changes on boundedness: The number of tokens in chan-
nels between active processes after an iteration of the SADF model is the same as
before. In this context, an iteration is the firing of each process p configured in a
scenario s for γ(p,s) times.

VSADF2 For all kernels’ scenarios combinations, there must have sufficient initial tokens in each
cyclic dependency between processes such that every included process can fire a number
of times equal to its repetition vector entry. Feedback loops can be considered as a cyclic
dependency of a single process; and

VSADF3 The functionality non-determinism only occurs between multiple independent concurrent
processes. If existing in a model, it leads to satisfying the diamond property. This prop-
erty states that when two or more independent processes are concurrently enabled, the
system functionality is not affected by the order that they are performed. This statement
proof is fully described by Theelen et al. (2006).

4.6.2 LZMA Model Properties Verification

This step submits the LZMA model to the stated SADF MoC verification methods.

VSADF1 Boundedness

Property verification – The three verification aspects are considered for the presented
LZMA model:

(a) The first aspect is used for verification of models where all the processes compre-
hend a single scenario. In the LZMA case, the kernel SWEk and detector MATd do
not operate in a single scenario, as described in Section 4.5.1. In this sense, this
aspect is not applicable;

(b) The LZMA kernel REk becomes inactive during the detector MATd scenario S1.
In this model, the range encoder fires a single time for each S1 scenario selection
(γ(RE,S1) = 1). For the model to be bounded, the REk duration ERE has to be
smaller than the duration EMAT,S1 between two scenarios S1 detection by MATd;

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 75

(c) The third aspect must be analyzed focusing on kernel SWEk and detector MATd, as
these are the only processes with multiple scenarios. The interface between these
processes consists on a cyclic dependency with fixed and equal token rates, not
representing an unboundedness risk. Regarding the boundedness of signal σsr, the
production token rate from SWEk output port is controlled by MATd, and the con-
sumption token rate from REk is always one. In MATd S1 scenario, SWEk will not
produce any tokens in σsr, and in S2 scenario, SWEk will produce one token that
will be promptly consumed by REk in the same iteration. In this context, the third
boundedness aspect will always hold, as MATd controls the system schedule, so that
SWEk will not produce another token before REk consumes the last one.

VSADF2 Absence of deadlocks

Property verification – Analyzing the LZMA model, the included cyclic dependency are
the feedback signals σss, σprob and σrr, in addition to the SWEk and MATd processes cycle.
Initial tokens were added to each of these cycles, satisfying the necessary consumption
token rates. As a consequence, it is verified that the LZMA system holds this property.

VSADF3 Determinacy

Property verification – The LZMA does not comprehend multiple independent concur-
rent processes, as the SWEk depends on MATd and vice-versa. Besides, REk also depends
on SWEk. As a consequence, the system holds the determinacy property.

In addition to the introduced properties verification arguments VSADF2 and VSADF3 , Table 4.6
presents a feasible LZMA static scheduling, representing a possible sequence of determined
running processes, starting with an initial token in signal σsm, and without any deadlock. The
schedule finishes when input stream σin is empty.

Table 4.6. Feasible LZMA system static scheduling.

σsm token S S F S ...
Running
Processes

MATd SWEk MATd SWEk MATd SWEk REk MATd SWEk ...

MATd
Scenarios

S1 S1 S2 S1 ...

σsm token: S = Search, F = Flush

4.7 Implementation Details and Implement System

The implementation domain is not part in AIPAA scope. Nevertheless, different programming
languages, implementation architectures and platforms have been used to implement the LZMA

Augusto Yoshio Horita

CHAPTER 4. AIPAA METHOD APPLICATION 76

in other related works. But, no implementation was found based on a functional programming
language, such as Haskell.

The first LZMA implementation was presented in the 7zip open source application, able to
be executed using different platforms, including a range of compression algorithms, and having
LZMA as default (Pavlov, 2019; Salomon, 2007). Another similar application is presented in
XZ Utils, having less languages and configuration options (Collin, 2019). Besides the mentioned
applications, hardware description languages (HDL) implementations for FPGA are also avail-
able in the literature (Leavline, 2013; Zhao and Li, 2017). A benchmark comparing different
implementation architectures and platforms was presented by SPEC.

4.8 Summary

This chapter presented a comprehensive case study showing the Analysis and Identification

of Possible Automation Approaches (AIPAA) method application, which is proposed in this
research work.

All the AIPAA defined steps were followed aiming the correct-by-construction system de-
sign considering the specification domain, however taking into account an executable SADF
model.

The selected application for this case study was the compression procedure contained in the
Lempel-Ziv Markov chain Algorithm (LZMA). That is a widely used algorithm presented as a
benchmark by SPEC.

The next chapter presents a discussion and analysis on the AIPAA method, its applicability
and limitations.

Augusto Yoshio Horita

77

5 RESULTS, ANALYSIS AND DISCUSSION

This chapter presents this research work results along with analysis and discussion. The achieved
results are based on the requirements previously stated in Section 1.3, together with the devel-
oped illustrative example (Section 3.3) and case study (Chapter 4).

5.1 Literature Review

According to R0, the first requirement comprehends the literature review with respect to the

main concepts and theory on MoC and high level modeling. The review results are present in
Chapter 2, including the concepts of embedded systems and cyber-physical systems, MoCs,
formal-based modeling frameworks, and functional and imperative programming paradigms,
besides the main existing automatic code generation tools and other research works related to
the present one.

5.2 Case Studies Specification

Embedded systems case studies complete specification is listed as requirement R1. The present
work specified two case studies. The encoder-decoder system (EDS) and the Lempel-Ziv
Markov chain algorithm (LZMA).

As illustrated in Fig. 3.1, the AIPAA method considers as input the problem statement and
guides one to perform an initial analysis, i.e., a problem characterization to identify system
behaviors and characteristics, as described in Section 3.1.1.

EDS and LZMA complete specifications, based on the problem statement and characteriza-
tion, are presented in Section 3.3.1 and Section 4.1, respectively. Those detailed specifications
are the base towards an optimized formal-based system design flow.

Augusto Yoshio Horita

CHAPTER 5. RESULTS, ANALYSIS AND DISCUSSION 78

5.3 Framework Selection Criteria

The requirement R2 comprehends a formal-based modeling framework selection criteria and list

of candidates tools. AIPAA includes a step focused on this matter, as presented in Section 3.1.3.
The author of this work published a paper on this subject, named Analysis and Comparison of

Frameworks supporting Formal System Development based on Models of Computation Horita
et al. (2019a).

A range of frameworks were considered for comparison, i.e., Ptolemy II, ForSyDe, SDF3
and Simulink. AIPAA lists specific frameworks characteristics that must be considered when
choosing the modeling tool for a given application.

One of the facts to be taken into consideration when selecting a framework is its included
MoCs, analyzing if the used/selected MoC is supported. In this context, AIPAA also includes a
step describing the design MoC definition, as presented in Section 3.1.2.

For the present work case studies, the MoCs that best describes the systems behaviors were
SY for EDS and SADF for LZMA. Based on the MoCs selection and other relevant analyzed
facts, ForSyDe was the selected framework. Section 4.4 describes in details the ForSyDe char-
acteristics took into consideration for its selection.

5.4 Case Study Modeling Based on Formal Methods

The requirement R3 includes the embedded system case study modeling and high level imple-

mentation, based on formal design method. AIPAA includes two steps aiming the formal-based
modeling: the system model functional correctness verification and the system consistency.
The referred steps are model and simulate and model properties verification, described in Sec-
tions 3.1.4 and 3.1.5, respectively.

Section 3.3.4 presents the modeling and simulation of an illustrative example comprehend-
ing the EDS, based on the ForSyDe SY MoC library, as illustrated in Fig. 3.3, which is repli-
cated in Fig. 5.1a for the sake of convenience. That section also presents how the simulation can
detect an erroneous model behavior. The model properties were then verified in Section 3.3.5
following AIPAA method, to prove the model holds SY MoC properties.

An elaborated case study was based on a paper published by the author of this work, which
modeled the LZMA compression using the ForSyDe SDF MoC library, not representing part
of the system dynamic behavior (Horita et al., 2019b). The present work modeled the same
algorithm, but now using the ForSyDe SADF MoC library, as described in Section 4.5 and
illustrated in Fig. 4.3, which is replicated in Fig. 5.1b for the sake of convenience, capturing its

Augusto Yoshio Horita

CHAPTER 5. RESULTS, ANALYSIS AND DISCUSSION 79

compression procedure dynamism. Besides, AIPAA method was used to prove the model holds
SADF MoC properties.

genEnc genDec

apEnc apDec

skey

sinput soutput

sencF sdecF

senc

(a) Encoder-decoder system SY MoC dataflow

graph.

SWEk
REk

MATd

γswe

1

1

1

σsm

1

σin ρin ρsw 1σsr

1

σss

1

γre

1

ρmr

1

σrr

1

1

σprob

1

1 σout

control channel
data channel
optional channel

(b) LZMA system SADF MoC dataflow graph.

Figure 5.1. Formal-based models dataflow graphs.

The AIPAA method comprehends the specification domain, which outputs a verified high
level abstraction executable model.

The implementation domain consists of an extensive subject and, although it is not included
in AIPAA, Section 3.1.6 presents directives on how to overcome the abstraction gap and imple-
ment a system based on a verified model. Besides, for both illustrative example and case study,
implementation related works were cited as a reference to guide possible future researches.

5.5 Analysis Identifying Steps to be Automated

An analysis identifying implementation steps to be automated is presented to fulfill the require-
ment R4. This research introduced design method was presented under the name analysis and

identification of possible automation approaches (AIPAA).
In view of this, AIPAA includes well-defined design steps on a formal base, making the

automation approaches identification feasible and possible to be systematically analyzed.
As a result, this research introduced in Section 3.2, as passable of automation steps the

properties verification and the automatic code generation based on a formal and verified model,
as described in Sections 5.5.1 and 5.5.2.

5.5.1 Properties Verification with “Quickcheck”

AIPAA includes a step comprehending the system model properties verification, as described
in Section 3.1.5. Its main purpose is to prove that the model holds the properties of the selected

Augusto Yoshio Horita

CHAPTER 5. RESULTS, ANALYSIS AND DISCUSSION 80

MoCs and possibly a set of system specific properties. In this sense, a range of methods can be
applied to verify if the system holds each property, e.g., mathematical prove and model analysis.

A widely used method for properties verification is the system submission to a range of test
cases, which can be a labor intensive task. Besides, for a robust verification, different tests must
be elaborated aiming the detection of different fail cases.

The present research identifies the automation of this verification method as a possibility.
In this sense, Section 3.2.1 presents Quickcheck as an alternative for automatic test cases gen-
eration and system property verification. A minimal model example based on SDF MoC was
presented, using Quickcheck for verification whether the system holds the property PSDF4 , intro-
duced in Section 3.1.5, as an example of its applicability.

5.5.2 Automatic Code Generation

Although the implementation domain is not included in AIPAA, this research recognizes the
abstraction gap between the formal-based model outputted by the introduced method and the
implemented system and the difficulties to overcome it. In this sense, this research proposes,
as an embedded design automation approach, the automatic low level code generation based
on a verified formal-based model. This represents an extensive work that have been studied in
related works and can be deeper explored as future works, as mentioned in Section 3.2.2.

5.6 Scientific Publications

The author of this work published two conference papers as results of the present research.
An analysis and comparison of two frameworks supporting formal system development

based on MoCs was introduced in (Horita et al., 2019a). The compared frameworks had to
be open source and they had to support both modeling and simulation. Based on that crite-
ria, ForSyDe and PtolemyII were compared considering a range of aspects, i.e., programming
paradigm, scalability and design methodology. To support the comparison, a case study com-
posed by two systems was modeled using two widely used MoCs, SY and SDF. The benefits
and drawbacks of each framework were listed based on the paper comparison, which can be
considered when choosing the best development tool for an application.

• Horita A.Y., Bonna R., Loubach D.S. (2019) Analysis and Comparison of Frameworks
Supporting Formal System Development based on Models of Computation. In: Lat-
ifi S. (eds) 16th International Conference on Information Technology-New Generations

Augusto Yoshio Horita

CHAPTER 5. RESULTS, ANALYSIS AND DISCUSSION 81

(ITNG 2019). ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING, vol
800. Springer, Cham.

The LZMA compression routine was modeled using ForSyDe SDF MoC library in (Horita
et al., 2019b). The selected algorithm and modeling framework are the same as this research
case study, although fixed actors token rates were adopted to consider a simple model in the
paper. The SADF model from this research case study models the LZMA adaptivity in a more
complete and adequate manner.

• Horita, A. Y., Bonna, R., Loubach, D. S., Sander, I., and Söderquist,I. (2019b). Lempel-
Ziv-Markov Chain Algorithm Modeling using Models of Computation and ForSyDe.
10th Aerospace Technology Congress 2019 (FT2019). FTF - Swedish Society of Aero-
nautics and Astronautics. Stockholm, Sweden. (to appear)

5.7 Summary

This chapter discussed the main results of this research based on the requirements enumerated
in Section 1.3. The AIPAA findings were also presented indicating a possible automation in
formal-based embedded systems design flow.

The next chapter will present this research work conclusions, author recommendations and
possible future works.

Augusto Yoshio Horita

82

6 CONCLUSION

This final chapter presents the main conclusion, contributions, author recommendations and
future works suggestions towards AIPAA improvements.

6.1 Specific Conclusions

The main goal of this work was:

to identify possible automation approaches for design flows based on for-
mal models of computation, aiming to a future automatic code generation and also
a reliable, robust and scalable embedded systems design flow.

In this sense, it was proposed a method for analysis and identification of possible automation

approaches (AIPAA) applicable to embedded systems design flow supported by formal models
of computation.

In order to develop a deeper analysis method, a review of the formal-based design flow
concepts was performed, including embedded systems and CPS, modeling frameworks, MoCs
topology and programming paradigms. Moreover, a research of the existing automation tools
and related works was conducted.

There exist tools and methods of specific procedures and design steps automation, such as
low level code generation. However, there are not many studies which analyze the embedded
systems design flow depicted into well-defined steps.

The analysis of the design flow specification domain, presenting delimited steps towards the
analysis and identification of their possible automation approaches is a characteristic that differs
the present work from previous ones.

In this context, the AIPAA methodology was introduced. It includes five design steps, as
illustrated in Fig. 3.1. Each step is then explained in details. For the sake of convenience, the
main purpose of each step is described next.

1. Problem characterization: identify the relevant behaviors and characteristics of the target
problem, defining intermediate functions that can represent the system processes and their
relation;

Augusto Yoshio Horita

CHAPTER 6. CONCLUSION 83

2. MoC definition: based on problem characteristics, select a MoC to be used in the system
design flow;

3. Framework selection: define the formal-based framework for system modeling and sim-
ulation;

4. Model & simulate: model the specified system, simulating it to verify its consistency;

5. Properties verification: verify that the system model holds the defined MoC properties.

To demonstrate the AIPAA application, an illustrative example and a case study system were
presented, namely Encoder-Decoder System (EDS) and Lempel-Ziv Markov Chain Algorithm

(LZMA).
The AIPAA application results were discussed in Chapter 5, identifying the properties ver-

ification and automatic code generation as possible embedded systems design flow automation
approaches, coping with this work main goal.

6.1.1 Work Requirements Traceability

The requirement R0 was covered in Chapter 2, by describing the main used concepts in this
work.

The requirement R1 was covered in Section 3.3.1 and Section 4.1, presenting the specifica-
tion of an illustrative example and a case study, the EDS and LZMA, respectively.

The requirement R2 was covered in a paper published by the author of this work (Horita
et al., 2019a), describing benefits and drawbacks of selected frameworks supporting formal
MoCs. This method was also described in Section 3.1.3.

The requirement R3 was covered in Chapter 4, where the AIPAA was applied to a case study,
the LZMA compression routine. That case study was based on a simple LZMA model based
on SDF MoC introduced in a paper published by the author of this work (Horita et al., 2019b).
Besides, the illustrative example EDS was modeled in Section 3.3.

The requirement R4 was covered in Chapter 5, presenting the suggested formal-based design
steps passable of automation as the result of AIPAA application.

6.2 Main Contributions

The main contributions of the present work are:

Augusto Yoshio Horita

CHAPTER 6. CONCLUSION 84

1. The introduction of a method to identify possible automation approaches applicable for
embedded systems formal-based design, the AIPAA; and

2. The demonstration of AIPAA usage, modeling and simulating two different systems
based on distinct behaviors and MoCs.

In this context, the model properties verification and low abstraction level code generation
were pointed as steps that can be automated.

6.3 General Conclusions

The growing number of cyber-physical systems (CPS) and embedded systems application areas
and their evolving complexity increases the difficulty of designing robust and trustable systems
in a scalable manner. In this context, formal-based methods are presented as a solution towards
a correct-by-construction design.

The proposed AIPAA method presents itself as an alternative for identifying possible design
steps automation.

6.4 Recommendations and Future Works

The author of this work believes that the automation of formal-based design methods is an
important alternative to increase the robustness and scalability of CPS and embedded systems
development.

In this sense, the author recommends that more researches focus on this matter. The pos-
sible automation approaches identified by this work AIPAA application case study, properties

verification and low level source code generation, could be implemented and tested. Moreover,
a possible automation approach of framework selection step consists on listing each analyzed
aspect alternatives, aiming the framework automatic selection based on its desired characteris-
tics.

Furthermore, systems with different behaviors, modeled using other existing MoCs, or even
heterogeneous systems, could be submitted to AIPAA method application. This could lead to
the identification of other steps or MoC specific properties verification that can be automated.
Besides, AIPAA could be extended to the implementation domain, facilitating the identification
of its possible automation approaches.

Augusto Yoshio Horita

85

References

Acosta, A. (2008). Forsyde tutorial website. https://hackage.haskell.org/package/

ForSyDe-3.1/src/doc/www/files/tutorial/tutorial.html.

Association, T. M. (2019). Modelica website. https://www.modelica.org/.

Bonna, R., Loubach, D. S., Ungureanu, G., and Sander, I. (2019). Modeling and simulation of
dynamic applications using scenario-aware dataflow. ACM Transactions on Design Automa-

tion of Electronic Systems.

Bourke, T., Colaço, J.-L., Pagano, B., Pasteur, C., and Pouzet, M. (2015). A synchronous-based
code generator for explicit hybrid systems languages. In Lecture Notes in Computer Science,
pages 69–88. Springer Berlin Heidelberg.

Buttazzo, G. C. (2011). Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications: 24 (Real-Time Systems Series). Springer.

Castagna, G. and Gordon, A. D., editors (2017). Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January

18-20, 2017. ACM.

Claessen, K. and Hughes, J. (2000). Quickcheck: a lightweight tool for random testing of
haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on

Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000., pages
268–279.

Collin, L. (2019). Xz utils. https://www.tukaani.org/xz/.

Community, H. (2019). Hackage website. http://hackage.haskell.org.

Edwards, S., Lavagno, L., Lee, E., and Sangiovanni-Vincentelli, A. (1997). Design of embedded
systems: formal models, validation, and synthesis. Proceedings of the IEEE, 85(3):366–390.

Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., and
Xiong, Y. (2003). Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,
91(1):127–144.

Fernández, M. (2009). Models of Computation: An Introduction to Computability Theory.
Springer, London, UK.

Augusto Yoshio Horita

https://hackage.haskell.org/package/ForSyDe-3.1/src/doc/www/files/tutorial/tutorial.html
https://hackage.haskell.org/package/ForSyDe-3.1/src/doc/www/files/tutorial/tutorial.html
https://www.modelica.org/
https://www.tukaani.org/xz/
http://hackage.haskell.org

REFERENCES 86

ForSyDe Group, K. (2019). Forsyde hackage page. https://forsyde.github.io/tools.

html. Accessed: 2018-04-30.

Fowler, J. and Huttom, G. (2016). Towards a theory of reach. In Serrano, M. and Hage,
J., editors, Trends in Functional Programming, pages 22–39, Cham. Springer International
Publishing.

Grabmüeller, M. and Kleeblatt, D. (2007). Harpy. In Proceedings of the ACM SIGPLAN

workshop on Haskell workshop - Haskell 07. ACM Press.

Haskell (2018). The haskell purely functional programming language home page. https:

//www.haskell.org.

Herrera, F. and Villar, E. (2007). A framework for heterogeneous specification and design
of electronic embedded systems in SystemC. ACM Transactions on Design Automation of

Electronic Systems, 12(3):22–es.

Horita, A. Y., Bonna, R., and Loubach, D. S. (2019a). Analysis and comparison of frameworks
supporting formal system development based on models of computation. Springer - Advances

in Intelligent Systems and Computing, (800).

Horita, A. Y., Bonna, R., and Loubach, D. S. (2019b). Lempel-ziv-markov chain algorithm
modeling using models of computation and forsyde. Aerospace technology Congress 2019

(FT2019).

Horváth, Z., Plasmeijer, R., and Zsók, V., editors (2010). Central European Functional Pro-

gramming School - Third Summer School, CEFP 2009, Budapest, Hungary, May 21-23, 2009

and Komárno, Slovakia, May 25-30, 2009, Revised Selected Lectures, volume 6299 of Lec-

ture Notes in Computer Science. Springer.

Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P. (2007). A history of haskell: Being lazy
with class. In Proceedings of the Third ACM SIGPLAN Conference on History of Program-

ming Languages, HOPL III, pages 12–1–12–55, New York, NY, USA. ACM.

Jantsch, A. (2003). Modeling Embedded Systems and SoC’s. Morgan Kaufmann, San Francisco,
USA.

Jantsch, A. (2005). Models of embedded computation. Embedded Systems Handbook, chapter
Models of Embedded Computation. CRC Press.

Jantsch, A. and Sander, I. (2005). Models of computation and languages for embedded system
design. IEE Proceedings - Computers and Digital Techniques, 152(2):114.

Augusto Yoshio Horita

https://forsyde.github.io/tools.html
https://forsyde.github.io/tools.html
https://www.haskell.org
https://www.haskell.org

REFERENCES 87

Krizan, J., Ertl, L., Bradac, M., Jasansky, M., and Andreev, A. (2014). Automatic code genera-
tion from matlab/simulink for critical applications. In 2014 IEEE 27th Canadian Conference

on Electrical and Computer Engineering (CCECE), pages 1–6.

Leavline, E. J. (2013). Hardware implementation of lzma data compression algorithm. In
International Journal of Applied Information Systems (IJAIS).

Lee, E. (2015). The past, present and future of cyber-physical systems: A focus on models.
Sensors (Basel, Switzerland), 15:4837–4869.

Lee, E. and Messerschmitt, D. (1987). Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245.

Lee, E. and Sangiovanni-Vincentelli, A. (1998). A framework for comparing models of com-
putation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
17(12):1217–1229.

Lee, E. A. (2010). CPS foundations. In Design Automation Conference. ACM Press.

Lee, E. A. and Tripakis, S. (2010). Modal models in ptolemy. In 3rd International Workshop on

Equation-Based Object-Oriented Modeling Languages and Tools; Oslo; Norway; October 3,
number 047, pages 11–21. Linköping University Electronic Press.

Li, Q. and Yao, C. (2003). Real-Time Concepts for Embedded Systems. CRC Press, Inc., Boca
Raton, FL, USA, 1st edition.

Li, Z., Park, H., Malik, A., Wang, K. I.-K., Salcic, Z., Kuzmin, B., Glaß, M., and Teich, J.
(2017). Using design space exploration for finding schedules with guaranteed reaction times
of synchronous programs on multi-core architecture. Journal of Systems Architecture, 74:30–
45.

Loubach, D. S. (2016). A runtime reconfiguration design targeting avionics systems. In 2016

IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pages 1–8. IEEE.

Loubach, D. S., Nóbrega, E. G. O., Sander, I., Söderquist, I., and Saotome, O. (2016). Towards
runtime adaptivity by using models of computation for real-time embedded systems design.
In Aerospace Technology Congress, Solna, Stockholm. FTF - Swedish Society of Aeronautics
and Astronautics.

Martin, G. N. (1979). * range encoding: an algorithm for removing redundancy from a digitized
message.

Mathaikutty, D., Patel, H., Shukla, S., and Jantsch, A. (2008). Ewd: A metamodeling driven
customizable multi-moc system modeling framework. ACM Trans. Des. Autom. Electron.

Syst., 12(3):33:1–33:43.

Augusto Yoshio Horita

REFERENCES 88

MathWorks (2019a). Simulink documentation. https://www.mathworks.com/help/

simulink/index.html.

MathWorks (2019b). Simulink embedded coder website. https://www.mathworks.com/

products/embedded-coder.html.

Moraes, R. K. and Loubach, D. (2017). Functional programming paradigm application to real-
time embedded systems. UNICAMP Undergraduate Work.

Naylor, M. and Runciman, C. (2007). Finding inputs that reach a target expression. In Seventh

IEEE International Workshop on Source Code Analysis and Manipulation (SCAM 2007),

September 30 - October 1, 2007, Paris, France, pages 133–142.

Open Source Modelica Consortium (OSMC) (2019). Openmodelica website. https://

openmodelica.org/.

Paul, J. M. and Thomas, D. E. (2005). Chapter 15 - models of computation for systems-on-
chips. In Jerraya, A. A. and Wolf, W., editors, Multiprocessor Systems-on-Chips, Systems on
Silicon, pages 431 – 463. Morgan Kaufmann, San Francisco.

Pavlov, I. (2019). 7z format. http://www.7-zip.org/7z.html.

Pike, L., Wegmann, N., Niller, S., and Goodloe, A. (2013). Copilot: Monitoring embedded
systems. Innovations in Systems and Software Engineering, 9.

Ptolemaeus, C., editor (2014). System design, modeling, and simulation using Ptolemy II.
Ptolemy.org.

Rash, J. L., Hinchey, M. G., Rouff, C. A., Gračanin, D., and Erickson, J. (2006). A
requirements-based programming approach to developing a nasa autonomous ground con-
trol system. Artificial Intelligence Review, 25(4):285–297.

Runciman, C., Naylor, M., and Lindblad, F. (2008). Smallcheck and lazy smallcheck: Auto-
matic exhaustive testing for small values. SIGPLAN Not., 44(2):37–48.

Salomon, D. (2007). Data Compression: The Complete Reference. Springer. With contributions
by Giovanni Motta and David Bryant.

Sander, I. (2002). The forsyde methodology. In Swedish System-on-Chip Conference.

Sander, I. (2003). System Modeling and Design Refinement in ForSyDe. PhD thesis, Royal
Institute of Technology KTH.

Sander, I. and Jantsch, A. (1999). Formal system design based on the synchrony hypothesis,
functional models, and skeletons. In Proceedings Twelfth International Conference on VLSI

Design. (Cat. No.PR00013). IEEE.

Augusto Yoshio Horita

https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://openmodelica.org/
https://openmodelica.org/
http://www.7-zip.org/7z.html

REFERENCES 89

Sander, I., Jantsch, A., and Attarzadeh-Niaki, S.-H. (2016). ForSyDe: System design using a
functional language and models of computation. In Handbook of Hardware/Software Code-

sign, pages 1–42. Springer Netherlands.

Scott, M. L. (2009). Programming Language Pragmatics, Third Edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition.

Seshia, S. A., Hu, S., Li, W., and Zhu, Q. (2017). Design automation of cyber-physical systems:
Challenges, advances, and opportunities. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 36(9):1421–1434.

Sinaei, S. and Fatemi, O. (2016). Novel heuristic mapping algorithms for design space ex-
ploration of multiprocessor embedded architectures. In 2016 24th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing (PDP), pages 801–804.

Standard Performance Evaluation Corporation (SPEC) (2019). 657.xz s spec cpu 2017 bench-
mark description. http:/www.spec.org/cpu2017/Docs/benchmarks/657.xz_s.html.

Stuijk, S. (2018). Sdf3 website. http://www.es.ele.tue.nl/sdf3/.

Stuijk, S., Geilen, M., and Basten, T. (2006). Sdf3: Sdf for free. In Sixth International Confer-

ence on Application of Concurrency to System Design (ACSD’06), pages 276–278.

Theelen, B. D., Geilen, M. C. W., Basten, T., Voeten, J. P. M., Gheorghita, S. V., and Stuijk,
S. (2006). A scenario-aware data flow model for combined long-run average and worst-
case performance analysis. In Fourth ACM and IEEE International Conference on Formal

Methods and Models for Co-Design, 2006. MEMOCODE ’06. Proceedings., pages 185–194.

Turner, D. A. (2013). Some history of functional programming languages. In Loidl, H.-W.
and Peña, R., editors, Trends in Functional Programming, pages 1–20, Berlin, Heidelberg.
Springer Berlin Heidelberg.

University of California, B.-o. (2018). Icyphy home page. https://ptolemy.berkeley.

edu/projects/icyphy/. [Online; Stand 19. Dezember 2012].

University of California, Berkeley-online (2018). Ptolemyii download page. http://ptolemy.
berkeley.edu/ptolemyII/ptII11.0/index.htm.

Zhao, X. and Li, B. (2017). Implementation of the lzma compression algorithm on fpga. In
2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pages
1–2.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343.

Augusto Yoshio Horita

http:/www.spec.org/cpu2017/Docs/benchmarks/657.xz_s.html
http://www.es.ele.tue.nl/sdf3/
https://ptolemy.berkeley.edu/projects/icyphy/
https://ptolemy.berkeley.edu/projects/icyphy/
http://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
http://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm

	Introduction
	Research Objective
	Research Scope
	Research Requirements
	Expected Results
	Document Structure

	Background
	Embedded and Cyber-Physical Systems
	Models of Computation (MoC)
	Tagged Signal Model (TSM)
	Timed Models of Computation
	Untimed Models of Computation
	Hybrid Models

	Frameworks supporting formal MoCs
	Formal System Design (ForSyDe)
	PtolemyII

	MoCs Perspective under PtolemyII and ForSyDe
	ForSyDe Overview
	PtolemyII Overview

	Functional Programming Paradigm
	Haskell Programming Language

	Imperative Programming Paradigm
	Java Language

	Straightforward Paradigms Comparison
	Properties Verification
	Automatic Code Generation
	Main Related Works
	Summary

	A Method for Possible Automation Exposure
	Analysis and Identification of Possible Automation Approaches - The AIPAA Method
	Problem Characterization
	MoC Definition
	Framework Selection
	Modeling and Simulation
	Properties Verification
	Directions to Implementation Details and System Implementation

	Analysis of Possible Automation Approaches
	Proposed Automation to Properties Verification
	Automatic Code Generation

	Illustrative Example
	Problem Characterization
	MoC Definition
	Framework Selection
	Modeling and Simulation
	Properties Verification
	Implementation Details and Implement System

	Summary

	AIPAA Method Application
	LZMA - The Problem Statement
	Problem Characterization
	Sliding Window Encoding
	Range Encoding

	MoC Definition
	Scenario-Aware Dataflow (SADF) MoC

	Framework Selection
	Modeling and Simulation
	SADF LZMA Model Description
	LZMA Modeling with ForSyDe SADF MoC
	Model Simulation

	Properties Verification
	SADF MoC Properties and Verification Methods
	LZMA Model Properties Verification

	Implementation Details and Implement System
	Summary

	Results, Analysis and Discussion
	Literature Review
	Case Studies Specification
	Framework Selection Criteria
	Case Study Modeling Based on Formal Methods
	Analysis Identifying Steps to be Automated
	Properties Verification with ``Quickcheck''
	Automatic Code Generation

	Scientific Publications
	Summary

	Conclusion
	Specific Conclusions
	Work Requirements Traceability

	Main Contributions
	General Conclusions
	Recommendations and Future Works

