
UNIVERSIDADE ESTADUAL DE
CAMPINAS

Instituto de Matemática, Estatística e
Computação Científica

ROBERTO ASSIS MACHADO

Coding Theory:
An approach through metrics which respect

support, and other issues

Teoria de Códigos:
Uma abordagem usando métricas que
respeitam suporte e outros problemas

Campinas
2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296905238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Roberto Assis Machado

Coding Theory:
An approach through metrics which respect support, and

other issues

Teoria de Códigos:
Uma abordagem usando métricas que respeitam suporte

e outros problemas

Tese apresentada ao Instituto de Matemática,
Estatística e Computação Científica da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Doutor em Matemática.

Thesis presented to the Institute of Mathe-
matics, Statistics and Scientific Computing
of the University of Campinas in partial ful-
fillment of the requirements for the degree of
Doctor in Mathematics.

Supervisor: Marcelo Firer

Este exemplar corresponde à versão
final da Tese defendida pelo aluno
Roberto Assis Machado e orientada
pelo Prof. Dr. Marcelo Firer.

Campinas
2019



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

    
  Machado, Roberto Assis, 1991-  
 M18c MacCoding theory : an approach through metrics which respect support, and

other issues / Roberto Assis Machado. – Campinas, SP : [s.n.], 2019.
 

   
  MacOrientador: Marcelo Firer.
  MacTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Matemática, Estatística e Computação Científica.
 

    
  Mac1. MacWilliams, Identidade de. 2. Códigos corretores de erros (Teoria da

informação). 3. Dualidade de métricas. 4. Soma condicional (Teoria da
codificação). I. Firer, Marcelo, 1961-. II. Universidade Estadual de Campinas.
Instituto de Matemática, Estatística e Computação Científica. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Teoria de códigos : uma abordagem usando métricas que
respeitam suporte e outros problemas
Palavras-chave em inglês:
MacWilliams identity
Error-correcting codes (Information theory)
Metrics duality
Conditional sum (Coding theory)
Área de concentração: Matemática
Titulação: Doutor em Matemática
Banca examinadora:
Marcelo Firer [Orientador]
Alexander Barg
Patrick Solé
Marcelo Muniz Silva Alves
Carlile Campos Lavor
Data de defesa: 09-09-2019
Programa de Pós-Graduação: Matemática

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-0282-0742
- Currículo Lattes do autor: http://lattes.cnpq.br/5752752377009452  

Powered by TCPDF (www.tcpdf.org)



Tese de Doutorado defendida em 09 de setembro de 2019 e aprovada

pela banca examinadora composta pelos Profs. Drs.

Prof(a). Dr(a). MARCELO FIRER

Prof(a). Dr(a). ALEXANDER BARG

Prof(a). Dr(a). MARCELO MUNIZ SILVA ALVES

Prof(a). Dr(a). PATRICK SOLÉ

Prof(a). Dr(a). CARLILE CAMPOS LAVOR

A  Ata  da  Defesa,  assinada  pelos  membros  da  Comissão  Examinadora,  consta  no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria de Pós-Graduação do Instituto de
Matemática, Estatística e Computação Científica.



Acknowledgements

First, I would like to thank my parents, my grandparents and my brother for
their unconditional support during my time at the University of Campinas. Without their
support and faith in me, I would not be the man I am today.

Next, I would like to convey my warmest gratitude to my advisor Professor
Marcelo Firer, who allowed me to conduct my study in his research group. His guidance,
generous contribution of knowledge and experience, valuable comments and encouragement
from the start until the end of my study were fundamental to the development of this
work.

I wish to thank my colleagues and friends at the Institute of Mathematics,
Statistics and Computing Science for sharing me discussions of mathematics, numerous
coffees, lunches, and laugh at all times, especially: Akemi, Andrés, Giselle, Chris, Leithold
and Luis. Without you, this would have been so much harder and with no bike rides.

I need to thank all the people who create such a good atmosphere in the lab. I
would like to thank Akemi, Jerry Pinheiro, and Marcos Spreafico, who as good friends,
were always willing to help and give their best suggestions. My research would not have
been possible without their bits of help.

I would also like to acknowledge my committee members, Alexander Barg,
Carlile Campos Lavor, Marcelo Muniz and Patrick Solé for their careful reading and their
valuable comments and suggestions.

For the funding of this work, I would like to thank Fapesp by grants 2015/11286-
8 and 2017/14616-4. The first one was fundamental for developing the project as well as
for attending important conferences and schools around the world. The second one made
possible to be a part of an important group of research on Coding Theory led by Olgica
Milenkovic. This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

At last but not least, I would like to thank Olgica Milenkovic for her en-
thusiasm and guidance during my exchange program at the University of Illinois at
Urbana-Champaign. This time was really important for my professional formation as a
researcher.



Resumo
Esta tese estuda métricas definidas por peso e respeitam o suporte dos vetores (TS-
métricas) no contexto de teoria de códigos. Sua principal preocupação, considerando
famílias específicas de métricas, é explorar e entender alguns resultados "estruturais"das
métricas, a saber: descrever o grupo de isometrias lineares e, estabelecer condições para
a validade da Identidade MacWilliams (uma relação entre a distribuição de peso de um
código e a distribuição de peso - possivelmente de um peso modificado - do código dual)
e da propriedade de extensão MacWilliams (quando isometrias lineares entre códigos
lineares podem ser estendidas para isometrias lineares em todo o espaço). Esses resultados
são primeiro explorados para duas famílias de TS-métricas: as métricas combinatoriais
de Gabidulin e as métricas de posets-bloco-rotulados, uma nova família de TS-métricas
introduzida neste trabalho. Além disso, é apresentada uma abordagem sistemática ao
espaço de todas as TS-métricas, trabalhando em três frentes. Primeiro mostramos que
toda TS-métrica pode ser obtida por meio de rotulagem das arestas do cubo de Hamming.
Em seguida, introduzimos um operador condicional entre TS-métricas e mostramos que
toda TS-métrica pode ser obtida como uma sequência de somas condicionais de métricas
poset ou métricas combinatoriais. Ainda considerando as TS-métricas, introduzimos um
conceito de dualidade de métrica que generaliza o conceito existente em todas as instâncias
conhecidas nas quais vale uma identidade de MacWilliams. Finalmente, como um assunto
a parte, apresentamos alguns resultados relevantes em relação à representação de dígrafos.

Palavras-chave: Métricas que respeitam suporte, Identidade de MacWilliams, soma
condicional, dualidade de métricas.



Abstract
This thesis concerns about metrics defined by weights that respect vector support (TS-
metrics) in the context of code theory. The main goal, considering specific families of
metrics, is to explore and understand some “structural” metrics results, namely: to
describe the group of linear isometries and to establish conditions for the validity of the
MacWilliams Identity (a relationship between the weight distribution of a code and the
weight distribution - possibly of a modified weight - of its dual code) and the MacWilliams
extension property (when linear isometries between linear codes can be extended to linear
isometries in the whole space). These results are explored for two TS-metric families:
Gabidulin’s combinatorial metrics and labeled-poset-block metrics, a new family of TS-
metrics which is introduced in this work. Also, we present a systematic approach to
the space of all TS-metrics, working in three different ways: First, we show that every
TS-metric can be obtained by labeling the edges of the Hamming cube. Next, we introduce
a conditional operator between TS-metrics and show that every TS-metric can be obtained
as a sequence of conditional sums between poset or combinatorial metrics. Still considering
TS-metrics, we introduced a concept of metric duality that generalizes the existing ones in
all known instances in which a MacWilliams identity holds. Finally, as a separate subject,
we present some relevant results regarding the representation of digraphs.

Keywords: Metrics which respect support, MacWilliams’ Identity, conditional sum,
metrics duality.
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Introduction

In coding theory, there are two main sources of decoding criteria: a probabilistic
(Maximum Likelihood Decoding - MLD) and a metric (Minimum Distance Decoding -
MDD). While the first one focuses on the properties of the channel and is the optimal
criterion (in terms of minimizing the error probability of the encoding-transmission-
decoding process), the last is an approximation to the true value (MLD) that may help in
the implementation of decoding algorithms.

The most usual and important channel is the binary symmetric channel, for
which the MLD criterion matches the MDD criterion determined by the Hamming metric.
This means that given any code C ⊂ V and any received message x ∈ V , then the MLD and
MDD criteria generate the same set of codewords, i.e., arg max

c∈C
P (x|c) = arg min

c∈C
dH(x, c),

for all x ∈ V .

Besides this crucial role, of being matched to the binary symmetric channel,
the Hamming metric has two properties that can be stated in a more general setting:

P1 Weight condition: The metric dH is determined by the Hamming weight
wtH , i.e., dH(u, v) = wtH(u− v).

P2 Support condition: If the vectors u = (u1, . . . , un) and v = (v1, . . . , vn) are
such that supp(u) ⊂ supp(v), then wtH(u) ≤ wtH(v), where supp(u) = {i ∈ {1, . . . , n} :
ui 6= 0}. In this case we say that the metric/weight respects support.

The first of these properties makes metrics suitable for working with linear
codes. It ensures that the minimal distance equals the minimal weight and it is a necessary
and sufficient condition for performing MDD through the syndrome decoding algorithm.
We should remark that a metric d is defined by a weight if, and only if, it is invariant by
translations, in the sense that d(u + x, v + x) = d(u, v), for all u, v, x ∈ Fnq . The second
property makes it meaningful in the context of coding theory, in the sense that, considering
binary codes, no extra error can improve the result.

Metrics satisfying both of these properties are called TS-metrics, where T
refers to translation invariance and S to the support condition.

Many of the metrics that have been explored in the literature in the context
of Coding Theory satisfy both properties (see, for example, a recent survey of Gabidulin
(GABIDULIN, 2012)). We cite, for example, the combinatorial metrics (GABIDULIN,
1973) and the poset metrics (BRUALDI; GRAVES; LAWRENCE, 1995), as much as its
generalizations: poset-block metrics (ALVES; PANEK; FIRER, 2008), digraph metrics
(ETZION; FIRER; MACHADO, 2017), weighted-posets (HYUN; KIM; PARK, 2017), etc.
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This thesis studies TS-metrics in the context of coding theory. First of all, we
consider two families of such metrics, namely the combinatorial and the labeled-poset-block
metrics. These are two large families of TS-metrics, with very small intersection. The
first family was introduced in 1973 and the second one is firstly introduced in this work.
Neither is studied in the literature, so we start exploring some “structural” results of the
metrics, namely: to describe the group of linear isometries and to establish conditions for
the validity of the MacWilliams Identity and the MacWilliams extension property.

The long term goal is to contribute to a better understanding of the space of
all TS-metrics. We do it by exploring the role of two distinguished families of such metrics:
Gabidulin’s combinatorial metrics and the poset metrics. These two families are roughly
disjoint (the intersection of the two families contains only the Hamming metric) and
despite of being large families of metrics (in the sense that the number of different metrics
grows exponentially with n) they are not sufficient to describe all possible TS-metrics,
not even by considering the equivalence classes of metrics1. However, any TS-metric can
be approximated by combinatorial and poset metrics, in the following sense: we define
an operation in the space of TS-metrics, the conditional sum of metrics, which allows to
obtain any TS-metric as a conditional sum of combinatorial and poset metrics. In some
sense, the treatment of different families of TS-metrics can be unified by labeling the edges
of the Hamming cube and, in this very generic setting, we can give a useful description of
the group of linear isometries. Finally, we explore the concept of dual weight and metric,
which allows us to produce Mac Williams’ type identities in a very generic setting. We
show that this concept coincides with the usual concept of dual poset metric (or dual
graph metric) in every instance where a MacWilliams Identity is known to hold.

Besides this systematic study of TS-metrics, we present some results in a
different direction, concerning the coloring of digraphs. These results were obtained while
visiting Prof. Olgica Milenkovic in 2018.

The work is organized as follows:

Chapter 1: Here we study Gabidulin’s combinatorial metrics, an important
and unexplored instance of TS-metrics. First, we describe the group of linear isometries
of combinatorial metrics and characterize those that admit a MacWilliams-type identity.
Considering the binary case, we classify the metrics satisfying the MacWilliams extension
property (for disconnected coverings) and, for connected coverings, we give a necessary
condition for the extension property hold.

Chapter 2: We introduce the labeled-poset-block metrics, a new family of
TS-metrics, a generalization of the digraph metrics. We give a full description of the
1 We say that two metrics on Fn

q are equivalent if they determine the same MDD criterion, in every
possible instance. A precise definition is introduced in Chapter 3.
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group of linear isometries and determine sufficient conditions to ensure the existence of a
MacWilliams’ identity and for the validity of the MacWilliams extension property.

Chapter 3: Here we start to look at the set of all TS-metrics. We consider it
as a space with a structure determined by an equivalence relation which arises naturally
in the context of Coding Theory. We show how these metrics can be obtained from
the edge-labeled Hamming cube and, based on this representation, we could obtain a
description for the group of linear isometries (for q > 2). Next, we introduce the concept of
conditional sum of metrics and determine what are the conditions that, out of two metrics
respecting the support, the conditional sum give rise to a new such metric. Considering
these operators, we show that poset and combinatorial metrics can be considered as
generators of the space of TS-metrics, in the sense that any equivalence class contains a
representative that can be obtained by a finite conditional sum of poset and combinatorial
metrics.

Chapter 4: In this chapter, we reap important results in coding theory for
TS-metrics. We introduce a very broad definition of duality of a weight (and hence of a
TS-metric) that allows us to understand the concept of a MacWilliams’ Identity in a very
general sense. Then, we derive an algorithmic result to decide if a MacWilliams’ Identity
exists and, in the positive case, the identity depends only on the set of metric-spheres,
and not on particular codes. The MacWilliams identity for many of the known cases of
TS-metrics (Hamming metric, hierarchical posets, combinatorial metrics, and so on), are
particular instances of this result, so we should call it a generalized MacWilliams identity.

Chapter 5: This chapter is independent of the previous ones. Consider a
directed graph (digraph). To each vertex it is assigned a set of colors, under the following
conditions: two vertices are connected if and only if they share at least one color and the
head vertex has a strictly smaller color set than the tail. We seek to estimate the smallest
possible color set that can explain the observed digraph topology. To address this problem,
we introduce the new notion of a directed intersection representation of a digraph and
show that it is well-defined for all directed acyclic graphs (DAGs). We then proceed to
introduce the directed intersection number (DIN), the smallest number of colors needed
to represent a DAG. Our main results are upper and lower bounds on the DIN of DAGs.
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1 Combinatorial metrics

The family of combinatorial metrics, an instance of TS-metrics, was introduced
in 1973 by E. M. Gabidulin (GABIDULIN, 1973) and it attends some usefulness condition:
“The b-burst metric can be considered as a combinatorial metric” (GABIDULIN, 2012).
The study of combinatorial metrics rested nearly untouched since its introduction and just
recently, after they were mentioned in a survey of 2012 (GABIDULIN, 2012), the interest
in these metrics has returned. In order to determine the manageability of such metrics, it
is necessary to explore the details of their geometry. This is the direction we work here.

Some subfamilies of combinatorial metrics have been widely explored in the
literature, for example, the block metrics in (FENG; XU; HICKERNELL, 2006) and
the translational metrics in (MOHAMED; BOSSERT, 2015). In the general setting of
combinatorial metrics, we can find very few papers. As one of the few exceptions, we cite
the work (BOSSERT; SIDORENKO, 1996) concerning Singleton-type bounds.

The structural coding properties like the MacWilliams’ Identities and the
MacWilliams’ Extension property had not been yet explored in this context. In this
chapter we characterize the combinatorial metrics having a MacWilliams-type Identity
and we describe the group of linear isometries of such metrics. Concerning the extension
property, we have two different cases. If the covering is not connected, we give necessary
and sufficient conditions for a combinatorial metric to satisfy the extension property. For
the connected case, we give a necessary condition, which we believe is also a sufficient one.

This chapter is organized as follows. In Section 1.1 we present the definition of
the combinatorial metric and some basic properties of these metrics. In Section 1.2 we
characterize the combinatorial metrics that admits a MacWilliams’ identity. In Section 1.3
we describe the group of linear isometries of a space endowed with a combinatorial metric
(over an alphabet with q > 2 elements). In Section 1.4 we give necessary and sufficient
conditions for a disconnected covering to determine a metric which satisfies an extension
property of isometries, similar to the MacWilliams Extension Theorem. For the connected
case we present a necessary condition.

1.1 Preliminaries

Let Fnq be the n-dimensional vector space over the field Fq, [n] := {1, . . . , n}
and Pn := {A : A ⊂ [n]} the power set of [n]. We say that a family A ⊂ Pn is a covering
of a set X ⊂ [n] if X ⊂ ∪A∈AA. If F is a covering of [n], then the F-combinatorial weight
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of u = (u1, . . . , un) ∈ Fnq is the integer-valued map wtF defined by

wtF(u) = min{|A| : A ⊂ F and A is a covering of supp(u)},

where supp(u) := {i ∈ [n] : ui 6= 0} is the support of u. Each element A ∈ F is called a
basic set of the covering.

As showed in (GABIDULIN, 1973), the function dF : Fnq × Fnq → N defined by

dF(u, v) = wtF(u− v)

satisfies the axioms of a metric and is called an F-combinatorial metric.

Example 1.1.1 (Block Metrics, (FENG; XU; HICKERNELL, 2006)). Suppose that F is a
partition of [n], that is, the basic sets are pairwise disjoint. In this case, the F-combinatorial
metric is also called a block metric. The particular case, in which every basic set is a
singleton (F = {{1}, {2}, . . . , {n}}), determines the classical Hamming metric.

Example 1.1.2 (b-burst Metric, (Bridwell; Wolf, 1970)). Given an integer b, define
[b] + i := {1 + i, 2 + i, . . . , b+ i}. The family

F[b] = {[b], [b] + 1, [b] + 2, . . . , [b] + (n− b)}

is a covering of [n], where we assume that b ≤ n. The metric determined by F[b] is called
the b-burst metric.

Consider the coverings F1 = {[n]} and F2 = {[n], B} where B ⊂ [n] is any
nonempty subset. Both coverings determine the same metric: for every x, y ∈ Fnq ,

dF1(u, v) = dF2(u, v) =

 0 if u = v

1 if u 6= v
.

In order to eliminate multiplicity (different coverings determining the same metric), we will
define the redundancy of basic sets: given a covering F , we say that A ∈ F is F -redundant
(or just redundant) if there is B ∈ F , with A ⊂ B and A 6= B. We denote by F the family
of all redundant basic sets. In the sequence we will present two propositions whose proofs
follow straightforward from the previous definitions.

Proposition 1.1.3. Given a covering F of [n], the set F2 = F \ F is also a covering of
[n] and the metrics dF and dF2 are equal.

Proposition 1.1.4. Two different coverings with no redundancy determine different
metrics.

Due to Proposition 1.1.3, we may (and will) assume that F has no redundancy.
We end this section with a definition which will be used many times later.
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Definition 1.1.5. A covering F is called a k-partition if it is a partition of [n] (A∩B = ∅,
for all A,B ∈ F , A 6= B) and every A ∈ F has constant cardinality k = |A|. In this case,
the F-combinatorial metric is called an (F , k)-combinatorial metric.

We remark that different k-partitions define different metrics. However, if F1

and F2 are two k-partitions of [n], there is a permutation σ ∈ Sn that transforms one
partition into the other, in the sense that A ∈ F1 ⇐⇒ σ(A) ∈ F2. It follows that the
action of σ on Fnq , σ(x1, x2, . . . , xn) = (xσ(1), xσ(2) , . . . xσ(n)) defines an isometry between
the two metric spaces. For this reason, while considering a k-partition, we need not to
specify a particular one.

1.2 MacWilliams’ Identities

The classical MacWilliams identity, presented in (MACWILLIAMS, 1963), is a
remarkable result in coding theory that relates, in the case of the Hamming metric, the
weight enumerators of a code and of its dual code. When another metric is in place, to
establish such relations may not be possible, as we can see in the counterexamples for the
Lee metric constructed in (SHI; SHIROMOTO; SOLÉ, 2015) and in the classification of
poset-block metrics admitting a MacWilliams-type identity presented in (Pinheiro; Firer,
2012).

Despite the fact that MacWilliams identity had not been studied in the context
of combinatorial metrics, the case of block metrics is included in the cases studied in
(Pinheiro; Firer, 2012) and this is a special instance of combinatorial metrics: those
determined by partitions. We now classify all combinatorial metrics which admits a
MacWilliams type identity. We start with some basic definitions.

As usual, the dual of a linear code C ⊂ Fnq is the linear code C⊥ = {u ∈ Fnq :

u · c =
n∑
i=1

uici = 0 for every c ∈ C}.

The F - weight enumerator of a code C is the polynomial

WF
C (x) =

∑
c∈C

xwtF (c) =
D∑
i=0

Aix
i,

where Ai = |{c ∈ C : wtF(c) = i}|. When no confusion may arise, we write WC(x),
omitting the index F .

Definition 1.2.1. A combinatorial metric dF admits a MacWilliams-type identity if the
F-weight enumerator of a code determines the F-weight enumerator of its dual, i.e., if
WC1(x) = WC2(x) then WC⊥1 (x) = WC⊥2 (x).
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Restating the results of (FENG; XU; HICKERNELL, 2006) in terms of combi-
natorial metrics, we have the following:

Proposition 1.2.2. (FENG; XU; HICKERNELL, 2006) Suppose F is a partition of [n].
The combinatorial metric dF admits a MacWilliams-type identity if, and only if, dF is an
(F , k)-combinatorial metric, for some k ∈ N.

Our goal is to prove that these are all the combinatorial metrics admitting a
MacWilliams identity.

Proposition 1.2.3. Let dF be a combinatorial metric. If dF satisfies a MacWilliams-type
identity then F is a partition and dF is an (F , k)-combinatorial metric for some k.

Proof. If F is a partition of [n], the result follows from Proposition 1.2.2.

Suppose F is not a partition (in particular, dF is not an (F , k)-combinatorial
metric). This means there are A,B ∈ F such that A ∩B 6= ∅ and A 6= B. We shall prove
that dF does not satisfy a MacWilliams-type identity.

Let i1 ∈ A ∩ B. Assuming that F has no redundancy we find that there is
i0 ∈ A \ B. We denote by ei the vector in Fnq having the i-th coordinate equals to 1
and supp(ei) = {i}. Consider the unidimensional codes over Fq with length n given by
C1 = span{ei0} and C2 = span{ei0 + ei1}.

A B

i0 i1

supp(C1)

supp(C2)

By direct computations we conclude that

WC1(x) = WC2(x) = 1 + (q − 1)x.

Given c = (c1, . . . , cn) ∈ C⊥1 , we get that c − ci1ei0 ∈ C⊥2 , since ci0 = 0, and
hence we get a linear map T : C⊥1 → C⊥2 by setting T (c) = c− ci1ei0 . By construction, T is
an injection, hence a bijection, because dim(C1) = dim(C2) .

Claim: The map T preserves weight (wtF(c) = wtF(T (c)) for every c ∈ C⊥1 ) if,
and only if, WC⊥1 (x) = WC⊥2 (x).

Proof of the claim: If T preserves weight, then, by definition, WC⊥1 (x) =
WC⊥2 (x).

Suppose now that WC⊥1 (x) = WC⊥2 (x). Since supp(c) ⊂ supp(T (c)), it follows
that wtF(c) ≤ wtF(T (c)). On the other hand, consider A ⊂ F to be a covering of supp(c)
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such that |A| = wtF(c). Since supp(T (c)) \ supp(c) ⊂ {i0}, it follows that supp(T (c)) ⊂
A∪{C} for every C ∈ F with i0 ∈ C. Hence, wtF(T (c)) ≤ |A|+1 = wtF(c)+1. Therefore,

wtF(c) ≤ wtF(T (c)) ≤ wtF(c) + 1.

Let D = max{wtF(c) : c ∈ C⊥1 } = max{wtF(c) : c ∈ C⊥2 }. From the inequalities in (1.1) we
find that every codeword of C⊥1 with F -weight D is mapped into a codeword of C⊥2 with the
same weight D. Considering now codewords of C⊥1 with F -weight D − 1, the inequalities
obtained in (1.1) ensure that they are mapped either into codewords with weight D− 1 or
D. Since T is a bijection and we are assuming that WC⊥1 (x) = WC⊥2 (x), all the codewords
of C⊥2 with weight D are image of codewords of C⊥1 having weight D, hence, if c ∈ C⊥1 and
wtF(c) = D − 1, then wtF(T (c)) = D − 1. We can move on by induction: assuming that
T preserves every weight greater than K, with the same argument we conclude that T
maps a codeword c ∈ C⊥1 with wtF(c) = K into a codeword T (c) with wtF(T (c)) = K .
Hence, the claim is proved.

Returning to the main proof, we shall prove that dF does not satisfy a
MacWilliams-type identity. We recall that C1 = span{ei0} and A,B ∈ F were cho-
sen to satisfy both A ∩B 6= ∅ and i0 ∈ A \B. We define c :=

∑
i∈B

ei, so that supp(c) = B

and wtF(c) = 1. Furthermore, c ∈ C⊥1 because i0 6∈ B. Since {i0} ∪B = supp(T (c)) and F
has no redundancy, it follows that wtF(T (c)) > 1. Thus, T does not preserve weights and,
from our claim, it follows that WC⊥1 (x) 6= WC⊥2 (x), that is, the combinatorial metric dF
does not satisfy a MacWilliams-type identity.

The following theorem is an unified restatement of Propositions 1.2.2 and 1.2.3.

Theorem 1.2.4. A combinatorial metric dF admits a MacWilliams-type Identity if, and
only if, dF is an (F , k)-combinatorial metric.

1.3 Linear dF -isometries

In the context of coding theory, the linear group of isometries has been charac-
terized considering many different metrics (see for example (PANEK et al., 2008; ETZION;
FIRER; MACHADO, 2017)) and it has been used as a relevant tool to prove coding-related
results. We aim to describe the group of linear isometries of the n-dimensional space Fnq
when endowed with a combinatorial metric.
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We denote by GL (n,F)q the group of linear isometries of
(
Fnq , dF

)
, i.e.,

GL (n,F)q = {T : Fnq → Fnq : T is linear and

dF (u, v) = dF (T (u) , T (v)) ∀ u, v ∈ Fnq }.

Let Sn be the group of permutations of [n]. Given φ ∈ Sn, considering the
action of Sn on the coordinates of the elements of Fnq , we define a map Tφ : Fnq → Fnq as
Tφ ((u1, u2, . . . , un)) = (uφ(1), uφ(2), . . . , uφ(n)).

To determine whether Tφ is a dF -isometry or not, we need the following
definition.

Definition 1.3.1. Let F be a covering of [n]. We say that a permutation φ : [n] → [n]
preserves F if it maps a basic set into a basic set, i.e., φ(A) ∈ F for every A ∈ F . We
denote G := GF = {Tφ : φ preserves F}.

The following proposition determines a relation between permutations preserv-
ing coverings and linear dF -isometries.

Proposition 1.3.2. Given a permutation φ ∈ Sn, the linear map Tφ is a dF -isometry if,
and only if, φ ∈ GF .

Proof. Consider u = (u1, . . . , un) ∈ Fnq with wtF(u) = k and let A1, . . . , Ak ∈ F be a
family of basic sets such that supp(u) ⊂ A1 ∪ · · · ∪ Ak. Given φ ∈ Sn, from the definition
of Tφ we have that

Tφ(u) = Tφ

(
n∑
i=1

uiei

)
=

n∑
i=1

uiTφ(ei) =
n∑
i=1

uieφ(i)

so that supp(Tφ(u)) = φ(supp(u)).

Suppose that φ preserves F . It follows that φ(supp(u)) ⊂ φ(A1) ∪ · · · ∪ φ(Ak)
and this means that wtF(Tφ(u)) ≤ wtF(u). The equality follows straightforward by using
the same construction for the inverse permutation φ−1.

On the other hand, if Tφ is an isometry, we wish to show that φ(A) ∈ F , for
every A ∈ F . Let u :=

∑
i∈A

ei. Since Tφ is an isometry and wtF(u) = 1, there is a basic set

B ∈ F such that supp(Tφ(u)) = φ(A) ⊂ B. By the same reasoning, it follows that φ−1(B)
is contained in a basic set C and, by construction, A ⊂ φ−1(B) ⊂ C. Assuming that F
has no redundancy, we get that A = φ−1(B) = C. Equivalently, φ(A) = B is a basic set,
i.e., φ preserves F .
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Let F be a covering of [n] and denote F i := {A ∈ F : i ∈ A}. It determines an
equivalence relation ∼F on [n] by the following rule:

i ∼F j ⇐⇒ F i = F j,

in other words, any basic set containing i also contains j and vice versa.

The next table illustrates the equivalence classes, considering some particular
coverings of {1, 2, 3, 4, 5}.

F F i (list of elements) Equivalence classes
F1 = F2 : {1, 2, 3};

{1, 2, 3}, {3, 4, 5} F3 : {1, 2, 3}, {3, 4, 5}; {1, 2}, {3}, {4, 5}
F4 = F5 : {3, 4, 5}

F1 : {1, 2, 3};F2 : {1, 2, 3}, {2, 3, 4};
{1, 2, 3}, {2, 3, 4}, {3, 4, 5} F3 : {1, 2, 3}, {2, 3, 4}, {3, 4, 5}; {1},{2},{3},{4},{5}

F4 : {2, 3, 4}, {3, 4, 5};F5 : {3, 4, 5}
F1 : {1, 2, 3, 4};

{1, 2, 3, 4}, {2, 3, 4, 5} F2 =F3 = F4 : {1, 2, 3, 4}, {2, 3, 4, 5}; {1}, {2, 3, 4}, {5}
F5 : {2, 3, 4, 5}

We denote by HF = {H1, . . . , Hs} the set of equivalence classes. We can express

[n] =
s⊔
i=1

Hi, where the union is disjoint.

We stress that if an element of an equivalence class Hi belongs to a basic set
Aj ∈ F , then the entire class Hi is contained in Aj. Assuming that F = {A1, . . . , Ar}, let
M = M(F ;HF) be the s× r incidence matrix defined as follows

mij =

 1, if Hi ⊂ Aj

0, otherwise.
.

Let vk be the k-th row of M . We say that Hi dominates Hj if supp(vj) ⊂ supp(vi). This
defines an order relation on the rows of the incidence matrix. We say that Hi is a head in
a family of equivalence classes if it is a maximal element in the family. We may assume,
without loss of generality, that the classes are ordered in a natural way, i.e., given two
distinct classes Hi and Hj, if Hi dominates Hj then i > j.

For each subset X ⊂ [n] there is a minimum set HF(X) = {Hi1 , . . . , Hik} of
equivalence classes of F such that X ⊂ Hi1 ∪ · · · ∪Hik . The minimum set header of X is
defined by

X̂ = {i ∈ X : i ∈ Hj for some head Hj ∈ HF(X)}.

Given u = (u1, . . . , un) ∈ Fnq the cleared out form of u is the vector ũ =
(ũ1, . . . , ũn) where ũi = ui if i ∈ ̂supp(u) and ũi = 0 otherwise, i.e., we maintain the
coordinates corresponding to heads and reset the others.
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An n × n-matrix B = (bxy) with coefficients in Fq is said to respect M if for
every block (submatrix) Bij = (bxy)x∈Hi,y∈Hj , the following conditions hold:

1. Each block Bii = (bxy)x,y∈Hi is an invertible matrix;

2. If i 6= j, then Bij 6= 0 implies that Hi dominates Hj.

We denote by KM as the set of all matrices respecting M . We stress that due
to the natural ordering in the classes, condition 2 implies that Bij = 0 for every i < j.
Furthermore, we will assume, without loss of generality, that Hi = {Ni−1 + 1, . . . , Ni}

where Ni =
i∑

j=1
|Hj| and N0 = 0. Therefore, in this configuration, B will always be a block

lower triangular matrix having Bii in its diagonal.

Lemma 1.3.3. If B ∈ KM , then B−1 ∈ KM .

Proof. We stress that B is an invertible matrix since it is a block triangular matrix in
which all the blocks in its diagonal, namely, the blocks Bii = (bxy)x,y∈Hi , are invertible
matrices. Also, due to the triangular shape of matrix B, it is straightforward to conclude
that (B−1)ii are invertible matrices for every i.

Suppose (B−1)ij 6= 0 for some i 6= j, then Bii(B−1)ij 6= 0. Since BB−1 = In,

we have that
j∑
k=i

Bik(B−1)kj = 0 for every i 6= j. Hence, there is k0 > i such that

Bik0(B−1)k0j 6= 0 and so, both Bik0 and (B−1)k0j are non null matrices. In this way, by
repeating the steps for (B−1)k0j , we conclude that Bij 6= 0, i.e., that Hi dominates Hj .

Proposition 1.3.4. An n × n matrix B respecting M is a linear dF -isometry, i.e.,
KM ⊂ GL (n,F)q.

Proof. If wtF(u) = k for a vector u ∈ Fnq , then there are A1, . . . , Ak ∈ F covering the
support of u, i.e., supp(u) ⊂ A1 ∪ · · · ∪Ak. Since B respects M , every covering of supp(u)
also covers supp(Bu), that is, wtF(Bu) ≤ wtF(u). By Lemma 3.2.11, B ∈ KM implies
that B−1 ∈ KM and so we have that wtF(u) = wtF(Bu).

The previous proposition ensures that for every vector u ∈ Fnq there is a linear
dF -isometry S ∈ KM such that S(u) is the cleared out of u, i.e., S(u) = ũ.

From here on, in this section, we need to assume that q > 2.

Lemma 1.3.5. Let T ∈ GL(n,F)q with q > 2. Given ei ∈ Fnq , the support of T̃ (ei) is
contained in a single equivalence class of F .
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Proof. Without loss of generality, let us assume that supp(T̃ (ei)) ⊂ H1 ∪H2. In order to
be explicit, let Si ∈ KM be a linear dF -isometry such that Si(T (ei)) = T̃ (ei) and, further,
suppose that it decomposes as

T̃ (ei) = (Si(T (ei))1 + (Si(T (ei))2,

with supp((Si(T (ei))j) ⊂ Hj for every j ∈ {1, 2}. We denote Ri = SiT and R−1
i = T−1S−1

i .

By definition, supp(T̃ (ei)) contains only heads, and this means that neither
H1 dominates H2 nor H2 dominates H1. It follows that there are equivalence classes
K1

1 , . . . , K
1
s and K2

1 , . . . , K
2
r such that:

1. The sets H1 ∪
(
K1

1 ∪ · · · ∪K1
s

)
and H2 ∪

(
K2

1 ∪ · · · ∪K2
r

)
are each contained in a

single basic set.

2. Neither H1 ∪H2 ∪
(
K1

1 ∪ · · · ∪K1
s

)
nor H1 ∪H2 ∪

(
K2

1 ∪ · · · ∪K2
r

)
is contained in

a single basic set.

This means there are vectors u, v ∈ Fnq with supp(u) ⊂ K1
1 ∪ · · · ∪ K1

s and supp(v) ⊂
K2

1 ∪ · · · ∪K2
r such that

wtF(Ri(ei)1 + u) = wtF(Ri(ei)2 + v) = 1

and

wtF(Ri(ei) + u) = wtF(Ri(ei) + v) = 2.

We now claim that i 6∈ supp(R−1
i (v)). If this was not the case, we would have that

supp(ei+R−1
i (v)) ⊂ supp(R−1

i (v)) and applying Ri to both the vectors we get supp(Ri(ei)+
v) ⊂ supp(v) and this implies wtF(Ri(ei) + v) ≤ wtF(v), contradicting the fact that
wtF(Ri(ei) + v) = 2 and wtF(v) = 1. The same reasoning shows that i 6∈ supp(R−1

i (u)).

Since we are assuming that q > 2, there are α, γ ∈ F∗q such that 1 +α and 1 + γ

are not zero. Thus,

wtF((1 + α)Ri(ei)1 +Ri(ei)2 + u) = wtF(Ri(ei)1 + (1 + γ)Ri(ei)2 + v) = 2.

In a similar manner we can prove that i /∈ supp(R−1
i (Ri(ei)1)+u) and i /∈ supp(R−1

i (Ri(ei)2)+
v). But this means that the i-th coordinates of both vectors R−1

i (Ri(ei))1 and R−1
i (Ri(ei))2

are equal to zero, a contradiction since, by definition, R−1
i (Ri(ei)) = ei.

The previous Lemma ensures the existence of a class Hi ∈ HF that contains
supp(T̃ (ei)). In the next lemma we prove that this class does not depend only on i, but
also on T and on the class containing i.
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Lemma 1.3.6. Let T ∈ GL(n,F)q with q > 2. Given a class H ∈ HF , there is H ′ ∈ HF
such that, for every i ∈ H, supp(T̃ (ei)) ⊂ H ′.

Proof. Suppose that supp(T̃ (ei)) ⊂ H1 and supp(T̃ (ej)) ⊂ H2 with H1 6= H2, for i, j ∈ H.
A similar construction of the previous lemma allows us to prove that ˜T (ei + ej) is contained
in a unique equivalence class and this implies that either H1 dominates H2 or H2 dominates
H1. Let us assume that H1 dominates H2. This means there is a basic set A containing
H2 but not H1. Take a vetor v ∈ Fnq with supp(v) ⊂ A such that wtF(T (ei) + v) = 2 and
wtF(T (ej) + v) = 1. Furthermore, since we are assuming q > 2 there are α, β ∈ Fq, such
that i ∈ supp(αei +T−1(v)) and j ∈ supp(βej +T−1(v)) which contradicts the assumption
that T is a dF -isometry.

Note that it is straightforward that KM is a normal subgroup of GL(n,F)q
because supp( ˜Tφ ◦ T ◦ T−1

φ (u)) = supp(T̃ (u)), but we still does not have a semidirect
product since G ∩ KM 6= {I}. In order to obtain two subgroups whose intersection is
the identity, we shall restrict the permutation part to those that only permutes the
equivalence classes in HF = {H1, . . . , Hs}. We recall that we labeled the equivalence

classes as Hi = {Ni−1 + 1, . . . , Ni} where Ni =
i∑

j=1
|Hj| and N0 = 0. It follows that, given

φ ∈ Ss (where s = |HF |), it induces a permutation on [n] by setting φF(Ni+ j) = Nφ(i) + j.
We now consider the subgroup of GF ⊆ G determined by such permutations, that is:

GF := {TφF : φ ∈ Ss}.

Hence, we clearly have a semidirect product, i.e.:

Lemma 1.3.7. For q > 2, the group GFKM is the semidirect product GF nKM .

Theorem 1.3.8. Given a covering F , we have that GF n KM ⊆ GL(n,F)q. Equality
holds for q > 2. For q = 2 equality may or not hold, depending of F .

Proof. Propositions 5 and 6 ensures that GF nKM ⊆ GL(n,F)q. Lemmas 1.3.5 and 1.3.6
ensure that for each equivalence class Hi of F , there is Si ∈ KM such that Si(T (ej) =
T̃ (ej)) for j ∈ Hi and Si(T̃ (ek)) = T̃ (ek) for every k /∈ Hi. It follows that, given T ∈
GL(n,F)q, the composition S1S2 · · ·SnT determines a permutation of basic sets of F , that
is, S1S2 · · ·SnT ∈ G. It is clear that G can be written as the product G = GF ·G1 where
G1 := {I} ∪ (G \GF). Furthermore, G1 ⊂ KM , hence there is R ∈ G1 ⊂ KM such that
RS1S2 · · ·SnT ∈ GF .
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1.4 MacWilliams’ Extension Property

To define equivalence among linear codes, there are two distinct approaches, a
local one and a global one. For the Hamming metric, F. J. MacWilliams, in her thesis (see
(MACWILLIAMS, 1962)), proved that the two approaches are equivalent. To be more
precise, we need some definitions.

Definition 1.4.1. (Local Equivalence) Two linear codes C1, C2 ⊂ Fnq are locally F-
equivalent if there exists a linear map t : C1 → C2 which preserves the F-weight, in
the sense that wtF(u) = wtF(t(u)), for all u ∈ C1.

Definition 1.4.2. (Global Equivalence) Two linear codes C1, C2 ⊂ Fnq are globally F-
equivalent, or just F-equivalent, if there is a dF -isometry T ∈ GL(n,F)q such that
T (C1) = C2.

The MacWilliams extension theorem states that every Hamming weight pre-
serving linear map t : C1 → C2 can be extended to a monomial map. Hence, if F induces
the Hamming metric, then two codes are locally F-equivalent if, and only if, they are
F -equivalent. Naturally, in the case of combinatorial metrics, global equivalence implies
local equivalence, but the opposite is not always true as we shall see.

Definition 1.4.3. (MacWilliams’ Extension Property - MEP) An F-combinatorial metric
satisfies the MacWilliams’ Extension Property if for any linear codes C1 and C2, every
F-weight preserving linear map t : C1 → C2 can be extended to a dF -isometry, i.e., there is
T ∈ GL(n,F)q such that T (c) = t(c), for every c ∈ C1.

Proposition 1.4.4. If there are A,B ∈ F such that |A| 6= |B|, then dF does not satisfy
MEP.

Proof. Suppose there are A,B ∈ F such that |A| > |B|. Define C ⊂ [n] such that C ⊂ A,
A ∩B ⊂ C and |C| = |B|. Let σ : C → B be a bijective map such that σ(i) = i for every
i ∈ B ∩ A. Hence, a local linear map t can be defined by putting t(ei) = eσ(i) for every
i ∈ C. By construction, t is an F -weight preserving linear map. Given i0 ∈ A \C, if T is a
linear extension of t and αi ∈ Fq for every i ∈ C, then

T

ei0 +
∑
j∈C

αjej

 = T (ei0) +
∑
j∈C

αjeσ(j) = T (ei0) +
∑
j∈B

ασ−1(j)ej.

We now consider two different cases:

• If supp(T (ei0)) ∩ B = ∅, considering αi = 1 for every i ∈ C, since F has no
redundancy, wtF(ei0 +

∑
j∈C

αjej) > 1. Therefore, T is not a dF -isometry.
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• If supp(T (ei0))∩B 6= ∅, considering ασ−1(i) = 0 for every i ∈ supp(T (ei0)) and αi = 1
otherwise, by the same reasoning T is not a dF -isometry.

In order to characterize the disconnected coverings satisfying the MacWilliams
extension property, we need the definition of connected components.

Definition 1.4.5. A family (or covering) F is said to be connected if there are no
A,B ⊂ F such that A ∪ B = F with A ∩B = ∅, for every A ∈ A and B ∈ B. A maximal
connected subset A ⊂ F is called a connected component of F . If F is not connected, we
say that it is disconnected.

Proposition 1.4.6. Suppose F has two connected components. A combinatorial metric
dF satisfies MEP if, and only if, F is a k-partition.

Proof. If we suppose that dF satisfies MEP, Proposition 1.4.4 ensures that |A| = |B|, for
every A,B ∈ F . Let A1 and A2 be the two connected components of F . We claim that
|A1| = |A2| = 1. Indeed, if |A1| > 1, there exist A,B ∈ A1 such that A ∩B 6= ∅. Let us
define

u =
∑
i∈A

ei, v =
∑

i∈B\A
ei and w =

∑
i∈A∩B

ei.

Consider a basic set C ∈ A2 and let j0 ∈ C and i0 ∈ A\B. The linear map t : span{u, v} →
span{ei0 , ej0} defined by t(u) = ej0 and t(v) = ei0 is a F -weight-preserving map. Suppose
T is a dF -isometry which extends t. Thus,

T

(∑
i∈B

ei

)
= T (v) + T (w) = ei0 + T (w).

Since wtF
(
T (
∑
i∈B

ei)
)

= wtF
(∑
i∈B

ei

)
= 1, it follows that supp (T (w)) ⊂

⋃
A∈A1

A. On the

other hand, for u+ w =
∑

i∈A\B
ei we get that

T

 ∑
i∈A\B

ei

 = T (u)− T (w) = ej0 − T (w).

Since wtF(T (u − w)) = 1, it follows that supp (T (w)) ⊂
⋃

A∈A2

A. Hence, T is not a

dF -isometry.

For the other implication, suppose that F is a k-partition, since there are only
two connected components, k = n/2: F = {A1, A2}, with A1 ∩ A2 = ∅ and |A1| = |A2| =
n/2. Let C1, C2 be linear codes and t : C1 → C2 be a F -weight preserving linear map.
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Note that every u ∈ Fnq can be uniquely decomposed as u = u1 + u2, where
supp(u1) ⊂ A1 and supp(u2) ⊂ A2.

Given x ∈ C1 with x1 6= 0 and x2 = 0, then t(x) = t(x1) and supp(t(x)) =
supp(t(x1)) is contained in either A1 or A2, because t is an F-weight preserving linear
map. Let us assume that supp(t(x)) ⊂ A1. Moreover, we have to remark the following:

• For every codeword y = y1 ∈ C1, supp(t(y)) = supp(t(y1)) ⊂ A1 (otherwise wtF(x+
y) = 1 6= wtF (t(x+ y)) = 2);

• For every codeword y = y2 ∈ C1, supp(t(y2)) ⊂ A2, (otherwise we would have
wtF(x+ y) = 2 and wtF(t(x+ y)) = 1);

• A similar situation holds for the previous items if we consider x = x1 + x2 with
x1 = 0 and x2 6= 0;

• If x = x1 + x2 with both x1 6= 0 and x2 6= 0, then it holds for t(x) = t(x)1 + t(x)2,
i.e., both t(x)1 6= 0 and t(x)2 6= 0.

From the above discussion it follows that the map t induces a permutation
σ : [2]→ [2] of the basic sets A1 and A2, in the sense that, supp(t(xi)) ⊂ Aσ(i), for every
x ∈ C1 and i ∈ [2].

Let β = {c1, . . . , ck} be a basis of C1 and t(β) = {t(c1), . . . , t(ck)} be the
corresponding basis of C2. We remark that t(ci)σ(j) depends only on cji , i.e., if ci 6= ci0 and
cji = cji , then t(ci)σ(j) = t(ci0)σ(j).

Hence, if βi = {cir1 , . . . , c
i
rji
} is a linearly independent set, then S(βi) :=

{t(cr1)σ(i), . . . , t(crji )
σ(i)} is also a linearly independent set. We can extend βi to a linearly

independent set β′i = βi ∪ {vi1, . . . , visi}, where supp(vij) ⊂ Ai and |β′i| = n/2. Analogously,
S(βi) can be extended to a linearly independent set S(βi)′ = S(βi) ∪ {wi1, . . . , wisi} where
supp(wij) ⊂ Aσ(i) and |S(βi)′| = n/2. Therefore, β′1 ∪ β′2 and S(β1)′ ∪ S(β2)′ are both basis
of Fnq .

The linear map T : Fnq → Fnq defined as

T (u) =

 t(crs)σ(i), if u = cirs ∈ βi
w
σ(i)
j , if u = vij

(1.2)

is an extension of t, indeed, if c ∈ C1 is a codeword, then c =
k∑
l=1

αlcl with αl ∈ Fq and

T (c) =
k∑
l=1

αlT (cl) =
k∑
l=1

αl[T (c1
l ) + T (c2

l )].
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Since c1
l =

j1∑
i=1

γic
1
ri
and c2

l =
j2∑
i=1

λic
2
ri
where γi, λi ∈ Fq, we get that T (c1

l ) =
j1∑
i=1

γiT (c1
ri

)

and T (c2
l ) =

j2∑
i=1

λiT (c2
ri

). By the definition of T , it follows that

T (c) =
k∑
l=1

αl

 j1∑
i=1

γit(cri)σ(1) +
j2∑
i=1

λit(cri)σ(2)


and then,

T (c) =
k∑
l=1

αl
[
t(cl)σ(1) + t(cl)σ(2)

]
=

k∑
l=1

αlt(cl) = t

(
k∑
l=1

αlcl

)
= t(c),

i.e., T is an extension of t.

To conclude, it is enough to prove that T is an dF -isometry. Given u ∈ Fnq , we
need to consider separately whether wtF(u) = 1 or wtF(u) = 2.

If wtF(u) = 1 we have that supp(u) ⊂ Ai for some i ∈ [2], or equivalently, u ∈
span(β′i) and from Expression 1.2 we get that T (u) ∈ span(β′σ(i)), so that wtF(T (u)) = 1.

If wtF(u) = 2 we have that supp(u) ∩ Ai 6= ∅ for both i = 1 and i = 2,
or equivalently, {u} ∩ span(β′i) 6= ∅. Again, from Expression 1.2 we get that {T (u)} ∩
span(β′σ(i)) 6= ∅ for both i = 1 and i = 2, so that wtF(T (u)) = 2.

Hence, T preserves F -weight, i.e., it is a dF -isometry.

From here up to the end of this chapter, we assume q = 2, so that every code
will be binary. Furthermore, we will write GL(n,F) instead of GL(n,F)2.

Proposition 1.4.7. If F has 3 or more connected components, then the F-combinatorial
metric satisfies MEP if, and only if, it is the Hamming metric.

Proof. It is well known that the Hamming metric satisfies MEP (MacWilliams’ Extension
Property). For the opposite direction, we may assume, for simplicity, that F has exactly
3 connected components: A1, A2 and A3. By supposing dF is not the Hamming metric,
Proposition 1.4.4 ensures that |A| is constant and |A| > 1, for every A ∈ F . We consider
basic sets A ∈ A1, B ∈ A2 and C ∈ A3 and elements a0, a1 ∈ A, b0, b1 ∈ B and c ∈ C
where a0 6= a1 and b0 6= b1. Define

t(ea0 + eb0) = ea1 + ec and t(ea1 + eb1) = ea1 + eb1 .

By construction, t is an F -weight preserving linear map. For any linear extension T of t,
we claim that T is not a dF -isometry. Indeed, since

T (ea0) = ea1 + ec + T (eb0) (1.3)
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and
T (ea1 + eb1 + eb0) = ea1 + eb1 + T (eb0), (1.4)

Equation (1.3) ensures that T is a dF -isometry if either T (eb0) = ea1 or T (eb0) = ec, but
in both the cases we get a contradiction by (1.4). Therefore, T /∈ GL(n,F).

Summarizing the previous results, we have the following theorem:

Theorem 1.4.8. Let dF be a combinatorial metric over Fn2 . If F has l connected compo-
nents (with l ≥ 2), dF satisfies MEP if, and only if, either l = 2 and F is a k-partition or
l > 2 and dF is the Hamming metric.

To complete the characterization of the combinatorial metrics over Fn2 satisfying
the MEP, all is left is the case when the covering F is connected, which is addressed in
the next theorem.

Theorem 1.4.9. Let dF be a combinatorial metric over Fn2 . If F is connected and the
metric dF satisfies MEP then F = Fn,k := {A ⊂ [n] : |A| = k}, for some 1 < k ≤ n.

Proof. Suppose |B| = k for some B ∈ F . By Proposition 1.4.4, |B| = k for every
B ∈ F . We have to show that every set J ⊂ [n] with |J | = k is an element of F . Let
J = {i1, . . . , ik} ⊂ [n]. Hence, in order to show that J is an element of F , it is sufficient to
show that wtF(ei1 + · · ·+ eik) = 1 because in this case J ⊂ B for some B ∈ F and since
|B| = |J | = k, it follows that J = B.

Suppose first that wtF(ei1 + · · ·+ eik) = 2. Let A1 and A2 two basic sets such
that {i1, . . . , ik} ⊂ A1∪A2. Consider B1 = J ∩ (A1 \A2) and B2 = J \B1, so B1∪B2 = J ,
furthermore, B1 ⊂ A1 and B2 ⊂ A2.

Case 1: A1 ∩ A2 6= ∅: Consider i0 ∈ A1 ∩ A2 and let

u =
∑
i∈B1

ei and v =
∑
i∈B2

ei.

Note that i0 6∈ supp(u) since, by construction, supp(u) = B1 ⊂ A1 \ A2 and i0 ∈ A1 ∩ A2.
Furthermore, supp(v) 6= {i0}, since neither B1 ⊂ B2 nor B2 ⊂ B1. Hence, if we consider
the linear map defined by

t(0) = 0, t(ei0 + v) = ei0 , t(v) = u and t(ei0) = u+ ei0 ,

it is clearly a local linear isometry (we stress that at this point it is important to consider
Fq to be the binary field). Suppose that t can be extended to a global linear isometry T .
Since

T (u+ v) = T (u) + u
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and wt(u+ v) = 2 because supp(u+ v) = J , it follows that wt(T (u) + u) = 2. Note that

T (u+ ei0) = T (u) + u+ ei0 .

We now need to consider two different instances:

• Suppose i0 6∈ supp(T (u)). Since i0 6∈ supp(u), we get that

supp(T (u) + u+ ei0) = supp(T (u) + u) ∪ {i0}.

But wtF(T (u) + u) = 2, hence wtF(T (u) + u + ei0) ≥ 2, a contradiction, since
wtF(u+ ei0) = 1.

• Suppose now i0 ∈ supp(T (u)). Since

T (u+ ei0 + v) = T (u) + ei0 ,

we get that supp(T (u) + ei0) ⊂ supp(T (u)), which is also a contradiction because
wtF(u+ ei0 + v) = 2. Therefore, wtF(ei1 + · · ·+ eik , 0) 6= 2.

Case 2: A1 ∩ A2 = ∅: If there are basic sets D1, D2 ∈ F such that B1 ⊂ D1,
B2 ⊂ D2 and D1 ∩ D2 6= ∅, we can apply the Case 1 for A1 = D1 and A2 = D2. The
remaining case is when D1 ∩D2 = ∅ for every basic sets D1, D2 ∈ F such that B1 ⊂ D1

and B2 ⊂ D2.

Let D = {D1, . . . , Dr} be a connected family of basic sets satisfying B1 ⊂ D1

and B2 ⊂ Dr. Suppose D is a minimal family, in the following sense: We assume that
Di ∩ Di+1 6= ∅ and removing any Di we lose this property. We let |B1| = l, so that
|B2| = k − l. Let i0 be the minimal index such that there is a set of k − l elements
B′2 = {s1, . . . , sk−l} ⊂ Di0 with wtF(ej1 + · · ·+ ejl + es1 + · · ·+ esk−l) = 2. If i0 = 2, since
D1 ∩D2 6= ∅, we can apply case 1 in A1 = D1 and A2 = D2 and obtain a contradiction.
If i0 > 2, considering B′′2 = {r1, . . . , rk−l} such that B′′2 ⊂ Di0−1 and B′′2 ∩ Di0 6= ∅, by
the minimality of i0 there is a basic set D such that B1 ⊂ D and B′′2 ⊂ D, which is a
contradiction since {D,Di0 , . . . , Br} is a connected family of basic sets satisfying B1 ⊂ D,
B2 ⊂ Dr with r − i0 + 1 < r elements, contradicting the minimality of D.

Therefore, by cases 1 and 2, it follows that wtF(ei1 + · · ·+ eik) 6= 2.

Suppose now that wtF(ei1 +· · ·+eik) > 2, then there is a subset {j1, . . . , jl} ⊂ J

such that wtF(ej1 + · · · + ejl) = 2 and, using the same previous argument we get a
contradiction. So, wtF(ei1 + · · ·+ eik) = 1 and, consequently, J ∈ F .

We define the F-degree of a vertex i ∈ [n] as the cardinality of F(i) =
{A ∈ F : i ∈ A}. We denote it by degree(i). We note that F -degrees are meaningful only
if we assume that the covering F has no redundancy.
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Corollary 1.4.10. Suppose that the F-degre is not constant. Then, (Fn2 , dF) does not
satisfy the MEP.

We conjecture that the reciprocal of Theorem 1.4.9 also holds, that is, a metric
dF determined by Fn,k satisfies the MEP, for any 1 ≤ k ≤ n. The extremal cases are
known: for k = 1 we have the Hamming metric and for k = n we have the 0-1 metric
(dF(u, v) = 1, for all u 6= v) and the MEP is satisfied since every bijection is an isometry.
We were able to show, using brute force, that the result holds for small values of n and k,
but a proof for the general case is not available and it stays as a conjecture.
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2 Labeled-poset-block metrics

This chapter is devoted to introduce a family of TS-metrics which is a general-
ization for the digraph metrics which arises naturally from the reduced canonical form
for directed graphs presented in (ETZION; FIRER; MACHADO, 2017). This canonical
form makes a contraction of each maximal cycle into a unique vertex and, then, such
vertex is labeled by the number of vertices contained in the original cycle. If we allow
this labeling to assume different values, such extension also generalizes the poset-block
metrics by labeling every maximal cycle with 1. The goal in this chapter, is to present an
structured and more generic family of metrics that may be controlled in the sense that all
the coding results obtained in (ETZION; FIRER; MACHADO, 2017) can be extended
to this family. Despite the generality of this approach, we also produce a description for
the group of linear isometries and determine conditions for a MacWilliams’ identity and
extension property to be available.

2.1 Posets, blocks, labels and metrics: basic definitions

Let P = ([m],�P ) be a partially ordered set (abbreviated as poset), where �p
is a partial order over [m] := {1, . . . ,m}. An ideal in P = ([m],�P ) is a subset I ⊆ [m]
such that, if b ∈ I and a �P b, then a ∈ I. The set of all ideals in P is denoted by I(P ).
Given A ⊆ [m], we denote by 〈A〉P the smallest ideal of P containing A and call it the
ideal generated by A. An element a of a set A ⊆ [m] is called a maximal element of A if
a �P b for some b ∈ A implies b = a. The set of all maximal elements of A is denoted by
MP (A). Note that if I ⊆ [m] is an ideal, thenMP (I) is the minimal set that generates I,
i.e., 〈MP (I)〉P = I.

Given two posets P and Q over [m], a poset isomorphism is a bijection φ : [m]→
[m] such that i �P j ⇐⇒ φ(i) �Q φ(j). When P = Q, φ is called a P -automorphism.
The set of all P -automorphisms is a group denoted by Aut(P ).

A chain in a poset P is a subset X ⊆ [m] such that any two elements a, b ∈ X
are comparable, in the sense that a �P b or b �P a. We remark that any (finite) chain
has a unique maximal element. The height h(a) of an element a ∈ P is the cardinality
of a largest chain having a as the maximal element. The height h(P ) of the poset is the
maximal height of its elements, i.e., h(P ) = max {h(a) : a ∈ [m]}. The i-th level ΓPi of a
poset P is the set of all elements with height i, i.e., ΓPi = {a ∈ [m] : h(a) = i}. A poset
P is hierarchical if elements at different levels are always comparable, i.e., a ∈ ΓPi and
b ∈ ΓPj implies a ≺P b for any 1 ≤ i < j ≤ h(P ).
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Let us consider a map π : [n]→ [m] with n ≥ m (called a block map). A vector
u ∈ Fnq may be written as u = (u1, . . . , um), where ui ∈ Fkiq , with ki = |π−1(i)|, with
n = k1 + k2 + · · ·+ km. The π-support is defined as

suppπ(u) = {i ∈ [m] : ui 6= 0}.

Given a block function π : [n]→ [m], a poset P = ([m],�P ) and a label function
L : [m]→ N, the (P, π, L)-weight of u is defined as

wt(P,π,L)(u) =
∑

i∈〈suppπ(u)〉P

L(i).

For u, v ∈ Fnq , we define the labeled-poset-block distance by:

d(P,π,L)(u, v) = wt(P,π,L)(u− v).

Proposition 2.1.1. If the label function L assumes only positive values, then d(P,π,L)(u, v)
determines a metric over Fnq .

Proof. The proof follows straight from the definitions.

Remark 2.1.2. If π : [n]→ [n] is the identity map and L(i) = 1, for every i ∈ [n], then
the d(P,π,L) is a poset metric.

2.2 (P, π, L)-linear isometries

Let GL(P, π, L)q be the group of linear isometries of the space Fnq endowed
with a (P, π, L)-metric. Our goal in this section is to give a description for GL(P, π, L)q.

To be more precise,

GL(P, π, L)q = {T : Fnq → Fnq : T is linear,

d(P,π,L) (u, v) = d(P,π,L) (T (u) , T (v)) ,∀ u, v ∈ Fnq }

= {T : Fnq → Fnq : T is linear,

wt(P,π,L) (u) = wt(P,π,L) (T (u)) ,∀ u ∈ Fnq }

Similarly to what happens in the case of posets, GL(P, π, L)q can be described
as the semi-direct product of two subgroups. We start presenting one of them, which is a
subgroup of the permutation group [m] that preserves the involved structures: the order
structure P , the block map π and the label function L.

Definition 2.2.1. A map φ : [m] → [m] is a (P, π, L)-automorphism if it is a P -
automorphism with L(i) = L(φ(i)) and ki = kφ(i), for every i ∈ [m]. We denote by
Aut(P, π, L) the set of all (P, π, L)-automorphisms.



31

We remark that Aut(P, π, L) is a group. The following proposition follows
straight from the definition of d(P,π,L).

Proposition 2.2.2. Let φ be a (P, π, L)-automorphism. The linear map Tφ : Fnq →
Fnq defined by Tφ(eij) = eφ(i)j is an isometry. Moreover, the map ϕ : Aut(P, π, L) →
GL(P, π, L) that associates φ 7→ Tφ is an injective homomorphism of groups.

Proof. For every u =
∑
i,j

uijeij ∈ Fnq , the π-support of Tφ(u) is given by

suppπ(Tφ(u)) = suppπ(Tφ(
∑
i,j

uijeij))

= {φ(i) ∈ [m] : uij 6= 0 for some j}

= {φ(i) ∈ [m] : i ∈ suppπ(u)}.

Since φ is a (P, π, L)-automorphism, we have that
∑
i∈I

L(i) =
∑
i∈I

L(φ(i)) for every ideal I.

Thus, wt(P,π,L)(u) = wt(P,π,L)(Tφ(u)).

The fact that ϕ an injective group homomorphism is straightforward and follows
from the definitions.

We denote by A := {Tφ ∈ GL(P, π, L);φ ∈ Aut(P, π, L)} the subgroup of
isometries induced by (P, π, L)-automorphisms.

Proposition 2.2.3. Let T : Fnq → Fnq be a linear isomorphism satisfying the following
condition: for every ui ∈ Fkiq \{0}, there are u′i ∈ Fkiq and vi ∈ Fnq with suppπ(vi) ⊂ 〈i〉P \{i}
such that T (ui) = u′i + vi. Then, T ∈ GL(P, π, L).

Proof. First, note that suppπ(T (Fkiq )) ⊆ 〈i〉P . By the defining property of T , given u =
u1 + · · ·+um ∈ Fnq we have that T (u) = (u′1 +v1)+ · · ·+(u′m+vm) =

∑
i

(u′i+vi1 + · · ·+vim),

where vl = v1
l + · · ·+ vml is written in a canonical decomposition of Fnq = Fk1

q ⊕ · · · ⊕ Fkmq .
Note that, if T preserves maximal elements then T also preserves the (P, π, L)-weight.
So that, given u ∈ Fnq , let M(suppπ(u)) be the set of maximal coordinates of u. It is
simple to check if i ∈ M(suppπ(u)) then vij = 0, for every j ∈ [m]. This implies that
i ∈M(suppπ(T (u))).

On the other hand, if j ∈ M(suppπ(T (u))) then (u′j + vj1 + · · · + vjm) 6= 0.
If vjl 6= 0, there is then l 6= j such that l ∈ suppπ(u) and j �P l. This implies that
j ∈M(suppπ(u)). So that, T preserves the (P, π, L)-weight.

LetN be the set of (P, π, L)-linear isometries defined in the previous proposition.
Actually, N is a subgroup of GL(P, π, L)q. To prove it, we need two lemmas.
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Lemma 2.2.4. Consider T ∈ GL(P, π, L)q and ui ∈ Fkiq ⊂ Fnq . If j ∈ suppπ(T (ui)), then∑
k∈〈j〉P

L(k) ≤
∑

k∈〈i〉P

L(k).

Proof. For every j ∈ suppπ(T (ui)) we have that
∑

k∈〈j〉P

L(k) ≤
∑

k∈〈suppπ(T (ui))〉P

L(k). Since

T is a (P, π, L)-isometry, it follows that
∑

k∈〈j〉P

L(k) ≤
∑

k∈〈suppπ(T (ui))〉P

L(k) =
∑

k∈〈suppπ(ui)〉P

L(k).

Lemma 2.2.5. If T ∈ GL(P, π, L)q and ui ∈ Fkiq , then 〈suppπ(T (ui))〉P is a prime ideal.

Proof. Suppose that 〈suppπ(T (ui))〉P is not a prime ideal and let i1, . . . , ir be the maximal
elements of 〈suppπ(T (ui))〉P . Hence, T (ui) = ui1 + · · · + uir + uir+1 + · · · + uis , where
suppπ(ur+j)∩M(suppπ(T (ui))) = ∅, for every j ∈ [s]. It is clear that wt(P,π,L)(T−1(uij )) <
wt(P,π,L)(ui), for every j ∈ [r + s]. Furthermore, note that there is k ∈ {1, . . . , r + s} such
that i ∈ suppπ(T−1(uik)). From previous lemma, we have that wt(P,π,L)(ui)) ≤ wt(P,π,L)(uik)
which contradicts wt(P,π,L)(T−1(uij)) < wt(P,π,L)(ui). Thus, 〈suppπ(T (ui))〉P is a prime
ideal.

Since 〈suppπ(T (ui))〉P is a prime ideal, we can define a map φT : P → P where
φT (i) is the unique maximal element in (〈suppπ(T (ui))〉P ), where 0 6= ui ∈ Fkiq .

Theorem 2.2.6. Let T ∈ GL(P, π, L)q and consider the map φT . Then,

1. φT is a (P, π, L)-automorphism;

2. κ : GL(P, π, L)q → Aut(P, π, L) defined by T 7→ φT is a group homomorphism with
kernel equal to N . Thus, N is normal subgroup of GL(P, π, L)q;

3. κ ◦ ϕ(φ) = φ.

Proof. 1. To show that φT preserves the poset order, if i0 ≺ i1 then
∑

k∈〈i0〉P

L(k) <∑
k∈〈i1〉P

L(k). Since T is a (P, π, L)-linear isometry, we have that

∑
k∈〈i〉P

L(k) =
∑

k∈〈φT (i)〉P

L(k),

and so,
∑

k∈〈φT (i0)〉P

L(k) <
∑

k∈〈φT (i1)〉P

L(k). We stress that 〈φT (i0)〉P ⊆ 〈φT (i1)〉P , since

suppπ(T (Fkiq )) ⊆ 〈φT (i)〉P . Therefore, we have that φT (i0) ≺ φT (i1) and φT is a
(P, π, L)-homomorphism.
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To conclude, since we are considering only finite posets, it is enough to show the
injectivity of φT to conclude that it is an automorphism. If φT (i) = φT (j) then
〈suppπ(T (ui))〉P = 〈suppπ(T (uj))〉P for ui and uj under the conditions of φT . Since
T ∈ GL(P, π, L)q it follows that

∑
k∈〈{i,j}〉P

L(k) =
∑

k∈〈supp(T (ui+uj))〉P

L(k). Furthermore,

since 〈supp(T (ui + uj))〉P ⊆ 〈supp(T (ui))〉P ∪ 〈supp(T (uj))〉P = 〈supp(T (uj))〉P .
Thus, i = j and φT is injective, hence an automorphism of the poset.

2. Let T, S ∈ GL(P, π, L)q be such that φT (i) = j and φS(j) = l. Given 0 6= u ∈ Fkiq
we have that T (u) = uj + vj, where 0 6= uj ∈ Fkjq and suppπ(uj) ⊂ 〈j〉P \ {j} and
S(uj) = ul + vl under analogous conditions.

Thus, ST (u) = S(uj + vj) = ul + vl +S(vj). Since suppπ(vl +S(vj)) ⊂ 〈l〉P \ {l} and
ul ∈ Fklq , we have thatM(〈supp(T (ui + uj))〉P ) = l, and so, φST (i) = l = φS(φT (i)).
Therefore, κ is a group homomorphism.

Furthermore, given φ ∈ Aut(P, π, L), we have that κ(Tφ) = φ. It shows that κ is a
surjective homomorphism.

Since κ(T ) = id for each T ∈ N , then N ⊆ ker(κ). Conversely, if T ∈ ker(κ) then
suppπ(T (Fkiq )) ⊆ 〈i〉P for every i ∈ [m]. Since T ∈ GL(P, π, L)q, for 0 6= ui ∈ Fkiq ,
there is a nonzero u′i ∈ Fkiq and vi ∈ Fnq with suppπ(vi) ⊆ 〈i〉P \ {i} such that
T (vi) = v′i + ui; hence ker(φ) = N .

3. Follows straight from the definitions.

Corollary 2.2.7. N is a normal subgroup of GL(P, π, L)q.

Proof. It follows from the fact that N = ker(φT ), proved in item 2 of Theorem 2.2.6.

Now we can characterize the group

Theorem 2.2.8. Every linear isometry S can be written in a unique way as a product
S = F ◦ Tφ, where F ∈ N and φ ∈ Aut(P, π, L). Furthermore, GL(P, π, L)q is the
semi-direct product GL(P, π, L)q = N oA.

2.3 (P, π, L)-Canonical Decomposition of linear codes for hierar-
chical posets of directed cycles

Two linear codes C, C ′ ⊆ Fnq are (P, π, L)-equivalent if there is T ∈ GL(P, π, L)q
such that T (C) = C ′.



34

A decomposition C = C1 ⊕ · · · ⊕ Ch(P ) of a code C is called (P, π, L)-canonical
decomposition if suppπ(Ci) ⊆ ΓPi . Working with such decompositions simplifies the computa-
tion of all metric invariants of a code. Naturally, not every code admits a (P, π, L)-canonical
decomposition, but it may be equivalent to a code that has such a decomposition.

Definition 2.3.1. Let P = ([m],�) be a poset with h(P ) levels. We say that a linear code
C ⊆ Fnq admits a (P, π, L)-canonical decomposition if it is (P, π, L)-equivalent to a linear
code C̃ = C1 ⊕ · · · ⊕ Ch(P ), where suppπ(Ci) ⊆ ΓPi .

As we shall see, the hierarchical posets have a crucial role in finding canonical
decompositions.

Lemma 2.3.2. Let d(P,π,L) be a metric where poset P is hierarchical with h(P ) levels. Let
C ⊂ Fnq be a linear code with suppπ(C) ⊂ ΓPi , for some i ∈ [h(P )] and consider u ∈ Fnq
such thatM(suppπ(u)) ⊂ ΓPi and ũ 6∈ C, where ũ is such that ũi = ui if i ∈M(suppπ(u))
and ũi = 0 otherwise. Then, C ⊕ span{u} and C ⊕ span{ũ} are (P, π, L)-equivalent codes.

Proof. Since ũ 6∈ C, then α = {ũ, v1, . . . , vk} is a basis of C⊕span{ũ}, where {v1, . . . , vk} is
a basis of C. Extending α, by the canonical vectors, to a basis β = {ũ, v1, . . . , vk, ej1 , . . . , ejr}
of Fnq , we construct a linear map T : Fnq → Fnq by setting T (u) = ũ, T (vi) = vi and
T (ejk) = ejk that satisfies the desired conditions of the lemma. It is clear that ∆ =
{u, v1, . . . , vk, ej1 , . . . , ejr} is also a basis of Fnq .

It is enough to show that T preserves the (P, π, L)-weight. Since P is a hier-
archical poset, given v ∈ Fnq , we have thatM(suppπ(u)) ⊂ ΓPj , for some j ∈ [h(P )]. The
vector v can be decomposed as v = w + λu ∈ Fnq with λ ∈ Fq and w ∈ span{∆\{u}}.

If λ = 0, then T (w) = w and wt(P,π,L)(w) = wt(P,π,L)(T (w)).

If λ 6= 0 and j ∈ [h(P )] is such thatM(suppπ(v)) ⊂ ΓPj , then i ≤ j. If i < j,
then wt(P,π,L)(T (v)) = wt(P,π,L)(v), since

M(suppπ(T (v)) =M(suppπ(w + λũ)) =M(suppπ(w)) =M(suppπ(v)).

If i = j, then

M(suppπ(T (v))) =M(suppπ(w + λũ)) =M(suppπ(w + λu))

which implies that wt(P,π,L)(v) = wt(P,π,L)(T (v)).

Remark 2.3.3. Note that the linear (P, π, L)-isometry T constructed in the proof of
previous lemma satisfies suppπ(T (C ⊕ 〈u〉P )) ⊂ ΓPi and T (v) = v, whenever suppπ(v) ⊂
[n]\ΓPi . These properties will play a crucial role to construct a (P, π, L)-equivalent code in
a (P, π, L)-canonical form of a code.
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The next theorem is a generalization of the P -canonical decomposition for
poset metrics, determined in (FELIX; FIRER, 2012).

Given a poset P and u ∈ Fnq , the i-th P -projection ûP,i ∈ Fnq is defined by
ûP,ij = uj if j ∈ ΓPi and ûP,ij = 0 otherwise.

Theorem 2.3.4. The poset P is hierarchical if, and only if, any linear code D admits a
(P, π, L)-canonical decomposition.

Proof. First, suppose that P is a hierarchical poset with h(P ) levels. If dim(D) = 1, it is
enough to use Lemma 2.3.2, considering D = C ⊕ span{u} where C = {0} and 0 6= u ∈ D.

Suppose the result holds for linear codes with dimension smaller then k and
let D = span{v1} ⊕ span{v2, . . . , vk} be a k-dimensional code. The induction hypothesis
ensures that, for D′ = span{v2, . . . , vk}, there is a linear isometry T ′ such that T ′(D′) =
⊕li=1D

′
i and suppπ(D′i) ⊂ ΓPi . Since T ′(v1) 6∈ T ′(D′), then span{T ′(v1)} ∩ T ′(D′) = {0}

and there exists a level i such that T̂ ′(v1)
P,i

/∈ D′i.

Denote by i0 the maximal level with this property and let u = (u1, u2, . . . , um)
be defined by

ui =

 T ′(vi), if i ∈ ΓPj and j ≤ i0

0, otherwise.

Thus we find that T ′(D) = span{u}⊕T ′(D′). Considering C = D′i0 , Lemma 2.3.2
ensures there is T ∈ GL(P, π, L)q such that T (D′i) = D′i for i 6= i0 and suppπ(T (span{u}⊕
D′i0)) = suppπ(span{ũ} ⊕ D′i0) ⊂ ΓPi0 . Therefore, if Di = D′i for i 6= i0 and Di0 =
span{ũ} ⊕ D′i0 , then D̃ = T (T ′(D)) = ⊕li=1D′i is a linear code (P, π, L)-equivalent to D.

On the other hand, suppose that P is not hierarchical and let i ∈ [h(P )] be the
lowest level of P for which P fails to be hierarchical, i.e., there are a ∈ ΓPi and b ∈ ΓPi+1

such that a 6� b. Consider j ∈ π−1(a) and k ∈ π−1(b). The linear code C = span{ej + ek}
cannot be (P, π, L)-equivalent to a canonically decomposed code C̃. Indeed, Theorem
2.2.8 insures that any linear (P, π, L)-isometry T ∈ GL(P, π, L) induces an automorphism
φT : [m]→ [m]. Thus, the ideals 〈suppπ(T (ej))〉P and 〈suppπ(T (ek))〉P are generated by
φT (π(j)) ∈ [m] and φT (π(k)) ∈ [m], respectively. Moreover, since π(j) 6� π(k), we have that
φT (π(j)) 6� φT (π(k)). It follows thatM(suppπ(T (span{ej+ek}))) ⊃ {φT (π(j)), φT (π(k))}
is not contained in a single level. Since dim(C) = 1 and T ∈ GL(P, π, L) is taken arbitrarily,
we show that C does not admit a (P, π, L)-canonical decomposition.

Remark 2.3.5. In the proof of the previous theorem, we constructed a map T , considering
a basis β = {u1, . . . , uk} of D. For the purpose of this Theorem, the choice of the basis
is immaterial. For future purpose (Lemma 2.5.6), it is worth to note that the choice
may be done in such a way that the linear isometry T (which maps D into its canonical
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decomposition), restricted to β is defined by T (ui) = ũi. It follows that if P is hierarchical,
given a code C it is possible to find a basis β = {u1, u2, . . . , uk} such that, when considering
only the maximal components of each ui, we get a basis β̃ = {ũ1, ũ2, . . . , ũk} such that
supp(ũi) is contained in a single level of P and β̃ generates a code D that is a canonical
decomposition of C.

2.4 MacWilliams’ Identity and Extension Property

The existence of a (P, π, L)-canonical decomposition is a very useful tool,
allowing to simplify the computation of many metric invariants (minimal distance, packing
and covering radius) and also to determine conditions which ensure the validity of important
results in coding theory, such as the MacWilliams’ Extension Property. Just as an example,
we show how it allows to determine a type of MacWilliams’ Identity for linear codes.

Definition 2.4.1. A (P, π, L)-structure satisfies the unique decomposition property if, for
1 ≤ i ≤ h(P ), given S, S ′ ⊆ ΓPi such that

∑
a∈S

L(a) =
∑
b∈S′

L(b),

there is a bijection g : S → S ′ such that L(a) = L(g(a)) and |π−1(a)| = |π−1(g(a))| for all
a ∈ S.

The (P, π, L)-weight enumerator of a linear code C is the polynomial

W
(P,π,L)
C (X) =

n∑
i=0

A
(P,π,L)
i (C)X i

where A(P,π,L)
i (C) = |{c ∈ C : wt(P,π,L)(c) = i}|.

As we know, given a poset P ([n],�P ) its dual is the poset P⊥([n],�P⊥) defined
by the opposite relations

i �P j ∈ E ⇐⇒ j �P⊥ i.

It is easy to see that a set J ∈ I(P ) (i.e., J is an ideal in P ) if, and only if, its
complement J c ∈ I(P⊥).

Definition 2.4.2. (The MacWilliams Identity) A (P, π, L)-weight admits a MacWilliams
Identity if for every linear code C ⊆ Fnq , the (P, π, L)-weight enumerator W (P,π,L)

C (X) of C
determines the (P⊥, π, L)-weight enumerator W (P⊥,π,L)

C⊥ of the dual code C⊥.

Theorem 2.4.3. Consider a (P, π, L)-weight where P is a hierarchical poset. The (P, π, L)-
weight admits the MacWilliams Identity if, and only if, it satisfies the unique decomposition
property .
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Proof. This proof can be obtained in a similar way presented by Etzion in (ETZION;
FIRER; MACHADO, 2017), details is provided in Appendix 2.5 at the end of this
chapter.

The MacWilliams’ Extension Property is defined in the same way we did in
Chapter 1, when considering combinatorial metrics.

Definition 2.4.4. (The MacWilliams Extension Property) We say that (Fnq , d(P,π,L))
satisfies the MacWilliams Extension Property if for any pair of linear codes C and C ′ and
any linear map t : C → C ′ preserving the (P, π, L)-weight, there is a (P, π, L)-isometry
T ∈ GL(P, π, L)q such that T |C = t.

Differently of the poset metrics, the sufficient conditions on the triple (P, π, L)
that ensures the existence of a MacWilliams Identity (assuming P being a hierarchical
poset and L admits the unique decomposition property) are not enough to characterize
those metric spaces (Fnq , d(P,π,L)) that satisfy the MacWilliams Extension Property. Indeed,
let n = 6,m = 3. Consider the poset P to be the anti-chain poset (only the trivial relations)
on [3] and consider the block map

π(1) = π(2) = 1, π(3) = π(4) = 2 and π(5) = π(6) = 3,

and L : [3] → Z be constant equal to 2. Then, from Theorem 2.4.3, we have that
the (P, π, L)-weight admits the MacWilliams Identity. However, it does not satisfy the
extension property. Indeed, consider the linear codes C1 = {000000, 100010, 101000, 001010}
and C2 = {000000, 010010, 110011, 100001}. The linear map t : C1 → C2 defined by
t(100010) = 010010 and t(101000) = 110011 preserves the (P, π, L)-weight but any
possible linear extension does not preserve the (P, π, L)-weight of the vector 100000;
that is, t cannot be extended to T ∈ GL(P, π, L). An actual proof that it does not
satisfy the extension property will follow from Theorem 2.4.8, but the key point is that
3 = |suppπ(C1)| 6= |suppπ(C2)| = 2.

Such a situation can be avoided by assuming an additional constraint.

Definition 2.4.5. (Condition Ω) We say that the (P, π, L)-structure satisfies the condition
Ω if

|{i ∈ [m] : |π−1(i)| ≥ 2 and L(i) = k}| ≤ 2,

for every k ∈ L([m]).

From here on, we assume that the field Fq is binary, i.e., q = 2.

We have proved that every code has a canonical decomposition for a (P, π, L)-
weight when P is a hierarchical poset. Looking for a condition to ensure the extension
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property, we start with the simplest hierarchical poset: Let us assume P is an antichain, a
poset with only one level. Given a linear code C ⊂ Fn2 , we define

Ij(C) := {k ∈ suppπ(C);L(k) = j}.

When considering two codes C1 and C2, we shall write Ij(Ci) = I ij.

Lemma 2.4.6. Let P be an anti-chain and (P, π, L) a labeled-poset-block satisfying the
UDP and the Ω condition. Let C1 and C2 be linear codes in (Fn2 , d(P,π,L)) and t : C1 → C2 a
linear map preserving the (P, π, L)-weight. Then, |I1

j | = |I2
j |, for all j ≤ r = max{L(k) :

k ∈ [m]}.

Proof. Let us decompose the support of the codes as suppπ(Ci) = I i1 ∪ I i2 ∪ · · · ∪ I ir. It is
important to stress that some of the I ij may be empty; however, once I1

j = ∅, we must
have I2

j = ∅ as well. Indeed, suppose that I1
j 6= ∅. This means there is u ∈ C1 such that

suppπ(u) ∩ I1
j 6= ∅. But since P is assumed to be an anti-chain, we have that

wt(P,π,L)(u) =
∑

i∈suppπ(u)
L(i) =

∑
i∈suppπ(t(u))

L(i) = wt(P,π,L)(t(u))

and the UDP ensures that suppπ(t(u)) ∩ I2
j is also nonempty.

Let us consider 2 ≤ j ≤ r. Suppose that |I1
j | ≤ |I2

j |, since |I ij| ≤ 2 (the Ω
condition), then the possible values for (|I1

j |, |I2
j ) are (0, 0), (0, 1), (0, 2), (1, 1), (1, 2) and

(2, 2). The cases (0, 1) and (0, 2) cannot occur, since, as we just saw, I1
j = ∅ iff I2

j = ∅. We
need to discard the case (|I1

j |, |I2
j ) = (1, 2). Let u ∈ C1 be a vector such that suppπ(u) = I1

j .
The UDP ensures there is no v ∈ C2 such that suppπ(v) = I2

j . However, there must be
v, w ∈ C2 such that suppπ(v)∪ suppπ(w) = I2

j and then we have that either suppπ(v) = I2
j ,

or suppπ(w) = I2
j , or suppπ(v + w) = I2

j , a contradiction.

Now, we need to prove that I1
1 = I2

1 . We consider a set X = {u1, u2, . . . , us}

such that
s⋃
i=1

(suppπ(ui)∩ I1
1 ) = I1

1 , with s minimal. A careful use of the inclusion-exclusion

principle and the UDP ensures that∣∣∣∣∣
s⋃
i=1

(suppπ(ui) ∩ I1
1 )
∣∣∣∣∣ =

∣∣∣∣∣
s⋃
i=1

(suppπ(t(ui)) ∩ I2
1 )
∣∣∣∣∣ ≤ |I2

1 |

and we get that |I1
1 | ≤ |I2

1 |. A similar reasoning for the inverse t−1 ensures that |I1
1 | =

|I2
1 |.

Proposition 2.4.7. Let P be an anti-chain poset. The metric space (Fn2 , d(P,π,L)) satisfies
the MacWilliams Extension Property if, and only if, L satisfies both the UDP and the
Condition Ω.
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Proof. First of all, we shall prove that the two stated conditions are sufficient. Let
C1 and C2 be two linear codes and let t : C1 → C2 be a linear map that preserves
the (P, π, L)-weight. Given u, v ∈ C1, the UDP ensures the existence of the bijections
g1 : suppπ(u)→ suppπ(t(u)) and g2 : suppπ(v)→ suppπ(t(v)). We claim that it is possible
to choose g1 and g2 in such a way that, if i ∈ suppπ(u) ∩ suppπ(v), then g1(i) = g2(i).
Indeed, suppose that g1(i) 6= g2(i) and consider the linear codes C = span{u, v} and
C ′ = span{t(u), t(v)}. The only obstructions to g1 and g2 to satisfy this condition would
be if either |IL(i)(C)| < |IL(i)(C ′)| or |IL(i)(span{u})| < |IL(i)(span{t(u)})|, contradicting
Lemma 2.4.6. Hence, there is a bijection φt : suppπ(C1)→ suppπ(C2) such that, for every
u ∈ C1 the restriction map φt : suppπ(u) → suppπ(t(u)) is a bijection preserving the
L-weight. Since L satisfies the UDP and

∑
i∈[m]\suppπ(C1)

L(i) =
∑

i∈[m]\suppπ(C2)
L(i),

then φt can be extended to ϕ : [m]→ [m].

Given u ∈ Fn2 , we write u = u1 + · · · + um, where suppπ(ui) ⊂ {i} ⊂ [m]. It
follows that Cj ⊂ Cj1 ⊕ · · · ⊕ Cjm, where Cji = {ui;u ∈ Cj}, for j = 1, 2.

Let βj = {uj1, . . . , ujkj} be a basis of C1j and αϕ(j) = {t(u)ϕ(j)1, . . . , t(u)ϕ(j)kj}
be a basis of C2ϕ(j). We consider Wj to be the subspace of Fn2 isomorphic to FL(i)

2 such that
suppπ(ejk) = vj and we extend the basis βj of C1j to a basis β′j = {xj1, . . . , xjkj , ej1, . . . , ejrj}

of Wj. It follows that, Fn2 =
m⊕
i=1

Wj.

In the same way, α′ϕ(j) = {t(x)ϕ(j)1, . . . , t(x)ϕ(j)kj , fϕ(j)1, . . . , fϕ(j)rj} is a basis
of Wϕ(j), an extension of the basis αϕ(j) of C2ϕ(j).

Let T : Fn2 → Fn2 be the linear map defined by T (xij) = t(x)ϕ(i)j and T (eij) =
fϕ(i)j . By construction, T is a linear (P, π, L)-isometry that extends t.

Now we prove that the two stated conditions are necessary.

UDP: Consider the sets S, S ′ ⊂ [m] and the linear codes C1 = span{u} and
C2 = span{v}, where u =

∑
i∈S

ei and v =
∑
i∈S′

ei.

If
∑
i∈S

L(i) =
∑
i∈S′

L(i) we have that wt(P,π,L)(u) = wt(P,π,L)(v) hence the linear

map t : C1 → C2 defined by t(u) = v preserves the (P, π, L)-weight. Suppose that t can
be extended to T ∈ GL(P, π, L). Then, Lemma 2.3.2 ensures that T defines a (P, π, L)-
automorphism φ such that φ(S) = S ′, but his means that L(i) = L(φ(i)), for all i ∈ S,
i.e., the UDP is satisfied.

Condition Ω: Suppose |{i ∈ [m] : |π−1(i)| ≥ 2 and L(i) = l}| > 2, for some
l ∈ L([m]). Let i1, i2, i3 ∈ [m] be such that L(ij) = l and |π−1(ij)| ≥ 2 for j ∈ {1, 2, 3}. For
j = 1, 2, 3, let eaj and ebj be two different vetors in Fn2 such that suppπ(eaj ) = suppπ(ebj ) =
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ij, which existence is ensured by the fact that |π−1(ij)| ≥ 2. Let us define the linear
codes C1 = span{ea1 + ea2 , ea1 + ea3}, C2 = span{ea1 + ea3 , eb1 + eb3} ⊂ Fn2 . Since every the
codewords has (P, π, L)-weight is equal to 2l, any linear isomorphism t between the codes
preserves the (P, π, L)-weight. However, 3 = |I1

l | and |I2
l | = 2 so t can not be extended to

an isometry T ∈ GL(P, π, L).

Theorem 2.4.8. Let P = ([m],�P ) be a hierarchical poset. Then, (Fn2 , d(P,π,L)) satisfies
the MacWilliams Extension Property if, and only if, L satisfies the UDP and for each
1 ≤ i ≤ h(P ), the restriction of L to the level ΓPi satisfies Condition Ω.

Proof. Since we are assuming P to be hierarchical, the canonical decomposition (Theorem
2.3.4) allows us to assume every linear code is in the canonical decomposition. Consider
C = C1 ⊕ · · · ⊕ Ch(P ) and C ′ = C ′1 ⊕ · · · ⊕ C ′h(P ).

Let us assume that UDP and the Condition Ω both hold. Let t : C1 → C2

be a local isometry. Given u ∈ Ci, we have t(u) = ti(u) + Fi(u), where Fi : Ci →
∑
j<i

C ′j

and ti : Ci → C ′i are both linear maps. Then, it is easy to verify that ti : Ci → C ′i is
also a linear isometry. Since supp(Ci), supp(C ′i) ⊂ ΓPi , we can consider Ci, C ′i ⊂ Fni2 to be
equipped with the metric ((ΓPi ,�P ), π, L) on Fni2 , where (ΓPi ,�P ) denotes de subposet
induced by P on level ΓPi , an antichain poset. The previous proposition ensures that each
ti admits an extension Ti to Fni2 , it means that, there is a linear ((ΓPi ,�P ), π, L)-isometry
Ti ∈ GL((ΓPi ,�P ), π, L) of Fni2 into itself and Ti|Ci = ti. The linear map T : Fn2 → Fn2
defined by T (u1 + · · ·+ uh(P )) = (T1 + F1)(u1) + · · ·+ (Th(P ) + Fh(P ))(uh(P )) is a (P, π, L)-
isometry, since P is hierarchical and each Ti + Fi is a d(P,π,L) isometry restricted to the
vectors with support on level ΓPi or bellow, with at least one element in ΓPi .

Suppose that the UDP and the Condition Ω are holds until the level ΓPj−1 of
P but one of them fails on level ΓPj . Since P is assumed to be hierarchical, it is possible
to construct codes C1 and C2 as in Proposition 2.4.7, just taking the care to consider the
generator vectors u, v (in case the UDP does not hold) and the vectors eai , ebi (in case
condition Ω does not hold) to have the support on the j-level. Then, proceeding as in the
proof of Proposition 2.4.7, we construct a local isometry that can not be extended to a
global one.

2.5 Proof for the MacWilliams Identity

Although the proof for MacWilliams’ Identity in the context of the labeled-
poset-block metrics follows similarly as in the case considering digraph metrics, presented
by Etzion et. al (ETZION; FIRER; MACHADO, 2017), here we present every detail. We
start by presenting some crucial facts regarding additive characters and, then we follow by
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adapting MacWilliams’ original approach. An additive character χ of Fq is a nontrivial
homomorphism of the additive group Fq into the multiplicative group of complex numbers
with 1-norm. The next lemma is well known.

Lemma 2.5.1. Let C ⊂ Fnq be a linear code and let χ of Fq be an additive character. Then,

∑
u∈C

χ(u · v) =

 |C|, if v ∈ C⊥

0, otherwise.

Lemma 2.5.2. Given a (P, π, L)-weight and linear code C ⊂ Fnq , then

A
(P,π,L)
i (C) = 1

|C⊥|
∑

1≤j≤n

∑
u∈C⊥∩Sj

∑
v∈Si

χ(u · v),

where Si and Sj are the spheres of radii i and j considering the weights induced by the
triples (P, π, L) and (P⊥, π, L), respectively, i.e., Si = {u ∈ Fnq : wt(P,π,L)(u) = i} and
Sj = {u ∈ Fnq : wt(P⊥,π,L)(u) = j}.

Proof. Since A(P,π,L)
i = |C ∩ Si|, it follows that A(P,π,L)

i =
∑

u∈C∩Si
1. Lemma 2.5.1 implies

that

A
(P,π,L)
i (C) =

∑
v∈Si

1
|C⊥|

∑
u∈C⊥

χ(u · v)

= 1
|C⊥|

∑
u∈C⊥

∑
v∈Si

χ(u · v)

= 1
|C⊥|

∑
1≤j≤n

∑
u∈C⊥∩Sj

∑
v∈Si

χ(u · v).

Lemma 2.5.3. A (P, π, L)-weight admits the MacWilliams Identity if, given i, j ∈
{wtP (u) : u ∈ Fnq }, and u, u′ ∈ Si, then∑

v∈Sj

χ(u · v) =
∑
v∈Sj

χ(u′ · v).

Proof. Let C1, C2 ⊂ Fnq be linear codes such thatW (P,π,L)
C1 (X) = W

(P,π,L)
C2 (X). By hypotheses,∑

v∈Sj

χ(u·v) depends only on the choice of i and j, so that we can consider pij :=
∑
v∈Sj

χ(u·v).

From Lemma 2.5.2,

A
(P⊥,π,L)
j (C⊥k ) = 1

|Ck|
∑

1≤i≤n

∑
u∈Ck∩Si

pij

= 1
|Ck|

∑
1≤i≤n

A
(P,π,L)
i (Ck)pij, for k ∈ {1, 2}.
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Since A(P,π,L)
i (C1) = A

(P,π,L)
i (C2), we have that W (P⊥,π,L)

C⊥1
(X) =W

(P⊥,π,L)
C⊥2

(X).

Lemma 2.5.4. Let (P, π, L)-weight be such that P is an anti-chain poset, i.e., h(P ) = 1.
Given I ∈ I(P ), let SI = {u ∈ Fnq : suppπ(u) = I}. Then, for u ∈ SI we have that,

∑
v∈SJc

χ(u · v) = (−1)|I∩Jc|
∏

i∈Ic∩Jc
(qki − 1)

∏
j∈Jc

(qkj − 1)|Jc|−1.

Proof. Given u ∈ Fnq , the vector ui ∈ Fnq is defined by uij = uj if π(j) = i and uij = 0
otherwise. Thus,

∑
v∈SJc

χ(u · v) =
∑
v∈SJc

χ

(
m∑
i=1

ui · vi
)

=
∑
v∈SJc

∏
i∈Jc

χ
(
ui · vi

)∏
i∈J

χ
(
ui · vi

)
=
∏
i∈Jc

∑
v∈SJc

χ
(
ui · vi

)
,

where in the first equality we consider the fact that χ is a group homomorphism and we
separate the product in the J and J c parts and the second follows from the fact that
ui · vi = 0 for i ∈ J and χ(0) = 1. We note that, given v1 + · · ·+ vm ∈ SJc we have that
vi ∈ Fkiq \{0} ⊂ Fnq if i ∈ J c and vi = 0, otherwise. It follows that

∑
v∈SJc

χ
(
ui · vi

)
=

∑
v1+···+vm∈SJc

χ
(
ui · vi

)
=

∏
j∈Jc\{i}

(qkj − 1)
∑

vi∈Fkiq \{0}⊂Fnq

χ
(
ui · vi

)
.

Furthermore, from Lemma 2.5.1, we have that
∑

v∈Fkiq \{0}

χ (v · u) = qki − 1 if u = 0 and

equals −1, otherwise. Hence,
∑
v∈SJc

χ(u · v) =

= (−1)|suppπ(u)∩Jc| ∏
i∈Jc∩([m]\suppπ(u))

(qki − 1)
∏
j∈Jc

(qkj − 1)|Jc|−1

= (−1)|I∩Jc|
∏

i∈Ic∩Jc
(qki − 1)

∏
j∈Jc

(qkj − 1)|Jc|−1.

where the second equality follows from the fact suppπ(u)∩J c = I ∩J c, since h(P ) = 1.

In the next theorem, we will use a variation of the previous lemma, considering
not only the ideal J c in P⊥, but the family J c of all ideals Kc in P⊥ such that

∑
i∈Jc

L(i) =
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∑
i∈Kc

L(i). Given I, J ∈ I(P ) and u ∈ SI , then

∑
v∈S

Jc

χ(u · v) =
∑

Kc∈Jc

∑
v∈SKc

χ(u · v)

=
∑

Kc∈Jc
(−1)|I∩Kc| ∏

i∈Ic∩Kc

(qki − 1)
∏
j∈Kc

(qkj − 1)|Kc|−1.

Theorem 2.5.5. Let (P, π, L)-weight be such that P is an anti-chain. Then, wt(P,π,L)

admits the MacWilliams Identity if, and only if, (P, π, L)-structure satisfies the UDP.

Proof. It is clear to see that
∑
i∈I

L(i) =
∑
i∈J

L(i) ⇐⇒
∑
i∈Ic

L(i) =
∑
i∈Jc

L(i).

Given u, u′ ∈ Sr, consider the ideals I1 = suppπ(u) and I2 = suppπ(u′). This means
that

∑
i∈I1

L(i) =
∑
i∈I2

L(i) = r. If the (P, π, L)-structure satisfies the UDP, then there is a

bijection g : I1 → I2 such that L(i) = L(g(i)) and |π−1(i)| = |π−1(g(i))|. Furthermore,
since

∑
i∈Ic1

L(i) =
∑
i∈Ic2

L(i), then g may be extended to [m]. It implies that there is a

(P, π, L)-automorphism ϕ ∈ Aut(P, π, L) such that ϕ(I1) = I2.

Given J ∈ I(P ), let r =
∑
i∈J

L(i). Lemma 2.5.4 ensures that

∑
v∈Sr

χ(u · v) =
∑
v∈Sr

χ(u′ · v).

It follows straightforward from Lemma 2.5.3 that wt(P,π,L) admits the MacWilliams
Identity.

On the other hand, let S, S ′ ⊂ [m] be minimal sets such that: (i)
∑
i∈S

L(i) =∑
i∈S′

L(i); (ii) there is no bijection g : S → S ′ such that L(i) = L(g(i)) and |π−1(i)| =

|π−1(g(i))|. Consider the linear codes C1 = span{u} and C2 = span{v}, where u =∑
i∈π−1(S)

ei and v =
∑

i∈π−1(S′)
ei. By construction, the (P, π, L)-weight enumerators of C1 and

C2 are equal. Furthermore, by the minimality of S and S ′, suppπ(C1) ∩ suppπ(C2) = ∅
and either L(i) 6= L(j) or |π−1(i)| = |π−1(j)|, for any i ∈ S and j ∈ S ′. It follows that
there exists i0 ∈ S ∪ S ′ such that L(i0) ≤ L(j) or |π−1(i0)| ≤ |π−1(j)|, for each j ∈ S ∪ S ′.
Suppose L(i0) ≤ L(j) and i0 ∈ S, then there is w ∈ Fnq \ C⊥1 such that suppπ(w) = {i0},
which implies A(P,π,L)

L(i0) (C⊥1 ) < A
(P,π,L)
L(i0) (C⊥2 ).

Now, suppose that given any S, S ′ ⊂ [m] such that
∑
i∈S

L(i) =
∑
i∈S′

L(i), there

exists g : S → S ′ such that L(i) = L(g(i)). It follows that |π−1(i)| 6= |π−1(g(i))|. Let
i0 ∈ [m] be such that L(i0) ≤ L(i), for every i ∈ S. In addition, without loss of generality
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assume that |π−1(i0)| < |π−1(g(i0))|. The minimality constraint on S and S ′ implies
S = {i0} and S ′ = {g(i0)}. Since any w ∈ Fnq with suppπ(w) = {g(i0)} belongs to C⊥1 , it
follows that A(P,π,L)

L(i0) (C⊥2 ) < A
(P,π,L)
L(i0) (C⊥1 ).

Lemma 2.5.6. Let wt(P,π,L) be such that P is a hierarchical poset with l levels. Let C be
a linear code and C1 ⊕ · · · ⊕ Cl its (P, π, L)-canonical decomposition. Let Di = {y ∈ C⊥i :
suppπ(v) ⊂ ΓPi } and D = D1 ⊕ · · · ⊕ Dl. Then, C⊥ and D are (P, π, L)-equivalent.

Proof. Let α = {u1, u2, . . . , ur} be a basis of C such that {ũ1, ũ2, . . . , ũr} generates C1 ⊕
· · · ⊕ Cl, as ensured by Remark 2.3.5. Since P is assumed to be hierarchical, so is P⊥

and it follows, again by Remark 2.3.5, that C⊥ admits a basis β = {v1, v2, . . . , vn−r}
such that β̃ = {ṽ1, ṽ2, . . . , ṽn−r} generates a code (P⊥, π, L)-equivalent to C⊥, that is a
(P⊥, π, L)-canonical decomposition of C⊥. We claim that this code is already D. Indeed,
to conclude that, we just need to prove ṽj · ṽk = 0, for all 1 ≤ j ≤ r and 1 ≤ k ≤ n− r.
Actually, since all those vectors have the support in a single level, it is enough to prove
ṽj · ṽk = 0 for ũj ∈ α̃ and ṽk ∈ β̃ such that suppπ(ũj), suppπ(ṽk) ⊂ ΓPi . Note that, if
suppπ(ũj) ⊂ ΓPi , then suppπ(uj) ⊂ ΓP1 ∪ ΓP2 ∪ · · · ∪ ΓPi . Analogously, if suppπ(ṽk) ⊂ ΓPi ,
then suppπ(vk) ⊂ ΓPi ∪ ΓPi+1 ∪ · · · ∪ ΓPl , since the metric is induced by (P⊥, π, L). This
implies that uj · vk = ũj · ṽk and since uj · vk = 0, it follows that ũj · ṽk = 0.

Theorem 2.5.7. Let wt(P,π,L) be such that P is a hierarchical poset. Then, wt(P,π,L) admits
a MacWilliams’ Identity if, and only if, (P, π, L) satisfies the UDP.

Proof. Suppose that the P has mi elements in the i-th level. From Lemma 2.5.6, we may
assume, without loss of generality, that a linear code C ⊂ Fnq is already in a (P, π, L)-
canonical form C1 ⊕ · · · ⊕ Ch(P ) and its dual is equivalent to C⊥ = D1 ⊕D2 ⊕ · · · ⊕ Dh(P ),
where Di is defined as in Lemma 2.5.6.

Furthermore, since the (P, π, L)-structure satisfies the Unique Decomposition
Property, the (ΓPi , π, L) (where ΓPi denotes the poset induced by P on its i-th) also satisfies
the Unique Decomposition Property and so, Theorem 2.4.3 ensures that W (ΓPi ,π,L)

Ci (X)
determinesW (ΓPi ,π,L)

Di (X). SinceW (P,π,L)
C (X) can be expressed in terms of theW (ΓPi ,π,L)

Ci (X)’s
(and similarly for W (ΓPi ,π,L)

C⊥ (X)), we conclude the proof.
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3 Weights which respect support

In the literature, matching between channels and metrics (that is, the co-
incidence of the maximum likelihood decoding and nearest neighbor decoding) is an
underestimated subject of study. Despite the large number of channels that are studied and
the large number of metrics described in the literature in the context of Coding Theory
(see, for example, [Chapter 16] in (DEZA; DEZA, 2009), and a recent survey of Gabidulin
(GABIDULIN, 2012)), there are a few examples of classical metrics and channels which
are proved to be matched.

Although matching channels and metrics is not widely studied, there are
some advances establishing whenever a discrete memoryless channel admits a metric,
(QURESHI, 2019), (D’OLIVEIRA; FIRER, 2019). From another perspective, we can find
in the literature large families of metrics satisfying the basic decoding conditions described
in the Introduction. We cite, for example, the poset metrics of Brualdi (BRUALDI;
GRAVES; LAWRENCE, 1995), Gabidulin’s combinatorial metrics (GABIDULIN, 1973),
poset-block metrics (ALVES; PANEK; FIRER, 2008) and digraph metrics (ETZION;
FIRER; MACHADO, 2017).

All these generalize the Hamming metric and they represent very large families
of metrics over a vector space Fnq (large in the sense that each of these families grows
exponentially with n). Nevertheless, they are not sufficient to determine all the MDD
criteria (which is the rule for the MDD decoding) satisfying the support condition. Example
3.0.1 illustrates such an affirmation for the smallest possible case, n = 2.

Before introducing the example, we should remark that different metrics may
determine the same MMD, and in this case, we should consider such metrics to be equivalent.
To be more precise: two metrics d1 and d2 over a space V are decoding-equivalent if given
any code C ⊂ Fnq and any received message u ∈ Fnq , the MDDs determined by both metrics
generate the same set of codewords, i.e.,

arg min
c∈C

d1(u, c) = arg min
c∈C

d2(u, c), for any C ⊂ Fnq , u ∈ Fnq . (3.1)

It is not difficult to prove that for metrics defined by weights, being equivalent means that,
when ordering the vectors in Fnq according to the two different weights we get the same
ordering (see Definition 3.1.3 for details).

Example 3.0.1. Let us consider the space F2
2 = {00, 10, 01, 11}. In this case we have 4

non decoding-equivalent criteria. In the table bellow we present these criteria and check
each that can be determined by a metric in one of the large families we have mentioned:
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poset wtP , poset-blocks wtPB, combinatorial wtC and digraph wtD. It is worth to note that
only the first one can be determined by any of these families of metrics.

Criterion wtH wtP wtP B wtC wtD

wt(10) = wt(01) < wt(11) X X X X X
wt(10) = wt(01) = wt(11) X X X
wt(10) < wt(01) = wt(11) X X X
wt(10) < wt(01) < wt(11)

Table 1 – Decoding criteria which respect support in F2
2

We stress that different metrics can be decoding-equivalent. In fact, even though
the second criterion in the table (wt(u) is constant for u 6= 0) may be determined by
a poset-block wtPB and also by a digraph wtD weight, simple computations shows that
wtPB(u) = 1 and wtD(u) = 2, for u 6= 0. More important, we note that the last decoding
criterion can not be determined by any metric belonging to one of these families.

In this chapter we aim to reduce the gap between the known and studied
TS-metrics and the family of all possible TS-metrics. To do so, we first introduce a
systematic approach to the space of all TS-metrics, by labeling the edges of the Hamming
cube. Then we introduce a conditional operator on metrics, which allows us to obtain new
TS-metrics out of given one. We show that any TS metric can be obtained, by a sequence
of conditional sums, out of the poset, digraph and combinatorial metrics. For this reason,
this chapter moves one step forward in a long term goal to develop an “approximation
theory” of metrics in the context of coding theory.

3.1 S-weights

In this chapter, we are concerned not with particular metrics, but to decoding
criteria, that is, we shall look into the decoding-equivalence classes of metrics as defined in
3.1. A simpler equivalence relation can be stated considering only the metrics, or weights,
as we shall do in Definition 3.1.3.

Before we do it, we shall establish a condition on weights to ensure that it
determines a distance satisfying the TS conditions.

Definition 3.1.1. A function wt : Fnq → Z is a weight that respects support if the
following holds:

1. wt(u) ≥ 0 and equality implies u = 0;
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2. If supp(u) ⊂ supp(v), then wt(u) ≤ wt(v), where supp(u) = {i ∈ [n] : ui 6= 0}.

Remark 3.1.2. From here on, we will consider only weights respecting support of vectors,
hence we will call it just weight. In addition, it is worth to stress that if supp(u) = supp(v),
then wt(u) = wt(v).

A weight determines a semi-metric, by defining d(u, v) = wt(u− v), and two
weights determine the same semi-metric if, and only if, they are equal. In order to guarantee
that d(u, v) = wt(u− v) is a metric it is required the triangle inequality which we ignore
in this work due to the fact that every semi-metric d (on a finite space) can be rescaled to
a decoding-equivalent metric d′ as follows:

d′(u, v) =


0, if u = v,

d(u, v) + max
x,y∈Fnq

d(x, y), if u 6= v.

So, to understand the space of all TS-metrics, it is enough to study the space of all weights
up to the following equivalence:

Definition 3.1.3. We say that two weights wt1 and wt2 are equivalent (denoted by
wt1 ∼ wt2) if

wt1(u) < wt1(v) ⇐⇒ wt2(u) < wt2(v), ∀u, v ∈ Fnq .

It is not difficult to see that two weights are equivalent if, and only if, they are
decoding-equivalent (see (D’OLIVEIRA; FIRER, 2019) for details).

3.2 Weights respecting support

In order to explore properties of S-weights, our approach is to construct general
S-weights in a way it can inherit the knowledge accumulated about poset, digraph and
combinatorial metrics. For this purpose, we shall represent S-weights by labeling the edges
of the Hamming cube. This approach allows us to obtain a description for the group of
linear isometries which is a fundamental tool in the context of coding theory. Indeed, being
in the same orbit of this group is the definition of code equivalence and the structure
of these groups is used to determine whenever the MacWilliams’ extension property is
satisfied and so forth.

We start by considering the Hamming cube Hn as a directed graph, where
Fn2 is the set of vertices, and [u, v] is an (directed) arc if, and only if, dH(u, v) = 1 and
wtH(u) < wtH(v). In this case, v is called the head and u the tail of the arc. A trail τ
in Hn with initial vertex u and final vertex v is a sequence [u, u1], [u1, u2], . . . , [ur, v] of
consecutive arcs.
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To every arc is assigned a non-negative integer δ([u, v]), called the label of the
arc. The pair (Hn, δ) is called a δ-labeled Hamming cube. We call it as labeled to avoid
confusion with weight.

Remark 3.2.1. It is important to stress that, by simplicity and some abuse of notation, we
consider u ∈ Fnq and, we associate the vector u = (u1, . . . , un) to a vertex u′ = (u′1, . . . , u′n)
in the Hamming cube defined as follows: u′i = 1, if ui 6= 0, and u′i = 0, if ui = 0. We shall
abuse of the notation and omit the prime symbol (′), identifying u and u′ according to the
context.

It is simple to see that given an S-weight wt : Fnq → N, by setting δ([u, v]) =
wt(v)−wt(u) we have that wt(w) =

∑
[u,v]∈τ

δ([u, v]) where τ is any trail from the null vector

to w. By simplicity, we denote δ(τ) =
∑

[u,v]∈τ
δ([u, v]) whenever no confusion may arise.

This shows that every S-weight can be represented by a δ-labeled Hamming cube. From
here on, except if explicitly stated, we assume that every trail has 0 as its initial vertex.

Not every (Hn, δ) determines an S-weight. For this to happen, the δ function
should avoid the situation depicted in the following example. Consider the δ-Hamming
cube below.

10

00

01

11

1 0

1 1

This δ function does not induce an S-weight because the sum of weights on the left and
right trails from 00 to 11 are different, i.e., δ([00, 10]) + δ([10, 11]) 6= δ([00, 01]) + δ([01, 11]).
To avoid this we need to ensure that the label of a trail depends exclusively on its end
point, not on the trail itself.

Proposition 3.2.2. The map wtδ(w) = δ(τ), where τ is a trail from 0 to w, is an S-weight
if, and only if, it does not depends on the trail (δ(τ) = δ(τ ′), for any trails τ, τ ′ in Hn

starting at u and ending at v) and δ([0, ei]) > 0, for every i ∈ {1, . . . , n}.

Proof. The proof follows directly from the definitions.

We are concerned exclusively with labels which determine a weight, so, from
here on, we shall assume that a label δ satisifies the conditions of Proposition 3.2.2. Also,
we say that δ and δ′ are equivalent if wtδ ∼ wtδ′ . It is, a priori, difficult to determine
if a given labeled graph determines a metric belonging to a specific known family of
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metrics. In the case when max
u∈Hn

wtδ(u) ≤ 2 and δ([u, v]) ∈ {0, 1} we can show that wtδ is a
combinatorial metric, introduced by Gabidulin in (GABIDULIN, 1973).

Example 3.2.3. Combinatorial weight: Let δ be determined by an S-weight wt as be-
fore and suppose max

u∈Fnq
wt(u) ≤ 2. In this particular case, wt determines a combinatorial

metric if, and only if, δ([u, v]) ∈ {0, 1}. The non trivial side is proved as follows: Since
we are assuming that the δ-Hamming cube satisfies the conditions required in Lemma
3.2.2, it follows that δ([0, ei]) = 1, for every i ∈ [n]. Let P([n]) be the power set of
[n]. Consider M = {τ : τ is maximal with property δ(τ) = 1} and N = {u ∈ Fn2 :
u is the ending vertex for some τ ∈M}. It follows that δ is determined by the combinato-
rial weight induced by the covering F = {supp(u) : u ∈ N}.

Poset weight: The constraint max
u∈Fnq

wt(u) ≤ 2 is sufficient to guarantee that no

poset metric can be equivalent to this S-weight wt, for n > 2 since wtP (11 · · · 1) = n, for
any poset weight. But on the other side, if wtP is a poset weight then the δ-Hamming cube,
determined by wtP , has the following property: δ(τu) < n (τv denotes a trail from the null
vector to v) implies there is i /∈ supp(u) such that δ(τu+ei) = δ(u) + 1.

As already remarked, different labels can give rise to equivalent weights and
metrics. We now show how we can give a standard form of a δ-labeled Hamming cube
which represents all the labels determining the same equivalence class.

Definition 3.2.4. Let δ be obtained from an S-weight wt. We say that δ is in a standard
form if, given a trail τ with δ(τ) = k > 1 there is a trail τ ′ (not depending on τ , but on k)
such that δ(τ ′) = k − 1.

Definition 3.2.5. We say that an S-weight wt admits a standard form if it is equivalent
to an S-weight which determines a label δ in a standard form.

Example 3.2.6. Consider the figure bellow. The δ-Hamming cube on the left is not in a
standard form since δ([00, 01]) = 3 and there is no trail τ with δ(τ) = 2. In the middle,
we assign the value δ([00, 01]) = 2, and, since δ([00, 10]) + δ([10, 11]) = 4, Lemma 3.2.2
imposes δ([01, 11]) = 2 to get a weight which defines an S-weight. Now, on the right side,
we repeat the procedure for the trail τ = {[00, 01], [01, 11]} which has δ(τ) = 4 while there
is no trail τ ′ with δ(τ) = 3.

10

00

01

11

3 1

1 3

10

00

01

11

3 2

1 2

10

00

01

11

2 1

1 2
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We remark that since the values of δ decrease at every step, the algorithm will have a
stopping point.

Proposition 3.2.7. Every S-weight admits a unique standard form. Two labels are
equivalent if, and only if, they admit the same standard form.

Proof. The proof is a simple extension of the steps we detail in Example 3.2.6. First we
consider the ordered list γ(wt) = (0 = r1 = wt(0), r2, . . . , rl) of values assumed by the
S-weight wt. Note that, given vectors u, v ∈ Fnq such that wt(u) = ri and wt(v) = ri+1,
then any trail τ from u to v contains an arc (x, y) such that δ((x, y)) = ri+1 − ri.

We shall start with maximum values rl and rl−1, and if rl − rl−1 > 1, then
any arc (x, y) contained in trails between vector u, v ∈ Fnq such that wt(u) = rl−1 and
wt(v) = rl is relabeled as 1.

So that, we follow this procedure in pairs from the maximum to minimum
values ri’s. Since, every step reduces the sum of all differences ri − ri−1, it follows that
the algorithm stops, and by construction, the weight induced by the standard form of
Hamming cube is equivalent to the input one.

The previous proposition allows us to consider labels only in the standard form.

3.2.1 Group of linear isometries

Now, we turn our attention to describe the group of linear isometries in a space
Fnq endowed with a metric determined by an S-weight wt, i.e.,

GL(n, q,wt) = {T : Fnq → Fnq : T is linear,wt(u) = wt(T (u))}.

The group GL(n, q,wt) will be described in Theorem 3.2.15. As we shall see,
this description is a generalization of the labeled-poset-block case presented in Theorem
2.2.8 which, on its side, is another link on a chain of results that started at Rosenbloom-
Tsfasman metric (LEE, 2003) and passing through (CHO; KIM, 2006), (PANEK et al.,
2008), (ALVES; PANEK; FIRER, 2008) and (ETZION; FIRER; MACHADO, 2017)). On
this context of TS-metrics, this description is the last possible link.

Before we reach it, we need to establish some definitions and auxiliary proposi-
tions.

Let φ ∈ Sn and denote by Tφ the induced map on Fnq , defined by Tφ(u1, . . . , un) =
(uφ(1), . . . , uφ(n)). We say that φ preserves δ if δ([u, v]) = δ([Tφ(u), Tφ(v)]) for every arc
[u, v]. Let Aut(H, δ) be the group of automorphisms of the Hamming cube H which
preserve δ.
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Proposition 3.2.8. Let φ ∈ Sn. The linear map Tφ : Fnq → Fnq is an isometry if, and only
if, Tφ ∈ Aut(H, δ).

Proof. Given a trail τ , it follows that φ(τ) is also a trail, since φ is an automorphism of H.
Since the weight does not depend on the trail and from the fact that φ respects δ, then
wt(u) = δ(τu) = δ(φ(τu)) = wt(T (u)), for any trail τu from the zero vector to u.

If Tφ 6∈ Aut(H, δ), it is clear that there is at least an arc [u, v] in which
δ([u, v]) 6= δ([Tφ(u), Tφ(v)]). Let

B = {u ∈ Fn2 : ∃[u, v] such that δ([u, v]) 6= δ([Tφ(u), Tφ(v)])}

and consider u0 ∈ arg min
u∈B
|supp(u)|. Since u0 ∈ B, there is a v0 such that δ([u0, v0]) 6=

δ([Tφ(u0), Tφ(v0)])}. It follows that wtδ(v0) 6= wt(T (v0)).

Let α = {e1, e2, . . . , en} be the usual basis of Fnq . Given i, j ∈ [n], consider the
linear map Tij : Fnq → Fnq defined by Tij(ei) = ei + ej and Tij(ek) = ek, for k 6= i. Denote

Ai = {i} ∪ {j ∈ [n] : Tij, Tji ∈ GL(n, q,wt)}.

It is immediate to check that either Ai = Aj or Ai ∩ Aj = ∅, this implies in the existence
of an equivalence relation ∼wt on [n] defined as follows:

i ∼wt j ⇐⇒ Ai = Aj.

Each Ai is an equivalence class but, to avoid working with multi sets, we denote
by Swt = {H1, . . . , Hs} the set of equivalence classes, so that [n] =

n⊔
i=1

Hi. Naturally, given

Ai, there is a unique j ∈ [s] such that Ai = Hj.

An equivalence class Hi dominates Hj if for any two vectors u, v ∈ Fnq with
supp(u) ⊂ Hi and supp(v) ⊂ Hj we have that wt(u+ w) + wt(u+ v + w) for any vector
w ∈ Fnq such that supp(w) ∩ supp(u) = ∅.

We say that an equivelence class Hi is a head in a family of equivalence classes
if it is a maximal element in the family. We may assume, without loss of generality, that
the classes are ordered in a topological order, i.e., given two distinct classes Hi and Hj, if
Hj dominates Hi then i < j.

For each subset X ⊂ [n] there is a minimum set Swt(X) = {Hi1 , . . . , Hik} of
equivalence classes such that X ⊂ Hi1 ∪· · ·∪Hik . The minimum set header of X is defined
by

X̂ = {i ∈ X : i ∈ Hj for some head Hj ∈ Swt(X)}.

Definition 3.2.9. The cleared out form of u = (u1, . . . , un) ∈ Fnq is the vector ũ =
(ũ1, . . . , ũn) where ũi = ui if i ∈ ̂supp(u) and ũi = 0 otherwise, i.e., we maintain the
coordinates contained in the head classes of Swt(supp(u)) and set the others do be 0.



52

Definition 3.2.10. Given a weight wt over Fnq , we say that a map T preserves domination
of classes (with respect to wt) if:

(1) T is a linear map;

(2) For all i ∈ [n], i ∈ supp(T (ei));

(3) If j ∈ supp(T (ei)), i ∈ Hk, and j ∈ Hl, then either Hk = Hl or Hk dominates Hl.

We denote by N(Hn, δ) the set of all maps preserving domination.

We shall prove that N(H, δ) is a group. Since trivially it is closed under
composition and the identity is in N(H, δ), to prove that it is a group, all is needed is the
following Lemma:

Lemma 3.2.11. If T ∈ N(H, δ), then T−1 ∈ N(H, δ).

Proof. We stress that T is an one-to-one map and the minimum set header of T (u) is the
image under T of the cleared-out form of u (the minimum set header of supp(u)), that is,
T̃ (u) = T (ũ), so that T−1 ∈ N(H, δ).

Proposition 3.2.12. Any map T ∈ N(H, δ) is a linear isometry.

Proof. Given i ∈ supp(T (u)), there is k such that i ∈ Hk. If i ∈ supp(u), then, due to
the support condition, it follows wt(T (u)) ≤ wt(u). If i /∈ supp(u), condition (3) in the
definition of N(Hn,wt) ensures that there is j ∈ supp(u) such that j ∈ Hl with either
l = k or Hl dominating Hk. This means that every class containing elements in the support
of T (u) either contains an element in the support of u or is dominated by such a class.
For both the cases, it follows that wt(T (u)) ≤ wt(u). The previous lemma ensures that
T−1 ∈ N(Hn,wt). Applying the same reasoning for T−1 we get that wt(u) ≤ wt(T (u)),
hence T is an isometry.

The next two results will be needed to prove Theorem 3.2.15, by showing that
given T ∈ GL(n, q,wt) there is T ′ ∈ Aut(H, δ) such that T ′ ◦ T ∈ N(H, δ).

Proposition 3.2.13. Suppose q > 2. For any T ∈ GL(n, q,wt) and ei ∈ Fnq , there is
T̃ ∈ N(H, δ) such that supp(T̃ (T (ei)) ⊂ H, for some equivalence class H ∈ Swt.

Proof. Let T ∈ GL(n, q,wt). Given ei ∈ Fnq suppose that supp(T̃ (ei)) ⊂ Hj ∪Hk, where
{j, k} is minimal with this property. We denote by T̃ a linear isometry such that T̃ (ei) =
T̃ (ei), where ũ is the cleared out form of u. We remark that there are many such maps.
This implies there are u, v, w ∈ Fnq such that
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1- T̃ (T )(ei) = u+ v;

2- supp(u) ⊂ Hj;

3- supp(v) ⊂ Hk;

4- supp(w) ∩ (supp(u) ∪ supp(v)) = ∅;

5- δ((u+ w, u+ v + w)) 6= 0;

6- δ((v + w, u+ v + w)) 6= 0.

This implies that wt(u+ w) < wt(u+ v + w) and wt(v + w) < wt(u+ v + w).

We claim that i /∈ supp(T̃−1(w)), otherwise we would have that supp(ei +
T̃−1T−1(w)) ⊂ supp(T̃−1(w)) which is a contradiction since wt(w) ≤ wt(u + w) <

wt(u+ v + w).

Since we are assuming q > 2 there are α, β ∈ F∗q, such that 1 + α and 1 + β are
not zero. Thus,

wt(u+ v + w) = wt((1 + α)u+ v + w) = wt(u+ (1 + β)v + w).

In a similar way we can prove that

i /∈ supp
((
T̃−1

)
(u+ w)

)
and i /∈ supp

((
T̃−1

)
(v + w)

)
.

But this means that the i-th coordinate of both the vectors
(
T̃−1T−1

)
(u) and(

T̃−1T−1
)

(v) equal zero, which is a contradiction since, by definition,
(
T̃−1

)
(u+ v) = ei.

We considered the case where we needed two minimum head sets to cover
supp(T̃ (ei)). This case may be used as the inductive step in case we have supp(T̃ (ei)) ⊂
Hi1 ∪Hi2 ∪ · · · ∪Hik .

Lemma 3.2.14. If T ∈ GL(n, q,wt), then given i ∈ [n] the linear map Ti : Fnq → Fnq
defined as

Ti(ej) =

 T̃ (ej), if i = j,

T (ej), if j ∈ [n]\{i}.
is a linear isometry.

Proof. For any u =
n∑
j=1

ujej, Ti(u) = Ti(
n∑
j=1

ujej) = Ti(uiei) + T (
∑
j 6=i

ujej). Since there is

T̃ ∈ N(H, δ) such that T̃ (T (ei)) = ek, it follows that for any v ∈ Fnq such that vk = 0,
δ(u+ ek, u+ T (ei)) = 0.
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So, given v ∈ Fnq with vk = 0, Ti(v) = T (v). If vk 6= 0, it follows that
δ(T (v− vkek) + ek, T (v− vkek) + T (ei)) = 0, which proves that Ti is a linear isometry.

Hence, we clearly have a semi-direct product, i.e.:

Theorem 3.2.15. Let wt be an S-weight over Fnq with q > 2. Then, the group GL(n, q,wt)
of all linear isometries of Fnq is the semi-direct product

GL(n, q,wt) = Aut(H, δ) nN (δ,wt) ,

where Aut(H, δ) and N (Hn,wt) are described in Proposition 3.2.8 and Definition 3.2.10,
respectively.

Proof. First of all, it is clear that Aut(H, δ) ∩ N (H, δ) = {Id}. Moreover, consider
the map that associates to T ∈ GL(n, q,wt) to a permutation of coordinates through
the map T1 ◦ T2 ◦ · · · ◦ Tn ◦ T , where the Ti’s are constructed as in Lemma 3.2.14.
It follows that N (H, δ) is the kernel of this map, hence it is a normal subgroup of
GL(n, q,wt). It follows that N (H, δ) is normal in the product Aut(H, δ)N (H, δ) so that
Aut(H, δ)N (H, δ) = Aut(H, δ) nN (H, δ) = {Id}. Propositions 3.2.8 and 3.2.12 ensures
that Aut(H, δ) nN (δ) ⊆ GL(n, q,wt).

For q > 2, It follows from Lemma 3.2.14 that given T ∈ GL(n, q,wt), there is
a sequence of T1, . . . , Tn ∈ N(H, δ) such that T1 ◦ T2 ◦ · · · ◦ Tn ◦ T ∈ Aut (δ) which proves
the equality, i.e., GL(n, q,wt) = Aut (δ) nN (δ).

3.3 Conditional sums

In the previous section we showed how weights are related to δ-Hamming cubes
in the most general setting. Such weights, in full generality, are not yet studied, but there
are families of weights that are reasonably understood. These families can be used to either
approximate general weights or, alternatively, to be considered as bricks with which we
can construct new weights. As already remarked, the most studied such metrics are the
families of poset (and its generalizations, such as poset-block metrics (ALVES; PANEK;
FIRER, 2008), digraph (ETZION; FIRER; MACHADO, 2017) and weighted digraph
(HYUN; KIM; PARK, 2017)) and combinatorial metrics. It is worth to note that these
two families are virtually complementary, in the sense that the Hamming metric is the
unique metric that belongs to both of them.

So, we are left with two fundamental questions to be addressed in this section:

1. (Proposition 3.3.8) How can we obtain a new S-weight out from two given S-weights?
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2. (Theorem 3.3.13) How large is the family of S-weights that can be constructed from
a combination of poset and combinatorial weights?

We start by presenting a simple conditional sum which permits to obtain new
S-weights out of given ones.

Proposition 3.3.1. Let wt1 and wt2 be S-weights. Then, the k-sum

(wt1 ⊕k wt2)(u)=

 wt1(u), if wt1(u)<k,
wt1(u)+wt2(u), if wt1(u)≥k.

is a S-weight.

Proof. The proof follows straightforward from the definitions.

We remark that for k = 0, 1, wt1 ⊕k wt2 is the usual sum wt1 + wt2. The
previous proposition implies that the set of all S-weights endowed with directed sum or
k-sum is a magma, i.e., the set of all weights is closed under “⊕k".

Definition 3.3.2. Let C : Fnq → {true, false} be a binary map. We say that C respects
support if C(u) = true implies C(v) = true for every v such that supp(u) ⊂ supp(v).

Definition 3.3.3. Let wt1 and wt2. Given a condition C : Fnq → {true, false}, the
conditional sum wt1 ⊕C wt2 is defined as

(wt1 ⊕C wt2)(u)=

 wt1(u), if C(u) = false,

wt1(u)+wt2(u), if C(u) = true.

Proposition 3.3.4. The conditional sum wt1 ⊕C wt2 of two weights is a weight if the
condition C respects support.

Proof. The proof follows straightforward from the definitions.

Remark 3.3.5. We stress that the conditional sum ⊕k may be replaced by a similar sum
in which we consider different binary maps respecting the support of vectors u ∈ Fnq . For
instance, given two weights wt1 and wt2, let us consider the (H, k)-binary map (in which
(H, k)(u) = true, if wtH(u)≥k, and (H, k)(u) = false, otherwise) defined as follows

(wt1⊕(H,k)wt2)(u)=

 wt1(u), if wtH(u)<k,
wt1(u) + wt2(u), if wtH(u)≥k.

Example 3.3.6. As we saw on Table 1, the last criterion is not determined by any poset or
combinatorial metric. Now we show how we can obtain it by considering a conditional sum.
Let P be the poset over [2] in which 1 �P 2. The poset weight wtP satisfies the criterion
wt(00) < wt(10) < wt(01) = wt(11). The (H, 1)-conditional sum wtP ⊕(H,1) wtH (where
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wtH is the Hamming weight) satisfies the criterion wt(00) < wt(10) < wt(01) < wt(11),
the last row of Table 1.

We should remark that operating with conditional sums leads to a lot of
redundancies, in the sense that operating with weights may not lead to a new weight. It
happens, for example, for wt⊕0 wt.

We wish to know under what conditions we have that wt1, wt2 and wt1⊕C wt2

are all equivalent. We start with the following lemma:

Lemma 3.3.7. Let wt1 and wt2 be equivalent weights. Suppose that wt1 ⊕C wt2 is also
equivalent to wt1 and wt2 for a given condition C. Then,

1. If wt1(u) = wt1(v) (u 6= v) and C(u) = true, then C(v) = true.

2. If wt1(u) < wt1(v) and C(u) = true, then either C(v) = true or wt1(u) + wt2(u) <
wt1(v).

Proof. The proof follows straightforward from definitions of conditional sum and from the
fact that wt1 is equivalent to wt1 ⊕C wt2.

The second part of the previous Lemma ensures that, if wt1 ∼ wt2 ∼ wt1⊕Cwt2

we can choose all of them to be equal, and assume all the values 0, 1, . . . ,max
u∈Fnq

wt1(u). We
can prove the following result:

Proposition 3.3.8. Let wt be a S-weight such that σ(wt) = {0, 1, . . . ,max
u∈Fnq

wt(u)}. If
wt ∼ wt⊕C wt, then ⊕C = ⊕k, for some k ∈ N.

Proof. Let u ∈ Fnq be such that C(u) = true. If v ∈ Fnq with wt(v) = wt(u), then from
statement 1 of Lemma 3.3.7 implies that C(v) = true. If wt(u) < wt(v), statement 2 of
Lemma 3.3.7 ensures that C(v) = true or wt(u) + wt(u) < wt(v). Since we are assuming
that σ(wt) = {0, 1, . . . ,max

u∈Fnq
wt(u)}, it follows that the situation wherein 2wt(u) < wt(v).

So that, in both cases it is enough to choose k = min{wt(u) : u ∈ Fnq satisfies C}.

Definition 3.3.9. Let wt1 and wt2 be two S-weights. We say that wt2 is a refinement of
wt1 if wt1(u) < wt1(v) implies wt2(u) < wt2(v), for every u, v ∈ Fn2 .

Definition 3.3.10. Let wt be a refinement of wt′. Let B = {B0, B1, . . . , Bk} be a partition
of Fn2 such that

1) wt′ is refinement of wt restricted to Bj;
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2) wt(u) < wt(v) for u ∈ Bi, v ∈ Bj and i < j.

Let B = {B0, B1, . . . , Bκ(wt,wt′)} be a partition with minimum number of parts satisfying
these properties. It is called a partition of (Fn2 ,wt) induced by wt′. The number κ(wt,wt′)
is called incompatibility degree of the weights. We shall see that such a partition exist
when wt is a refinement of wt′.

Proposition 3.3.11. If wt is a refinement of wt′, then there is a partition induced by
wt′.

Proof. From Definition 3.3.9, if wt′(u) < wt′(v) then wt(u) < wt(v). Consider the list of
vectors u ∈ Fn2 with ordering induced by wt, i.e., wt(ui) < wt(uj) implies i < j. Since
wt is a refinement of wt′ it follows that the ordering induced by wt is also an ordering
induced by wt′. Further,

Bk = {ui : wt(ui)Rwt(uj) ⇐⇒ wt′(ui)Rwt′(uj),∀ ik−1 < i, j ≤ ik, where R ∈ {=, <}}.

Let B0 be the set with the first vectors in the list until the first order fail, i.e., while
wt(ui0) < wt(ui0+1), wt′(ui0) = wt′(ui0+1). By following inductively such a procedure for
every Bi, we produce a partition B respecting both properties in Definition 3.3.9. By
construction, it follows that this is minimum partition.

Remark 3.3.12. It follows straighforward that κ(wt,wt′) = 0, if and only if, wt is
equivalent to wt′.

Theorem 3.3.13. Every S-weight can be realized as a finite sequence of conditional sums
of poset and combinatorial weights.

Proof. Consider the covering F = {[n]}. The weight wtF satisfies

wtF(u) =

 0, if u = 0,
1, if otherwise.

Let wt be a weight. It is clear that any S-weight is a refinement of the wtF and that
max
u∈Bi

wtF(u) = min
u∈Bi+1

wtF(u). Let B = {B1, . . . , Bκ(wt,wtF )} be a partition of (Fn2 ,wt)
induced by wtF . Define the condition Ci : Fn2 → {true, false} as true, for every u ∈
Bi ∪ Bi+1 ∪ · · · ∪ Bκ and false, otherwise. Since each conditional sum ⊕Ci keeps any
relation among vectors u, v ∈ Bi ∪ Bi+1 ∪ · · · ∪ Bκ and fix the relation between vectors
u ∈ Bi−1 and v ∈ Bi, it follows that the weight wtF ⊕C1 · · · ⊕Cκ wtF is equivalent to
wt.

Remark 3.3.14. The construction presented in the previous theorem is universal but
not efficient. The number of summands may be extremely large. Actually, the maximum
value for κ(wt,wtF) is 2n − 1 when wt has maximum spectrum1, i.e., when u 6= v implies
1 The spectrum σ of an S-weight wt : Fn

q → Z is given by σ(wt) = {wt(u) : u ∈ Fn
q }.
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wtF(u) 6= wtF(v). In the next section we shall produce bounds for the number of summands
that are needed in this process.

3.3.1 Lower and upper bounds: an algorithmical approach

In this section, we turn our attention to discuss how the new S-weights can be
obtained from basic ones (poset and combinatorial weights), in order to find an approach
which may enable us to recycle some properties from the basic S-weighs which many
metric invariants for codes and properties in this metric spaces are studied in the literature
of Coding Theory: (BRUALDI; GRAVES; LAWRENCE, 1995), (FELIX; FIRER, 2012),
(GABIDULIN, 1973),(PANEK et al., 2008), (Machado; Pinheiro; Firer, 2017), (PINHEIRO;
MACHADO; FIRER, 2019).

We start with a simple result that gives us an lower bound for the number of
conditional summands of basic S-weights that are necessary to be equivalent to a given
S-weight.

Theorem 3.3.15. Let wt be an S-weight with spectrum equals to k. It is necessary at

least
⌈
k

n

⌉
summands to produce an equivalent weight wt′ of wt, where wt′ is obtained by

conditional sums of poset and combinatorial weights.

Proof. Since a poset or combinatorial weight can assume value at most n different values,

it follows that any
⌈
k

n

⌉
− 2 conditional sum of such a weights

(
wt1 ⊕C1 wt2 ⊕C2 · · · ⊕Cd kne−2

wtd kne−1

)
(u) ≤ n

(⌈
k

n

⌉
− 1

)
< k.

Therefore, σ
(

wt1 ⊕C1 wt2 ⊕C2 · · · ⊕Cd kne−2
wtd kne−1

)
< k.

Theorem 3.3.16 (Upper bound). If wt is a refinement of wt1, then it is necessary at
most κ(wt,wt1) conditional sums (wt1⊕C1 · · · ⊕Cκ wtκ+1) to obtain an S-weight equivalent
to wt.

Proof. Let B = {B0, . . . , Bκ} be the partition of (Fn2 ,wt) induced by wt1. We remark that
max
u∈Bi

wt1(u) = min
u∈Bi+1

wt1(u). Let condition Ci : Fn2 → {true, false} be defined as true

for every u ∈ Bi ∪ Bi+1 ∪ · · · ∪ Bκ and false, otherwise. Let wt2 = wt3 = · · · = wtκ+1

be defined by wti(u) = 1 for u 6= 0, i ≥ 2. It follows that, wt1 ⊕C1 · · · ⊕Cκ wtκ+1 is an
S-weight equivalent to wt.

Corollary 3.3.17 (Recursive upper bound). If wt is a refinement of wtj := wt1 ⊕C1

⊕ · · · ⊕Cj−1 wtj, then it is necessary at most j + κ(wt,wtj) conditional sums (wtj ⊕Cj
wtj+1 · · · ⊕Cκ wtκ+1) to obtain an S-weight equivalent to wt.
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Although it is intuitive, we illustrate that the recursive upper bound given in
Corollary 3.3.16 can perform better than the bound given in Theorem 3.3.16.

Example 3.3.18. We start this example by considering an S-weight wt over F3
2 that has

the following weight ordering:

0 = wt(000) < wt(100) < wt(010) = wt(001) < wt(110) < wt(101) < wt(011) = wt(111).

Consider the poset weights wtP and wtP ′ in which P = ([3], {1 ≺P 2, 1 ≺P 3}) and
P ′ = ([3], {1 ≺P ′ 2 ≺P ′ 3}). It follows that κ(wt,wtP ) = 2 while κ(wt,wtP ⊕C wtP ′) = 0,
where C(u) = true if, and only, if u ∈ {110, 101, 011, 111}.

By combining both Theorem 3.3.13 and Corollary 3.3.17 we can describe an
algorithm to find a conditional sum of poset and combinatorial weights that is equivalent
to a given S-weight. The hard part in this algorithm is the first step where it is necessary
to find a poset or combinatorial weight that fits better in (Fn2 ,wt).

Given an S-weight wt follows that next steps:

Step 1 - Find the poset or combinatorial weight wt1 that is refined by wt and
minimizes κ(wt,wt1);

Step 2 - Construct the partition B1 = {B0, . . . , Bκ} of (Fn2 ,wt) induced by
wt1;

Step 3 - Let Ci : Fn2 → {true, false} be defined as true for every u ∈
Bi ∪Bi+1 ∪ · · · ∪Bκ and false, otherwise.

Step 4 - Return to Step 1 replacing wt1 by wti in which wt is a refinement of
wti restricted to B\{B0} and κ(wt,wt1) by κ(wt,wt1 ⊕C1 · · · ⊕Ci−1 wti).

Example 3.3.19. Consider a S-weight wt over F3
2 as described in Example 3.3.18, i.e.,

with the weight ordering 0 = wt(000) < wt(100) < wt(010) = wt(001) < wt(110) <
wt(101) < wt(011) = wt(111). Simple computations show that PC-weights in which wt
is a refinement of them are induced by the poset P = ([3], {1 ≺P 2, 1 ≺P 3}), or by the
coverings F1 = {{1, 2, 3}}, F2 = {{1, 2}, {3}}. Note that the partitions of (F3

2,wt) induced
by wtP , wtF1 and wtF2 are given by

BP = {{000, 100, 010, 001}, {110}, {101, 011, 111}} ,

BF1 = {{000, 100}, {010, 001}, {110}, {101}, {011, 111}} and

BF2 = {{000, 100}, {010, 001}, {110, 101}, {011, 111}} , respectively.

It follows that κ(wt,wtP ) is the minimum for any PC-weight. By setting
C1(u) = true ⇐⇒ u ∈ BP\{B0}, weight induced by P ′ = ([3], {1 ≺P ′ 2 ≺P ′ 3}) or F2 is
such that wt is equivalent to both wtP ⊕C1 wtP ′ and wtP ⊕C1 wtF2.
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Note that this new procedure of looking for the poset or combinatorial weight
reduces a lot the number of summands compared to that obtained in Theorem 3.3.13. In
this example, while Theorem 3.3.13 needs 4 summands, Corollary 3.3.17 needs only 2.
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4 Weight Duality

When considering Fnq endowed with a metric d determined by a weight wt, the
weight distribution of a linear code C ⊂ Fnq counts how many codewords there are with
a given weight. It is an important invariant in coding theory since it enables to bound
the error probability of a code. However, determining the weight distribution is a hard
task, since C has qk elements, each with n coordinates, and the parameters n and k are
typically very large. However, desirable codes have large rate k/n and very often n− k
is small. The dual code C⊥, defined by the equation C⊥ = {u ∈ Fnq | 〈u, c〉 = 0,∀c ∈ C} is
an n− k-dimensional linear code and the weight distributions of C and C⊥ are related by
the remarkable MacWilliams Identity, a fundamental result in coding theory, proved by J.
MacWilliams in 1961, considering the Hamming metric.

When looking for a MacWilliams identity for poset metrics, (KIM; OH, 2005)
realized that not only the dual code is involved, but also a metric duality should be
considered. The duality of the metric could not be recognized for the Hamming case since,
as a particular case of poset metric, the Hamming metric is self-dual. The duality of the
metric showed up to be crucial for the MacWilliams Identity for many of the metrics to
which it was proved to hold, as, for example, in the case of poset-blocks (Pinheiro; Firer,
2012) and digraph metrics (ETZION; FIRER; MACHADO, 2017).

In this work we adopt a general approach which embraces all the previous ones
for which the orbits of a vector under the group of linear isometries depend only on the
weight. First of all we construct the dual weight wt⊥ of a given weight wt (over a finite
set), by considering the spheres centered at the origin. With this in hand, we are able to
determine a necessary and sufficient condition for the existence of a MacWilliams’ Identity.

As mentioned, we shall prove that, for the poset and combinatorial metrics
that admit a MacWilliams Identiy, namely the hierachical posets and the k-partitions,
respectively, this duality coincides with the usual definitions of dual of a hierachical poset
and the self-dual combinatorial metric.

4.1 The dual of a weight function

In this section we turn our attention to develop a generic definition of the dual
weight based only on the partition of Fnq into spheres. The first discussion concerning the
weight duality was raised in the context of poset weights in (KIM; OH, 2005). The authors
generalized MacWilliams’ identity for poset metrics, and classified the subfamily of poset
metrics whose admit such an identity. To do so, they related the P -weight enumerator of
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a linear code and the P⊥-weight enumerator of its dual code, where P⊥ denotes the dual
poset.

Given a weight wt, the ordered spectrum of Λwt of wt is defined as Λwt :=
(r1, r2, . . . , rσ(wt)), where {wt(u) : u ∈ Fnq } = {r1, r2, . . . , rσ(wt)} is the set of values assumed
by the weight wt, 0 = r1 < r2 < · · · < rσ(wt) and σ(wt) = |{wt(u) : u ∈ Fnq }|. Denote by
ej the basic vector such that supp(ej) = {j} and the j-th coordinate is 1. Let Si = {u ∈
Fnq : wt(u) = i} be the sphere of radius i centered at the 0 vector and let {Si : i ∈ Λwt}
be the set of spheres. The array of spheres of the weight wt is the ordered list Swt =
(Sr1 , Sr2 , . . . , Srσ(wt)). Since we are considering only metrics defined by weights, it follows
(Property 2, see Definition 3.1.1) that if ej ∈ Ŝi, then any λej ∈ Si, for any λ ∈ Fq \ {0}.
So, for every sphere Si we consider the subset Ŝi ⊂ Si consisting of multiples of the basic
vectors: Ŝi := {λej : ej ∈ Si and λ ∈ Fq \ {0}}.

Definition 4.1.1. We say that Si is a basic sphere if there is a basic vector ej ∈ Si, i.e.,
Ŝi 6= ∅. The array of basic spheres, denoted by SBwt, is the sub-list of Swt obtained by
removing the non-basic spheres.

The set SBwt of all basic spheres induces a sub-list ΛB
wt of Λwt in which Si ∈ SBwt

if, and only if, i ∈ ΛB
wt.

Let wt be a weight and consider array of spheres Swt = (Sr1 , Sr2 , . . . , Srσ(wt))
and SBwt = (Sri1 , Sri2 , . . . , Sriα ).

Consider an arbitrary ordering (u1, u2, . . . , ul) of
⋃

i∈ΛBwt

Si, the set of basic spheres.

The dual S⊥wt = (S⊥r1 , S
⊥
r2 , . . . , Sr⊥σ(wt)

) is obtained by the procedure as follows:

Step 1 - Consider the family VBwt⊥ = (S⊥ri1 , . . . , S
⊥
riα

) obtained from SBwt with the
reverse ordering, i.e., S⊥rij = Sr(iα−ij+1) .

In the next step, we will replace the non-basic vectors contained in basic spheres.
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Step 2 - For u := u1 ∈ S⊥ri1 ∪· · ·∪S
⊥
riα

, there is rij such that u ∈ S⊥rij . Let η(u) ≥ j

be the lowest integer in which supp(u) ⊂ supp(Ŝ⊥ri1 ∪ · · · ∪ Ŝ
⊥
riη(u)

). Then, u is moved to
S⊥riη(u)

. That is, we set S⊥rij := S⊥rij
\ {u} and S⊥riη(u)

:= S⊥riη(u)
∪ {u}.

Repeat it for all the elements u2, u3, . . . , ul.

Remark 4.1.2. Since ek ∈ S⊥rij implies k ∈ supp(Ŝ⊥rij ), it follows that any basic vector ek
stays at the original basic sphere, so that, the algorithm does not change any Ŝ⊥ri , that is,
at any round of Step 2, ΛB

wt is unchanged. Moreover, the spheres Si may be modified at the
rounds of Step 2, but the sets Ŝi are always the same.

Now we re-arrange the family VBwt⊥ determined in Step 1. We will need to insert
the non-basic spheres (which up to this point rested untouched) into the ordered list of
basic spheres, the output of Step 2.

Step 3 - Consider the sub-string Swt\SBwt = (Sr1 , Srj1 , Srj2 , . . . , Srjβ ), be an ordered
family of length β + 1. The zero sphere Sr1 is placed at the first position of the string
VBwt⊥ , i.e., VBwt⊥ := (Sr1 , S

⊥
ri1
, . . . , S⊥riα ). Fix ω(0) = 0.

For l = 1, 2, . . . , β, let

ω(l) = min

ς(l) ∈ [α] : ∃u∈Srjl such that supp(u) ⊂ supp(
ς(l)⋃
k=1

Ŝ⊥rik
)

 .
If ω(l) 6= ω(l − 1) place Srjl at the (ω(l) + 1)-th coordinate of VBwt⊥ ;
Else, if ω(l) = ω(l − 1), then place Srjl at the (ω(l − 1) + 2)-th coordinate of VBwt⊥ .

In the next step, we just rename the labels of the string VBwt⊥ , the output of
Step 3.

Step 4 - Replace the subscript j of the i-th position Sj of VBwt⊥ by ri.

The outcome of Step 4 is a string of disjoint subsets VBwt⊥ = (S⊥r1 , S
⊥
ri1
, . . . , S⊥rσ(wt)

).

In the next step, we move up the vectors in this string of spheres in a cascade
fashion, to ensure that the metric will respect support of vectors.

Step 5 - Move vectors u ∈ S⊥j to the sphere in higher position χ(u), in which
there is a vector v ∈ S⊥χ(u) such that supp(v) ⊂ supp(u). To be more precise, given u ∈ Fnq ,
let j(u) be such that u ∈ S⊥j(u). We set R(u) := {v ∈ Fnq : supp(v) ⊂ supp(u)}. Set
χ(u) = max{ri : S⊥ri ∩ R(u) 6= ∅}. We remark that χ(u) ≥ j(u). Now, we move u from
S⊥j(u) to S⊥χ(u) and move on to the next vector. We remark that in case χ(u) = j(u) nothing
is done. The transitivity of the continence of (sets) support ensure that Step 5 does no
loop, that is, once u is moved, it will not need to be moved again.
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Next we try to illustrate how this algorithm works step-by-step.
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moving up
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on basic spheres

Definition 4.1.3. The dual weight wt⊥ of the weight wt is determined by string S⊥wt

obtained at the end algorithm:

wt⊥(u) = i, for every u ∈ S⊥i .

Example 4.1.4. Let wtP be a poset weight with P = ([3], {1 ≺P 3, 2 ≺P 3}) and let us
consider the binary case q = 2. Then we have

SwtP = (S0 = {000}, S1 = {100, 010}, S2 = {110}, S3 = {101, 011, 001, 111})

and

SBwtP = (S1 = {100, 010}, S3 = {101, 011, 001, 111}).

Step 1: We set

VBwt⊥ = (S⊥1 = {101, 011, 001, 111}, S⊥3 = {100, 010}).

Step 2: We move the (non-basic) vectors 101, 011 and 111 to S⊥3 and get

VBwt⊥ = (S⊥1 = {001}, S⊥3 = {100, 010, 101, 011, 111}).

Step 3: We place the non-basic spheres S0 and S2 into the ordered string that
came out of the previous step and get:

VBwt⊥ = (S⊥0 = {000}, S⊥1 = {001}, S⊥3 = {100, 010, 101, 011, 111}, S⊥2 = {110}).

Step 4: We just relabel the ordered string that came out of the previous step
and get:

VBwt⊥ = (S⊥0 = {000}, S⊥1 = {001}, S⊥2 = {100, 010, 101, 011, 111}, S⊥3 = {110}).

Step 5: We note that supp(110) ⊂ supp(111). This means that it is necessary
to move 111 to S⊥3 and we get the outcome

S⊥wtP = (S⊥0 = {000}, S⊥1 = {001}, S⊥2 = {100, 010, 101, 011}, S⊥3 = {110, 111}).
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We remark that the dual poset wtP⊥ is defined by P⊥ = ([3], {3 ≺P⊥ 1, 3 ≺P⊥ 2})
and it is straightforward to check that Swt

P⊥
= Swt⊥P

.

Theorem 4.1.5. If wt : Fnq → R is a weight, then its dual wt⊥ is also a weight.

Proof. Since Λwt⊥ := VBwt⊥ is equal to Λwt and S⊥1 = S1 is placed at the first coordinate
of Λwt⊥ := VBwt⊥ , it follows that wt⊥ satisfies Property 1. Steps 2 and 3 of the algorithm
ensure that Property 2 holds for wt⊥. Indeed, suppose that supp(u) ⊂ supp(v), for u ∈ S⊥ri
and v ∈ S⊥rj . If S

⊥
ri

and S⊥rj are basic spheres, the minimalities of η(u) and η(v), in Step 2,
combined with supp(u) ⊂ supp(v) imply that η(u) ≤ η(v), i.e., wt⊥(u) ≤ wt⊥(v). If S⊥rj is
a non-basic sphere, ri ≤ ω(j) = rj. So that, wt⊥(u) ≤ wt⊥(v) as required.

4.2 MacWilliams-type Identity

The wt-weight enumerator of a code C is the polynomial

Wwt
C (X) =

∑
i

Awt
i (C)X i

where Awt
i (C) = |{c ∈ C : wt(c) = i}|.

Definition 4.2.1. A weight wt admits a MacWilliams-type identity if the wt-weight
enumerator of a linear code determines the wt⊥-weight enumerator of its dual, i.e., given
two linear codes C1 and C2 such that Wwt

C1 (X) = Wwt
C2 (X) then Wwt⊥

C⊥1
(X) = Wwt⊥

C⊥2
(X).

Lemma 4.2.2. Let C ⊂ Fnq be a linear code and let χ of Fq be an additive character. Then,∑
x∈C

χ(u · v) = |C| if v ∈ C⊥ and 0 otherwise.

Lemma 4.2.3. Let wt be a weight. Given a linear code C of Fnq , then

Awt
i (C) = 1

|C⊥|
∑

1≤j≤n

∑
x∈C⊥∩S⊥j

∑
y∈Si

χ(x · y),

where Si and S⊥j are the spheres of radii i and j considering the metric induced by the
weights wt and wt⊥, respectively, i.e., Si = {x ∈ Fnq : wt(x) = i} and S⊥j = {x ∈ Fnq :
wt⊥(x) = j}.

Proof. First, note that Awt
i (C) = |C ∩ Si| =

∑
u∈C∩Si

1. Lemma 4.2.2 implies that

Awt
i (C) =

∑
v∈Si

1
|C⊥|

∑
u∈C⊥

χ(u · v)

= 1
|C⊥|

∑
u∈C⊥

∑
v∈Si

χ(u · v)

= 1
|C⊥|

∑
1≤j≤n

∑
u∈C⊥∩S⊥j

∑
v∈Si

χ(u · v).
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Theorem 4.2.4. A weight wt admits the MacWilliams Identity if, given i, j ∈ [n], and
u, u′ ∈ Si, then ∑

v∈S⊥j

χ(u · v) =
∑
v∈S⊥j

χ(u′ · v).

Proof. Let C1, C2 ⊂ Fnq be linear codes such that Wwt
C1 (X) = Wwt

C2 (X). Since wt satisfies
the first condition we have that pij :=

∑
v∈S⊥j

χ(u ·v) does not depend on the choice of u ∈ Si.

Therefore, Wwt⊥
C⊥1

(X)=Wwt⊥
C⊥2

(X), since, from Lemma 4.2.3,

Awt⊥
j (C⊥k ) = 1

|Ck|
∑

1≤i≤n

∑
u∈Ck∩Si

pij

= 1
|Ck|

∑
1≤i≤n

Awt
i (Ck)pij, for k ∈ {1, 2}.

4.3 Relation to the usual MacWilliams’ Identity

In this section we shall prove that the MacWilliams-type Identity stated
in Theorem 4.2.4 is a generalization of the MacWilliams Identity already known for
combinatorial metrics (as it appears in Chapter 1) or the poset metrics (as it appears in
(KIM; OH, 2005)). To establish it we will show that a combinatorial weight is self dual
and that the dual weight determined by a hierarchical poset is the weight determined by
the dual poset.

Proposition 4.3.1. Any combinatorial weight is self-dual, that is, wt⊥F = wtF , for any
covering F of [n].

Proof. First note that wtF(ei) = 1, for any covering F and any basic vector ei ∈ Fnq . This
implies the set of basic spheres SBwtF is composed only by the radius 1 sphere S1. Due to
this fact: 1) Step 1 does not change any order; 2) Step 2 does not move any vector to
another basic sphere; 3) Every non-basic sphere is placed at original coordinate position;
4) There is nothing to relabel, since at this point the order is exactly like the one of the
input weight wtF ; 5) Since up to Step 4, the spheres are exactly as defined by wtF , Step 5
does not change any vector from the original sphere.

Proposition 4.3.2. Let P be an hierarchical poset and wtP the corresponding weight.
Then, the dual weight coincides with the weight defined by the dual poset, i.e., wt⊥P = wtP⊥.
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Proof. Let Ni = |ΓPi |, for each level ΓPi of P and denote by SPi and (SPi )⊥ the sphere of
radius i concerning the P -weight and dual of the P -weight, respectively. It follows that

SP1 = {λei : i ∈ ΓP1 and λ ∈ Fq \ {0}}

SP2 = {λ1ei + λ2ej : i, j ∈ ΓP1 , i 6= j and λ1, λ2 ∈ Fq \ {0}}
... ...

SPN1 = {λ1ei1 + λ2ei2 + · · ·+ λN1eiN1
: {i1, i2, . . . , iN1} = ΓP1 and λ1, λ2, . . . , λN1 ∈ Fq \ {0}}

SPN1+1 = {λei + u : i ∈ ΓP2 , λ ∈ Fq \ {0} and supp(u) ⊂ ΓP1 }
... ...

SPN1+···+Nh(P )
={λ1ei1 + · · ·+ λNh(P )eiNh(P )

+ u : with

{i1, . . . , iNh(P )} = ΓPh(P ), λ1, . . . , λNh(P ) ∈ Fq \ {0} and supp(u) ∩ ΓPh(P ) = ∅}.

Step 1 and Step 4 of the algorithm ensure that SP⊥1 = {λei : i ∈ ΓPh(P ) and λ ∈
Fq \{0}} ⊂ (SP1 )⊥. In addition, Step 2 ensures that u ∈ (SP1 )⊥ if, and only if, |supp(u)| = 1.
This implies that SP⊥1 = (SP1 )⊥.

Step 3 and Step 4 ensure that SP⊥2 = {λ1ei + λ2ej : i, j ∈ ΓPh(P ) and λ1, λ2 ∈
Fq \ {0}} ⊂ (SP2 )⊥. Further, Steps 3 and 5 ensure that any vector λ1ei + λ2ej + u /∈ (SP2 )⊥,
for {i, j} ⊂ ΓPh(P ) = ΓP⊥1 and u 6= 0 satisfying supp(u) ∩ {i, j} = ∅.

By using repetitively the procedure as before, we show that every SP⊥i = (SPi )⊥,
so that wt⊥P = wtP⊥ .

Corollary 4.3.3. If wt is either a combinatorial or poset weight admitting a MacWilliams
Identity, then the identity coincides with the MacWilliams-type Identity of Theorem 4.2.4.

The identification between the dual weight and the weight determined by the
dual poset established in Proposition 4.3.2 is not valid for a general poset, as we can see
in the following tiny example.

Example 4.3.4. Let wtP be a poset weight with P = ([3], {1 ≺P 3}). Then

SwtP = (S0 = {000}, S1 = {100, 010}, S2 = {110, 001, 101}, S3 = {011, 111}).

The dual poset P⊥ = ([3], {3 ≺P⊥ 1}) has array of spheres

Swt
P⊥

= (S0 = {000}, S1 = {001, 010}, S2 = {011, 100, 101}, S3 = {110, 111}).

Now, the dual weight wt⊥P has array of spheres

S⊥wtP = (S0 = {000}, S1 = {001}, S2 = {010, 110, 100, 101}, S3 = {011, 111})

so that Swt
P⊥
6= S⊥wtP .
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To conclude, we should remark that it is a work-in-progress to prove that this
concept of weight duality coincides with the one established for digraphs (as in (ETZION;
FIRER; MACHADO, 2017)) or the labeled-poset block (as in Chapter 2), in the instances
where a MacWilliams’ Identity holds. There are some missing details, but it seems to be
the case.

It may happen that the concept of weight duality still need to be refined in
order to encompass all the instances of known weights respecting support. We conjecture
that it may be refined in order to coincide with a weight that is equivalent (but not equal)
to the ones established in the particular families of weights respecting support known in
the literature (posets, poset-blocks, digraphs and labeled-poset-blocks).
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5 Representation of directed acyclic graphs

5.1 Introduction

1 In the WWW network, a number of pages are devoted to topic or item
disambiguation; in disambiguation pages, a number of identical names of designators are
used to describe different entities which are further clarified and narrowed down in context
via links to more specific pages. For example, typing the word “Michael Jordan” into
a search engine such as Google produces a Wikipedia page which lists sportists, actors,
scientists and other persons bearing this name. From this web page, one can choose to
follow a link to any one of the items sharing the same two keywords, “Michael” and
“Jordan”. Most of the specific pages do not link back to the disambiguation page: For
example, following the link to “Michael Jordan (footballer)” does not allow for returning
to the disambiguation page, and may hence be viewed as a directed link. Furthermore,
disambiguation pages tend to have little content, usually in the form of lists, while the pages
that link to it tend to have significantly more information about one of the individuals.

Motivated by such directed networks of webpages, we consider the following
problem, illustrated by a small-scale directed graph depicted in Figure 1. Assume that
the vertices A,B,C,D correspond to four web-pages that contain different collections of
topics, files or networks, represented by color-coded rectangles (For example, each color
may correspond to a different person bearing the same name). Two web-pages are linked
to each other if they have at least one topic in common (e.g., the same name or some
other shared feature). For a directed graph, in addition to the shared content assumption
one needs to provide an explanation for the direction of the links, i.e., which vertex in the
arc represents the tail and which vertex in the arc represents the head. In the context of
the above described web-page linkages, it is reasonable to assume that a webpage links
to another terminal webpage if the latter covers more topics, i.e., contains additional
information compared to the source page. In Figure 1, the link between web-pages A and
B is directed from A to B, since B lists three topics, while A lists only two. This give
rise to two generative constraints for the existence of a directed edge: Shared information
content and content size dominance. This is a natural generative assumption, which has
been exploited in a similar form in a number of data mining contexts (TSOURAKAKIS,
2015; DAU; MILENKOVIC, 2017).

Often, one is only presented with the directed graph topology of a directed
graphs and asked to determine the latent vertex content leading to the observed topology.
1 Initial findings on the topic were presented at ISIT 2019.
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A

B

C D

Figure 1 – An information storage network such as the World Wide Web. Each vertex
contains a list of color-coded topics or files, representing its information content
(e.g., vertex B contains a green, purple and orange topic). Vertices A and B
are connected through an arc (A,B) since they share the green-colored topic
and A lists two, while B lists three files.

A problem of particular interest is to determine the smallest topic/information content
that explains the observed digraph. This question may be formally described as follows.
Let D = (V,A) be a directed graph with vertex set V and arc set A, and assume that each
vertex v ∈ V is associated with a nonempty subset ϕ(v) of a finite ground set C, called
the color set, such that (u, v) ∈ A if and only if |ϕ(u) ∩ ϕ(v)| ≥ 1 and |ϕ(u)| < |ϕ(v)|
(i.e., two vertices share an arc if their color sets intersect and the color set of the tail is
strictly smaller than the color set of the head). If such a representation is possible, we
refer to it as a directed intersection representation. The question of interest is to determine
the smallest cardinality of the ground set C which allows for a directed intersection
representation of a digraph D with |V | = n vertices, henceforth termed the directed
intersection number of D. Clearly, not all digraphs allow for such a representation. For
example, a directed triangle D (V,A) with V = {1, 2, 3} and A = {(1, 2), (2, 3), (3, 1)} does
not admit a directed intersecting representation, as such a representation would require
|ϕ(1)| < |ϕ(2)| < |ϕ(3)| < |ϕ(1)|, which is impossible. The same is true of every digraph
that contains cycles, but as we subsequently show, every directed acyclic graph (DAG)
admits a directed intersection representation. We focus on connected DAGs, although our
results apply to disconnected graphs with either no or some small modifications.

The problem of finding directed intersection representations of digraphs is closely
associated with the intersection representation problem for undirected graphs. Intersection
representations are of interest in many applications such as keyword conflict resolution,
traffic phasing, latent feature discovery and competition graph analysis (PULLMAN, 1983;
ROBERTS, 1985; DAU; MILENKOVIC; PULEO, 2017). Formally, the vertices v ∈ V of a
graph G(V,E) are associated with subsets ϕ(v) of a ground set C so that (u, v) ∈ E if and
only if |ϕ(u) ∩ ϕ(v)| ≥ 1. The intersection number (IN) of the graph G = (V,E) is the
smallest size of the ground set C that allows for an intersection representation, and it is
well-defined for all graphs. Finding the intersection number of a graph is equivalent to
finding the edge clique cover number, as proved by Erdós, Goodman and Posa in (ERDöS;



71

A

C

B

F

D

E

(a) The intersection number of a star
graph is equal to |E| = n− 1 (e.g.,
5).

A

C

B

F

D

E

(b) The DIN of any star digraph is 2.

CB

A

(c) The intersection number of a
complete graph is 1.

CB

A

(d) The DIN of a “complete” DAG
on three vertices is exactly 3.

Figure 2 – A comparison of the intersection numbers and DINs of the star and complete
graph/DAG.

GOODMAN; PóSA, 1966); determining the edge clique cover number is NP-hard, as
shown by Orlin (ORLIN, 1977). The intersection number of an undirected graph may
differ vastly from the DIN of some of its directed counterparts, whenever the latter exists.
This is illustrated by two examples in Figure 2.

The paper is organized as follows. Section 5.2 contains a constructive proof that
all DAGs have a finite directed intersection representation and algorithmically identifies
representations using a suboptimal number of colors. As a consequence, the constructive
algorithm establishes a bound on the DIN of arbitrary DAGs with a prescribed number
of vertices. In the same section, we inductively prove an improved upper bound which is
5n2

8 − 3n
4 + 1. In Section 5.3 we introduce the notion of DIN-extremal DAGs and describe

constructions of acyclic digraphs with DINs equal to

n2

2 + bn
2

16 −
n

4 + 1
4c − 1.

5.2 Representations of Directed Acyclic Graphs

We use the notation and terminology described below. Whenever clear from
the context, we omit the argument n.



72

The in-degree of a vertex v is the number of arcs for which v is the head, while
the out-degree is the number of arcs for which v is the tail. The set of in-neighbors of v is
the set of vertices sharing an arc with v as the head, and is denoted by N−(v). The set of
out-neighbors N+(v) is defined similarly.

For a given acyclic digraph D(V,A), let Γ : V → N be a mapping that
assigns to each vertex v ∈ V the length of the longest directed path that terminates at
v. The map Γ induces a partition of the vertex set V into levels (V0, . . . , V`), such that
Vi = {v ∈ V : Γ(v) = i}. We refer to Vi, i = 1, . . . , ` as the longest path decomposition of
V and the graph G. Clearly, there is no arc between any pair of vertices u and v at the
same level Vi, i = 1, . . . , `, as this would violate the longest path partitioning assumption.
Note that although the longest path problem is NP-hard for general graphs, it is linear
time for DAGs. Finding the longest path in this case can be accomplished via topological
sorting (BATTISTA; TAMASSIA, 1988).

Lemma 5.2.1. Every DAG D(V,A) on n vertices admits a directed intersection repre-
sentation. Moreover, DIN(n) ≤ 5

8n
2 − 1

4n.

Proof. We prove the existence claim and upper bound by describing a constructive color
assignment algorithm.

Step 1: We order the vertices of the digraph as V = (v1, v2, . . . , vn) so that
if (vi, vj) ∈ A, then i < j. One such possible ordering is henceforth referred to as a
left-to-right order, and it clearly well-defined as the digraph is acyclic. We then construct
the longest path decomposition and order the vertices in the graph starting from the first
level and proceeding to the last level. The order of vertices inside each level is irrelevant.

Step 2: We group vertices into pairs in order of their labels, i.e., (v2i−1, v2i),
for 1 ≤ i ≤ n

2 , and then assign to each vertex vi, i = 1, . . . , n, a color set distinct from the

color set of all other vertices. The sizes of the color sets equal n2 − d
i

2e.

Remark 5.2.2. In this step we used exactly

2 ·
(
n

2 − 1 + n

2 − 2 + . . .+ 1
)

= 2 ·
1 + n

2 − 1
2 ·

(
n

2 − 1
)

= n2

4 −
n

2 (5.1)

distinct colors. Those colors are going to be reused to accomodate for arcs between pairs.

Step 3: For each 1 ≤ i ≤ n− 2, we assign common colors for arcs from vi to
vertices belonging to pairs that follow the pair in which vi lies. More precisely:

• If (vi, v2j−1) /∈ A and (vi, v2j) /∈ A for some j such that 2·d i2e < 2j−1 ≤ n−1,
then we do nothing and move to the next step.
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• If (vi, v2j−1) ∈ A and (vi, v2j) /∈ A for some j such that 2·d i2e < 2j−1 ≤ n−1,
then we copy one color from ϕ(vi) not previously used in Step 3 and place it into the color
set of v2j−1, ϕ(v2j−1).

• If (vi, v2j−1) /∈ A and (vi, v2j) ∈ A for some j such that 2·d i2e < 2j−1 ≤ n−1,
then we copy one color from ϕ(vi) not previously used in Step 3 and place it into the color
set of v2j, ϕ(v2j).

• If (vi, v2j−1) ∈ A and (vi, v2j) ∈ A for some j such that 2·d i2e < 2j−1 ≤ n−1,
then we copy one color from ϕ(vi) not previously used in Step 3 and place it into both
ϕ(v2j−1) and ϕ(v2j).

Remark 5.2.3. Since each vertex vi has a color set ϕ(vi) with n

2 − d
i

2e colors, and

there are n2 − d
i

2e pairs following the pair that vertex vi is located in the previously fixed
left-to-right ordering, we will never run out of colors during the above color assignment
process.

The color sets obtained after the previously described procedure are denoted
by ϕ′.

Step 4: To the color sets of each pair of vertices (v2i−1, v2i), we add at most
3i new colors. The augmented color sets, denoted by ϕ′′, satisfy 1) if v2i−1v2i is an arc,
then |ϕ′′(v2i−1)| = n

2 + 2i− 2 and |ϕ′′(v2i)| =
n

2 + 2i− 1; 2) if v2i−1v2i is not an arc, then

|ϕ′′(v2i−1)| = |ϕ′′(v2i)| =
n

2 + 2i− 1.

In Step 4 we add at most
n

2 + 2i− 1− 1−
(
n

2 − i
)

= 3i− 2

colors to the color set of v2i−1 and at most
n

2 + 2i− 1−
(
n

2 − i
)

= 3i− 1

colors to the color set of v2i to reach the desired color-set sizes. Note that some colors may
be reused so that at this step, at most 3i − 1 new colors are actually needed for a pair
(v2i−1, v2i). Note that in Step 3, for each pair (v2i−1, v2i), we added in total at most 2i− 2
colors to both ϕ′(v2i−1) and ϕ′(v2i). Since 3i− 2 > 2i− 2, we added at least one color in
common for the pair (v2i−1, v2i) so that the intersection condition is satisfied when v2i−1v2i

is an arc.

Thus, the number of colors used so far is at most

(3 · 1− 1) + (3 · 2− 1) + . . .+
(

3 · n2 − 1
)

= 3 ·
(

1 + 2 + . . .+ n

2

)
− n

2

= 3 ·
1 + n

2
2 · n2 −

n

2 = 3
8 n

2 + n

4 . (5.2)
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v1={1}

v2={2} v3={}

v4={}

v1

v2 v3

v4

v1={1}

v2={2} v3={1}

v4={}

v1={1,3}

v2={2,3,4} v3={1,5,6,7}

v4={5,6,7,8,9}

v1 ={1,2}

v2 ={3,4}
v3 ={1,5}

v4 ={1,6}

v5 ={} v6 = {}

v1

v2
v3

v4

v5 v6

v1 = {1,2}

v2 ={3,4}
v3 ={5}

v4 = {6}

v5 = {} v6 = {}

v1 ={1,2,7}

v2 ={3,4,
v3 ={1,5,

v4 ={1,6,9,10,11}

v5 ={3,12,13,14,15,16,17} v6 ={6,12,13,14,15,16,17}

7,8}
9,10,11}

Figure 3 – Directed intersection representations for two rooted trees with four and six
vertices, respectively. The representations were obtained by using a vertex
partition according to the longest terminal path and the constructive algorithm
of Lemma 5.2.1.

Next, we claim that ϕ′′ is a valid representation that uses at most 5
8 n

2 − n

4
colors. From (5.1) and (5.2), we know that we used at most

n2

4 −
n

2 + 3
8 n

2 + n

4 = 5
8 n

2 − n

4
colors.

The size condition obviously holds since |ϕ′′(vi)| =
n

2 + i− 1 and (vi, vj ∈ A
implies |ϕ(vi)| < |ϕ(vj)|. The intersection condition also holds since for each (vi, vj) with
i < j, one has

• If (vi, vj) ∈ A, then

1) If (vi, vj) is a pair, then ϕ′′(vi) and ϕ′′(vj) have by the previous procedure
at least one color in common.

2) If (vi, vj) is not a pair, then we added a color for this arc in Step 3.

• If (vi, vj) /∈ A, then

1) If (vi, vj) is a pair, then by previous procedure |ϕ′′(vi)| = |ϕ′′(vj)|.

2) If (vi, vj) is not a pair, then ϕ′′(vi) and ϕ′′(vj) have no color in common
based on Step 2 and Step 3.

On the example of the directed rooted tree shown in Figure 3, we see that more
careful book-keeping and repeating of the colors used at the different levels allows one
to reduce the cardinality of the representation set C compared to the one guaranteed by
the construction of Lemma 5.2.1. If the vertices of the tree on the top figure are labeled
according to the preorder traversal of the tree (MORRIS, 2017) as v1, v2, v3, and v4, the
longest terminal path vertex partition equals V0 = {v1}, V1 = {v2, v3}, V2 = {v4}. Using
this decomposition and Lemma 5.2.1, we arrive at a bound for the DIN equal to 9. It
is straightforward to see the actual DIN of the tree equals 5. Similarly, the algorithm of
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Lemma 5.2.1 assigns 17 distinct colors to the vertices of the tree depicted at the bottom
of the figure, while the actual DIN of the tree equals 6. Nevertheless, as we will see in the
next section, a color assignment akin to the one described in Lemma 5.2.1 is needed to
handle a number of Hamiltonian DAGs.

The algorithm described in the proof of Lemma 5.2.1 established that every
DAG has a directed intersection representation and introduced an algorithmic upper bound
on the DIN number of any DAG on n vertices with a leading term 5

8 n
2. An improved

upper bound may be obtained using (nonconstructive) inductive arguments, as described
in our main result, Theorem 5.2.4, and its proof. For simplicity, we only present the proof
for even n.

Theorem 5.2.4. Let D = (V,A) be an acyclic digraph on n vertices. If n is even, then

DIN(D) ≤ 5n2

8 −
3n
4 + 1.

Proof. We prove a stronger statement which asserts that for a left-to-right ordering of the
vertices V of an arbitrary acyclic digraph D, there exists a representation ϕ such that

(a) |ϕ(v1)| = n

2 , |ϕ(v2)| ≥ n

2 , and |ϕ(vi)| ≥
n

2 + 1 for 3 ≤ i ≤ n.

(b) For each pair (v2i−1, v2i), if (v2i−1, v2i) ∈ A then |ϕ(v2i−1)| = |ϕ(v2i)| − 1,
and if (v2i−1, v2i) /∈ A then |ϕ(v2i−1)| = |ϕ(v2i)| for 1 ≤ i ≤ n

2 .

(c) ∪ni=1 ϕ(vi) contains at most 5n2

8 −
3n
4 + 1 colors.

The base case n = 2 is straightforward, as a connected DAG contains only one
arc. In this case, we use {1} for the head and {1, 2} for the tail, and this representation
clearly satisfies (a), (b), and (c).

We hence assume n ≥ 4 and delete the arc (v1, v2) from D to obtain a new
digraph D′; the ordering (v3, . . . , vn) is still a left-to-right ordering of D′. Thus, by the
induction hypothesis, D′ has a representation ϕ′ satisfying

1) |ϕ′(v3)| = n

2 − 1, |ϕ′(v4)| ≥ n

2 − 1, and |ϕ′(vi)| ≥
n

2 for 5 ≤ i ≤ n;

2) For each pair of vertices (v2i−1, v2i), if (v2i−1, v2i) ∈ A, then |ϕ(v2i−1)| =
|ϕ(v2i)| − 1, and if (v2i−1, v2i) /∈ A, then |ϕ(v2i−1)| = |ϕ(v2i)| for 2 ≤ i ≤ n

2 , and

3) The representation ϕ′ uses at most

5(n− 2)2

8 − 3(n− 2)
4 + 1 = 5n2

8 −
3n
4 + 1−

(5
2 n− 4

)
(5.3)

colors.

We initialize our procedure by letting ϕ = ϕ′.

Case 1: (v1, v2) /∈ A.
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Step 1: Assign to v1 a set of n2 − 1 new colors, say {α1, . . . , αn
2−1}. Let

ϕ(v1) = {α1, . . . , αn
2−1}. Assign to v2 a set of n2 − 1 new colors, say {β1, . . . , βn2−1}, all of

which are distinct from the colors in {α1, . . . , αn
2−1}. Let ϕ(v2) = {β1, . . . , βn2−1}.

Step 2: Add the same color γ to both ϕ(v1) and ϕ(v2).

Step 3: For arcs including v1, and for each 2 ≤ i ≤ n

2 , we perform the following
procedure:

• If (v1, v2i−1) ∈ A and (v1, v2i) ∈ A, then we copy a color from ϕ(v1) (say,
αi−1) to both ϕ(v2i−1) and ϕ(v2i).

• If (v1, v2i−1) ∈ A and (v1, v2i) /∈ A, then we copy a color from ϕ(v1) (say,
αi−1) to ϕ(v2i−1).

• If (v1, v2i−1) /∈ A and (v1, v2i) ∈ A, then we copy a color from ϕ(v1) (say,
αi−1) to ϕ(v2i).

• If (v1, v2i−1) /∈ A and (v1, v2i) /∈ A, then we do nothing.

Step 4: For arcs including v2, and for each 2 ≤ i ≤ n

2 , we perform the following
procedure:

• If (v2, v2i−1) ∈ A and (v2, v2i) ∈ A, then we copy a color from ϕ(v2) (say,
βi−1) to both ϕ(v2i−1) and ϕ(v2i).

• If (v2, v2i−1) ∈ A and (v2, v2i) /∈ A, then we copy a color from ϕ(v2) (say,
βi−1) to ϕ(v2i−1).

• If (v2, v2i−1) /∈ A and (v2, v2i) ∈ A, then we copy a color from ϕ(v2) (say,
βi−1) to ϕ(v2i).

• If (v2, v2i−1) /∈ A and (v2, v2i) /∈ A, then we do nothing.

Next, assume that the DAG representation ϕ is as constructed above.

Step 5: For each 2 ≤ i ≤ n

2 , we add colors to both ϕ(v2i−1) and ϕ(v2i) so that
the new representation ϕ satisfies

|ϕ(vj)| − |ϕ′(vj)| = 3.

In the process, we reuse colors to minimize the number of newly added colors. Since the
procedures in Step 3 and Step 4 increase the color set of each vertex by at most 2, one may
need to add as many as 3 new colors to a vertex representation (Note that we actually only
need the difference to be 2, but for consistency with respect to Case 2 we set the value to
3). As an example, assume that we added j ∈ {0, 1, 2} colors to ϕ(v2i−1) and k ∈ {0, 1, 2}
colors to ϕ(v2i) in Step 3 and Step 4. Then, we need to add max {3− j, 3− k} colors to
obtain the desired representation, which for j = 0 or k = 0 results in 3 new colors. This is
repeated for each pair, with at most 3 distinct added colors.
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Claim 5.2.5. The representation ϕ includes at most 5
2 n− 4 new colors.

Proof. We used
n

2 − 1 + n

2 − 1 + 1 = n− 1

colors in Step 1 and Step 2. We used at most 3 · (n2 − 1) in Step 5. Therefore, we used at
most

n− 1 + 3
2 n− 3 = 5

2n− 4

new colors in total.

Claim 5.2.6. The color assignments ϕ constitute a valid representation satisfying condi-
tions (a), (b), and (c).

Proof. (i): For a pair of vertices (u,w) such that u ∈ V − {v1, v2} and w ∈ V − {v1, v2},
we consider the following cases

1) If (u,w) ∈ A, then since ϕ′ constituted a valid representation, we have that
a) the intersection condition holds for ϕ because the two vertices still have representations
with a color in common, and b) the size condition holds since we added three colors to
both the color sets of u and w.

2) If (u,w) /∈ A, and if u, w belong to different pairs, then since ϕ′ is a valid
representation and we added distinct colors to different pairs of vertices in Step 5, ϕ is
a valid representation. This claim holds since if the vertices u and w have no color in
common in ϕ′, then they still have no color in common after different colors are added in
Step 5. Furthermore, if the representation sets of the vertices had the same size before we
added three colors to each color set, the sizes will remain the same. If u, w belong to the
same pair, their color set sizes were the same in ϕ′ and they stay the same after colors are
added in Step 5. Hence, ϕ is still valid.

Similarly, for a pair of vertices (u,w) such that u ∈ {v1, v2} and w ∈ V −{v1, v2},
we consider the following cases.

1) If (u,w) ∈ A, then the intersection condition holds for ϕ because we added
a common color to the color sets of u and w in Step 3 or Step 4. Furthermore, the size
condition holds since

|ϕ(w)| = |ϕ′(w)|+ 3 ≥ n

2 − 1 + 3 > n

2 = |ϕ(u)|.

Therefore, ϕ is a valid representation.

2) If (u,w) /∈ A, then ϕ is valid since we did not add any common color to
the color sets of the two vertices, and the set ϕ′(u) was obtained by augmenting it with
distinct colors.
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Recall that under Case 1, (v1, v2) /∈ A and |ϕ(v1)| = |ϕ(v2)|. Hence, ϕ is a valid
representation.

In addition, we have

(a): |ϕ(v1)| = |ϕ(v2)| = n

2 and |ϕ(vi)| ≥
n

2 − 1 + 3 ≥ n

2 + 1, for 3 ≤ i ≤ n.

(b): For each pair (v2i−1, v2i), if (v2i−1, v2i) ∈ A, then |ϕ′(v2i−1)| = |ϕ′(v2i)| − 1.
Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 3 = |ϕ′(v2i)| − 1 + 3 = |ϕ(v2i)| − 1.

If (v2i−1, v2i) /∈ A, where 2 ≤ i ≤ n

2 , then |ϕ
′(v2i−1)| = |ϕ′(v2i)|. Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 3 = |ϕ′(v2i)|+ 3 = |ϕ(v2i)|.

These properties also hold for i = 1, as previously established.

(c): By Claim 5.2.5, we used at most 5
2n− 4 new colors.

Case 2: (v1, v2) ∈ A.

Step 1: This step follows along the same lines as Step 1 of Case 1.

Step 2: Add a common color γ to both ϕ(v1) and ϕ(v2) to satisfy the intersec-
tion constraint, and add a new color δ to ϕ(v2) to satisfy the size constraint.

Step 3: This step follows along the same lines as Step 3 of Case 1.

Step 4: This step follows along the same lines as Step 4 of Case 1.

Step 5: This step follows along the same lines as Step 4 of Case 1.

Using the same counting arguments as before, it can be shown that the above
steps introduce 5

2 n− 3 new colors (see the claim below).

Claim 5.2.7. We used at most 2.5n− 3 new colors.

Claim 5.2.8. One can remove (save) one color from the given representation.

Proof. Case 1: (v2, v3) ∈ A.

Case 1.1: (v2, v4) ∈ A. Then β1 ∈ ϕ(v3) ∩ ϕ(v4) and we can save one color for
the pair (v3, v4) in Step 5 as only two colors suffice.

Case 1.2: (v2, v4) /∈ A.

Case 1.2.1: (v1, v3) ∈ A. If (v1, v4) ∈ A, then α1 ∈ ϕ(v3) ∩ ϕ(v4) and we can
save one color introduced in Step 5. If (v1, v4) /∈ A, then β1 ∈ ϕ(v3) and α1 ∈ ϕ(v3). We
replace β1 ∈ ϕ(v3) by δ and replace β1 ∈ ϕ(v2) by α1 and remove β1. This saves one color.

Case 1.2.2: (v1, v4) ∈ A. Since β1 ∈ ϕ(v3) and α1 ∈ ϕ(v4), we can discard one
color used in Step 5.



79

Case 1.2.3: (v1, v3) /∈ A and (v1, v4) /∈ A. Then α1 is unused and we can thus
replace α1 in ϕ(v1) by δ to save one color.

Case 2: (v2, v3) /∈ A.

Case 2.1: (v2, v4) ∈ A. Then β1 ∈ ϕ(v4). If (v1, v3) ∈ A, then α1 ∈ ϕ(v3) and
we can save a color in Step 5. Thus, we may assume that (v1, v3) /∈ A. In this case, if
(v1, v4) ∈ A, then α1 ∈ ϕ(v4) and we replace α1 ∈ ϕ(v4) by a color we used in Step 5 for
v3 (recall that in Step 5, we added three new colors to ϕ(v3) and only reused one of them
in ϕ(v4); hence, there are two colors remaining). In addition, we replace α1 ∈ ϕ(v1) by β1

to save one color. Thus, we may assume (v1, v4) /∈ A. Then, α1 is not used in the second
pair and we may replace α1 ∈ ϕ(v1) by δ to save one color.

Case 2.2: (v2, v4) /∈ A.

Case 2.2.1: If (v1, v3) ∈ A and (v1, v4) ∈ A, then α1 ∈ ϕ(v3) ∩ ϕ(v4) and we
saved a color in Step 5.

Case 2.2.2: If (v1, v3) /∈ A and (v1, v4) /∈ A, then we may replace β1 ∈ ϕ(v2)
by α1 to save one color.

Case 2.2.3: If (v1, v3) ∈ A and (v1, v4) /∈ A or (v1, v3) /∈ A and (v1, v4) ∈ A,
then we modify Step 5 by requiring that the color sets be augmented by two rather than
three colors. This allows us to save at least one color.

Claim 5.2.9. The representation ϕ is valid and it satisfies conditions (a), (b), and (c).

Proof. We separately consider two cases.

• For Case 2.2.3,

For a pair of vertices (u,w) such that u ∈ V − {v1, v2} and w ∈ V − {v1, v2},
we consider the following cases.

1) If (u,w) ∈ A, then since ϕ′ constituted a valid representation we have that
a) the intersection condition holds for ϕ because the two vertices still have a representation
with a color in common, and b) the size condition holds since we added two colors to both
the color set of u and w.

2) If (u,w) /∈ A, and if u, w belong to different pairs, then since ϕ′ is a valid
representation and we added distinct colors to different pairs in Step 5, ϕ is a valid
representation. This claim holds since if the vertices u and w have no color in common
in ϕ′, then they still have no color in common after different colors are added in Step 5.
Furthermore, if the color set representations of two vertices had the same size, then since
we added two colors to both color sets, the color sets of the vertices will still have the
same size. If u, w belong to the same pair, then their color size were the same in ϕ′ and
remain the same after colors are added in Step 5. Hence, ϕ is a valid representation.
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Similarly, for a pair of vertices (u,w) such that u ∈ {v1, v2} and w ∈ V −
{v1, v2, v3, v4}, we consider the following cases.

1) If (u,w) ∈ A, then a) the intersection condition holds for ϕ because we
added one common color in Step 3 or Step 4, and b) the size condition holds since

|ϕ(w)| = |ϕ′(w)|+ 2 ≥ n

2 + 2 > n

2 + 1 ≥ |ϕ(u)|.

Therefore, ϕ is a valid representation.

2) If (u,w) /∈ A, then ϕ is valid since

ϕ(w) ≥ n

2 + 2 > n

2 + 1 ≥ ϕ(u)

and we did not add a common color for the two vertices, and ϕ′(u) was obtained by adding
distinct colors to ϕ(u).

For (v1, v3), when (v1, v3) ∈ A we added α1 to ϕ(v3) so that

|ϕ(v3)| = n

2 + 1 > n

2 = |ϕ(v1)|.

When (v1, v3) /∈ A we added distinct colors to ϕ(v1) and ϕ(v3). Thus, ϕ is valid.

For (v1, v4), when (v1, v4) ∈ A we added α1 to ϕ(v4) so that

|ϕ(v4)| = n

2 + 1 > n

2 = |ϕ(v1)|.

When v1v4 /∈ A we added distinct colors to ϕ(v1) and ϕ(v4). Thus, ϕ is valid.

For (v2, v3), we added distinct colors to ϕ(v2) and ϕ(v3). Thus, ϕ is valid.

For (v2, v4), we added distinct colors to ϕ(v2) and ϕ(v4). Thus, ϕ is valid.

For (v1, v2), since (v1, v2) ∈ A, γ ∈ ϕ(v1) ∩ ϕ(v2), and |ϕ(v1)| = |ϕ(v2)| − 1 we
have that ϕ is valid.

To verify that conditions (a), (b) and (c) are satisfied, observe that:

(a): |ϕ(v1)| = |ϕ(v2)| − 1 = n

2 and |ϕ(vi)| ≥
n

2 + 1 for 3 ≤ i ≤ n.

(b): For each pair (v2i−1, v2i), if (v2i−1, v2i) ∈ A then |ϕ′(v2i−1)| = |ϕ′(v2i)| − 1.
Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 2 = |ϕ′(v2i)| − 1 + 2 = |ϕ(v2i)| − 1.

This claim is also true for i = 1, which we already showed.

If (v2i−1, v2i) /∈ A, where 2 ≤ i ≤ n

2 , then |ϕ
′(v2i−1)| = |ϕ′(v2i)|. Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 2 = |ϕ′(v2i)|+ 2 = |ϕ(v2i)|.

(c): By Claim 5.2.7 and Claim 5.2.8, we used at most 2.5n− 4 new colors.
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• For the other cases,

For a pair of vertices (u,w) such that u ∈ V − {v1, v2} and w ∈ V − {v1, v2},
we consider the following cases.

If (u,w) ∈ A then since ϕ′ was valid 1) the intersection condition still holds for
ϕ because they still have color in common and 2) the size condition still hold since we
added three colors to each of the color set of u and w.

If (u,w) /∈ A, and the two vertices are in different pairs then since ϕ′ was valid
and we added distinct colors to different pairs in Step 5, we have that ϕ is valid because if
u and v have no color in common in ϕ′ then they still have no color in common after we
added different colors in Step 5; if they had the same size in ϕ′ then since we added three
colors to each color set their sizes remain the same. If the two vertices are in the same
pair then their color size was the same in ϕ′ and it stays the same after adding colors in
Step 5. Hence, ϕ is still valid.

For a pair of vertices (u,w) such that u ∈ {v1, v2} and w ∈ V − {v1, v2}, we
consider the following cases.

If (u,w) ∈ A then 1) the intersection condition holds for ϕ because we added a
common color in Step 3 or Step 4 to the color sets of u and w and 2) the size condition
hold since

|ϕ(w)| = |ϕ′(w)|+ 3 ≥ n

2 − 1 + 3 > n

2 + 1 ≥ |ϕ(u)|.

Therefore, ϕ is valid.

If (u,w) /∈ A then ϕ is valid since we did not add any common color for them
and u uses distinct colors from ϕ′.

For (v1, v2), since (v1, v2) ∈ A, γ ∈ ϕ(v1) ∩ ϕ(v2), and |ϕ(v1)| = |ϕ(v2)| − 1 we
have that ϕ is valid.

To verify that conditions (a), (b) and (c) are satisfied, observe that:

(a): |ϕ(v1)| = |ϕ(v2)| − 1 = n

2 and |ϕ(vi)| ≥
n

2 − 1 + 3 ≥ n

2 + 1 for 3 ≤ i ≤ n.

(b): For each pair (v2i−1, v2i), if (v2i−1, v2i) ∈ A then |ϕ′(v2i−1)| = |ϕ′(v2i)| − 1.
Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 3 = |ϕ′(v2i)| − 1 + 3 = |ϕ(v2i)| − 1.

This claim is also true for i = 1, which we already showed.

If (v2i−1, v2i) /∈ A, where 2 ≤ i ≤ n

2 , then |ϕ
′(v2i−1)| = |ϕ′(v2i)|. Thus,

|ϕ(v2i−1)| = |ϕ′(v2i−1)|+ 3 = |ϕ′(v2i)|+ 3 = |ϕ(v2i)|.

(c): By Claim 5.2.7 and Claim 5.2.8, we used at most 2.5n− 4 new colors.
This proves the claim.
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This completes the proof of the theorem.

5.3 Extremal DIN Digraphs and Lower Bounds

The derivations in the previous section proved that for any DAG D on n

vertices, one has
DIN(D) ≤ 5n2

8 −
3n
4 + 1. (5.4)

In comparison, the intersection number of any graph on n vertices is upper
bounded by n2

4 (ERDöS; GOODMAN; PóSA, 1966). Furthermore, the existence of undi-

rected graphs that meet the bound n
2

4 can be established by observing that the intersection
number of a graph is equivalent to its edge-clique cover number and by invoking Mantel’s
theorem (MANTEL, 1907) which asserts that any triangle-free graph on n vertices can

have at most n
2

4 edges. The extremal graphs with respect to the intersection number are
the well-known Turan graphs T (n, 2) (TURÁN, 1954).

Consequently, the following question is of interest in the context of directed
intersection representations: Do there exist DAGs that meet the upper bound in (5.4)
and which DIN values are actually achievable? To this end, we introduce the notion of
DIN-extremal DAGs: A DAG on n vertices is said to be DIN-extremal if it has the largest
DIN among all DAGs with the same number of vertices.

Directed path DAGs, e.g., directed acyclic graphsD(V,A) with V = {1, 2, . . . , n}

and A = {(1, 2), (2, 3), (3, 4), . . . , (n− 1, n)} have DINs that scale as n
2

4 . The following
result formalizes this observation.

Proposition 5.3.1. Let D(V,A) be a directed path on n vertices. If n is even, then

DIN(D) = n2 + 2n
4 ; if n is odd, then DIN(D) = n2 + 2n+ 1

4 .

The proof of the result is straightforward and hence omitted.

Figure 4 provides examples of DIN-extremal DAGs for n ≤ 7 vertices. These
graphs were obtained by combining computer simulations and proof techniques used in
establishing the upper bound of (5.4). Direct verification for large n through exhaustive
search is prohibitively complex, as the number of connected/disconnected DAGs with n
vertices follows a “fast growing” recurrence (ROBINSON, 1977). For example, even for
n = 6, there exist 5984 different unlabeled DAGs. Note that all listed extremal DAGs are
Hamiltonian, e.g., they contain a directed path visiting each of the n vertices exactly once.
As such, the digraphs have a unique topological order induced by the directed path, and
for the decomposition described on page 5 one has |Vi| = 1 for all i ∈ [n]. Note that the
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bound in (5.4) for n = 2, 3, 4, 5, 6, 7 equals 2, 4, 8, 12, 19, 26, respectively. Hence, the upper
bound in (4) is loose for n ≥ 6.

DIN = 2 DIN = 4

DIN = 8 DIN = 12

DIN = 18 DIN = 24

Figure 4 – Examples of DIN-extremal graphs for n ≤ 7.

For all n ≤ 7 the extremal digraphs are what we refer to as source arc-paths,
illustrated in Figure 5 a),b). A source arc-path on n vertices has the following arc set

A = {(v1, v2k) : k ∈ [bn/2c]} ∪ {(vk, vk+1) : k ∈ [n−1]}.

It is straightforward to prove the following result.

Proposition 5.3.2. The DIN of a source arc-path on n vertices is equal to bn
2

2 c = b4n
2

8 c.

Hence, the DIN of source arc-paths is by n2

8 smaller than the leading term of the upper
bound (5.4).

Proof. A directed triangle in a digraphD = (V,A) is a collection of three vertices {vi, vj, vk}
such that (vi, vj) ∈ A, (vj, vk) ∈ A, and (vi, vk) ∈ A. Since a source arc-path avoids directed
triangles and every vertex has a color set of different size than another (due to the presence
of the directed Hamiltonian path), every color may be used at most twice. We need
n

2 colors for ϕ(v1) to represent the arcs v1v2i, where 1 ≤ i ≤ n

2 . Since the size of the
color sets ϕ increases along the directed path, vertex vj in the natural ordering has
ϕ(vj) ≥

n

2 + j − 1. Furthermore, (v2i, v2j) /∈ A for a source arc-path, for all 1 ≤ i < j ≤ n

2 .

Thus, ϕ(v2i) ∩ ϕ(v2j) = ∅, 1 ≤ i < j ≤ n

2 . This implies the number of colors needed is

≥ n

2 + 1 + n

2 + 3 + · · ·+ n

2 + n− 1 = n

2 ·
n

2 +
(1 + n− 1)(n2 )

2 = n2

2 .

To show that the above lower bound is met, we exhibit the following represen-
tation ϕ with n

2 colors:

v1 v2 v3 v4 v5 v6 vn

(a) Source arc-path, n even.
v1 v2 v3 v4 v5 v6 vn−1 vn

(b) Source arc-path, n odd.
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1) ϕ(v1) = {c1, . . . , cn2 }, ϕ(v2) = {c1, f1, g1,1, . . . , gn2−1,1}.
2) For 2 ≤ i ≤ n

2 − 1,

ϕ(v2i) = {ci, di, fi, g1,i, . . . , gn2 +2i−4,i},

ϕ(vn) = {cn
2
, dn

2
, g1,n2 , . . . , g

n
2 +n−3,n2 }.

3) For 2 ≤ i ≤ n

2 − 1,

ϕ(v2i−1) = {di, fi−1, g1,i, . . . , gn2 +2i−4,i}.

ϕ(vn−1) = {fn
2−1, dn2 , g1,n2 , . . . , g

n
2 +n−4,n2 }.

For n ≥ 8, there exist DAGs with DINs that exceed those of source arc-paths
which are obtained by adding carefully selected additional arcs. For even integers n, the
DIN of such graphs equals

n2

2 + bn
2

16 −
n

4 + 1
4c − 1.

A digraph with the above DIN has a vertex set V = {v1, . . . , vn} and arcs constructed as
follows:

Step 1: Initialize the arc set as A = ∅.

Step 2: Add to A arcs of a source-arc-path, i.e.,

A = A ∪ {(v1, v2i) : i ∈ [n2 ]} ∪ {(vj, vj+1) : j ∈ [n− 1]}.

Step 3: Add arcs with tails and heads in the set {v3, v5, . . . , vn−1} according
to the following rules:

Step 3.1: If n− 2
2 is even, then let

X = {v3, v5, . . . , vn2 } and Y = {vn
2 +2, . . . , vn−1}.

Add all arcs between X and Y except for (vn
2
, vn

2 +2).

Step 3.2: If n− 2
2 is odd, then let

X = {v3, v5, . . . , vn2 +1} and Y = {vn
2 +3, . . . , vn−1}.

Add all arcs between X and Y except for (vn
2 +1, vn2 +3).

The above described digraphs have no directed triangles and their number of
arcs equals

b
(n2 − 1)2

4 c − 1 = bn
2

16 −
n

4 + 1
4c − 1.
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We start with the following lower bound on the DIN number of the augmented
source-arc-path graphs.

Proposition 5.3.3. The DIN of the above family of graphs is at least

n2

2 + bn
2

16 −
n

4 + 1
4c − 1.

Proof. Due to the presence of the arc of a source-arc-path, v1 requires at least n2 colors.
Furthermore, since the graph is Hamiltonian, the size of the color sets increases along
the path. Based on the previous two observations, one can see that vi requires at least
n

2 + i− 1 colors for all i ∈ [n].

Since there are no arcs in the digraph induced by the vertex set {v2, v4, . . . , vn}
with even labels, the color sets of these vertices have to be mutually disjoint. Thus, the
number of colors needed to color vertices with even indices is at least

n

2 + 1 + n

2 + 3 + . . .+ n

2 + n− 1 = n2

2 .

Since the digraphs avoid directed triangles and every pair of vertices has a
different color set sizes, we require one additional color to represent each of the arcs added
in Step 3. Due to the absence of directed triangle, we need at least bn

2

16 −
n

4 + 1
4c − 1

colors. Furthermore, the color sets used for the two previously described vertex sets are
disjoint. Thus, the number of colors required is at least

n2

2 + bn
2

16 −
n

4 + 1
4c − 1.

To show that the above number of colors suffices to represent the digraphs
under consideration, we provide next a representation ϕ using n2

2 + bn
2

16 −
n

4 + 1
4c − 1

colors.

We start by exhibiting a representation ϕ′ of the source-arc-path that uses n
2

2
colors and then change the color assignments accordingly:

1) Set ϕ(v1) = {c1, . . . , cn2 } and ϕ(v2) = {c1, f1, g1,1, . . . , gn2−1,1}.

2) For 2 ≤ i ≤ n

2 − 1, set

ϕ(v2i) = {ci, di, fi, g1,i, . . . , gn2 +2i−4,i},

and
ϕ(vn) = {cn

2
, dn

2
, g1,n2 , . . . , g

n
2 +n−3,n2 }.
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3) For 2 ≤ i ≤ n

2 − 1, set

ϕ(v2i−1) = {di, fi−1, g1,i, . . . , gn2 +2i−4,i},

and
ϕ(vn−1) = {fn

2−1, dn2 , g1,n2 , . . . , g
n
2 +n−4,n2 }.

Let m := bn
2

16 −
n

4 + 1
4c − 1.

1’) Set Γ2i−1 = {g1,i, . . . , gn2 +2i−4,i}.

2’) Order the m arcs in the graph induced by {v3, v5, . . . , vn−1} in an arbitrary
fashion, say {e1, . . . , em}. Set a counter variable to k = 1.

3’) For ek = (v2i−1, v2j−1), assign a previously unused color hk to both ϕ(v2i−1)
and ϕ(v2j−1). Pick one color g′ from Γ2i−1 and a color g′′ from Γ2j−1 not previously used
in the procedure. Set

ϕ(v2i−1) = ϕ(v2i−1) ∪ hk − g′, and Γ2i−1 = Γ2i−1 − g′,

ϕ(v2j−1) = ϕ(v2j−1) ∪ hk − g′′, and Γ2j−1 = Γ2j−1 − g′′.

Let k = k + 1. If k ≤ m, go to Step 3’), otherwise stop.

4’) Since each v2i−1 has degree at most n4 on the digraph induced by {v3, . . . , vn−1}

and at step k = 1 we had |Γ2i−1| = n

2 + 2i − 4, we do not run out of colors to replace.

This follows since when we choose g′ from Γ2i−1 we always have ≥ n

2 + 2i− 4− n

4 colors
available.

5’) Since g′, g′′ were used twice in ϕ′ and deleted only once in the processing
steps (and thus remain in the union of the colors), each iteration of the procedure in 3)
introduces exactly one new color (e.g., hk) to ϕ. Therefore, the number of colors used is

n2

2 +m = n2

2 + bn
2

16 −
n

4 + 1
4c − 1.

This completes the construction of digraphs on n vertices with DIN values
n2

2 + bn
2

16 −
n

4 + 1
4c − 1.
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Appendix - Index

(P, π, L)-automorphism, 30
(P, π, L)-weight, 30
(P, π, L)-canonical decomposition, 34
(P, π, L)-equivalent, 33
δ-labeled Hamming cube, 48
F -combinatorial weight, 13
F -degree, 27
F -redundant set, 13
F -weight enumerator, 14
π-support, 30
b-burst metric, 13
k-partition, 14
cleared out form, 18

F-combinatorial metric, 13

anti-chain poset, 37

basic set, 13
block map, 30
block metric, 13

chain poset, 29
Condition Ω, 37
conditional sum of weights, 55
connected covering, 23
covering of a set, 12

disconnected covering, 23

Global equivalence of codes, 22

group of linear isometries, 17

height of the poset, 29
hierarchical poset, 29

ideal generated by a set, 29

labeled-poset-block distance, 30
Local equivalence of codes, 22

MacWilliams Extension Property, 37
MacWilliams-type identity, 14
MacWilliams’ Extension Property, 22
maximal element, 29
minimum set header, 18

order ideal, 29

partition, 13
poset isomorphism, 29
poset metric, 30
power set, 12

the dual of a weight, 64
topological order, 51
TS-metric, 9

unique decomposition property, 36

weight, 46
weight equivalence, 47
weight that respects support, 46
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