
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Matheus Martins Susin

Energy Efficient Inference Computation with
Approximate Convolutions

Computação Eficiente de Inferências com Convolução
Aproximada

CAMPINAS
2019

Matheus Martins Susin

Energy Efficient Inference Computation with Approximate
Convolutions

Computação Eficiente de Inferências com Convolução
Aproximada

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Lucas Francisco Wanner

Este exemplar corresponde à versão final da
Dissertação defendida por Matheus Martins
Susin e orientada pelo Prof. Dr. Lucas
Francisco Wanner.

CAMPINAS
2019

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Susin, Matheus Martins, 1995-
 Su81e SusEnergy efficient inference computation with approximate convolutions /

Matheus Martins Susin. – Campinas, SP : [s.n.], 2019.

 SusOrientador: Lucas Francisco Wanner.
 SusDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sus1. Computação aproximada. 2. Redes neurais convolucionais. 3.

Dispositivos móveis. 4. Computação consciente de energia. 5. Álgebra linear. I.
Wanner, Lucas Francisco, 1981-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Computação eficiente de inferências com convolução aproximada
Palavras-chave em inglês:
Approximate computing
Convolutional neural networks
Mobile devices
Energy-aware computing
Linear algebra
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Lucas Francisco Wanner [Orientador]
Guido Costa Souza de Araújo
Luiz Filipe Menezes Vieira
Data de defesa: 25-10-2019
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-7468-2049
- Currículo Lattes do autor: http://buscatextual.cnpq.br/buscatextual/visu

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Matheus Martins Susin

Energy Efficient Inference Computation with Approximate
Convolutions

Computação Eficiente de Inferências com Convolução
Aproximada

Banca Examinadora:

• Prof. Dr. Lucas Francisco Wanner
Universidade Estadual de Campinas

• Prof. Dr. Guido Costa Souza de Araújo
Universidade Estadual de Campinas

• Prof. Dr. Luiz Filipe Menezes Vieira
Universidade Federal de Minas Gerais

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 25 de outubro de 2019

Acknowledgements

We thank all those whose efforts contributed to this project. We especially thank
those who developed tools for their own work, but let us borrow and modify the source
code for use in our research. This project would not have been possible without their
help.

We credit Alex Torres for his work on NNT (5.5).
We credit Caio Rohwedder and Marcos Vinícius Martins for their work in kbench

(5.4).
We credit Guilherme Valarini for his aid in this project, helping us find and fix a

multitude of pesky bugs throughout the development of our tools.
And finally, we thank all the people at the Laboratory of Computer Systems (LSC)

at the University of Campinas (Unicamp) for their support, and the coffee and laughs.
This work was supported by CNPq and Samsung.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001

Resumo

Neste trabalho, descrevemos um ambiente para medição de consumo de energia e
tempo de redes neurais convolucionais (CNNs) em dispositivos móveis. Medimos o con-
sumo de um dispositivo enquanto ele realizava múltiplas inferências através do Tensor-
Flow Lite (TFL) executando modelos CNN pré-treinados. Também exploramos técnicas
de aproximações que podem ser implementadas na camada convolucional, comparando
sua perda de acurácia com a acurácia original do modelo, bem como o ganho de desem-
penho em tempo e energia correspondente a cada camada aproximada. Projetamos o
ambiente e desenvolvemos as ferramentas que o compõem, incluindo programas para co-
letar e analisar os valores de corrente elétrica; ferramentas para combinar tais valores aos
timestamps providos pelo nosso TFL modificado, programas para modificar camadas de
CNNs existentes no formato flatbuffer, introduzindo camadas aproximadas; e ferramentas
para avaliar a acurácia e desempenho de modelos aproximados. Observamos que, apesar
de nem todas as camadas poderem ser aproximadas sem um impacto significativo na acu-
rácia, identificar as camadas que podem ser sujeitadas à estratégia escolhida possibilita
economia de tempo e energia que ultrapassa até 40% por camada aproximada. Em pelo
menos um caso, conseguimos reduzir o consumo de energia em 5%, mantendo a perda de
acurácia abaixo de 1%.

Abstract

In this work, we describe an environment for evaluation of execution time and energy
consumption of Convolutional Neural Networks (CNNs) on mobile devices. We profile
the performance and energy consumption of a device while it performs multiple inferences
running a TensorFlow Lite (TFL) executable and select pre-trained CNN models. We then
investigate approximations for the convolutional layer kernels, comparing their accuracy
loss on the overall accuracy to their performance gain in time and energy on the device.
We designed the environment, and developed the software that comprises it, including a
tool to collect and parse electrical current output and match it to custom TFL timestamps,
a tool to modify flatbuffer model files to replace layers with approximate versions, and
the custom approximate kernels used to compare performance. We found that, whereas
not all layers can be approximated without a significant impact on accuracy, identifying
the layers that can be subject to the selected strategy can yield gains in time and energy
that surpass 40% per approximated layer. In at least one case, we were able to reduce
energy consumption by 5%, keeping accuracy loss under 1%.

Contents

1 Introduction 10
1.1 Initial Considerations . 10
1.2 Contributions . 10

2 Related Work 12
2.1 Efficient convolutional networks . 12
2.2 Software-level optimizations . 13
2.3 Hardware-level optimization . 15
2.4 CNN performance analysis . 15
2.5 Our project . 16

3 Hypotheses 17
3.1 Approximation strategies . 17

3.1.1 SVD factorization . 17
3.1.2 Monochromatic approximation . 24

3.2 Complexity analyses . 28
3.2.1 SVD factorization . 28
3.2.2 Monochromatic approximation . 29

4 Methods 31
4.1 Approximation pipeline . 31
4.2 Network models . 31
4.3 Image dataset . 31
4.4 Engine . 32

4.4.1 TensorFlow . 32
4.4.2 TensorFlow Lite . 33

4.5 Devices . 35
4.5.1 Raspberry Pi 3 Model B . 35
4.5.2 HardKernel SmartPower 2 . 35

5 System Components 37
5.1 Overview . 37
5.2 beeswax . 39
5.3 bumblebee . 39
5.4 kbench . 40
5.5 NNT . 40
5.6 dump_parser . 40
5.7 flatbuffer_rebuilder . 40
5.8 protopyte . 41

5.9 xorapu . 41

6 Experimental Results 42
6.1 Baseline . 42
6.2 Monochromatic approximation . 42
6.3 SVD factorization . 43

7 Conclusion & Future Work 62

Glossary 64

Bibliography 66

10

Chapter 1

Introduction

1.1 Initial Considerations

Convolutional Neural Networks (CNNs) make powerful image classifiers [18], image
“upscalers” that enlarge images while minimizing loss of quality [32], and can even be used
for signal processing [24] and graph signal processing [13]. While their training may not be
feasible for mobile devices due to performance, memory, and energy constraints, inference
is not only possible [26], but an excellent choice for the backend of many applications,
especially those that identify and classify characters, faces [36], food [22], pets, wild
animals, and other elements in an image from the camera. This type of application,
called "image classification", is the subset of CNN tasks that we target in our work.

In the context of neural networks, a generally good model may turn out to not be good
enough for a certain application. For instance, strict timing demands may have to be met.
That is, each inference must finish before a set amount of milliseconds have elapsed. As an
example, if one were to integrate machine learning as part of the frame-rendering process
of some Virtual Reality apparatus, they would have to finish the computation in at most
11.11 ms, lest the framerate will drop below 90 Hz, and the user may begin to experience
nausea [27]. Additionally, one must be wary of energy consumption to allow a phone
users’ batteries to last through their day.

On the other hand, while neural networks are expected to not be 100% accurate, we
still expect them to perform well under the scenarios they were trained for. Simplifying
existing models may lead to gains in computational performance, but can we always afford
the possibility of lowering accuracy, and the cost of re-training the network?

With these considerations in mind, we set out to identify the main sources of delay and
battery drainage in popular CNNs, and to explore how approximate computing can be
employed to shave off some milliseconds and millijoules from the execution of an inference.

1.2 Contributions

This project’s goal is to profile and optimize energy consumption of a mobile device
running inferences using a convolutional neural network model. We extended TensorFlow
Lite to support profiling the time taken by each operation and, by matching timestamps

11

of the profiled times with power measurements, we were also able to profile energy con-
sumption. We also explored ways to approximate a convolution operation, trading off
accuracy for efficiency.

First, we present our findings regarding time and energy consumption of existing
networks. We argue that optimizing the convolution kernel is at the core of speeding up
inference on mobile devices. Then, we show the results of applying selected approximate
computing techniques from literature that we implemented in TensorFlow Lite.

We decided to focus on the implementations available in TensorFlow Lite (TFL) [39], a
lightweight counterpart to TensorFlow (TF) [8] that is designed to only run inferences on
previously trained networks, and not to train the models from scratch. TFL implements
a subset of TF’s operators, whose implementations are also referred to as "kernels". This
subset is sufficient to support a large number of popular models, if not always directly, at
least by converting operators or sequence of operators into other operators or sequence of
operators, a task performed by the TensorFlow Lite Converter (TOCO).

We show opportunities to reduce power consumption by replacing an operator that
causes great impact on battery usage with computationally cheaper versions, specifically
by approximating the kernel for convolution using algorithms from linear algebra (Chapter
3) to the weights that were learned by image classification networks. We both evaluate
the impact in model accuracy after the optimizations are applied, and argue for the upper
bound in savings that can be achieved with the best strategy that we found, and how to
achieve it. This strategy, in its current implementation is able to save up to roughly 40%
of the energy consumed per layer, and keeping the accuracy drop within 1%, we obtained
a 5% reduction to energy consumption of a model

We hope to not only inspire other researchers to build upon our results, but to share
the tools that we used to obtain them. We were satisfied to hear that both the inference
profiler and the modules that comprise the approximation pipeline have seen use in other
research projects that feature CNNs and TFL at their core. The code is available at
https://github.com/SusinMat/Convolution-Profiling-and-Approximation

https://github.com/SusinMat/Convolution-Profiling-and-Approximation

12

Chapter 2

Related Work

In this chapter, we summarize what has been presented in papers that relates to
designing efficient CNNs; improving or profiling the efficiency of machine learning frame-
works; and optimizing or approximating operations commonly found in CNNs. We also
briefly explore the extent of our project, comparing it to existing work.

2.1 Efficient convolutional networks

Our work focuses on Convolutional Neural Networks designed for image classification.
While powerful tools for this task exist, achieving acceptable latency on less powerful
devices still proves challenging. In this section, we present the basic ideas behind the three
CNN architectures which spanned the seven models that we selected for our benchmarks.

SqueezeNet [20] achieves the same level of accuracy as AlexNet [25], the breakthrough
network that won Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [6] with
a large margin over its competitors. SqueezeNet has 50x less parameters, and the ability
to be compressed to 0.47 MB, 510x smaller than AlexNet. This is done by using more
1x1 filters while reducing the number of 3x3 filters, while also decreasing the number of
channels passed to 3x3 filters, and delaying downsampling to preserve accuracy. In [16],
a drop in accuracy of less than 1% was observed when using 8-bit data types instead of
32.

MobileNet [19] is a CNNs that aims to reduce latency of the inference, and the tech-
niques employed also reduced its size in comparison to AlexNet, not necessarily at the
expense of accuracy. The main pillar of its architecture is replacing what would be 3x3
convolutions with a 3x3 depthwise convolution that applies the same filter to all chan-
nels in one layer, followed by another lawyer that performs 1x1 convolution that linearly
combines the outputs of the depthwise convolution. It then uses batchnorm and ReLU
for non-linearity at the end of each sequence of convolutions, except for the last one, in
which softmax is used. There are also hyper-parameters for linearly reducing the number
of input and output channels of each layer. One of the targets of our work are the first
and the second [35] versions of MobileNet.

Inception [38] is the codename to the architecture that set the new state of the art
for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge

13

2014 (ILSVRC14), submitted by the team known as GoogLeNet. It was designed to in-
crease depth and width while maintaining a computational budget, in this case, measured
in multiply-and-accumulate floating point operations (MACs). For most of the experi-
ments, the budget was set to 1.5 billion MACs. The module of the original Inception
architecture has one 3x3 max pooling operation, one 3x3 convolution, one 5x5 convolu-
tion, and four pointwise (1x1) convolutions, which are then concatenated before the next
layer or module. In our work, we analyzed and targeted with approximations later ver-
sions of Inception, which replaced some max pooling operations with average poolings.
This proved an interesting choice, since, in contrast with Mobilenet, whose modules are a
3x3 depthwise convolution followed by a 1x1 convolution, Inception features 3x3 and 5x5
convolutions that we can apply approximations to.

2.2 Software-level optimizations

This section presents strategies designed to speed up CNNs without the need for
specialized hardware. Applications that use such models already expect an accuracy that
is significantly lower than 100% due to the nature of machine-learning, making them good
candidates for the approximation of certain operations. As such, we chose to focus on
works that put emphasis on approximate computing strategies for convolutions.

The algorithms presented by Manne et al. [30] approximate the multiplication of two
equal-sized square matrices. The algorithms designed by the authors run in quadratic
time, and the Frobenius norm of the error matrix can be made arbitrarily small. This
is done by reducing the problem to that of solving a set of linear equations, for which
approximations are known. However, this algorithm typically requires a large matrix
multiplication to justify its overhead, whereas, convolutions in CNNs tend to use 3x3 and
5x5 kernels.

Jaderberg et al. [21] devised schemes to speed up the evaluation of a convolutional
neural network by exploiting redundancies between different filters and feature channels.
The authors provide two schemes to construct filters that are rank 1 in the spatial domain.
Unlike the previous technique, this one works well for small filters. Combining the two
schemes presented in their paper, the authors achieved up to 2.5x speedup with no loss
in accuracy.

The approach by Baboulin et al. [9] shows that mixing 32-bit and 64-bit representa-
tions can accelerate scientific computations with no loss in accuracy. In particular, they
solve linear systems for dense and sparse matrices using LU decomposition and Newton’s
algorithm, which can be extended to find eigenvalues.

The usage of memoization in convolution is explored by Khalvati et al. [23]. In
their strategy, the results from the multiplication followed by a sum of the square sliding
window (kernel) on a grayscale image are stored in memory, so they can be retrieved later
if the window is slid over a similar (rather than identical) submatrix. The cache must
be small enough to fit into the faster, lower levels of the physical cache, while also being
large enough to provide enough hits. It is also worth noting that in order to increase
the hit rate, the authors map the 256 levels of gray to only 16. This leads to the final

14

result being approximated with a loss of accuracy of at most 2.2% in the 3 convolutional
operators that were tested. The speedup varied from 1.30x to 6.27x, and was higher on
images that had lower average local entropy (the detailedness metric used in the paper).

An efficient softmax approximation has been proposed by Grave et al. [14]. The au-
thors attempt to model the computation time of matrix multiplication, acknowledging
that it is not trivially linear in the dimensions of the matrices. Despite the results having
shown the potential of approximate computing, the focus was on desktop GPU archi-
tectures rather than mobile ones, and the target to approximate were language models,
rather than image classification.

Halide [33] [31] is a language and compiler that decouples the lower level implementa-
tion of image processing operations, which must be optimized, from the actual description
of the algorithm, the processing pipeline. It makes it easier for the programmer to exper-
iment with multithreading, tiling, locality, caching vs. recomputation, and other settings
whose optimal values may differ according to the architecture and application. What we
take away from Halide is that, whenever the choice space is large, exploring different set-
tings should be as simple as possible, without needing to rewrite modules of the program
that are not directly related to the knobs we want to turn.

XNOR-Net [34] explores Binary Weights Networks, in which 32-bit floating point
weights are approximated to just one bit, resulting in 32x memory saving and roughly 2x
speed-up, and XNOR Networks, in which both the filters and the input to convolutional
layers are binary, reducing the number of high-precision operations by a factor of 58x.
Binary networks had been experimented with before, but only on small datasets, such as
CIFAR-10, MNIST, SVHN. XNOR-Net trains on the ImageNet dataset. At the time of
its publication, running CNNs designed for ImageNet in real time was a task generally
feasible only on GPUs, whereas XNOR-Net could run in real time on a desktop CPU.
The first approach achieved up to 56.8% top-1 accuracy and 79.4% top-5 accuracy, and
the second approach achieved up to 44.2% top-1 accuracy and 69.2% top-5 accuracy.

Denton et al. [11] attempt to optimize convolutional layers by applying approxima-
tions. Their strategies, by design, reduce the amount of computation by exploring the
redundancy between channels and filters, using theorems from Linear Algebra. Note that
the actual performance of the layer is not trivially linear on the amount of computation,
so real world results may differ greatly from the analytical reduction in model size and
computation. In our work, we select a few of these approximation methods to test their
viability on modern CNNs running on mobile devices, comparing approximate networks
to their original counterparts in accuracy, speed, and energy consumption.

Zhang et al. [40] employ the decomposition used by [21] with a different optimization
strategy, while simultaneously implementing a strategy to decide by how much should
the rank of the convolution be reduced to maintain good accuracy. To further contain
the accuracy drop, the networks were re-trained using the approximate weights as initial
values, and the authors observed that, with a small enough learning rate, the speed in
which the training converges to a solution of a certain achievable level of accuracy is
faster than with the original model being initialized to random values. This suggests that
retraining an approximate network is faster than retraining a new network from scratch.

15

2.3 Hardware-level optimization

Gupta et al. [15] train deep neural networks with 16-bit fixed-point number represen-
tations that use stochastic rounding, and compare its performance with a standard IEEE
32-bit floating-point representation, with little to no degradation in accuracy. They also
demonstrate the energy efficiency of a hardware accelerator that implements the former,
with very promising results in savings and throughput.

Ristretto [16] is a 2016 open-source framework for CNN approximation that uses highly
optimized routines that run on the GPU. It extends Caffe, and offers conversion of network
data types from 32-bit float to quantized unsigned integer of 8 or 16 bits, and 6-, 8-, and
12-bit minifloat. These converted models are simulated, and their accuracy is evaluated.
In some cases, especially when 12-bit minifloat or 16-bit quantized unsigned integer are
being used, relative accuracy drops by no more than 1%. This work also provides insights
on and means to determine how to quantize parameters, given a desired data size, allowing
different operations to use different quantizations, focusing on minimizing accuracy loss.
Its biggest flaw, in our opinion, is not comparing power usage, even though it claims to
be one of its major concerns.

2.4 CNN performance analysis

DeepSense [29] is a framework designed specifically for mobile devices with a GPU.
The authors explore the differences between server-class and mobile-class GPUs, and
study the effectiveness of various optimization strategies (e.g. branch divergence elimina-
tion, memory coalescing, memory vectorization), and even approximation strategies, such
as converting weights to 16-bit floating points number to double the bandwidth when
offloading data to the GPU, resulting in decent performance gains for minimal accuracy
trade-off.

NeuralPower [10] shows how polynomial regression can be used to model computa-
tional performance of a CNN by breaking it down into layers, and training a polynomial
model to predict time, power, and energy consumption of the neural network. Such
model defeated state-of-the-art performance predictors that were not specifically trained
for CNN inference. While network performance prediction is out of scope for our project,
we developed tools that allow models such as NeuralPower, which was only tested on a
GTX 1070 (a desktop GPU), to use data collected from inferences ran on mobile devices.
The authors report 88% accuracy in time and power prediction, and 97% accuracy in
energy prediction.

Another study on energy efficiency of (Deep) Convolutional Neural Networks was per-
formed by Li et al. [28]. Their work is interesting in that it compares several frameworks
(e.g. TensorFlow, Caffe, Torch, Nervana), running inferences on CPU and on GPU,
and with different settings enabled (e.g. Hyper-Threading, Error Correction Code in the
RAM, Dynamic Voltage and Frequency Scaling). The authors present the average power,
average completion time, and average energy consumed per image, and breaking it down
into the operations of each layer, in a similar fashion to our analysis here. They found
that convolutional layers consume about 87% of the energy required per inferece, fully

16

connected layers need 10%, and activation layers less than 5%. However, their focus was
on desktop setups, using an Intel Xeon CPU and an NVidia Titan X GPU, very powerful
hardware that differ immensely from the mobile platforms that we target in our work.

2.5 Our project

In a similar direction to the aforementioned works, we intend to optimize the cost
of running an inference on a convolutional neural network. Given that proposing new
or modified hardware is beyond the scope of this project, we will focus on software op-
timizations. The ability to profile the energy consumption of inferences on TensorFlow
Lite is also a contribution of this work. Our instrumentation can be used to provide
energy-aware scheduling, or to assist in designing networks according with specific time
and power constraints, which are out of scope for this project.

17

Chapter 3

Hypotheses

We hypothesize that a trained a network contains some amount redundancy in its
filters, and that it may be possible to achieve better time and energy performance on
mobile devices, without a significant loss of accuracy, by reducing such redundancies in
certain layers that may contain them. We follow the strategies proposed in [11], and build
upon TensorFlow Lite (TFL).

3.1 Approximation strategies

In the following subsections, we describe the strategies that we employed to approxi-
mate the convolution operator.

3.1.1 SVD factorization

This strategy is centered around the application, or rather, two successive applications,
of the Singular Value Decomposition (SVD) to the weight tensors of certain convolution
layers. The goal is to reduce the number of floating point operations performed by that
single layer, and this strategy also shrinks the size of the layer, reducing the size of the
final model file.

To understand how SVD can be applied to approximate an operator, consider the
example of a convolution layer that takes as input a 35x35 matrix, 64 channels deep, and
outputs another 35x35 matrix, this one being 96 channels deep. The tensor of weights,
which we will call W, is a 96x3x3x64 matrix, where 3x3 is the shape of the window, 64
is the number of input channels, and 96 is the number of output channels, as previously
described.

In summary, we perform a small number of pointwise convolutions with a certain,
configurable number of filters each, which we call “phase C”. We then perform “phase Z”,
a small set of 3x3 convolutions on the output of phase C, which contains less operations
than the full 3x3 convolution of the original weight matrix W, and finally, we combine the
outputs of phase Z through another small set of pointwise convolutions, which we call
“phase F”.

The algorithm we used to decompose matrix W has, in total, 4 parameters, or "knobs",
that can be adjusted according to the desired levels of accuracy and and computational

18

Figure 3.1: A visualization of how this approximation operates after being implemented.
Note that this shows the behavior of the function during the inference, not how we com-
pute its weights.

cost that are desired. Two knobs are iclust and oclust, which determine how many
clusters of input channels and of output channels we will have. The two other knobs
are iratio and oratio, which determine the factors (in the [0.0, 1.0] range) that
we will multiply the rank of the input and the output clusters by, reducing the total
computational cost of the convolutions.

As part of the example, assume the following settings: iclust = 2; oclust = 2;
iratio = 0.4; oratio = 0.4; .

The first step is to take the 96 filters of the W matrix, and fold the other (64x3x3)
dimensions, resulting in a matrix of shape 96x576. We run a modified k-means clustering
algorithm, which is identical to the well-known k-means, but with an added restriction of
all clusters being of the same size. Note that the value for iclust must divide the number
of input channels, and the value of oclust must divide the number of filters (channels in
the output).

After clustering, we are left with 96 / 2 == 48 output filters in each cluster.
We perform the same procedure for the input channels, folding W into a matrix of

shape 64x864, clustering with the same implementation of k-means, resulting in iclust
clusters with 64 / 2 == 32 input channels in each. Note that iclust must divide the
number of input channels.

The second major step is where we apply SVD. In summary, after the input channels
and output filters have been clustered, we apply SVD to each pair of input and output
cluster, removing the singular vectors that correspond to the smallest singular values, such

19

Figure 3.2: A visual representation of how folding works. Unfolding is the inverse of this
reshaping operation.

that only oratio * 48 == 19 values remain from each output cluster, and only iratio
* 32 == 12 remain from the input cluster.

To understand how this works, and how we can compute an approximation for the
original convolution using matrices of lower ranks, consider three matrices, initialized to
0, named after the three phases of computation, and the following shapes:

C – (32, 12, iclust, oclust) == 32x12x2x2
Z – (19, 3, 3, 12, iclust, oclust) == 19x3x3x12x2x2
F – (48, 19, iclust, oclust) == 48x19x2x2

We want a total of three stages, described below:

• Transform 1 (phase C) ⇒ a total of iclust * oclust (4) pointwise convolutions,
each with an input of size 35x35x32, where 32 is the number of input channels that
it will take, according to the input cluster that it is derived from. The output of
these 4 pointwise convolutions is 4 35x35x12 matrices.

• Convolution (phase Z) ⇒ a total of iclust * oclust (4) convolutions with filters
of the original height and width, 3x3 in our case, 12 input channels and 19 filters
each. Note that this convolution, plus the two transforms in this list, are replacing
the original 96x3x3x64 convolution with 6 pointwise convolutions, and 4 19x3x3x19
convolutions.

• Transform 2 (phase F) ⇒ a total of oclust (2) pointwise convolutions, each with
an input of size consisting of the concatenation (in the channel dimension) of the
iclust (2) corresponding 35x35x19 matrices. The output of each of these convolu-
tions is a 35x35x48 matrix, which are merged into a single 35x35x96 matrix, that
approximates the result of the original 96x3x3x64 convolution.

20

Figure 3.3: First step of taking a slice from two cluster indices: a 2-D array.

Figure 3.4: Second step: select every input channel that was assigned to input cluster i
== 0, shown in white.

21

Figure 3.5: Third step: delete the remaining input channels, previously shown in gray.

Figure 3.6: Fourth step: select every filter that was assigned to output cluster o == 0,
shown in white.

Figure 3.7: Fifth step: delete the remaining filters, previously shown in gray.

22

Figure 3.8: Repeat steps for all 4 possible combinations of (i, o).

Consider the algorithm fresh out of the modified k-means clustering process. There,
we can index the input clusters with integers from the {0, ... iclust - 1} range, and
output clusters with the {0, ... oclust - 1} range. In our example, this leaves us
with two input indexes, two output indexes, and a total of four possible pairs of indexes,
(0, 0), (0, 1), (1, 0), (1, 1). For each of these pairs, we perform two successive
SVD decomposition, as explained in the following paragraphs.

Singular Value Decomposition, available in the NumPy module for Python3
as numpy.linalg.svd, takes as input an MxN matrix of real values that we will call A,
and decomposes it into U, S, and V, where U is a square MxM matrix, V is a square NxN
matrix, and S is a rectangular diagonal matrix with shape MxN. The non-zero elements of
S, called “the singular values of A”, are the square root of the non-zero eigenvalues of both
the product of AAT and the product of ATA. Additionally, we have that A = USV T .

For a formal and more detailed description of SVD and its early history, read [37].
Note that we can apply SVD recursively to V, further decomposing the original matrix,

and for this algorithm, we do exactly that, after reducing the rank of the input.

Now we turn back to our example. For every pair of input cluster and output cluster
(i, o), we create a slice of the original weight matrix, with only the filters and input
channels that were assigned to each cluster. In our example, this results in slices of shape
48x3x3x32. We proceed to fold this slice into a 48x288 matrix. To the folded matrix,
we apply SVD, obtaining U, S, and V, as described in the previous paragraphs. We delete
matrix columns and rows from S to keep only 19 singular values in S, leaving it as a matrix
with shape 19x19, and also remove columns from U to make it 48x19.

23

Figure 3.9: A visualization of how we apply the Eckart-Young theorem to approximate a
matrix.

This is an application of the Eckart-Young theorem [12]. We can approximate matrix
M with another matrix M ′, said to be “truncated”. Which has a specific rank r. To
minimize the Frobenius norm of the difference between M and M ′, we can compute the
U , S, V matrices, and replace all except the r largest singular values in S with 0. The
product USV T now gives us M ′. A visualization of this application of the theorem is
represented in Figure 3.9.

Note that U and S can still be multiplied, resulting in a 48x19 matrix that we save
into F[:, :, i, o].

We turn back to matrix V that resulted from the first SVD decomposition of the (i,
o) slice. We first delete columns from V such that the product SV T is still valid and
USV T still results in a 48x288 matrix, but of lower rank than the original folded slice.
We then unfold V into 19x3x3x32, permute its shape into 32x19x3x3, and fold it again,
this time into shape 32x171, so that SVD can be applied again.

Once again, we run SVD, which outputs factors U, S, and V. We repeat the steps of
deleting entries to reduce the size of U and S, this time keeping 12 singular values in S,
rather than 19. We store the product of US in C[:, :, i, o].

From V, we once again remove columns, such that V is converted into a 171x12 matrix.
We unfold V into a 19x3x3x12 matrix and save it into Z[:, :, :, :, i, o]. Note that
V is a weight matrix for a 3x3 convolution with 12 input channels and 19 filters. Each
C[:, :, i, o] and F[:, :, i, o] element can be unfolded into a 12x1x1x32 and a
48x1x1x19 weight matrix, respectively, adequate for a pointwise convolution.

24

The previous steps, which produce the matrices for the three phases, only needs to be
computed once per layer of the model that we wish to apply the approximation to. Once
we have C, Z, and F, we can compute an approximation to the output of this layer during
inference as follows:

For every (i, o) pair of input, output clusters, take element C[:, :, i, o] of matrix
C and unfold it into 32x1x1x12. Perform a pointwise (1x1) convolution on the input that
uses the unfolded element of C as kernel, and only the input channels that are in cluster
i as input. Note that, due to there being iclust * oclust possible (i, o) pairs, of this
process is repeated 4 times if both these knobs are set to 2.

Now for each result of the previous step, take element Z[:, :, :, :, i, o] and
perform the corresponding 3x3 convolution.

Finally, for every output of the previous step, we take element F[:, :, i, o] of
matrix F, unfold it into shape 48x1x1x19, and perform pointwise convolutions. Note that
of the 4 inputs to this phase, 2 are assigned to each input cluster, and 2 are assigned to
each output cluster. This means, while each output cluster contains 48 channels, there
are two intermediate results whose convolutions will produce values assigned to these
channels. Therefore, we will accumulate the result of both (i=0, o=0) and (i=1, o=0)
into the 48 channels of the output cluster of index 0, and also accumulate the result of
both (i=0, o=1) and (i=1, o=1) into the 48 channels of the output cluster of index
1. This completes the main computation of the layer. If there are any biases to add,
and activation functions to compute, we can perform them normally on the output of the
approximate convolution.

The C, Z, and Fmatrices that we computed can then be used to compute an approxima-
tion to convolution layer of weights W. The previously described “phases” are how we can
effectively reduce the number of computations required by this layer during the inference,
but we can also construct a matrix Wapprox of the exact same shape as W that emulates
the precision of an approximate operation that uses the 3 phases, so we can experiment
with the accuracy drop without implementing the approximate operation itself into the
accuracy benchmark.

To calculate Wapprox, we initialize a matrix with the same shape as W with all
zero values. For every (i, o) pair, we take the corresponding slice from C (32x12),
Z (19x3x3x12), and F (48x19). We fold the Z slice into 171x12, and multiply that and
CT to obtain ZC of shape 171x32. We unfold ZC into 19x3x3x32, and fold it into 19x288.
Finally, we multiply the F slice and ZC, resulting in an array of shape 48x288, which can
be unfolded into 48x3x3x32. Notice that 48 refers to the number of filters in an output
cluster, and 32 refers to the number of channels in an input cluster. We add each 3x3
window to its corresponding position in the Wapprox matrix. At the end of the process,
we have completed a weights matrix that emulates the behavior of the approximation on
accuracy using the exact implementation.

3.1.2 Monochromatic approximation

This strategy replaces a normal 2D Convolution operation with 2 operations: the first
being a pointwise convolution, that is, a linear combination of input channels, and the

25

second being a depthwise convolution with high depth multiplier. This seeks to exploit
similarities between different filters of the first convolutional layer, as evidenced by the
clustering of output channels.

Assume, for the purpose of this explanation, that the number of input channels is 3
(RGB), the number of output channels (filters) is 32, the vertical and horizontal strides
are both 2, and that the window of the convolution is 3x3. This is the case for the first
layer of MobileNet version 1.

The monochromatic approximation takes as input a weight matrix of shape W and the
desired number of intermediate channels, which is a configurable knob called num_colors,
and returns the following data:

Wapprox New weight array of the same shape as the input. By replacing the weights
of the original layer with this, we can construct a model that emulates the impact
that the approximation will have on the layer, while the computational cost remains
unchanged. That is, we can determine if the approximation is viable from a network
accuracy standpoint before we even begin to measure its benefits to execution time
and energy consumption.

Wmono New weight array for the Depthwise Convolution. By applying one of the filters
in Wmono to its respective intermediate channel, we obtain an approximation of an
output channel.

colors An array of linear combinations that are used to compute the intermediate chan-
nels/colors. For instance, if we have num_colors == 4, the colors array will map
each of the 4 intermediate channels to a triple (r, g, b). The pointwise convolution
of an input image by a weight matrix of shape 1x1x3 yields one of the (4, in this
example) intermediate channels.

perm A list that assigns each of the (32, in this example) output channels to an inter-
mediate channel.

num_weights This is the number of numeric values required by the approximate compu-
tation. Comparing this to the size of the original W matrix provides the compression
ratio.

The ‘colors’ array will be the core of the first sub-layer that approximates the target
layer, and a combination of the ‘perm’ list and the ‘Wmono’ weight array will be the core
of the second, more expensive sub-layer.

It should be noted that, ideally, we want an even clusterization, that is, we want to clus-
ter the filters such that the number of filters assigned to each intermediate channel/color
is identical – and therefore, equal to channel_outputs / num_colors. This allows the
implementation of the operation to take more advantage of GPU and CPU parallelism.
However, such constraint does not exist in kmeans, in which case two alternatives may
be exploited: the quickest one, which is implementing an even clustering algorithm, with
possible impact on accuracy, and the laborious one, which is implementing a custom op-
eration that allows for an uneven depth multiplier, preventing the accuracy drop caused
by introducing evenness as a constraint to the clusterization.

26

C0

C1

C2

O0

O1

O30

O31

…

Figure 3.10: Original layer. Each output channel uses all input channels to process results.

The latter alternative would be to replace the depth_multiplier parameter, which
defines how many output channels are calculated from each input channel, from being an
integer to being an array of integers, each indicating how many filters will be applied to
each input channel. Due to how vectorized instructions and memory/cache management
work, it is possible that some clusterizations would be less efficient than the even variant.

Figures 3.10 and 3.11 represent the approximation process. In the original configura-
tion, each output channel processes information from all input channels. In the approxi-
mate version, intermediate channels are generated from linear combinations of the input
channels, and each output channel processes information from a single intermediate chan-
nel. Figure 3.10 output channels are generated, with each one processing information from
3 input channels (e.g. the RGB channels from the image in the first layer of the network).
In the approximate version (Figure 3.11), the structure of the network is preserved, with
32 output channels being generated from 3 input channels. In the approximate version,
however, 4 intermediate channels are generated as linear combinations of the original three
input channels. Each output channel uses a single one of these intermediate channels to
produce its results.

In order to calculate the Wmono, colors, and perm matrices, we perform the following
steps:

We initialize two important matrices, C, of shape (filters) x (channels) (32x3 in
our case), and M, of shape (filters)x(height * width) (32x9 in our case).

We start by transposing the input matrix of weights from its original (filters) x
(height) x (width) x (channels) shape into (filters) x (channels) x (height)
x (width).

Then, we iterate over each filter from the resulting matrix, of shape 32x3x3x3. and fold
the last 3 dimensions, obtaining an array of shape (channels) x (height) x (width)
(3x9). We perform an SVD factorization on this array, obtaining USV T . We take the
first colum of U, of shape (channels), and assign it to its corresponding (according to

27

C0

C1

C2

IC0

IC1

IC2

IC3

O0

O1

O30

O31

…

Figure 3.11: Approximate layer. Each output channel uses a single intermediate channel
to process results.

iteration) line of C. Finally, we multiply the first eigenvalue in S with the first column of
V, obtaining an array of shape (height * width), (9 in our case), and assign it to its
corresponding line in M.

Once we have iterated over all filters, we transpose C, and feed it into a kmeans
clustering algorithm. The result is an assignment of each filter to one of num_colors
(4, in our case) intermediate channels, as well as a list of num_colors centroids, each
of shape (channels) (3, in the case of RGB). This list can be reshaped into an array
of shape (num_colors) x 1 x 1 x (channels) (3x1x1x4), which serves as a filter for
a pointwise convolution that computes num_colors intermediate channels from an RGB
input channel. This is our colors matrix. From this execution of kmeans, we also obtain
a list that assigns each filter to a centroid. We use this same list to assign output channels
to intermediate channels, returning it as the perm matrix.

The matrices perm and colors are not sufficient to compute an approximate convolu-
tion. Recall from when we performed the SVD factorization, and filled matrix M with the
product of values from S and VT. This matrix can be reshaped to (filters) x (height)
x (width) x 1 (32x3x3x1). According to the perm matrix, we can assign each of the
slices shaped 1 x (height) x (width) x 1 to an intermediate channel, which will then
be the weight matrix of a depthwise convolution that takes that intermediate channel as
input, and produces one of the output channels, according to the number of filters that
the original convolution had. We therefore perform this reshaping of M to return it as
Wmono.

We are then ready to compute num_weights, which is the sum of the number of
dimensions weights of the three matrices that are necessary to compute the approximate
version of the convolution.

Finally, we can also provide Wapprox, which can simulate the effect of the approx-
imation on accuracy without changing the operation used by the first layer. To com-
pute it, we iterate over the lines in M. For every line index f, we compute the prod-

28

uct colors[perm[f]] * M[f], that is, the product of the weights that take the input
image’s channels to the intermediate channel that corresponds to f by the weights in
Wmono that will be applied to f. We unroll this product into 1 x (height) x (width) x
(channels), which is 1x3x3x3 in our case, and assign it to a line of Wapprox. At the end
of this process, Wapprox will be an tensor of shape (filters) x (height) x (width)
x (channels) (32x3x3x3) that simulates the impact on accuracy of having each output
channel (filter) approximated by this method.

3.2 Complexity analyses

In the following subsections, we describe the intuition behind why an approximate
convolution operator, constructed as we described in the previous section, may be com-
putationally cheaper than the exact convolution operator.

3.2.1 SVD factorization

Consider the three phases. We will count the number of floating-point multiply and
accumulate (MAC) operations in each phase.

Additionally, consider the following values:
in_s the height and width of each input channel, which we also call a “pixel”, 35 in

our example;
out_s the height and width of each output channel, which we also call a “pixel”, 35 in

our example;
iclust the number of input clusters, 2 in our example;
iclust_sz the size of each input cluster, 32 in our example;
oclust the number of output clusters, 2 in our example;
oclust_sz the size of each output cluster, 48 in our example;
idegree the number of channels in each intermediate input cluster, after rank reduc-

tion, 12 in our example;
odegree the number of channels in each intermediate output cluster, after rank re-

duction, 19 in our example.
w_height and w_width, the height and width of the convolution window in phase Z,

the only one wherein the convolutions are not pointwise, 3 in our example.

• Transform 1 (phase C) ⇒ For every input cluster and output cluster, we iterate
over input pixels in the clustered input channels, applying idegree 1x1 filters. The
cost of this phase is, therefore, iclust * oclust * in_s * in_s * iclust_sz *
idegree.

• Convolution (phase Z) ⇒ For every input cluster and output cluster, we iterate
over input pixels in the reduced number of output channels, applying odegree 3x3
filters. The cost of this phase is, therefore, iclust * oclust * out_s * out_s *
idegree * odegree * w_height * w_width.

29

• Transform 2 (phase F) ⇒ For every input cluster and output cluster, we iterate
over output pixels in reduced number of output channels, applying oclust_sz 1x1
filters. The cost of this phase is, therefore, iclust * oclust * out_s * out_s *
odegree * oclust_sz.

Additionally, as a model compression strategy, we replace an array of size (filters)
* (w_height) * (w_width) * (channels) with an array that assigns input channels to
clusters, one that assigns output channels to clusters, and a few arrays being used by
convolutions. Namely:

• phase C ⇒ iclust * oclust * iclust_size * idegree.

• phase Z ⇒ iclust * oclust * idegree * odegree * w_height * w_width.

• phase F ⇒ iclust * oclust * odegree * oclust_sz.

3.2.2 Monochromatic approximation

Depending on the number of input channels generated, the approximate layer may
require a number of operations significantly smaller than the original computation. The
number of operations to produce a convolution layer C may be estimated as:

C =
h

sh
× w

sw
× c× k × f (3.1)

where h is input height, w is input width, sh is vertical stride, sw is horizontal stride, c
is the number of input channels, k is the number of outputs (filters), and f is the size of
each filter.

As an example, the first layer of MobileNet v1 uses three input channels, 32 output
filters, each with size equal to 9, and a horizontal and vertical stride of 2, with the following
complexity in the original network:

Co =
h

2
× w

2
× 3× 32× 9 = 216× h× w (3.2)

The approximate layer divides computation into two internal layers. The first layer
uses a stride of one to generate a number of intermediate channels (four in our example),
each using a filter size of one. Complexity for the first approximate layer may be estimated
as:

Ca1 = h× w × 3× 4× 1 = 12× h× w (3.3)

The output layers rely on a single intermediate channel, generating 32 output channels,
each with a filter size of 9, and using stride 2.

Ca2 =
h

2
× w

2
× 1× 32× 9 = 72× h× w (3.4)

Total complexity for the approximate layer is:

Ca = Ca1 + Ca2 = (12 + 72)× h× w = 84× h× w (3.5)

30

Compared with the original first layer of MobileNet v1, the approximate layer using
four intermediate channels reduces the total number of operations by a factor of ∼2.6x.
Note that this first order estimation ignores any potential overheads and optimizations.

Additionally, as a model compression strategy, we replace an array of size (filters) *
(window_height) * (window_width) * (channels) with an array that assigns output
channels to intermediate channels, and a few arrays being used by convolutions. Namely:

• colors ⇒ num_colors * channels.

• Wmono ⇒ num_colors * filters * w_height * w_width.

31

Chapter 4

Methods

In this chapter, we introduce some of the elements that were chosen to test our hy-
potheses. First, we explain the design of our approximation pipeline from a dataflow
perspective. Then, we list the CNNs that were selected to be subject to approximations,
as well as contextualize the dataset that we used to test our approximations. Finally, we
describe the software tools and hardware platforms that we selected for our work setup.

4.1 Approximation pipeline

We wanted to experiment with approximations while keeping the system modular and
easy to develop and test. Each component can perform its task using the output of the
previous component that is saved to a file. This made it quick to test new modifications,
and different strategies and knobs for approximation. We present the dataflow chart in
Figure 4.1, and we delve into the details of each application that comprises our system in
Chapter 5.

4.2 Network models

We selected pre-trained models of popular architectures, such as MobileNet and
Inception, and ResNet [17], already introduced in Section 2.1. MobileNet was chosen
for its outstanding performance. However, due to its lack of convolution operations that
are not pointwise nor depthwise, only the monochromatic approximation could be applied
to it. In order to experiment with more generic approximations, we also selected a few
versions of Inception, and one version of ResNet.

4.3 Image dataset

We use a subset of the ImageNet Large Scale Visual Recognition Competition 2011
(ILSVRC2011) [7], that year’s iteration of the popular competition hosted ImageNet, a
database of over 14 million annotated images. This dataset originally contained 150,000
photographs across 1,000 classes, but we limited our subset, due to time constraints of
the experiments, to 94,609 images across 994 classes.

32

Input:
FlatBuffer File

Dump Structure
as Text (NTT)

Dump as Object
(Pickle) Original Network

Approximations and
Accuracy Testing

(Iterative)

Apply
Approximation to
Selected Layers

Generate
Modified
Flatbuffer

Test for Accuracy

Profile Energy
and Time
(KBench)

Approximate Network

Figure 4.1: A dataflow perspective of the approximation pipeline.

4.4 Engine

We chose the mobile engine that is included in TensorFlow, which is one of the most
popular machine learning frameworks, to provide the baseline for our exploration.

Our work builds upon TensorFlow Lite, compiled as a static library. To fully under-
stand our project, some understanding of the TensorFlow framework is required.

4.4.1 TensorFlow

TensorFlow (TF) is library that allows users to define a data flow graph, in which each
node is a mathematical operation, and let tensors, which are multidimensional arrays,
flow through them. In particular, TensorFlow was developed, and is still widely used, for
machine learning and deep neural network applications.

The API is fully available in Python, and available but not fully stable in C++, Java
and Go. Figure 4.2 shows a simple TensorFlow model taken from [1]. If this example
were to be trained to classify an input array, the inputs labeled as "Weight" would be
adjusted by the learning algorithm, while parameters known as hyperparameters, which
are set by the user, would not be overridden.

Examples of hyperparameters in convolutions include the size of the stride, that
is, how many pixels will be skipped after each submatrix multiplication is calculated,
resulting in a matrix that is approximately stride times smaller in each dimension, and
the padding method, that is, how the window will operate over the edges of the matrix,
or whether it will skip it, resulting in an output that is a few pixels smaller in each
dimension than it would be if some padding was used.

Prime examples of parameters that can be learned are the entries of the 1x1xC, 3x3xC,

33

Figure 4.2: A simple dataflow graph that could be implemented in TensorFlow.

or 5x5xC filters used by the convolution kernel, where C is the number of input channels.
Once the model has been trained for a particular application, it can be deployed as a
component of a full product in the market. In this case, we may no longer need training,
and can deploy the graph and model optimized for inference.

To build a network in TF, one of the methods that can be used, and in fact the one
that we did use, is to iterate from the first operation to the last, declaring each new
operation and its inputs according to the description of its architecture, or in our case,
according to information extracted from a flatbuffer file of the model we wish to approx-
imate. Normally, one would proceed to declaring learning parameters, before beginning
to train the network, but since we are approximating existing, trained model, we proceed
differently. Once our flatbuffer_rebuilder is done describing the network, we call a
converter provided by TFL to convert it to a format that TFL understands.

4.4.2 TensorFlow Lite

TensorFlow Lite (TFL) offers a model conversion to a smaller binary, along with op-
timizations for mobile devices. Models are converted by mapping operations to TFL
implementations, which can run on different hardware components, and utilize two dif-
ferent libraries, depending on the type of the operands. TFL currently only supports two
types, float32 and quantized unsigned int8, which rely on Eigen and gemmlowp, re-
spectively. When using uint8, TFL will not only achieve a smaller size model, but also
save memory bandwidth when operating with this type, although internal accumulators
are still 32-bit wide.

Eigen [2] is a C++ library that offers its own implementation of highly optimized
matrix operations. Being open-source and decoupled from system Basic Linear Algebra

34

Subprograms (BLAS), Google can tweak and extend functionality to provide the desired
performance, and extend support for multi-core CPUs, GPUs and other hardware accel-
erators.

Gemmlowp [3] is a General Matrix Multiplication (GEMM) library owned by Google,
released under Apache License 2.0, where lowp stands for low precision. The input and
outputs are matrices of any size comprised of integers on at most 8 bits, but the internal
accumulators use 32 bits, to avoid overflows. The resulting product has significant 8 bits
extracted to fit into the output. This rounding is governed by the offset, multiplier and
shift parameters that are passed by the caller, and takes place in a pipeline, to which the
32-bit result is fed. Gemmlowp’s goals are to minimize latency, battery usage and, by
consequence, memory bandwidth usage.

Because quantizing the weights involves setting additional parameters that depend on
the expected minimum and maximum values that will result from Multiply and Accumu-
late (MAC) operations, and our strategies involve changing weights, we decided to focus
only in floating point implementations, and leave quantized version for future extensions
to the project. We expect that a more efficient usage of memory may lead to the bottle-
neck shifting away from memory access and into computation, and so we cannot predict
how our approximations will behave under a quantized model.

35

4.5 Devices

We set up a Raspberry Pi (RPi) (Subsection 4.5.1) single-board computer to receive
power and data from a SmartPower. The SmartPower (Subsection 4.5.2) is set to provide
a direct current at 5 volts, while registering its amperage and sending it via USB to the
RPi every millisecond. The relevant technical specifications for these models is detailed
below.

4.5.1 Raspberry Pi 3 Model B

SoC Broadcom BCM2837
CPU Quad-core ARM Cortex-A53 @ 1.2GHz
RAM 1GB LPDDR2 (900 MHz)
y Storage 32 GB SanDisk Ultra microSD
Operating System Raspbian Stretch 2018-04-18
Linux kernel version 4.14.79 armv7l

Table 4.1: Raspberry Pi specs [5]

4.5.2 HardKernel SmartPower 2

Microcontroller Unit Espressif ESP8266
Digital Potentiometer Microchip MCP4652
Current/Power Monitor Texas Instrument INA231
10A 18V Stepdown MPS MP8762
Maximum Output Current 5A

Table 4.2: SmartPower specs [4]

Additionally, we modified the kernel provided by HardKernel to message, via serial
interface, 1000 measurements per second, in amperes, each as a string with 4 digits, falling
into the 0.000-9.999 range.

36

Figure 4.3: Our setup for power measurement. The dark cables and wires are used for
powering the devices, and the white cable transfers data from the SmartPower to the
Raspberry Pi.

Terminal Block DC Out
5V, 5A Max

USB DC Output
5V, 1A Max

DC Input

MicroUSB
(Serial / Firmware)

SmartPower2 Raspberry PI

MicroUSB DC Input

USB Host Port

Power Supply

Figure 4.4: Diagram representing our setup for power measurement.

37

Chapter 5

System Components

In this chapter, we present software tools that we developed to assist us in this project.
We also show how these tools come together to form an approximation and a profiling
pipeline, that helps keeping development modular as well as enabling quicker testing of
new features and components. In the Acknowledgements, we thank other researchers who
contributed with the development of some of these software components.

5.1 Overview

Numerous tools were developed either from scratch, or by modifying existing tools
originally written for other purposes. Figures 5.1 and 5.2 show an overview of the system
components and how they interact with each other, while the following sections describe
their operation in greater details. In the figures, the scroll icons represent Python3 scripts,
and the pager icons represent compiled programs written in either C or C++.

The steps represented in Figure 5.1 are:

1. nnt receives the original flatbuffer file for a given model (e.g. inception_v3), and
outputs a textual description of the network, including its weights and hyperparam-
eters.

2. The textual output of nnt is passed to dump_parser, which converts it to an in-
ternal representation using Python classes, and saves it to a file using Pickle (e.g.
inception_v3.pkl).

3. The Pickle file is loaded by the flatbuffer_rebuilder tool, which selects an ap-
propriate layer to apply an approximation to.

4. flatbuffer_rebuilder calls the protopyte module, which interfaces with imple-
mentations of approximation algorithms, and passes the data from the layer or layers
that are to be approximated. prototype returns a list of matrices that are used by
to approximate the operation previously performed by the layer.

5. flatbuffer_rebuilder uses the matrices received in the previous step to construct
a model via TensorFlow’s Python interface, then converts it to a flatbuffer file (e.g.

38

Figure 5.1: Approximation pipeline. Input is the original flatbuffer model. Output is a
modified flatbuffer model, and its accuracy benchmark.

Figure 5.2: Energy pipeline. Input is a modified or original flatbuffer model. Output is
time taken and energy consumed per operation on the target device.

39

reconstructed_inception_v3.tflite). Before terminating, it calls xorapu to
measure the modified model’s accuracy.

6. xorapu calls beeswax passing a list of files (we used subsets of ImageNet), and
captures the modified model’s Top 1 and Top 5 accuracy against those images. The
results are reported to the user, who may choose to keep or discard the model.

The steps represented in Figure 5.2 are:

1. We provide the modified model produced by flatbuffer_rebuilder as input to
kbench, as well as the network address of the target device.

2. kbench orchestrates the communication with the target device, signaling it to start
collecting power measurements while running inferences. Once the device is done,
kbench pulls the profiling files, parses them, and outputs per-operation power and
time consumption in human-readable format.

3. bumblebee interfaces with an USB port to read power measurements that are sent
by the SmartPower’s kernel in regular intervals.

5.2 beeswax

This application is our modification of TFL’s label-image. Originally, it was designed
to perform inferences on a single image several times, which is only useful for profiling
the performance of the model. We extended it to also take a list of image files as input,
effectively testing the model’s prediction accuracy over that set of inputs.

When we focus on benchmarking accuracy, we use the xorapu Python module (Section
5.9), which calls beeswax a single time for each input image in a dataset.

Combined with modifications in TFL’s code, implemented so it will log the timestamps
of when each kernel begins and ends its execution, we can profile the delay and energy
consumption of not only the entire model, but of each operator that comprises the model.
We rely on this to capture the efficiency in time and power of both builtin and custom
implementations by running inference multiple times (for increased confidence), rather
than a single time for each image.

5.3 bumblebee

This application, which relies on the termios.h library, listens to the USB port,
collects the electrical current readings from our power measurement tool, and logs them
to a file, along with the respective timestamps.

Given that the voltage of the power supply is constant and configurable, we set it
according to the target device (e.g. 5 volts for the Raspberry Pi) and find out the power
that is being drawn by the device during computation by simply multiplying the voltage
by the electrical current reading.

40

5.4 kbench

kbench orchestrates the process of communicating with the remote device (e.g. Rasp-
berry Pi), uploading the executables (beeswax and bumblebee), running the inferences,
downloading the profiling data from the device back to the host, and matching the read-
ings to execution timestamps, and parsing all the information for a human to read.

It supports communication via ssh, adb (for Android devices), and sdb (for Samsung
devices running Tizen).

5.5 NNT

The Neural Network Transpiler was designed to read TFL models in the flatbuffer
format, and output human-readable information about them. We modified it to output
all the information that is necessary to rebuild the network, including operators, input
and output indices, shapes, hyperparameters, and weights.

5.6 dump_parser

This program reads and parses the human-readable output of NNT, instantiates
Python3 objects that hold the same information, and saves them into a file using the
Pickle module.

This Pickle file allows us to load and modify the networks using other Python3 scripts
without having to re-parse the output of NNT each time, reducing the overhead of working
with neural networks from several minutes to just a few seconds, or a fraction of a second,
depending on the size of the model.

5.7 flatbuffer_rebuilder

Loads the Pickle file that is produced by dump_parser, builds a new TensorFlow
model, and calls TOCO to convert it to a flatbuffer, which is then saved as a .tflite
file.

What this component effectively accomplishes is allowing us to modify a network,
either (1) by simply changing the weights of a specific layer (useful when a weight matrix
that emulates an approximation is available), (2) by replacing a layer with a set of layers
that implement an approximation using pre-existing operations from TensorFlow Lite, or
(3) by swapping a layer with a new custom operation that computes an approximation
of the result. (1) was used early in the project to easily benchmark for accuracy of the
approximate operation, (2) was used to validate the sequence of operations that we would
have to implement later on, and (3) was used to effectively perform (2) with less overhead,
allowing for the final implementation to be tested for time and energy efficiency.

41

5.8 protopyte

This module interfaces with the implementation of the approximation, which is called
by flatbuffer_rebuilder, passing the weights of an arbitrary layer to it, as well as the
desired approximation strategy, and the parameters for the configurable knobs, to which
protopyte will return a weight matrix of the same dimensions for early emulations, as
well as the smaller weight matrices used for the proper implementation of the accuracy.

This module can also be called separately to approximate a layer passed by a Pickle
file, allowing for faster debugging of different approximation strategies.

5.9 xorapu

A simplified kbench (Section 5.4). xorapu runs our benchmark application (Section
5.2) on the host machine. This allows us to compare the accuracy of different models on
large data sets. Because neither repeatedly running inference for a given input image, nor
running it on different hardware will change the model’s top guesses, we run the inference
a single time on each input image, and on a much faster hardware than our remote mobile
devices. When running xorapu, we are only interested in the model’s answers to a dataset.
This tools allows us to test different settings for the knobs, and to discover which layers
can be approximated without destroying the model’s accuracy, and which layers cannot.

42

Chapter 6

Experimental Results

Our experiments compare the baseline accuracy and performance of the CNNs that we
selected, as well as the pros and cons of approximate models. We use the top 1 and top
5 accuracy ratings of the models to determine how well they performed after receiving
approximations, and we show the time and energy consumption of each layer before and
after. Unless otherwise stated, time is being measured in milliseconds (ms), and energy
is being measured in joules (J).

6.1 Baseline

Table 6.1 shows the CNNs that we selected, as well as their accuracy, performance,
and, in the final two columns, how many convolutional layers they have, and how many
of those feature a window of size larger than 1 in both dimensions (e.g. 3x3, 5x5). Note
that this is usually the case for the first layer, to which we can apply the monochromatic
strategy.

Table 6.2 shows how much of the execution time and energy consumption is taken up
by convolutions in the select CNNs.

6.2 Monochromatic approximation

Tables 6.3 and 6.4 show the accuracy that we could achieve with the monochromatic
strategy, using different values for the number of intermediate channels, and either fea-

CNN Top 1 % Top 5 % Time Energy Conv2D (>1)x(>1) %
inception_v3 75.20 83.80 5350 17.1 95 21.05
inception_v4 76.60 83.70 10106 32.0 149 16.11
squeezenet 25.25 44.75 844 2.63 26 34.62
mobilenet_v1 67.25 82.00 568 1.64 15 6.67
mobilenet_v2 69.50 82.00 467 1.29 36 2.78
inception_resnet_v2 72.00 82.30 8816 28.9 41 21.81
resnet_v2 71.70 82.80 11127 35.9 36 32.38

Table 6.1: Original CNN accuracy and performance.

43

CNN T. % E.% (>1)x(>1) T. % (>1)x(>1) E. %
inception_v3 94.8 97.5 51.9 52.6
inception_v4 95.0 97.4 36.9 37.3
squeezenet 91.9 96.4 48.1 49.7
mobilenet_v1 76.8 83.6 0.0 0.0
mobilenet_v2 64.5 77.1 0.0 0.0
inception_resnet_v2 97.2 99.5 40.7 40.8
resnet_v2 81.6 84.7 43.5 45.0

Table 6.2: Percentage of time and energy in each model that is taken by convolution,
both the general kind, and the kind featuring a large convolution window, as described
in Section 6.1

, excluding the first layer.

CNN 2 inter. ch. 4 inter. ch. 8 inter. ch.
Top 1 % Top 5 % Top 1 % Top 5 % Top 1 % Top 5 %

inception_v3 70.08 81.33 68.00 80.55 69.90 81.75
inception_v4 71.05 81.58 64.22 78.50 71.33 81.62
squeezenet 12.30 27.02 18.32 34.67 21.40 40.08
mobilenet_v1 18.52 34.77 30.30 50.70 52.90 71.30
mobilenet_v2 50.22 69.85 57.55 75.10 59.40 76.62
inception_resnet_v2 66.95 80.10 61.32 77.58 70.70 81.83
resnet_v2 57.93 74.88 38.35 56.47 67.25 80.83

Table 6.3: Accuracy of the monochromatic approximation, with different numbers of
intermediate channels, and equal-sized clusters.

turing or not featuring the restriction of even-sized clusters.
There are a few things to note. First, for inception_v3, the best result was without

the constraint, with a 4.37% drop to Top 1 accuracy and a 2.05% drop to Top 5 accuracy,
but for inception_v4, the best result was also without the constraint, with a 1.80% drop
to Top 1 accuracy and a 0.85% drop to Top 5 accuracy. This shows two similar net-
works performing quite differently under the same approximation strategy. Additionally,
mobilenet_v1 achieved an accuracy drop of 0.48% drop to Top 1, whereas the similar
mobilenet_v2 had a 6.52% drop to the same metric. We observe that the monochromatic
approximation only retains accuracy with more than 4 intermediate channels, at which
point performance might degrade.

6.3 SVD factorization

We implemented this strategy into TFL as ‘Dragunov’, a custom operation that is
divided into 6 steps:

1. Slicing – divide the input matrix into several smaller matrices.

2. Phase C – perform pointwise convolutions in the matrices that resulted from the
previous step.

44

CNN 2 inter. ch. 4 inter. ch. 8 inter. ch.
Top 1 % Top 5 % Top 1 % Top 5 % Top 1 % Top 5 %

inception_v3 70.08 81.33 69.05 81.30 70.83 81.88
inception_v4 72.95 82.12 73.06 82.38 74.80 82.85
squeezenet 19.73 36.75 27.82 47.35 26.67 46.27
mobilenet_v1 45.27 65.80 60.32 76.22 66.77 79.77
mobilenet_v2 59.40 75.90 61.95 77.38 62.98 77.80
inception_resnet_v2 68.95 81.05 70.75 81.58 70.58 81.65
resnet_v2 67.40 80.50 69.60 81.58 70.12 81.92

Table 6.4: Accuracy of the monochromatic approximation, with different numbers of
intermediate channels, without the restriction on equal-sized clusters.

3. Phase Z – perform convolutions with windows larger than 1x1.

4. Phase F – perform pointwise convolutions.

5. Sum – perform additions to combine the outputs of the previous step into a single
output matrix.

6. Bias+ReLU – add the bias array to the output and calculate the activation func-
tion.

The bulk of the computation is in the 3 phases that have convolutions in them, plus
the bias+ReLU step. The other two steps are mostly copying data around. The 4 main
operations are using optimized implementations, but the 2 copy steps are not. Ideally,
we would like to implement faster versions of them, or to build their actions into the the
optimized implementations of the other steps. Specifically, by modifying the previous layer
to output a tensor in the shape that the approximate operation requires, we can improve
the locality of the first step, Slicing. By implementing a matrix multiplication function
that accumulates on the output matrix rather than re-initializing it to a 0-filled array,
and by modifying the following layer to take a permuted input channels, the penultimate
step, called Sum, can be removed.

We therefore acknowledge that our current implementation of ‘Dragunov’ is not opti-
mal, and so we break the profiling information into parts, such that the parts that can be
optimized away are separated, and the main part serves as an upper bound for how fast
it could be. It should be noted, however, that even without these optimizations in place,
we can still see improvements in performance from applying the approximations.

Tables 6.5, 6.6, 6.7, 6.8, and 6.9 show the accuracy metrics after the approximation
is applied to certain sets of layers, as well as the change in execution time and energy
consumption, according to the experimentally determined performance. Figure 6.1 sum-
marizes some of the best results we achieved.

Figures 6.2, 6.3, 6.4, 6.5, and 6.6 visually represent the difference in energy consump-
tion achieved by the strategy, both including and excluding the overheads described in
the beginning of Section 6.3. It is interesting to note that, for cheap convolutions, the
approximation tends to produce nearly identical or even worse results (in energy perfor-
mance) than the original implementation. For more expensive convolutions, the savings

45

Conv Layers Top 1 % Top 5 % ∆ T. ∆ E.
– 75.20 83.80
16,29,71,75 72.20 82.15 19 0.06
16,29,75 72.47 82.25 11 0.04
16,24,29,75 71.30 81.95 21 0.08

Table 6.5: Variation in accuracy of the inception_v3 model, with the SVD factorization
strategy applied to different subsets of its convolutional layers. Higher values represent
lower loss.

Conv Layers Top 1 % Top 5 % ∆ T. ∆ E.
– 76.80 83.70
13,23 74.20 82.75 17 0.08
5,13,23 61.45 76.38 44 0.25
16,22,27,34,36,39,42 73.25 82.45 125 0.52
16,22,27,34,36,39,41,42 72.42 82.12 236 0.95
16,22,34,37,39,42,114 73.05 82.38 120 0.50
16,22,27,34,36,39,42,114 72.45 82.25 127 0.52
16,22,34,37,39,42,114,118 71.40 81.62 138 0.56
13,16,22,23,27,34,36,39,42,114 68.80 80.73 144 0.60

Table 6.6: Variation in accuracy of the inception_v4 model, with the SVD factorization
strategy applied to different subsets of its convolutional layers. Higher values represent
lower loss.

are more consistent, but they do not increase proportionally to the cost of the original
implementation.

Tables 6.10, 6.12, 6.14, 6.16, and 6.18 show the performance of the approximable
layer of each model, when subject to the current implementation of the approximate
convolution, including the operations required to reshape the data in memory.

Tables 6.11, 6.13, 6.15, 6.17, and 6.19 show the performance of the approximable layers
of each model disregarding the overheads, as previously explained in this section. These
values serve as an upper bound on the gains that can be achieved using the currently
available convolution implementation on the platform. We can see that, especially on the
more expensive convolutions, the savings go up by about 20-25%.

46

Conv Layers Top 1 % Top 5 % ∆ T. ∆ E.
– 25.25 44.75
18 18.07 34.85 3 0.01
21 14.40 29.73 13 0.06
15 16.75 33.67 3 0.01
24 4.88 12.55 3 0.01
15,18 12.20 25.70 6 0.03
18,21 9.07 21.35 16 0.07
15,18,21 6.60 16.53 19 0.08
15,18,21,24 1.25 5.22 22 0.09

Table 6.7: Variation in accuracy of the squeezenet model, with the SVD factorization
strategy applied to different subsets of its convolutional layers. Higher values represent
lower loss.

Conv Layers Top 1 % Top 5 % ∆ T. ∆ E.
– 72.00 82.30
16 71.38 81.90 -3 -0.01
70 71.50 81.88 -1 -0.01
16,28 71.40 81.92 -5 -0.02
28,70 71.43 81.90 -3 -0.02
16,28,70 71.25 82.00 -6 -0.03
28,70,73 71.15 81.80 -4 -0.01
28,63,70 71.43 81.92 -5 -0.03
28,63,65,70 70.97 81.85 -8 -0.04
28,63,70,84 70.88 81.85 159 0.65
28,63,65,70,84 71.00 81.83 156 0.64
65,84 71.05 81.73 161 0.67
31,52 71.20 81.83 -2 0.01
17,52 71.15 81.80 -1 0.01
38,80 71.00 81.62 -2 0.01
187 21.77 47.95 31 0.07
38,65,80 70.75 81.67 -5 0.00
38,65,80,82 70.65 81.65 50 0.23

Table 6.8: Variation in accuracy of the inception_resnet_v2 model, with the SVD fac-
torization strategy applied to different subsets of its convolutional layers. Higher values
represent lower loss.

47

Conv Layers Top 1 % Top 5 % ∆ T. ∆ E.
– 71.70 82.80
53 71.60 81.97 59 0.21
29,50,86 71.20 81.90 177 0.64
6,29,50,86 67.03 80.27 214 0.80
29,50,68,86 70.93 81.80 235 0.85
29,50,53,68,86 70.95 81.83 294 1.06
29,32,50,53,68,86 71.20 81.85 353 1.28
32,50,53,68,86 70.85 81.73 294 1.06
29,32,44,50,53,68,86 70.83 81.90 412 1.49
47,50,53,56,59,62 70.88 81.73 353 1.28
29,32,44,47,50,53,56,59,62,68,86 70.83 81.62 647 2.34
44,47,50,53,56,59,62,68,86 70.60 81.62 529 1.92
22,29,32,44,47,50,53,56,59,62,68,86 68.08 80.73 649 2.35

Table 6.9: Variation in accuracy of the resnet_v2 model, with the SVD factorization
strategy applied to different subsets of its convolutional layers. Higher values represent
lower loss.

Figure 6.1: Scatter plot comparing the gains and losses of some of the best approximations
that we performed.

48

Figure 6.2: Comparison between the original energy consumption within each layer of
inception_v3, and the energy consumption within those same layers when approximated.
Also shown is the consumption of a ‘perfectly optimized’ implementation, as described in
the beginning of Section 6.3.

49

Figure 6.3: Comparison between the original energy consumption within each layer of
inception_v4, and the energy consumption within those same layers when approximated.
Also shown is the consumption of a ‘perfectly optimized’ implementation, as described in
the beginning of Section 6.3.

50

Figure 6.4: Comparison between the original energy consumption within each layer of
squeezenet, and the energy consumption within those same layers when approximated.
Also shown is the consumption of a ‘perfectly optimized’ implementation, as described in
the beginning of Section 6.3.

51

Figure 6.5: Comparison between the original energy consumption within each layer of
inception_resnet_v2, and the energy consumption within those same layers when ap-
proximated. Also shown is the consumption of a ‘perfectly optimized’ implementation, as
described in the beginning of Section 6.3.

52

Figure 6.6: Comparison between the original energy consumption within each layer of
resnet_v2, and the energy consumption within those same layers when approximated.
Also shown is the consumption of a ‘perfectly optimized’ implementation, as described in
the beginning of Section 6.3.

53

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 415 ± 2 1.28 ± 0.01 -61 ± 8 -0.10 ± 0.02 -14.8 -7.9
02 502 ± 2 1.61 ± 0.02 -80 ± 13 -0.07 ± 0.03 -16.0 -4.2
04 480 ± 3 1.64 ± 0.01 77 ± 11 0.44 ± 0.02 16.1 27.0
07 124 ± 2 0.39 ± 0.00 20 ± 5 0.10 ± 0.02 15.8 24.2
09 71 ± 1 0.23 ± 0.00 11 ± 4 0.04 ± 0.01 15.4 19.0
10 105 ± 1 0.34 ± 0.00 10 ± 3 0.05 ± 0.01 9.6 15.1
14 125 ± 2 0.39 ± 0.01 22 ± 2 0.10 ± 0.01 17.6 24.8
16 71 ± 2 0.23 ± 0.00 11 ± 4 0.04 ± 0.01 15.1 18.2
17 104 ± 2 0.33 ± 0.00 10 ± 3 0.05 ± 0.01 9.7 15.1
21 124 ± 2 0.39 ± 0.00 21 ± 3 0.10 ± 0.01 17.3 24.6
23 71 ± 2 0.23 ± 0.00 11 ± 5 0.04 ± 0.02 14.9 18.3
24 104 ± 2 0.33 ± 0.00 10 ± 3 0.05 ± 0.01 9.3 14.6
26 173 ± 11 0.59 ± 0.03 46 ± 6 0.19 ± 0.02 26.6 32.4
28 72 ± 2 0.23 ± 0.00 10 ± 5 0.04 ± 0.01 14.0 17.3
29 27 ± 3 0.09 ± 0.01 -2 ± 2 -0.01 ± 0.01 -8.1 -11.3
71 31 ± 3 0.10 ± 0.01 8 ± 2 0.03 ± 0.01 25.9 24.7
75 21 ± 2 0.07 ± 0.00 2 ± 1 0.00 ± 0.01 8.8 4.9
81 79 ± 15 0.26 ± 0.04 43 ± 2 0.14 ± 0.01 54.9 53.9
90 78 ± 16 0.26 ± 0.04 43 ± 2 0.14 ± 0.01 54.7 54.0

Table 6.10: Performance of the convolutional layers of inception_v3, before the applica-
tion of the SVD factorization strategy, and the gains from after its application. Positive
values show improvement.

54

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 415 ± 2 1.28 ± 0.01 34 ± 7 0.13 ± 0.03 8.0 10.4
02 502 ± 2 1.61 ± 0.02 81 ± 9 0.33 ± 0.03 16.0 20.3
04 480 ± 3 1.64 ± 0.01 187 ± 9 0.71 ± 0.02 39.0 43.4
07 124 ± 2 0.39 ± 0.00 29 ± 6 0.12 ± 0.02 24.0 31.5
09 71 ± 1 0.23 ± 0.00 25 ± 5 0.08 ± 0.01 35.0 36.7
10 105 ± 1 0.34 ± 0.00 26 ± 4 0.09 ± 0.01 24.0 28.3
14 125 ± 2 0.39 ± 0.01 32 ± 4 0.13 ± 0.01 25.0 32.1
16 71 ± 2 0.23 ± 0.00 25 ± 5 0.08 ± 0.01 35.0 35.9
17 104 ± 2 0.33 ± 0.00 26 ± 3 0.09 ± 0.01 25.0 28.3
21 124 ± 2 0.39 ± 0.00 31 ± 4 0.12 ± 0.01 25.0 32.0
23 71 ± 2 0.23 ± 0.00 25 ± 5 0.08 ± 0.02 35.0 36.3
24 104 ± 2 0.33 ± 0.00 25 ± 4 0.09 ± 0.01 24.0 27.8
26 173 ± 11 0.59 ± 0.03 68 ± 16 0.25 ± 0.04 40.0 42.8
28 72 ± 2 0.23 ± 0.00 24 ± 6 0.08 ± 0.02 34.0 35.6
29 27 ± 3 0.09 ± 0.01 4 ± 4 0.01 ± 0.01 16.0 12.0
71 31 ± 3 0.10 ± 0.01 12 ± 5 0.04 ± 0.02 38.0 38.1
75 21 ± 2 0.07 ± 0.00 5 ± 2 0.02 ± 0.01 23.0 22.2
81 79 ± 15 0.26 ± 0.04 46 ± 17 0.15 ± 0.05 59.0 59.2
90 78 ± 16 0.26 ± 0.04 46 ± 18 0.15 ± 0.05 59.0 59.3

Table 6.11: Upper bound on the performance of the convolutional layers of inception_v3
with the SVD factorization strategy, assuming only the time and energy spent on con-
volutions (Phases C, Z, and F), bias addition, and activation. Positive values show im-
provement.

55

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 415 ± 3 1.26 ± 0.01 -62 ± 9 -0.10 ± 0.02 -14.9 -8.4
02 503 ± 2 1.58 ± 0.01 -81 ± 14 -0.07 ± 0.03 -16.1 -4.4
03 292 ± 4 0.93 ± 0.01 -25 ± 11 0.02 ± 0.02 -8.6 1.9
05 272 ± 2 0.87 ± 0.01 27 ± 6 0.17 ± 0.02 10.1 19.3
09 272 ± 2 0.87 ± 0.01 28 ± 5 0.17 ± 0.01 10.4 19.1
10 291 ± 4 0.96 ± 0.01 28 ± 9 0.18 ± 0.02 9.7 18.4
13 71 ± 2 0.22 ± 0.00 7 ± 6 0.03 ± 0.02 10.1 14.8
15 71 ± 1 0.22 ± 0.00 8 ± 4 0.04 ± 0.01 11.2 16.0
16 105 ± 2 0.33 ± 0.01 10 ± 3 0.05 ± 0.01 9.5 14.8
20 71 ± 1 0.22 ± 0.00 8 ± 4 0.03 ± 0.01 11.2 15.5
22 71 ± 1 0.22 ± 0.00 7 ± 6 0.03 ± 0.02 9.8 14.9
23 104 ± 2 0.33 ± 0.00 10 ± 3 0.05 ± 0.01 9.2 14.5
27 71 ± 1 0.22 ± 0.00 8 ± 4 0.03 ± 0.01 11.3 15.2
29 71 ± 2 0.22 ± 0.00 9 ± 4 0.04 ± 0.01 12.0 15.8
30 104 ± 2 0.33 ± 0.00 9 ± 3 0.05 ± 0.01 9.1 14.5
34 72 ± 2 0.22 ± 0.01 9 ± 4 0.04 ± 0.01 12.3 15.9
36 71 ± 1 0.22 ± 0.00 8 ± 5 0.03 ± 0.01 11.1 15.2
37 104 ± 2 0.33 ± 0.00 9 ± 3 0.05 ± 0.01 9.1 14.4
39 228 ± 15 0.76 ± 0.04 63 ± 10 0.25 ± 0.02 27.5 32.9
41 316 ± 3 1.05 ± 0.01 111 ± 5 0.43 ± 0.01 35.0 41.4
42 104 ± 7 0.34 ± 0.02 20 ± 5 0.08 ± 0.01 19.6 24.1
114 21 ± 2 0.07 ± 0.00 2 ± 1 0.00 ± 0.01 11.2 5.4
118 49 ± 8 0.16 ± 0.02 18 ± 1 0.06 ± 0.01 36.1 34.6

Table 6.12: Performance of the convolutional layers of inception_v4, before the applica-
tion of the SVD factorization strategy, and the gains from after its application. Positive
values show improvement.

56

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 415 ± 3 1.26 ± 0.01 32 ± 8 0.13 ± 0.03 8.0 10.1
02 503 ± 2 1.58 ± 0.01 82 ± 8 0.32 ± 0.03 16.0 20.4
03 292 ± 4 0.93 ± 0.01 71 ± 10 0.26 ± 0.02 24.0 27.3
05 272 ± 2 0.87 ± 0.01 87 ± 4 0.32 ± 0.02 32.0 36.4
09 272 ± 2 0.87 ± 0.01 88 ± 4 0.31 ± 0.02 32.0 36.2
10 291 ± 4 0.96 ± 0.01 82 ± 10 0.31 ± 0.02 28.0 32.6
13 71 ± 2 0.22 ± 0.00 21 ± 6 0.07 ± 0.02 30.0 32.9
15 71 ± 1 0.22 ± 0.00 22 ± 5 0.08 ± 0.01 31.0 33.9
16 105 ± 2 0.33 ± 0.01 25 ± 4 0.09 ± 0.02 24.0 28.0
20 71 ± 1 0.22 ± 0.00 22 ± 5 0.07 ± 0.02 31.0 33.6
22 71 ± 1 0.22 ± 0.00 21 ± 5 0.07 ± 0.02 30.0 33.0
23 104 ± 2 0.33 ± 0.00 25 ± 4 0.09 ± 0.01 24.0 27.8
27 71 ± 1 0.22 ± 0.00 22 ± 4 0.07 ± 0.01 31.0 33.5
29 71 ± 2 0.22 ± 0.00 23 ± 5 0.08 ± 0.02 32.0 33.9
30 104 ± 2 0.33 ± 0.00 25 ± 3 0.09 ± 0.01 24.0 27.7
34 72 ± 2 0.22 ± 0.01 23 ± 5 0.08 ± 0.02 32.0 34.0
36 71 ± 1 0.22 ± 0.00 22 ± 5 0.07 ± 0.01 31.0 33.2
37 104 ± 2 0.33 ± 0.00 25 ± 3 0.09 ± 0.01 24.0 27.7
39 228 ± 15 0.76 ± 0.04 89 ± 24 0.32 ± 0.06 39.0 42.0
41 316 ± 3 1.05 ± 0.01 146 ± 7 0.52 ± 0.02 46.0 50.0
42 104 ± 7 0.34 ± 0.02 36 ± 10 0.13 ± 0.03 35.0 37.4
114 21 ± 2 0.07 ± 0.00 5 ± 2 0.02 ± 0.01 25.0 22.8
118 49 ± 8 0.16 ± 0.02 23 ± 8 0.07 ± 0.03 46.0 44.8

Table 6.13: Upper bound on the performance of the convolutional layers of inception_v4
with the SVD factorization strategy, assuming only the time and energy spent on con-
volutions (Phases C, Z, and F), bias addition, and activation. Positive values show im-
provement.

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
03 40 ± 1 0.12 ± 0.00 -26 ± 5 -0.07 ± 0.01 -64.3 -57.2
06 40 ± 1 0.12 ± 0.00 -25 ± 4 -0.07 ± 0.01 -62.2 -56.0
09 98 ± 2 0.32 ± 0.00 -40 ± 3 -0.07 ± 0.01 -41.2 -21.0
12 28 ± 1 0.09 ± 0.00 -1 ± 2 -0.01 ± 0.01 -5.2 -7.3
15 51 ± 2 0.16 ± 0.00 3 ± 4 0.01 ± 0.01 5.8 8.0
18 51 ± 2 0.16 ± 0.00 3 ± 4 0.01 ± 0.01 6.1 8.2
21 77 ± 2 0.25 ± 0.00 13 ± 5 0.06 ± 0.01 16.9 21.8
24 20 ± 2 0.07 ± 0.00 3 ± 1 0.01 ± 0.01 13.1 10.7

Table 6.14: Performance of the convolutional layers of squeezenet, before the application
of the SVD factorization strategy, and the gains from after its application. Positive values
show improvement.

57

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
03 40 ± 1 0.12 ± 0.00 -4 ± 5 -0.01 ± 0.01 -11.0 -10.4
06 40 ± 1 0.12 ± 0.00 -4 ± 4 -0.01 ± 0.01 -10.0 -9.4
09 98 ± 2 0.32 ± 0.00 1 ± 2 0.04 ± 0.01 1.0 12.3
12 28 ± 1 0.09 ± 0.00 9 ± 2 0.02 ± 0.01 31.0 27.1
15 51 ± 2 0.16 ± 0.00 18 ± 5 0.06 ± 0.01 36.0 35.0
18 51 ± 2 0.16 ± 0.00 19 ± 4 0.06 ± 0.01 36.0 35.4
21 77 ± 2 0.25 ± 0.00 33 ± 5 0.11 ± 0.02 43.0 43.9
24 20 ± 2 0.07 ± 0.00 7 ± 2 0.02 ± 0.01 36.0 33.9

Table 6.15: Upper bound on the performance of the convolutional layers of squeezenet with
the SVD factorization strategy, assuming only the time and energy spent on convolutions
(Phases C, Z, and F), bias addition, and activation. Positive values show improvement.

58

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 416 ± 2 1.30 ± 0.01 -63 ± 9 -0.11 ± 0.03 -15.2 -8.3
02 504 ± 4 1.64 ± 0.02 -81 ± 13 -0.07 ± 0.03 -16.1 -4.0
04 481 ± 3 1.67 ± 0.02 79 ± 11 0.46 ± 0.03 16.4 27.4
07 124 ± 2 0.40 ± 0.01 19 ± 5 0.09 ± 0.02 15.1 23.6
09 71 ± 1 0.23 ± 0.00 9 ± 3 0.04 ± 0.01 12.5 16.7
10 105 ± 2 0.34 ± 0.01 10 ± 3 0.05 ± 0.01 9.7 14.9
14 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -7.3 -11.4
16 30 ± 1 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.9 -10.1
17 48 ± 2 0.15 ± 0.00 -1 ± 6 0.01 ± 0.02 -1.5 3.8
21 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -7.6 -11.1
23 30 ± 1 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.9 -10.0
24 48 ± 1 0.15 ± 0.00 -1 ± 6 0.01 ± 0.02 -2.2 3.4
28 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -5.6 -9.8
30 30 ± 2 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.5 -10.0
31 48 ± 2 0.15 ± 0.00 -2 ± 6 0.00 ± 0.02 -3.1 2.6
35 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -6.2 -10.4
37 30 ± 2 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.4 -9.9
38 48 ± 1 0.15 ± 0.00 -1 ± 6 0.01 ± 0.02 -1.5 3.7
42 27 ± 1 0.09 ± 0.00 -1 ± 3 -0.01 ± 0.01 -5.1 -9.0
44 30 ± 1 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.8 -10.3
45 48 ± 1 0.15 ± 0.00 -1 ± 5 0.01 ± 0.02 -1.3 3.8
49 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -5.7 -9.3
51 30 ± 1 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.8 -9.7
52 48 ± 2 0.15 ± 0.00 0 ± 5 0.01 ± 0.02 -0.6 3.9
56 28 ± 1 0.09 ± 0.00 -1 ± 3 -0.01 ± 0.01 -5.4 -10.1
58 30 ± 2 0.09 ± 0.00 -4 ± 4 -0.01 ± 0.01 -12.6 -10.9
59 48 ± 1 0.15 ± 0.00 -1 ± 6 0.00 ± 0.02 -2.5 2.9
63 27 ± 1 0.09 ± 0.00 -2 ± 3 -0.01 ± 0.01 -6.3 -10.2
65 30 ± 1 0.09 ± 0.00 -3 ± 4 -0.01 ± 0.01 -11.1 -10.6
66 48 ± 1 0.15 ± 0.00 -1 ± 5 0.01 ± 0.02 -1.3 3.9
70 28 ± 2 0.09 ± 0.00 -1 ± 2 -0.01 ± 0.01 -4.9 -9.5
72 30 ± 1 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -11.4 -10.3
73 48 ± 2 0.15 ± 0.00 -1 ± 6 0.01 ± 0.02 -1.1 3.6
77 27 ± 1 0.08 ± 0.00 -2 ± 3 -0.01 ± 0.01 -6.1 -10.5
79 30 ± 2 0.09 ± 0.00 -3 ± 3 -0.01 ± 0.01 -10.9 -10.2
80 48 ± 2 0.15 ± 0.00 -1 ± 6 0.00 ± 0.02 -1.6 3.2
82 192 ± 9 0.67 ± 0.02 55 ± 7 0.23 ± 0.02 28.7 34.4
84 456 ± 5 1.57 ± 0.02 164 ± 5 0.68 ± 0.02 36.0 43.1
85 155 ± 8 0.53 ± 0.02 37 ± 7 0.16 ± 0.02 24.0 30.5
187 40 ± 18 0.10 ± 0.05 31 ± 0 0.07 ± 0.01 76.0 69.0

Table 6.16: Performance of the convolutional layers of inception_resnet_v2, before the
application of the SVD factorization strategy, and the gains from after its application.
Positive values show improvement.

59

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
01 416 ± 2 1.30 ± 0.01 32 ± 7 0.13 ± 0.03 8.0 10.1
02 504 ± 4 1.64 ± 0.02 81 ± 10 0.34 ± 0.04 16.0 20.6
04 481 ± 3 1.67 ± 0.02 188 ± 9 0.73 ± 0.03 39.0 43.9
07 124 ± 2 0.40 ± 0.01 28 ± 6 0.12 ± 0.02 23.0 30.8
09 71 ± 1 0.23 ± 0.00 23 ± 4 0.08 ± 0.01 32.0 34.5
10 105 ± 2 0.34 ± 0.01 26 ± 3 0.09 ± 0.01 25.0 28.1
14 27 ± 1 0.09 ± 0.00 3 ± 3 0.01 ± 0.01 12.0 10.7
16 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.4
17 48 ± 2 0.15 ± 0.00 9 ± 7 0.03 ± 0.02 18.0 22.3
21 27 ± 1 0.09 ± 0.00 3 ± 4 0.01 ± 0.01 12.0 10.6
23 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.3
24 48 ± 1 0.15 ± 0.00 9 ± 6 0.03 ± 0.02 18.0 21.9
28 27 ± 1 0.09 ± 0.00 4 ± 3 0.01 ± 0.01 14.0 12.0
30 30 ± 2 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 14.0 14.1
31 48 ± 2 0.15 ± 0.00 8 ± 7 0.03 ± 0.02 17.0 20.9
35 27 ± 1 0.09 ± 0.00 4 ± 3 0.01 ± 0.01 13.0 11.3
37 30 ± 2 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 14.0 14.5
38 48 ± 1 0.15 ± 0.00 9 ± 6 0.03 ± 0.02 19.0 22.2
42 27 ± 1 0.09 ± 0.00 4 ± 3 0.01 ± 0.01 14.0 12.7
44 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.4
45 48 ± 1 0.15 ± 0.00 9 ± 5 0.03 ± 0.02 19.0 22.5
49 27 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 14.0 12.6
51 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.7
52 48 ± 2 0.15 ± 0.00 9 ± 6 0.03 ± 0.02 19.0 22.2
56 28 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 14.0 11.5
58 30 ± 2 0.09 ± 0.00 3 ± 5 0.01 ± 0.01 12.0 13.6
59 48 ± 1 0.15 ± 0.00 8 ± 6 0.03 ± 0.02 18.0 21.3
63 27 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 11.5
65 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.0
66 48 ± 1 0.15 ± 0.00 9 ± 5 0.03 ± 0.02 19.0 22.3
70 28 ± 2 0.09 ± 0.00 4 ± 3 0.01 ± 0.01 14.0 12.1
72 30 ± 1 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.1
73 48 ± 2 0.15 ± 0.00 9 ± 6 0.03 ± 0.02 19.0 22.2
77 27 ± 1 0.08 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 11.5
79 30 ± 2 0.09 ± 0.00 4 ± 4 0.01 ± 0.01 13.0 14.3
80 48 ± 2 0.15 ± 0.00 9 ± 7 0.03 ± 0.02 18.0 21.5
82 192 ± 9 0.67 ± 0.02 78 ± 14 0.30 ± 0.04 41.0 44.0
84 456 ± 5 1.57 ± 0.02 204 ± 8 0.78 ± 0.03 45.0 49.9
85 155 ± 8 0.53 ± 0.02 58 ± 14 0.22 ± 0.04 37.0 41.5
187 40 ± 18 0.10 ± 0.05 31 ± 18 0.07 ± 0.06 76.0 70.3

Table 6.17: Upper bound on the performance of the convolutional layers of incep-
tion_resnet_v2 with the SVD factorization strategy, assuming only the time and energy
spent on convolutions (Phases C, Z, and F), bias addition, and activation. Positive values
show improvement.

60

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
03 261 ± 2 0.83 ± 0.01 37 ± 6 0.17 ± 0.02 14.0 19.8
06 262 ± 2 0.83 ± 0.01 37 ± 7 0.16 ± 0.02 14.0 19.7
09 73 ± 4 0.23 ± 0.01 -25 ± 3 -0.05 ± 0.01 -33.8 -21.0
13 180 ± 3 0.59 ± 0.01 38 ± 5 0.16 ± 0.01 21.3 27.7
16 180 ± 3 0.60 ± 0.01 38 ± 5 0.17 ± 0.01 21.2 27.9
19 180 ± 3 0.60 ± 0.01 38 ± 4 0.17 ± 0.01 21.3 28.0
22 51 ± 4 0.16 ± 0.01 2 ± 3 0.01 ± 0.01 4.1 5.1
26 142 ± 6 0.48 ± 0.01 58 ± 5 0.21 ± 0.02 41.0 44.5
29 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.6 44.4
32 142 ± 6 0.48 ± 0.01 59 ± 5 0.21 ± 0.02 41.3 44.4
35 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.6 44.3
38 143 ± 7 0.48 ± 0.02 60 ± 4 0.21 ± 0.01 41.7 44.6
41 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.3 44.0
44 142 ± 6 0.48 ± 0.02 59 ± 4 0.21 ± 0.01 41.3 44.4
47 142 ± 6 0.48 ± 0.01 59 ± 3 0.21 ± 0.01 41.4 44.2
50 143 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.4
53 142 ± 6 0.48 ± 0.01 59 ± 3 0.21 ± 0.01 41.4 44.5
56 142 ± 6 0.48 ± 0.01 58 ± 5 0.21 ± 0.01 41.1 44.3
59 142 ± 6 0.48 ± 0.01 59 ± 3 0.21 ± 0.01 41.5 44.6
62 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.1
65 142 ± 6 0.48 ± 0.01 58 ± 5 0.21 ± 0.02 41.1 44.2
68 142 ± 6 0.48 ± 0.01 58 ± 5 0.21 ± 0.01 41.1 44.3
71 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.5 44.4
74 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.3 44.2
77 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.1
80 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.0
83 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.1
86 142 ± 6 0.48 ± 0.02 59 ± 4 0.21 ± 0.01 41.4 44.0
89 142 ± 6 0.48 ± 0.01 59 ± 4 0.21 ± 0.01 41.4 44.0
92 49 ± 5 0.16 ± 0.01 12 ± 2 0.04 ± 0.01 24.2 24.2
96 157 ± 19 0.53 ± 0.05 90 ± 2 0.31 ± 0.01 57.2 58.3
99 156 ± 18 0.53 ± 0.05 89 ± 2 0.31 ± 0.01 57.0 58.1
102 156 ± 19 0.53 ± 0.05 89 ± 2 0.31 ± 0.01 56.9 57.9

Table 6.18: Performance of the convolutional layers of resnet_v2, before the application
of the SVD factorization strategy, and the gains from after its application. Positive values
show improvement.

61

Conv layer O. time O. energy Time ∆ Energy ∆ Time % Energy %
03 261 ± 2 0.83 ± 0.01 85 ± 6 0.29 ± 0.02 32.0 34.9
06 262 ± 2 0.83 ± 0.01 85 ± 6 0.29 ± 0.02 32.0 34.8
09 73 ± 4 0.23 ± 0.01 -3 ± 5 0.01 ± 0.01 -4.0 4.6
13 180 ± 3 0.59 ± 0.01 63 ± 6 0.23 ± 0.02 35.0 39.0
16 180 ± 3 0.60 ± 0.01 63 ± 6 0.23 ± 0.02 35.0 39.2
19 180 ± 3 0.60 ± 0.01 63 ± 6 0.23 ± 0.02 35.0 39.3
22 51 ± 4 0.16 ± 0.01 13 ± 6 0.04 ± 0.02 26.0 25.2
26 142 ± 6 0.48 ± 0.01 70 ± 10 0.25 ± 0.03 50.0 52.0
29 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 52.0
32 142 ± 6 0.48 ± 0.01 71 ± 10 0.25 ± 0.03 50.0 51.9
35 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 51.8
38 143 ± 7 0.48 ± 0.02 72 ± 10 0.25 ± 0.03 50.0 52.1
41 142 ± 6 0.48 ± 0.01 70 ± 8 0.25 ± 0.02 50.0 51.5
44 142 ± 6 0.48 ± 0.02 71 ± 10 0.25 ± 0.03 50.0 51.9
47 142 ± 6 0.48 ± 0.01 71 ± 8 0.25 ± 0.02 50.0 51.7
50 143 ± 6 0.48 ± 0.01 71 ± 10 0.25 ± 0.03 50.0 51.8
53 142 ± 6 0.48 ± 0.01 71 ± 8 0.25 ± 0.02 50.0 51.9
56 142 ± 6 0.48 ± 0.01 70 ± 10 0.25 ± 0.03 50.0 51.7
59 142 ± 6 0.48 ± 0.01 71 ± 8 0.25 ± 0.02 50.0 52.1
62 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.02 50.0 51.6
65 142 ± 6 0.48 ± 0.01 70 ± 10 0.25 ± 0.03 49.0 51.6
68 142 ± 6 0.48 ± 0.01 70 ± 10 0.25 ± 0.03 49.0 51.7
71 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 51.9
74 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 51.7
77 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 51.6
80 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.02 50.0 51.5
83 142 ± 6 0.48 ± 0.01 71 ± 9 0.25 ± 0.03 50.0 51.6
86 142 ± 6 0.48 ± 0.02 71 ± 9 0.25 ± 0.03 50.0 51.5
89 142 ± 6 0.48 ± 0.01 71 ± 8 0.25 ± 0.02 50.0 51.5
92 49 ± 5 0.16 ± 0.01 18 ± 7 0.06 ± 0.02 36.0 36.6
96 157 ± 19 0.53 ± 0.05 96 ± 20 0.33 ± 0.06 61.0 62.5
99 156 ± 18 0.53 ± 0.05 96 ± 20 0.33 ± 0.06 61.0 62.3
102 156 ± 19 0.53 ± 0.05 96 ± 20 0.33 ± 0.06 61.0 62.1

Table 6.19: Upper bound on the performance of the convolutional layers of resnet_v2 with
the SVD factorization strategy, assuming only the time and energy spent on convolutions
(Phases C, Z, and F), bias addition, and activation. Positive values show improvement.

62

Chapter 7

Conclusion & Future Work

In this work, we began by arguing that optimizing convolution is imperative to im-
proving the performance of CNNs on mobile devices, even more so if the goal is to reduce
energy consumption over inference latency. We hypothesized that we could exploit the
redundancy within the weight matrices of the convolutional layers to improve the time
and energy performance of an inference framework on mobile devices.

We were able to modify an existing TFL model, replacing existing operations with
approximate variants using tools that we developed (Chapter 5). Our tools allow this
process to be reproduced by anyone with trivial knowledge of CNN architectures, on a
commonly available desktop without any particularly fast arithmetic processing unit, such
as discrete graphics cards. We offer the possibility of reducing the accuracy of an already
trained model in exchange for better performance, should the timing requirements and
energy budget of an application or platform not be met by the current neural network.

We also developed a testbed for the accuracy drop post transformations. Our prelim-
inary results show that not many layers can be approximated before the accuracy drop
reaches the point by which it is best to simply replace the entire model with a different
architecture that is faster by design, assuming one is already available. However, one pos-
sibility that we have not explored is to retrain the network to mitigate the accuracy loss.
Because the approximate model still contains many values in common with the original
one, the retraining process can reuse that data as a starting point [40].

Finally, we modified TensorFlow Lite and wrote tools that parse profiling data, al-
lowing users to, in addition to measuring time taken per operation, also measure energy
consumption of each layer of the CNN. Combining our profiling tools to our accuracy
testbed, we found that, depending on the model, up to 5% of the energy can be saved,
with less than 1% in Top 1 accuracy drop. The tools we developed and used are available
at https://github.com/SusinMat/Convolution-Profiling-and-Approximation

There are a few possible directions to improve these numbers. One may retrain the
network to adapt to the accuracy loss, or further refine the implementation of the ap-
proximate operation within the engine (Section 6.3), or even automate the search space
exploration, which could also lead to better sets of layers to approximate being found
quicker. The software and experimental setup designed by this project can be reused to
implement and test different approximation strategies, to try out different parameters,

https://github.com/SusinMat/Convolution-Profiling-and-Approximation

63

and to analyze the viability of approximating CNNs for other applications.
Ultimately, all the aforementioned ideas combined can lead into a network designer

assistant, informing neural network architects of the cost of adding each layer at the same
time as they are choosing the building blocks, and suggesting approximations that may
help them fit their models within the appropriate time and energy constraints.

64

Glossary

approximate computing The science and theory of replacing one implementation of an
algorithm with another that is expected to perform better under some performance
metric (time, power, energy), at the expense of the accuracy of the result.

engine The library that provides the implementation necessary for executing a neural
network. In our work, we are only concerned with the implementation of the oper-
ations that are ran during inference, not with training.

entry Any numeric, real or integer, value that is stored at a position of an n-dimensional
array.

flatbuffer The filetype used by TensorFlow Lite to store trained models.

float16 The 16-bit floating point type, also known as the half-precision floating-point
format, as defined by the IEEE 754-2008 standard.

float32 The 32-bit floating point type, normally as defined by the IEEE 754 standard,
but compliance can be laxed in exchange for performance, at virtually no loss in
accuracy.

framework (machine learning) A framework, in the context of machine learning, is
a module that provides the building blocks for neural network designers, including
the tools needed to set training parameters, connect operation outputs to inputs,
etc.. Examples include TensorFlow, PyTorch.

hyperparameter Parameters of an operation that are not learned such as stride and
padding, in contrast with filter weights and biases. In the flatbuffer format, the
activation function is also stored as a hyperparameter..

kernel The implementation of an operation.

layer In the context of neural networks, a layer usually refers to a short sequence of
operations, such as convolution operation, followed by one bias add operation, and
ending with one activation function operation. It can also be used as a synonym
to module, that is, an element defined by the architecture designer, that typically
includes several convolutions and one pooling operation.

matrix Used interchangeably with tensor to mean an n-dimensional array.

65

operator An operation is a function that takes one or more tensors as input, and outputs
one or more tensors. Examples of operations include addition, matrix multiplication,
convolution.

operator Used interchangeably with operation.

pointwise convolution A NxM depthwise convolution can be seen as a convolution in
which each output channel is the result of an NxM convolution of one corresponding
input channel, i.e., the values in each entry of an output channel are the linear
combination of entries in an input channel, rather than a linear combination of
entries in all input channels of the input tensor. Typically, the number of output
channels is the same as the number of input channels, but it is also possible to have
a depthwise convolution in which the number of output channels is the number of
input channels multiplied by a positive integer factor.

pointwise convolution A convolution whose kernel is shaped Fx1x1xC, where F is the
number of filters (equal to the number of output channels) and C is the depth (equal
to the number of input channels).

quint8 A type that represents a real number, quantized into an unsigned 8-bit integer
type.

tensor An n-dimensional array used in machine learning.

Top 1 accuracy The percentage of input images in the dataset for which the network’s
top guess was the correct answer in the classification problem.

Top 5 accuracy The percentage of input images in the dataset for which the network’s
top 5 guesses included the correct answer in the classification problem.

uint8 The unsigned 8-bit integer type.

weights The tensor containing values that were learned by a network. Contrasting with
hyperparameters, these are not set by the human user, but it is possible to initialize
them to values that the user knows to work well for that model in particular.

window In the case of a convolution, the window is the shape of each of its filters,
disregarding the number of channels. A 3x7 convolution, that is, a convolution
with a window height of 3 and a window width of 7, will have its weights shaped
Fx3x7xC, where F is the number of filters and C the number of input channels.

66

Bibliography

[1] https://github.com/zer0n/deepframeworks/blob/master/README.md, Re-
trieved on 2018-03-10.

[2] http://eigen.tuxfamily.org/index.php?title=Main_Page, Retrieved on 2018-
03-13.

[3] https://github.com/google/gemmlowp, Retrieved on 2018-03-13.

[4] https://web.archive.org/web/20190708183221/https://odroid.com/
dokuwiki/doku.php?id=en:acc:smartpower2, Retrieved on 2019-08-01.

[5] https://web.archive.org/web/20190622081810/https://www.raspberrypi.
org/magpi/raspberry-pi-3-specs-benchmarks/, Retrieved on 2019-08-02.

[6] http://web.archive.org/web/20190805033607/http://www.image-net.org/
challenges/LSVRC/2012/, Retrieved on 2019-08-05.

[7] http://web.archive.org/web/20190201044550/http://image-net.org/
challenges/LSVRC/2011/, Retrieved on 2019-08-05.

[8] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[9] Marc Baboulin, Alfredo Buttari, Jack J. Dongarra, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, and Stanimire Tomov. Accelerating scientific com-
putations with mixed precision algorithms. CoRR, abs/0808.2794, 2008.

[10] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. Neu-
ralpower: Predict and deploy energy-efficient convolutional neural networks. CoRR,
abs/1710.05420, 2017.

https://github.com/zer0n/deepframeworks/blob/master/README.md
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/google/gemmlowp
https://web.archive.org/web/20190708183221/https://odroid.com/dokuwiki/doku.php?id=en:acc:smartpower2
https://web.archive.org/web/20190708183221/https://odroid.com/dokuwiki/doku.php?id=en:acc:smartpower2
https://web.archive.org/web/20190622081810/https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://web.archive.org/web/20190622081810/https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
http://web.archive.org/web/20190805033607/http://www.image-net.org/challenges/LSVRC/2012/
http://web.archive.org/web/20190805033607/http://www.image-net.org/challenges/LSVRC/2012/
http://web.archive.org/web/20190201044550/http://image-net.org/challenges/LSVRC/2011/
http://web.archive.org/web/20190201044550/http://image-net.org/challenges/LSVRC/2011/

67

[11] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. CoRR,
abs/1404.0736, 2014.

[12] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, Sep 1936.

[13] Fernando Gama, Antonio Garcia Marques, Geert Leus, and Alejandro R. Ribeiro.
Convolutional neural network architectures for signals supported on graphs. IEEE
Transactions on Signal Processing, PP:1–1, 12 2018.

[14] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.
Efficient softmax approximation for GPUs. CoRR, abs/1609.04309, 2016.

[15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. CoRR, abs/1502.02551, 2015.

[16] Philipp Gysel. Ristretto: Hardware-oriented approximation of convolutional neural
networks. CoRR, abs/1605.06402, 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. CoRR,
abs/1502.01852, 2015.

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017.

[20] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and <1mb model size. CoRR, abs/1602.07360, 2016.

[21] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. CoRR, abs/1405.3866, 2014.

[22] Hokuto Kagaya, Kiyoharu Aizawa, and Makoto Ogawa. Food detection and recogni-
tion using convolutional neural network. In Proceedings of the 22Nd ACM Interna-
tional Conference on Multimedia, MM ’14, pages 1085–1088, New York, NY, USA,
2014. ACM.

[23] F. Khalvati, M. D. Aagaard, and H. R. Tizhoosh. Accelerating image processing
algorithms based on the reuse of spatial patterns. In 2007 Canadian Conference on
Electrical and Computer Engineering, pages 172–175, April 2007.

68

[24] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj. 1-D convolutional
neural networks for signal processing applications. In ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8360–8364, May 2019.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.

[26] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. Deepx: A software accelerator for low-power deep learning inference on
mobile devices. In 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 1–12, April 2016.

[27] Carsten Lecon. Motion sickness in VR learning environments. In 14th International
Conference on Information Technology & Computer Science, 08 2018.

[28] D. Li, X. Chen, M. Becchi, and Z. Zong. Evaluating the energy efficiency of deep
convolutional neural networks on CPUs and GPUs. In 2016 IEEE International Con-
ferences on Big Data and Cloud Computing (BDCloud), Social Computing and Net-
working (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), pages 477–484, Oct 2016.

[29] Huynh Nguyen Loc, Rajesh Krishna Balan, and Youngki Lee. DeepSense: A GPU-
based deep convolutional neural network framework on commodity mobile devices.
In WearSys’16: Proceedings of the 2016 Workshop on Wearable Systems and Appli-
cations: June 30, 2016, Singapore, pages 25–30, 2016.

[30] Shiva Manne and Manjish Pal. Fast approximate matrix multiplication by solving
linear systems. CoRR, abs/1408.4230, 2014.

[31] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. Automatically scheduling halide image processing pipelines.
ACM Trans. Graph., 35(4):83:1–83:11, July 2016.

[32] nagadomi. Image super-resolution for anime-style art using deep convolutional neural
networks. https://github.com/nagadomi/waifu2x.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Du-
rand, and Saman Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. SIGPLAN
Not., 48(6):519–530, June 2013.

[34] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: Imagenet classification using binary convolutional neural networks. CoRR,
abs/1603.05279, 2016.

[35] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation. CoRR, abs/1801.04381, 2018.

https://github.com/nagadomi/waifu2x

69

[36] I. Song, H. J. Kim, and P. B. Jeon. Deep learning for real-time robust facial expression
recognition on a smartphone. In 2014 IEEE International Conference on Consumer
Electronics (ICCE), pages 564–567, Jan 2014.

[37] G. W. Stewart. On the early history of the singular value decomposition. SIAM
Review, 35(4):551–566, 1993.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),
2015.

[39] TensorFlow. Introduction to tensorflow lite. https://www.tensorflow.org/
mobile/tflite/, Retrieved on 2018-02-01.

[40] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep
convolutional networks for classification and detection. CoRR, abs/1505.06798, 2015.

https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/

	Introduction
	Initial Considerations
	Contributions

	Related Work
	Efficient convolutional networks
	Software-level optimizations
	Hardware-level optimization
	CNN performance analysis
	Our project

	Hypotheses
	Approximation strategies
	SVD factorization
	Monochromatic approximation

	Complexity analyses
	SVD factorization
	Monochromatic approximation

	Methods
	Approximation pipeline
	Network models
	Image dataset
	Engine
	TensorFlow
	TensorFlow Lite

	Devices
	Raspberry Pi 3 Model B
	HardKernel SmartPower 2

	System Components
	Overview
	beeswax
	bumblebee
	kbench
	NNT
	dump_parser
	flatbuffer_rebuilder
	protopyte
	xorapu

	Experimental Results
	Baseline
	Monochromatic approximation
	SVD factorization

	Conclusion & Future Work
	Glossary
	Bibliography

