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Este exemplar corresponde à versão final da tese defendida pelo aluno Vinicius de Paulo Souza

Ribeiro, e orientada pelo Prof. Dr. Eduardo Alves do Valle Junior

Campinas

2019



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

    
  Ribeiro, Vinícius de Paulo Souza, 1993-  
 R354i RibThe impact of annotation quality on deep learning for skin lesion

segmentation / Vinícius de Paulo Souza Ribeiro. – Campinas, SP : [s.n.], 2019.
 

   
  RibOrientador: Eduardo Alves do Valle Junior.
  RibDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.
 

    
  Rib1. Aprendizado de máquina. 2. Aprendizagem supervisionada (Aprendizado

do computador). 3. Segmentação de imagens médicas. 4. Peles - Câncer. 5.
Concordancias. I. Valle Junior, Eduardo Alves do. II. Universidade Estadual de
Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: O impacto da qualidade das anotações na aprendizagem profunda
para a segmentação de lesões de pele
Palavras-chave em inglês:
Machine learning
Supervised learning (Machine learning)
Medical images segmentation
Skin - Câncer
Agreement
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Eduardo Alves do Valle Junior [Orientador]
Roberto de Alencar Lotufo
Thiago Vallin Spina
Data de defesa: 05-08-2019
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-5897-5765
- Currículo Lattes do autor: http://lattes.cnpq.br/4867885877970077  

Powered by TCPDF (www.tcpdf.org)
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Abstract

Every year, the National Institute of Cancer, in Brazil, registers more than 150 000 new cases of

skin cancer, making it a real issue in the country’s public health system. Skin cancer evolves in

different manners, the most common is the basal cell carcinoma, but melanoma is the most dan-

gerous, with the highest mortality rate. The probability of cure decreases with the matureness

of the disease. In this scenario, automatic methods for skin lesion triage is hope for boosting

early detection and increasing the life expectancy of cancer patients. In this study, we address

one of the main subjects of the skin cancer detection pipeline: skin lesion segmentation. The

task itself is challenging from the computer vision perspective. Public data sets are not as large

as for other image domains, and the annotations are not optimal. These problems have a real

impact on the model’s performance and capability to generalize. Along with our work, we aim

to tackle the second issue, the quality of image ground truths. We analyze the inter-annotator

agreement statistics inside the most popular skin lesion dataset public available and draw some

conclusions about the available annotations. Then, we propose a series of conditioning to apply

in the training data to evaluate how they improve the agreement between different specialists.

Finally, we analyze how the conditionings affect the training and evaluation of deep neural net-

works for the skin lesion segmentation task. Our conclusions show that the low inter-annotator

agreement available in the ISIC Archive dataset has a meaningful impact in the performance of

trained models and taking the disagreement into account can indeed improve the generalization

capability of the networks.



Resumo

Todos os anos, o Instituto Nacional do Câncer, no Brasil, registra mais de 150 000 novos casos

de câncer de pele, configurando um problema real no sistema de saúde pública do páıs. O câncer

de pele se desenvolve de maneiras diferentes, sendo o melanoma o mais perigoso, com a maior

taxa de mortalidade. As chances de cura diminuem com o avanço da doença. Nesse cenário,

métodos automáticos de triagem de lesões de pele abrem uma perspectiva para uma detecção

mais precoce da doença, e um melhor prognóstico para os pacientes de câncer. Nesse estudo,

nós endereçamos uma das principais tarefas do pipeline de deteção de câncer de pele: a seg-

mentação das lesões de pele. Essa tarefa por si só é bastante desafiadora na perspectiva de visão

computacional. Conjuntos de dados públicos não são tão extensos como para outros domı́nios

de imagem e as anotações das imagens não são ótimas. Esses problemas têm um impacto real

na performance do modelo e na sua capacidade de generalização. Ao longo desse trabalho, nós

desejamos atacar a segunda questão, a qualidade das anotações das imagens. Nós analisamos as

estat́ısticas de concordância entre anotadores no conjunto de dados de lesões de pele público mais

famoso dispońıvel e desenvolvemos algumas conclusões sobre as anotações dispońıveis. Então,

nós propusemos uma série de condicionamentos a serem aplicados nos dados de treino para

avaliar como eles melhoram a concordância entre diferentes especialistas. Finalmente, nós anal-

isamos como os condicionamentos afetam o treino e a avaliação de redes neurais profundas para

a tarefa de segmentação de lesões de pele. Nossas conclusões sugerem que a baixa concordância

entre anotadores presente no conjunto de dados ISIC Archive tem um impacto expressivo na

performance dos modelos treinados, e considerar essa discordância pode, de fato, melhorar as

capacidades de generalização das redes.
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Chapter 1

Introduction

Image segmentation is the task of delimiting objects of interest in an image, thus separating them

from other objects and from the background. In this thesis, we will focus on the segmentation

of skin lesion images — which plays an important role in the automation of skin lesion analysis

— where we separate the area corresponding to the lesion from the surrounding unaffected skin.

If we consider that the skin is the largest — and the most exposed — organ in the human

body, we should not be surprised by the fact that skin cancer is, by large, the most common

form of cancer, surpassing even prostate cancer in men, and breast and cervix cancer in women.

In Brazil, it corresponds to approximately 30% of cases, or 207 770 new cases in 2018 [33].

Skin cancer is as complex and multifaceted as the skin itself. The most aggressive form,

melanoma — an uncontrolled growth of the melanocytes, cells that produce skin’s pigmentation

— is relatively rare, but responds for a large portion of the fatalities, due to its malignancy, i.e.,

its tendency to spread to different regions in the body (metastasize, in the medical jargon). Early

diagnosis is critical for a good prognosis: localized melanoma responds very well to treatment,

but becomes very difficult, often impossible, to cure after it spreads. However, diagnosing

melanoma, especially in its early stages, when lesions are still small, is notably difficult, even

for medical specialists, as malignant and benign lesions confound easily with each other 1.1.

Another challenge for the early diagnosis of melanoma is the availability of medical spe-

cialists, as the disease incidence grows much faster than our ability to deploy newly formed

dermatologists, especially in isolated, rural, or impoverished communities, where the full-time

presence of those professionals might not be feasible. In that scenario, the automated detection

of melanoma appears as an enticing alternative for improving the quality of care of the patients.

Due to the lack of doctors in impoverished regions in Brazil, enhancing the ability of pri-
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Figure 1.1: Melanomas (top row) and benign lesions (bottom row) confound with each other,
since the categories present a lot of intra-class diversity, and inter-class similarity. That
makes diagnosis very challenging, even for medical specilists. Reproduced from Fornaciali et
al.Fornaciali et al. [40].

mary care professionals (e.g., nurses, and generalist doctors) would be a powerful tool for early

diagnosis. The subject of this work — the segmentation of the skin lesion, which consists in

detecting the borders/region of the lesion within a dermoscopic image — is an essential task in

the pipeline of an automated screening tool.

In classical computer vision models used in the 1990s and the early 2000s, image segmentation

was considered mostly an ancillary task, a necessary preprocessing step, for image classification.

Such models are now obsolete for more than a decade, classification being now performed directly,

without preliminary segmentation. Interest in segmentation persisted, however, with a new

understanding that instead of a simple preprocessing, it was a complex semantic task more

difficult than classification.

In automated skin lesion analysis, for example, segmentation is an invaluable tool. The

complete workflow often implies locating each lesion, and even tracking lesions across images

taken at different times, to measure their evolution. Those tasks strongly depend on our ability to

segment the lesion. With the advent of advanced diagnostic options like full-body skin scanning,

detecting and segmenting the lesions have become crucial tasks per se.

As mentioned, semantic segmentation is a complex task in Computer Vision, even more than

classification, a challenge compounded in medical imaging due to the scarcity of training images.

In addition, the annotation may be noisier, since, in many medical tasks, the boundaries of the

objects of interest are fuzzy, the images may suffer from low contrast or other quality issues,

and undesirable artifacts may be present. That is certainly the case for skin lesions, which often

have poorly defined boundaries, and whose images present many types of artifacts: hairs, air
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Figure 1.2: Segmenting skin lesion images is challenging due to the often fuzzy boundary of
the lesion (left), and the presence of undesirable artifacts like hairs (center), or air bubbles on
the fluid used on contact dermoscopy (right).

bubbles on the fluid used on contact dermoscopy, rulers and other markers, etc. (Figure 1.2).

Indeed, issues brought by annotation quality will be one of the main themes of this thesis.

One important measure of annotation quality is inter-annotator agreement, i.e., the degree in

which two independent human annotators agree on the ground-truth for the image segmentation.

Our study is the very first to evaluate inter-annotator agreement for skin lesion segmentation,

which we found to be troublesome low. As explored the ISIC dataset, we noticed that the

annotations often diverge sharply (Figure 3.3). Characterizing precisely that divergence became

the first main contribution of this thesis.

Attempting to alleviate those divergences became a second import contribution. We propose

simple filters, which we call conditionings, that simplify the ground-truth masks, discarding

noise while keeping useful information. The conditionings considerably improve the agreement

between different annotations for the same lesion.

The third contribution of this work is evaluating the impact of the proposed conditionings

on the task of segmentation. We will show that discarding noise has as considerable positive

impact on the generalization ability of the models.

The evolution in our understanding of the role of segmentation in computer vision followed

the evolution of the field. Classical models, which tended to see segmentation as ancillary

preprocessing to classification, were based on the explicit extraction of features engineered by

hand, such as color, shape, and texture futures. Those features would be forwarded to a separate

classifier to decide on the image.

The current understanding, which sees segmentation as a semantic task, which is at least

as complex as — and indeed, often more complex than segmentation emerged as successful

models for image classification without any need for segmentation emerged, with the bags-of-

visual-words models of the early 2000s. That perspective consolidated with the success of deep

learning in the 2010s, as we developed end-to-end models which were able to provide very
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accurate image classification “directly from the pixels”, i.e., models which integrated seamlessly

feature extraction and final classification.

Deep learning also allowed a sharp improvement in the performance of image segmentation.

The current wave of deep generative models — networks which learn to ”generate” the distri-

bution of the data — is an exciting frontier, not only for the creation of high-quality synthetic

samples, but also for tasks like classification and segmentation. Those advances are allowing

some models to outperform humans.

In this thesis, we join the state of the art on deep learning for segmentation, showing how

improvements in annotation quality can have a major impact on their performance.

1 How to read this text

We organize the thesis as follows:

• In Chapter 2, we discuss the State of the Art of skin lesion segmentation. For the sake of

completeness, we briefly present the pre-deep learning era, including some of the techniques

used during the 1990s and early 2000s. The focus, however, is on current art, with the

most promising and advanced segmentation methods in the medical area, including a brief

overview of Generative Adversarial Networks used in our study field. The core of our

SotA is a survey of works which address inter-annotator agreement, and a review of deep-

learning-based skin lesion segmentation (based upon leading techniques on the latest ISIC

Challenges).

• In Chapter 3, we analyze in-depth the inter-annotator agreement of the images of the

ISIC Archive dataset. As far as we know, this is the first evaluation of inter-annotator

agreement for skin lesion segmentation available. This chapter is based in Ribeiro et al.

[76].

• In Chapter 4, we present experiments that evaluate the impact of the conditionings

proposed in the previous chapter in deep-learning models for segmentation. We will show

that the use of those conditionings has surprisingly positive effects on generalization.

• Finally, in Chapter 5 we summarize our conclusions, suggesting possibilities for future

works. We also list in this chapter the achievements obtained by the author of this text

during his master studies.
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Along with our work, we display several samples of lesion images. Unless where explicitly

noted, those samples were extracted from the ISIC Archive dataset [5], which we describe in

Section 1 of Chapter 3.
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Chapter 2

State of the Art Review

This chapter is organized as follows: Section 1 explores the inter-annotator agreement for se-

mantic segmentation, which is of particular relevance for us since we raise this discussion for skin

lesion analysis. Section 4 surveys the central topic of this work: skin lesion segmentation using

deep learning. We survey the most promising methods from the ISIC Challenge in 2017 and

2018 leaderboards. In Section 5, we advance that discussion with generative models and their

application to skin lesion segmentation. To introduce this “core” material, we briefly survey

deep learning for segmentation of medical images in general (Section 2), and, for the sake of

completeness, we also quickly study the segmentation of skin lesion before the adoption of deep

learning (Section 3).

Our research focused on improving automatic methods for skin lesion triage is vast, and

the most promising ones require a significant amount of data. Like humans, computers learn

by seeing real-life examples of the target subject. However, unlike us, machines still cannot

generalize from small datasets. For that reason, the training of machine learning models requires

a large and diverse training dataset.

Gathering medical images is challenging due to legal, economic, and technical issues. Gov-

ernments are reinforcing laws on data protection [6, 2]. Industries, on the other hand, are not

willing to share their private data with other players in the market to avoid losing competitive

advantage [49]. Often, quality issues — either on the images or their annotations — plague

existing public datasets.
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1 The Inter-Annotator Agreement Challenges for Semantic Seg-

mentation

The inter-annotator agreement is a measure of how well two or more annotators agree when

attaching labels to objects belonging to specific categories. From the inter-annotator agreement

analysis, we can derive different understandings about the nature of the problem. It expresses

the level of difficulty of the annotation process. If two or more specialized annotators struggle

to agree, we have a proxy of how hard the task is.

The inter-annotator agreement is also an expression of the reliability of the dataset under

study. Data quality is a key factor when working with machine learning. When models learn

from inaccurate labels, they output inaccurate predictions. Submitting the labeling task to

different annotators helps to evaluate how trustworthy are the datasets and the decisions driven

from the models trained with them, and gives consistency to the performance metrics achieved

by the model. Martin et al. [62] discusses the major challenge when we talk about image

segmentation. The question “What is the correct segmentation?” is much harder than “Is this

digit 5?”, for classification. There is no unique segmentation mask for an image. Two annotators

may differ in their opinions either because they perceive the content of the image differently, or

because they have distinct levels of granularity, and we may not account these inequalities as

inconsistencies. Segmentation evaluation can be exhausting, and the performance metrics must

be aware of variations in the way annotators understand the problem and their intrinsic levels

of granularity.

A third notable expression of the disagreement between annotators is related to the am-

biguous character of the task. Gurari et al. [43] argues that inconsistent annotations are not

only a consequence of challenging tasks and imperfect human annotators but also a consequence

of inherent ambiguity. The original work discusses ambiguity for foreground object segmenta-

tion, especially when we have only one available ground truth for the ambiguous image. The

researchers give images to a crowd and ask the people to answer the question “If asked multiple

people to draw the boundaries of a single object in the given image, do you think all people would

pick the same object?”. Each image receives five votes, and the final label comes from a majority

vote. Finally, the group investigates how foreground object ambiguity impacts the way we eval-

uate segmentation algorithms. Samples presented along with the article shows sound outputs

the algorithms produced for ambiguous images, but that disagree with the target labels. This

study raises the discussion of having a single ground truth segmentation mask for an image that
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has a high level of disagreement between human observers.

Aroyo and Welty [14] discusses a similar issue with ambiguity in Natural Language Process-

ing. In the original work, the research group argues that for medical relation extraction, the

disagreement found in the annotation is a source of rich information. We should not see it as

noise but as a signal. By addressing the idea that different annotations bring different perspec-

tives of a crowd about the data, they state that we should not be talking about ground truth

since in many cases we do not have a single correct label. We should address the crowd truth, in

which disagreement is used to understand the annotated instances for training and evaluation.

Instead of trying to diminish the disagreement, the scientists exploit the maximum of them based

on the hypothesis that controversy exposes the vagueness and ambiguity contained in the rela-

tionships between elements of the sentences. Taking advantage of the disagreement in machine

learning is not unusual. Zhou and Li [96] surveys the art of disagreement-based semi-supervised

learning. Because we may have many unlabeled examples, but labeled data is scarce due to the

need for human effort and expertise, semi-supervised learning tries to exploit the unlabeled data

to improve performance. As the author initially explains, the key of disagreement-based semi-

supervised learning is to generate multiple learners, let them collaborate to exploit unlabeled

samples and maintain a substantial disagreement between the base learners.

Crowd-sourcing annotations literature extensively applies the agreement between annota-

tors. Many researchers rely on this kind of data, even in the medical field, in which the inner

complexity of the tasks are tremendous, and the annotation cost is equally extensive. Because

crowd-sourced data lacks reliability, the need for measuring this gap is evident. On this topic,

research using the inter-annotator agreement measure is common. Leifman et al. [54] demon-

strates how to apply an approach for annotation and validation of large-scale datasets of retinal

images. In the authors’ words, the procedure is designed to cope with noisy ground-truth data

and with non-consistent input from both experts and crowd-workers. For Machine Transla-

tion, Ambati et al. [12] also relies on crowd-sourcing for acquiring more data. The group applies

active learning for text translation using crowd-sourced experts and non-experts to translate sen-

tences. To compute the translation reliability, the group calculated the fuzzy similarity between

translations given by the population and then used inter-annotator agreement as a reliability

metric.

Different from crowd-sourcing based research, existing art on the inter-annotator agreement

for semantic segmentation is very scarce. Contrarily to present works for lesion classification

(Esteva et al. [38], Brinker et al. [21], Haenssle et al. [44]), we could not find any evaluation of
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annotator accuracy or inter-annotator agreement for skin lesion segmentation. Even for other

tasks in medical images, systematic studies of the inter-annotator agreement are hard to find.

The most complete study we found was by Lampert et al. [53], who presents an in-depth

study of the inter-annotator agreement for four image processing problems — segmentation of

natural images, fissures in remote-sense images, landslides in satellite images, and blood vessels

in retinoscopy — employing a large number of analytics tools to explore agreement on those

tasks. The most relevant (and easy to interpret) result is the one that compares the performance

of each annotator with the consensus annotation (obtained averaging the annotations). For the

retinoscopy task, they had only two annotators, with Cohen’s Kappa scores of 0.50 and 0.57

when compared to consensus.

Liedlgruber et al. [55] evaluate the segmentation of the hippocampus in Magnetic Resonance

Image volumes for nine patients, by three different annotators, who used a graphic table to

delineate the hippocampus voxels on each slice of the image. They report significant variations

of agreements between the three pairs of annotators and across the nine patients, with an average

76% agreement using the Dice score, and 6.5 using the Symmetric Hausdorff distance.

Chaichulee et al. [25] report results for segmentation of areas of exposed skin on patients,

aiming at non-contact vital signal monitoring. On a dataset comprising over 200 hours of

video acquired from the recording of 15 preterm infants in intensive neonatal care, they asked

three annotators to label the regions of exposed skin, in a semi-automated procedure where the

annotator would annotate one frame. The system would attempt to propagate the annotation

for the next frames, and the annotators would accept or revise the propagation. They report

a mean agreement of 96.54% using the Jaccard index and also provide an estimation of the

distribution of the agreements in the form of a histogram.

An extended abstract by Egger et al. [37] presents results for mandibular bone segmentation

on high-resolution (512×512) 3D Computer Tomography scans. They asked two specialists to

annotate the datasets and measured an agreement of 93.67% using the Dice score.

The results suggest that inter-annotator agreement for segmentation may vary widely, ac-

cording to the nature of the image, and the details of the task.
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2 Deep Learning Techniques for Semantic Segmentation and

Their Application to Medical Image Analysis

Semantic segmentation is the task of generating dense label predictions of the pixels of an image.

It is an active and challenging field of study. For medical imaging, semantic segmentation plays

an important role. From our goal of skin lesion segmentation [11] to the brain and neuronal

structure segmentation [60] and organs segmentation [52], these methods help physicians to

understand exams better and improve their diagnosis. In this section, we explore techniques

developed for different domains and became popular in the medical area. For further reading,

we reference Hu et al. [47], which surveyed deep learning for cancer detection and diagnosis,

and Meyer et al. [67], which surveyed the application of deep learning to radiotherapy image

analyses.

Ciresan et al. [30] focused his work in the automatic segmentation of neuronal structures

found in electron microscopy (EM) images. To the best of our knowledge, it is the first work

to apply deep learning techniques for segmenting medical images. The proposed architecture

is a series of convolutional, max-pooling, and fully-connected layers. Next, a sequence of fully-

connected layers combines the outputs, and a softmax layer, in the end, guarantees a prob-

abilistic interpretation to the output —a pixel belonging to a given class, i.e., membrane or

non-membrane. The proposed work won the ISBI 2012 EM Segmentation Challenge after out-

performing other techniques in three different metrics: random error, warping error, and pixel

error.

Although groundbreaking, the model has two problems. 1) It is slow since it has to run for

each patch of the image and the patches are highly redundant. 2) It has a trade-off between

localization and context information, i.e., smaller patches improve the localization aspect but

deteriorate context information, but more significant patches, which have more context infor-

mation, deteriorate localization.

The work from Long et al. [58] was a breakthrough on segmenting general images from the

PASCAL VOC 2012 dataset. It was the first to train fully-convolutional networks (FCN) end-

to-end, pixel-to-pixel, to generate dense predictions. The network takes inputs of arbitrary size

and produces correspondingly-sized outputs with efficient inference and learning.

The key idea of this work is to take well-established classification networks, e.g.AlexNet

[51], ResNet [45], and GoogLeNet [82], and adapt them to semantic segmentation by replacing

the fully-connected layers by fully-convolutional layers. This modification allows the network
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Figure 2.1: By replacing the fully connected layers of traditional classification networks by
fully convolutional layers, the network can learn to make dense predictions about pixel labels.
Image reproduced from [58].

to generate dense predictions in the form of a heat-map. By adding a decoding path, we

transform the output back to its original size. A natural way of upsampling is by doing the

inverse convolution operation, often called deconvolution, and using a spatial loss function,

which enables efficient end-to-end learning. Finally, we add a skip connection to improve the

localization aspects of the network.

To overcome the problems present in [30], Ronneberger et al. [77] presented the U-Net, a con-

volutional network for biomedical images segmentation. That architecture, based on the FCN,

has a contraction path (encoder) and an expanding path (decoder). Convolutional and ReLU lay-

ers followed by max-pooling compose the encoder. The decoder is symmetrical. Concatenation-

based skip connections between the encoder and the decoder help the network preserve the

spatial information, a critical factor for semantic segmentation. The U-Net architecture, intro-

duced in 2015, is still a relevant architecture for segmentation of medical images.
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Figure 2.2: U-Net architecture (example for 32x32 pixels in the lowest resolution). The sym-
metry between encoder and decoder and the skip connections gives the network a U shape,
from which it is named. Image reproduced from [77].

The concatenation-based skip connections enhance the problem of vanishing gradient, when

the gradients of the most initial layers get so close to zero during backpropagation that the

weights do not update anymore and the network stops learning. Overcoming this problem is a

challenge to enable deeper architectures, a key factor for more robust and accurate algorithms.

On this topic, Quan et al. [74] proposed the FusionNet, a fully-residual convolutional network

for image segmentation of connectomics. The main differences between FusionNet and the

traditional U-Net are that the first replaces the original skip connections by sum-based ones

and it introduces another skip connection inside the residual blocks, which gives the network a

fully-residual fashion. The article demonstrates the flexibility of the architecture for two medical

image segmentation tasks: cell membrane segmentation and cell nucleus segmentation.

In 2017, Chen et al. [27] proposed the DeepLab, a different approach for semantic segmen-

tation. As originally described, the new method brings three contributions to state of the art.

First, it introduces atrous convolutions (Figure 2.3) as a tool for making dense predictions. The

advantage of atrous convolutions over regular ones is that by adding spacing over the convolu-

tional kernel, we increase the receptive field, and consequently learn richer context information,

without adding more complexity to the operation. Second, it uses atrous spatial pyramid pooling

(ASPP) to segment objects at multiple scales robustly. Finally, the paper combines the results
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of deep convolutional neural networks (DCNN) with fully connected conditional random fields

(CRF) [58] to improve localization of the output.

Figure 2.3: The idea behind atrous convolutions. By adding spacing inside the convolutional
kernel, it is possible to increase the knowledge about context without increasing the complex-
ity of the model. Image based on [10].

Later in the same year, Chen et al. [28] revisited the idea of atrous convolutions with a new

version of the DeepLab which, in the author’s words, explicitly adjusts filter’s field-of-view as

well as control the resolution of feature responses computed by DCNN. The new architecture

improves the performance on the benchmark datasets when compared to the previous version

without the need for CRF post-processing. After extensive experimentation, the most recent

version of DeepLab, the DeepLab V3+, became the leading architecture for our experiments

once it over-performed all the candidate models on the ISIC 2018 test dataset.

Not only for general semantic segmentation tasks, but also other medical imaging tasks, the

DeepLab model has been achieving excellent results, and many different works apply it as a

baseline. Chen et al. [29] used a DeepLab like architecture for a multi-task framework on skin

lesion segmentation and selected the original one as the baseline for the paper. Bai et al. [15]

used a DeepLab-based architecture for semi-supervised learning in cardiac MRI segmentation.

Finally, as we will see later, the architecture proved itself as groundbreaking during the 2018

edition of the ISIC Challenge.

In 2019, Liu et al. [57] proposed a Neural Architecture Search (NAS) method for semantic

segmentation named Auto-Deeplab. The NAS method proposes to automatically design the

neural network architecture, minimizing the need for human efforts. This work is innovative

when compared to previous NAS ideas once it proposes hierarchical architecture search space by

searching both the network level structure and the cell level structure. The model achieves good

results without using any ImageNet [34] pre-training. When compared to the original DeepLab

V3+, the Auto-Deeplab performs slightly worse in the benchmark datasets. The results obtained
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Figure 2.4: DeepLab v3 model: Parallel modules with atrous convolution (ASPP), augmented
with image-level features. Reproduced from [28].

by the research team is consistent with the results we achieved when submitting both networks

to skin lesion segmentation.

3 The Pre-Deep Learning Skin Lesion Segmentation History

As said before, researchers have been trying to improve skin lesion segmentation techniques for

a long time, but the most promising methods came with deep learning in the 2010s. Before

deep learning, color and texture information composed the basis of automated segmentation

approaches. Umbaugh et al. [84, 85] applied color based algorithms to task. Green et al. [42],

Dhawan and Sim [36] and Moss et al. [68] added texture extractors to the equation. Sahoo et al.

[78] compared different common computer vision methods adopted in the 1990s for similar tasks.

In this section, we discuss these methods. During this time, little to no work was developed using

supervised techniques. Celebi et al. [23] analyzed 16 articles focused on skin lesion segmentation,

and just two of them used supervised methods.

We limit our analysis in this section to an overview of the field and promising methods

proposed before deep learning. For a more comprehensive view, we reference a survey published

by Celebi et al. [24] that presents an overview of 50 published articles describing the state of

the art of border detection algorithms. The survey reviews the pre-processing, segmentation

methods, post-processing, and evaluation criteria of several works related to the area. It then

presents a comparison of the methods concerning different aspects.

In 1999, Xu et al. [89] applied a three-step method for the segmentation of the skin lesions.

At first, the method transforms the image from the RGB color space to the CIE L*a*b color

space. The second step consists of generating an initial estimation of the lesion border and

location. To do so, they pass a low-frequency filter to the image, removing noise caused by
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the presence of artifacts in the lesion that deteriorates the image. Then, they apply a global

optimal threshold value to estimate the initial lesion border. Finally, the third step consists

of refining the border estimative using the closed elastic border method according to a local

optimum threshold value.

A few years later, Rajab et al. [75] described two different methods to address skin lesion

segmentation. The first applies an iterative method to separate lesion from background skin.

The second applies a multilayer perceptron trained with 3x3 pixels border patterns to detect

lesion edges.

During the first years of the 2000s, Celebi et al. [22] employed a modification of the JSEG

algorithm [35] that consists of three steps: a pre-processing step to remove image artifacts, a

color quantization step and a post-processing step to remove remaining healthy skin from the

generated segmentation mask. The difference between the work of Celebi and the original JSEG

is that the first uses a median filter during the pre-processing instead of Peer Group Filter

applied by the former in order to better remove lesion artifacts.

In subsequent years, other scientists tried different techniques to improve border detection.

Yuan et al. [91] used a narrow band graph partitioning method. Naz et al. [70] describes several

articles on the fuzzy clustering technique, when each data point has a probability of belonging to

a given class. Schaefer et al. [79] uses color enhancement to improve the segmentation generated

by the method described by Rajab et al. [75]. Moreover, Zhou et al. [95] applied a gradient

vector flow with the mean shift to segmentation of skin lesions.

However, most of the work done during the pre-deep learning time was mainly on unsu-

pervised approaches, Wighton et al. [88] described in 2011 a supervised method that goals to

generalize common subtasks of skin lesion diagnosis. The proposed work aims to generalize the

lesion segmentation, hair detection, and pigmented network detection tasks.

4 Deep Learning Techniques Applied to Skin Lesion Segmenta-

tion

This section is the core of our literature review, surveying the works which are the closest to

ours: those who employ deep learning for skin lesion segmentation. With more computational

resources available, the deep learning era came to the skin lesion analysis enabling high per-

formance with more robust methods. The focus of this section is mainly the ISIC challenge

— a competition hosted every year that challenges its participants to improve results on dif-
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ferent tasks related to skin cancer. We work through the leaderboards of the last two editions,

examining the top-ranked approaches. For further reading, we refer the reader to [11], which

presents a survey of the state-of-the-art algorithms and techniques for performing skin lesion

segmentation. Less recent but still relevant, Fornaciali et al. [40] survey, analyze and criticize

the art of melanoma screening. Finally, Ammar et al. [13] proposed a 31 layers deep architecture

which achieves high accuracy segmentation for both PH2 dataset and ISIC 2017 dataset.

Not only for skin lesion segmentation but computer vision as a whole, the central contribution

of deep learning is that it does not rely on handcrafted features. The neural network is trained

from the raw pixels of an image and learns to detect all kinds of patterns, bringing reliability to

the methods and improving generalization.

Neural network models are a way of representing highly non-linear functions understandably

and naturally. It tries to mimic the neural system of animals with the metaphor of inputs acti-

vating neurons to generate an output. Adding more neurons (and connections) to the network

enable the representation of more complicated functions to fit complex data. Deep neural net-

works are just like shallow and traditional ones, but with a more significant number of neurons

distributed in several layers.

The problem with this technique is that with a deeper architecture, the neural network has

to learn a higher number of parameters. Moreover, with more parameters, training requires

massive datasets. As we already discussed, data is a finite and scarce resource when it comes to

medical images, which means that we need to find solutions to enable learning.

On the international collaboration towards melanoma detection, the ISIC community started

a competition to challenge scientists, researchers and AI developers all over the world to develop

methods to improve results on different tasks related to skin lesion analysis. Within the compe-

tition, the community built the ISIC dataset, and nowadays it is one of the essential sources of

skin images. Along with this work, we deal mainly with the 2017 [31] and 2018 [4] versions of it.

In this section, we will review several deep learning methods developed for skin lesion semantic

segmentation and walk through the leaderboard of the last two years of the ISIC challenge.

With some particularities, almost all semantic segmentation architectures follow the autoen-

coder architecture seen in Figure 2.6. The traditional autoencoder consists of an encoder and

symmetric decoder, with the latent space in the middle. This architecture is instrumental for

several computer vision tasks, but it has a problem with semantic segmentation. It loses spa-

tial information during the encoding path. As seen before, the most critical architectures for

segmentation of biomedical images includes skip connections between analogous layers of the
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encoder and the decoder. These connections help the models to reconstruct spatial information

and generate the probability map.

2010

2019

AutoDeepLab - Liu et al. [57]

2018

3rd edition: ISIC Challenge

2017

2nd edition: ISIC Challenge

2017

DeepLab - Chen et al. [27]

2016

1st edition: ISIC Challenge

2015

U-Net - Ronneberger et al. [77]

2015

FCNs - Long et al. [58]

2012

Ciresan et al.

2010
Pre-Deep Learning

Figure 2.5: Timeline of the development of deep learning for skin lesion segmentation.

Segmentation networks usually do not differ a lot in encoding path. Traditional encoder

architectures commonly used for classification like AlexNet, ResNet and GoogLeNet are the basis

for these architectures. The main difference in segmentation networks are the decoding path,

that may apply different upsampling techniques, and different types of skip connections. Training

both the encoding and the decoding path from scratch is an arduous task and needs lots of

data. For overcoming the unavailability of data, scientists developed a technique called Transfer

Learning [71], which consists of transferring the knowledge acquired during the training of a

general task to the performance of a different one. This method is widely used in deep learning

and helps improving performance on tasks with scarce data. Many encoder architectures are pre-

trained in the ImageNet [3] dataset and fine-tuned for skin lesion segmentation. Although less

common, it is possible to apply transfer learning to the full encoder-decoder path by transferring
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Figure 2.6: The most basic autoencoder architecture consists of an encoding path and a de-
coding path, with the latent space in the middle. Image reproduced from [8].

knowledge acquired from other semantic segmentation datasets, e.g.PASCAL VOC 2012 and

COCO.

As discussed before, the U-shaped architecture is one of the most influential topologies for

biomedical images, especially for skin lesion images. Our research group [66] achieved the 5th

place and Berseth [17] achieved second place in the ISIC 2017 using an U-Net-like network. The

first ensembles four models. Two trained with the 2 000 samples of the challenge training set,

without a validation split, for 250 and 500 epochs respectively, and two trained and validated

with a 1 600/400 split for 220 epochs. The second applied the pure U-Net model and extensively

applied distortions to the challenge data, going from 2 000 images to 20 000 images. During the

2018 edition of the ISIC challenge, the U-Net was also present in the leaderboard. Koohbanani

et al. [50] used a modified version of the network to achieve the 5th place in the competition.

Other architectures were also very competitive during the 2017 competition. Yuan [92]

applied a fully convolutional-deconvolutional network with ReLU activation function in the

convolutional and deconvolutional layers to achieve the 1st place. The group not only used the

RGB channels as inputs of the network but also the three channels of the Hue-Saturation-Value

space and the L channel (lightness) of the CIE L*a*b space. Bi et al. [18] applied deep residual

blocks (ResNet [45]) to achieve the 3rd place. The researchers used both the challenge data and

ISIC-archive data, reaching a total of 9 800 images.

During the 2018 edition of the ISIC Challenge, other architectures had a great performance.

Qian et al. [73], winner of the competition, applied a two-stage method for segmenting the
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ISIC 2017 Leaderboard

Rank Competitor Accuracy Dice Coefficient Sensitivity Specificity Jaccard Index*

1 Yuan et al. 0.934 0.849 0.825 0.975 0.765
2 Berseth et al. 0.932 0.847 0.820 0.978 0.762
3 Bi et al. 0.934 0.844 0.802 0.985 0.760
4 Bi et al. 0.934 0.842 0.801 0.984 0.758
5 Tavares et al. 0.931 0.839 0.817 0.970 0.754

Table 2.1: ISIC 2017 Leaderboard. Jaccard index, marked with *, is the main metric for the
competition. The 5th place, Tavares et al.[66], refers to our research group submission.

ISIC 2018 Leaderboard

Rank Competitor Use external data Jaccard Index Jaccard Index (0.65 threshold)*

1 Qian et al. No 0.838 0.802
2 Du et al. No 0.837 0.799
3 Ji et al. No 0.834 0.799
4 Xue et al. No 0.837 0.798
5 Koohbanani et al. 0.836 No 0.796

Table 2.2: ISIC 2018 Leaderboard. Jaccard index with 0.65 threshold, marked with *, is the
main metric for the competition.

lesions. At first, they applied a MaskRCNN [46] to detect the lesion location in the image and

then applied an encoder-decoder architecture inspired by the DeepLab [27] and the PSPNet [93]

architectures. The 2nd place used the DeepLab architecture with transfer learning from the

PASCAL VOC 2012 dataset. As a post-processing technique, the group applied Conditional

Random Fields [94] to refine the output mask. The 3rd place [92] used a traditional encoder-

decoder architecture with a ResNet [45] as the encoder network and a sequence of deconvolutional

layers as the decoder. Table 2.1 and Table 2.2 summarizes the leaderboards of the last two

editions of the ISIC challenge.

All of the described works apply data augmentation, which consists of applying small dis-

tortions to the input image in order to generate new samples for the training set. Widespread

techniques applied are rotation, flipping, zooming, and shifting, among others. Figure 2.7 shows

some examples of augmented images. Data augmentation not only enriches the dataset but also

makes the model more robust to perturbations.

The technique is not useful only for image segmentation. Perez et al. [72] evaluated the

performance of three different Convolutional Neural Networks (Inception-v4 [83], ResNet [45] and
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Figure 2.7: Augmented samples generated using the techniques we used in our final work. Im-
ages a-d presents the same lesion image with the following configuration: (a) original image,
(b) Gaussian noise, (c) contrast degradation, and (d) color degradation.

DenseNet [48]) on lesion classification when submitted to 13 different augmentation techniques.

The proposed work resulted in better performance for classification than the top 3 submitters

of ISIC 2017 competition without using additional data.

Our research group also joined the ISIC 2018 Challenge for all the three tasks: lesion bound-

aries segmentation, lesion attributes segmentation, and lesion classification. During the chal-

lenge, the present author contributed mainly to the first of the three. Discussing the methods

used for the other two is beyond the scope of this study. If interested, we reference the reader to

our technical report [19] that describes all of the approaches we tested during the competition.

For the challenge, we decided to keep the U-shaped networks from the previous participation

of the group in the challenge. We tested two models: a traditional U-Net-like network with a

VGG-16 encoder pre-trained on the ImageNet dataset and the FusionNet [74], which has a
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fully-residual architecture and performs well for segmenting connectomics images.

We trained our models on two different datasets: the challenge data and the challenge data

plus external data, extracted from the ISIC Archive dataset [5]. What we learned from this

training configuration is that for lesion segmentation, the quality of the data and its targets is

more relevant than the amount of data used during training. The segmentation masks used as

ground truth in both datasets have a sizeable inter-human variability, caused by the differences

in the methods for generating them. With less data, we reduce the variance between the ground

truths and the algorithm generalizes better. This conclusion is consistent with other participants,

which reported that adding more data degraded the algorithm’s overall performance.

An essential tool that boosted our performance during the competition was the Cyclic Learn-

ing Rate technique [81]. The method consists of varying the learning rate cyclically within rea-

sonable boundaries during training, which improves the model accuracy and reduces the training

time by preventing the model to stick to local minima. For the loss function, we worked with a

combination of the Binary Cross Entropy function and a variation of the Jaccard index function.

We submitted three configurations of our models: 1) average of FusionNet trained on Chal-

lenge data only, and U-Net trained on Challenge data only; 2) average of FusionNet trained on

Challenge data only, U-Net trained on Challenge data only, and FusionNet trained on Challenge

data and external data; 3) U-Net trained on Challenge data only. Our official results on the

official test set were, respectively, 0.694, 0.686, and 0.728 for the threshold Jaccard index. Also,

our positions of each submission were, respectively, 88th, 93th, and 56th among 112 submissions.

5 Generative Models for Semantic Segmentation and Their Ap-

plication to Skin Lesion Analysis

Goodfellow et al. [41] first introduced the Generative Adversarial Networks in 2014. The pro-

posed framework goals to solve common difficulties related to deep generative models. As argued

in the original work, these models have had less impact due to the difficulty to overcome the

problem of approximating many intractable probabilistic computations that arise during max-

imum a posteriori estimation and due to the difficulty of leveraging the benefits of piecewise

linear units in the generative context.

On the adversarial framework, two models are supposed to compete with each other: the

generative network (G) and the discriminative network (D). While the task of G is to generate

the most realistic samples as possible, the task of D is to tell whether the input sample came
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from the data distribution or the generative model distribution.

In the cited work, Ian Goodfellow proposes a simple metaphor for the adversarial framework.

We can see the generative network can as a team of counterfeiters, which are willing to produce

fake currency and use it as real ones. In this scenario, the discriminative network works as

the police, trying to separate the real money from the fake. The adversarial framework is a

two-player game in which both teams try to improve their methods until the fake samples and

the original ones are indistinguishable from each other, and the probability of D predicting that

a given sample came from the data distribution is equal to 0.5.

Figure 2.8 presents a straightforward explanation of the training procedure in the adversarial

framework. GANs are trained by simultaneously updating the discriminative network so that it

learns to discriminate samples of the data distribution (px) from samples of the generative one

(pg). First, px and pg are close to each other, but they are not the same. We also have a poor

classifier to predict whether a given sample came from the first or the second. In the inner loop

of the algorithm, D learns to discriminate the samples, converging to the optimal discriminative

distribution. We then train the generative model to draw samples closer to the data distribution,

fooling the discriminator. After enough iterations, the generative model cannot improve anymore

once px and pg are indistinguishable from each other, i.e., D(x) = 0.5.

Figure 2.8: The image presents an explanation of the generative adversarial network train-
ing procedure. The black dotted line represents the data distribution (px), the solid green line
represents the generative distribution (pg), and the blue dashed line represents the discrimina-
tive distribution. Image reproduced from [41]

Based on the framework proposed by Goodfellow, Luc et al. [59] was the first to explore

the adversarial training approach for semantic segmentation, to the best of our knowledge.

The approach has two advantages when comparing to previous methods. First, it proves that

adversarial training is flexible enough and has a high capacity of detecting an extensive range of
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Figure 2.9: An overview of the segmentation approach proposed by Luc et al. [59]. Left: The
generative network receives an RGB image and produces the segmentation masks. Right: The
discriminative network receives per pixel label maps and produces a class label (0 for syn-
thetic mask and 1 for ground truth). The discriminative networks optionally receive the RGB
image as well.

probability distributions available in the data. Second, once trained, the model is very efficient

since it does not rely on higher-order terms.

For semantic segmentation, the generative framework has a subtle difference from the pre-

sented above. The task for the discriminator network is not to predict the probability of the

input image belonging to the dataset. Instead, its task is to distinguish between the output im-

age and the ground truth. With the metaphor used before, the task is to predict which currency

is real and which one is fake given two coins, instead of predicting if a given coin is real or fake.

For training the network, the group optimizes an objective function that combines a conven-

tional multi-class cross-entropy loss with an adversarial term. The adversarial term encourages

the model to produce segmentation maps that cannot be distinguished from the ground truth

by an adversarial binary classification model [59].

When we talk about skin lesions, generative methods can have a significant impact. On our

main task, Xue et al. [90] proposed the SegAN, end-to-end adversarial network architecture with

a multi-scale loss for segmenting biomedical images. The adversarial training proposed not only

improved state of the art on the ISIC 2017 dataset but also did not suffer from unstable training

as other adversarial networks. Using the SegAN approach, the group participated in the ISIC

2018 skin lesion analysis challenge and got the 4th position among 112 submissions, which shows
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that the adversarial training is not only an exciting approach for skin lesion segmentation, but

also it is a very competitive one.

On the other hand, generative models are a way of overcoming the dataset size issue. Bissoto

et al. [20] employed the pix2pixHD GAN [86] to combine the semantic map, which corresponds

to the segmentation mask used on previously discussed works, and the instance map, an image

where each pixel combine information from its class and its instance, of different images to

generate high-resolution images of skin lesions never seen before. This work shows up as an

up-and-coming technique for enriching skin lesions datasets without the need for human data

extraction and manual annotation.
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Chapter 3

Handling Inter-Annotator

Agreement for Skin Lesion

Segmentation

We base this Chapter in our recent work [76]. We explore the issue of the inter-annotator

agreement for training and evaluating automated segmentation of skin lesions. We explore what

different degrees of agreement represent and how they affect different use cases for segmentation.

We also evaluate how conditioning the ground truths using different (but elementary) algorithms

may help to enhance agreement and may be appropriate for some use cases.

We conducted our experiments on the ISIC Archive — the most massive public dataset of

skin lesion images accompanied of reference segmentation by humans — and as far as we know,

the only one to provide more than one reference segmentation per image. The ISIC Archive is

the baseline for most of the research in the area [47, 90].

1 Problem Statement

The segmentation of skin lesions is a cornerstone task for automated skin lesion analysis, useful

both as an end-result to locate/detect the lesions and as an ancillary task for lesion classification.

Lesion segmentation, however, is a very challenging task, due not only to the challenge of image

segmentation itself but also to the difficulty in obtaining properly annotated data. Detecting

the borders of lesions with high accuracy is challenging even for trained humans, since, for many

lesions, those borders are fuzzy and ill-defined.
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Since the inception of automated skin lesion analysis, the segmentation of lesions has at-

tracted scientific interest [36, 68]. Early methods of lesion classification tended to strictly mimic

medical criteria [40], such as the ABCD rule [69], in which both (B)order irregularity and large

(D)iameter depend on lesion segmentation to be estimated automatically. Such methods were

also consonant with the art on computer vision of the 1990s, in which segmentation was often

considered a crucial preliminary step for classification (e.g., to allow extracting shape features).

The transition of computer vision art to bags-of-words models in the 2000s [80] and deep

learning in the 2010s [51] spelled the end of the viewpoint of segmentation as an ancillary

technique in preparation for classification. That understanding, however, also increased the

appreciation of segmentation for its own merits. With the accumulated experience brought

by collective efforts like the PASCAL VOC [39] and the ImageNet [34] challenges, we now

understand not only that one can tackle segmentation and classification independently, but also

that segmentation is usually much more challenging than classification.

Those advances in computer vision appear in the contemporary art in skin lesion analysis

[40, 65, 19, 72], in which, although lesion segmentation is sometimes still used to help in the

classification, the community understands it as an essential and challenging task in itself.

Obtaining accurate annotations is paramount for all machine learning techniques. The ac-

curacy of annotations imposes an upper bound on the actual, real world accuracy of learned

models. Although, in theory, any model can reach 100% of accuracy on any dataset, accura-

cies above those of the annotations only reflect the ability of models of learning the datasets’

biases. Thus, appraising annotation accuracy is vital to decide the point above which it be-

comes counterproductive to keep working on the models. Estimating annotation accuracy is

often, however, impossible, since it requires, in principle a more reliable standard than the one

provided by the ground truths themselves. In scenarios where such a standard is not available,

the inter-annotator agreement can act as a proxy estimation.

Because of the complicated procedure of annotating borders and regions (in comparison

to just providing a label) and the often subjective nature of the task, in which the position

of a border/limits of a region may be ill-defined (Figure 3.1), segmentation, especially, brings

challenges for annotation accuracy.

A vital consideration to appraise the impact of annotation accuracy for segmentation is its

intended use. For skin lesions, we can quickly identify at least three very distinct use cases, with

progressively stricter demands of accuracy:
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Figure 3.1: Top: flood-fill algorithm controlled by the annotator. Middle: manual polygon
tracing. Bottom: fully-automated annotation validated by a human annotator.

• Localization: here we are interested in detecting the presence of the lesions, and locating

its position. The precise limits of the lesion are not important. For this use case, an ap-

proximate bounding box may suffice, or even less: a single point anywhere inside the lesion

may be enough. This level of annotation may be useful, for example, for automatically

locating the lesions in a full-body skin exam.

• Demarcation: here we must not only locate the lesions but also correctly determine

their overall shape. We want to be able to estimate metrics such as the lesion diameter,

eccentricity, and overall symmetry.

• Description: here we want to fully characterize the lesion border, including detailed

characteristics such as smoothness vs. irregularity. This level of annotation is the one

required to mimic the medical algorithms (e.g., the ABCD rule) straightforwardly.

The list above does not intend to be exhaustive; it means to illustrate how different use cases

may impose very different demands to both the ground-truth annotators and the automated

techniques.

In this work, we will discuss the impact of different levels of inter-annotator agreement

on those use cases, and explore how very simple conditionings may significantly improve the

agreement for some use cases. Our main contributions are:

• An estimation of the inter-annotator agreement for skin-lesion segmentation. We not
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only provide simple statistics (such as a mean) but instead attempt to characterize the

distribution of the agreements fully;

• A visual presentation of representative samples for different agreements, in order to help

the reader to grasp their qualitative meaning;

• An evaluation of several simple procedures that may help to improve inter-annotator agree-

ment if used to condition the ground truths. Those conditionings may be helpful for some

use cases.

2 Materials and Methods

2.1 Dataset

The experiments in this chapter are based in the ISIC Archive [5] — curated by the International

Skin Imaging Collaboration — the largest publicly available dataset of images of skin lesions,

with over 23 000 annotated images. Although a few other datasets also provide segmentation

information [16, 64], as far as we know, the ISIC Archive is the only public dataset with more

than one segmentation annotation per lesion, and thus the only one where we can appraise

inter-annotator agreement.

At the time we ran our experiments, the ISIC Archive dataset contained exactly 23 907

images of lesions, 13 779 of which had segmentation ground truths. For our study, however, we

need images with at least two ground truths, reducing those to the much smaller subset of 2 233.

The ISIC Challenge employs a subset of the ISIC Archive, which included a task for lesion

segmentation [61, 31, 32]. Since the challenge allowed for the first time the researchers to

directly compare their techniques in a fully reproducible setting, it has been very influential in

the community. Therefore, in addition to analyzing the full archive, we also explored the image

subsets used in the past two challenges to see if there were any appreciable differences. Table 3.1

summarizes all three datasets.

The ground truth annotations in the ISIC Archive are highly variable. Just considering

the subsets used for the challenges, there are already three different methods to create the

annotations. As stated by the challenge organizers [4]: (1) a semi-automated flood-fill algorithm,

with parameters chosen by a human expert; (2) a manual polygon tracing by a human expert; (3)

a fully-automated algorithm, reviewed and accepted by a human expert. As shown in Figure 3.1,

the first method tends to create a very irregular border, the second very smooth borders, and
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the third is in-between, with borders that appear “pixelated”.

Annotations ISIC Archive ISIC 2017 ISIC 2018

1 11 546 1 290 1 488
2 2 094 616 995
3 100 67 71

4+ 39 27 34

Total 13 779 2 000 2 588

Table 3.1: Number of available annotations per image for each dataset.

2.2 Methods

In this work, we not only measure the inter-annotator agreement on the ground truths but also

evaluate how simple conditioning of the ground truths may help to enhance that agreement.

The conditioning consists of applying simple image processing operations to all ground truth

masks. The proposed conditionings are very straightforward and deterministic — there is no

learning involved. We list them below:

• Opening: this is a morphological operation that removes details from the foreground

(lesion). The structuring element was a square of five pixels;

• Closing: this is a morphological operation that removes details from the background, e.g.,

small holes or tears. Same structuring element as above;

• Convex hull: here we find the smallest convex shape that covers the entire lesion;

• Opening or Closing + Convex hull: the morphological operation followed by the

convex hull;

• Bounding box: here we find the smallest rectangle with sides parallel to the image that

covers the entire lesion.

Figure 3.2 illustrates those operations. From a theoretical point of view, one may interpret

the conditioning as denoising operations, whose aim is to preserve the cogent information about

the lesion segmentation, while discarding details which depend on the choice of one particular

annotator.

We implemented all of the conditionings in Python 3. Apart from the bounding box, which

was developed from scratch by our team, we extracted all of the conditionings and structuring
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Original Ground Truth Opening Closing Convex Hull Opening + Convex Hull Closing + Convex Hull Bounding Box

Figure 3.2: For each sample, we present its corresponding mask conditioned with opening,
closing, convex hull, opening + convex hull, closing + convex hull, and bounding box. Note
how the opening can remove small details from the foreground, which may significantly affect
the convex hull.

elements from the morphology package of the scikit-image library [9]. Auxiliary code was devel-

oped using the numpy library [7]. The code we used to both condition the ground truths and

to analyze the results is available at our Github repository1.

3 Inter-Annotator Agreement Experimental Design

There are many metrics available to evaluate the level of agreement between two annotations,

e.g. Jaccard Index, Dice Coefficient, and Cohen’s Kappa Score. In our experiments, we employ

the third [63], which offers, over the alternatives, the advantage of taking into account the

probability of the agreement occurring by chance. Equation 3.1 presents its the mathematical

formulation.

κ ≡ po − pe
1 − pe

= 1 − 1 − po
1 − pe

;−1 ≤ κ ≤ 1 (3.1)

In the referred equation, po refers to the relative observed agreement between raters, pe refers

to the hypothetical probability of chance agreement. The score ranges from −1 to 1, is zero for

pure chance, positive for better than chance, and negative for worse than chance.

Figure 3.3 displays examples of what different levels of Cohen’s Kappa Score mean. For

each original image, we have two annotations provided by different annotators, that we show

1https://github.com/vribeiro1/skin-lesion-segmentation-agreement
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immediately on the right of the original image. The two annotations are superimposed (one in

blue, the other in yellow), and we add some transparency so the two can appear. The area with

mixed colors represents the overlap between the two annotations. We add in the bottom right of

each image the Cohen’s Kappa Score between the two masks. The images are sorted top-down

in ascending order of Kappa.

The images in the top, with lower levels of agreement, have very different annotations. The

first two rows (four images), which have a negative score, have no intersection. The agreement

is worse than chance.

The following images have a positive score. The third row (0.0 < κ < 0.5) have a minimal

intersection; there is a large area of disagreement. For the images with κ ≈ 0.5, we see that the

two annotators disagree by the level of granularity, or the method applied. For the last three

rows, with high agreement, the annotations are equivalent, and the disagreement is minimal.

For a given lesion, we compute the Cohen’s Kappa Score between its ground truth anno-

tations. If a lesion has more than two ground truths, we take the average of the Kappa of all

possible pairs. We tabulate all Kappas to estimate the distribution of the values (and associated

statistics) for a given dataset.

To evaluate the impact of the proposed conditionings, we apply them, by turn to the

ground truths before computing the scores and estimating the distributions. We employ the

Kolmogorov–Smirnoff (K–S) test to check which pairs of distributions are significantly different.

4 Results

The distributions of the Kappa scores observed, for the original ground truths, and for all

proposed conditionings, appear in Figure 3.4 for the ISIC Archive, Figure 3.5 for the subset

used in the ISIC 2017 Challenge and Figure 3.6 for the subset used in the ISIC 2018 Challenge.

The upper and lower parts of the figures plot the same information in a different form. The

bottom part is perhaps more straightforward to interpret: shaded areas are the (normalized)

histograms of the observed Cohen Kappa scores, and the line plots superimposed to them are

the distributions estimated with a kernel density estimation. The upper part is more challenging

to interpret but has the advantage to be much less crowded. In it, each experiment appears

separated. The black dots represent the actual observations (with a small random horizontal

jitter to help the visualization). The shapes around each group of points (violin plots) are the

distributions estimated with a kernel density estimation (the shapes are more crowded where the
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Figure 3.3: We have samples representative of all inter-annotator agreements we found in the
distributions we observed. In our study, each skin lesion has at least two segmentation ground
truths. The inter-annotator agreement is worse than random when the Kappa score is below
0. Kappa scores above 0.8 are considered high. The examples here may help the reader to ap-
preciate the meaning of different scores qualitatively.
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Percentile ISIC 2017 ISIC 2018 ISIC Archive

25% 0.5724 0.5991 0.5748
50% 0.7438 0.7552 0.7185
75% 0.8213 0.8312 0.8010
95% 0.8838 0.8952 0.8812

Table 3.2: Percentiles of the Cohen’s Kappa mean score distributions for each dataset.

distributions are denser), and the large red dots are the means of the distributions. The values

of the scores for the quantiles of the original distributions are in Table 3.2 presents statistics for

each dataset.

The distributions are highly skewed, with a robust mode towards high scores but a very long

tail towards low scores. The most exciting result is that all conditionings improved the “good”

mode considerably and that most of them are indistinguishable from each other in terms of that

improvement. That is surprising since the morphological conditionings (opening and closing)

are much more conservative than the convex hull, but all treatments combining those three

operations obtained essentially the same results. Also surprising was that use of the bounding

box — a much more destructive choice — was slightly worse than the other options.

None of the methods was able to improve the very divergent cases at the tail of the distribu-

tion: that was not unexpected since the small adjustments they make are not meant to reconcile

those extreme cases. On the other hand, except for the bounding box, the techniques neither

worsened the tail, which was a good outcome.

There is a small difference between the application of the convex hull and the use of the

morphological operators alone, but we could not show that this difference is statistically signif-

icant. The K–S test rejected the equivalence of the original distribution with all conditionings,

with tiny p-values (all p-values < 10−20). It failed to reject most of the other pairs, with the

notable exception of the bounding box vs. all conditionings with the convex hull (10−7 < p-value

< 0.002).

5 Discussion

Image segmentation is among the areas of computer vision that most advanced in recent years.

Not only the techniques have improved sharply, but our understanding of the role of segmentation

in the recognition pipeline, as well as its relationship with the task of classification, have changed
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drastically. However, obtaining properly annotated data to train and evaluate segmentation

models continues to be a challenge. While datasets for (general) image classification have now

millions of samples and thousands of categories, segmentation datasets are considerably smaller.

For medical images, annotated data for segmentation is even scarcer.

Our results demonstrate the challenge of annotating skin lesions, showing that the median

inter-annotation agreement for humans has around 0.72 Kappa score for the whole ISIC Archive

and slightly more than that ( 0.75) for the images selected for the challenges. The good news is

that straightforward image-processing techniques may significantly improve those agreements,

without modifying too much the ground truths. Different applications may choose different

conditionings according to their use cases: for location or demarcation, the convex hull may be

the best, while for description the morphological operators, which preserve most of the border

characteristics may be the best. An exciting result we found is that the substantial simplification

brought by the bounding boxes worsened the annotation agreements in comparison to the other

techniques.

From a theoretical point of view, we may interpret the conditioning as denoising operations,

whose aim is to preserve the cogent information about the lesion segmentation, while discarding

details which depend on the choice of one particular annotator. Therefore they may help both

to train more robust machine learning models and to evaluate them more fairly.

The bad news is that none of the conditioning can deal with sharp divergences. Our results

show that, although most masks have a reasonable-to-good inter-annotator agreement, there is

a non-negligible tail of very disparaging annotations both in the ISIC Archive as a whole and

on the subsets used on the challenges. That tail, and the difficulty in deciding which of the

alternative annotations is the right one might explain why during the most recent challenge of

2018, none of the five top-ranked participants of the lesion boundary segmentation employed

extra data for training (from the Archive, for example), while the four top-ranked participants

for lesion classification (diagnosis) employed extra data.

In the next chapter, we will discuss our work on the evaluation of how our conditionings

impact the research on machine learning models, by attempting to measure their effect on the

training and evaluation of those models. Such evaluation is far from evident since the aim is to

evaluate how models trained in a given setting generalize when exposed to different situations,

in order to evaluate their robustness. As we will present, our design employs a cross-dataset

evaluation, testing the models with images acquired and annotated under new conditions. An

alternative design would be to use data augmentation techniques to simulate that design.
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Figure 3.4: The distributions of inter-annotator agreements for the ground truths pre- (origi-
nal) and post- the proposed conditionings (others). Both plots show precisely the same data.
The bottom graph has the histograms (shaded areas) and the estimated densities (superim-
posed lines). The top graph has the original samples (black dots), the estimated densities (vi-
olin plots), and the estimated means (red dot) for each distribution. The plots show the data
for the ISIC Archive.
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Figure 3.5: The distributions of inter-annotator agreements for the ground truths of the ISIC
Challenge 2017. Please see Figure 3.4 and Section 4 for an explanation. Note how all pro-
posed conditionings allow improving the inter-annotator agreement both here and on Fig-
ure 3.5.
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Figure 3.6: The distributions of inter-annotator agreements for the ground truths of the ISIC
Challenge 2018. Please see Figure 3.4 and Section 4 for an explanation. Note how all pro-
posed conditionings allow improving the inter-annotator agreement both here and on Fig-
ure 3.6.
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Chapter 4

Skin Lesion Segmentation Under the

Light of Inter-Annotator Agreement

In the previous chapter, we saw how the inter-annotator agreement strongly varies over the

different annotations available for the most popular public dataset for skin lesion segmentation.

As discussed before, the low agreement found can be a proxy for different inner characteristics of

the data. It might suggest that the task is indeed complex. Many images can be ambiguous, and

there is no single segmentation mask for a given lesion. These make the task arduous even for

trained humans. On the other hand, a low agreement between several annotators can also be a

proxy of the reliability of the dataset, and scientists should take it into account when evaluating

the trained models.

With the previously described experiments, we saw how our conditioning could significantly

increase the inter-annotator agreement between the masks of the ISIC Archive dataset. We could

derive some conclusions from the analyzed data. First, there is a corpus of images with such a

sharp disagreement that no treatment can reduce the gap between the annotations. Second, for

the lesions with a higher agreement, all the proposed conditionings provide a similar impact.

In this section, we aim to evaluate the impact of our conditionings when dealing with machine

learning models. We propose an experimental design with which we analyze how the training

and the evaluation of the models vary with different factors considered. Then, we evaluate the

models in a cross-dataset fashion.

Formally, the hypothesis we want to test in our experiments are:

• The conditioned models would perform worse than the non-conditioned models when tested

with the same dataset ;
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• The conditioned models would perform better than the non-conditioned models when tested

with a different dataset, i.e.they would generalize better in unknown scenarios;

• The observed effects are similar for all the proposed conditionings;

• Removing the tail of the distribution, i.e.the cases with a very low agreement, during

training have no effect in the overall performance.

We organize the current section in the following manner. Section 1 describes the data used

for the experiments. We explain the decisions made when designing the splits, how the data is

distributed for training and validation, and give a brief overview of the datasets used for testing.

Section 2 describes our experimental design. We discuss the decisions made for training and

evaluation of the models, as well as the training scheme. Finally, in Section 3, we present our

results, and we discuss our conclusions.

1 Dataset

We are recapping Table 3.1, which contains the distribution of the number of annotations per

image for ISIC Archive, ISIC 2017 and ISIC 2018. We based the training of models for the

current experiment in the subset of the ISIC Archive that has more than one annotation per

lesion image. It is trivial but crucial reminder once the Cohen’s Kappa score is only defined

when there are two annotations for the same object. When there are more than two annotations,

we calculated the score between all the two-by-two combinations of masks and took the mean

between them.

From this subset, we derive two groups of data. The first contains all of the 2 233 lesions

with two or more annotations. We call it ISIC Full from now on. The second contains the

images with a Cohen’s Kappa score higher than 0.5, a total of 1 808 lesion images. We call

it ISIC Clean from now on. We split each of the datasets into training (80%) and validation

(20%). The available images for each split is described in Table 4.1.

Split ISIC Full ISIC Clean

Training 1 786 1 449
Validation 447 359

Total 2 233 1 808

Table 4.1: Training and validation distributions for ISIC Full and ISIC Clean.
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We want to make the final evaluation in a cross-dataset manner in order to challenge the

generalization capabilities of our models when submitted to never-seen data. To accomplish this,

we have three test sets. We built the first by randomly selecting 2 000 lesions from the remaining

11 546 images of the ISIC Archive that have only one segmentation mask. We call it ISIC Titans

from now on. We decided to test with the subset of images with single annotation because we

do not have any proxy of the reliability of the ground truth. This unknown scenario fits the idea

of challenging the models to generalize when we have no control of the data. The two remaining

test datasets are PH2 [64], a publicly available dataset with 200 dermoscopic annotated images,

and the Edinburgh Dermofit Library [1], a private dataset with 1 300 dermoscopic annotated

images.

2 Experimental Design

The first step on designing our experimental setup was to define the model architecture. Our

baseline for experimentation is the ISIC 2018 competition. The competition organizers opened

the system for late submissions for evaluation and created a Live Leaderboard 1 for ranking

these submissions, which constitutes the perfect environment for robust experimentation. All

submissions made to the Live Leaderboard were evaluated using the same criteria used for the

ISIC 2018 Challenge [32].

For architecture and training configuration selection, we experimented with state of the art

architectures strongly present in the literature. The models we experimented with were DeepLab

V3+ [27], U-Net [77], LinkNet [26], AutoDeeplab [57] and RefineNet [56]. For all setups, we

applied the Cyclic Learning Rate [81] strategy that we used during the ISIC 2018 Challenge.

During our explorations for the competition, this technique was one of the most effective in

advancing our results.

All models were trained using three data augmentation methods. The first was the addition

of Gaussian Noise, the second was lowering down the contrast, and the third was degrading the

color of the input image. Contrarily to the general idea of image pre-processing, that usually

tries to remove noise, enhance contrast and color characteristics, the data augmentation we

proposed does precisely the opposite. We degrade the input in order to make our models more

robust and allow it to generalize better. Real data are not clean; the light may not be perfect

1https://challenge2018.isic-archive.com/live-leaderboards/
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and have low contrast between lesion and background healthy skin. Going against common sense

and forcing the training data to hold these adverse conditions is, in fact, the right approach.

We trained all five architectures with the ISIC 2018 [4] training dataset and submitted them

to evaluation under the validation set of the Live Leaderboard. Table 4.2 shows the best result

for each trained model using the Jaccard Index with 0.65 threshold metric.

Rank Model Threshold Jaccard Index

4 DeepLab V3+ 0.793
13 AutoDeeplab 0.762
20 LinkNet 0.749
28 RefineNet 0.731
33 U-Net 0.717

Table 4.2: The best result for each model when submitted to evaluation under the validation
set of ISIC 2018 Live Leaderboard. Column Rank corresponds to the rank in the validation
leaderboard at the time of the writing of this study.

After extensive experimentation, the model that excelled was DeepLab V3+, which is con-

sistent with the State of the Art described in Section 4. We then submitted the model to a final

evaluation in the test dataset. Table 4.3 presents the primary and secondary metrics available

in the Live Leaderboard for the architecture.

Notice that our model is considerably below the top submission in the Live Leaderboard,

which achieved the score of 0.832 in the primary metric until the moment of the writing. There

are three things to consider about the results. The first is that the top submitters are not

clear about the methods and training configuration they used to accomplish their results. The

second is that many models used to reach top positions in competitions are ensembles, not

single model predictions as we desire. With our experiments, we want to understand how

applying conditionings to the models may affect the training and evaluation of single models,

and extending these ideas to ensembles is out of the scope of the study. Finally, the third

thing is that we complied with all of the good practices of machine learning development. For

scientific methods, it is not reasonable to try unexplainable things just because they seem to have

a positive effect. During experimentations, we did not try anything without proper reasoning,

which makes our results robust and reproducible. With these considerations, we understood it

would be prudent to accept the presented results as a good baseline.

With a solid decision about which architecture to proceed with, we follow on with the

experimental design to evaluate the impact of conditioning on the training of machine learning
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DeepLab V3+ Best Results

Metric Score

Threshold Jaccard Index* 0.750
Jaccard Index 0.807

Dice Coefficient 0.883
Sensitivity 0.938
Specificity 0.921
Accuracy 0.934

Table 4.3: The best result for DeepLab V3+ when submitted to evaluation under the test set
of ISIC 2018 Live Leaderboard. Column Threshold Jaccard Index, marked with a *, is the pri-
mary metric for the competition.

models. The next decision is which conditionings to test. As described in the previous section,

all of them have positive and similar effects on the inter-annotator agreement statistics. For this

reason, we decided to work with only two of them: morphological opening and convex hull. Both

of them have a simple implementation and have completely different visual effects. While the

opening operation maintains the general look of the lesion, destroying only the method-specific

border characteristics, the convex hull is much more destructive, building a final segmentation

mask more similar to the polygon method.

As described in Section 1, we ran the same experiments on both ISIC Full and ISIC Clean.

By design, the lesion images on both datasets have a minimum of two annotations. During

training, for each epoch, we randomly select one of the available annotations to use as ground

truth. This design gives robustness to the model once it can learn that there is more than

one possible right answer to the problem, and it helps to avoid overfit. During validation, we

evaluate the model on all available annotations, and we use as the real metric the best one,

i.e., highest Jaccard Index. All of the test datasets have single annotation per lesion, so mask

selection is not an issue during this phase.

For training and testing, there are three possible settings: no conditioning, opening, and

convex hull. During the validation phase, we did not apply conditionings to the segmentation

masks. We selected the final model by choosing the one with the best performance during vali-

dation. We ran the described experimental design for both ISIC Full and ISIC Clean, resulting

in six trained models.

Notice that the proposed experiment design, as well as the design of the datasets, are entirely

aligned with the hypothesis we want to validate. For the first and the second hypothesis, we

use multiple testing datasets. The ISIC Titans dataset has images extracted from the same
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distribution as the images in the training datasets. The PH2 and the Edinburg Dermofit are

composed of images taken from unknown distributions. For the third hypothesis, we selected

two conditionings with very different effects. Finally, to validate the last hypothesis, we have

two different training datasets, the ISIC Full, and the ISIC Clean.

The code for the experiments described in this Chapter is public available at our Github

repository 2.

3 Results and Discussion

We ran each of the described experiments three times for the sake of removing the random

variability present during training. We ended up with six trained configurations, and we tested

each of them under the three conditionings proposed — no conditioning, opening, and convex

hull — for the three test datasets — ISIC Titans, Edinburgh Dermofit and PH2. The reported

metrics are the same used for the ISIC 2018 Challenge — Jaccard Index, i.e., intersection over

union, and Threshold Jaccard Index, i.e.if the Jaccard Index is below a particular value (0.65),

the prediction receives 0.0 score.

The results are presented as follows: Table 4.4, Table 4.5 and Table 4.6 compare different

conditioning types, for different training sets in ISIC Full and ISIC Clean when evaluating on

ISIC Titans, PH2, and Edinburgh Dermofit, respectively. The results columns present the mean

Jaccard Index and the mean Jaccard Index with 0.65 threshold for each testing set. All the

experiments have a standard deviation, which is not present in the tables, between different

runs of the same experiment. For the complete results of our experiment, we refer the reader to

Appendix A.

Figures 4.1 and 4.2 present interaction plots between the the experimented factors. The first

plots the interactions between the two train dataset, the conditionings during the train, and the

three test datasets. The factor conditioning during the test is set as no conditioning. The second

plots the interactions between the conditionings during the train, the conditionings during the

test, and the test datasets. The factor training dataset is set as ISIC Clean.

The structure of the chart is: The colored dots are the results of each of our individual

experiments. The solid colored lines plot the mean of each experiment. The dashed black line

plot the mean of all the experiments in the column. Each color represents one testing dataset.

2https://github.com/vribeiro1/inter-annotator-agreement-skin-lesion-segmentation
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Figure 4.1: Interaction plots between the factors in the experiment fixating no conditioning
during test.
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Figure 4.2: Interaction plots between the factors in the experiment fixating ISIC Clean as
training set.

From Figure 4.1 we can observe by the dashed black line that the removal of the images with

the low inter-annotator agreement is beneficial for the performance of the model. This result is

non-trivial once our cutting point (κ < 0.5) removes the long tail of Cohen’s Kappa distribution,

and it represents close to 19% of the training data. For deep learning, reaching similar metrics

with less data is already hard enough, even hard is to outperform.

Another interesting result is the observed improvement of the results when we apply the

opening operation. This conditioning destroys the details in the border of the lesion in the

annotation mask. We train the models without those details, but when we test with the original

detailed mask, the model is still able to reconstruct them and perform better than the models

trained with non-conditioned masks. On the other hand, when we train the models with the
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convex hull, a very destructive operation, the result strongly deteriorates. In this case, because

we removed too much information from the training data, the model is not able to reconstruct

the details during the testing phase.

From Figure 4.2, when we fix the training dataset as ISIC Clean and add the factor con-

ditioning during testing, we see that when we test the models with the convex hull, the model

that excels in the one trained with the convex masks. In this case, when we do not care about

the border details, and we only want the envelope of the lesion, it is indeed better to train our

models with the convex annotations.

We ran an analysis of variance (ANOVA) for the whole experiment, which suggests that

all of the main effects are strongly significant. For a complete view of our ANOVA and the

significance of the experiments, we refer the reader to Appendix B.

From these results, we can derive some conclusions. The ISIC Full has a substantial dis-

agreement between the annotations, and more importantly, it has a large corpus of ambiguous

and complex images, which have a close-to-zero agreement (sometimes less). Because of these

characteristics, the conditionings are not able to solve the thick tail of the distribution, and

the networks cannot take advantage of the positive impacts generated by modifying the masks.

When we remove the ambiguity, the applied transformations work as a regularizer for the in-

puts, removing the method-specific characteristics of the ground truths and leaving only the

information that is useful for the segmentation task.

When comparing the two proposed conditionings, it is clear how the opening conditioning

drives better results than the convex hull when we require some level of details. We can observe

it for both training sets. The only case where the former conditioning surpasses the first is when

the target is also convex, i.e.when we apply convex hull during testing. In the neutral case,

i.e.when we test with the original ground truths, the opening operation is consistently better.

This result goes in the opposite direction of the ones presented in Chapter 3. Looking at the

isolated inter-annotator agreement metrics, we expected the conditioning to be fully equivalent.

Both improved the inter-annotator agreement with no statistically significant difference between

each other. However, submitting the operations to the challenge of improving segmentation

metrics, we understand that they are indeed different, and some conditionings may be better

than others for specific use cases.

On the one hand, the opening operation is more conservative and preserve most of the

information present in the ground truth mask. On the other hand, the convex hull is more

destructive. As described in Chapter 3, the opening conditioning would be more appropriate as
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a pre-processing operation for a description task, when we need to characterize the lesion fully.

However, when we care about localization — when we need a rough estimation of where the

lesion is in the patient’s body — generating a convex annotation around the lesion demands less

human effort than a fine one.

Summarizing, we started with our research with four hypotheses. From our experiments, we

can see that three of them are not valid, while only one is valid.

The first states that the conditioned models would perform worse when tested with the

same data, which is not true. When we tested with data extracted from the same distribution

of the training dataset, we observed that condioned models improved the results. The second

states that the conditioned models would perform better when tested with unknown data, which

is valid. Our results show that the models trained with the opening conditioning have better

performance than the non-conditioned models. The third hypothesis states that the different

conditionings would have a similar effect since we did not observe any statistical difference

between conditionings in Chapter 3. This hypothesis is invalid. When we require details in the

testing phase, the opening conditioning is better, while when the target mask is convex, it is

better to train with the convex annotation. Finally, our last hypothesis states that the removal

of the images with low Cohen’s Kappa Score would not affect the model performance, which is

invalid. The models trained with ISIC Clean show significantly better results than those trained

with ISIC Full.

The results presented in this section is auspicious, and it introduces a discussion commonly

ignored by the scientists. The skin lesion community should think less in the isolated metrics

for skin lesion segmentation, which in many cases are saturated and very close to the human

level, and spend more efforts thinking what are the final goals and use cases we aim. To the

best of our knowledge, this is the first work to raise the inter-annotator agreement discussion

in the skin lesion segmentation area, especially proposing methods to reduce disagreement and

to compare the performances when training machine learning models, and we are sure there is

much more to explore in this subject.
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Cond. Test - Jacc. Cond. Test - Jacc. Thres.

Dataset Train Cond. Train None Opening Convex Hull None Opening Convex Hull

ISIC Full
None 0.751 0.754 0.732 0.736 0.739 0.622

Opening 0.752 0.753 0.730 0.715 0.729 0.623
Convex Hull 0.733 0.746 0.754 0.718 0.730 0.723

ISIC Clean
None 0.748 0.748 0.722 0.722 0.722 0.583

Opening 0.757 0.757 0.728 0.743 0.726 0.618
Convex Hull 0.746 0.757 0.762 0.717 0.727 0.749

Table 4.4: Comparison between different conditionings types and testing sets, for training in
ISIC Full and ISIC Clean, when evaluating in the ISIC Titans dataset. Note: All experi-
ments a presented standard deviation between the different runs of the same experiment.

Cond. Test - Jacc. Cond. Test - Jacc. Thres.

Dataset Train Cond. Train None Opening Convex Hull None Opening Convex Hull

ISIC Full
None 0.825 0.836 0.850 0.825 0.836 0.850

Opening 0.828 0.839 0.851 0.828 0.839 0.851
Convex Hull 0.794 0.810 0.855 0.794 0.810 0.855

ISIC Clean
None 0.825 0.836 0.843 0.825 0.836 0.843

Opening 0.826 0.836 0.845 0.826 0.836 0.845
Convex Hull 0.793 0.808 0.852 0.793 0.808 0.852

Table 4.5: Comparison between different conditionings types and testing sets, for training in
ISIC Full and ISIC Clean, when evaluating in the PH2 dataset. Note: All experiments pre-
sented a standard deviation between the different runs of the same experiment.

Cond. Test - Jacc. Cond. Test - Jacc. Thres.

Dataset Train Cond. Train None Opening Convex Hull None Opening Convex Hull

ISIC Full
None 0.733 0.794 0.669 0.718 0.794 0.421

Opening 0.746 0.810 0.678 0.730 0.810 0.436
Convex Hull 0.754 0.855 0.700 0.723 0.855 0.510

ISIC Clean
None 0.690 0.695 0.698 0.489 0.506 0.520

Opening 0.687 0.692 0.695 0.473 0.482 0.505
Convex Hull 0.669 0.678 0.700 0.421 0.436 0.510

Table 4.6: Comparison between different conditionings types and testing sets, for training in
ISIC Full and ISIC Clean, when evaluating in the Dermofit dataset. Note: All experiments
presented a standard deviation between the different runs of the same experiment.
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Chapter 5

Conclusions

On this work, we reviewed the art of skin lesion segmentation since the pre-deep learning times

until the most recent generative models. We discussed the many works submitted to the 2017

and 2018 editions of the ISIC Challenge: Skin Lesion Analysis Towards Melanoma Detection.

We also described our submission (RECOD Titans) to the segmentation task and showed all

the challenges we faced along with the competition.

When reviewing the state of our research, we found many unexplored paths in the research

field. We thoroughly explored the ISIC Archive and its subsets for each edition of the challenge

under the light of annotator agreement. The analysis generated an article [76] that is currently

in its pre-print version, and we aim to publish it as soon as possible in a high impact journal.

Finally, we developed an experimental design to evaluate our proposed conditionings when

training and evaluating machine learning models. The results of the experiments are fascinating

as they show that it is reasonable to be more careful about the data we use for semantic

segmentation since the significant disagreement between annotators might expose ambiguity

intrinsic to the data and deteriorate the model’s capability of generalization in a cross-dataset

fashion. Also, our experiments raise a discussion often left apart by the scientific community,

which is the one about the use cases of semantic segmentation.

The discussions we proposed are very novel and raise essential topics when we think about

bringing the knowledge achieved in the academic field to society. Addressing melanoma detection

outside the laboratory is not trivial. It requires understanding the data, the use cases, the

daily life of physicians and other health professionals, and most importantly, understanding the

impact that wrong predictions may bring to patients’ lives. We expect that the analysis we

raised about the inter-annotator agreement distribution present in an essential dataset for skin
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lesion segmentation enables more discussion about how the data available for the medical field

impacts predictions and what we can do to overcome the issues.

1 Contributions

Along with these studies, we could develop a solid knowledge about the art of skin lesion seg-

mentation. Our research group is very experienced with machine learning tools for skin lesion

classification. We have already five years of experience working in the medical field, especially

with melanoma, and during these years, we achieved many goals and earned many prizes. Not

only on the deep learning theory and practice, but the group’s work also have a research line

discussing how to get the work developed inside the laboratory to the real work.

Although the research on classification is very advanced and achieving great results, we are

just starting in skin lesion segmentation. This thesis is just the second we have for the task.

The author’s contributions during the development of this work are:

• In-deep exploration of the current state of the art of skin lesion segmentation. We discussed

the art since the pre-deep learning times, the current art for medical images and the last

two editions of the ISIC Challenge.

• Participation in the ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection.

• Being the first work, to the best of our knowledge, to introduce the discussion of the inter-

annotator agreement for skin lesion segmentation. We not only analyze the data for the

largest public dataset in the field, but we proposed methods for improving the metrics and

explored the impact of the conditioning when training and evaluating machine learning

models.

2 Achievements

During the M. Sc. program, the author also had relevant achievements that deserve a highlight.

The author contributed the following two scientific publications:

• Deep-Learning Ensembles for Skin-Lesion Segmentation, Analysis, Classification: RECOD

Titans at ISIC Challenge 2018 [19].

• Handling Inter-Annotator Agreement for Automated Skin Lesion Segmentation [76].
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The author also enrolled in the Summer School in Data Science for Document Analysis

and Understanding offered by the University of La Rochelle & INRIA, France, July 2019. The

participation in the program was funded by the French Embassy in Brazil, which provided the

flight tickets, and by Nexa Digital, which funded the course’s fee.

Finally, it is relevant to highlight that all the program was self-funded, and during the studies,

the author worked as both a data scientist and software engineer at different well-recognized

companies in many different areas. Working in the software industry provided contact with

the most modern tools and techniques used by the companies to deal with real-world problems.

Although very energy consuming, working at the industry and the university concurrently was

essential to develop in-depth and reliable knowledge in data science and engineering.

3 Future Work

Our experiments suggest that the existing datasets for skin lesion segmentation have ambiguous

images, which complicates the learning of artificial intelligence methods. ISIC Archive is the

only public dataset that contains multiple annotations for each image, and even for this one, the

multi-annotated lesions are a minority. Moreover, the single-annotated images give no proxy

about the reliability of the ground truth and the ambiguity of the lesion.

From the data view, our work proposes a framework for training the models with multiple

annotations per image. We randomly select one of the available segmentation masks at each

epoch. This approach helps the model to learn that there is no unique truth about the borders

of the lesion.

Although straightforward, the proposed pipeline does not entirely fit the case where we have

one annotation for each image. Understanding how to incorporate this set during training can

be valuable since we sharply increase the number of available data points. For lesions with a

lower number of annotations, we have a lower probability of disagreement between annotators,

but we have a smaller number of evidence about the exact borders of the lesion.

On that matter, one approach that we can explore is STAPLE [87], which presents an

expectation-maximization algorithm for simultaneous truth and performance level estimation.

In the author’s words, the algorithm considers a collection of segmentations and computes a

probabilistic estimate of the true segmentation and a measure of the performance level repre-

sented by each segmentation. Applying STAPLE can be a good alternative to the annotation

selection process and help to incorporate both single and multi-annotated images.
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From the model view, our framework only fits a single model evaluation. It is out of our

scope to extend these experiments to ensembles. However, training multiple models is common

in many deep learning pipelines. Ensemble models work as multiple opinions of experts about

the nature of the problem. An extension of our proposal is to evaluate if, and how ensembles

take advantage of the conditionings during learning and compare with the single models.

Another reasonable research line would be exploring multi-objective learning for skin lesion

segmentation. Detecting the borders of the lesion is not the only interest with segmentation.

A related task is to segment medical attributes in the lesion like pigment network, negative

network, globules, and others. Exploring a network capable of learning both tasks together and

sharing information between them can make the model outperform both tasks when compared

to single-objective models.

During our experiments, we did not evaluate how segmentation and the proposed condition-

ing approaches fit the classification of skin lesions. The work of our research group suggests

that incorporating segmentation as a feature of classification is not trivial. Future work may

evaluate how our conditionings affect this result and if they could be used to address better

mask selection processes.

A similar task to segmentation, but incorporating the idea of skin lesion classification would

be understanding how to generate predictions about each pixel of the image, but instead of

predicting if they belong to the lesion or not, we can predict how they affect the overall diagnosis

of the lesion. Which pixels explain the choice for the overall class of the image and which of

them do not. Addressing accountability for machine learning is an active and exciting research

area.

Future work also includes exploring the uncertainty on the skin lesion ground truths and

training the machine learning methods to be robust to ambiguity and disagreement between

annotators. The work of Aroyo and Welty [14] argues that the disagreement is not noise; it

brings rich information about the nature of the problem. Understanding how to use this signal

for building more reliable systems may be fruitful.



66

Bibliography

[1] Dermofit image library. https://licensing.edinburgh-innovations.ed.ac.uk/i/software/

dermofit-image-library.html.

[2] General data protection regulation. https://gdpr-info.eu/.

[3] Imagenet. URL http://www.image-net.org/.

[4] ISIC 2018 - Task 1: Lesion Boundary Detection, . https://challenge2018.isic-archive.com/task1/.

[5] International Skin Imaging Collaboration: Melanoma Project, . https://isic-archive.com.

[6] Lei geral de proteção de dados. http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/

L13709.htm.

[7] NumPy. http://www.numpy.org/.

[8] A practical guide to autoencoders. https://sadanand-singh.github.io/posts/autoencoders/.

[9] Scikit-Image: Image processing in Python. https://scikit-image.org/.

[10] Deeplab image semantic segmentation network. https://sthalles.github.io/deep_segmentation_

network/.

[11] Adegun Adekanmi Adeyinka and Serestina Viriri. Skin lesion images segmentation: A survey of the state-

of-the-art. In International Conference on Mining Intelligence and Knowledge Exploration, pages 321–330.

Springer, 2018.

[12] Vamshi Ambati, Stephan Vogel, and Jaime G Carbonell. Active learning and crowd-sourcing for machine

translation. In LREC, volume 1, page 2, 2010.

[13] Muhammad Ammar, Sajid Gul Khawaja, Abeera Atif, Muhammad Usman Akram, and Muntaha Sakeena.

Learning based segmentation of skin lesion from dermoscopic images. In 2018 IEEE 20th International

Conference on e-Health Networking, Applications and Services (Healthcom), pages 1–6. IEEE, 2018.

[14] Lora Aroyo and Chris Welty. Measuring crowd truth for medical relation extraction. In 2013 AAAI Fall

Symposium Series, 2013.



67

[15] Wenjia Bai, Ozan Oktay, Matthew Sinclair, Hideaki Suzuki, Martin Rajchl, Giacomo Tarroni, Ben Glocker,

Andrew King, Paul M Matthews, and Daniel Rueckert. Semi-supervised learning for network-based cardiac

mr image segmentation. In International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 253–260. Springer, 2017.

[16] L. Ballerini, R. B. Fisher, B. Aldridge, and J. Rees. A color and texture based hierarchical k-nn approach

to the classification of non-melanoma skin lesions. In Color Medical Image Analysis, pages 63–86. Springer,

2013.

[17] Matt Berseth. Isic 2017-skin lesion analysis towards melanoma detection. arXiv preprint arXiv:1703.00523,

2017.

[18] Lei Bi, Jinman Kim, Euijoon Ahn, and Dagan Feng. Automatic skin lesion analysis using large-scale der-

moscopy images and deep residual networks. arXiv preprint arXiv:1703.04197, 2017.

[19] A. Bissoto, F. Perez, V. Ribeiro, M. Fornaciali, S.a Avila, and E. Valle. Deep-learning ensembles for

skin-lesion segmentation, analysis, classification: Recod titans at isic challenge 2018. arXiv preprint

arXiv:1808.08480, 2018.
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Appendix A

Complete Results of Inter-Annotator

Agreement Experiments

Table A.1 presents all the results discussed along with Chapter 4. The table includes the train and test datasets,

the conditionings used during training and testing and the mean ± std Jaccard Index and Jaccard Index with

0.65 Threshold.

Results for Inter-Annotator Agreement Experiments

Dataset Train Dataset Test Cond. Train Cond. Test Jacc Jacc Thr

ISIC Clean Dermofit Convex Hull Convex Hull 0.717 ± 0.004 0.566 ± 0.010

ISIC Clean Dermofit Convex Hull Opening 0.693 ± 0.009 0.504 ± 0.020

ISIC Clean Dermofit Convex Hull No Cond. 0.684 ± 0.010 0.477 ± 0.012

ISIC Clean Dermofit Opening Convex Hull 0.719 ± 0.008 0.571 ± 0.036

ISIC Clean Dermofit Opening Opening 0.724 ± 0.004 0.578 ± 0.025

ISIC Clean Dermofit Opening No Cond. 0.720 ± 0.004 0.565 ± 0.020

ISIC Clean Dermofit No Cond. Convex Hull 0.713 ± 0.018 0.559 ± 0.054

ISIC Clean Dermofit No Cond. Opening 0.713 ± 0.018 0.532 ± 0.073

ISIC Clean Dermofit No Cond. No Cond. 0.708 ± 0.018 0.529 ± 0.072

ISIC Clean ISIC Titans Convex Hull Convex Hull 0.762 ± 0.008 0.749 ± 0.029

ISIC Clean ISIC Titans Convex Hull Opening 0.757 ± 0.010 0.727 ± 0.031

ISIC Clean ISIC Titans Convex Hull No Cond. 0.746 ± 0.011 0.717 ± 0.031

ISIC Clean ISIC Titans Opening Convex Hull 0.728 ± 0.016 0.618 ± 0.036

ISIC Clean ISIC Titans Opening Opening 0.757 ± 0.017 0.726 ± 0.024

ISIC Clean ISIC Titans Opening No Cond. 0.757 ± 0.016 0.743 ± 0.038

ISIC Clean ISIC Titans No Cond. Convex Hull 0.722 ± 0.008 0.583 ± 0.007

ISIC Clean ISIC Titans No Cond. Opening 0.748 ± 0.009 0.722 ± 0.032

ISIC Clean ISIC Titans No Cond. No Cond. 0.748 ± 0.010 0.722 ± 0.032

ISIC Clean PH2 Convex Hull Convex Hull 0.852 ± 0.002 0.852 ± 0.002
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Continuation of Results

Dataset Train Dataset Test Cond. Train Cond. Test Jacc Jacc Thr

ISIC Clean PH2 Convex Hull Opening 0.808 ± 0.008 0.808 ± 0.008

ISIC Clean PH2 Convex Hull No Cond. 0.793 ± 0.009 0.793 ± 0.009

ISIC Clean PH2 Opening Convex Hull 0.845 ± 0.005 0.845 ± 0.005

ISIC Clean PH2 Opening Opening 0.836 ± 0.004 0.836 ± 0.004

ISIC Clean PH2 Opening No Cond. 0.826 ± 0.005 0.826 ± 0.005

ISIC Clean PH2 No Cond. Convex Hull 0.843 ± 0.003 0.843 ± 0.003

ISIC Clean PH2 No Cond. Opening 0.836 ± 0.007 0.836 ± 0.007

ISIC Clean PH2 No Cond. No Cond. 0.825 ± 0.008 0.825 ± 0.008

ISIC Full Dermofit Convex Hull Convex Hull 0.700 ± 0.004 0.510 ± 0.014

ISIC Full Dermofit Convex Hull Opening 0.678 ± 0.008 0.436 ± 0.038

ISIC Full Dermofit Convex Hull No Cond. 0.669 ± 0.008 0.421 ± 0.035

ISIC Full Dermofit Opening Convex Hull 0.695 ± 0.007 0.505 ± 0.038

ISIC Full Dermofit Opening Opening 0.692 ± 0.010 0.482 ± 0.028

ISIC Full Dermofit Opening No Cond. 0.687 ± 0.011 0.473 ± 0.026

ISIC Full Dermofit No Cond. Convex Hull 0.698 ± 0.020 0.520 ± 0.061

ISIC Full Dermofit No Cond. Opening 0.695 ± 0.020 0.506 ± 0.063

ISIC Full Dermofit No Cond. No Cond. 0.690 ± 0.020 0.489 ± 0.058

ISIC Full ISIC Titans Convex Hull Convex Hull 0.754 ± 0.014 0.723 ± 0.037

ISIC Full ISIC Titans Convex Hull Opening 0.746 ± 0.014 0.730 ± 0.040

ISIC Full ISIC Titans Convex Hull No Cond. 0.733 ± 0.014 0.718 ± 0.039

ISIC Full ISIC Titans Opening Convex Hull 0.730 ± 0.005 0.623 ± 0.027

ISIC Full ISIC Titans Opening Opening 0.753 ± 0.007 0.729 ± 0.031

ISIC Full ISIC Titans Opening No Cond. 0.752 ± 0.008 0.715 ± 0.032

ISIC Full ISIC Titans No Cond. Convex Hull 0.732 ± 0.009 0.622 ± 0.033

ISIC Full ISIC Titans No Cond. Opening 0.754 ± 0.011 0.739 ± 0.036

ISIC Full ISIC Titans No Cond. No Cond. 0.751 ± 0.011 0.736 ± 0.036

ISIC Full PH2 Convex Hull Convex Hull 0.855 ± 0.002 0.855 ± 0.002

ISIC Full PH2 Convex Hull Opening 0.810 ± 0.005 0.810 ± 0.005

ISIC Full PH2 Convex Hull No Cond. 0.794 ± 0.005 0.794 ± 0.005

ISIC Full PH2 Opening Convex Hull 0.851 ± 0.002 0.851 ± 0.002

ISIC Full PH2 Opening Opening 0.839 ± 0.003 0.839 ± 0.003

ISIC Full PH2 Opening No Cond. 0.828 ± 0.003 0.828 ± 0.003

ISIC Full PH2 No Cond. Convex Hull 0.850 ± 0.008 0.850 ± 0.008

ISIC Full PH2 No Cond. Opening 0.836 ± 0.006 0.836 ± 0.006

ISIC Full PH2 No Cond. No Cond. 0.825 ± 0.005 0.825 ± 0.005
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Continuation of Results

Dataset Train Dataset Test Cond. Train Cond. Test Jacc Jacc Thr

Table A.1: Complete results for inter-annotator egreement experiments

presented along with Chapter 4
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Appendix B

Complete Results of Inter-Annotator

Agreement Experiments

Table B.1 presents the results of our ANOVA for the experiments using the Inter-Annotator Agreement described

along with Chapter 4. Note that all the main effects observed are strongly significant.
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