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Resumo
Morfologia Matemática foi concebida como uma ferramenta para a análise e processamento
de imagens binárias e foi subsequentemente generalizada para o uso em imagens em tons
de cinza e imagens multivaloradas. Reticulados completos, que são conjuntos parcialmente
ordenados em que todo subconjunto tem extremos bem definidos, servem como a base
matemática para uma definição geral de morfologia matemática. Em contraste a imagens
em tons de cinza, imagens multivaloradas não possuem uma ordem não-ambígua. Essa
dissertação trata das chamadas ordens reduzidas para imagens multivaloradas. Ordens
reduzidas são definidas por meio de uma relação binária que ordena os elementos de acordo
com uma função h do conjunto de valores em um reticulado completo. Ordens reduzidas
podem ser classificadas em ordens não-supervisionadas e ordens supervisionadas. Numa
ordem supervisionada, o função de ordenação h depende de conjuntos de treinamento de
valores de foreground e de background. Nesta dissertação, estudamos ordens supervisionadas
da literatura. Também propomos uma ordem supervisionada baseada em valores fuzzy.
Valores fuzzy generalizam cores fuzzy - conjuntos fuzzy que modelam o modo que humanos
percebem as cores - para imagens multivaloradas. Em particular, revemos como construir
o mapa de ordenação baseado em conjuntos fuzzy para o foreground e para o background.
Também introduzimos uma função de pertinência baseada numa estrutura neuro-fuzzy e
generalizamos a função de pertinência baseada no diagrama de Voronoi. Por fim, as ordens
supervisionadas são avaliadas num experimento de segmentação de imagens hiperespectrais
baseado num perfil morfológico modificado.

Palavras-chave: Morfologia Matemática, Conjuntos Fuzzy, Ordens Supervisionadas,
Imagens Hiperespectrais



Abstract
Mathematical morphology has been conceived initially as a tool for the analysis and
processing of binary images and has been later generalized to grayscale and multivalued
images. Complete lattices, which are partially ordered sets in whose every subset has
well defined extrema, serve as the mathematical background for a general definition
of mathematical morphology. In contrast to gray-scale images, however, there is no
unambiguous ordering for multivalued images. This dissertation addresses the so-called
reduced orderings for multi-valued images. Reduced orderings are defined by means of a
binary relation which ranks elements according to a mapping h from the value set into
a complete lattice. Reduced orderings can be classified as unsupervised and supervised
ordering. In a supervised ordering, the mapping h depends on training sets of foreground
and background values. In this dissertation, we study some relevant supervised orderings
from the literature. We also propose a supervised ordering based on fuzzy values. Fuzzy
values are a generalization of fuzzy colors - fuzzy sets that model how humans perceive
colors - to multivalued images other than color images. In particular, we review how to
construct the fuzzy ordering mapping based on fuzzy sets that model the foreground
and the background. Also, we introduce a membership function based on a neuro-fuzzy
framework and generalize the membership function based on Voronoi diagrams. The
supervised orderings are evaluated in an experiment of hyperspectral image segmentation
based on a modified morphological profile.

Keywords: Mathematical Morphology, Fuzzy Sets, Supervised Ordering, Hyperspectral
Images.
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Introduction

Mathematical morphology (MM) is a powerful non-linear image processing
framework based on geometrical and topological concepts (Heijmans, 1995; Soille, 1999).
Applications of MM include edge detection, segmentation, automatic image reconstruction,
pattern recognition and image decomposition (Braga-Neto and Goutsias, 2004; Gonzalez-
Hidalgo et al., 2015; Rittner et al., 2013; Serra, 2006).

The first morphological operators have been developed by Matheron and Serra
in the 1960s for the analysis of binary images. Later, binary MM operators have been
successfully generalized to deal with gray-scale images (Sternberg, 1986). Some gray-scale
morphological operators were also developed using concepts from fuzzy logic and fuzzy
set theory (Bloch, 2011; De Baets, 1997; Nachtegael and Kerre, 2001; Sussner and Valle,
2008).

Morphological operators are very well defined on complete lattices (Heijmans,
1995; Ronse, 1990). A complete lattice L is a partially ordered non-empty set in which
any subset admits both a supremum and an infimum (Birkhoff, 1993; Grätzer et al.,
2003). Since the only requirement is a partial order with well-defined extrema operations,
complete lattices allowed the development of morphological operators for multivalued
data, including color and hyperspectral images (Aptoula and Lefèvre, 2007; Lézoray, 2016;
Angulo, 2007). In contrast to gray-scale approaches, however, there is no natural ordering
for vectors. Hence, most researches on multivalued MM consist on finding an appropriate
ordering scheme for a given multivalued image processing task. The interested reader can
find a detailed discussion on many approaches to multivalued MM, including color MM,
on (Aptoula and Lefèvre, 2007; Angulo, 2007).

Among the many partial orderings used on color and hyperspectral MM, total
orderings have been widely used because they avoid the appearance of false values (Aptoula
and Lefèvre, 2008; Serra, 2009). For example, Hanbury and Serra (2002) introduced a
conditional ordering on the CIELab space to color MM. Although total orderings avoid
the appearance of false values, they are usually irregular in a metric space (Chevallier and
Angulo, 2016). Specifically, Chevallier and Angulo showed that under mild conditions there
always exist vectors x,y, z such that x ď y ď z but dpx, zq ă dpx,yq, where d denotes a
metric and “ď” is a total order. In words, z is more similar (or it is closer) to x than y in
spite of the the inequalities x ď y ď z. Like false values, the irregularity issue may be a
problem in some vector-valued image processing tasks.

Reduced orderings rank the values based on a surjective, and often real-valued,
function h (Barnett, 1976; Goutsias et al., 1995). Reduced ordering can be divided into
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unsupervised and supervised approaches. In the former, the mapping h depends only on the
image being processed. For example, Louverdis and Andreadis (2004) proposed a reduced
ordering in which colors are ranked using fuzzy IF-THEN rules. Also, Velasco-Forero
and Angulo (2012) proposed a reduced ordering scheme using statistical depth functions.
Another promising unsupervised ordering scheme, in which the surjective mapping is
constructed from the values of an image, have been proposed by Lézoray (2016).

In contrast to the unsupervised reduced ordering schemes, supervised orderings
are defined using a set of value references. For example, Sartor and Weeks (2001) proposed
a reduced ordering scheme based on the distance to a reference color. Ordering schemes
based on distances have also been investigated by many other researchers, including Al-
Otum (2015); Angulo (2007); Comer and Delp (1999); Deborah et al. (2015); Ledoux et al.
(2015); Valle and Valente (2016). The supervised ordering proposed by Velasco-Forero
and Angulo (2011a), in which the surjective mapping is determined using support vector
machines (SVMs) generalizes many of the distance-based approaches. Velasco-Forero
and Angulo (2010) also proposed the ordering based on kriging, which coincides with
the SVM-based ordering when there are only one foreground and one background color.
Graña and Chyzhyk (2016) defined a supervised ordering based on lattice auto-associative
memories, which computes the distance between the input and its recalled vector, that
also generalizes the distance-based ordering.

Recently, we proposed a fuzzy-proposition-based reduced ordering (Sangalli
and Valle, 2018) using fuzzy logic to model the subjective nature of colors. Precisely,
the ordering mapping hFUZZY is the membership function of a fuzzy set that is based on
two other fuzzy sets; one corresponding to the foreground and the other representing the
background and those fuzzy sets are modeled as a combination of fuzzy values. Fuzzy
colors (Chamorro-Martínez et al., 2017), which attempt to solve the problem known as
“semantic gap”, address the vagueness and subjectivity in the modeling of colors. Fuzzy
values generalize the concept of fuzzy colors to other vector-valued spaces. The fuzzy-based
reduced ordering also generalizes some distance-based approaches. In contrast to the SVM
approach, however, the approach based on fuzzy colors does not involve the solution of an
optimization problem. Furthermore, it can naturally take into account the imprecision
used by humans to describe and perceive colors.

In this dissertation we will investigate supervised reduced orderings for multi-
valued MM with a special focus in the fuzzy value-based approach. The dissertation is
organized as follows: Chapter 1 review some basic concepts from lattice theory. Chapter 2
reviews some mathematical tools, including support vector machines, lattice associative
memories and fuzzy sets. Chapter 3 reviews the theory of mathematical morphology
based on complete lattices. Chapter 4 reviews mathematical morphology on multivalued
images based on reduced orderings and we explore some examples of supervised orderings.
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In Chapter 5 we introduce our approach based on fuzzy values. Chapter 6 contains an
experiment of hyperspectral image segmentation using supervised orderings. Finally, the
dissertation ends with some concluding remarks in Chapter 7.
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1 Lattice Theory and Reduced Orderings

Lattices (Birkhoff, 1993) are a special type of partially ordered set where every
finite subset has an infimum and and a supremum. Lattices can also be defined by two
binary operations referred to as join and meet. Complete lattices are a special type of
lattice in which every subset, finite or infinite, has an infimum and a supremum. Complete
lattices serve as the algebraic basis for mathematical morphology (Ronse, 1990).

Besides its role in mathematical morphology and fuzzy logic, lattices are
used in the field of lattice computing (Graña, 2008; Kaburlasos et al., 2013), with the
construction of lattice associative memories, morphological neural networks and fuzzy
lattice neurocomputing.

1.1 Lattices and Complete Lattices
A pair pX,ďq, where X is a set and ď is a binary relation on X, is a partially

ordered set, or poset, if, for all x, y, z P X:

• x ď x (reflexivity)

• y ď x and y ď x ùñ x “ y (anti-symmetry)

• x ď y and y ď z ùñ x ď z (transitivity)

In that case, ď is referred to as a partial ordering. An example of a poset is given by the
real line with the usual ordering pR,ďq. Another example is the power set of a set X and
the inclusion relation Ď, that is, pPpXq,Ďq.

A poset pX,ďq is said to be a totally ordered set if, for all x, y P X, x ď y or
y ď x hold true. In this case, ď is said to be a total ordering. The real line equipped with
its usual ordering, pR,ďq, is a totally ordered set.

Let pX,ďq be a poset. Given a subset Y Ď X and z P X we say that z is the
supremum of Y if y ď z @ y P Y and z ď w @w such that y ď w @ y P Y . Similarly, we say
that z is the infimum of Y if z ď y @ y P Y and w ď z @w such that w ď y @ y P Y . If z is
the supremum of Y we write z “ supY and if z is the infimum of Y we write z “ inf Y
The supremum and infimum are unique when they exist.

Lattices are special types of partially ordered sets given by the following
definition:
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Definition 1. A partially ordered set pL,ďq is a lattice if every finite subset X Ď L
admits a supremum and an infimum.

In a lattice pL,ďq the pairwise supremum and infimum, also referred to join
and meet, are denoted, respectively, by ^ and _. More specifically, for a, b P L

a_ b :“ supta, bu and a^ b :“ infta, bu. (1.1)

A complete lattice is a partially ordered set where every subset, finite or infinite,
has a supremum and an infimum. Formally, complete lattices are defined as follows:

Definition 2. A partially ordered set pL,ďq is a complete lattice if every subset X Ď L
admits a supremum and an infimum.

In a complete lattice, the supremum and infimum are denoted by the symbols
ł

and
ľ

, respectively. That is, given X Ď L, we have
ł

X :“ supX and
ľ

X :“ inf X. (1.2)

Given lattices pL,ďLq and pM,ďMq, an operator ψ : LÑM is a homomor-
phism (Birkhoff, 1993) if it is increasing with respect to the orderings ďL and ďM, that is

a ďL b ùñ ψpaq ďM ψpbq @ a, b P L. (1.3)

Equivalently, a homomorphism preserves the join and meet operations, that is, ψ is a
homomorphism if, and only if, for all a, b P L, we have

ψpa_L bq “ ψpaq _M ψpbq and ψpa^L bq “ ψpaq ^M ψpbq. (1.4)

If, in addition to being a homomorphism, ψ is bijective, we say that ψ is an isomorphism.
Finally, if there is an isomorphism ψ : LÑM, then pL,ďLq and pM,ďMq are said to be
isormorphic.

Let pL,ďq be a (complete) lattice and D be the point set. The partial ordering
ď induces an ordering on the set of functions from D to L, LD, also referred as the set of
L-valued images on the point set D, by pointwise application, that is

I ď J ðñ Ippq ď Jppq, @p P D, (1.5)

for all I,J P LD, such that pLD,ďq is a (complete) lattice.

1.2 Pre-Orderings and Reduced Orderings
A preorder is a binary relation similar to an ordering, but with the anti-

symmetry property removed.
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Definition 3. A binary relation ď on a set X is a preorder if it satisfies, for all x, y, z P X

• x ď x (reflexivity)

• x ď y and y ď z ùñ x ď z (transitivity)

The absence of the anti-symmetry property results in the non-uniqueness of
the extrema operators, that is, the supremum and the infimum, as defined for partial
orderings, are not necessarily unique in a pre-ordered set.

Similarly to partial orderings, we say that a preorder relation ď on X is a total
preordering if, for all x, y P X, x ď y or y ď x.

There is a special kind of pre-ordering, called reduced ordering, that can be
useful for dealing with vector-valued sets and serve as basis for the supervised orderings
that will be studied later. Reduced orderings (Goutsias et al., 1995) rank the elements
according to a surjective function h that maps to a complete lattice. More precisely, given a
set V , a complete lattice pL,ďq and a surjective function h : V Ñ L, the reduced ordering,
or h-ordering, ďh is given by

x ďh y ðñ hpxq ď hpyq, @ x,y P V . (1.6)

Similarly, an equivalence relation “h is given by

x “h y ðñ hpxq “ hpyq, @ x,y P V . (1.7)

Similarly to total preorderings and total orderings a reduced ordering ďh is
said to be a total reduced ordering if, for all x,y P X, x ďh y or y ďh x, or equivalently,
if the ordering ď of the complete lattice L is a total ordering.

An operator ψh : V Ñ V is said to be h-increasing if

a ďh b ùñ ψhpaq ďh ψ
h
pbq, (1.8)

we have the following result regarding h-increasing operators:

Proposition 1 (Goutsias et al. (1995)). An operator ψh : V Ñ V is h-increasing if and
only if there exists an increasing operator ψ : LÑ L such that

hψh “ ψh, (1.9)

In this case, we write ψh h
Ñ ψ.

With this result, given an increasing operator ψ : LÑ L, we can guarantee the
existence of an h-increasing operator ψh : V Ñ V . Goutsias et al. (1995) used Proposition 1
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to extend mathematical morphology based on complete lattices to reduced orderings, and
Velasco-Forero and Angulo (2014) used it to develop morphological operators on multivalued
images (see Algorithm 1 on Chapter 4). A flexibilized version of these approaches has been
used by Sangalli and Valle (2018) to define reduced orderings under uncertainties.
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2 Mathematical Tools

In this section we will review some tools and concepts that will be used
throughout the dissertation. More specifically, we will look into support vector machines
(SVM), lattice auto-associative memories (LAAM) and fuzzy systems

2.1 Support Vector Machines
A support vector machine (SVM) is a machine learning model that attempts to

classify points into two classes by separating them by a hyperplane which maximizes the
margin (i.e. the minimum distance from a training point to the hyperplane)(Cristianini
et al., 2000). To start with, let us assume that we have a training set px1, y1q, . . . , pxN , yNq,
consisting of points xi P Rk and labels yi P t´1, 1u for all i P t1, . . . , Nu, which is
linearly separable, that is, there exists a hyperplane, represented by βTx ` β0, such that
signpβTxi`β0q “ yi, for all i. If a hyperplane maximizes the margin, the value of the margin
is realized in two points, x` and x´ satisfying βTx` ` β0 “ ´pβ

Tx´ ` β0q. Assuming,
without loss of generality, that βTx``β0 “ ´pβ

Tx´`β0q “ 1 on this hyperplane, then the
value of the margin is given by 1

‖β‖2 (Cristianini et al., 2000). In practice, the restriction

of the points being linearly separable is relaxed, and the restriction yipβTxi ` β0
q ě 1´ ξi,

for positive variables ξi, is used. The hyperplane with maximum margin is given by the
solution of the following quadratic optimization problem

minimizeβ,β0

1
2‖β‖

2
` C

N
ÿ

i“1
ξi, (2.1)

subject to yipβ
Txi ` β0q ě 1´ ξi, i “ 1, . . . , N,

ξi ě 0, i “ 1, . . . , N,

where C is a positive constant and the term C
N
ÿ

i“1
ξi is added to the objective function to

control the quantity of points not separated by the hyperplane.

The dual formulation of (2.1) is given by (Cristianini et al., 2000)

maximize
N
ÿ

i“1
λi ´

N
ÿ

i,j“1
yiyjλiλjxTi xj, (2.2)

subject to
N
ÿ

i“1
yiλi “ 0

0 ď λi ď C, i “ 1, . . . , N,
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Gaussian RBF Kpx,yq “ exp
ˆ

´
‖x ´ y‖2

c

˙

Polynomial Kpx,yq “ pxx,yy ` θqd
Sigmoidal Kpx,yq “ tanhpκxx,yy ` θq

Inv. multiquadratic Kpx,yq “
1

a

‖x´ y‖2 ` c2

Table 1 – Common kernels (Muller et al., 2001): Gaussian radial basis function, polynomial,
sigmoidal and inverse multiquadratic kernels, with parameters c P Rą0, d P N,
θ P R and κ P R.

where the λi are the lagrange multipliers of (2.1). The points xi such that the inequality
λi ą 0 holds true are called support vectors and the set of the indices of the support
vectors is denoted VS. The parameters β and β0 of the maximum margin hyperplane are
given by

β “
N
ÿ

i“1
yiλixi and β0 “

1
|VS|

ÿ

iPVS

pyi ´ β
Txiq. (2.3)

The signed distance to the maximum margin hyperplane can be expressed as

fpxq “
N
ÿ

i“1
yiλixTi x ` β0. (2.4)

A kernel K is a real-valued function obtained by mapping two values from Rn

to a potentially much higher dimensional space F, referred as feature space, by means
of a function φ : VÑ F and computing the dot product, that is, Kpx,yq “ xφpxq, φpyqy.
Under some conditions, the kernel can be computed implicitly, that is, the function φ

does not need to be computed, or even be known (Muller et al., 2001). Table 1 lists some
common examples of kernels.

In (2.2) and in (2.4) the training points appear only through their dot product,
allowing us to compute the SVM equations in a feature space with the use of a kernel,
without the need for the training data to be linearly separable and allowing for a wider
variety of decision boundaries. This method is referred to as the kernel trick (Cristianini
et al., 2000). When applying the kernel trick to the SVM problem we obtain

maximize
N
ÿ

i“1
λi ´

N
ÿ

i,j“1
yiyjλiλjKpxi,xjq, (2.5)

subject to
N
ÿ

i“1
yiλi “ 0

0 ď λi ď C, i “ 1, . . . , N,

and the distance between the hyperplane and a point x is given by

fpxq “
N
ÿ

i“1
yiλiKpxi,xq ` β0, (2.6)
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where β0 is given by

β0 “
1
|VS|

ÿ

iPVS

˜

yi ´
N
ÿ

j“1
yjλjKpxi,xjq

¸

. (2.7)

2.2 Lattice Auto Associative Memories
A heteroassociative linear memory (Kohonen, 1977) can be built from input/out-

put pairs tpxξ,yξqukξ“1 as

W “

k
ÿ

ξ“1
yξpxξqT . (2.8)

From an input x, the heteroassociative linear memory yields

y “ Wx (2.9)

as the recalled item. Similarly, lattice associative memories (LAM) are its morphological
counterparts, proposed by Ritter et al. (1998). Erosive and dilative LAM are built as
follows

WXY “

k
ľ

ξ“1
yξ ˆ p´xξqT , (2.10)

MXY “

k
ł

ξ“1
yξ ˆ p´xξqT , (2.11)

where ˆ is either ^ or _, which are the max and min matrix products, given by

pA^Bqij “
n
ł

k“1
tAik `Bkju, (2.12)

pA_Bqij “
n
ľ

k“1
tAik `Bkju, (2.13)

for real-valued matrices A and B of appropriate size. When xξ “ yξ for all ξ P t1, . . . , ku,
we say that the LAM is a lattice auto-associative memory (LAAM).

For a given input x, the dilative memory recall is given by WXX _ x and the
erosive memory recall is given by MXX ^ x.

The LAAM presents some interesting properties (Sussner and Valle, 2006):

• @x P X, WXX _ x “ x and MXX ^ x “ x;

• The sets of fixed points of MXX and WXX , denoted FpWXXq and FpMXXq, are the
same and satisfy:

FpWXXq “ FpMXXq “ t

r
ł

j“1

n
ľ

ξ“1
pxξ ` cξjq|r P N, c

ξ
j P Ru;
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• WXX _ x “
ł

tz P FpWXXq|x ď zu;

• MXX ^ x “
ľ

tz P FpMXXq|z ď xu.

2.3 Fuzzy Systems

2.3.1 Fuzzy Sets

Fuzzy sets, introduced by Zadeh (1965), generalize the usual notion of sets by
allowing for a continuous range of membership degrees. In classical set theory, an element
either belongs to a set or it does not. Fuzzy sets relax this restriction by allowing for
an element to have a degree of membership that can be represented by a number in the
interval r0, 1s.

Fuzzy sets have also been used to generalize binary mathematical morphology
to grayscale images (Nachtegael and Kerre, 2001; Sussner and Valle, 2008; Bloch, 2011).

Mathematically, a fuzzy set over a set X is a set of pairs

A “ tpx, µApxqq|x P X,µApxq P r0, 1su, (2.14)

where the so-called membership function µA : X Ñ r0, 1s represents the degrees which the
elements of X belong to A. For a given x P X, the equality µApxq “ 1 means that x has
full membership in A and µApxq “ 0 means that x has no membership in A. Anything in
between means that x has some degree of membership in A but has no full membership,
with a greater value of µApxq meaning a greater degree of membership of x in A. The set
of all the fuzzy sets over a set X is denoted by FpXq.

The inclusion relation of fuzzy sets is defined by the pointwise order of the
membership functions, that is,

A Ď B ðñ µA ď µB ðñ µApxq ď µBpxq, @ x P X. (2.15)

The pair pFpXq,Ďq is a complete lattice. The set r0, 1s is a complete lattice
when equipped with its usual ordering, which implies that the set of membership functions
is also a complete lattice with the pointwise ordering. Furthermore, the function A ÞÑ µA

that maps a fuzzy set to its membership function is an isomorphism between pFpXq,Ďq
and pr0, 1sX ,ďq. Because of this, a fuzzy set may be identified by its membership function.

The supremum and infimum of a family of fuzzy sets is defined in terms
the supremum and infimum of the membership functions. Given a family of fuzzy sets
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tAi|i P Iu, the membership functions of the supremum
ł

iPI

Ai and infimum
ľ

iPI

Ai are

µŽ

iPI

Ai
pxq :“ sup

iPI
µAi
pxq, @ x P X (2.16)

µŹ

iPI

Ai
pxq :“ inf

iPI
µAi
pxq, @ x P X. (2.17)

The set of crisp sets over the set X is given by CpXq “ tA P FpXq|p@x P
Xq µApxq “ 1 or µApxq “ 0u. The set CpXq is a complete lattice with the inclusion
ordering induced by FpXq and is isomorphic to the power set of X with inclusion ordering
under the mapping that assigns each set to its characteristic function, that is, for A P PpXq,
we have

XApxq “

$

&

%

1, if x P A,

0, if x R A.
(2.18)

The set complement is also preserved by this isomorphism, that is, for A P PpXq, XAcpxq “

1´ XApxq.

The α-level of a fuzzy set A, for α P p0, 1s, is defined by

rAsα “ tx P X|µApxq ě αu. (2.19)

A fuzzy set may be implicitly defined by its α-levels. A fuzzy set may be obtained from its
α-levels by means of the following equation, for all x P X

Apxq “ suptα P p0, 1s|x P rAsαu. (2.20)

The support SupppAq Ď X of a fuzzy set A is the set of elements of X with
non-zeros membership values in A, that is, SupppAq “ tx P X|µApxq ą 0u. Similarly,
CorepAq Ď X is the set of elements with full membership value in A, that is CorepAq “
tx P X|µApxq “ 1u. A fuzzy set A is normal if CorepAq ‰ H.

2.3.2 Fuzzy Logic Connectives

In classical logic, the value 1 represents “true” and the value 0 represents “false”.
Also the “and” and “or” connectives are represented by the truth tables

and 0 1
0 0 0
1 0 1

or 0 1
0 1 1
1 1 0

and are equivalent to the operations ^ and _ on the t0, 1u lattice with usual ordering.

The operations ^ and _ generalize the “and” and “or” connectives of classical
logic. These operations belong to broader classes of operations that are able to generalize
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the classical “or” and “and”. An increasing operation that generalizes the logical “or”
is called a disjunction and an increasing operation that generalizes the logical “and”
is called a conjunction. Notable special cases of conjunctions and disjunctions are the
triangular-norms and triangular-conorms, also called t-norms and s-norms, which are
defined below.

Definition 4 ((Nguyen and Walker, 2005)). Let 4 : r0, 1s ˆ r0, 1s Ñ r0, 1s. If for all
x, y, z P r0, 1s

• 14 x “ x; (neutral element)

• x4 y “ y4 x; (commutativity)

• x4 py4 zq “ px4 yq4 z; (associativity)

• if x ď y and z ď w then x4 z ď y4 w, (increasingness)

then 4 is said to be a triangular-norm.

Definition 5 ((Nguyen and Walker, 2005)). Let 5 : r0, 1s ˆ r0, 1s Ñ r0, 1s. If for all
x, y, z P r0, 1s

• 05 x “ x; (neutral element)

• x5 y “ y5 x; (commutativity)

• x5 py5 zq “ px5 yq5 z; (associativity)

• if x ď y and z ď w then x5 z ď y5 w, (increasingness)

then 5 is said to be a triangular-conorm.

The pairwise minimum ^ is a triangular-norm. Likewise, the pairwise maximum
_ is a triangular-conorm. Some other notable examples of t-norms are:

• The product t-norm, given by x4P y “ xy;

• The Lukasiewicz t-norm, given by x4L y “ 0_ px` y ´ 1q;

• The drastic t-norm, given by

x4D y “

$

’

’

’

&

’

’

’

%

x, if y “ 1,

y, if x “ 1,

0, if x ‰ 1, and y ‰ 1.

Some notable examples of s-norms are:
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• The probabilistic sum s-norm, given by x5P y “ x` y ´ xy;

• The Lukasiewicz s-norm, given by x5L y “ 1^ px` yq;

• The drastic s-norm, given by

x5D y “

$

’

’

’

&

’

’

’

%

x, if y “ 0,

y, if x “ 0,

1, if x ‰ 0, and y ‰ 0.

The operations ^ and _ are respectively the greatest t-norm and the least
s-norm, that is, by considering the pointwise ordering on the functions from r0, 1s2 to r0, 1s
we obtain, for any t-norm 4 and s-norm 5

4 ď ^ ď _ ď 5. (2.21)

Because of this, we can think of a t-norm, when applied pointwise to a pair of membership
functions, as a stronger intersection. Dually, an s-norm can be viewed as a stronger union.

While (2.16) and (2.17) describe unions and intersections of arbitrary famillies
of fuzzy sets, unions and intersections of finitely many fuzzy sets can be defined in terms
of a t-norm and s-norm pair. For a given t-norm 4 and s-norm 5, the union AYB and
the intersection A X B of fuzzy sets A and B are given, in terms of their membership
functions, by

µAYBpxq “ µApxq4 µBpxq, @ x P X (2.22)

µAXBpxq “ µApxq5 µBpxq, @ x P X. (2.23)

The logical negation is given by  1 “ 0 and  0 “ 1 is generalized by the
strong fuzzy negation:

Definition 6 ((Nguyen and Walker, 2005)). Let η : r0, 1s Ñ r0, 1s. If η satisfies

• ηp0q “ 1 and ηp1q “ 0;

• η is nonincreasing;

• η2
“ id,

then η is said to be a strong fuzzy negation.

Given a fuzzy set A, its complement Ac is given by

p@ x P Xq µAcpxq “ ηpµApxqq, (2.24)
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where η is a strong fuzzy negation.

A t-norm 4 and an s-norm 5 are said to be dual with respect to a strong
negation η if, for all x, y P r0, 1s, x 4 y “ ηpηpxq 5 ηpyqq, or, equivalently, x 5 y “

ηpηpxq4 ηpyqq. Let us denote the standard fuzzy negation by ηCpxq “ 1´ x. We have that

• ^ and _ are dual with respect to ηC;

• 4P and 5P are dual with respect to ηC;

• 4L and 5L are dual with respect to ηC;

• 4D and 5D are dual with respect to ηC.

The implication is a connective that satisfies the truth table

Ñ 0 1
0 1 1
1 0 1

.

A fuzzy implication is a mapping I : r0, 1s ˆ r0, 1s Ñ r0, 1s such that, for all y P r0, 1s,
Ip¨, yq is increasing, Ipy, ¨q is decreasing and satisfies the implication truth table.

An R-implication is an implication that can be obtained from a t-norm 4 by
means of the equation

xÑ y “ suptz|x4 z ď yu. (2.25)

Some notable R-implications are

• The Gödel implication, which is the R-implication of ^, is given by

xÑG y “

$

&

%

1, if x ď y,

y, if x ą y.
(2.26)

• The Goguen implication, which is the R-implication of 4P, is given by

xÑP y “

$

&

%

1, if x ď y,
y

x
, if x ą y.

(2.27)

• The Lukasiewicz implication, which is the R-implication of 4L, is given by

xÑL y “

$

&

%

1, if x ď y,

1´ x` y, if x ą y.
(2.28)
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An S-implication is obtained from an s-norm 5 and a fuzzy negation η from

xÑ y “ ηpxq5 y, (2.29)

and it is a more direct generalization of the classical implication.

The t-norms and s-norms are special cases of another operation, called uninorm,
given by

Definition 7 ((Yager and Rybalov, 1996)). Let ˚ : r0, 1s ˆ r0, 1s Ñ r0, 1s. If there exists
e P r0, 1s such that for all x, y, z P r0, 1s:

• e ˚ x “ x; (neutral element)

• x ˚ y “ y ˚ x; (commutativity)

• x ˚ py ˚ zq “ px ˚ yq ˚ z; (associativity)

• if x ď y and z ď w then x ˚ z ď y ˚ w, (increasingness)

then ˚ is said to be a uninorm.

A simple example of a uninorm with a neutral element e is given by, for all
x, y P r0, 1s

x ˚e y “

$

&

%

x_ y, if e ď x and e ď y,

x^ y, if x ă e or y ă e.
(2.30)

An uninorm ˚ is self-dual with respect to a negation η if, for all x, y P r0, 1s,

x ˚ y “ ηpηpxq ˚ ηpyqq. (2.31)

An example of a self-dual uninorm with respect to the standard negation ηpxq “ 1´ x is
given by

x ˚ y “
xy

xy ` p1´ xqp1´ yq , @ x, y P r0, 1s. (2.32)

2.3.3 Adaptive Neuro Fuzzy Inference System

The adaptative neuro fuzzy inference system (ANFIS)(Jang and Sun, 1997) is
a neural network model equivalent to a Takagi-Sugeno-Kang type fuzzy inference system
(FIS)(Sugeno and Kang, 1988). The Sugeno inference system is formulated by a set of
fuzzy rules, as follows

If x1 is A1,1 and ¨ ¨ ¨ and xk is A1,k then y “ f1pxq,

If x1 is A2,1 and ¨ ¨ ¨ and xk is A2,k then y “ f2pxq,
... ... ...

If x1 is AN,1 and ¨ ¨ ¨ and xk is AN,k then y “ fNpxq,
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A1
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��
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��
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ˆ
// fN

99

ř

OO

Figure 1 – Graph representation of the Sugeno inference system.

where x “ px1, x2, . . . , xkq P Rk is a vector variable, y P R is the output of the system,
Ai,j P FpRq for i P t1, . . . , ku, j P t1, . . . , Nu are the antecedent fuzzy sets and fj : Rk

Ñ R
are the consequent functions. The “and” connective is modeled after the product t-norm,
and the output is given by the weighted mean of the consequent functions, with the weights

given by the product of the antecedent fuzzy sets. Defining µAi
pxq “

k
ź

j“1
µAi,j

pxkq, the

output is obtained by

y “

N
ř

i“1
µAi
pxqfipxq

N
ř

i“1
µAi
pxq

. (2.33)

The inference system is represented as a graph in Figure 1. The ANFIS
model uses parameterized membership functions for Ai,j and attempts to obtain the
optimal set of parameters for the regression of a set of input/output pairs of the form
tpxi, yiq|xi P Rk, yi P R, 1 ď i ďMu, using a loss function such as the mean squared error
and an optimization method like the gradient descent.

If all the Ai,j are Gaussian functions, that is Ai,jpxq “ exp
ˆ

´px´ ci,jq
2

2σ2
i,j

˙

,

then the functions Ai will be Gaussian radial basis functions, that is, a function of the
form

Apxq “ exp
˜

´

k
ÿ

j“1

pxj ´ cjq
2

σ2
j

¸

, (2.34)

where c “ pc1, . . . , ckq P Rk is the center and σj are the standard deviations for all j. The
radial basis function network (RBFN)(Jang and Sun, 1997) uses a similar approach to the
ANFIS, but the input is fed directly to the Gaussian radial basis functions.
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3 Mathematical Morphology

Mathematical morphology was introduced by Matheron and Serra in the 1960s
as a tool to analyze binary images and was later generalized to work on gray-scale images,
including some approaches based on fuzzy set theory (Bloch, 2011; Sussner and Valle,
2008; Nachtegael and Kerre, 2001; Deng and Heijmans, 2002). Complete lattices constitute
a general framework for mathematical morphology (Heijmans, 1995) and has allowed
mathematical morphology to be used on multivalued images, including color images
(Aptoula and Lefèvre, 2007; Angulo, 2007).

3.1 Erosion and Dilation
Mathematical morphology began as a tool to analyze binary images. A binary

image is a set I Ď D, where D is the point set, usually a subset of R2 or Z2 in the case of
digital images. Assuming that D Ď E where pE,`q is an abelian group, the dilation of
an image I Ď D by a pattern S Ď E, referred to as structuring element, is given by the
Minkowski sum, that is

δSpIq :“ I‘ S “ tp P D|S˚p X I ‰ Hu, @ I Ď D, (3.1)

where S˚p “ tp ´ s|s P Su. The dilation can be interpreted geometrically as the set of
points such that the structuring element, translated by those points, “hits” the image.
The visual effect of the dilation is to expand the image, as is seen on Figure 2(b).

The erosion of an image I by the structuring element S is defined by the
Minkowski subtraction

εSpIq :“ Ia S “ tp P D|Sp Ď Iu, @ I Ď D, (3.2)

where Sp “ ts` p|s P Su. The erosion can be interpreted geometrically as the set of points
such that the structuring element, translated by those points, “fits” the image. The visual
effect of the erosion is to shrink the image, as is seen on Figure 2(c).

It turns out that pPpEq,Ďq is a complete lattice with the supremum and the
infimum given respectively by

ď

and
č

. The erosion and dilation of binary images also
commute with the infimum and supremum, respectively, that is, given a family of images
tIj Ď D|j P Au, we have

εS

˜

č

jPA

Ij

¸

“
č

jPA

εSpIjq, and δS

˜

ď

jPA

Ij

¸

“
ď

jPA

δSpIjq. (3.3)
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(a) I (b) δSpIq (c) εSpIq

Figure 2 – A binary image I, represented by the black part, on a 512ˆ 512 square on Z2

and its erosion and dilation by a disk structuring element of radius 30, given
by S “ tx P Z2

| ‖x‖2 ď 30u.

Serra (1988) used these properties to define an algebraic basis for mathematical morphology
in a way that preserves the properties of the binary erosion and the binary dilation. Formally,
dilations and erosions are algebraically defined as follows:

Definition 8 (Erosion). Let pL,ďq be a complete lattice. We say that an operator ε : LÑ L
is an (algebraic) erosion if

ľ

jPA

εpIjq “ ε

˜

ľ

jPA

Ij

¸

, (3.4)

for every family tIj|j P Au.

Definition 9 (Dilation). Let pL,ďq be a complete lattice. We say that an operator δ :
LÑ L is an (algebraic) dilation if

ł

jPA

δpIjq “ δ

˜

ł

jPA

Ij

¸

, (3.5)

for every family tIj|j P Au.

In words, erosions and dilations are defined as operators that commute, re-
spectively, with the infimum and the supremum. By commuting with the infimum or the
supremum, it is easy to see that erosions and dilations are always increasing operators.

The adjunction, a relation between operators in complete lattices, can also
characterize erosions and dilations.

Definition 10 (Heijmans (1995)). Let pL,ďq be a complete lattice and ε : L Ñ L and
δ : LÑ L. We say that the pair pε, δq is an adjunction if

p@ I,J P Lq δpIq ď J ðñ I ď εpJq. (3.6)
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The next proposition tells us some properties of an adjunction, in particular, it
tells us that if pε, δq is an adjunction, then ε is an algebraic erosion and δ is an algebraic
dilation.

Proposition 2 (Heijmans (1995)). If pε, δq is an adjunction, then the following holds:
ľ

jPA

εpIjq “ εp
ľ

jPA

Ijq, (3.7)
ł

jPA

δpIjq “ δp
ł

jPA

Ijq, (3.8)

id ď δε, (3.9)

εδ ď id, (3.10)

εδε “ ε, (3.11)

δεδ “ δ, (3.12)

εpJq “
ł

tI P L|δpIq ď Ju, (3.13)

δpIq “
ľ

tJ P L|I ď εpJqu. (3.14)

Now we will look into some examples of erosions and dilations:

Definition 11 (Erosion and Dilation of a Lattice-Valued Image by a Flat Structuring
Element). Let pL,ďq be a complete lattice and D Ď E, with E “ Z2, a point set. The
erosion and dilation of an image I P LD by a structuring element S Ď E are given by

εSpIqppq “
ľ

sPS,p`sPD
Ipp` sq, @ I P LD, p P D, (3.15)

δSpIqppq “
ł

sPS,p´sPD
Ipp´ sq, @ I P LD, p P D. (3.16)

Erosions and dilations can also be defined with non-flat structuring element,
that is, structuring elements not defined by a set. Some notable examples of the use of
non-flat structuring elements on the literature are the umbra approach (Serra, 1982) and
fuzzy mathematical morphology (Bloch and Maitre, 1995; De Baets, 1997).

Example 1 (Gray-scale Erosion and Dilation). Figure 3 illustrates the effect of erosion
and the dilation of a gray-scale image, that is, when L Ď R̄, with R̄ “ RY t`8,´8u, by
a flat structuring element. We can notice that the erosion darkens the image, shrinking
the lighter regions and expanding the darker regions, while the dilation lightens the image,
shrinking the darker regions and expanding the lighter regions.

Example 2 (Gray-scale Morphological Gradient). An useful morphological operator for
gray-scale images that can be obtained from the erosion and the dilation is the morphological
gradient. In its simplest form, the morphological gradient ρS is obtained by

ρS “ δS˚ ´ εS, (3.17)
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(a) I (b) εSpIq (c) δSpIq

Figure 3 – A gray-scale image I, where the pixel is greater the brighter they are, on a
1200ˆ 1200 square on Z2(a) and its erosion and dilation by a disk of radius 30.

(a) εSpIq (b) δS˚pIq (c) ρSpIq

Figure 4 – Erosion, dilation and morphological gradient obtained from image I from figure
3(a) using a disk of radius 3 as structuring element.

where S˚ “ t´s|s P Su is the reflected structuring element. Assuming that the origin O
belongs to S, δS˚ ě εS and, therefore, ρS admits only positive values. The morphological
gradient highlights the edges of objects in an image, setting its regions to high values, while
simultaneously setting the flat regions to low values. Figure 4 exemplifies those properties
using the image I shown on figure 3(a). The morphological gradient is usually used as a
preliminary operation on many image processing tasks, such as image segmentation.

Example 3 (Geodesic Erosions and Dilations). In the set of gray-scale images one can
define geodesic erosions and geodesic dilations (Soille, 1999), which are also types of
algebraic erosions and algebraic dilations. The geodesic dilation is computed for an image
I with a marker image J, where I ď J, from the following equations

δ0
JpIq “ I, δiJpIq “ J^ δNδi´1

J pIq, (3.18)
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(a) γSpIq (b) ϕSpIq

Figure 5 – The opening and closing by a disk of radius 30, of the image I from figure 2.

and the geodesic erosion, for I ě J,

ε0
JpIq “ I, εiJpIq “ J_ εNεi´1

J pIq, (3.19)

where the structuring element N is the Von Neumann neighborhood, given by N “

tp0, 0q, p0, 1q, p1, 0q, p´1, 0q, p0,´1qu.

Example 4 (^ and _). The operations ^ and _ given by (2.12) and (2.13) also define
algebraic erosions and dilations. For a fixed matrix A, the operator A^ ¨ is an algebraic
erosion and the operator A_ ¨ is an algebraic dilation (Sussner and Esmi, 2011). Thus,
given the dilativve and erosive memories, WXY and MXY , respectively defined by (2.10)
and (2.11), the dilative memory recall, given by δpxq “ WXY _ x is an algebraic dilation
and the erosive memory recall, given by εpxq “MXY ^ x is an algebraic erosion

3.2 Opening and Closing
Openings and closings are non-linear filters that removes small objects from

an image. Originally, in binary mathematical morphology, the opening by a structuring
element S is given by γS “ δSεS and the closing by the structuring element S is given by
ϕS “ εSδS. Given an image I, the opening has the effect of removing details smaller than
the structuring element from the foreground of the image while the closing has the effect
of removing details smaller than the structuring element from the background. On Figures
5(a) and 5(b) we can see those effects on the image of Figure 2(a).

Such as dilations and erosions, opening and closings can be defined algebraically
using complete lattices. To this end, let pL,ďq be a complete lattice and consider an
operator ψ : LÑ L. We say that ψ is:

• idempotent if ψ2
“ ψ;
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(a) γSpIq (b) ϕSpIq

Figure 6 – The image from Figure 3(a) and its opening and closing by a disk of radius 30.

• extensive if id ď ψ;

• anti-extensive if ψ ď id.

A morphological filter is an operator that is increasing and idempotent. An algebraic
opening is an anti-extensive morphological filter, and an algebraic closing is an extensive
morphological filter. By (3.9), (3.10), (3.12) and (3.11), we conclude that, when pε, δq is
an adjunction δε is an opening and εδ is a closing. In particular, the operator γS “ δSεS

is the opening by the structuring element S and the operator ϕS “ εSδS is the closing by
the structuring element S.

Example 5 (Opening and Closing of a Gray-scale Image by a Structuring Element). The
compositions of the erosion and dilation by a structuring element is an opening in the
set of images LD. Figure 6 shows an example of an opening and a closing in the case of
gray-scale images.

Example 6 (Openings and Closings by Reconstruction). The reconstruction RJpIq of
a marker image M to an image I can be built from geodesic dilations by RJpIq “ δiJpIq
if δiJpIq “ δi`1

J pIq. Similarly, the reconstruction by erosions is given by R˚JpIq “ εiJpIq
if εiJpIq “ εi`1

J pIq. The opening by reconstruction of an image I by a given structuring
element S is given by

γRS pIq “ RIpεSpIqq.

Similarly, the closing by reconstruction is defined by

ϕRS pIq “ R˚I pδSpIqq.

Contrary to the opening by a structuring element, the opening by reconstruction preserves
the shape of the objects that are not completely removed by initial erosion (Soille, 1999).
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(a) γRS pIq (b) ϕRS pIq

Figure 7 – The opening(a) and the closing(b) by reconstruction of the image from Figure
3(a) with a disk structuring element S of radius 30.

Similarly, contrary to the closing by a structuring element, the closing by reconstruction
preserves the shape of objects in the background that are not completely removed by the
initial dilation. Figure 7 illustrates these statements with examples of an opening by
reconstruction and a closing by reconstruction. The structuring element and the image I
used were the same as the ones used in Figure 6.

3.3 The Marginal and Lexicographical Approaches
The marginal and lexicographical approaches are designed to deal with mul-

tivalued images. In this case, we will assume that the value set V is a subset of R̄k, for
a positive integer k, where R̄ “ R Y t´8,`8u. The examples of this section considers
RGB color images, that is, elements of the set VD

RGB. An element x P VRGB is of the form
x “ pxR, xG, xBq, where xR P r0, 1s corresponds to the level of red of the color represented
by x, xG P r0, 1s corresponds to the level of green and xB P r0, 1s corresponds to the level
of blue.

A straightforward extension of the gray-scale MM to multivalued images, re-
ferred to as the marginal or component-wise approach, is obtained by processing separately
each component (Aptoula and Lefèvre, 2007; Comer and Delp, 1999). In mathematical
terms, the marginal approach is obtained by ordering the colors x “ px1, . . . , xkq and
y “ py1, . . . , ykq as follows:

x ďmarg y ðñ p@iqpxi ď yiq (3.20)

where ď denotes the usual ordering scheme of real numbers. One can easily check that
ďmarg is a partial ordering on V. Also, it is not hard to show that pV,ďmargq is a complete
lattice. The elementary morphological operators of the marginal approach, given by (3.15)
and (3.16) with the ordering defined by (3.20), are denoted respectively by εMS and δMS .
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(a) I (b) εMS pIq (c) δMS pIq

(d) γMS pIq (e) ϕMS pIq

Figure 8 – A 1200ˆ 1200 image I in the VRGB color space and its erosion, dilation, opening,
and closing by a disk of radius 30 with the marginal ordering. The color image
I was obtained from https://www.freepik.com/.

Figure 8 shows some of the morphological operators of the marginal ordering in the VRGB

color space.

Although the marginal approach yielded excellent results in computational
experiments concerning the removal of Gaussian noise (Aptoula and Lefèvre, 2007), it
does not take into account the correlations between the value coordinates. In fact, certain
features can be removed or enhanced in one of the coordinates but not in the others.
As a consequence, there is the possibility of introducing false values, changing the value
balance, or altering the edges of objects (Comer and Delp, 1999). Figure 9 illustrates this
effect. Notice that there are some new colors in the erosion and dilation obtained using
the marginal ordering (3.20). This effect is also observed on Figure 8(b): it is possible to
see a darker region of colors that were not present on the original image where some of
the circles overlap. This is because the correlation between the color components was not
taken into account. These undesired effects can be avoided by endowing the color space
with a total ordering instead of a partial ordering.

In contrast to the marginal approach, values are ranked sequentially in the
lexicographical approach. Formally, the lexicographical ordering, denoted by ďlex, is defined

https://www.freepik.com/
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(a) I (b) εMS pIq (c) δMS pIq

Figure 9 – An example of the problem of false values in the marginal ordering. A 9ˆ 9
image I in the VRGB color space and its erosion and dilation by the marginal
ordering approach with a cross-shaped structuring element given by S “

tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

by means of the following equation for x,y P V:

x ďlex y ðñ

$

&

%

x “ y or,

Di P t1, . . . , ku : @j ă i, xj “ yj and xi ă yi.
(3.21)

One can easily show that ďlex is a total ordering and that pV,ďlexq is a complete lattice.
The lexicographical erosion and the lexicographical dilation of a multivalued image by
a structuring element S, denoted by εLS and δLS , are given respectively by (3.15) and
(3.16) with the ordering defined by (3.21). Figure 10 illustrates some of the morphological
operators of the lexicographical ordering on the VRGB color space. In contrast to the
marginal ordering operators, there is no overlap between the different objects.

The lexicographical approach has been widely used in multivalued MM partially
because it prevents the presence of false values. It turns out, however, that this ordering
scheme prioritizes excessively the first condition in the lexicographical cascade (Aptoula
and Lefèvre, 2007). Furthermore, the lexicographical orderings and total orderings in
general are affected by the issue of irregularity (Chevallier and Angulo, 2016), which may
distort the output of some morphological operators. Briefly, the irregularity issue states
that, if pV, dq is a metric space and ď a total ordering on V, under some circumstances,
which usually holds in the case of multivalued sets, there are points a, b, c P V and real
numbers r, R P p0,`8q such that R ą r and

a ď b ď c,

dpa, bq ě R,

dpa, cq ď r.
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(a) εLSpIq (b) δLS pIq

(c) γLS pIq (d) ϕLSpIq

Figure 10 – The erosion, dilation, opening, and closing of the image I from figure 8(a) by
a disk of radius 30 with the lexicographical ordering.

This states that the topology produced by the total ordering cannot reproduce the natural
topology of a vector-valued set. A consequence of this lemma is that, for any given total
ordering on a vector-valued set, it is possible to find an image where the erosion and the
dilation introduce important irregularities.
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4 Mathematical Morphology on Reduced Or-
derings

In a reduced ordering, elements are ranked according to the value of a mapping h.
Reduced orderings were interpreted in the context of multivalued mathematical morphology
by Goutsias et al. (1995). Reduced orderings have been built using a variety of different
approaches, for example, Louverdis et al. (2002) proposed a reduced ordering based on
fuzzy IF-THEN rules, Chanussot and Lambert (1998) proposed a reduced ordering based
on space-filling curves, and Velasco-Forero and Angulo (2012) proposed an ordering based
on anomalies in the images. There are some approaches that take sets of colors, or values,
as input to compute the mapping h. For example, Comer and Delp (1999), Goutsias et al.
(1995) and Velasco-Forero and Angulo (2014) proposed orderings based on the Euclidean,
Mahalanobis and kernel-induced distances to a reference value, respectively. It turns out
that these distance-based orderings can be seen as a special case of the SVM supervised
ordering (Velasco-Forero and Angulo, 2011a).

In this chapter, we will study the fundamental definitions and propositions of
reduced orderings and look at some of the approaches available in the literature, with
focus on the supervised orderings.

4.1 Mathematical Morphology on Reduced Orderings
In the case of a multivalued value set V, when there is no natural ordering,

one of the possible approaches is defining a reduced ordering. The advantage reduced
orderings is that they can reduce a vector-valued image to a gray-scale image and still
retain the useful information, depending on the ordering mapping h that was used. Indeed,
by using a total reduced ordering on a finite value set, which is the case with digital
multivalued images, we can compute morphological operators while avoiding false values,
and without having to resort to prioritizing one dimension, as in the lexicographical
ordering. Nonetheless, in practice, ordering mappings are bijective when restriced to the
range of a digital image, so total reduced orderings still suffer from the issue of irregularity
(Chevallier and Angulo, 2016).

Since our object of interest are images, we will assume that the sets V and L
are obtained from V “ VD and L “ LD, where L is a complete lattice. In the case that
h : VÑ L is given, we obtain h : V Ñ L by defining for all x P D, I P V , hpIqpxq “ hpIpxqq.

Erosions and dilations are then obtained by a generalization of the adjunction
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(Goutsias et al., 1995).

Definition 12. Let L be a complete lattice, h : V Ñ L a surjective function, εh : V Ñ V
and δh : V Ñ V. We say that pεh, δhq is an h-adjunction if

p@ I,J P Vq δhpIq ďh J ðñ I ďh εhpJq. (4.1)

In this case we say that εh is an h-erosion and that δh is an h-dilation.

Because the infimum and the supremum are not well defined in a reduced
ordering, we can not use (3.15) and (3.16) to obtain h-erosions and h-dilations. However
there is a way to obtain h-erosion and h-dilations on V from erosions and dilations on
L. Indeed, if ε : L Ñ L is an erosion and εh : V Ñ V is such that εh h

Ñ ε, as defined in
Proposition 1.9, then εh is an h-erosion (Goutsias et al., 1995). An analogous result applies
for dilations.

An efficient way to compute an h-increasing operator from a corresponding
gray-scale increasing operator is by using a lookup table. Suppose that D is finite and
that we have a increasing operator ψ on L that does not introduce new values, that is
for all I P L, rangepψpIqq Ď rangepIq. Algorithm 1, written in Matlab notation, proposed
by Velasco-Forero and Angulo (2014), yields from ψ an operator ψh such that ψh h

Ñ ψ.
The inputs to the algorithm are an n1 ˆ n2 ˆ k-dimensional array im that represents a
multivalued image I on a n1 ˆ n2 grid, an n1 ˆ n2-dimensional array h_function, that
represents the gray-scale image hpIq, and a function psi that computes a flat gray-scale
operator ψ. The algorithm works by creating an integer-valued image im_latt such that
the value i is assigned to the position with the i ´ th smallest value in h_function.
Ties are resolved by the spatial position, if two pixels have the same value, the one that
appears first when scanning the image will be the one with the least value in im_latt.
The increasing gray-scale operator is computed on im_latt, resulting in im_psi. The
output multivalued im_out is obtained by applying the inverse operation used to obtain
im_latt. We have that im_out is the digital representation of the image ψhpIq such that
ψh

h
Ñ ψ.

Similarly to operators on complete lattices, we say that an operator ψh : V Ñ V
is:

• h-idempotent if pψhq2 “h ψh;

• h-antiextensive if ψh ďh id;

• h-extensive if id ďh ψh.

An operator γh is an h-opening if it is h-increasing, h-idempotent and h-antiextensive.
Similarly, ϕh is a h-closing if ϕh is h-increasing, h-idempotent and h-extensive. Analogous
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Algorithm 1 – Computation of an h-increasing operator from a corresponding
increasing gray-scale operator. In this algorithm, the sort function returns a sorted
vector and the index permutation. The reshape function reshapes an array to a
specific dimension.
Input: Multivariate n1 ˆ n2 ˆ k image im, flat increasing gray-scale operator psi

and the preorder function, represented by a vector h_function, with size
n1 ˆ n2.

im “ reshapepim, n1n2, kq ;
h_function “ reshapeph_function, n1n2q ;
r¨, bs “ sortph_functionq ;
im_lattpbq “ 1 : pn1n2q ;
im_latt “ reshapepim_latt, n1, n2q ;
im_psi “ psipim_lattq ;
im_out “ reshapepimpbpim_psip:qq, :q, n1, n2, kq ;

to erosions and dilations, if γ : LÑ L is an opening and γh h
Ñ γ then γh is an h-opening.

Likewise, if ϕ : LÑ L is a closing and ϕh h
Ñ ϕ then ϕh is an h-closing. We can then use

Algorithm 1 with a gray-scale opening (or closing) of hpIq given as input to an h-opening
(or h-closing) of I. If pεh, δhq is an h-adjunction, then an h-opening and an h-closings are
obtained from εhδh and δhεh, respectively.

Here we will make a distinction between some types of reduced orderings that
are seen in the literature, namely, supervised and unsupervised orderings. In supervised
orderings the function h depends on sets of values that represent what is meant to be
the foreground and the background pixels of an image. In an unsupervised ordering, the
function h depends only on the input image I.

In the next section we will look at the literature for some examples of supervised
orderings which are the focus of this work.

4.2 Supervised Orderings
When some information about the ordering is provided, such as values that

are foreground or background, we may use a supervised ordering (Velasco-Forero and
Angulo, 2011a). Precisely, the input to a supervised ordering is a set of foreground values
F “ tf1, . . . , fmu and a set of background values B “ tb1, . . . ,bnu. It is desirable that the
values hpfiq are the highest possible value of the lattice and the values of hpbjq the lowest
possible values, that is

hpfiq “ J, @i “ 1, . . . ,m, and hpbjq “ K, @j “ 1, . . . , n, (4.2)

where J “
ł

hpVq and K “
ľ

hpVq denote respectively the largest and the least values
of the image of the mapping h.
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(a) I (b) εREF
S pIq (c) δREF

S pIq

Figure 11 – An illustration of the effect of the distance based ordering. A 9 ˆ 9 im-
age I in the VRGB color space and its hREF-erosion and hREF-dilation
were computed, using the red of the original image as the reference color,
the euclidean distance and a cross-shaped structuring element given by
S “ tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

4.2.1 The Distance-Based Ordering

The distance-based approach ranks the elements based on the distance to a
fixed reference value r (Angulo, 2007). Most generally, the mapping hREF is obtained from
the distance from a reference color r obtained from a metric d, e.g. the euclidean distance
(Comer and Delp, 1999) or the Mahalanobis distance (Goutsias et al., 1995),

hREFpxq “ ´dpx, rq. (4.3)

In the ordering given by (4.3), the greatest element in the value set is the
reference value, and the further a value is from the reference value, the lower it is. This is
exemplified on Figure 11, where the hREF-erosion and hREF-dilation were computed with red
as the reference value, using Algorithm 1. We can notice how the red part of the image has
grown in the dilation and shrunken in the erosion. The greatest value can be controlled by
the parameter r - the maximum will always be r - but the least value, although being the
farthest value to the reference, has no simple interpretation (Velasco-Forero and Angulo,
2014).

We will regard d as a kernel induced distance (Velasco-Forero and Angulo,
2014). For a given kernel Kpx,yq “ xφpxq, φpyqy its induced distance is given by dpx,yq “
‖φpxq ´ φpyq‖2, which is equivalent to

dpx,yq2 “ Kpx,xq `Kpy,yq ´ 2Kpx,yq. (4.4)

This ordering scheme is able to be computed for a training set of values
T “ tt1, . . . , tnu. Velasco-Forero and Angulo (2014) used local linear combinations of the
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type

hREFpxq “
n
ÿ

i“1
λipxqdpx, tiq, (4.5)

where, λipxq ‰ 0 only if i “ argminjdpx, tjq. We will use a similar approach, where

hREFpxq “
n
ľ

i“1
dpx, tiq, (4.6)

which is the distance from the set T to the vector x.

In this approach, we have no direct control over the position of the small values
in the value set, the background set is always empty. By considering F “ T and B “ H,
the conditions from (4.2) are always satisfied for hREF determined by (4.6).

4.2.2 The SVM-Based Ordering

The SVM-supervised ordering (Velasco-Forero and Angulo, 2011a, 2014) assigns
the foreground set F “ tf1, . . . , fmu with positive values and the background set B “

tb1, . . . ,bnu with negative labels and makes use of the SVM to compute an ordering
mapping hSVM. By using the SVM formulation in this data, the resulting problem becomes

maximize
m
ÿ

i“1
λfi
`

n
ÿ

j“1
λbj

´
1
2

m
ÿ

i,l“1
λfi
λfl

Kpfk, flq ´
1
2

n
ÿ

j,l“1
λbj

λbj
Kpbi,bjq (4.7)

`
1
2

m
ÿ

k“1

n
ÿ

i“1
λfi
λbj

Kpfk,biq

subject to
m
ÿ

i“1
λfi
´

n
ÿ

j“1
λbj

“ 0 and 0 ď λfi
, λbj

ď C,

The ordering mapping hSVM, derived from (2.6), is given by

hSVMpxq “
m
ÿ

i“1
λfi

Kpx, fiq ´
n
ÿ

j“1
λbj

Kpx,bjq ` β0. (4.8)

In the simplest case, where there is only one foreground value f and one
background value b, the ordering mapping hSVM is given by

hSVMpxq “
Kpf ,xq ´Kpb,xq
Kpx,xq ´Kpf ,bq

. (4.9)

The mapping hSVM does not necesssarily satisfy (4.2). We can see this by using
V “ R2, a Gaussian RBF kernel with σ “ 1, f “ p0.5, 0.5q and b “ p1, 1q. With this, and
using (4.9), we have hSVMp0, 0q « 8.84 ą 1 “ hSVMpfq.

An illustrative example of the hSVM-erosion and the hSVM-dilation is shown on
Figure 12. In this example we can see that the model behaved as expected, that is, in
the erosion, the foreground color, red, was shrunk while the background color, green, was
expanded. Conversely, on the dilation, red was expanded and green was shrunk.



Chapter 4. Mathematical Morphology on Reduced Orderings 42

(a) I (b) εSVM
S pIq (c) δSVM

S pIq

Figure 12 – An illustration of the effect of the SVM-based ordering. A 9ˆ 9 image I in
the VRGB color space and its hSVM-erosion and hSVM-dilation were computed,
using the red of the original image as the foreground color and the green
as the background color, a Gaussian radial basis kernel and a cross-shaped
structuring element given by S “ tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

4.2.3 The LAAM-Based Ordering

Graña and Chyzhyk (2016) proposed an h-ordering based on the LAAM and
the idea of a classifier that uses the Chebyshev distance between the input vector and the
recalled vector (Sussner and Valle, 2006). Given a set of foreground values F “ tf ξuNξ“1,
the mapping hF proposed by Graña and Chyzhyk (2016) at a value x is given by the
Chebyshev distance from the vector recalled by either the dilative LAAM or by the erosive
LAAM and the input. Formally,

hXpxq “ ´dCpx#,xq, @x P V. (4.10)

where x#
“MFF _ x or x#

“ WFF ^ x.

Although the mapping hF only takes into account foreground values, it can
be easily adapted to take into account both foreground and background values. Indeed,
given a set F of foreground values and a set B of background values (Graña and Chyzhyk,
2016), the mapping hLAAM is given by

hLAAMpxq “ hF pxq ´ hBpxq, @x P V. (4.11)

This mapping also does not always satisfy (4.2). As a counter-example, consider the
foreground value f “ p0.9, 0.1q and the background value b “ p0.1, 0.9q and the input
point x “ p1, 0q. The value hLAAMpxq “ 0.8 is greater than hLAAMpfq “ 0.7.

An illustrative example of the lattice auto-associative memory based ordering is
shown on Figure 13. As expected, the erosion shrunk the foreground color while expanding
the background color, while the dilation expanded the foreground color while shrinking
the background color.
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(a) I (b) εLAAM
S pIq (c) δLAAM

S pIq

Figure 13 – An illustration of the effect of the LAAM-based ordering. A 9ˆ 9 image I in
the VRGB color space and its hLAAM-erosion and hLAAM-dilation were computed,
using the red of the original image as the foreground color and the green
as the background color and a cross-shaped structuring element given by
S “ tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

4.2.4 Comparing Supervised Orderings

Let us provide an illustrative comparison between the supervised orderings using
the natural color image, shown in Figure 14(a). Consider the foreground and background
colors given, respectively, by the color values inside the green and red bullets in Figure
14(b).

The segmentation is computed as follows: Given an image I and sets of fore-
ground and background colors, denoted by F and B, and a supervised ordering mapping
h that is trained on these sets, we compute a filtered version of h, denoted ψphpIqq. In this
case the filter is given by the composition of an opening by reconstruction and a closing by
reconstruction, both with a disk structuring element of radius 5. The image is submitted
to a Otsu threshold (Otsu, 1979), yielding a binary image B “ XątpψphpIqqq, where t is
the threshold obtained by the Otsu’s method and Xąt is the threshold function by this
value. Finally the edges are obtained by a inner gradient on the binary image B, given
by E “ ρ1SpBq “ B ´ εSpBq, where S “ tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu. The results
are evaluated by Pratt’s Figure of Merit (FoM)(Abdou and Pratt, 1979) with respect to
the ground truth of the original image. Recall that for an image of edges E and a ground
truth GT, the FoM can be computed by

FoMpE,GTq “ 1
maxtcardpEq, cardpGTqu

ÿ

xPE

1
1` αdpx,GTq2 , (4.12)

where α is a scaling constant and was set as α “ 1 and d is the euclidean distance between
x and the ground truth set GT, that is dpx,GTq “ inftdpx, yq|y P GTu.

In the Berkeley Segmentation Dataset, the ground truth images corresponds to
the boundaries detected by humans. There are more than one human-segmented ground
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(a) (b)

Figure 14 – (a)An image from the Berkeley Segmentation Dataset (Martin et al., 2001)
and (b)the image plus the labeled foreground(green) and background(red)
colors.

(a) (b)

Figure 15 – Two different ground truths for the image from Figure 14(a).

truth images for each natural image in the dataset. Figure 15 shows two different ground
truths for the image shown in Figure 14(a). To evaluate the results, the average over the
FoM values of the detected edges and each of the ground truths of the image shown in
Figure 14(a) is used.

The aim of this experiment is to measure how well these supervised orderings
can separate the foreground from the background on the example image. As we can see,
this method does not work well on separating foreground objects from other foreground
objects, as well as separating background objects from other background objects.

The results of the segmentation for the hLAAM and hSVM orderings are shown in
Figure 16. The hSVM used a Gaussian RBF kernel with γ “ 1

3VarpXq , where X is given by

the concatenation of pIpx1q1, . . . , IpxNq1, Ipx1q2 . . . , IpxNq3q and txi|i P t1, . . . , Nuu “ D.
In words, X is the flattened image I.



Chapter 4. Mathematical Morphology on Reduced Orderings 45

(a) hLAAMpIq (b) ELAAM,FoM “ 0.44

(c) hSVMpIq (d) ESVM,FoM “ 0.47

Figure 16 – Supervised orderings and segmentations of Figure 14(a) by different approaches.
The FoM values are shown below each of the edges images.
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5 Fuzzy Value-Based Mathematical Morphol-
ogy

Fuzzy colors (Chamorro-Martínez et al., 2017) use fuzzy sets in color spaces to
find a suitable mapping between the digital representation of colors and the color terms
used by humans, they also solve the problem known as the semantic gap, a problem that
involves issues like defining color similarity and modeling color properties.

In this chapter we will review and explore the reduced ordering based on fuzzy
sets introduced by Sangalli and Valle (2018). More specifically, this ordering is given by the
membership function of a fuzzy set obtained by the combination of several fuzzy colors, or
fuzzy values, in the case of other types of multivalued images, by using fuzzy connectives
such as t-norms, s-norms and uninorms. The intended result is a reduced ordering that
can be defined by a human user in an interactive way and that can be easily interpreted.
Furthermore, we apply to our reduced ordering the fuzzy partition based on Voronoi
diagrams proposed by Chamorro-Martínez et al. (2017) and also extend our approach to a
neuro-fuzzy framework, which aims to obtain the reference values by minimizing a loss
function, instead of using the user’s input.

5.1 Ordering Mappings Based on Membership Functions
Like the hSVM-ordering proposed by Velasco-Forero and Angulo, in this section

we generalize the distance-based approach by considering sets B and F of background and
foreground values. However, instead of defining the mapping h in terms of the solution of
a quadratic problem, we use concepts from fuzzy set theory, namely, the concept of fuzzy
color:

Definition 13 (Chamorro-Martínez et al. (2017)). A fuzzy color on a color space V is a
linguistic label whose semantics are given by a normal fuzzy subset of V.

Fuzzy colors attempt to model colors by considering the imprecision, subjectivity,
and context dependency widely used by humans to describe them. Since this approach
can be applied to other types of multivalued images other than color images, we will use
the terms fuzzy value to refer to a normal fuzzy set on V.

By using a fuzzy set H to characterize the values of an image, we are able to
use its membership function hFUZZY :“ µH as an ordering mapping, and thus rank the values
according to some concept, that may be supplied by an user or learned by a machine.
One straightforward approach to this is to assume that foreground and background fuzzy
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sets are available, analogous to a supervised ordering. In other words, assume that the
foreground and background fuzzy sets F̃ and B̃ are known. To obtain the value hFUZZYpxq
for x P V it makes sense to consider the fuzzy proposition “the color x is a foreground
color and it is not a background color”. Thus, the function hFUZZY can be determined by

hFUZZYpxq :“ µF̃ pxq4 ηpµB̃pxqq, @ x P V, (5.1)

where4 and η are a triangular norm and a strong fuzzy negation, respectively. Alternatively,
the dual proposition is achieved by the negation of (5.1), but with the functions µF̃ and
µB̃ also negated. The dual proposition is given by the following identity, for all x P V

hFUZZYpxq :“ ηpηpµF̃ pxqq4 ηpηpµB̃pxqqqq

“ ηpηpµF̃ pxqq4 µB̃pxqqq

“ µF̃ pxq5 ηpµB̃pxqq, (5.2)

where 5 is a s-norm dual to 4. This definition also has a simple interpretation, namely
“the color x is a foreground color or it is not a background color”. In contrast to (5.1),
the membership function given by (5.2) assigns high values to colors that are neither
foreground nor background. It is also equivalent to µB̃pxq Ñ µF̃ pxq, where Ñ is a fuzzy
s-implication. A more general approach is obtained by substituting the conjunction or
disjunction of the fuzzy proposition in (5.1) and (5.2) by a generic connective that can be
represented by a uninorm ˚

hFUZZYpxq :“ µF̃ pxq ˚ ηpµB̃pxqq, @ x P V, (5.3)

The approaches of (5.1) and (5.2) treat the background and foreground dif-
ferently. On one hand, (5.1) is more restrictive on what is considered foreground, or
alternatively, biased toward the background because values with high membership in both
foreground and background are effectively treated as background. On the other hand,
(5.2) is the exact opposite: it is restrictive on what is considered background. In contrast,
choosing a self-dual uninorm in (5.3) would result in a function that treats background
and foreground equally, and could assign a intermediate degree of membership to values
that have a high membership in both foreground and background, meaning uncertainty in
its membership to both of them.

Another interesting property of (5.3) when ˚ is self-dual is that its negation,
ηphFUZZYq can be obtained by exchanging the roles of the background and the foreground
sets, that is ηpµF̃ pxq ˚ ηpµB̃pxqqq “ µB̃pxq ˚ ηpµF̃ pxqq.

It turns out that the fuzzy sets F̃ and B̃ can be derived from crisp sets of
foreground and background colors by obtaining a fuzzy set that is a fuzzyfication of each of
the elements of these crisp sets. In other words, given a value r P V, we can obtain a fuzzy
set R from r. One straightforward way to do this is to use a decreasing one-dimensional
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Gaussian Gpx; r, γq “ exp
`

´γdpx, rq2
˘

Bell-shaped Bpx; r, a, bq “
1

1`
´

dpx,rq
a

¯2b

Conical Cpx; r, cq “ 0_
ˆ

1´ dpx, rq
c

˙

Table 2 – Some membership functions for fuzzy values that can be obtained by using
a unidimensional membership function on the distance to a reference r. The
parameters are γ P Rą0 a, b, c P R.

(a) I (b) εFUZZY
S pIq (c) δFUZZY

S pIq

Figure 17 – An illustration of the effect of the fuzzy proposition based ordering. A 9ˆ 9
image I in the VRGB color space and its hFUZZY-erosion and hFUZZY-dilation were
computed, using a guassian membership function with the red of the original
image as the foreground set and with the green as the background set, the
negation, uninorm and s-norm used were 1´ x, ^ and _, and a cross-shaped
structuring element given by S “ tp0, 0q, p1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

membership function of the distance to the reference color, that is, given a decreasing
function f : Rě0

Ñ r0, 1s, the membership function with respect to a reference color r is
given by µRpxq “ fpdpx, rqq. Examples of such functions are given in Table 2.

Figure 17 shows the erosion and dilation with this ordering scheme. Using
colors from the image I from figure 17a) and a Gaussian membership function with σ “ 1
to construct the foreground and background sets.

The fuzzy sets F̃ and B̃ can be obtained by a set of foreground and background
values. Let f1, . . . , fm be the foreground values and b1, . . . ,bn the background values and let
F1, . . . , Fm and B1, . . . , Bm be fuzzy values obtained from the foreground and background
in a manner such as the ones from Table 2. It makes sense to define the fuzzy set F̃ as the
union of the foreground fuzzy values and the fuzzy set B̃ as the union of the background
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values. Given a triangular-conorm 5, F̃ and B̃ can be obtained as follows, for all x P V

µF̃ pxq “ µF1pxq5 ¨ ¨ ¨5 µFmpxq, (5.4)

µB̃pxq “ µB1pxq5 ¨ ¨ ¨5 µBnpxq. (5.5)

As shown by the next theorem is possible to guarantee, under some circum-
stances, that the the ordering mapping will satisfy (4.2), that is

hpfiq “ J, @i “ 1, . . . ,m, and hpbjq “ K, @j “ 1, . . . , n.

Theorem 1. Let f1, . . . , fm be foreground values, b1, . . . ,bn be background values and
let F̃ and B̃ be the foreground and background fuzzy sets. If, for all i P t1, . . . ,mu and
j P t1, . . . , nu, we have µF̃ pfiq “ 1, µB̃pbjq “ 1, then the following affirmations hold:

1. If, for all i P t1, . . . ,mu, µB̃pfiq “ 0 then the mapping hFUZZY, defined by (5.1),
satisfies (4.2);

2. If, for all j P t1, . . . , nu, µF̃ pbjq “ 0 then the mapping hFUZZY, defined by (5.2),
satisfies (4.2);

3. If, for all i P t1, . . . ,mu, j P t1, . . . , nu, µB̃pfiq “ 0 and µF̃ pbjq “ 0 then the mapping
hFUZZY, defined by (5.3), satisfies (4.2);

Proof. Let us consider each case separatedly

1. For i P t1, . . . ,mu assume µB̃pfiq “ 0. We have

hFUZZYpfiq “ µF̃ pfiq4 ηpµB̃pfiqq

“ 14 ηp0q

“ 14 1

“ 1.

Now for j P t1, . . . , nu we have

hFUZZYpbjq “ µF̃ pbjq4 ηpµB̃pbjqq

“ µF̃ pbjq4 ηp1q

“ µF̃ pbjq4 0

“ 0.

2. The proof of the second affirmation comes from the dual of the first affirmation.
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Figure 18 – Graph representation of the proposed supervised ordering.

3. For all i P t1, . . . ,mu, j P t1, . . . , nu assume µB̃pfiq “ 0 and µF̃ pbjq “ 0. We have,
for i P t1, . . . ,mu

hFUZZYpfiq “ µF̃ pfiq ˚ ηpµB̃pfiqq

“ 1 ˚ ηp0q

“ 1 ˚ 1

“ 1.

Now for j P t1, . . . , nu we have

hFUZZYpfiq “ µF̃ pbiq ˚ ηpµB̃pbiqq

“ 0 ˚ ηp1q

“ 0 ˚ 0

“ 0.

5.2 Neuro-Fuzzy Approach
The combination of (5.4), (5.5) and (5.3) can be reprensented in the network

of Figure 18. By using Gaussian membership functions (i.e. (2.34)) or another type of
parameterizable membership function, one can obtain this supervised ordering from sets of
foreground and background values similar to the ANFIS and the RBF networks, instead
of directly using then as the Gaussian function centers. The advantage of this approach is
that it does not need as many fuzzy sets as the number of foreground and background
values. Additionally, the uninorm, s-norm and fuzzy negation may be parameterizable. In
this approach, input and output pairs are of the form pfi, 1q for foreground values and
pbj, 0q for background values. The parameters are obtained by minimizing a loss function.
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The centers of the Gaussian functions obtained through this method are not
necessarily close to the foreground and background values given as input. As an example,
consider membership function µRpxq “ expp‖x ´ r‖2

q, where ‖¨‖ is the L2 norm, the _
s-norm, ^ uninorm and 1´ x negation, and the foreground and background values given
by f “ p1, 0, 0q and b “ p0, 1, 0q respectfully. Using these values as centers we obtain
hFUZZYpfq « 0.865 and hFUZZYpbq “ 0. When obtaining parameters through optimization
with respect to the mean squared error, and with the Adam optimizer (Kingma and Ba,
2014), from the tensorflow implementation1, the centers obtained were f 1 « p0.733, 0.053, 0q
and b1 « p´0.148, 1.114, 0q and the h values hFUZZYpfq « 0.928 and hFUZZYpbq “ 0.042.

The sets F̃ and B̃ obtained from (5.4) and (5.5) may fail to satisfy the hypothesis
of Theorem 1, for instance, when using Gaussian and bell-shaped membership functions.
Choosing c ď min

fPF̃ ,bPB̃
dpf ,bq guarantees that the conical membership function will satisfy

Theorem 1. In the next section we will study a fuzzy partition of the value space introduced
by Chamorro-Martínez et al. (2017) that can be built from a training set and satisfies the
conditions of Theorem 1.

5.3 Voronoi Diagram Fuzzy Partition
Chamorro-Martínez et al. (2017) used the Voronoi diagram of a set of prototype

colors to obtain a fuzzy color space - a set of fuzzy colors to use as liguistic terms in a
color space. In this section we will make use of this approach to obtain foreground and
background fuzzy sets from crisp sets of background and foreground values.

We first wish to obtain a fuzzy set R from a so-called positive prototype
r P F Y B and S “ ts1, . . . , sl, ru = F Y B such that its α-levels are rescalings of the
Voronoi cell corresponding to r. For a given metric d, the Voronoi cell corresponding to r
in the Voronoi diagram of S is given by

Cr “ ty P V|dpy, rq ď dpy, siq, i “ 1, . . . , lu, (5.6)

and let us denote the scaling of the cell Cr by a factor λ P Rě0 centered at r P Rk by

λ ¨ Cr “ tr` λpp´ rq|p P Cru. (5.7)

In practice, we are concerned with the case where the λ P r0, 2s. When λ “ 0 the rescaling
is simply r and when λ “ 2, the rescaling intersects with points from S other than r
(namely, with the points that define of its neighboring cells).

The Voronoi diagram can only create a crisp partition of the value set. To obtain
the fuzzy partition we will require a continuous, surjective and decreasing interpolation
1 https://www.tensorflow.org/

https://www.tensorflow.org/
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(a) (b)

Figure 19 – A Voronoi diagram with the Voronoi cell of Cr(in orange) and the the rescaled
Voronoi cell λ ¨Cr(in blue) with a vector v such that r` v is at the boundary
of λ ¨ Cr(a) and the same diagram with r ` θv, where θ “ 1

λ
, falling in the

boundary of Cr(b).

function f : Rě0
Ñ r0, 1s. Chamorro-Martínez et al. (2017) used a piecewise linear

interpolation function. Let fÐpαq “ suptλ P Rě0
|fpλq “ αu. The membership function of

R is defined in terms of its α-levels:

rRsα “ fÐpαq ¨ Cr, @α P r0, 1s. (5.8)

In words, a point that is at the border of the scaling of Cr by a factor λ has membership
fpλq in R.

To explicitly compute the membership function µR, at a point x we must find
the greatest α such that x P rµRsα. With this we have,

µRpxq “ suptα P p0, 1s|x P fÐpαq ¨ Cru (5.9)

“ suptfpλq|λ P Rą0,x P λ ¨ Cru

“ fpinftλ|λ P Rą0,x P λ ¨ Cruq.

Thus, we need to find the lowest λ such that x P λ ¨ Cr.

Let us assume, for the moment, that the distance d is the Euclidean distance.
In this case, consider v “ x´r, that is x “ r`v. We have that r`

v
λ
P Cr ðñ x P λ ¨Cr.

Findind the least λ such that x P λ ¨ Cr is equivalent to finding the greatest θ such that
r` θv P Cr, that is, the greatest θ such that

‖r` θv´ r‖2
“ ‖θv‖2

ď ‖r` θv´ s‖2

for all s P S. Figure 19 shows an example of such a v with r` v falling at the boundary
of λ ¨ Cr and r` θv at the boundary of Cr. Writing this in the form of an optimization
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problem gives us

maximize θ (5.10)

subject to ‖θv‖2
ď ‖r` θv´ si‖2, i “ 1, . . . , l

θ ě 0.

The right-hand side of the first restriction in (5.10) can be modified as follows

‖r` θv´ si‖2
“ xr` θv´ si, r` θv´ siy

“ xr´ si, r´ siy ` 2xθv, r´ siy ` xθv, θvy

“ ‖r´ si‖2
` 2xθv, r´ siy ` ‖θv‖2,

and that restriction can be modified to

‖θv‖2
ď ‖r` θv´ si‖2

ðñ ‖θv‖2
ď ‖r´ si‖2

` 2xθv, r´ siy ` ‖θv‖2

ðñ 2|θ|x´v, r´ siy ď ‖r´ si‖2

ðñ 2|θ|xr´ x, r´ siy ď ‖r´ si‖2

ðñ |θ| ď ‖r´ si‖2

2xr´ x, r´ siy
.

Therefore, the solution to (5.10), when it exists, is given by

θ˚r,S,x “ min
xr´x,r´syě0,sPS

‖r´ s‖2

2xr´ x, r´ sy
, (5.11)

In practice, the minimum of (5.11) needs to be computed only over the neighboring cells
of r. The value of the membership function is given by

µRpxq “ f

ˆ

1
θ˚r,S,x

˙

, (5.12)

and, when the problem (5.10) is unfeasible, for the sake of continuity, we define µRpxq “ 1.

Notice that (5.11) can be computed only from inner products. We propose to
take advantage of this to compute it in a feature space with the help of a kernel K. This
allows for a greater flexibility to the final shape of the membership functions. We can
compute (5.11) in a feature space by

θ˚r,S,x “ min
Kpr,rq´Kpr,sq´Kpx,rq`Kpx,sqě0,sPS

1
2

Kpr, rq `Kpx,xq ´ 2Kpx, rq
Kpr, rq ´Kpr, sq ´Kpx, rq `Kpx, sq

. (5.13)

The membership function corresponding to a class may be obtained from
the union, using an s-norm, of the membership functions corresponding to the centers
obtained from that class. Doing this, each class will have a corresponding fuzzy set
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Figure 20 – The Voronoi membership function of a prototype r “ p0.6, 0.4q and a set S “
tp0.6, 0.6q, p0.4, 0.4q, p0.4, 0.6q, p0.6, 0.4qu using linear interpolating functions
in r0, 2s and (a)the inner product kernel function and (b)the Gaussian RBF
kernel function with c “ 0.05.

and a corresponding h-ordering. A foreground/background ordering may be obtained by
classifying the data into those two classes, obtaining the fuzzy sets F̃ and B̃ and then
computing (5.2).

An advantage of this approach is that if the interpolation function is 0 outside
r0, 2s, that is fpr0, 2scq “ t0u, and fp0q “ 1, it satisfies the conditions of Theorem 1,
guaranteeing fulfillment of (4.2).

Figure 20 shows examples of this membership function obtained from the
Voronoi diagram fuzzy partition using the inner product kernel and the Gaussian RBF.
Notice how the membership function that uses the Gaussian kernel is much more able to
account for uncertainty in the points that are neither foreground nor background than the
inner product one.

Examples of supervised erosion and dilation with these approaches can be seen
on Figure 21. In this case, the erosion obtained from the Gaussian Kernel, with γ “ 0.5,
achieved results identical to the ones obtained from the erosion obtained from the inner
product. Similarly, the dilation obtained from the Gaussian kernel was identical to the
dilation obtained from the inner product. We can see that the erosion and dilation behave
as expected, that is, the erosion shrunk the foreground and expanded the background and
the dilation expanded the foreground and shrunk the background.

5.4 Comparing the Fuzzy Set-Based Orderings
Using the approach described in the previous chapter to compute the segmen-

tation of an image into foreground and background, we segmented the image shown in
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(a) (b)

Figure 21 – Example of (a)erosion and (b)dilation with the inner product Voronoi mem-
bership function with a cross structuring element S using image from Figure
11(a) using red as foreground and green as background. The foreground
and background were combined using the ^ t-norm and the standard fuzzy
negation.

Figure 14 for a variety of parameters. The mean FoM value between the segmentations and
the ground truth images can be found in Table 3. As we can see, the fuzzy ordering with
the gaussian membership function and the _ uninorm and _ s-norm were able to surpass
the hSVM. In this section, ˚ is the self-dual uninorm given by (2.32) and the negation is
given by ηpaq “ 1´ a.

The parameters for the Gaussian membership function, the Gaussian RBF and
the bell-shaped function are all given by a “ γ “

1
3VarpXq and b “ 1 where X is given by

the flattened image I being processed.

Visual interpretation of the gray-scale images hpIq and their corresponding
segmentations are shown in Figure 22. Figures 22(a), (c) and (e) are computed using
the same type of membership function for individual foreground and background fuzzy
values, and the same s-norm to compute their union, the only difference between them is
how to combine the foreground and background fuzzy sets. In the case of Figure 22(a),
the foreground and background were combined using the s-norm _, and as a result,
the resulting gray-scale image is biased towards foreground values. On Figure 3(c), the
foreground and background were combined using the t-norm ^, resulting in a bias towards
background values. On Figure 3(e) the self-dual uniorm ˚ was used, and as a consequence,
the resulting image does not appear to be biased to neither foreground nor background.
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Gaussian MF Bell MF Voronoi w/ x¨, ¨y Voronoi w/ Gaussian RBF
p^,_q 0.386847 0.361106 0.455740 0.452803
p˚,_q 0.465290 0.463997 0.464667 0.464588
p_,_q 0.484880 0.379021 0.444111 0.452130
p4P,5Pq 0.373185 0.329323 0.406735 0.402238
p˚,5Pq 0.428827 0.432984 0.463899 0.464588
p5P,5Pq 0.352563 0.164731 0.411878 0.430259

Table 3 – The mean FoM values for the segmentation of image Figure 14(a) with different
sets of parameters (where the rows are a uninorm, s-norm pair and the collums
are a type of membership function) of the fuzzy approach.

(a) pG,_,_q (b) (c) pG,^,_q (d)

(e) pG, ˚,_q (f) (g) pB, ˚,_q (h)

(i) pVx¨,¨y, ˚,_q (j) (k) pVRBF, ˚,_q (l)

Figure 22 – Examples of ordering mappings, followed by their edge images, using the fuzzy
ordering approach with varying uninorm, s-norm and membership functions.
The captions denote the membership function used, the uninorm and the
s-norm, respectively, of the ordering mapping and its edges. G denotes the
Gaussian membership function, B denotes the bell-shaped membership function,
Vx¨,¨y denotes the Voronoi membership function with the inner product kernel
and VRBF denotes the Voronoi membership function with the Gaussian RBF
kernel.
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6 Classification of Hyperspectral Images

Hyperspectral images possess a great resolution in the spectral domain. Their
value set V is high-dimensional. Hyperspectral images are useful for the classification of
remote sensed urban areas. Initial attempts at pixel-wise classification of hyperspectral
images used only the pixel value (Landgrebe, 2002). Using morphological transformations,
Pesaresi and Benediktsson (2001) built a morphological profile (MP), making use of
both the spatial and spectral data. The MP was later extended to the so-called extented
morphological profile (EMP), with the help of principal component analysis (Benediktsson
et al., 2005). Tarabalka et al. (2010) used the watershed transform to perform a spatial
correction of a baseline classification, which improved the results.

Within the framework of supervised orderings, Velasco-Forero and Angulo
(2011b) used the SVM-supervised ordering and the morphological leveling to build a
classifier based on spatial and spectral features. More reccently Graña and Chyzhyk (2016)
extended the approach of Tarabalka et al. (2010) to work with supervised orderings.
Velasco-Forero and Angulo (2011b) also suggested the combination of morphological
profiles and supervised orderings.

In this chapter, we are going to explore the morphological profile and extend
it to the context of supervised orderings. This approach is evaluated by computational
experiments.

6.1 Morphological Profile
Morphological profiles are built from families of morphological operators, more

specifically from granulometries and anti-granulometries. Granulometries can be viewed
as families of openings with increasing size. Dually, anti-granulometries can be viewed as
families of closings with increasing size. Here we will build the morphological profile as
concatenation of the opening and closing profiles, according to Fauvel et al. (2008).

The opening profile of an image I, denoted by OPpIq, is a multivalued image
defined as follows:

OPipIqppq “ γpiqpIqppq, @ P D, i P t0, 1, . . . , lu, (6.1)

where tγpiquli“0 is a family of openings by reconstruction with structuring elements of
increasing size with respect to i. Dually, the closing profile of an image I, denoted by
CPpIq, is defined as follows:

CPipIqppq “ ϕpiqpIqppq, @ P D, i P t0, 1, . . . , lu, (6.2)
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where tϕpiquli“0 is a family of closings by reconstruction with structuring elements of
increasing size with respect to i. For convenience, the size of the structuring element when
i “ 0 is always 0, meaning γp0q “ ϕp0q “ id. The MP is then defined as the concatenations
of the opening and closing profiles, more specifically,

MPpIq “ tCPlpIq, . . . ,CP1pIq, I,OP1pIq, . . . ,OPlpIqu. (6.3)

The EMP (Fauvel et al., 2008) is defined as the concatenation of the morpho-
logical profiles of the principal components, that is

EMPpIq “ tMPpIPC1q, . . . ,MPpIPCmqu, (6.4)

where IPCi
is image obtained from the i-th principal component of the pixel values and m

is the number of chosen principal components.

Graña and Chyzhyk (2016) used a set of supervised ordering mappings thω :
ω P Ωu where Ω “ tω1, . . . , ωnu is the set of classes and hω is trained to discriminate
between class ω and the rest, and used these mapping to perform a spatial correction on
the classification based on spectral data computed by a SVM classifier.

Notice that the images IPCi
can be obtained from a linear unsupervised h-

mapping, that is, there exists a mapping hPCi
such that IPCi

“ hPCi
pIq.

Based on the EMP and on the supervised mappings thω : ω P Ωu we propose to
define the supervised morphological profile (SMP) as the concatenation of the morphological
profiles of the mappings hω, ω P Ω. The SMP is then computed as follows

SMPpIq “ tMPphω1pIqq, . . . ,MPphωnpIqqu. (6.5)

The SMP and the EMP can be viewed in a more general sense as the concate-
nation of the morphological profiles of several ordering mappings. The SMP is expected to
select features that are more relevant to the process of classification, since the supervised
orderings already use the information of the training data to compute a preliminary
classification.

6.2 Computational Experiment

6.2.1 Data

The Pavia University hyperspectral image, provided by Prof. Paolo Gamba
from the Pavia University, at northern Italy, was detected by a ROSIS sensor during a
flight campaign. After some samples and bands were discarded, the image has 610ˆ 340
pixels with 103 bands and the labeled pixels are divided in 9 classes as described in Table
4. In Figure 23 a sample band of the Pavia University image is shown, together with the
ground truth for the same image, showing the labeled pixels.
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Index Class Number of Pixels
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3682
9 Shadows 947

Table 4 – Index, class name and number of pixels per class for each label of the Pavia
University hyperspectral image.

(a) (b)

Figure 23 – A sample band of the Pavia University image(a) and the ground truth for
the Pavia University image labeled pixels(b), where the white pixels are the
unlabeled pixels.

6.2.2 Experiment

For each of the classes tω1, . . . , ω9u the h mappings hΩ
LAAM “ ph

ωi
LAAMq

9
i“1, hΩ

SVM “

phωi
SVMq

9
i“1, hΩ

VORONOI “ phωi
VORONOIq

9
i“1 and hΩ

FUZZY “ phωi
FUZZYq

9
i“1 were trained, based on a set

of training data, to discriminate between class ωi and the others. More specifically, the
ordering mappings were computed as follows:

• The hωi
LAAM mapping was obtained based on the foreground only version of hLAAM,

obtained by setting B “ H and using (4.10), for each class i.

• The hωi
SVM was computed in a one-versus-the-rest approach, that is trained to discrim-

inate between class i and the others using a RBF kernel function with parameter
γ “

1
kVarpX̄q

, where k is the spectral dimension size and X̄ is all of the scalar values
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of the training set and C “ 103. The SVM was trained using python3.6 sklearn
library1, in which the implementation of the SVM classifier is based on libsvm2.

• Since the dimension of the data is high for the fuzzy method with the voronoi
membership functions, the centers of the Voronoi diagram were obtained from the
medoids obtained from the k-medoids method (Kaufmann and Gupta, 1988). To
obtain the centers, the k-medoids of the training data are computed and then the
Voronoi membership functions are computed, using the medoids and their classes.
When there is no representative for one of the classes in the k-medoids, the medoid of
the points in that class is used. The hωi

VORONOI mappings were computed using various
numbers of clusters obtained from the k-medoids, using GitHub user letiantian’s
implementation3, the number of clusters which yielded the highest scores on a
validation set was used on the data. The dot product kernel function and a piecewise
linear interpolation function f : Rą0 Ñ r0, 1s, which interpolates linearly between
the points p0, 1q and p2, 0q and is 0 outside r0, 2s, that is,

fpxq “ 0_
´

1´ x

2

¯

, (6.6)

were used.

• The hωi
FUZZY mappings were computed using the optimization approach with the Adam

Optimizer and a fixed leaning rate given by 10´4. We used the standard fuzzy
negation ηSpxq “ 1´ x, the s-norm _ and the uninorm given, for some parameter e
that coincides with its neutral element, by

a ˚e b “

$

&

%

a_ b, if e ď a and e ď b,

a^ b, if a ă e or b ă e,

which can be rewritten as

a ˚e b “ a^ b`Hpa^ b´ eqpa_ b´ a^ bq, (6.7)

where H is a step function given by, for all x P R,

Hpxq “

$

&

%

1, if x ď 0,

0, if x ă 0.
(6.8)

Since (6.7) is non-differentiable with respect to e and the derivative is 0 everywhere
it exists, it is not adequate for optimization using the gradient, so during the training
stage we use the approximation given by

a ˜̊eb “ a^ b` σpαpa^ b´ eqqpa_ b´ a^ bq, (6.9)
1 https://scikit-learn.org/stable/
2 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3 https://github.com/letiantian/kmedoid

https://scikit-learn.org/stable/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/letiantian/kmedoid
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Figure 24 – Comparison between the surfaces of (6.7) and (6.9) with e “ 0.5 and α “ 20.

where σ is the sigmoid function and α is some arbitrary scaling constant, which was
set to α “ 20. Figure 24 shows a comparison between the surfaces of (6.7) and (6.9).
The surfaces are very similar except close to the lines given by x “ e and y “ e.
Outside of training, when computing the output from a set of inputs we use (6.7).
The loss function used was the Huber loss (Huber, 1964). The number of background
and foreground sets was chosen based on a validation set. Gaussian membership
functions were used, and the initialization was done as follows: the initial centers of
the background and foreground sets were obtained from the fuzzy c-means algorithm,
the γ parameters of the gaussian functions were initialized as 1 and the e parameter
of the uninorm was initialized as 0.5 Random initialization was also tested on the
validation sets.

The h-mappings were also computed on an image obtained by the first 20 PCs
of the hyperspectral image. The results were compared with an EMP classification, using
9 PCs, so it has the same dimension as the SMP, and a purely spectral classification.

The Pavia University image values as well as the EMP’s and the SMPs’ were
normalized to fit the interval r´1, 1s.

The training/validation set consists of 1% randomly chosen labeled pixels of
each class, the test set consists of the remaining labeled pixels. The training set is chosen as
half of the training/validation set and the other half is the validation set. The experiments
were conducted multiple times, with different training/validation splits. The SMP was
computed using these h-mappings, with disk structuring elements of sizes 3, 6, 9 and 12.
Using the SMP as the features, an SVM was trained in a one-vs-the-rest approach on
the training set with the parameter γ of the RBF as 1

lVarpZq where l is the dimesion of
the inputs to the classifier and Z the flattened inputs and with the penalty parameter
C “ 103. The classifier was trained using python3.6 sklearn library. The trained model
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(a) (b)

Figure 25 – Graphs of the values of overall accuracy(a) and kappa coefficient(b) for the
quantities of clusters between 9 and 27.

was then evaluated on the test set.

The performance is measured by the overall accuracy, average accuracy of each
class and the κ coefficient (Graña and Chyzhyk, 2016; Richards John and Xiuping, 1999).
The κ coefficient measures accuracy considering the possibility that it is by random chance.

6.2.3 Results

Using a number of clusters varying from 9 to 27, the hVORONOI was computed
using 3 different splits of the training and validation sets. The graphs showing the mean
overall accuracies and kappa cofficients of these measurements are shown in Figure 25(a)
and Figure 25(b). The chosen number of medoids was 10.

As for the hFUZZY obtained through optimization, the experiment was done
3 times on the validation set. The mean values of the accuracy of the non-random
initialization approach are shown on Table 5 and the mean κ coefficients are shown on
Table 6. The mean values of the accuracy of the random initialization approach are shown
on Table 7 and the mean κ coefficients are shown on Table 8. The performance of the
non-random initialization approach was significantly better than the performance of the
random initialization approach, so the experiment was done with non-random initialization.
The number of foreground sets nfg and the number of background sets nbg were chosen
based on these tables, more specifically, the maximum κ value of Table 6, where nfg “ 1
and nbg “ 3 was chosen and the second to maximum κ value, where nfg “ 2 and nbg “ 3
was also chosen. In this chapter, these approaches are denoted Fuzzy p1, 3q and Fuzzy
p2, 3q, respectively.

The results of the hyperspectral image classification computational experiment
are shown in Table 9. The results are a mean of 30 repetitions of the experiment. Examples
of the results are shown in Figure 28. The boxplot of the κ coefficients obtained from all
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nfg

nbg 2 3 4 5 6

1 0.9502 0.9595 0.9533 0.9533 0.9502
2 0.9548 0.9470 0.9470 0.9548
3 0.9548 0.9533 0.9470

Table 5 – Values of mean accuracy of the SMP classification on the validation set using
the hFUZZY approach. Using non-random initialization.

nfg

nbg 2 3 4 5 6

1 0.9310 0.9441 0.9354 0.9353 0.9315
2 0.9379 0.9264 0.9268 0.9378
3 0.9373 0.9353 0.9268

Table 6 – Values of the mean κ coeffiecient of the SMP classification on the validation set
using the hFUZZY approach. Using non-random initialization.

nfg

nbg 2 3 4 5 6

1 0.7975 0.8629 0.7664 0.8115 0.7991
2 0.8380 0.7352 0.8100 0.8380
3 0.8551 0.8614 0.8785

Table 7 – Values of mean accuracy of the SMP classification on the validation set using
the hFUZZY approach. Using random initialization.

of the approaches is shown in Figure 26. The Hasse Diagram of paired Student’s t-test is
shown in Figure 27.

6.2.4 Discussion

As we can see, the hLAAM classification achieved the greatest score, but the other
supervised ordering approaches, in particular the hSVM and the hFUZZY approaches achieved
similar performances. Moreover they all surpassed the EMP classification. This is further
confirmed by Figure 27. As expected, the approach based only on spectral data achieved
the worst performance. The hVORONOI classification also did not achieve a relatively good
performance, obtaining worse results than the EMP classification, possibly because it is
not well suited to large quantities of data.

These results suggest that the SMP yielded competitive results and is able to
surpass the EMP, depending on the ordering being used. Furthermore, the hFUZZY ordering
was able to achieve competive results.
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nfg

nbg 2 3 4 5 6

1 0.7268 0.8120 0.6680 0.7430 0.7302
2 0.7787 0.6253 0.7403 0.7800
3 0.8044 0.8125 0.8333

Table 8 – Values of the mean κ coeffiecient of the SMP classification on the validation set
using the hFUZZY approach. Using random initialization.

Method Overall accuracy κ
Spectral only 0.8187 0.7573

EMP 0.9361 0.9149
hSVM 0.9561 0.9416
hLAAM 0.9584 0.9445
hVORONOI 0.8781 0.8367

hFUZZY with pnfg, nbgq “ p1, 3q 0.9547 0.9398
hFUZZY with pnfg, nbgq “ wp2, 3q 0.9542 0.9391

Table 9 – Mean accuracies and mean κ for the hyperspectral image experiment.
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Figure 26 – Boxplot of the κ coefficients obtained from the 30 repetitions of the experiment
using the various classification approaches.
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Hasse diagram of paired Student’s t-test
(confidence level at 95.0%)

Spectral-Only

EMP

Voronoi SMP

0.000

SVM SMP

0.000

LAAM SMP

Fuzzy (1,3) SMP

0.039

Fuzzy (2,3) SMP

0.015

0.000

0.000 0.000

Figure 27 – Hasse diagram of paired Student’s t-test of the κ coefficients obtained from
the 30 repetitions of the experiment using the various classification approaches.
The p-values are shown beside the edges with 3 decimal places.
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(a) Spectral only (b) EMP (c) hSVM SMP (d) hLAAM SMP

(e) hVORONOI SMP (f) hFUZZY p1, 3q SMP (g) hFUZZY p2, 3q SMP

Figure 28 – Example classifications of the Pavia University image using various approaches.
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7 Concluding Remarks

The main focus of this dissertation was supervised orderings, in particular, the
supervised ordering given by fuzzy propositions defined at Chapter 5.

Concepts of the theory of lattices were reviewed on Chapter 1. Some mathemat-
ical tools, including fuzzy logic and the ANFIS, were reviewed on Chapter 2. Mathematical
morphology was reviewed on Chapter 3. Mathematical morphology based on reduced
orderings was reviewed on Chapter 4, and the concept of supervised ordering was revised.
A supervised ordering is a reduced ordering that is defined through a set of reference
values, usually divided into foreground and background sets. The supervised orderings
studied at that chapter were the distance based ordering, the support vector machine
based ordering and the lattice auto-associative memory based ordering. An illustrative
example was used to compare some of those approaches qualitatively.

Chapter 5 introduced the ordering based on fuzzy sets of values. Precisely, the
ordering mapping of the supervised ordering was given by the membership function hFUZZY

of a fuzzy set. To obtain this fuzzy set, first, fuzzy sets for foreground values and fuzzy
sets for background values are obtained. After obtaining the foreground and background
fuzzy sets, the membership function hFUZZY is defined by a fuzzy proposition based on the
foreground and background fuzzy sets. Two particular cases of the propositions that were
used can be written for a value x as “x is a foreground value and it is not a background
value” and “x is a foreground value or it is not a background value”, and in the more
general case, the “and” and the “or” are traded for a connective expressed by a uninorm ˚.
These models were also shown, under some hypothesis, to satisfy the desired conditions
of supervised orderings, namely that the foreground values are the greated elements and
that the background values are the least elements in the reduced ordering.

The main difference on the approaches of Chapter 5 is how to obtain the
primary foreground and background fuzzy sets. On the first approach the membership
function is given by, for a reference value r that is either foreground or background,
µRpxq “ fpdpx, rqq, where f : r0,`8q Ñ r0, 1s is a decreasing function and d is a metric.
On the second approach, the model is formulated as a neuro-fuzzy model and the values
are obtained through minimization of the loss function. On the last approach, the fuzzy
sets are obtained via interpolation in the Voronoi cells of the sets of the foreground and
background colors. While the first and last approach are more suited to smaller data and
with human supervision, the neuro-fuzzy approach was shown to achieve good results in
a hyperspectral image classification in Chapter 6. The neuro-fuzzy model also possess
more flexibility than the other two, admitting the possibility of using it in conjunction
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with deep learning architectures. An interesting possibility that can be explored is the
combination of the Voronoi cells approach and the neuro-fuzzy approach.

On Chapter 6 the problem of pixelwise classification of hyperspectral images
was studied. Some approaches from the literature, such as the morphological profile and
the EMP were studied and a new approach, based on supervised orderings and referred to
as SMP, was proposed. The idea of the SMP is to use supervised ordering mappings to
build a classification of the spectral information and then use a morphological profile to
obtain features that carry both spectral and spatial information. The supervised ordering
approaches were tested on the Pavia University image and compared with a spectral-only
SVM classification and the EMP classifiation. The supervised orderings achieved the best
results, with the exception of the fuzzy ordering based on the Voronoi diagram, which is
more suited to smaller data. The hLAAM achieved the best results, but both the hSVM and
the neuro-fuzzy model achieved competitive results. The effect of the initialization on
the neuro-fuzzy approach was also tested and it was verified that initializing it with the
centers of a fuzzy clustering of the foreground and background training sets managed to
improve the performance.

In conclusion, supervised orderings were shown to be flexible and to have
potential in applications such as hyperspectral image segmentation. A possible next step
in this topic might be to study their application in other fields of computer vision, such as
medical image segmentation, and study the interaction of these models with other models
of computer vision, for example trying to use the neuro-fuzzy model in conjunction of
deep learning models such as convolutional neural networks.
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