&")A UNIVERSIDADE ESTADUAL DE CAMPINAS
a¥ Faculdade de Engenharia Elétrica e de Computacao

UNICAMP

Daniel Lazkani Feferman

DESIGN, IMPLEMENTATION AND EVALUATION OF A
VXLAN-CAPABLE DATA CENTER GATEWAY USING P4

PROJETO, IMPLEMENTACAO E AVALIACAO DE UM DATA
CENTER GATEWAY COMPATIVEL cOM VXLAN uUsaANDO P4

Campinas
2019

Daniel Lazkani Feferman

DESIGN, IMPLEMENTATION AND EVALUATION OF A VXLAN-CAPABLE DATA CENTER
GATEWAY USING P4

PROJETO, IMPLEMENTAGAO E AVALIACAO DE UM DATA CENTER GATEWAY COMPATIVEL
coM VXLAN usanNpo P4

Dissertation presented to the Faculty of Electrical
Engineering and Computing of the University of
Campinas in partial fulfillment of the requirements
for the degree of Master in Electrical Engineering,
in the area of Computer Engineering

Dissertagao apresentada a Faculdade de Engenha-
ria Elétrica e de Computagao da Universidade Es-
tadual de Campinas como parte dos requisitos exi-
gidos para a obtencao do titulo de Mestre em En-
genharia Elétrica, na Area de Engenharia de Com-
putagao

Orientador: Prof. Dr. Christian
Esteve Rothenberg

Este exemplar corresponde a versao
final da dissertacao defendida pelo aluno
Daniel Lazkani Feferman, e orientada pelo
Prof. Dr. Christian Esteve Rothernberg

Campinas
2019

Ficha catalogréafica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

Feferman, Daniel Lazkani, 1992-
F321p Design, implementation and evaluation of a VXLAN-capable data center
gateway using P4 / Daniel Lazkani Feferman. — Campinas, SP : [s.n.], 2019.

Orientador: Christian Rodolfo Esteve Rothenberg.
Dissertagdo (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computacao.

1. Redes definidas por software (Tecnologia de rede de computador). 2.
Software - Desempenho. 3. Redes locais de computacéo - Avaliagdo. 4.
Roteamento (Administracdo de redes de computadores). |. Esteve Rothenberg,
Christian Rodolfo, 1982-. Il. Universidade Estadual de Campinas. Faculdade de
Engenharia Elétrica e de Computagao. lll. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Projeto, implementacéo e avaliacdo de um data center gateway
compativel com VXLAN usando P4

Palavras-chave em inglés:

Software defined networking

Network performance

Computer network performance evaluation

Routing

Area de concentrac&o: Engenharia de Computag&o
Titulagdo: Mestre em Engenharia Elétrica

Banca examinadora:

Christian Rodolfo Esteve Rothenberg [Orientador]
Rodolfo Villaga

Marcos Rogerio Salvador

Data de defesa: 22-05-2019

Programa de P6s-Graduagao: Engenharia Elétrica

Identificag&o e informagdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-6481-5116
- Curriculo Lattes do autor: http:/lattes.cnpq.br/3911976164716041

COMISSAO JULGADORA - DISSERTACAO DE MESTRADO

Candidato: Daniel Lazkani Feferman RA: 192714

Data da Defesa: 22 de Maio de 2019

Titulo da Tese: “Design, Implementation and Evaluation of a Data Center Gateway compa-
tible with VXLAN using P4”

Prof. Dr. Christian Rodolfo Esteve Rothenberg (FEEC/UNICAMP)(Presidente)
Prof. Dr. Rodolfo da Silva Villaca (UFES)
Prof. Dr. Marcos Rogerio Salvador (UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissao Julgadora,
encontra-se no SIGA (Sistema de Fluxo de Dissertacao/Tese) e na Secretaria de Pés-Graduagao
da Faculdade de Engenharia Elétrica e de Computacao.

To all my family and friends

Acknowledgement

God gives us three counselors on our short journey through life: parents, professors, and
friends. Parents have been and will always be guiding us. The professors orient us through our
technical and professional development. Friends complement the small gaps left behind both of
them. So, in the following lines I thank all of them:

To my parents Flavio, Elizabete, and Marcel who influenced in so many different ways, by
introducing me the day-to-day learning, providing everything needed in my life and also their
persistence on something they did not have the opportunity to have, a high degree. More
specifically, I thank my father, for showing me that in some moments of despair, the solution
may be right in front of us. My mother, for constantly redefining my concept of perseverance,
proving that there is no limit to dreams, that they can always be achieved, no matter the size
of the challenge.

To my professor Dr. Christian Esteve Rothenberg for allowing me to learn by being around
of some of the smartest people in Brazil and for accepting this huge challenge of orienting
me, without professional networking experience, through this such challenging and agile field
of computer networks. To my friend and almost a second advisor, Dr. Gyanesh Patra, for
the patience of answering most of my questions and increasing my knowledge of innumerable
subjects.

To my friends for the advises and technical support. Special thanks to my love and best
friend, my girlfriend Natalie for the support through this journey. Since I had a job over the
week and the thesis over the weekend, she abdicated most of her weekends to keep helping me
to achieve this goal.

I want to express my gratitude for every one of Tim Brazil, who has strengthened some topics
in this work.I thank the financial and technical support received from Ericsson Hungary, Silicon
Valley, and Brazil. Lastly, I thank the Funcamp for the process n° 35789-17 and 78064 ,/2018.
In summary, the phrase “If I have seen further it is by standing on the shoulders of Giants.” of
Sir Isaac Newton never made so much sense.

You can’t connect the dots looking forward; you
can only connect them looking backwards. So you
have to trust that the dots will somehow connect
in your future. You have to trust in something —
your gut, destiny, life, karma, whatever.

Steve Jobs

Abstract

For some years, Software-Defined Networking (SDN) has been revolutionizing
the networking landscape, giving administrator users the possibility to program the
network control plane. However, the deployment of SDN solutions gave researchers
space to new challenges, aiming to upgrade our networks to new levels through
deeper data plane programmability.

The Programming Protocol-Independent Packet Processors (P4) is a Domain
Specific Language (DSL) to express how packets are processed on a programmable
network platform. Considering the objective to allow P4 programmability with
high performance, the Multi-Architecture Compiler System for Abstract Dataplanes
(MACSAD) uses the OpenDataPlane (ODP) Open Source project to provide specific
Application Programming Interfaces (APIs), enabling the interoperability between
different hardwares and minimizing the overhead. The MACSAD is a compiler that
takes advantage of the P4 language simplicity and ODP APIs flexibility to work on
different platforms, but still maintaining high performance. Thus, MACSAD can be
called as a "unified compiler system with high performance”, considering that it can
execute the same P4 program on multiple targets with high throughput.

This project aims to add Virtual eXtensible Local Area Network (VXLAN) sup-
port to MACSAD, integrate it with an SDN controller, evaluate the throughput,
latency and the Load balance distribution through multiple polynomials. Thus, to
achieve this integration we will make a P4 VXLAN implementation and an SDN
approach to populate the tables through a simple controller.

Finally, we will analyze different load balancing polynomials, mainly through
Checksum and CRC functions and a performance evaluation of the whole system,
to perform the last one we will take advantage of Network Function Performance
Analyzer (NFPA) and Open Source Network Tester (OSNT), generating different
types of traffic to benchmark our P4-defined dataplane application.

Key-words: P4, SDN, CRC, Load Balancing, VXLAN, ODP, MACSAD, DSL,
OSNT, NFPA, and Computer Networks

Resumo

Por muitos anos as Redes Definidas por Software (SDN) tém revolucionado o
comportamento das redes de computadores, dando aos administradores das mesmas
a possibilidade de programar o plano de controle da rede. No entanto, a implantacao
de solugoes SDN deu aos pesquisadores espaco para novos desafios, com o objetivo
de atualizar nossas redes por meio de uma programagao mais detalhada do plano de
dados.

O P4 é uma Linguagem de Dominio Especifico (DSL) para expressar como os
pacotes sao processados em uma plataforma de rede programavel. Considerando o
objetivo de permitir a programacao P4 com alto desempenho, o Multi-Architecture
Compiler System for Abstract Dataplanes (MACSAD) utiliza o projeto open source
OpenDataPlane (ODP) para fornecer APIs especificas, permitindo a interoperabili-
dade entre hardwares diferentes e minimizando a sobrecarga dos mesmos.

O MACSAD é um compilador que aproveita a simplicidade da linguagem P4 e a
flexibilidade das APIs do ODP para trabalhar em diferentes plataformas, mantendo
o alto desempenho. Assim, o MACSAD pode ser chamado de um sistema de com-
pilador unificado de alto desempenho”, considerando que ele pode executar o mesmo
programa P4 em multiplos hardwares com alta performance.

Este projeto tem como objetivo adicionar suporte VXLAN ao MACSAD, integra-
lo a um controlador SDN, fazer uma analise de throughput, laténcia e da distribuicao
do balanceador de carga através de multiplos polinomios. Assim, para alcancar essa
integragao, faremos uma implementacao P4 VXLAN com uma abordagem SDN para
preencher as tabelas através de um controlador simples.

Por fim, faremos uma analise dos métodos de balanceamento de carga, principal-
mente através de fungoes Checksum e CRC para uma avaliacao de desempenho de
todo o sistema. Dessa forma, utilizaremos o Network Function Performance Analyzer
(NFPA) e Open Source Network Tester (OSNT') para efetuar os testes de through-
put e laténcia, gerando diferentes tipos de trafego para analise de performance de
nosso programa P4 definido na aplicacao do plano de dados.

Palavras-chave: P4, SDN, CRC, Balanceamento de Carga, VXLAN, ODP, MAC-
SAD, DSL, NFPA, OSNT e Redes de Computadores

List of figures

(1.1 DCG develop process.| 19
[2.1 The abstract forwarding modell 24
2.2 The ODP Architecturel. 25
[2.3 Comparison of an atchitecture with & without DPDK|. 25
2.4 The MACSAD architecturel 26
[2.5 P4 compilation process.|. o 27
2.6 The VXLAN headerl) 28
[2.7 "The Network Function Performance Analyzer architecture| 29
[3.1 DCG use case representation.| 0oL 34
[3.2 DCG pipeline architecture implementation using P4.| 35
[3.3 use case validation test.. 38
3.4 Tnbound functional evaluationl.o 38
3.0 Outbound functional evaluation. 000000 38
(3.6 Scenario 1 PCAP files Load Balanced) 40
4.1 The testbeds environments)o 44
[4.2 Boxplot for latency representation.) 45
[4.3 Impact of the number of FIB sizes in the Latency tor DCG Inbound.| 46
[4.4 Impact of the number of FIB sizes in the Latency tor DCG Outbound.| 47
.5 Throughput with the increase of cores with (256 bytes and 100 entries).| 49
4.6 Inbound and Outbound throughput comparison (4 cores and 100 tables entries)| 49
.7 perf cache miss percentage per use cases and driver [/O 51

.8 Impact of FIB sizes in the Throughput for DCG with Socket-mmap (four cores |

experiment).. 52
4.9 Impact of FIB sizes in the Throughput for DCG with DPDK (four cores experi- |

MENt)| . . oo 52
[4.10 Multi-core performance evaluation of Cavium Thunder X on Inbound use case| . 54
[4.11 Multi-core performance evaluation of Cavium Thunder X on Outbound use casel 55
[4.12 The Load Balancing extended evaluation script.| 57
[4.13 IPv4 95 percentile load balancing analysis| 58

[4.14 TPv4 95 percentile load balancing analysis| 59

(C.1 "T'he P4 parser representation of the VXLAN program. 75

(C.2 The P4 tables dependencies representation ot the VXLAN program.| 76
[E.I Scenario 2 PCAP files Load Balanced] 84
.2 Scenario 3 PCAP files Load Balanced] 85
[E.2 IPv4 95 percentile of Mean Square Error for difterent polynomials| 87
[E£.3 IPv4 0x8d95 load balancing analysis| 88
(.4 [Pv4 0x973atbb1 load balancing analysis| 89
[£2.5 IPv4 0xd175 load balancing analysis| 90
[£.6 [Pv4 CRCS load balancing analysis| 91
.7 IPv4 CRCI16 load balancing analysis| 92
[E£.8 [Pv4 CRC32 load balancing analysis| 93
[£.9 [Pv4 CRC32c load balancing analysis| 94
[F2.10 IPv6 95 percentile of Mean Square Error for difterent polynomials| 95
(.11 IPv6 CRCS load balancing analysis| 96
(.12 [Pv6 CRC16 load balancing analysis| 97
[E.13 [Pv6 CRC32 load balancing analysis| 98
[E.14 [Pv6 CRC32c load balancing analysis| 99

[F2.15 IPv6 Oxd175 load balancing analysis| 100

List

of tables

PRI

ODP supported plattorms.| oo oo

P2

Comparison of the main programmable VXLAN switches.|.

B

DCG complexity table]o o

24
32

Acronyms

ARP
API

BIDIR-PIM

CLI
CPU
CRC
DApp
DCG
DPDK
DSL
DUT
GCC
GENEVE
HLIR
HW
IB

IR
IGMP
IP

IPG
LLVM
LPM
MAC
MacS
MACSAD

NETCONF

NFPA
NFV

NI
NRMSE
NVGRE
OB
ODP

OF
OSNT

Address Resolution Protocol
Application Program Interface
Bidirectional Protocol Independent Multicast
Command Line Interface

Central Processing Unit

Cyclic Redundancy Check

Dataplane Application

Data Center Gateway

Data Plane Development Kit

Domain Specific Language

Device Under Test

GNU Compiler Collection

Generic Network Virtualization Encapsulation
High-Level Intermediate Representation
Hardware

Inbound

Intermediate Representation

Internet Group Management Protocol
Internet Protocol

Inter-Packet Gap

Low Level Virtual Machine

Lowest Prefix Match

Media Access Control

MACSAD Switch

Multi-Architecture Compiler System for Abstract Dataplanes

Network Configuration

Network Function Performance Analyzer
Network Functions Virtualization
Network Interface

Normalized Root Mean Square Error

Network Virtualization using Generic Routing Encapsulation

Outbound

OpenDataPlane

OpenFlow

Open Source Network Tester

OVS

P4

RFC
RMSE
RSS
SDK
SDN
SoC
SR-IOV
SW
STT
TCP
VMs
VLAN
VNI
VTEPs
VXLAN
YANG

Open vSwitch

Programming Protocol-Independent Packet Processors
Request for Comments

Root Mean Square Error

Receive Side Scaling

Software Development Kit

Software Defined Networking
System-on-a-chip

Single Root I/O Vir-tualization
Software

Stateless Transport Tunneling
Transmission Control Protocol

Virtual Machines

Virtual Local Area Network

VXLAN Network Identifier

VXLAN Tunnel End Points

Virtual eXtensible Local Area Network
Yet Another Next Generation

Summary

1__Introductionl 17
(1.1 Thesis Objectives| 18
(1.2 Methodology| 18
(1.3 Text Organization|. 20

2 Background and Literature Review| 21
2.1 Backeground| 21

[2.1.1 Software Defined Networking (SDN)| 21
[2.1.2 Programming Protocol-Independent Packet Processors (P4)| 22
[2.1.3 OpenDataPlane (ODP)|. 24
[2.1.4 Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)| 25
[2.1.5 Virtual eXtensible Local Area Network (VXLAN)| 27
[2.1.6 Network Function Performance Analyzer (NFPA) 28
[2.1.7 Open Source Network Tester (OSNT)[. 29
2.2 Related workl 29

3 VXLAN-based Data Center Gateway Implementation with P4 33
B.1 Use Case and Architecturel 33
[3.2 Prototype implementation| 35
[3.3 Use case complexity|. 36
B4 TFunctional Validationl 37

[3.4.1 PCAP analysis| 37
[3.4.2 Load balancing evaluation| 37
[3.5 Concluding remarks|. L 41

4 Experimental evaluation| 42
[4.1 Methodologyl 42
[4.2 Latency measurements| 44

[4.2.1 Results Discussionl oo 44
[4.3 Throughput| 48

431 Multi-corelo 48

[4.3.2 Scalability|
[4.3.3 Multi-architecturel. o

4.4 Extended evaluation on load balancing performance]
[6__Conclusion and future workl
[References|

B The DCG P4 code

(C P4 graphs|

(D The Load Balancing test code

[E The LB analysis|
[E.I Functional evaluationl

60

62

66

67

75

77

17

Chapter

Introduction

Considering the exponential growth in packets transmissions over the network, we need to
reevaluate how traffic is managed and improved by adding new protocols and functionalities.
One of the most sought features by network administrators and the academia is the ability
to reconfigure and redesign our networks, or in other words, to give programmability to our
systems.

In the past decades, the network architecture had the control and forwarding planes coupled
together. Over the years, computer networks have been getting complicated and hard to ma-
nage, with routers, switches, firewalls, Network Address Translators, etc (Feamster, Rexford &
Zegura 2014). Initially, each vendor implemented the control plane with proprietary solutions,
and to configure network device it was necessary to use configuration interfaces that vary across
vendors and sometimes even across products from the same vendors. Considering this scenario,
Software-Defined Networking (SDN) (Kreutz, Ramos, Verissimo, Rothenberg, Azodolmolky &
Uhlig 2014) was born to split both planes, giving the capability to a single software control
program to manage multiple data planes from different vendors, two of the current most famous
controllers are OpenDaylight (Medved, Varga, Tkacik & Gray 2014) and ONOS (Berde, Gerola,
Hart, Higuchi, Kobayashi, Koide & Lantz 2014). The first and most renowned standard inter-
face solution was OpenFlow (McKeown, Anderson, Balakrishnan, Parulkar, Peterson, Rexford,
Shenker & Turner 2008), enabling direct access to the control and forwarding layer on devices
such as switches and routers.

Though OpenFlow being initially a vast technological advancement, it has limitations such as
each new headers need to be implemented on a new version, which can take years to be released.
Furthermore, each new version needs to have retro compatibility, making the deployment of it
even harder. Ideally, we should be able to give the network precisely which types of headers
we want to implement and how they will be parsed, or in other words, to allow our data
plane to be programmable. The Programming Protocol-Independent Packet Processors (P4)
language (Bosshart, Daly, Izzard, McKeown, Rexford, Schlesinger, Talayco, Vahdat, Varghese &
Walker 2013) aims to solve enable a standardized language to enable data plane programmability.

The P4 is an open source project that aims to define how packets are processed; it uses
the Match+Action model and can be developed using SDN solutions. The language has three
primary goals: reconfigurability, meaning that over time we can reconfigure how packets

Chapter 1. Introduction 18

are processed; protocol independence, the network administrator can implement or even
create new protocols; and target independence, details of the switch do not need to be
known (Bosshart et al. 2013). Another useful tool in computer networks is the OpenDataPlane
(ODP)[L which is an open source project to enable APIs to develop the data plane.

Combining the simplicity of the P4 language with the flexibility, performance, and porta-
bility of ODP APIs, the Multi-Architecture Compiler System for Abstract Dataplanes (MAC-
SAD) (Patra & Rothenberg 2016), (Patra, Rothenberg & Pongracz 2017) was built. The MAC-
SAD compiler converts a P4 program to a Intermediate Representation (IR) and then to C
language.

In this work, we present a VXLAN architecture and a P4 solution to this scenario, enabling
the division of our networks into multiple virtual networks. However, to successfully achieve
this goal, we aim to show that while giving programmability to our VXLAN switch, by using
MACSAD we are not compromising features of our network, e.g., increasing latency or decreasing
throughput. Then, since our VXLAN architecture features a load balancer through polynomials,
we analyze different functions using a new metric to get the best distribution of our load balance
applied to the network architecture.

1.1 Thesis Objectives

We can define the main goal of this dissertation as follows: to design, implement and evaluate
a VXLAN program using MACSAD compiler and a simple SDN controller. To this end, we
identified the following objectives:

e Design the architecture and implementat a VXLAN-based Data Center Ga-
teway (DCG) pipeline. To write in P4 the use case pipeline and test it with MACSAD.
However, to archive this objective, new primitives need to be added to MACSAD.

e Performance evaluation. Given the target DCG implementation, we measure the ob-
tained datapath performance in terms of throughput and latency on different servers and
scenarios using state-of-the art traffic generators (NFPA and OSNT).

e Evaluate the most commons polynomials applicable for load balancing. By
means of adequate metrics, we evaluate different algorithms supported in SW and HW
dataplane devices to distribute packet flows over different network paths and leverage the
result in our DCG implementation.

1.2 Methodology

In order to achieve our objectives, we found four steps. Figure summarizes the main
activities in our methodology flow; each step contains sub-steps that may be done in parallel:

Thttps: //www.opendataplane.org

1.2. Methodology 19

8. NFPA and OSNT
Performance
Evaluation

3. ODP Primitives
Support

A

Y

Validation

: : 5 2. VXLAN P4 5 5 :
1. Literature Review —:—) implementation —g—) 5. MACSAD DCG —:—} 6. Load Balancing

A
\ 4
4. Single Controller : 7. Load Balancing
Integration 1 Analysis

__

Figure 1.1: DCG develop process.

1. Literature review: as part of any project, we started with the study and analysis of the
state of the art of P4 language, load balance polynomials, VXLAN, SDN controller, and
MACSAD compiler considering its architecture and support.

2. VXLAN P4 implementation: after the literature review, as a second step we have
implemented the VXLAN P4 program, which was tested using behavioral-model.

3. ODP Primitives support: since MACSAD did not support all the required P4 and
ODP primitives, step 3 was the feature implementation on MACSAD using the ODP
APIs.

4. Add support to a simple controller: in this part we have populated the VXLAN
tables through a customized SDN controller, which was managing the packet flow.

5. MACSAD DCG: in this sub-step we adapt parts of the executed VXLAN P4 imple-
mentation to MACSAD by operating in an emulated environment, meaning the results
should be considerably better than a physical (and more realistic) test. In this part, we
were able to evaluate the functionality of our DCG P4 program.

6. Load Balancing Validation: using the MACSAD DCG we were able to validate the
load balance feature and compare it using two different function: CRC32 and checksum16.

7. Load Balancing Analysis: through a new metric we have evaluated some of the most
commons algorithms to search the best polynomial to load balance traffic over multiple
hosts and servers.

8. NFPA and OSNT Performance Evaluation: considering the whole network assem-
bled with a P4 VXLAN implementation, MACSAD compatibility and integration with an

Chapter 1. Introduction 20

SDN controller we have executed the performance tests with different packets 1/Os and
configurations.

1.3 Text Organization

The remainder of this work is structured as follows. In Chapter 2, we provide background
and related works. In Chapter 3, we describe our use case, the VXLAN implementation, and a
load balance comparison between CRC and checksum algorithms. In Chapter 4, we evaluate the
performance (throughput and latency) of our Data Center Gateway (DCG) P4 program and an
extended analysis of the load balancing feature. Lastly, In Chapter 5, we present the conclusion
of this work and future work. In Appendix [A] we expose the author publications related to
this work. In Appendix [C] we present the parser and dependency table graph representation.
In Appendix [B] we expose the DCG P4 code. In Appendix [D] we present the load balance
code used to analyze different polynomial. Lastly, in Appendix [E] we expose the load balance
analysis results into heatmaps.

21

Chapter 2

Background and Literature Review

In this chapter, we review the literature and industry advancement relevant to our research,
along with other proposed solutions.

2.1 Background

This section aims to define the basic concepts of our research. We start by covering the
controller that will manage multiple data-planes. Aiming to measure our performance we
will execute the Network Function Performance Analyzer (NFPA) (Csikor, Szalay, Sonkoly
& Toka 2015) and Open Source Network Tester (OSNT) (Antichi, Shahbaz, Geng, Zilberman,
Covington, Bruyere, McKeown, Feamster, Felderman, Blott, Moore & Owezarski 2014), which
converts the tests into statistics of throughput (Gbps) and latency (ns) of the network perfor-
mance. Finally, the Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)
converts the P4 program to low-level hardware instructions and the VXLAN program, solving
our proposed use case scenario.

2.1.1 Software Defined Networking (SDN)

In 2008, UC Berkeley and Stanford University proposed (McKeown et al. 2008) to decouple
the network control from the packet forwarding, enabling the control plane to be easily program-
med and allowing the network intelligence to be centralized in SDN controllers. Therefore, this

revolution on the network architecture led to the development of multiple controllers: Beacon,
Floodlight, NOX, POX, Ryu, ONOS and ultimately OpenDaylight.

The SDN controller can be compared to the brain of the network. It acts as the strategic
control point to better manage the flow control of the switches and routers to deploy intelligent
systems. Thus, the controller is similar to the network core; It lies between network devices
at one end and applications at the other end. Any communications between applications and
devices need to pass through the controller (Feamster et al. 2014).

Chapter 2. Background and Literature Review 22

2.1.2 Programming Protocol-Independent Packet Processors (P4)

Considering the development of OpenFlow (OF) protocol over the past years, few limitations
were found (e.g., most switches have multiple policies and stages of match+action tables, and
limited TCAM space). Furthermore, to include a new header on OF it was necessary to update
its version with retro-compatibility, making the release of new versions too long (Bosshart
et al. 2013). Initially, OF 1.0 started with 12 fields. In 2015, the last version of OF (version
1.5) was released containing more than 40 fields of headers, even the founders of OF recognizes
that one of its main problems is that the interface is getting too heavy.

These limitations led to the necessity of an open source language named as “P4” that enables
the following feature:

1. The packet parser is configurable and not tied to a specific header format;
2. The Match+Action table is able to match on all defined field and support multiple tables;

3. The header fields and meta-data packet-processing is able to use primitives like copy, add,
remove, modify;

The P4 language is a huge revolution in networks as it gives programmability to the data
plane. A P4 program is composed of five basic components:

e Tables: mechanism to make the packet processing. Inside each table there are fields to
be matched and actions to be executed;

e Actions: P4 allows the construction of actions using simple protocol-independent primi-
tives;

1 action ,nop() {

. }

¢+ action nhop(port, dmac){

modify_field (standard_metadata.egress_port , port);
¢ modify_field (ethernet.dstAddr, dmac);
7 modify_field (ipv4.ttl ,ipv4d.ttl — 1);

10 table L3{

11 reads {

12 inner_ipv4 .dstAddr : Ilpm;

13 }

1« actions {

15 nhop;

16 _nop;

-

s I
Listing 2.1: An example of a Layer 3 table using Lowest Prefix Match (LPM) to match
the IPv4 destination address with actions forward to next hop or skipping to the next
table.

2.1. Background

23

e Parser: analyze the packet headers and sequences of the packet;

1 parser parse_ipv4d {
> extract (ipv4);

return select (latest.fragOffset , latest.ihl, latest.protocol) {

i IP_PROTOCOLS_IPHL_UDP

default: ingress;
6 }
7}

parse_udp ;

Listing 2.2: An IPv4 parser extracting the IPv4 field and passing to the next parser
field/control table: UDP or to ingress (first table to match packet fields).

e Control: defines the order of match tables with conditional support (“if” and “else”);

1 control ingress {

2 (routing_metadata.res = BONE) {

apply (ARPselect) ;

5 (routing_metadata.res =— BIWO) {

6 apply (ownMAC) ;

7 apply (LBselector) ;
8 apply (vxlan) ;

9 apply (L3) ;

10 apply (sendout) ;

1 (routing_metadata.aux =— BIWO){

12 apply (vpop) ;

Listing 2.3: The packet will first match its fields to the L3 table and then the “sendout”

table.

e Headers: specifies fields widths and order;

1 header_type ipv4_t {
2 fields {

3 version : 4;

| ihl : 4,
, diffserv : 8;
6 totalLen : 16;

7 identification : 16;
8 flags : 3;

9 fragOffset : 13;

10 ttl @ 8;

1 protocol : 8;

12 hdrChecksum : 16;
13 srcAddr : 32;

14 dstAddr: 32;

15 1

l(i}

15 header ipv4_t ipv4;

Listing 2.4: Each field of an IPv4 header being declared.

Chapter 2. Background and Literature Review 24

The abstract forwarding model of a P4 program is illustrated in Figure [2.1], it shows how
a P4 program allows to express a packet processing pipeline by programming the parser,
match+action tables, and then deparser. When a packet arrives, its headers are parsed, passed
through the P4 tables and action pipeline before the deparser writes the headers back and sends
the modified packet.

INGRESS MATCH-ACTION EGRESS
{ PARSER ’ >{ TABLES m -{ DEPARSER } >

Figure 2.1: The abstract forwarding model. Source: (Patra et al. 2017).

2.1.3 OpenDataPlane (ODP)

The OpenDataPlane (ODP) is an open-source platform that leverage on specific hardware
acceleration to support multiple platforms with high performance through a set of APIs for
networking data plane. The project supports the following architectures (targets): ARMv7,
ARMv8, MIPS64, PowerPC, and x86. In Table we expose ODP supported platforms,
including manufacturers own implementations.

Table 2.1: ODP supported platforms.

Name Owner /Maintainer Target Platform Architecture
. Open contribution .
odp-linux maintained by LNG Any Linux. Support Netmap | Any
odp-dpdk Open contribution = 1 1 o6 1sing DPDK Tntel x86

maintained by LNG

odp-keystone2

Texas Instruments

TT Keystone II SoCs

ARM Cortex-A-15

linux-qoriq

NXP

NXP QorlQ SoCs

Power & ARMvS

OCTEON Cavium Networks Cavium Octeon™ SoCs MIPS64
THUNDER Cavium Networks Cavium ThunderX'™ SoC ARMvS
Kalray Kalray MPPA platform MPPA

odp-hisilicon | Hisilicon Hisilicon platform ARMvS

In Figure we expose the ODP stack with the work-flow for an ODP application, which is
different from a standard Linux app. An ODP app is linked to one of the ODP implementations
of Table and optimized to a specific hardware platform (Server or SoC). Then, the Vendor
Specific Hardware Blocks and Software Development Kit (SDK) is called to finally gets to the
hardware platform. Although this process initially seems complicated, as it has more blocks to
be called, the real difference can be seen because of specific optimized hardware functions that
allow higher throughput.

2.1. Background

25

" Generic Linux Linux Control D A ARD A o
A } [App] oDP AR [,°°”"", -
| |
Linux
A 4
| |
HW Platform (SoC or Server) ‘

Figure 2.2: The ODP architecture. Source: https://www.opendataplane.org

One of the main highlights of ODP is the possibility to improve performance (throughput
and latency) by using specic APIs for the target architecture and the compatibility with Intel
DPDK (Pongracz, Molnar & Kis 2013) and Netmap (Rizzo 2012). The DPDK is a Linux
Foundation project consisting of specific drivers and libraries to allow Intel’s devices to improve
its performance by creating a fast packet processing Dataplane Application (DApp). The DPDK
started on x86 architectures, and it was later expanded to ARM and IBM Power chips. In Figure
2.3| we compare a group of applications with and without DPDK] as can be noted, the DPDK
libraries bypass the network drivers allowing a massive increase of throughput.

Applications]

Applications

[
’ 1

DPDK libraries

|

N

Linux Kernel

ll Network
Driver

Linux Kernel

ll Network
Driver

Network Hardware

Hardware

Network Hardware

Figure 2.3: Comparison of an atchitecture with & without DPDK

2.1.4 Multi-Architecture Compiler System for Abstract Dataplanes

(MACSAD)

The MACSAD is a P4 compiler that focuses on high performance with portability and
flexibility. As shown in Figure 2.4] the MACSAD is composed of three main modules:

e Auxiliary frontend: in simple words, this module is responsible for several Domain

Specific Language (DSL) aggregation. It creates an Intermediate Representation (IR) of

Chapter 2. Background and Literature Review 26

the P4 program, which is used by the core compiler. In this module, the P4-hlir project
is used to translate P4 programs into a High Level Intermediate Representation (HLIR).
The yellow square on Figure represents the conversion of a P4 program to a High-Level
Intermediate Representation (HLIR).

e Auxiliary backend: this module aims to give a standard SDK, using ODP APIs.
Furthermore, it contains developed libraries to allow the connection between P4 and ODP.

e Core compiler: includes the transpiler and compiler modules. It merges the result of
the frontend (the HLIR) and backend (the ODP APIs) to provide the binary which will
be used by the device either by a Virtual Machine (x86), Raspberry Pi (ARM), server
(x86) or an SoC (ARM).

The Transpiler receives the result from the Auxiliary frontend and automatically generates
the Data-path Logic codes. This tool is responsible for the definition of the size, lookup
mechanism, and type of tables that will be created using the target’s resources. The group
of “.c” files generated by the transpiler contains ODP APIs, helper libraries and parts of
the P4 program. Furthermore, using this mechanism, we can take advantage of the “Dead
Code Elimination” feature, simplifying and optimizing the code using dependency graph
of parser logic.

L2 FWD

b - Q
VXLAN-GW

Select Use-Case lSeIect Dataplane Target

|rAuinia Frontend | | Auxﬂlary Backend |
: @ : : @ OpenDatoPlane :

I I
L | L__PDI0 |

| ize) |
________ I = I
e~ L
1001101

1000001
1000011

------- L

@ COMPILER

TRANSPILER COMPILER

MACSAD COMPILER SYSTEM

Ll

LSoC(ARM) |

Figure 2.4: The MACSAD architecture (Patra et al. 2017)

The Compiler uses the generated “.c¢” codes to create the switch for the target; in our
project, we will create a VXLAN router using a P4 program. The red squares in Figure
[2.5] expose the conversion of the Core Compiler from an HLIR to C files, and then the
compiler converts it to a binary representation of the MACSAD Switch (MacS). Currently,
MACSAD uses Low Level Virtual Machine (LLVM) and GNU Compiler Collection (GCC)
compiler to guarantee the support of multiple targets.

2.1. Background 27

P4 Auxilary HLIR
Frontend

E = .

HLIR - Transpiler Y

‘ L Core
Compiler
APls

:r *.c from P4 1
i *.c ODP APIs(SDKs)

i *.c datapath definitions

i *.c helper libs etc.

Figure 2.5: P4 compilation process (Patra et al. 2017).

2.1.5 Virtual eXtensible Local Area Network (VXLAN)

Considering the deployment of a massive cloud computing and the usage of server virtua-
lization, the network started to have multiple Virtual Machines (VMs) and each one of them
with its Media Access Control (MAC) address. Thus, to ensure the communication with an
enormous amount of VMs it was necessary to update huge MAC address tables. Initially, the
best solution was to divide the network using the multi-tenancy Virtual Local Area Network
(VLAN) protocol. However, this protocol has a limit of only 4,096 VLANs, which can be easily
exceeded by today’s data centers. Thus, to fulfill this scenario with a vast number of Virtual
Machines on an overlay network we need to encapsulate the packet to be sent over a logical
“tunnel”, which is the Virtual eXtensible Local Area Network (VXLAN) (Mahalingam, Dutt,
Duda, Agarwal, Kreeger, Sridhar, Bursell & Wright 2014) protocol, providing scalability with a
capacity to support up to 16 million tenants.

The VXLAN protocol is a data plane encapsulation technique aiming to extend the already
existing VLAN. The VXLAN solution on data-centers is transparent to the final user since it
can only see a regular Internet Protocol (IP) routing flow. In this work, we intend to present
a Data Center Gateway architecture through a VXLAN protocol solution, allowing millions of
different Virtualized Machines in the network to work without independently assigning MAC
address conflicts. Another common problem in large data centers is the overflow problem, where
the switch stop learning new addresses until idle entries age out. This scenario causes flooding
with an unknown destination. Through VXLAN protocol we intend to better address this
problem by taking advantage of the VXLAN Tunnel End Points (VTEPs), dividing the table
load and considerably decreasing the chances of this issue. Furthermore, using VXLAN protocol

Chapter 2. Background and Literature Review 28

with Bidirectional Protocol Independent Multicast (BIDIR-PIM), we can achieve multicast by
mapping VXLAN VNI and multicast IP groups. Then, the VTEPs can provide Internet Group
Management Protocol (IGMP) membership reports to the upstream switch /router to join/leave
the VXLAN-related TP multicast groups as needed. Lastly, the proposed DCG use case can
easily exceed the 4,096 VLAN limit. Thus, the VXLAN limit of millions of different VXLAN
Network Identifier (VNIs) proves to be a necessity in this architecture. In Figure is shown
a packet structured with VXLAN, highlighting some of the most critical bytes of each header
(including the VXLAN).

Outer Outer upp VXLAN
Original L2 F FCS
MAC Header IP Header Header Header rigina s

J 14 Bytes | 20 Bytes 8 Bytes 8 Bytes

4 byt tional
(4 bytes op \onIa) | | |
I |

o - 5 =
= = — = o
©] o | w = = =
128 (8|3 Elulz| |5E|B 2 3ol
< | g | S| 5| 5|50 2 S| 3 | 2| = | g
s| 22| 2| & I E| =)Z| = ol = = e I B
HHHEHEE B HBRHEIEE
Slgl”|5|%| || 8| 8|83 S =l 3
T >
13 4A3@16 16 16 72 8 lom32432 16 16 1616 8 24 24 8
Next-hop MAC Sre VTEP MAC Src and Dst addresses
address address of the VTEPs UDP 4789
Hash of the L2/L3/L4
headers of the original Allow 16M
frame. Enable entropy for Possible Segments
ECMP load balancing in
the networl

Figure 2.6: The VXLAN header. Adapted from: https://community.fs.com/blog/qing-vs-vlan-
vs-vxlan.html

2.1.6 Network Function Performance Analyzer (NFPA)

The Network Function Performance Analyzer (NFPA) (Csikor et al. 2015) is a benchmarking
tool that allows users to measure the performance of network functions by combining software
and hardware. Furthermore, the result of these metrics can be compared to other results in the
database. The NFPA follows standardized methodologies based on a specific RFC (Bradner &
McQuaid 1999).

The NFPA frontend is implemented using Python language, and it has a configuration file
to establish the traffic traces and parameters that will be later used. This tool uses Pkt-

2.2. Related work 29

Gen[l] (Turull, Sjédin & Olsson 2016), (Robert Olsson 2005) to avoid kernel performance limi-
tations with network card drivers by taking advantage of Intel’s Data Plane Development Kit
(DPDK)H. One of the most exciting features of this analyzer is the ability to generate Gnuplot
graphﬂ based on the performance results and compare it with other Network Functions. In
Figure we expose the NFPA architecture.

- I
Result
Analyzer
Lua Control
scripts

Figure 2.7: The Network Function Performance Analyzer architecture. Source: (Csikor et al.
2015).

NF Node

INTEL DPDK
PktGen

MACSAD

2.1.7 Open Source Network Tester (OSNT)

The Open Source Network Tester (OSNT) is an Open Source software for testing network
throughput and latency. The testing tool works on top of the NetFPGA platform. The OSNT
support NetFPGA-10G and NetFPGA-SUME cards, with full line rate through four 10G Ether-
net ports. In this work, we use the NetFPGA-SUME cards donated by the NetFPGA organi-
zation. Using a GPS input, the hardware module controls clock drift and phase coordination
allowing OSNT to adds 64 bits time-stamps for the latency test with minimal overhead.

The traffic generator uses a PCAP file to send packets. The latency is measured as a per-
packet delay time with a high-resolution time-stamp to measure the Device Under Test (DUT).
Lastly, to allow this accuracy, the OSNT time-stamp is located right before the transmission of
the 10GbE MAC module.

2.2 Related work

There has been a recent interest in Domain Specific Languages (DSL) to achieve a fully
programmable network. Currently, the P4Cf] and behavioral-model’| can be considered the re-

Thttps://pktgen-dpdk.readthedocs.io/
2http://dpdk.org

3http:/ /www.gnuplot.info
“https://github.com/pdlang/pdc
Shttps://github.com/p4lang/behavioral-model

Chapter 2. Background and Literature Review 30

ference on P4 Language, as they both have full compatibility with P44 and P45. The work
in Programming Protocol-Independent Packet Processors (Bosshart et al. 2013) introduces the
P4 language with its central concepts, including headers, parsers, tables, actions, and control
programs. Similarly, packetC (Duncan & Jungck 2009) is a DSL language even more expressive
than P4 by allowing access to packet payloads and also stateful processing by providing syn-
chronization constructs for globally shared memory. However, both compilers have the same
drawback, they are only used as a reference, and they do not achieve line-rate, for most use cases
they can get up to a few Mbps. Protocol-Oblivious Forwarding (Song 2013) share similar goals
of P4, but it uses tuples to treats packet headers, the result is a low-level model that resembles
the Assembly language. However, while this approach has some undeniable advantages to the
compiler side, it does come with the cost of programming packet parsing considerably more
complex.

Using P4 language, PISCES (Shahbaz, Choi, Pfaff, Kim, Feamster, McKeown & Rexford
2016) is a compiler that converts P4 programs into a software switch derived from Open vSwitch
(OVS)ﬂ a hardwired hypervisor compatible switch using C. However, PISCES optimize the code
in a way that can generate the same OVS switch with much shorter code, up to 40 times shorter.
Furthermore, PISCES implementation is protocol independent, supporting new protocols that
can be added as new features.

The work in “DC.p4” (Sivaraman, Kim, Krishnamoorthy, Dixit & Budiu 2015) exposes a
software Data-Center Switch using P4 that can be compared to a single-chip shared-memory
used in many data centers today. Although the article achieves a fully compatible P4 switch
with VXLAN protocol, it does not achieve comparable hardware dependent performance, since
it uses behavioral-model [] Furthermore, commercial products featuring high-performance swit-
ches with programmable pipeline include Cisco’s Unified Access Dataplane (Diedricks 2015),
Intel’s FlexPipe (Intel® Ethernet Switch FM6000 Series 2017) and Cavium’s Xpliant (Cavium
/ XPliant® CNX880zx 2015).

In order to get up to 10Gbps, the work in “Removing Roadblocks from SDN: OpenFlow
Software Switch Performance on Intel DPDK” (Pongracz et al. 2013), analyze the performance
increase of an OpenFlow switch using Intel DPDK. Their software switch supports OpenFlow 1.3
with throughput from 5.26Gbps to 9.60Gbps for packets of 64 and 512 Bytes, respectively. Lago-
pus (Rahimi, Veeraraghavan, Nakajima, Takahashi, Nakajima, Okamoto & Yamanaka 2016) is
another software switch to take advantage of Intel DPDK; it has L2 and L3 functionalities with
OpenFlow support. The authors reported a throughput of up to 9.8Gbps, with a packet size
of 1500B and 100K entry tables. The Project Translator for P4 switches T4P4Sﬂ (Voros 2018)
is another P4 compiler that takes advantage of DPDK to allow high performance to multiple
targets. However, T4P4S uses DPDK as the auxiliary backend, while MACSAD uses DPDK
and ODP, enabling the portability of different architectures easier without loosing performance.
Similarly, we intend to expose results of Gbps through DPDK using a programmable P4 switch
with Load Balance, and VXLAN enabled. Lastly, MACSAD DCG share some of the best fe-
atures of each of these compilers: the programmability of behavioral-model, the performance

Shttp://openvswitch.org
Thttps://github.com /p4lang/behavioral-model
8https://github.com/P4ELTE/t4p4s

2.2. Related work 31

of OVS and multi-architecture of T4P4S. Through MACSAD we are able to achieve all this
features in a single compiler. In Table we present a summary of the main programmable
VXLAN software switches.

32

Chapter 2. Background and Literature Review

UOT}OUN] ddUR[Ry PROT pue
SIAV ddO USnoxy ANqIqe)ioq

suzogyeld juareyip jo jroddng | MAJA ‘dAO ‘AVSOVIN | 08I -IMN SO DDA AVSOVIN
surrogyerd juaiayIp jo jroddng MAddd ‘SydylL 18I} SOx MDINS SPdirL
paseq §AQ MAdd ‘SA0 UIMG 9TRMIJOS SOA SHDSId

ssurpulq woyIAg pue) yim
[020301d TWOIRINSYUOD SJOWY SA0 271MG 9IeMIJOg ON SAQ
[0)IMG I9JU0))
(9TA pue 14) 310ddns -eje(] ®© JO oUR[J SUIPILMIO]
odendue| [[NJ ‘USSP 90UdIdJOI 1 | OFJ 10 [OPOIN [RIOIARYRY | UDIMG 2IRMIJOS SOA o) Suruweisolrd FJd O

sy TewoY

wriojye] g

1931e],

oueld eyeq vd

SI0M Pje[oy

"SOUDIIMS NV IXA o[qewneisord urewr oy jo uostredwo)) 7'z 9[qR],

33

Chapter

VXLAN-based Data Center Gateway
Implementation with P4

In this chapter, we will briefly describe the Data Center Gateway architecture and its appli-
cation using P4 language. Lastly, we will perform a load balancing validation experiment.

3.1 Use Case and Architecture

With the proliferation of cloud computing, an increased number of Virtual Machines (VMs)
have been implemented aiming at logical isolation of could applications and tenants. So far, the
Virtual LAN (VLAN) protocol has been ubiquitously used to create smaller broadcast domains
to substantially decrease the complexity of traffic management among physically not collocated
VMs and reduce the cost of broadcast floods. However, due to the limited number of different
VLAN ids (4,096) it supports, it has become obsolete as today’s data centers need to handle
hundreds of thousands of VMs at the same time, and the pace of this increasing numbers
is not about to slow down soon. The battle of the network virtualization mechanisms (e.g.,
NVGRE (Garg & Wang 2015), GENEVE (Sridhar & Wright 2014), STT (Davie & Gross 2016))
is still far from being concluded, and there is no undisputed winner: every vendor tries to push its
solution (e.g., Cisco has VXLAN-capable devices, VMware is behind STT), and every solution
has its advantages and disadvantages (Pepelnjak 2012). For our proposed design, we chose
Virtual eXtensible Local Area Network (VXLAN) (Mahalingam et al. 2014), which supports up
to 16M logical networks, and at the same time, is transparent to the endpoints. Virtual Tunnel
End Point (VTEP) plays an essential role in the implementation of Virtual eXtensible Local
Area Network (VXLAN) with two primary functions: to encapsulate and transport L2 traffic
over L3 network, and decapsulate the packets before sending out to the destination.

As sho shown in Figure 3.1], the DCG use case is based on VXLAN tunnels to interconnect
different hosts over the Internet redundant servers with the same IP address (Server 1 and Server
2 with IP: 8.8.8.1) inside a data center. The VXLAN protocol can serve a multitude of features
in data centers using multi-tenancy with different VNI. Basically, the pipeline architecture of a
DCG can be divided into two steps:

e Inbound (IB): Host (with IP: 213.1.1.1) tries to send a packet to a web service identified

Chapter 3. VXLAN-based Data Center Gateway Implementation with P4 34

Public Network Private Network 8.8.8.1
H 10.0.0.11
Public IP. H Private IP.
213.1.1.1 External Port Internal Port 10.0.0.1 @(_
S - >
Server 1
<« SS=
""" > T
Host MacS A e
: : M ~(_
: L
! (Outbound) VXLAN Tunnel MacS C Server 2
Inbound
i (Inbound)) 5

Figure 3.1: DCG use case representation.

by IP address 8.8.8.1 (see Figure . When the packet reaches the first ingress router
MacS A (VTEP) of the data center, first a load balancing is carried out (usually based
on the source IP address) to determine the next VITEP. Assume that MacS A decides
to send the packet towards MacS B. MacS A adds outer 1.2 (destination MAC of MacS
B), L3 headers (destination IP set to 10.0.0.11), UDP header and VXLAN header to the
packet before sending it out. Finally, MacS B, being the second leg of the VXLAN tunnel,
decapsulates the packet and send it to Server 1.

e Outbound (OB): as a response, Server 1 sends a packet towards Host using its original
source IP address as destination IP address. When the packet reaches MacS B, the packet
is encapsulated in a similar way as in the reverse direction, and finally when MacS A
receives the packet it removes the additional VXLAN headers, rewrites the addresses and
send the packet towards Host over the Internet.

Load Balancing. One objective of the DCG is to balance the load of the destination servers
while avoiding packet disorder. Thus, we opt to use a per-flow load-balancing approach, since
per-packet should increase packet disorder (Singh, Chaudhari & Saxena 2012), by using functions
over IPs we can guarantee that the same host in normal conditions will be attended by the
same server. The functions receive the host source IP, calculates the polynomial result and load
balances it by the following function:

LB =poli % N (3.1)
Where:
e LB: a number representing a specific server;
e poli: the result of a polynomial function (either crc-32, checksum, adler, etc);

e N: number of total servers excersing a specified function to be balanced;

3.2. Prototype implementation 35

LBselector
/Key action

Figure 3.2: DCG pipeline architecture implementation using P4.

3.2 Prototype implementation

Considering the DCG use case presented in Figure [3.1, we implemented the corresponding
pipeline in P4 as shown in Figure 3.2 There are three different datapath flows from the parser
until the the deparser. The first two (i and ii) represent packets coming from and going to
the internal network, while the third one (iii) represents the Inbound and Outbound use case
scenarios:

(i) The first (represented by the red “1”) flow occurs when the switch receives an unknown
destination address sent from/to the internal network. Then, an Address Resolution Protocol
(ARP) request is made to the control plane in an attempt to find the correct host;

(ii) The second (represented by the red “2”) flow occurs when the switch recognizes with a
match a packet from/to the internal network, acting as a simple L2 forward switch;

(iii) For the Inbound and Outbound use cases represented, the flow starts with 3 (MacS A on
the Inbound and MacS B on the Outbound), 4 (The internal cloud) and then 5 (MacS B on the
Inbound and MacS A on the Outbound).

Note that if there is no match on any of the cases above, the packet is dropped, and
nothing happens. According to the operation explained above, we generated different VXLAN-
encapsulated traffic traces for IB and OB, respectively. The IB traffic includes packets with
random source MAC addresses and IPs (to enable Receive Side Scaling (RSS) for our multi-core
setup) and the same destination IP set to the server’s IP (8.8.8.1), while the OB has the server’s
IP (8.8.8.1) as source IP address and random destination MAC addresses and IPs (again, for
enabling RSS in our multi-core setting) simulating various replies to different hosts.

In order to enable more sophisticated and scalable processing, and avoid cross-product pro-
blem (Barham, Park, Weatherspoon, Zhou, Chase & Dean 2013) the pipeline consists of multiple
matching tables (Open Networking Foundation May 2015), i.e., each flow table has its purpose
such as ARP and routing. Altogether, the Inbound have a total of nine matching tables, while
the Outbound have eight matching tables. The learning switch table is pre-populated with
source IPs and MAC addresses, and the load balancing feature is implemented by a CRC32
function through the source IP address. The VXLAN encapsulation adds the right headers and
port numbers prior to MAC address re-writing. Furthermore, for all performance tests we are
populating the tables bidirectionally, meaning that the use case being tested contain entries for
both use cases, allowing a more realistic scenario.

Chapter 3. VXLAN-based Data Center Gateway Implementation with P4 36

3.3 Use case complexity

Considering the prototype exposed before, we consider the necessity of a complexity table
with parameters that could decrease MACSAD and other compilers performance. Since P4
allows to reprogram the dataplane similar to common languages such as C, Python, and Java
allow multiple solutions to the same goal, we expect the same behavior to P4 language. Thus,
we consider primordial to present a complexity table that compares the use cases to unders-
tand which parameters could decrease the compiler performance. In Table we expose the
complexity table applied to IB and OB use cases and divided by topics:

e Parsing: refers to parse the header and its fields. In the next chapter we expose that this
part is specially relevant since the OB packet is considerably heavier than the IB;

e Processing: have information of the tables and the pipeline. E.g.: The number of tables
each use case need to match;

e Packet modification: as the name suggest, the main functions that modify the structure
of the header is considered in this part. While the IB copy some headers (encapsulation
of Ethernet and IPv4) and add others (VXLAN and UDP headers), the OB remove the
headers (Ethernet, IPv4, VXLAN and UDP headers);

e Metadata: is local information shared all over the P4 program. E.g.: the IB use this to
pass the result of the hash function to another table to perform the load balance;

e Action complexity: summarizes the fields and destination expressions modified. Each
function that change a field of the packet can be considered in this parameter. Thus,
on both use cases there is a modification of the destination address, which would be an
example of field writes.

e Lookups: Hash (exact) or Lowest Prefix Match (LPM), this parameter is used on every
table to match it. While some tables have an exact match, like the ine performing the Load
Balance feature, others use LPM, like the table matching the IPv4 destination address.

3.4. Functional Validation 37

Table 3.1: DCG complexity table

Complexity field Inbound Outbound

Parsing # Packet headers 3 7

Packet fields 17 38

Branches in parse graph 3 5
Processing # Tables (no dep) 11 11

Depth of pipeline 9 8

Checksum on/off on off

Table size 100 100
State accesses # Write to different register 0 0

Write to same register 0 0

Read to different registers 0 0

Read to same register 0 0
Packet modification | # Header adds 4 0

Header copies 2 0

Header removes 0 4
Metadata # Metadatas 4 3

Metadata size (bits) 28 12
Action complexity | # Field writes 27 9

Arithmetic expressions 2 1

Boolean expressions 0 0

Externs 1 0
Lookups # Hash lookups [key_lenght(bits)] | 2[48], 2[16], 2[32], 1[24], 1[9] | 2[48], 1[16], 2[32], 1[24], 1[9]

LPM [key_length(bits)] 1[32] 1[32]

3.4 Functional Validation

3.4.1 PCAP analysis

In order to validate our P4 model, we have tested it with the P4 reference compiler, the
Behavioral model'] In Figure we expose our validation test, we run a script to build two
virtual interfaces (vethO and vethl) and then we manually populate the tables through a
Command Line Interface (CLI). Then, using Scapy@ the packets are sent from vethO to vethl.
Finally, using TCPDUMP we save the input and output as a PCAP file. In Figures and
we expose the input and output of the PCAPs using Wireshark for both Inbound and Outbound
use cases respectively.

3.4.2 Load balancing evaluation

Through ODP functions we made a few tests exposing the performance of our Load Balance
using two different functions: CRC32 and Checksum (16 bits). Thus, we created three PCAPs
files containing 1024 random source IPs each and sent it to MACS to Load Balance it. The
result of the first PCAP can be seen in Figures and the other two can be seen at Appendix
[E] where the X-axis represents the load balancing metadata used by our DCG P4 program (LB
in Equation [3.1]), Y-axis represents the number of IPs received by each server, and the vertical
line in each bar represents its standard deviation. As can be seen, both functions overload some

'Behavioral Model: https://github.com/p4lang/behavioral-model
2Scapy: https://github.com/secdev/scapy

Chapter 3. VXLAN-based Data Center Gateway Implementation with P4 38

CLI commands

!

P4 switch

> Veth 1

\ 4

Veth 0
Parser Match+Action Deparser

Figure 3.3: use case validation test.

1. Input:

Frame 1: 124 bytes on wire (992 bits), 124 bytes captured (992 bits)

Ethernet II, Src: Apple_05:92:2c (f4:0f:24:05:92:2c), Dst: 8c:49:4b:c0:31:6b (8c:49:4b:c0:31:6b)
Internet Protocol Version 4, Src: 213.1.1.1, Dst: 8.8.8.2

Transmission Control Protocol, Src Port: 20, Dst Port: 8@, Seq: @, Len: 70

. Output:

Frame 1: 174 bytes on wire (1392 bits), 174 bytes captured (1392 bits)

Ethernet II, Src: 8c:49:4b:c0:31:6b (8c:49:4b:c@:31:6b), Dst: a7:3c:48:02:8f:el (a7:3c:48:02:8f:el)
Internet Protocol Version 4, Src: 10.0.0.1, Dst: 10.0.0.11

User Datagram Protocol, Src Port: 4789, Dst Port: 4789

Virtual eXtensible Local Area Network

Ethernet II, Src: Apple_05:92:2c (f4:0f:24:05:92:2c), Dst: Vmware_2f:32:al (00:0c:29:2f:32:al)
Internet Protocol Version 4, Src: 213.1.1.1, Dst: 8.8.8.2

Transmission Control Protocol, Src Port: 20, Dst Port: 8@, Seq: @, Len: 7@

YYYYYYYVIN) vvvy

Figure 3.4: Inbound functional evaluation.

3.Input:

» Frame 1: 124 bytes on wire (992 bits), 124 bytes captured (992 bits)

» Ethernet II, Src: a7:3c:48:02:8f:el (a7:3c:48:02:8f:el), Dst: 06:0f:24:05:92:2c (06:0f:24:05:92:2c)
» Internet Protocol Version 4, Src: 10.0.0.11, Dst: 10.0.0.1

» User Datagram Protocol, Src Port: 4789, Dst Port: 4789

» Virtual eXtensible Local Area Network

» Ethernet II, Src: Vmware_2f:32:al (00:0c:29:2f:32:al1), Dst: a7:3c:48:02:8f:el (a7:3c:48:02:8f:el)

» Internet Protocol Version 4, Src: 8.8.8.2, Dst: 213.1.1.1

» Transmission Control Protocol, Src Port: 20, Dst Port: 80, Seq: 0, Len: 20

4.0utput:

» Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)

» Ethernet II, Src: 8c:49:4b:c@:31:6b (8c:49:4b:c@:31:6b), Dst: Apple_05:92:2c (f4:0f:24:05:92:2c)
» Internet Protocol Version 4, Src: 8.8.8.2, Dst: 213.1.1.1

» Transmission Control Protocol, Src Port: 2@, Dst Port: 80, Seq: @, Len: 20

Figure 3.5: Outbound functional evaluation.

servers while others are under-loaded, which were not intended, since we wanted to distribute
equally the traffic. Initially, we wanted to evaluate which of both functions would be nearest to
what we considered the optimal distribution, represented in Figures as “ Average”, which is

3.4. Functional Validation 39

the function:

1P
Average = — (3.2)
n

Where:
e IP: represents the total of IPs sent (1024 IPs);
e n: number of servers being balanced;

However, by comparing both functions we were not able to state a clear winner, but since we
had similar load balancing performance for both functions and an implemention of checksum by
hardware is a costly solution compared to CRC, we opted to discard the use of checksum on our
DCG P4 program and use CRC32. Furthermore, in Figure (a) we observe the difference of
the real distribution versus the optimal distribution is around 10% (n = 4), when we increase it
to 64 servers as exposed in Figure (c) we see that this difference in percentage can get more
than 50% in some cases.

--- Average
@ Checksum
== CRC

80

250

200

60

150

IPs.

100

20

0
0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 1 12 13 1 15

0

(a) Load balance between four servers (n = 4) (b) Load balance between sixteen servers (n = 16)

40

Chapter 3. VXLAN-based Data Center Gateway Implementation with P4

€979 T909 6S 8S LG 9G SS ¥S €G 25 TS 0S 6% 8¢ Ly 9F Gb vv €v Zv Tb Ob 6€ 8E LE 9E GE $E EE CE TE 0E6Z BT LT OCSTHPZEZZZTZOZ 6T BT LTOTSTHPIETZITIOL 6 8 L 9 S ¥ € T 1T 0

"poouereg proT SOy JVOJ T OLRUOG :9°¢ oInSI

(P9 = u) sIoAIeS INOJ-AIXIS U0M)Dq doUR[Rq PROT (9)

JY> Il
wns3osyD
abelany -—--

0

[0]8

F ST

oz

rSZ

- OE

sdl

3.5. Concluding remarks 41

3.5 Concluding remarks

In this chapter, we have introduced the DCG architecture which allows a large data center
with vast number of VMs to attend multiple hosts without issues of MAC conflict and flooding.
Furthermore, through P4 language we implented a prototype of these two use scenarios (Inbound
and Outbound). Then, we expose the complexity table, which compares both use cases. In
subsection [3.4.T]the functional validation of the DCG model is presented, where we send a packet
from one interface and check the received packet on the other interface. Finally, in subsection
we validate the load balance feature of our switch using two polynomials: checksum-16
and CRC32.

42

Chapter

Experimental evaluation

In this chapter, we aim to stress our P4-based DCG implementations into three main direc-
tions:

e Performance: In this analysis we consider the throughput in terms of Gbps and the
latency in pus;

e Scalability: While a programmable switch with a throughput near the line-rate and
latency of a few p is one of our main goals; we must test the same P4 program with more
entries, allowing a much more realistic scenario and exposing that the overhead by scaling
through ;

e Multi-architecture: we test the throughput of MACS with two architectures, ARM
and x86, exposing that the compiler and the DCG P4 program can be run and compared
between multiple architectures;

Lastly, we present a novel metric applied to multiple polynomials seeking the best algorithm for
a load balancer.

4.1 Methodology

In this section, we introduce our methodology to analyze the throughput and latency over
three different servers. In Figures (a) and (b) we expose our methodologies. First, we start
by measuring the latency and multi-core throughput using OSNT[[] The OSNT sends packets in
one interface, MACS process the packets using the match+action model and sends it to another
interface connected to OSNT. In the following text box we present the hardware configuration
of the Device Under Test (DUT) for this experiment:

LOSNT: http://osnt.org

4.1. Methodology 43

e Processor: Intel Xeon D-1518 processor four cores with two threads per core running
at 2.20 Ghz.

e Memory: 32GB*2 DDR4 SDRAM

e Operating System: Elementary OS 0.4.1 Loki (Linux kernel 4.13.0-32-generic)
e NIC: dual-port 10G SFP+

e ODP (v1.19.0.0)

e DPDK (v17.08)

Then, we perform our scalability experiment using NFPA. In this scenario, the NFPA sends
packets from one interface using DPDK and receives the result of MacS on the other inter-
face (Bradner & McQuaid 1999). With the testbed configuration, packet loss only occurs when
the DUT becomes a physical bottleneck, and therefore the packet rate received by NFPA is
representative of the raw performance. This test was conducted according to the following
testbed:

Processor: Intel Xeon E5-2620v2 processor six cores with two threads per core
running at 2.00 GHz.

Memory: 8GB*4 DDR3 SDRAM

Operating System: Ubuntu 16 LTS (Kernel 4.4)

ODP (v1.16.0.0)

DPDK (v17.08)

Lastly, we analyze the multi-architecture capability of MacS by running it on a Cavium
Thunder X. Once again we use NFPA to analyze the throughput of the following testbed:

e Processor: 48*2 cores ARMvS8

Memory: 16GB*8 DDR4

Operating System: Ubuntu 18.04 LTS

odp-hunderx (v1.11.0.0)

DPDK (v17.08)

Chapter 4.

Experimental evaluation

Traffic VXLAN P4 Traffic VXLAN P4
Generator switch based Generator switch based
Node node Node node
i T | | L I
C% VXLAN T SVXLAN
Softw, fw
o Switch. = Switch
‘ —
NFO »| P1 NFO »| Pi
(a) The multi-core testbed. (b) The scalability and multi-

architecture testbed.

Figure 4.1: The testbeds environments.

4.2 Latency measurements

The OSNT time-stamp the packets transmitted and received in 32 bits values each, under
a pre-configured position. Unfortunately, the latency test of OSNT was explicitly made to test
fixed packets size with 64 bits free for the time-stamp to be written, which is a problem for
small packets sizes and use cases that change the position of a header over the packet, since we
add and remove headers on our P4 program, we have faced this issue.

In this work, we present an approach to achieve the latency measurement by taking advantage
of P4 dataplane programmability. We have modified our P4 program to parse the time-stamp
arriving at the MacS. Then, we copy its header to a medatada and remove the packet without
loosing the time-stamp of the OSNT transmission step. Lastly, we add the time-stamp back to
the original position of the packet, allowing OSNT to read the time-stamp and compare with
the received time. Although this approach will not allow us to precisely measure the latency of
our program, since it should add some overhead to our DCG program, we will be able to state
that our P4 program achieves less than the measured latency for each driver and packet size.

4.2.1 Results Discussion

The DCG latency experiments are tested by sequentially sending 55 packets repeated 100
times and IPG set in 100000 to bring a stable conditions to measure the latency experiments.
The OSNT manage the traffic rate by configuring the Inter-Packet Gap (IPG). Our method
follows others work such as (Kawashima, Nakayama & Hayashi 2017) to bring a stable condition
to measure our latency experiments. Since we need to add 16 Bytes for the timestamp, we were
not able to test it with 64 Bytes (Inbound) and 110 Bytes (Outbound). Figure 4.2 represents
a sample of the statistics parameters (99% outliers, median, mean, etc) analyzed in Figures
and [£.4] As exposed in Figures [4.3] and there is a clear relation between the packet size
and the observed latency, where an increase in the first one result to an increase to the last
one. Furthermore, we observed that as expected the latency of socket-mmap is considerably
higher than DPDK, for both use cases we found the socket-mmap has a latency of at least two

4.2. Latency measurements 45

times higher than DPDK. In Figure [£.3] the maximum latency is observed for the Inbound using
DPDK with 10K entries (26 seconds) and Socket with 100 entries (39u seconds). In Figure

the maximum latency is observed for the Inbound using DPDK with 100K entries (10u seconds)
and Socket with 100K entries (30 seconds).

Outlier
99%

3rd quartel

A Mean

Median

1st quartel]
1
—

1%

Figure 4.2: Boxplot for latency representation.

Chapter 4.

Experimental evaluation

46

+ pommmm o -+
L R L [+
+ bmmmmmmm e T+
+ podmmmmmee H 4+
+ b~} +
+ e [}
t--{4l-+
+ -+
+ b---f[F+
+ -4 H
b=+
+ bmmmmm - T
+ s Ll g
+ bommm-d s 11
L e -—a-{T |+
+-{4}
+ et et T I+
L R H[F+
T e —a-{[}+
+ F--fF+
+ e m e —e-{ [
L S
+ R {aTF+
+ R e Al
+ Im=pmm——————— [+
+ I-HH+
+ -
s b
+ R HIH
+ e H -+
[TR -+
+ 0=
. 1113
+ -{3F+
+ -
+ FFF+
+ F
+ 1k
+ FR
4
- F-H+
+ N H
L - {The
+ FR
T i
+ - h+
- bR
+ pem——- {3+
g A] ~ 8 4 = o
(spuodasoJddiw) Aouaje

9EVT
0BZT
¥Z0T
215
952
BIT

9EFT
08BZT
70T
15
95g
BLT

9EvT
08ZT
¥Z0T
Z15
95g
BIT

9EvT
0BZT
20T
215
95z
BT

QEFT
0BZT
Fzot
Z1s
95g
|zt

9EFT
0BZT
20T
215
95z
BIT

QEFT
0BZT
Fzot
Z1s
95g
8zT

9EVT
0BZT
¥Z0T
215
952
BIT

100K

10K

1K

100

100K

10K

1K

100

Socket

DPDK

Figure 4.3: Impact of the number of FIB sizes in the Latency for DCG Inbound.

4.2. Latency measurements

47

. Hooe 1
----------- {alF-+
=L b+
H--{F F-1i+
e T3+
+ i Bl
-+
I s St L -
+ A }-w
+ -4+
b=-=fa -+
fmmmmm—————— L[F---+
+1-{ 3+
- -
+ F-fa T+
=== LT+
fmmmmm - £+
b B F-+
-4+
+-+
H{il+
+ HEF-1+
{3 F+
+]+
+-f-+
-
#{8}+
+{B-+
+{FHi+
+i
+ g
+ Hil+
-+
+H{R ¢
+{f-#
+ 1=l
+ {3+
+-Fh+
+{k |+
++p}+
+{[« H+
-k
R 2 R 9 9 o

(spuodasoudiw) Aduaje

8151
081
rzot
215
95z
871

8T1sT
0BZT
ot
Z15
95g
871

8151
081
+20ot
215
95z
871

8T1sT
0BZT
ot
Z15
95g
871

8151
081
20t
215
95z
871

8T1sT
0BZT
ot
Z15
95g
871

815l
081
FZ0T
215
95¢
BEZT

8TST
0BZT
ot
Z15
95g
871

100K

10K

1K

100

100K

10K

1K

100

Socket

DPDK

Figure 4.4: Impact of the number of FIB sizes in the Latency for DCG Outbound.

Chapter 4. Experimental evaluation 48

4.3 Throughput

In this section, we analyze the throughput of our DCG on three different targets: two
Xeon servers based on x86 architecture and Cavium Thunder X using ARMvS8. The following
experiments use NFPA and OSNT to analyze the performance based on three aspects:

e The throughput while increasing the number of cores. In this test, we compare the multi-
threading feature of MACS and analyze the cache-misses for each packet I/O and use case.
This test is conducted using OSNT;

e The performance in Gbps of while increasing the entries using NFPA with up to 100k
entries; This test is conducted using NFPA;

e The throughput of an energy efficient server using ARMv8 architecture with up to 96
cores. This experiment is conducted using NFPA;

All throughput measurements were conducted for at least 60 sec (Bradner & McQuaid 1999),
and every data point in our performance measurements is an average value. Confidence intervals
are unnecessary as results are stable and reproducible for all frameworks.

4.3.1 Multi-core

Considering that we are building switches inside servers with multiple cores, it is expected
that more cores will increase the throughput. This experiment was conducted on the same
DUT of section using the topology of Figure [4.1] (a). Thus, we ran MACSAD from two to
six cores increasing by steps of two. Figure expose the results for both: Socket-mmap and
DPDK drivers. As can be seen, there is a boost in performance as the number of physical cores
increases. However, we observe that by increasing the number of threads with more than the
limit of physical cores (by using hyperthreading), the throughput decreases since MacS does not
allow execution units to stay idle during a clock cycle and bus bandwidth limitation (Schoéne,
Hackenberg & Molka 2012).

The result in term of throughput (Gbps) is shown in Figure where the left-hand side
corresponds to the Inbound use case, while on the right-hand side, the results for the Outbound
use case are depicted in function of increasing packet sizes; note that for the Outbound the 64
bytes were switched by the additional 50 bytes overhead imposed by the VXLAN headers and
6 bytes of data.

There is a clear relation between the packet size and the throughput achieved, this is due to
a restriction on the bus-bar interruption, by increasing this interruption limit (e.g., by adding
Mellanoxﬂ network card), we would achieve similar throughput to all packet sizes, which would
be near the line rate for DPDK and almost 8 Gbps for Linux default drive (Socket-mmap).
Besides the noticeable performance improvement with the increasing number of packet sizes,
we can observe a somewhat counter-intuitive performance difference between the two use cases:
VXLAN encapsulation in the middle of the pipeline for IB sub-case refreshes cache which is

http:/ /www.mellanox.com/

4.3. Throughput 49

=3 DPDK
| 1 Socket-mmap

oy
o

w
o

w
o

|

Throughput (Gbps)
N
o

=
U

=
o

©
n

1

Inbound Outbound

-

o
o

Figure 4.5: Throughput with the increase of cores with (256 bytes and 100 entries).

107 == orox EE B
[Socket-mmap

Throughput (Gbps)

64 128 256 512 1024 1280 1468 110 128 256 512 1024 1280 1518

Inbound Outbound

Figure 4.6: Inbound and Outbound throughput comparison (4 cores and 100 tables entries).

leveraged by tables further down in the pipeline, whereas decapsulation happens at the end
of the pipeline for OB resulting in higher cache miss. Furthermore, the OB packet contains 7
headers to parse, while the the IB has just 3, meaning that MacS need to parse much more
headers and fields on the OB, decreasing the performanc.

Considering the throughputs obtained in Figures we seek to take a closer look at what is
stressing the processor. The perf command (de Melo 2010) is a powerful tool that allows users to
count the number of events (e.g., cache-misses and instructions executed). Using perf we evalu-
ate the CPU cycles by using the same DCG P4 program that resulted in Figure (100 entries
and 256 bytes). However, to run the perf command is recommended to execute the program
being analyzed with a single-core to exclude problems of complexities of managing multi-core is-

Chapter 4. Experimental evaluation 50

sues, which we do not intend to analyze in this work. In Figure[4.7]we expose our results for both
use cases (Outbound and Inbound) and packet I/O (DPDK and Socket-mmap) while OSNT is
injecting packets for macsad to forward for a whole minute. In Figure (a) we observe that as
expected the “action_code_press” is the function with more cache-misses (21.54%) for the DPDK
on the Inbound , it encapsulates the packet. Then, the “exact_lookup” consumes 13.41% by mat-
ching all tables parameters but lpm. On the other hand, Figure (b) expose the same use case
by using Socket-mmap, but with a different diagnosis, the function “action_code_nhop” is the one
consuming most resources (17.69%), followed by “exact_lookup” (16.65%), “action_code_press”
is the fourth one with much less percentage usage (9.42%). Surprisingly, on the Outbound we
do not see the “pop” action, which removes the headers to be consuming many resources. In
Figure (c) we expose that the DPDK have many cache-misses while matching all the tables,
this can be seen by functions: “lpm_lookup” (19.97%) and “exact_lookup” (12.99%). Lastly, in
Figure [4.7] (d) we present the same results for socket-mmap, “exact_lookup” (22.80%) had most
of the cache-misses, followed by the action “action_code_nhop” that sets the next hop (16.51%).

51

4.3. Throughput

S¢

ST 0z ST 0T S

"0/ 1eALIp pue sesed osn Iad oFejuediad sstur oyped 1od :) ' o3I

‘ased osn punoqin() uo demu-1e00g 10J sstur oped 11ed (p)

% SSIw ayoed

ST ot

dnxoo|”
exe

doyu™
9pod_uoIde

jnopuas
a|qey A|dde

€ _
a|qey A|dde

193[35dYY
a|qey A|dde

103099597
3|qey Aldde

"95D 2SN punoqu] uo dewui-19)d0g I0] sesstur-oydes jrad (q)

9% SSIw ayoeD)

o

doyu™
9pod_uode

dnxoo|”
Jjoexa

ssaud”
9pod_uode
Japeay ppe

30241p apow”
Ja310m 2dpo

€1 _
9|qey A|dde

"9sed SN punoqinQ) uo J(J 10 sstu o7oed J1od (9)

% SsIw ayoed

dnxoo|”
wd|

doyu™
apod_uolde

dnxoo|”
joexa

1ded”
asJed

109[95dYY
9|qey A|dde

€1 _
9|qey A|dde

nopuas”
3|qey A|dde

14 0¢ ST 0T S
"ased asn punoquy uo MJ(10] sesstu-oyoed jiod (e)
% SSIW ayoed
sz 0z st ot

ssaud”
9pod~uofde

dnxoo|”
Joexa

129(95dYY
9|qey A|dde

PMOYIN®
9|qey A|dde

J10309|9sg7
3|qey A|dde

1ded”
dlpuey

doyu™
9pod_uolde

Chapter 4. Experimental evaluation 52

4.3.2 Scalability

Considering that this DCG program would be responsible for being the gateway between a
data-center and the internet, we expect to have hundreds, thousands or even millions of hosts
connected at the same time. Thus, we understand that it is essential to evaluate the impact of
increasing the entries on the switch.

In this scenario, traffic traces have different numbers (from 100 to 100K) of unique flows,
randomly generated per use case experiment run but consistent across different packet sizes,
limiting the impact of the lookup process and underlying caching system which would depend
on the traffic pattern. We evaluate two different packets I/O drivers.

In Figure and we expose that there is a small overhead on performance when we
increase the number of entries. As expected, we found an inversely proportional relationship
between the number of entries and the throughput achieved; this is due to memory usage while

matching the lpm.

10+
[100
8. 1k
’g E 10k
8 Il 100k
Z 61
5
Q.
ey
Sat |
e
= ‘
2_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 = 3 [l I I I I
64 128 256 512 1024 1280 1468 110 128 256 512 1024 1280 1518
Inbound Outbound

Figure 4.8: Impact of FIB sizes in the Throughput for DCG with Socket-mmap (four cores
experiment).

10;
3 100
| . 1k

. 10k
B 100Kk

Throughput (Gbps)

64 128 256 512 1024 1280 1468 110 128 256 512 1024 1280 1518

Inbound Outbound

Figure 4.9: Impact of FIB sizes in the Throughput for DCG with DPDK (four cores experiment).

4.3. Throughput 53

4.3.3 Multi-architecture

MACSAD has three main goals, programmability, performance and the support of mul-
tiple architectures. In this section, we explore the last one, until now we have exposed our
VXLAN program running only on x86 servers with different configurations (varying memory,
number of entries and cores). However, since MACSAD leverage on ODP APIs functions, it can
be run on other architectures supported by ODP. In this example, our target is an ARM Ca-
vium ThunderX System. In Figure [4.10] (a) and (b) we expose the performance for the Inbound
use case, the X-axis represents the packet size and the number of cores used to achieve the
throughput. Then, we evaluate the performance from 1 to 94 cores; the line rate was achieved
for packets with more than 1280 bytes with just eight cores. However, by increasing the number
of cores, we were able to achieve 3 Gbps for packets of 64 Bytes. In Figure [£.11] (a) and (b) we
present the performance evaluation for the Outbound, an interesting fact is that different from
the Inbound, from 1 to 16 cores the increases of cores did not alter the throughput. Unfortu-
nately, we did not find a clear explanation of this behavior, and we consider further analysis
necessary. Lastly, we found that the performance on both use cases with 94 cores achieved near
the line rate for packets of 512 bytes.

o4

Chapter 4. Experimental evaluation

9sed 9SIl pUNOqU] U0 Y Iopuny], WNIiAe,) Jo UOIpeness soururiojrod a100-1) N (0] '§ 2Insd1

6
89%T 08ZT ¥ZOT ¢IS 9SC 8T V9

89100 6 03 9T (q)

$210D) JO "ON

9 [43 91
89%T 08ZT ¥Z0T ¢IS 9GC 821 V9 89%T 08CT ¥ZOT CIS 9SC 8ZT V9 89%T 08ZT ¥Z0T ¢IS 9GC 8T V9

8
89%T 08ZT ¥Z0T ¢IS 9SC 8¢T V9

B = =

L deww-323205 [

"$9100 8 09 T (®)

$210D JO "ON

14 4 T
89%T 08ZT ¥¢0T ¢IS 9G¢ 8¢T V9 89%T 08T ¥Z0T ¢IS 9SC 8ZT V9 89T 08ZT ¥¢0T ¢IS 9GC 8¢T V9

=

::EED[=] E .

deww-323205 [

(sdg9) 3ndybnoiyL

-0T

(sdg9) 3ndybnosyL

-0T

95

4.3. Throughput

9seD 9STL PUNOITL() U0 Y ISPUNY], WNIAR)) JO UOIIRN[RAD 20URULIOJIad 9I00-13[NJ\ T F 9INJI

6
8TGT 08ZT ¥ZOT ¢IS 9SC 8ZT OTT

89100 6 03 9T (q)

$210D) JO "ON

9 [43 91
8TGT 08ZT ¥Z0T ¢IS 9SZ 8¢T OTT 8TGT 08CT 20T CIS 9SC 8ZT OTT 8TGT 08ZT ¥ZOT ¢IS 9SZ 8ZT OTT

8
8TGT 08ZT ¥Z0T ¢IS 9GC 8¢T OTIT

1 :z[[[I

deww-32320S]

"$9100 8 09 T (®)

$210D JO "ON

v 4 T
8TGT 08ZT ¥¢0T ¢IS 9G¢ 8¢T OTIT 8TGT 08T 20T ¢IS 9SC 8CT OIT 8TGT 08ZT ¥¢0T ¢IS 9GC 8¢T OTT

e

e P [

deww-323205 [

(sdg9) IndybnoiyL

0T

(sdg9) 3ndybnosyL

-0T

Chapter 4. Experimental evaluation 56

4.4 Extended evaluation on load balancing performance

Considering our previous results, we found that both CRC32 and Checksum16 did not equally
distribute the flows between our servers. Thus, we seek to extend our analysis for the behavior
of some of the main polynomials that are not implemented on ODP APIs yet. Since MACSAD
is restricted to ODP APIs, we were not able to execute this test using the compiler. Then,
we made a few Python codes that performs the same Load Balance equation of the primitive
implemented on MACSAD and a heatmap generator of the results. To choose the functions
we to be analyzed, we base some recommended polynoms from an article from the Carnegie
Mellon University of CRC selection for embedded networks (Koopman & Chakravarty 2004)
and the most used polynomials (CRC8, CRC16, CRC32, and CRC32c¢). The BB-gen (Cesen &
Patra 2018) code we modified to have a python script that generates 1000 “txt” files for IPv4
and IPv6 addresses, each one containing 1,048,576 random IPs, or 22°. Then, in another script
we calculate the polynomials using “crcmod” library, the polynomials that we have tested are:

e crc-8 o 0x8d95
e crc-16
o 0x973afb51
e crc-32
e crc-32c o Oxdl175

Considering the polynomial input, we apply our formula to measure the best Load Balance
function. Our metric is composed of four equations: Equation calculates the expected
distribution, Equation the difference of the expected and the real case distribution to the
power of two, Equation the Root Mean Square Error (RMSE) and Equation normalize
the RMSE found in Equation by logs(IP). We apply the following equations in our search
for the best load balancing algorithm. Lastly, we save the results of each file to generate
statistics that include average, 95 percentile, maximum and minimum for each generated file
considering the Normalized Root Mean Square Error (NRMSE) results. In Figure we
illustrate this process. In Figures and we expose our main results using 95 percentile
methodology (discarding the 5% outliers best results), while on Appendix [E| we expose the
results for Maximum, Minimum, Average and others 95 percentiles polynomials.

F@eay = (1.1)
0 = (F(2) = f(2)eay) (1.2
RMSE = 2%8 a (4.3)
NRMSE = TMSE (4.4)

4.4. Extended evaluation on load balancing performance 57

Where:

e IP: Total of IPs sent;

f(x): Is the distribution found by a specific conjunct of polynomial function, total hosts

(Y-axis of Figures and [4.14) and servers attending this hosts (X-axis of Figures
and [4.14)

® f(Z)exp : optimal IP distribution per server;

e n: The number of servers being balanced;

RMSE: Root Mean Square Error;

NRMSE: Normalized Root Mean Square Error;

> Random IP IPv4 NRSME Heatmap 0
€ IPv6 i grovai "
A -

CRC-8
CRC-16
CRC-32

CRC-32¢
0x8d95

0x973afb51

0xd175

Figure 4.12: The Load Balancing extended evaluation script.

Considering that NRMSE measures how far the function distribution is from an equal distri-
bution between servers, we compared the results by increasing the number of hosts tested and
servers attending them. In Figures[4.13|we expose our results for [Pv4 addresses, while in Figure
for IPv6. This experiment was conducted 1000 times for each polynomial with random IPs
of up to 1,048,576. In the following Figures we present our analysis using the 95 percentile
methodology. In general, we observe that an increase in the number of servers attending a fixed
number of hosts, decreases the NRMSE, while an increase in the number of hosts with a fixed
number of servers attending it increases NRMSE. Furthermore, we found that the 0xd175 give
us the best result for the worst case, which is two servers with 1,048,576 hosts. Surprisingly, in
most cases, CRC32c¢ expose the best distribution, even better than CRC32, which in general is
considered a more robust polynomial. Processors like AMD and Intel Atom do not have imple-
mented CRC32 by default, which gives CRC32¢ performance advantage too, since it is cheaper
in terms of computer cycles. In Figure [4.14] we observe similar results, but with a tiny lead to
[Pv4, this can be due to the fact that IPv6 is much larger than IPv4 and so it should require a
higher CRC (e.g., CRC64).

o8

Chapter 4. Experimental evaluation

GL1Px0 ()

SI9AIDS

vave

V6'LT ¥L'ST

LY'ET 86'6T 62°6C

SO0°0T ¥8' VT

'L LYV'TT

89°'G 99'8

9

6T'TIC

68'GT

19°¢t

L8

G8'9

s

60V

(VB3

SIsATeur gumoueeq peof o[ljuodiod ¢6 FAJT C1°F 9IS

9.S8¥0T

88¢ves

vv129¢

ZLOTET

9€9S9

89L¢e

¥8€91

618

9607

8¥0¢

SISOH

vaot

22g-21 (q)

SI9AIRS

LL°LT 29°9C

LO'ET 8¥'6T

986 6671

Sv'L 8CTL

69'S 98

LTV 1S9

8C'€

§G°C

76

GSRL

9T'T

9.S8V01

88¢vIs

14444

CLOTET

9€659

89L¢z¢

¥8€91

618

9607

8¥0C

2ot

SISOH

{-0I0

SI9AIDS

80T 8'ST
66°L SL'TIT
L6'S ET'6
SS'v 8L9
9€'e 20'S
€G°C 18'€
I6'T S8¢
SY'T GT'¢
YT'T 69T
98'0 8¢'T
L9°0 66°0
€50 8L°0
¢r'0 290

vE'0 670

()

0've

99°LT 8€'9¢C

€G'ET L8'6T 8L'8C

00T 98'v1 SE'IC

19°L v€'TIT 88'ST

S9'G Zv'8 88'IL

1S9 9€6

68t 799

e LTS

88'C 0OV

6T'Cc T'€

EL'T E€€C

LET 881

TT (LST

9.S8¥0T

88¢ves

¥¥129¢

ZLOTET

9€5S9

89L¢e

¥8€91

618

9607

8¥0¢

vZot

SISOH

99

4.4. Extended evaluation on load balancing performance

cL1pX0 (0)

SI9AIRS

SIsATeur gumoueeq peof o[ljuodiod ¢6 FAJT F1°§ 2Insi]

0gg-ow (q)

SI9AIRS

8-010 (&)

SI9AIRS

S0'9T TEVT |1 9.58v0T TIS'7Z 88'7E 9L58Y¥01 9t'GE 9L58Y01
€8'LT 8L°LZ CT 9€ git:ta44s . & . i LY LT TS'9C 88¢v¢s) . . : ' 192 88¢ves
TT'ET 8561 697 gigd¥aTs ST'ET 88'6T 29'LZ ghadXal4 . H i ’ 61702 8T'6¢ liadY4sA
00T ¥¥'ST LL'0T gRaARAS 9L'6 YT 8T°0T EAAUKAS : k : : . ‘6 0'ST 90'1C gaAURAS
9G°L 8L°'TT 8€'9T geiX L] : . : v 8€°L 96°0T 8E'ST gel3iete] P . : . . ‘L TY'TT 90°9T gelaegs
6S°S 0'CT gheiraas 6S'S IS8 91T gilA43 €G'8 LO'CT geilkax

06 mgi3s €Y 959 676 i3 SP'9 S6 gaiels
(WA C618 LTE TO'S ST'L AR [RANGIERN- <618
erall- 9601 LY'Z €8'€E GT'S gelidud ¥9'€ €€ gEldud
(R 80C W 6T 76C 80T W €6'C 07 gigdd
rall- v 201 ¢ ST 12¢ 201 @ 20T TE ggdun
A C1S 8T'T GL'T Z1s SL'T 957 gkand
88'T gekl4 €60 vl 96¢C 8T 07 gk
€7'T gfan 40 8z1 CT'T LS'T gefan
JARE- 79 16'0 9 26'0 E€E€'T gl
0T pX43 6L°0 [43 6.0 0T gi43
0T gl ¥9°0 91 790 0T g
0T & 290 8 7290 0T g
0T g4 14 0T g4

4 Z 4

SISOH

60

Chapter

Conclusion and future work

This work has fulfilled its main objective, the design of a DCG VXLAN architecture im-
plemented using P4 language that can be compiled to multi-architectures and still explore the
best throughput capacity of each device. To address this solution we have: (i) implemented
VXLAN DCG P4 program (ii) added support of new primitives to MACSAD, (iii) created an
SDN controller to manage the packet traffic and table actions (iv) analyzed through a new me-
tric the best polynomial function to perform our Load Balance feature, (v) carried performance
and experimental evaluation of multi-core, scalability, and multi-architecture, and (vi) released
all artifacts as open source.

This thesis describes the challenges we faced to achieve the DCG architecture. There, we
evaluated the performance of use cases using two different packets I/O engines (DPDK and
Socket_mmap). Through NFPA and OSNT we were able to transmit different packet sizes
using PCAPs files. Comparing the different packet 1/O drivers we can state that as expected
the Linux default driver, or Socket-mmap, is much slower than DPDK.

These experiments expose two open source projects working together to achieve the same ob-
jective: to allow an open source dataplane programmability without compromising the network
performance. ODP enables this goal by spreading a unique set of APIs for the dataplane, while
P4 standardizes a common language to program the dataplane. The results obtained indicate
what may be the next revolution after recent developments into Software Defined Networking
(SDN) and Network Functions Virtualization (NFV), the data-plane programmability.

As future works, we consider a study of the same scenario but using Single Root I/O Vir-
tualization (SR-IOV) in conjunction with MacS would be a nice fit since the DCG introduces
an architecture based on VMs to analyze the latency and throughput. The SR-IOV bypass the
hypervisor and allows its VMs to achieve near-line wire speed and low latency. Furthermore, in
this work we analyzed the load balance distribution of different polynomials. We found that a
more robust polynomial function result in general result in a good distribution. However, we do
not consider the latency impact, it is expected that a more complex function will increase the
latency. Considering the NFV technology, the DCG may be sliced by its network functions in
a way that each P4 slice is managed by a centralized (and standardized) controller which could
update its slices at runtime. Thus, by isolaing its network functions we would be able to run
each one independently.

61

Through the results of this thesis, new questions appear, mainly on performance and porta-
bility. We noted that as expected there is a correlation between the number of matches/actions
and the throughput of our program. Whippersnapper (Dang, Wang, Jepsen, Brebner, Kim,
Rexford, Soulé & Weatherspoon 2017) start the discussion of performance impact and comple-
xity of P4 programs. Since P4 programs allow full programmability of the dataplane, different
P4 programs can achieve the same functionality, e.g., a table with two matches can be split
into two tables without compromising the architecture, but it may increase the overhead. An
analysis of the performance impact of the most critical functions is necessary to optimize the
programs further.

We have tested the DCG on two servers, x86 and ARMv8. A future research may evaluate
our test on other platforms, a NetFPGA or a Raspberry Pi. MACSAD still support a minimal
number of primitives, allowing just a few use-cases to be tested. Thus, to have a full program-
mable dataplane network with support to multiple architectures, new primitives still need to be
added. Another approach to be enhanced is the way control plane works on MACSAD, which
by now use a non-standardized controller that needs to be manually written for each use-case.
Furthermore, once a new functionality is added on the dataplane side, the same needs to be
manually described on a simple controller, and then restart both of them. Aiming to solve this
problem, P4 Runtime H surge as a silicon and protocol independent approach to auto-generate
APIs and using Yet Another Next Generation (YANG) data-modeling language ﬂ to allow a
smoother integration of P4 switches to controllers, some examples of applications can be seen
on ONOY| and OpenDaylightf]] websites.

Thttps://github.com/p4lang/PI

Zhttps:/ /tools.ietf.org/html/rfc6020
3https://wiki.onosproject.org/display/ONOS /P4Runtime-+support+in+ONOS
4https://wiki.opendaylight.org/view /P4 plugin : Main

References 62

References

Antichi, G., Shahbaz, M., Geng, Y., Zilberman, N., Covington, A., Bruyere, M., McKeown, N.,
Feamster, N., Felderman, B., Blott, M., Moore, A. & Owezarski, P. (2014). OSNT: Open
source network tester, IEEE Network (5): 6-12. http://yuba.stanford.edu/ nickm/
papers/osnt.pdf.

Barham, P., Park, K., Weatherspoon, H., Zhou, L., Chase, J. & Dean, J. (2013). Procee-
dings of the 10th USENIX Symposium on Networked Systems Design and Implementa-
tion NSDI'13, Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation NSDI’13 pp. 1-555. https://www.usenix.org/conference/nsdil3/
tech-schedule/technical-sessions.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T. & Lantz, B. (2014).
ONOS: towards an open, distributed SDN OS, Proceedings of the third workshop on Hot to-
pics in software defined networking - HotSDN ’14 pp. 1-6. http://d1l.acm.org/citation.
cfm?id=2620728.2620744.

Bosshart, P., Daly, D., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D.,
Vahdat, A., Varghese, G. & Walker, D. (2013). Programming Protocol-Independent Packet
Processors, 44(3): 88-95. http://arxiv.org/abs/1312.1719.

Bradner, S. & McQuaid, J. (1999). Benchmarking methodology for network interconnect devices,
RFC 2544, RFC Editor. http://www.rfc-editor.org/rfc/rfc2544.txt.

Cavium / XPliant® CNX880zx (2015). https://www.cavium.com/pdfFiles/CNX880XX_PB_
Revl.pdf?x=2.

Cesen, F. E. R. & Patra, P. G. K. (2018). BB-Gen : A Packet Crafter for Data Plane Eva-
luation. https://intrig.dca.fee.unicamp.br/wp-content/plugins/papercite/pdf/
demo_bbgen_sigcomm_2018.pdf.

Csikor, L., Szalay, M., Sonkoly, B. & Toka, L. (2015). NFPA: Network function performance
analyzer, 2015 IEEE Conference on Network Function Virtualization and Software Defined
Network, NFV-SDN 2015 pp. 15-17. http://real .mtak.hu/40987/1/paper.pdf.

http://yuba.stanford.edu/~nickm/papers/osnt.pdf
http://yuba.stanford.edu/~nickm/papers/osnt.pdf
https://www.usenix.org/conference/nsdi13/tech-schedule/technical-sessions
https://www.usenix.org/conference/nsdi13/tech-schedule/technical-sessions
http://dl.acm.org/citation.cfm?id=2620728.2620744
http://dl.acm.org/citation.cfm?id=2620728.2620744
http://arxiv.org/abs/1312.1719
http://www.rfc-editor.org/rfc/rfc2544.txt
https://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf?x=2
https://www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf?x=2
https://intrig.dca.fee.unicamp.br/wp-content/plugins/papercite/pdf/demo_bbgen_sigcomm_2018.pdf
https://intrig.dca.fee.unicamp.br/wp-content/plugins/papercite/pdf/demo_bbgen_sigcomm_2018.pdf
http://real.mtak.hu/40987/1/paper.pdf

References 63

Dang, H. T., Wang, H., Jepsen, T., Brebner, G., Kim, C., Rexford, J., Soulé, R. & Weathers-
poon, H. (2017). Whippersnapper: A P4 Language Benchmark Suite, ACM Symposium
on SDN Research (SOSR) pp. 95-101. https://www.cs.princeton.edu/” jrex/papers/
whippersnapperl?.pdf.

Davie, B. & Gross, J. (2016). A Stateless Transport Tunneling Protocol for Network Virtuali-
zation (STT), IETF Draft. https://tools.ietf.org/html/draft-davie-stt-01.

de Melo, A. C. (2010). The New Linux ’perf’ Tools, Linuz Kongress . https://pdfs.
semanticscholar.org/16ca/fd05fa3756dfe370274cd22b4c16c72d6c53b. pdf.

Diedricks, 1. (2015). Cisco extends market leadership for Unified Ac-
cess with revolutionary ASIC. https://blogs.cisco.com/enterprise/
cisco-extends—-market-leadership-for-unified-access-with-revolutionary-asic.

Duncan, R. & Jungck, P. (2009). PacketC language for high performance packet processing,
2009 11th IEEE International Conference on High Performance Computing and Communi-
cations, HPCC' 2009 pp. 450-457. https://ieeexplore.ieee.org/abstract/document/
5167027

Feamster, N., Rexford, J. & Zegura, E. (2014). The Road to SDN: An Intellec-
tual History of Programmable Networks, ACM Sigcomm Computer Communication
(2): 87-98. http://dl.acm.org/citation.cfm?id=2602204.2602219{&}col1=DL{&}d1=
ACM{&}CFID=429855848{&}CFTOKEN=24281772.

Garg, P. & Wang, Y. (2015). Nvgre: Network virtualization using generic routing encapsulation,
RFC 7637, RFC Editor. https://www.rfc-editor.org/rfc/pdfrfc/rfc7637.txt.pdf.

Intel® Ethernet Switch FM6000 Series (2017). https://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.
pdf.

Kawashima, R., Nakayama, H. & Hayashi, T. (2017). Evaluation of Forwarding Effici-
ency in NFV-nodes toward Predictable Service Chain Performance, (4): 1-14. https:
//ieeexplore.ieee.org/document/7997907.

Koopman, P. & Chakravarty, T. (2004). Cyclic redundancy code (CRC) polynomial selection for
embedded networks, pp. 145-154. http://users.ece.cmu.edu/ "koopman/roses/dsn04/
koopmanO4_crc_poly_embedded.pdf.

Kreutz, D., Ramos, F. M. V., Verissimo, P., Rothenberg, C. E., Azodolmolky, S. & Uhlig, S.
(2014). Software-Defined Networking: A Comprehensive Survey, pp. 1-61. http://arxiv.
org/abs/1406.0440.

Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M.
& Wright, C. (2014). Virtual extensible local area network (vxlan): A framework for
overlaying virtualized layer 2 networks over layer 3 networks, RFC 7348, RFC Editor.
http://www.rfc-editor.org/rfc/rfc7348.txt.

https://www.cs.princeton.edu/~jrex/papers/whippersnapper17.pdf
https://www.cs.princeton.edu/~jrex/papers/whippersnapper17.pdf
https://tools.ietf.org/html/draft-davie-stt-01
https://pdfs.semanticscholar.org/16ca/fd05fa375dfe370274cd22b4c16c72d6c53b.pdf
https://pdfs.semanticscholar.org/16ca/fd05fa375dfe370274cd22b4c16c72d6c53b.pdf
https://blogs.cisco.com/enterprise/cisco-extends-market-leadership-for-unified-access-with-revolutionary-asic
https://blogs.cisco.com/enterprise/cisco-extends-market-leadership-for-unified-access-with-revolutionary-asic
https://ieeexplore.ieee.org/abstract/document/5167027
https://ieeexplore.ieee.org/abstract/document/5167027
http://dl.acm.org/citation.cfm?id=2602204.2602219{&}coll=DL{&}dl=ACM{&}CFID=429855848{&}CFTOKEN=24281772
http://dl.acm.org/citation.cfm?id=2602204.2602219{&}coll=DL{&}dl=ACM{&}CFID=429855848{&}CFTOKEN=24281772
https://www.rfc-editor.org/rfc/pdfrfc/rfc7637.txt.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://ieeexplore.ieee.org/document/7997907
https://ieeexplore.ieee.org/document/7997907
http://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://arxiv.org/abs/1406.0440
http://arxiv.org/abs/1406.0440
http://www.rfc-editor.org/rfc/rfc7348.txt

References 64

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S. & Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks, ACM SIG-
COMM Computer Communication Review (2): 69. http://portal.acm.org/citation.
cfm?doid=1355734.1355746.

Medved, J., Varga, R., Tkacik, A. & Gray, K. (2014). OpenDaylight: Towards a model-driven
SDN controller architecture, Proceeding of IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks 2014, WoWMoM 201/ . https://ieeexplore.
ieee.org/document/6918985/.

Open Networking Foundation (May 2015). Simplifying OpenFlow Interope-
rability with Table Type Patterns (TTP), ONF Solution Brief. https:
//3vi60mmveqlg8vznd8q2071la-wpengine.netdna-ssl.com/wp-content/uploads/
2014/10/sb-TTP.pdf.

Patra, P. G. & Rothenberg, C. (2016). MACSAD : Multi-Architecture Compiler System for
Abstract Dataplanes (aka Partnering P4 with ODP), pp. 623-624. http://www.dca.
fee.unicamp.br/“chesteve/pubs/2016-SIGCOMM-Demo-Mininet-MACSAD. pdf.

Patra, P. G., Rothenberg, C. E. & Pongracz, G. (2017). MACSAD: High performance da-
taplane applications on the move, IEEE International Conference on High Performance
Switching and Routing, HPSR p. 6. http://www.dca.fee.unicamp.br/"chesteve/pubs/
2017-06-IEEE-HPSR-MACSAD-Gyanesh.pdf|

Pepelnjak, 1. (2012). Do we really need stateless transport tunneling (stt), http://blog.
ipspace.net/2012/03/do-we-really-need-stateless—-transport.htmll

Pongracz, G., Molnar, L. & Kis, Z. L. (2013). Removing roadblocks from SDN: Openflow
software switch performance on intel DPDK, Proceedings - 2013 2nd European Workshop
on Software Defined Networks, EWSDN 2013 pp. 62-67. https://ieeexplore.ieee.org/
abstract/document/6680560.

Rahimi, R., Veeraraghavan, M., Nakajima, Y., Takahashi, H., Nakajima, Y., Okamoto, S.
& Yamanaka, N. (2016). A high-performance OpenFlow software switch, IEEE In-
ternational Conference on High Performance Switching and Routing, HPSR pp. 93-99.
http://biblio.yamanaka.ics.keio.ac.jp/file/Reza_HPSR2016_1570252594.pdf.

Rizzo, L. (2012). NetMap: A Novel Framework for Fast Packet 1/O, 2012 USENIX An-
nual Technical Conference (257422): 101-112. https://www.usenix.org/system/files/
conference/atcl12/atc12-final186.pdf.

Robert Olsson (2005). Pktgen the Linux Packet Generator, Proceedings of Linuz Symposium
pp. 19-32. https://www.kernel.org/doc/0ls/2005/01s2005v2-pages-19-32.pdf.

Schone, R., Hackenberg, D. & Molka, D. (2012). Memory performance at reduced CPU clock
speeds: an analysis of current x86_64 processors, Proceedings of the USENIX Workshop on

http://portal.acm.org/citation.cfm?doid=1355734.1355746
http://portal.acm.org/citation.cfm?doid=1355734.1355746
https://ieeexplore.ieee.org/document/6918985/
https://ieeexplore.ieee.org/document/6918985/
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/sb-TTP.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/sb-TTP.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/sb-TTP.pdf
http://www.dca.fee.unicamp.br/~chesteve/pubs/2016-SIGCOMM-Demo-Mininet-MACSAD.pdf
http://www.dca.fee.unicamp.br/~chesteve/pubs/2016-SIGCOMM-Demo-Mininet-MACSAD.pdf
http://www.dca.fee.unicamp.br/~chesteve/pubs/2017-06-IEEE-HPSR-MACSAD-Gyanesh.pdf
http://www.dca.fee.unicamp.br/~chesteve/pubs/2017-06-IEEE-HPSR-MACSAD-Gyanesh.pdf
http://blog.ipspace.net/2012/03/do-we-really-need-stateless-transport.html
http://blog.ipspace.net/2012/03/do-we-really-need-stateless-transport.html
https://ieeexplore.ieee.org/abstract/document/6680560
https://ieeexplore.ieee.org/abstract/document/6680560
http://biblio.yamanaka.ics.keio.ac.jp/file/Reza_HPSR2016_1570252594.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf
https://www.kernel.org/doc/ols/2005/ols2005v2-pages-19-32.pdf

References 65

Power-Aware Computing and Systems (HotPower) . https://pdfs.semanticscholar.
org/8668/5044b78aed871688f4c7e8d95b4b62538570 . pdf.

Shahbaz, M., Choi, S., Pfaff, B., Kim, C., Feamster, N., McKeown, N. & Rex-
ford, J. (2016). PISCES: A programmable, protocol-independent software switch,
2016 ACM Conference on Special Interest Group on Data Communication, SIG-
COMM 2016 pp. 525-538. https://www.scopus.com/inward/record.uri?eid=2-s2.
0-84986627816{&}partnerID=40{&}md5=a33dd327ed8989cede66ff76f2a6754d.

Singh, R. K., Chaudhari, N. S. & Saxena, K. (2012). Load Balancing in IP / MPLS Networks : A
Survey, (May): 151-156. https://file.scirp.org/pdf/CN20120200011_57984796.pdf.

Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A. & Budiu, M. (2015). DC.p4, Sosr4: 1-8.
http://dl.acm.org/citation.cfm?doid=2774993.2775007.

Song, H. (2013). Protocol-oblivious forwarding: unleash the power of SDN through a future-
proof forwarding plane, Proceedings of the second ACM SIGCOMM workshop on Hot to-
pics in software defined networking pp. 127-132. http://dl.acm.org/citation.cfm?id=
2491190\

Sridhar, T. & Wright, C. (2014). Geneve: Generic Network Virtualization Encapsulation draft-
gross-geneve-00, pp. 1-46. https://tools.ietf.org/html/draft-gross-geneve-00.

Turull, D., Sjodin, P. & Olsson, R. (2016). Pktgen: Measuring performance on high speed
networks, Computer Communications 82: 39-48. http://kth.diva-portal.org/smash/
get/diva2:919045/FULLTEXTO1 . pdf.

Voros, P. (2018). T4P4S : A Target-independent Compiler for Protocol-independent Pac-
ket Processors, leee Hpsr (June). https://www.researchgate.net/publication/
326652427_T4P4S_A_Target-independent_Compiler_for_Protocol-independent_
Packet_Processors.

https://pdfs.semanticscholar.org/8668/5044b78aed871688f4c7e8d95b4b62538570.pdf
https://pdfs.semanticscholar.org/8668/5044b78aed871688f4c7e8d95b4b62538570.pdf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84986627816{&}partnerID=40{&}md5=a33dd327ed8989ce4e66ff76f2a6754d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84986627816{&}partnerID=40{&}md5=a33dd327ed8989ce4e66ff76f2a6754d
https://file.scirp.org/pdf/CN20120200011_57984796.pdf
http://dl.acm.org/citation.cfm?doid=2774993.2775007
http://dl.acm.org/citation.cfm?id=2491190
http://dl.acm.org/citation.cfm?id=2491190
https://tools.ietf.org/html/draft-gross-geneve-00
http://kth.diva-portal.org/smash/get/diva2:919045/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:919045/FULLTEXT01.pdf
https://www.researchgate.net/publication/326652427_T4P4S_A_Target-independent_Compiler_for_Protocol-independent_Packet_Processors
https://www.researchgate.net/publication/326652427_T4P4S_A_Target-independent_Compiler_for_Protocol-independent_Packet_Processors
https://www.researchgate.net/publication/326652427_T4P4S_A_Target-independent_Compiler_for_Protocol-independent_Packet_Processors

66

Appendix A

Publications

G. P. patra, F. R. Cesen, J. S. Mejia, D. Feferman, C. E. Rothenberg, and G. Pongrécz.
MACSAD: An Exemplar Realization of Multi-Architecture P4 Pipelines. In: 5th P4
Workshop, June 2018.

G. P. patra, F. R. Cesen, J. S. Mejia, D. Feferman, L. Csikor, C. E. Rothenberg, and
G. Pongracz. Towards a Sweet Spot of Dataplane Programmability, Portability and Per-
formance: On the Scalability of Multi-Architecture P4 Pipelines. In: IEEE COMSOC
JSAC’18 Special Issue on Scalability Issues and Solutions for Software Defined Networks,
December 2018

Feferman, D., Rothenberg, C. E. (2017). Modeling P4 programmable devices using
YANG.4. In: X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA).
October 2017.

Sebastian, J., Vallejo, M., Feferman, D. L., & Rothenberg, C. E. (2018). Network
Address Translation using a Programmable Dataplane Processor. In: 17° Workshop em
Desempenho de Sistemas Computacionais e de Comunicagao, September 2017.

Feferman, D., Unicamp, F., Sebastian, J., Unicamp, M., Franklin, N., Sousa, S. De, &
Esteve, C. (2018). Uma Nova Revolugao em Redes: Programacao do Plano de Dados com
P4. In: ERIPI, May 2018.

67

Appendix

The DCG P4 code

//————header ————— //

header_type ethernet_t {
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

}

© ~ (=] ot - W [=

—

10
11 header ethernet_t ethernet;

13 header_type ipv4d_t {
14 fields {

15 version : 4;

16 ihl : 4;

17 diffserv : 8;

18 totalLen : 16;

19 identification : 16;
20 flags : 3;

21 fragOffset : 13;
22 ttl : 8;

23 protocol : 8;

24 hdrChecksum : 16;
25 srcAddr : 32;

26 dstAddr: 32;

27 }
28 }

30 header ipv4_t ipv4;

s2 header_type udp-t {
33 fields {

34 srcPort : 16;
35 dstPort : 16;
36 length_ : 16;
37 checksum : 16;

38 }
39 }

Appendix B. The DCG

P4 code

68

21 header udp_t udp;

42

43 header_type vxlan_t {

44 fields {

145 flags : 8;
46 reserved : 24;
a7 vni @ 24;
48 reserved2 : 8;

19 }
50 }

51

52 header vxlan_t vxlan
53

54 header_type arp_t {
55 fields {

56 htype : 16;

57 ptype : 16;

58 hlength : §;

59 plength: 8;

60 opcode: 16;

61 }

62}

64 header arp_t arp;

65 header ethernet_t inner_ethernet;
66 header ipv4_t inner_ipv4;

67

68 | /———— parser ——————— //

69

70 #define MAC LEARN RECEIVER 1024
71 #define ETHERTYPE IPV4 0x0800

72 #define ETHERTYPE ARP

73

0x0806

74 #define IP_PROTOCOLSIPHL_UDP 0x511

75 #define IP_UDP 0x11
76 #define UDP_PORT_VXLAN 4789
7

78 #define BONE 1

79 #define BIWO 2

so #define BTHREE 3

81

s2 #define BIT_WIDTH 16
83

sa parser start {

85 return parse_ethernet;

86 |

ss parser parse_ethernet {

so extract(ethernet);

9o return select(latest.etherType) {

91 ETHERTYPE IPV4

parse_ipv4;

92 ETHERTYPE_ARP : parse_arp;

93 default: ingress;

102

105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

69

parser parse_arp {
extract (arp);
return ingress;

}

parser parse_ipv4d {
extract (ipv4);
return select (ipv4.protocol){
IP_UDP : parse_udp;
default: ingress;

}
}

parser parse_udp {

extract (udp) ;

return select (latest.dstPort) {
UDP_PORT_VXLAN : parse_vxlan;
default : ingress;

}
}

parser parse_vxlan {
extract (vxlan);
return parse_inner_ethernet ;

}

parser parse_inner_ethernet {

extract (inner_ethernet);

return select (latest.etherType) {
ETHERTYPE IPV4 : parse_inner_ipv4;
default: ingress;

}
}

parser parse_inner_ipv4d {
extract (inner_ipv4);
return ingress;

}
f

ACTION ——o //

action _drop() {
drop () ;
}

action _nop () {

}

field_list mac_learn_digest {
ethernet .srcAddr;
routing_metadata.ingress_port ;

}

field_list inner_ipv4_checksum_list {
inner_ipv4.version;
inner_ipv4 .ihl;

Appendix B. The DCG P4 code

153 inner_ipv4 . diffserv;

154 inner_ipv4 .totalLen;

155 inner_ipv4.identification
156 inner_ipv4 . flags;

157 inner_ipv4 . fragOffset ;

158 inner_ipv4 . ttl;

159 inner_ipv4 .protocol;

160 inner_ipv4.srcAddr;

161 inner_ipv4.dstAddr;

162 }

163

164 action mac_learn () {

165 generate_digest (MACLEARN_RECEIVER, mac_learn_digest);
166 }

167

168 table MAClearn {

169 reads {

170 ethernet.srcAddr : exact;
171 }

172 actions {

173 mac_learn;

174 _nop;

175}

176 size : 100;

177}

178

179 header_type routing_metadata_t {
180 fields {

181 res: 2;

182 aux : 2;

183 ingress_port : 8§;
184 lb_hash: 16;

185 mcast_grp : 4;

186}
187 }

188

189 metadata routing_metadata_t routing_metadata;
190

191 action forward(port, mac) {

192 modify_field (standard_metadata.egress_port , port);
103 modify_field (ethernet.dstAddr, mac);

194 modify_field (routing_metadata.res , BTHREE) ;
195 }

196

197 action Tcast() {

198 modify_field (routing_metadata.mcast_grp, 1);
199 modify_field (routing_metadata.res , BONE) ;
200 }

201

202 action Tmac() {

203 modify_field (routing_metadata.res , BTIWO) ;
204 }

205

206 table MACfwd {

207 reads {

208 ethernet.dstAddr : exact;

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
2

N

5
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261
262
263
264

71

}

}

}

}

actions {

}

forward ;
_nop;
_drop;
Tcast ;
Tmac;

size : 100;

action arp() {

generate_digest (ETHERTYPE_ARP, mac_learn_digest);
modify_field (routing_metadata.res , BONE) ;

table ARPselect {
reads {

}

ethernet .etherType: exact;

actions {

}

arp;
_nop;

size : 2;

field_list load_balancer_fields {
ipv4.srcAddr;

}

field_list_calculation load_hash {

}

}

}

}

input {

}

load_balancer_fields;

algorithm : csuml6;
output_width : BIT_-WIDTH;

action balancer (){

modify_field (routing_metadata.aux, BONE) ;

modify_field_with_hash_based_offset (routing_metadata.lb_hash, 0, load_hash, 2);

action _pop () {

modify_field (routing_metadata.aux, BIWO) ;

action jump (){

modify_field (routing_metadata.aux, BTHREE) ;

table LBselector{
reads {

}

ipv4d .dstAddr : exact;

Appendix B. The DCG P4 code

265 actions {

266 jump;

267 _pop;

268 balancer ;
269 _nop;

270 }

271 size: 100;
272 }

273

274 action _pop-vxlan(mac_dst, mac_src){

275 modify_field (inner_ethernet.dstAddr, mac_dst);
276 modify_field (inner_ethernet.srcAddr, mac_src);
277 remove_header (ethernet);

278 remove_header (ipv4) ;

279 remove_header (vxlan);

280 remove_header (udp) ;

281 }

282

283 table vpop{

284 reads {

285 inner_ipv4 .dstAddr : exact;
286 }

287 actions {

288 _pop_vxlan ;

289 _nop;

290 }

291 size: 100;

292}

293

204 action press(vnid, srcAddr){
295

206 add_header (vxlan);

207 add_header (udp) ;

20s add_header (inner_ipv4);

209 copy_header (inner_ipv4 , ipv4);

300 add_header(inner_ethernet);

301 copy-header (inner_ethernet , ethernet);

302 modify_field (inner_ipv4 .srcAddr, srcAddr);

303 modify_field (inner_ipv4.protocol, 0x11);
304 modify_field (inner_ipv4.ttl, 64);

305 modify_field (inner_ipv4.version, 0x4);

306 modify_field (inner_ipv4.ihl, 0x5);

307 modify_field (inner_ipv4.identification , 1);
308 modify_field (inner_ethernet .etherType, ETHERTYPEIPV4) ;
309 modify_field (udp.dstPort , UDP_.PORT_VXLAN) ;
st0 modify_field (udp.srcPort , UDP_.PORT_VXLAN) ;
311 modify_field (udp.checksum, 0);

312 modify_field (udp.length_, 140);

313 modify_field (inner_ipv4.totalLen , 160);

314 modify_field (vxlan.flags , 0x8);

315 modify_field (vxlan.reserved , 0);

316 modify_field (vxlan.vni, vnid);

317 modify_field (vxlan.reserved2, 0);

318

319 }

320

73

321
322
323
324
325
326
327
328
329
330 }
331
332
333
334
335
336 |
337
338
339
340
341
342
343
344
345
346
a7}
348
349
350
351
352 }
353
354
355
356
357
358
359
360
361 }
362
363
364
365
366
367
368
369
370
371
a2 }
373
374
375
376 }

table LB{
reads {
ipv4d.srcAddr : exact;
}

actions {
press;
_nop;

}

size:100;

action nhop_ipv4 (nhop_ipv4, dmac, macS) {
modify_field (inner_ipv4.dstAddr, nhop_ipv4);
modify_field (ethernet.dstAddr, dmac);
modify_field (inner_ethernet.dstAddr, macS);

table LBipv4 {
reads {
routing_metadata.lb_hash : exact;
}

actions {
nhop_ipv4;
_nop;

}
size:100;

action nhop(port){
modify_field (standard_metadata.egress_port , port);
modify_field (inner_ipv4.ttl ,ipvd.ttl — 1);

table vxlan{
reads {
vxlan.vni : exact;
}

actions {
_nop;
}

table L3{
reads {
inner_ipv4 .dstAddr : lpm;
}

actions {
nhop;
_nop;

}

size:100;

action rewrite_src_mac (smac) {
modify_field (inner_ethernet.srcAddr, smac);

Appendix B. The DCG P4 code

74

377

a7z table sendout {

a9 reads {

380 standard_metadata.egress_port : exact;
381 }

ss2 actions {

383 _nop;

384 rewrite_src_mac;

385}

386 size : 100;

387 }

388

389 //————control —————— //
390

3901 control ingress {

392 apply (MAClearn) ;

393 apply (MACfwd) ;

394 (routing_metadata.res =— BIWO) {

395 apply (ARPselect) ;

396 (routing_metadata.res = BIWO){

397 apply (LBselector) ;

398

399 (routing_metadata.aux = BONE){
400 apply (LB) ;

401 apply (LBipv4) ;

402 }

403 apply (vxlan);

404 apply (L3) ;

405 apply (sendout) ;

406 (routing_metadata.aux = BIWO) {
407 apply (vpop) ;

408 }

409 }

410 }
411 }

412
a13 control egress {

414 }

Listing B.1: The DCG P4 code.

I0)

s C

Appendix

P4 graphs

This appendix present graphs of the parser representation and the tables dependencies of

the VXLAN P4 program.

start

default

parse_ethernet

ethernet.etherType

0x800 0x806

4
parse_ipv4

ipv4.fragOffset I ipv4.ihl I ipv4. protocol

511 parse_arp

parse_udp

udp.dstPort

default

default default

parse_inner_ethernet
default

inner_ethernet.etherType

default

parse_inner_ipv4

Figure C.1: The P4 parser representation of the VXLAN program.

Appendix C. P4 graphs

76

ALL

ALL

(routing_metadata.res == 2)

ARPselect

ALL

(routing_metadata.res == 2)

/

LBselector

ALL

(routing_metadata.aux == 1)

(routing_metadata.aux == 2)

Figure C.2: The P4 tables dependencies representation of the VXLAN program.

7

Appendix

The Load Balancing test code

Bellow we present our code to analyze the distribution of Load Balancing functions. The
test is composed of three steps:

1. Modify the code from BB-gen to generate random IPs.

2. Test each group of IP through our RMSE error methodology seeking the algorithm with
the best distribution. Since we are working with a large number of IPs we included the
multithreading feature to speed up the process.

3. Compile the results into heatmaps graphs.

import os

import random

from random import shuffle
import argparse

import math

import random

import threading

parser = argparse.ArgumentParser(description="IPv4 PCAP generator.’)

args = parser.parse_args ()
rep = args.num
def generate(start, rep):
r=]
i=20

for z in range(start, rep):
for i in range(1,254):
r.append (i)
shuffle (1)
for m in range(1048576):

1 =0
ip.c = 77
for i in range(4):
if 1 = 1:
ip_¢c = ip_c + 7.7 + str(r[0])
1 =0
else:

ip_¢c = ip_c + str(r[0])

28
29
30
31

32
33
34
35
36

37 threadl

38
39

© oo ~ o v - W L) -

I e
o Us W N = O

17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Appendix D. The Load Balancing test code

78

Ctxt”)

print z

try:

import
import
import
import
import

import
import
import
import
import
import
import

def get_hash(j,

os.system (”echo

1 =

1 +1

shuffle (r)

” + str(ip-c) + ? >> ./ipv4/ip_” + str(z) + 7

= threading.Thread (target=generate , args=(0, rep,))

threadl.start ()

Listing D.1: The IP generation code.

CRCmod. predefined

CSV

z1lib

matplotlib
hashlib
matplotlib.use(’Agg’)
matplotlib.pyplot as plt
numpy

time
math
0s

Sys

as np

threading
first=sys.argv|[1]
second=sys.argv [2]
hosts = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

32768, 65536, 131072, 262144, 524288]

first , second):

s = (int(second), int(len(hosts)))

matrix = np.zeros(s)

for k in range (int(first),int(second)):

with open(’./ips/ip_-’ + str(k) + '.txt’, 'r’) as fd:
x =0
cont = 0
CRC32 = []
for row in fd:
cont = cont + 1

if cont > 524288:

break

p = zlib .CRC32(row) & Oxffffffff

q = int(p) %]

CR(C32. append(q)
if cont = int (hosts[x]):
if cont < j:

i =]

avg
hit

continue
hosts [x]
result = np.bincount (CRC32)
= i/]
= abs(result — avg)
=0

eqm

41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

© W N O s W N

10
11
12
13
14

15

17
18
19

79

for m in hit:
eqm = m¥*24eqm
eqm = eqm/float (j)
lista [hosts.index(1i),servers.index(]j)] =
round (((math.sqrt (eqm)) /math.log (i,2)),2)
if x < int(len(hosts))—1:

x =x + 1
else:

break
threadl = threading.Thread (target=get_hash, args=(2, first , second,))
thread2 = threading.Thread (target=get_hash , args=(4, first , second,))
thread3 = threading.Thread (target=get_hash, args=(8, first , second,))
thread4 = threading.Thread (target=get_hash , args=(16, first , second,))
thread5 = threading.Thread (target=get_hash , args=(32, first , second,))
thread6 = threading.Thread (target=get_hash , args=(64, first , second,))
thread7 = threading.Thread(target=get_hash, args= (128 first , second,))
thread8 = threading.Thread (target=get_hash, args=(256, first , second,))

threadl.start ()
time . sleep (120)
thread2.start ()
time . sleep (120)
thread3.start ()
time . sleep (120)
thread4.start ()
time . sleep (120)
thread5.start ()
time . sleep (120)
thread6 .start ()
time . sleep (120)
thread7.start ()
time . sleep (120)
thread8.start ()

Listing D.2: The RMSE error code.

import csv

import matplotlib

matplotlib . use(Agg’)

import matplotlib.pyplot as plt
import numpy as np

import math

import time

lista = []
hosts = [727, 74”7, "8”, 7167, "32”, 7647, 71287, "256”, "5127, 1024”7, "2048”,
40967, 781927, "16384”, 327687, "65536”, "131072”, ”262144”, "524288”]
servers = [”"27, 747 787,
167, 7327, 7647, 71287, 72567
perc = np.zeros ((len (hosts), len(servers)))

maximo = np.zeros ((len (hosts), len(servers)))
minimo = np.zeros ((len (hosts), len(servers)))
avg = np.zeros ((len(hosts), len(servers)))
for i in range(len (hosts)):
for j in range(len(servers)):
print ”servers = 7 4 str(servers|[j])
print "hosts = ” 4+ str(hosts[i])

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73

Appendix D. The Load Balancing test code 80

if int(servers[j]) > int(hosts[i]):

perc[i,j] = np.nan
maximo[i,j] = np.nan
minimo[i,j] = np.nan
avg[i,j] = np.nan
continue
csvFile = csv.reader (open(”./lista_ipv4 /lista[” 4+ str(i) + 7,7 +
str(j) + 7].txt”, "rb”))
print 7./lista/lista[” + str(i) + 7,7 4+ str(j) + 7]. txt”

for row in csvFile:
lista .append (float (row[0]))

total = 0

percentile = np.array(lista)

perc[i,j] = round(np.percentile(percentile , 95) ,2)
maximo [i,]j] = max(lista)

minimo [i,j] = min(lista)

for k in range(len(lista)):
total = total + lista [k]
avg|i,j] = round(total/len(lista) ,2)
lista = []
harvest = avg

harvest .astype(int)

print harvest

fig , ax = plt.subplots(figsize=(10,10))
im = ax.imshow (harvest)

ax.set_xticks (np.arange(len (servers)))
ax.set_yticks (np.arange(len (hosts)))

ax.set_xticklabels (servers)
ax.set_yticklabels (hosts)

plt.setp (ax.get_xticklabels (), rotation=45, ha="right”,
rotation_mode="anchor”)

for i in range(len (hosts)):
for j in range(len(servers)):
text = ax.text(j, i, harvest[i, j],
ha="center”, va="center”, color="w")

ax.set_title (?Average of Mean Square Error of Number of servers vs number of IPs”
)

fig.tight_layout ()

plt .show ()

plt.savefig(”./gyn/ipv4d/avg.png”)

fig . clf ()

harvest = maximo

harvest.astype(int)

print harvest

fig , ax = plt.subplots(figsize=(10,10))
im = ax.imshow(harvest)

74

75 ax.set_xticks (np.arange(len (servers)))
76 ax.set_yticks (np.arange(len (hosts)))
s

78 ax.set_xticklabels (servers)

79 ax.set_yticklabels (hosts)

80

st plt.setp(ax.get_xticklabels (), rotation=45, ha="right”,

82 rotation_mode="anchor”)

83

sa for i in range(len(hosts)):

85 for j in range(len(servers)):

86 text = ax.text(j, i, harvest[i, j],

87 ha="center”, va="center”, color="w")
88

so ax.set_title ("Max of Mean Square Error of Number of servers vs number of IPs”)
9 fig.tight_layout ()

o1 plt.show ()

92 plt.savefig(”./gyn/ipv4 /max.png”)

93
oa fig.clf()
95 harvest = minimo

9¢ harvest.astype(int)

97 print harvest

os fig , ax = plt.subplots(figsize=(10,10))
99 im = ax.imshow (harvest)

100

101 ax.set_xticks (np.arange(len (servers)))
102 ax.set_yticks (np.arange(len (hosts)))

103

104 ax.set_xticklabels (servers)

105 ax.set_yticklabels (hosts)

106

107 plt.setp(ax.get_xticklabels (), rotation=45, ha="right”,

108 rotation_mode="anchor”)

109

110 for i in range(len (hosts)):

111 for j in range(len(servers)):

112 text = ax.text(j, i, harvest[i, j],

113 ha="center”, va="center”, color="w")
114

115 ax.set_title ("Min of Mean Square Error of Number of servers vs number of IPs”)
116 fig.tight_layout ()
17 plt .show ()

us plt.savefig(”./gyn/ipv4 /min.png”)

119
120 fig.clf ()
121 harvest = perc

122 harvest.astype(int)

123 print harvest

124 fig , ax = plt.subplots(figsize=(10,10))
125 im = ax.imshow (harvest)

126 ax.set_xticks (np.arange(len (servers)))
127 ax.set_yticks (np.arange(len (hosts)))

128 ax.set_xticklabels (servers)

120 ax.set_yticklabels (hosts)

130
131
132
133
134
135
136

138
139

140
1

IS
i

142

Appendix D. The Load Balancing test code

82

plt.setp (ax.get_xticklabels (), rotation=45, ha="right”,
rotation_mode="anchor”)

for 1 in range(len (hosts)):
for j in range(len(servers)):
text = ax.text(j, i, harvest[i, j],
ha="center”, va="center”, color="w")

ax.set_title (795 percentile of Mean Square Error of Number of servers vs number

of IPs”)
fig.tight_layout ()
plt .show ()

plt.savefig(”./gyn/ipv4d/perc.png”)
Listing D.3: The Load Balancing heatmaps.

83

Appendix

The LB analysis

In this Appendix we present our analysis of the Load Balancing feature through multiples

polynomials.

E.1 Functional evaluation

In this section we present the comparison of CRC32 with Checksum considering two others

PCAPs of 1024 entries.

rage
300 | @mm Checksum

250

200

4
150

100

8

0 1 2

(a) Load balance between four servers

--- Average
@ Checksum
= CRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Load balance between sixteen servers

Appendix E. The LB analysis 84

—-—- Average
I Checksum
Emm CRC
30 A
25 A
204
0
e

s | ‘ | |‘ “I | ||| I | |
10
5
0

0123 456 7 8 9101112131415161718192021222324252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

(c) Load balance between sixty-four servers

Figure E.1: Scenario 2 PCAP files Load Balanced.

E.1. Functional evaluation

85

300 --- Average
=== Average 80 @ Checksum
= Checksum == CRC
= CRC
| 1 70
250
== - “W | | -- = -- = “WTTRLTHTCTTT I =
60
200
50
0 &
£ 150 40
30
100
20
50
10
o 0
0 1 2 3 o 1 2 3 4 5 6 7 8 9 10 11U 12 13 1 15

30

25

20

IPs

15

10

0

(a) Load balance between four servers

-—- Average
@ Checksum
B CRC

(b) Load balance between sixteen servers

0123456 7 8 91011121314151617 1819 2021222324252627 282930 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

(¢) Load balance between sixty-four servers

Figure E.2: Scenario 3 PCAP files Load Balanced.

Appendix E. The LB analysis

86

E.2 Automated LB analysis

In this chapter we present others measures on our Load Balancing functions analysis. We

have considered three additional parameters for the error measure, they are: the average, the

maximum the minimum of each square in the heatmap.

E.2.1 1IPv4

In this section we expose the main polynomials tested on IPv4 addresses.

16

32

64

128

512

1024

Hosts

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1.0

1.0

1.0 8 0.42

1.0 8 0.47 0.31

1.0 b 0.53 0.35

1.33 0. 0.63 0.41

157 i, 0.77 0.5

2.0 g 0.95 0.63

2.44 J 1.2 0.8

Sal 5 1.53 1.01

4.0 . 1.97 1.28

B2 &k 26 1.69

6.77 o 350 225 1D

9.0 o 495 311 2.0

11.47 7.05 4.43 274

15.69 19.5 10.65 6.54 3.91

20.06 31.46 16.98 10.1 5.77

29.23 54.75 28.37 16.74 9.19

38.32 97.26 49.57 28.52 15.09

54.97.88.59 50.74 26.31

Vv b 2 .\,‘b A

Servers

(a) CRC-16

Hosts

2 N

e 1.0 0.61

R 1.0 0.62

g 1.0 0.68 0. 0.31

EyE 1.01 0.76 0. 0.35 0.23

(Y® 1.33 0.92 0. 0.41 0.28 0.19

PR 1.57 1.11 0.5 0.34 0.23

PR 1.88 1.4 093 0.64 0.42 0.28

BbE 2.44 177 12 0.8 0.53 0.36

ppZE 3.1 229 148 1.0 0.67 045

pLZEE 4.18 295 1.96 1.29 0.87 0.58

PLLTR 533 3.83 249 1.68 1.11 0.76

PR 6.77 5.02 3.33 2.16 1.47 0.99

JELZE 9.01 6.54 441 287 191 13

EPA[Y:E 11.47 8.65 572 3.88 2.54 1.72

[FPE{:f 15.25 11.2 7.5 5.05 3.39 2.29

JEALYPE 20.24 1456 9.89 6.7 4.5 3.04

pLyAUYE 27.0 19.11 13.35 9.07 6.05 4.02

524288 26.9 18.07 11.98 8.03 5.43

1048576 15.93 10.73 7.3

Vv ™ L) \,‘b ,,)’L >

Servers

(b) CRC-32

N4 %

E.2. Automated LB analysis

2 2

4 4

8 8

16 16

32 32

64 64

128 128

256 256

512 512

g 1024 ® 1024 2.25
8 3
2048 REPIYEE 40 283 1.91
4096 3.71 2.47 LR 5.17 3.76 2.49
8192 4.83 3.26 [P 6.54 4.78 3.29
16384 6.45 4.33 16384 SN VANR: v Wy
32768 8.25 5.75 EP¥[:E 11.87 8.36 5.59
65536 11.2 7.44 [SEElE 15.31 10.99 7.54
131072 15.0 9.9 Iy E 19.88 14.42 9.88
262144 20.64 13.48 PIYACYE 26.51 20.19 13.3
524288 27.86 17.72 524288 H26.37 17.57
1048576 35.77 23.77 1048576 .36.07 24.17
Servers Servers

(a) 0x8d95 (b) 0x973afb51

Figure E.2: TPv4 95 percentile of Mean Square Error for different polynomials

Appendix E. The LB analysis

2
4
8
0.06 16
0.14 0.13 32
0.16 0.14 0.12 64
0.17 0.17 0.15 0.11 128
0.25 0.21 0.18 0.14 0. 256
0.27 0.25 0.21 0.16 0. 512 8 2.67
" 0.35 0.32 0.27 0.23 0. P 1024 | 3.65
3 3
* 0.43 043 039 03 B * 2048 A 4.75
0.59 0.61 0.47 0.38 0. 4096 H:H DISHEN3153)
0.8 0.75 0.63 0.49 0. 8192 6.99 4.45
1.13 0.87 0.82 0.62 0. 16384 10.14 5.81
11 135 136 1.12 0.86 0. EPYI:R 20.4 11.42 7.02
06 118 1.6 1.67 125 1.14 0. [EEE[R 22.69 16.13 9.72 6.04
111 2221 276 2.22 195 1.51 1. BESLYFE 30.88 21.32 12.95 8.17
156 215 2.6 277 256 2.0 . 262144 ERRIPERCI PR TR-2]
131 42 455 371 349 269 2. CYZYLLE 62.42 37.89 23.03 15.46

2.12 - 4.58 3.66 2. 1048576 .52.23 31.64 20.11 13.01

R VR 4 @ N A
Servers Servers
(a) Minimum of 0x8d95 (b) Maximum of 0x8d95

32 .4 B B 0.19

64 B X B 0.23

128 08 . b L 0.28

256 K g . - 0.35

512 M . ¥ .6 0.44

1024 % 1.28 1. b 0.55

Hosts

2048 % 164 1. o 0.71
4096 @A 213 1. a 0.92
8192 -J¢A 2.0/ 2 J 1.21
16384 JEH BIGORZ21028 2. 1.59
32768 &8 4.83 3.83 2. 2.08
65536 -JCk 6.41 5.08 3.8 276
JEIYPE 8.15 847 6.72 5. 3.65
PIyaAVY R 11.11 11.16 9.0 6. 4.89

EpZyi::E 15.04 14.93 12.17 9. 6.58

1048576 - 12.2 8.83

Servers

(c) Average of 0x8d95

Figure E.3: IPv4 0x8d95 load balancing analysis

E.2. Automated LB analysis

0.45

0.53

0.68

0.74

RIGTANT" 0.99

BIGERNT" 1.18

Hosts

Y758 2. 1.54
GESI 3! 2.09
6.99 4. 2.56
10.14 5. 3.83
20.4 11.42 7. 4.49
22.69 16.13 9. 6.04
30.88 21.32 12.95 8.17
51.56 29.45 17.58 10.84

62.42 37.89 23.03 15.46

. 52.23 31.64 20.11

'yb ,,)’1/ >) ,\,Q:
Servers Servers
(a) Minimum of 0x973afb51 (b) Maximum of 0x973afb51

0.41

0.45

0.53

0.64

0.8

0.99

1.28

Hosts

1.64

2.8

2.77

3.65 2.92

4.83 3.83

6.41 5.08

8.15 8.47 6.72

11.11 11.16 9.0

15.04 14.93 12.17

Servers

(c) Average of 0x973afb51

Figure E.4: IPv4 0x973afb51 load balancing analysis

Appendix E. The LB analysis

90

Hosts

v ™ g 'yb ,,)’1/ bh

Servers

53
K

(a) Minimum of 0xd175

32

64

128

256

512

1024

Hosts

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1024

Hosts

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

12.77

16.36 10.17

21.67 13.69

31.69 17.12 .3 6.89
43.41 24.23 12.75 9.12 5.33
49.83 31.75 18.37 11.52 7.43

63.05 37.57 22.18 14.65 9.85

.58.34 34.35 21.66 13.45

LK

Servers

(b) Maximum of 0xd175

1.67

2.18

2.85

3.69

4.8

6.52

8.57 8.59

0.42

0.51

0.63

0.8

1.02

RS2

171

2.23

291

3.84

515

6.85

11.31 11.35 9.09

14.53 14.87 12.07

Servers

0.19

0.23

0.28

0.34

0.44

0.55

0.71

0.92

2

1.58

2.08

2.76

3.71

4.92

6.58

(c) Average of 0xd175

Figure E.5: IPv4 0xd175 load balancing analysis

E.2. Automated LB analysis

91

0.0

0.13

0.0

0.12

0.16

0.21

0.19

0.27

0.33

0.46

0.73

0.81

1.42

1.69

2.06

3.0

3.33

0.11

0.12

0.17

0.2

0.26

0.3

0.32

0.47

0.68

0.73

1.12

1.57

193

2.11

2.83

3.37

oA
Servers

(a) Minimum of CRC8

Hosts

0.64

0.74

147 1.0

25 1.44

Hosts

3.01 178

S5 2/

4.49 271

GY/BRN3:58

12.54 7.45 4.59
27.13 16.06 10.37 6.22
39.29 23.6 13.51 8.6
55.44 29.9 17.52 10.66

62.68 39.17 22.41 15.68

.61;01 33.01 20.36 12.28

2 ,\,Q:

Servers

(b) Maximum of CRC8

1.0

1.24

1.6

2l

2.74

3.67

4.84

6.4

8.35 8.34

11.64 11.46

© Vv > 2>
~) o

Servers

(c) Average of CRC8

Figure E.6: IPv4 CRCS load balancing analysis

Appendix E. The LB analysis

2 2
4 4
8 ER 1. 05 055
16 K 0 013 16 8 05 0.63
32 1K 1 014 0. 32 073
[¥® 00 o 12 0.16 [¥® 20 156 092 054 034 023
128 014 017 128 A 79 097 0.67 041 0.26
PILE 0.0 0.09 015 0.23 o. ; ; PELR 35 194 124 082 048 031
(SP® 00 008 019 018 512 K8 49 162 1.03 064 04
P 1024 J 01 03 037 P 1024 e g RAOSIEI 0.77
3 3
BERPIYTR 00 006 037 047 ; ! ! T 2048 X3 41 252
4096 J 0.26 0.58 0.57 4096 b a 3.79
SEPR 00 0.14 058 0.79 8192 88 4.9 294
[LELY® 00 0.54 095 0.97 ! ! d JLELYR 15.0 10.86 6.09 3.89
EPYLLR 00 048 151 168 147 117 09 O EPRLTE 23.0 17.06 9.13 545 3.05
65536 .0 137 267 225 211 158 1. . [FEEIR 28.88 26.46 13.66 8.01 4.6
[ESXIZR 00 6.18 454 466 319 215 1. JESLYZE 35.41 41.98 21.33 11.88 6.52
PYZIVYR 00 24.3913.28 9.43 531 3.42 PIYSTYR 46.72 63.09 32.76 10.31
EPYPELE 0.05 [48.69 28.11 18.78 10.33 6.04 3. 4 EPYPELR 65.89106.3954.18 31.81 16.62
1048576 SN .57,55 34.96 19.19 10.68 6. 1048576 109.9.99.47 55.81 28.67
LY A R4
Servers Servers
(a) Minimum of CRC16 (b) Maximum of CRC16
2
4
8
16
32
64
128
256
512
PRRLCIE 132 134
£
PIVER 1.63 1.74
PILTE 2.13 2.34
8192 JERENEP)
16384 JEXTIREY
EPILLR 476 7.8
65536 JIELRRERZ]
FESIYZR 5.64 23.41 12.87

PIyAVYE 11.6 43.46 22.9 139 7.83

EpXpi: R 15.72 81.84 42.06 24.87 13.33

1048576 21.61.78.31 45.71 23.75

N A

Servers

(¢) Average of CRC16

Figure E.7: IPv4 CRC16 load balancing analysis

E.2. Automated LB analysis 93

0.97 0.55

1.02 0.63 0.38

1.16 0.67 0.43 0.26

1.38 0.78 0.51 0.32

1.62 1.09 0.64 0.4

2.1 126 0.74 0.48

297 1.71 1.07 0.65

3.11 1.98 1.21 0.77

Hosts

421 249 16 0.99

53 3.1 201 1.28

11.77 6.82 4.43 2.77 1.89

15.57 9.44 5.74 3.82 2.17

18.73 13.62 9.33 5.18 2.99

24.0 15.41 9.71 6.93 4.02

33.06 21.34 12.36 8.19 5.23

54.33 30.13 19.54 11.34 6.83

36.72 24.96 14.17 9.21

56.83 33.03 19.03 13.21

v L Oﬁb q/,,,)h 1 L N L db
Servers Servers
(a) Minimum of CRC32 (b) Maximum of CRC32

0.79

1.01

3

Hosts

1.69

2.21

2.79

3.72

4.87

6.37

8.45 8.47

10.94 11.18

Servers

(¢) Average of CRC32

Figure E.8: IPv4 CRC32 load balancing analysis

Appendix E. The LB analysis

2
4
8
16
32
64 8 . b H 0.33 0.22
128 s . . 0.41 0.26
256 e . 8 b 0.53 0.33
512 . E o d 0.65 0.44
» PEETYYE s 318 206 121 078 05
2048 8 9 5 s 0.99 0.68
4096 8 b 8 a 1.37 0.88
PR 11.62 7. 9 d Ly als
16384 -RENEICR 5 3.51 222 1.42
32768 RENERER:YEYE 4.43 296 1.93
65536 RN 6.01 4.0
131072 EEEYPEPE] £58 7.87 5.35
pLPAVYE 51.67 28.44 18.22 11.3 6.9
524288 37.26 21.97 14.79 10.22
1048576 52.6 30.57 19.54 12.46
o L TN S A Y x"?’ ° o A
Servers Servers
(a) Minimum of CRC32c (b) Maximum of CRC32c
2
4
8
16
32
64 B B 0.43
128 A g 0.52
256 JA g 0.64
512 . d 0.8
P 1024 s . 1.03
g
2048 e . 1.34
4096 s 8 171
8192 . . 2.22
16384 -JEX A 2.96
32768 &8 . 3.82
65536 8 X Sl
131072 3 8.57 6.76
262144 .4 11.31 8.97 i 5 o 2SN 1.77
524288 R 9. d 5 3.35 2.38
1048576 . . 4.49 3.19

Servers

(c) Average of CRC32c

Figure E.9: IPv4 CRC32c load balancing analysis

E.2. Automated LB analysis

E.2.2 IPv6

In this section we expose the main polynomials tested on IPv6 addresses.

2 N 2 N

e 1.0 H R 1.0

g 1.0 0.62 0.41 R 1.0
jlE 1.0 0.64 0.45 b 16 NV ! ! 0.31
kPR 1.2 081 0.51 0. b 32 Wi b b 0.35
[¥® 1.33 0.92 0.61 O. 8 5 [¥® 1.33 0. g 0.42
jPEE 158 1.1 0.75 b 5 5 5 128 Ny . s 0.5
PR 2.0 1.41 0.94 O. 4 b 5 256 RN A 0.63
3PE 256 18 1.2 0.8 8 8 5 5 IPE 2.44 1. . 0.79
plopZ® 3.0 2.17 1.5 1.01 O. ’ 5 5 1024 WA . g 0.99

2 2
z £
pIlEE 4.0 293 1.93 1.28 0. 8 b 5 2048 JER: 7S J 1.27
EOEIE 5.17 3.75 2.5 1.66 1. 5 5 5 4096 JEICERECE > 1.69
PR 7.23 496 3.31 222 1. 8 g . 8192 A0 o 5 2.2
pLEEYE 9.0 6.52 431 2.84 1. . 5 g 16384 JENTNGE o 2.84
Ey¥ g 11.73 851 5.67 3.76 2. o . o 32768 RPIVIAR:S d 3.84
[LEELE 15.75 11.02 7.6 4.96 3. . . R 65536 JHENNN . 5.06
YR 21.48 15.14 9.96 6.62 4. § A J 131072 6 15.64 10. 6.74
PV 28.67 20.12 13.2 8.79 5. : g d 262144 PLIEEPIUPAE 8.85
524288 27.58 18.18 11.88 7. : o o 524288 b 11.79
1048576 23.76 16.11 o : . 1048576 15.98
v ™ ® ,\/b ,,)’1« bbt \,,fb '{:)b Vv ™ ® ,\/Q) ,,)’L bb‘ ‘\,‘/‘b 'f’b
Servers Servers
(a) CRC-16 (b) CRC-32

Figure E.10: IPv6 95 percentile of Mean Square Error for different polynomials

Appendix E. The LB analysis

96

Hosts

0.58

0.63 0.76

Hosts

1024

2048 JEK:ZAER:]

4096 JEICINEWA

8192 RPEIE-NE]

0.31

0.25

0.75

1.04

0.95

0.78

1.01

=0

2.08

0.97

1.4

1.92

2.57

25 274

0.94

1.27

1.69

2.35

3.26

16384

32768

65536

131072

262144

15.07 11.36

22.0 13.25

28.5 16.94

35.94 21.26

4.91

10.48 6.03

12.83 8.01

48.67 34.18 18.66 10.97

1.68 3.23 = 3.61

ORI R T

Servers

(a) Minimum of CRC8

524288 39.2 24.92 13.86

1048576
2 ,\,Q: ,,;‘[/

Servers

(b) Maximum of CRC8

2
4
8
16
32
64 0.43
128 0.52
256 0.64
512 0.8
P 1024 1.03
£
2048 166 1.33
4096 214 171
8192 279 2.23
16384 3.66 2.94
32768 4.84 3.88
65536 6.34 5.06
JEIYPE 8.53 8.46 6.74
PIyAVY R 11.29 11.46 9.11
524288 15.23 12.07
1048576

Servers

(c) Average of CRC8

Figure E.11: IPv6 CRCS8 load balancing analysis

E.2. Automated LB analysis

SIS

1.24

Hosts

17/

27

11.38 8. s 3.18

16.71 9. A 3.48

19.6 13.27 8. 4.85

BISES 15.72 9. 6.51

34.29 23.61 13.24 8.27

47.22 33.96 19.43 10.65

37.37 22.06 15.77

30.13 19.43
O R R SO A e
Servers Servers
(a) Minimum of CRC16 (b) Maximum of CRC16

0.65

0.81

1.28 1.01

Hosts

ING5RN1"31!

2.12 1.69

277 2.21

3.63 2.89

4.79 3.84

6.47 5.13

8.58 6.81

11.62 11.5 9.15

E 5 12.14

Servers

(c) Average of CRC16

Figure E.12: IPv6 CRC16 load balancing analysis

Appendix E. The LB analysis

2
4
8
16
32
64 g b K 0.36 0.24
128 . . . 0.41 0.27
256 R . 8 b 0.53 0.31
512 . E . ¥ 0.61 0.39
) @ 1024 d 5 0.77
£ £
2048 RPN [IR J 1.06
EUEIE 10.75 5.85 3. d 1.31
8192 -RERPAR:NEIEN J 1.72
JLELIE 16.79 9.23 5.82 3.58 2.16
EPY[TR 19.4 13.13 8.06 4.79 3.03
65536 0 17.39 10.58 6.05 4.11
FESLYPR 40.29 23.72 13.37 7.89 5.16
pIyAV.YE 44.83 32.01 19.64 10.96 6.97
524288 37.95 23.32 14.48 9.25
1048576 54.17 31.93 20.54 12.42
N A @ o A
Servers Servers
(a) Minimum of CRC32 (b) Maximum of CRC32
2
4
8
16
32
64
128 0.14
256 0.18
512 0.22
P 1024 0.28
£
2048 0.36
4096 0.47
8192 0.61
16384 0.81
32768 JERERE d J d 4 1.06
65536 JILYANCR VNN . 5 d 141
JEIOYPR 8.73 8.72 6.89 5. d J 1.88
PLIVYE 11.47 11.43 9.14 6. 5 o 285N 178
524288 3.36 2.38
1048576 4.51 3.19

Servers

(¢) Average of CRC32

Figure E.13: IPv6 CRC32 load balancing analysis

E.2. Automated LB analysis

0.42

0.45

0.52

0.58

0.82

0.93

1.22

Hosts

1.54

211

11.38 7. . 2.69

16.86 9. b BESE

26.13 15.69 8.0 4.67

30.81 15.89 9. 6.58

34.18 21.8 12.51 9.1

52.89 32.93 17.16 10.79

44.6 24.64 15.34

42.2 31.38 20.66

O R R SO A e
Servers Servers
(a) Minimum of CRC32c (b) Maximum of CRC32c

0.79

1.01

1.29

Hosts

1.67

2.2

2.86

3.71

4.85

6.4

8.15 8.33

11.01 11.32

Servers

(c) Average of CRC32c

Figure E.14: IPv6 CRC32c load balancing analysis

Appendix E. The LB analysis

100

Hosts

1024

Hosts

2048

4096

8192

16384

32768

65536

131072

O I A

Servers

(a) Minimum of 0xd175

262144

524288

1048576

4.36

5.63

11.62 8.51

18.64 10.38

20.2 13.32

28.56 18.88

45.76 24.85

47.11 32.73

5.94

12.96 8.34 5.32

17.27 12.09 7.21

70.32 40.22 21.85 15.29 9.36

.55.84 33.49 22.52 12.89

2
4
8

16 X ! .32 0.23

32 .36 0.26

64 b 43 0.32
128 0¥ ! .52 0.38
256 0 b .64 0.48

512 J0l ! .79 0.6
g 1024 R . .02 0.76

£

2048 % J 29 0.97
4096 A . 7127
8192 X . 21 1.66
16384 B 5 93 217
32768 K8 y .87 2.88
65536 5.12 3.82
131072 KA .57 6.74 5.05
262144 8.94 6.75
[PYPLEE 14.89 14.98 12.0 8.98
1048576 -12.23

Servers

(c) Average of 0xd175

LK

Servers

(b) Maximum of 0xd175

Figure E.15: IPv6 0xd175 load balancing analysis

	Introduction
	Thesis Objectives
	Methodology
	Text Organization

	Background and Literature Review
	Background
	Software Defined Networking (SDN)
	P4
	ODP
	MACSAD
	VXLAN
	NFPA
	Open Source Network Tester (OSNT)

	Related work

	VXLAN-based Data Center Gateway Implementation with P4
	Use Case and Architecture
	Prototype implementation
	Use case complexity
	Functional Validation
	PCAP analysis
	Load balancing evaluation

	Concluding remarks

	Experimental evaluation
	Methodology
	Latency measurements
	Results Discussion

	Throughput
	Multi-core
	Scalability
	Multi-architecture

	Extended evaluation on load balancing performance

	Conclusion and future work
	References
	Publications
	The DCG P4 code
	P4 graphs
	The Load Balancing test code
	The LB analysis
	Functional evaluation
	Automated LB analysis
	IPv4
	IPv6

