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Resumo

As técnicas padrões de design para proteger a execução de código são baseadas em meca-
nismos criptográficos bem conhecidos e em recursos de (micro) arquitetura para codificar
transações de barramento ou isolar o código seguro em plataformas confiáveis, entre ou-
tras. Embora essas técnicas geralmente forneçam níveis adequados de segurança, a maio-
ria delas é ineficiente, consideravelmente impacta o projeto da (micro) arquitetura, requer
mudanças extensas na cadeia de ferramentas de programação ou é tão complicada que
pode criar brechas de segurança inesperadas. Com o objetivo de resolver esses problemas
de segurança na execução de códigos, a Segurança de Computadores por Autenticação
Intrínseca ao Hardware (CSHIA) foi proposta para autenticar todos os blocos de uma
memória externa usando uma chave exclusiva extraída de Funções Físicas não Clonáveis
(PUFs). Com base na implementação em FPGA do processador Leon3 da Gaisler, este
trabalho apresenta uma prova de conceito do CSHIA, apresentando os detalhes e uma
descrição detalhada da implementação do hardware, os compromissos do design e a inte-
gração entre a arquitetura e um processador real. Mostramos os recursos do FPGA, uma
avaliação de desempenho com benchmarks padrão da indústria e estimativas de energia e
área. A versão final do CSHIA forneceu um design robusto e melhoria de segurança para
o processador selecionado, à custa de 2, 76% a 5, 77% de sobrecarga de desempenho, de-
pendendo da solução adotada com um aumento da área lógica de 34% para a configuração
selecionada. A implementação final do CSHIA tornou-se uma plataforma altamente con-
figurável que oferece várias opções de design e recursos de segurança a um usuário final,
onde este trabalho contribuiu para fornecer um chassi que pode ser usado por qualquer
sistema AMBA2.



Abstract

Standard design techniques to secure code execution are based on well-known crypto-
graphic mechanisms and (micro) architecture features to encode bus transactions, or iso-
late secure code into trusted platforms, among others. Although such techniques usually
provide proper levels of security, most of them are either inefficient, considerably impact
processor (micro) architecture design, require extensive changes in the programming tool-
chain, or are so complicated that may create unexpected security loopholes. Aiming to
address this security issues in code execution the Computer Security by Hardware-Intrinsic
Authentication (CSHIA) was proposed to provide authenticity by authenticating all mem-
ory blocks of an external memory using a unique key extracted from Physical Unclonable
Functions (PUFs). Based on Gaisler’s Leon3 FPGA implementation, this work presents
a proof-of-concept of CSHIA, presenting the details and an in-depth description of the
hardware implementation, the design tradeoffs, and the integration between the architec-
ture and a real processor. We show the FPGA resources, a performance evaluation with
industry standard benchmarks and power and area estimations. The final CSHIA ver-
sion provided a robust design and security improvement to the selected processor at the
expense of 2.76% to 5.77% of performance overhead depending on the solution adopted
with logic area overhead of 34% for the selected configuration. The final CSHIA imple-
mentation became a highly configurable platform that offers several design choices and
security features to an end user, where this work contributed to provide a chassis that
can be used by any AMBA2 system.
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Chapter 1

Introduction

The demand for code/data integrity and authenticity has steadily increased. The broad
spectrum of known attacks currently poses a threat to a variety of embedded systems
that need constant protection against tampering. An excellent example of such systems
are the ones that are equipped with large external non-volatile memories to store soft-
ware and data, like voting machines, smart metering devices and employee attendance
control systems. These systems need to provide integrity and authenticity, but usually
not secrecy or confidentiality, in order to be easily audited by governmental authorities
and independent experts.

Due to the stringent nature in available resources of embedded systems, software
solutions for code and data integrity are not efficient due to their impact on the perfor-
mance and power consumption of the system. Besides, software authenticity could involve
a third-party certification authority, considerably increasing the complexity of the final
poduct, thus making hardware a potentially useful way to solve such a problem. A myriad
of hardware solutions for code and data authenticity and integrity have been proposed in
the literature ( [11,21,36,40]), however, some of these, target high-end embedded systems
or more robust configurations.

Other approaches need modifications on the Instruction Set Architecture (ISA) or
processor datapath, leading to complete redesign of code, compilers, operating systems,
among others. Moreover, not all solutions provide integrity and authenticity.

Recently, an architecture aiming at code/data authenticity and integrity was proposed
in [19]. The Computer Security by Hardware-Intrinsic Authentication (CSHIA) provides
authenticity by authenticating all memory blocks of the external memory using a unique
key extracted from Physical Unclonable Functions (PUFs) implemented in each instance.
The authentication tags (called PTAGs) are computed during an enrollment procedure
and later verified or updated on runtime for each memory block brought to the processor.
The main advantages of CSHIA over the previous hardware solutions are that it does not
require changes in the ISA or datapath, being adaptable to most of the embedded system
architectures while providing complete software compatibility, it also uses a separate bus
for the tag memory, which gives designers the freedom to match timing requirements so
as to hide verification overhead.

The CSHIA architecture original proposal had security and viability evaluation, but
how can one implement such a system using industry standard tools and IPs? This ques-
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tion drove this work where we show the implementation details, evaluate the results with
well-known benchmarks showing the performance overheads, and synthesize it presenting
the reports of the final implementation.

1.1 Contributions

The main contributions to this work are the following:

(a) it provides the first hardware implementation of the CSHIA architecture ,using
LEON3 processor;

(b) it analyses the trade-offs of the resulting architecture, performance in benchmarks
and provide area and power estimations.

1.2 Organization of the dissertation

This work is organized as follows, Chapter 2 introduces the necessary concepts needed
for this work. A review of the related work is presented in the chapter 3. The CSHIA
architecture implementation is described in Chapter 4. Chapter 5 details the prototype
and all implementation requirements. The evaluation of the prototype is presented in
Chapter 6 ans Chapter 7 concludes this work.
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Chapter 2

Fundamental concepts

To better understand this work, some basic concepts need to be clarified. It is essential
to understand the role of each component, so the goal of this chapter is to understand
how a physical function can help us achieve a robust architecture. Using a PUF as a
mean to achieve physical security objectives that are secure key generation and storage,
and then using this key together with cryptographic primitives to achieve information
security objectives that are data integrity and authentication.

This chapter will present the PUFs in Section 2.1, also show basic examples to provide
a better understanding of these functions and how we can use it to generate cryptographic
keys. In Section 2.2, a hardware approach of how to achieve information security objectives
are introduced, and finally in Section 2.3, what is a prototype and how we can model it
to answer our design questions.

2.1 Physical Unclonable Functions - PUFs

It is well known that every time an Integrated circuit(IC) is fabricated there are small
random process variations, imperfections that make every path in a design unique, for a
design where the goal is to have always the same behavior for all ICs, these imperfections
are measured and errors are avoided by creating timing constraints that will guide the
Electronic Design and Automation(EDA) tools to generate error-free paths and deliver
a secure robust design. PUFs are physical functions that instead of avoiding, take ad-
vantage of this inherent imperfections to mimic random functions. Their inputs, called
challenges, and outputs, called responses, are designed to have a unique relationship for
every PUF instance. It is possible to explore IC process variations in several ways [26] in
the next sessions we describe possible implementations

2.1.1 PUF Types

It is possible to explore IC process variations in several ways, a great and simple example
to understand the behavior of these functions is an arbiter PUF, pictured in Figure 2.1.
This PUF is composed by a set of crossbar switches and one arbiter, the flip-flop. The idea
behind this construction is to build two paths with the same layout length and compute
the relative delay between these two paths given a challenge X of size N . For every switch
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n, if X[i] is one both paths will pass through the arbiter, if its zero the inputs will be
switched in the output changing the delay of booth paths. To evaluate the output(Y),
the challenge X and a rising signal are provided to both paths, Y is one if the signal to
the latch data input (D) is faster, and zero otherwise. To get a response of size Z, this
PUF construction can be instantiated Z times.

Figure 2.1: One arbiter PUF that receives a challenge X and produces the output Y .

Another PUF type is the Static Random-Access Memory (SRAM) PUF [25], in this
model, each SRAM cell within an SRAM block can be considered a PUF. The typical
cell implementation, shown in Figure 2.2 is built from two cross-coupled inverters at its
core,in a logic sense, this circuit has two stable values, and by residing in one of both
states the cell stores one binary digit. The operation principle of an SRAM PUF is
based on the transient behavior of an SRAM cell when it is powered up, i.e., when its
supply voltage Vdd comes up. The circuit will evolve to one of its operating points, but
it is not immediately clear to which one. In Figure 2.2 the inverters I1 and I2 have its
drive strength determined by the process variations when this memory was manufactured,
these inverters will compete to achieve stability. When one of the inverters is significantly
stronger than the other one, the preferred initial operating point will be a stable state,
and the preference will be very distinct, i.e., such a cell will always power-up in the same
stable state, but which state this is (‘0’ or ‘1’), is randomly determined for every cell.

So in a PUF that uses an SRAM, the challenge is the row and column addresses, the
output is the state of the cell after power up.

2.1.2 PUF as a Cryptographic Key Generator

When a system needs a key in hardware for any purpose, such as encryption, authentica-
tion, or any other application, this key needs to be generated and stored in hardware [33].
The main advantage of using PUFs as key generators is that they can produce keys at
running time, this way, on-chip memories are not needed for key storage. Another benefit
is that they are unclonable, meaning that even the manufacturer itself cannot produce
two PUF instances that will have the same set of Challenge-Response Pairs (CRPs) [16].
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Figure 2.2: A simplistic example of a SRAM PUF , showing the SRAM cell logic circuit
inside an SRAM block.

2.2 Security Properties

All information held and processed by an entity is subjected to threats of attack, error,
and several other vulnerabilities, to protect information assets one need to define, achieve,
maintain, and improve information security. In order to build a robust system, a designer
has at his disposal mechanisms that implements three security properties: authenticity
which is the property that an entity is what it claims to be, integrity that is accuracy and
completeness property, and secrecy that is the property of hiding information. Although
these features can be implemented through software, the stringent nature of embedded
systems demands solutions that consume few clock cycles and are not power consuming.
In the following sections, we discuss hardware implementation of those security features.

2.2.1 Authenticity

Suppose that an attacker wants to add his/her own code for execution in the embedded
system or intends to move the data from one system instance to another. These attacks
can be avoided by employing authentication mechanisms. In this solution, a key (or unique
set of keys) is determined for each instance. Code and/or data are tagged using these keys
during manufacturing. At run time, this key (or set of keys) is used to regenerate tags.
Only a correct key value will be able to verify what was installed during manufacture.
Therefore, an instance will not accept code or data that was not tagged using its own
keys.

Before the introduction of electronic PUFs [16], these keys had to be inserted into
the system before they were made available to the users. To do so, keys are stored on-
chip using non-volatile memories and the manufacturer/vendor controlled the uniqueness
of the keys in each instance. The main downsides of storing key permanently include:
facilitating physical attacks [31], and possibly increasing costs of production since it may
demand integration of different technologies on the same chip.
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2.2.2 Integrity

Similarly to authentication, integrity is ensured by tagging code and data with additional
information such as memory address location and/or timestamps. This prevents an at-
tacker from tampering with a system by, for instance, moving instructions from their
location in memory, setting different initial values of variables, etc. The level of integrity
can be done for an entire program, memory pages, or memory blocks.

Integrity can also be considered at the instruction sequence level, which we refer
as Control-Flow Integrity (CFI). Hardware solutions for control-flow integrity usually
require deep integration between hardware and software [12], that can result not only
in changing the Instruction Set Architecture (ISA) and/or the tool-chain, but also the
processor’s data path, as proposed in [17, 23]. Even though CFI protection is welcomed,
many embedded system applications cannot afford the performance penalties and storage
overhead inherently of this solution. For instance, in applications where user inputs are
limited and I/O involves fixed amounts of data, an attacker has very little room to employ
a buffer overflow or similar attacks prevented by CFI. However, integrity verification
regarding blocks of code and data (as mentioned above) can avoid a variety of situations
that go beyond run time attacks. For example, if an embedded system is unwatched, an
attacker can upload malicious code or modify the data in the external memory even if
the system is not running. Integrity verification can prevent and indicate these violations
before they reach the processor.

2.2.3 Secrecy

An embedded system can also use encryption to prevent exposure of code and/or data
stored in the external memory. Consequently, the processor can run these instructions
and data only after decryption. Therefore, the major drawback of using encryption is the
performance overhead that highly depends on which cryptographic primitive is employed
[34]. Also, secrecy only prevents that an attacker obtains the information, if it is not
combined with a unique key or integrity verification, the system will be vulnerable to
execute code of different system instances and/or to suffer relocation and replay attacks
[14].

2.3 Prototypes

When one comes up with an idea, it can take several steps to test its viability and come
to a final product, sketches, drawings, and possibly prototypes. A prototype is an initial
model built to test a design [2]. Today complex systems can have numerous combinations
of software, hardware, user interactions, and visual among other possible components of
this hypothetical system.

Houde et al. [22] proposes a simple model to understand what prototypes prototype,
in this model, a designer can evaluate its goals and evaluate the prototype. Figure 2.3
shows Houde’s model where the dimensions can be interpreted as follows, bearing in mind
that one artifact is the system being designed.
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Figure 2.3: Houde et al. model for evaluation of the goals of prototypes.

• Role - questions about the functions of the final artifact in a user’s life and this
dimension will represent the context of it.

• Look and feel - denote questions about the sensory experience of an artifact, and
this dimension will require a real user experience.

• Implementation - refer to techniques and components required for an artifact to
accomplish its function. This dimension requires a working system to be built.
Prototypes in this dimension are usually built to answer technical questions about
the artifact and identify performance issues.

• Integration - It refers to a full experience of the design, it should be functional with
the correct context and as close as possible to what it will look to a user.

Today we have cycle accurate computer simulations that allow individuals to test
hardware even without physical instances, prototypes are still useful, though, for testing
functionality, safety, and commercial potential.
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Chapter 3

Related Work

Qualitative analyses of PUFs have already been done in the literature [24] motivated by
several applications such as cryptographic key generation [10,35] and true random number
generation [18, 25]. Unlike those works, which aim at evaluating the quality of a stan-
dalone PUF-inspired mechanism, most of the preliminary work on secure code execution
aimed at keeping instructions and data secure from scrutiny, by using mechanisms like
bus encryption. In [13], Elbaz et al. performed a comprehensive survey of bus encryption,
where they describe many possible ways of using cryptographic algorithms in SoC archi-
tectures, so as to ensure that no malicious instruction/data would be executed by the
CPU. The major shortcoming of these solutions is the usage of on-chip secret key storage
in non-volatile memories, which enable off-line key recovery attacks [30].

AEGIS, the secure processor proposed by Suh et al. in [37], employs PUFs as a cryptog-
raphy primitive to uniquely authenticate code and data in order to prevent both software
and physical attacks. They present a toolchain for developing a secure software for their
architecture which includes a secure operating system to manage different levels of mem-
ory protection. Although the presented toolchain does not require modifications in the
processor architecture, it demands extensive changes in the SoC architecture, in addition
to changes in the compiler and operating system. Moreover, AEGIS does not ensure
full-time security from power-on to power-off; i.e. the system runs unprotected until the
security kernel loads the system. In addition, physical attacks were neither evaluated
nor simulated. Different circuits used in AEGIS, like PUFs and post-processing schemes
for key extraction such as Fuzzy Extractors, have been successfully attacked with side-
channel [27, 39] and semi-invasive attacks [38]. While semi-invasive attacks are hard to
repeal, side-channel attacks have few known countermeasures [28] that can be quickly
adopted.

In 2009, Vaslin et al. proposed a security approach for off-chip memory in embedded
microprocessors [40]. Vaslin et al. used the One-Time-Pad (OTP) scheme to provide
integrity and secrecy. Their architecture encrypts a timestamp, the memory address and
a padding value using AES. Then, this encrypted content is combined with the cache
line. Because they used memory address and timestamp, relocation and replay attacks
are thwarted. However, to inhibit spoofing attacks, memory blocks need tags and Vaslin
et al. proposed using CRC32. One critical point is that their architecture needs not only
an internal timestamp memory but also a CRC32 memory. That led to internal memory
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of at least 18.8% of the size of main memory. Nonetheless, Vaslin et al.’s architecture
was able to achieve a worst-case performance impact of 10% in the tested benchmarks.
However, the area overhead in the FPGA tested almost tripled.

Bobade and Mankar presented in [11] a secure architecture for embedded system.
Their architecture provides integrity and secrecy through an Elliptic Curve Cryptographic
engine. The main difference regarding the other architectures presented here is that
they use the timestamps as private keys. Thus, cache lines are encapsulated with their
address and time stamp (for integrity verification purpose), and then encrypted with
the public key to be stored in external memory. As the timestamps are stored in internal
memory, the decryption can be done with reprocessing the pair private/public key and the
integrity is ensured by the correct decryption of the triad encapsulated: data, address, and
time stamp. Although Bobade and Mankar synthesized their architecture for a FPGAS,
they only simulated the architecture and did not use any benchmark. Nonetheless, they
computed the overhead of slices and LUTs over their baseline processor, which was over
76%. Memory overhead was 25%. Also, they estimated power increment over baseline.
Despite the dynamic power more than doubled in all processor’s frequency simulated, the
static was kept stable.

Recently, Sepulveda, Wilgerodt, and Pehl in [32] proposed a Multi-Processor System-
on-Chip that provides memory integrity and authenticity through PUFs. The proposed
architecture innovates by targeting multi-processors. One key difference in their replay
attack solution is that they use session tokens instead of timestamps. While that is an
innovative way, it may not be sufficient to protect against replay attacks, since tokens are
updated during idle periods and booting time. Thus, in a long period of execution, in
which a specific memory block can be written back multiple times to memory, an attacker
might mount a replay attack. One interesting point is that Sepulveda et al. argues that
CSHIA needs profound modifications in SoC and CPU. However, we believed that this
work demonstrates that only minor modification is needed and they are all transparent
to the core and does not affect how it works. It is also essential to notice that the
authors used a similar Code-offset Fuzzy Extractor CSHIA had employed initially, which
is less secure than the one used in CSHIA in terms of entropy reduction of the key.
Finally, they estimated area and power of the components of their architecture and did
performance evaluation which, by computing an average degradation, was 5.6% on the
tested benchmarks.

Table 3.1 presents a summary of the advantages and drawbacks of CSHIA and related
works. A fair comparison of performance among the works is quite hard to be performed,
due to a variety of benchmarks, baseline cores, choice of platforms, among others. How-
ever, a qualitative analysis of design choices can still be done, as discussed in Chapter
4. For instance, PUFs have continuously been claimed to be a better solution for key
generation than storing on-chip key. In that regard, CSHIA is more advantageous than
those that did not use them. All the mentioned related works have a higher abstraction
level, in this work, we disclose the implementation details and design tradeoffs of CSHIA.
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Table 3.1: Summary of Related Works in comparison with CSHIA.

Work Target Architec-
ture

Advantages Drawbacks

AEGIS [37] High-End em-
bedded systems
and above

A complete solution Integration with standard prod-
ucts can be difficult due to mod-
ification imposed to the whole
toolchain.

[40] Embedded Sys-
tems

Uses AES in OTP mode com-
bined with CRC32 to provide in-
tegrity with low on-chip memory
overhead.

High area overhead in a
FPGA implementation.

[11] Embedded Sys-
tems

Security is based on public-key
cryptography.

No performance evaluation.

[32] MPSoC First PUF based secure architec-
ture for multiple cores.

Does not estimate area and power
increment in regard to the base-
line system.

CSHIA Embedded Sys-
tems

Design Flexibility. Does not provide concrete esti-
mate of area and power.



23

Chapter 4

CSHIA Architecture

The CSHIA architecture was build over an original work in [19], where the security eval-
uation and the viability of such solution were pondered, although the work contained an
original architecture, the implementation details that would make it feasible were still to
be considered. As illustrated in Figure 4.1, this first theoretical proposal was matched
with a platform that would make the implementation possible; this is described in Chapter
5. With a physical platform, the creation of new interfaces was possible, and the design
tradeoffs evaluated. With the end of the design phase, the first CSHIA basic architecture
was ready and, later expanded to receive security upgrades, the goal of this Chapter is
to describe in details the CSHIA architecture and highlight the contribution of this work
and external components.

Figure 4.1: The CSHIA architecture flow since the proposal in [19] until the final evalua-
tion.

This Chapter is organized to introduce the components as they are needed to under-
stand each part of the system. First, a macro look of the CSHIA architecture in Section
4.1 to introduce the building blocks of this implementation, then, since this architecture
will be interconnected using the AMBA2 bus, Section 4.2 describes the main components
of this bus and how they work together to provide high-speed interconnections. Section
4.3 shows in detail all the components that are in the scope of this work and include the
description and waveforms of the signals to explain how they interact with each other
and, finally how CSHIA implementation works and in the security point of view how it
accomplishes the security goals that are described in Section 4.4.
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4.1 Overview

CSHIA was originally proposed in [19] as an architecture for IoT. However, we believe
that CSHIA fits in a broader class of embedded system applications that can benefit
from its nice security features. Many embedded system applications do not need secrecy/
confidentiality, but strongly require code and data authenticity and integrity. Using the
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Figure 4.2: The CSHIA basic architecture.

original work with some architectural elements modified to provide stronger security fea-
tures, the first Leon3 FPGA based implementation of CSHIA was realized. Figure 4.2
illustrates the first CSHIA implementation, where the full functionality originally pro-
posed was available and indicated in light blue. All the interfaces, control, and design
choices are part of this work, the security component hatched in the Figure, the FUZZY
EXTRACTOR which is responsible for extracting and store the security key is an external
IP datailed in [20].

This basic architecture was further evaluated and expanded by Caio Hoffman in [20]
to be robust against replay attacks, for this, the architecture illustrated in Figure 4.3 was
implemented and extra security components were added, the PTAG cache, a timestamp
generation and control and a security feature shown as MERKLE TREE control. Together
these new components that are not part of this work provide a more robust solution that
is evaluated in the next sessions.

The following sections focus on presenting the CSHIA implementation components
and how they work to provide authenticity and integrity, also an introduction of the
AMBA2 protocol is provided to understand the proposed architecture better. Figure 4.3
illustrates the basic components required for CSHIA to work:

• One core that in this implementation is a Leon3 processor;
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Figure 4.3: The CSHIA expanded architecture.

• The CSHIA components:

– PTAG Memory Management Unit (PMMU)

– Bus Handler (BUS-HDLR)

– Security Engine (SEC-ENG)

• One external memory that contains instructions and data;

• One interconnection bus using AMBA2.

4.2 AMBA2

To interconnect complex systems, one can create customized protocols to fit the needs
of the design or use industry standard protocols to save design and verification time
like AMBA2 which is a protocol that enables fast interconnections of components and is
broadly used. This protocol is based on masters slaves and arbiters so, the goal of the
this section is to describe these components and how they work together to make sure all
components communicate properly.

AMBA2 is a flavor of the Advanced High-performance Bus (AHB), where on-chip
memory and other peripherals also reside. This bus provides a high-bandwidth interface
between the elements connected to it, also, located on the bus is a bridge to the lower
bandwidth APB, where most of the peripheral devices in the system are located. Figure
4.4 exemplify a traditional AHB utilization.

AMBA2 AHB implements the features required for high-performance, high clock fre-
quency systems including:
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• burst transfers

• split transactions

• single-cycle bus master handover

• non-tristate implementation

• wider data bus configurations (64/128 bits).

Figure 4.4: Typical AMBA2 system , with a CPU , DMA and other low bandwidth
peripherals.

4.2.1 AMBA2 AHB operation

The AMBA2 AHB operation relies on basic entities to work so, to understand the previ-
ously described AMBA2 components, we need to go one step back and see what the bus
sees. Anything connected to the AHB bus is either a master or a slave, as depicted in
Figure 4.5, where, for instance, the CPU is an AMBA2 master, and the on-chip RAM is a
slave. Who decides the priorities and decode all access is the AMBA2 arbiter. Masters can
perform read and write requests while slaves need to answer when requested, the arbiter
will guarantee a fair execution of those requests. This section will show the operations of
an AMBA2 system.

Before an AMBA2 AHB transfer, from now on just referred to as transfer, can com-
mence the bus master must be granted access to the bus. This process is started by the
master asserting a request signal to the arbiter. Then the arbiter indicates when the mas-
ter will be granted use of the bus. A granted bus master starts a transfer by driving the
address and control signals. These signals provide information on the address, direction
and width of the transfer, as well as an indication if the transfer forms part of a burst.
Two different forms of burst transfers are allowed:

• incremental bursts, which do not wrap at address boundaries

• wrapping bursts, which wrap at particular address boundaries.

A write data bus is used to move data from a master to a slave, during a read data
bus is used to move data from a slave to a master. Every transfer consists of:
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Figure 4.5: Overview of the AMBA2 Organization, with the arbiters masters and slaves
distribution.

• an address and control cycle

• one or more cycles for the data.

In the address and control cycle, the address cannot be extended, and therefore, all
slaves must sample the address during this time. The data, however, can be extended
using the HREADY signal. When LOW these signal causes wait states to be inserted into
the transfer and allow extra time for the slave to provide or sample data, as can be seen
in Figure 4.6. During a transfer, the slave shows the status using the HRESP response
signal where the following values are used:

• OKAY - The OKAY response is used to indicate that the transfer is progressing
normally and when HREADY goes HIGH this shows the transfer has completed
successfully.

• ERROR - The ERROR response indicates that a transfer error has occurred and
the transfer has been unsuccessful.

• RETRY and SPLIT - Both the RETRY and SPLIT transfer responses indicate that
the transfer cannot complete immediately, but the bus master should continue to
attempt the transfer. In normal operation, a master is allowed to complete all the
transfers in a particular burst before the arbiter grants another master access to the
bus. However, in order to avoid excessive arbitration latencies, it is possible for the
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Figure 4.6: AHB basic transfer with one cycle for address and control and one or many
for data.

arbiter to break up a burst and in such cases, the master must re-arbitrate for the
bus in order to complete the remaining transfers in the burst.

4.2.2 AMBA2 Components

As described in Section 4.2.1 master, slaves, and arbiters are the main components of
an AMBA2 system, understanding their behavior in detail will help to understand the
general behavior of the system. These AMBA2 components are a subset of the entire
AMBA2 features, the focus of this Section is to provide the basis to understand the signals
and work required for the CSHIA implementation, for a full reference please check [1].

Masters

Figure 4.7: AHB master interface, with control and data signals. The HBUSSREQ and
HGRANT signals will be used take control over the bus.

An AHB bus master has the most complex bus interface in an AMBA2 system, and
these interfaces are depicted in Figure 4.7. The master contains one direct interface with
the arbiter to receive and request the bus grant, a group of control signals to control the
flow and duration of the transfer and to interfaces for reading and write data. Typically
an AMBA2 system designer would use predesigned bus masters and therefore would not
need to be concerned with the detail of the bus master interface.
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Slaves

Figure 4.8: AHB slave interface, where the HSEL signal will indicate when to start
transfers.

An AHB bus slave, as depicted in Figure 4.8, uses almost the same signals as the
master, the difference is that the slave never controls the bus, so, the interface with the
arbiter is being selected as active and respond to transfers initiated by bus masters within
the system. The slave uses an HSEL select signal from the decoder to determine when it
should respond to a bus transfer. All other signals required for the transfer, such as the
address and control information, will be generated by the bus master.

Arbiter

Figure 4.9: AHB arbiter interface with one HGRANT and one HBUSSREQ for each
master.

The role of the arbiter in an AMBA2 system is to control which master has access
to the bus. As can be seen in Figure 4.9 every bus master has a REQUEST / GRANT
interface to the arbiter and the arbiter uses a prioritization scheme to decide which bus
master is currently the highest priority master requesting the bus. The detail of the
priority scheme is not specified and is defined for each application. It is acceptable for
the arbiter to use other signals, either AMBA2 or non-AMBA2, to influence the priority
scheme that is in use. The address and control signals are used by the arbiter to route the
HWDATA and the HADDR from the granted master to the selected slave as illustrated
in Figure 4.5.
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Arbitration

The arbitration process needs specific control signals, despite the ones described below,
two more signals are used in the AMBA2 system, HLOCK and HSPLIT, the first to indi-
cate that the master wants exclusive access to the bus, the second to restart transactions
when they are interrupted.

• HBUSREQ - The bus request signal is used by a bus master to request access to
the bus. Each bus master has an HBUSREQ signal to the arbiter and there can be
up to 16 separate bus masters in any system.

• HGRANT - The grant signal is generated by the arbiter and indicates that the
appropriate master is currently the highest priority master requesting the bus, taking
into account locked transfers and SPLIT transfers. A master gains ownership of the
address bus when HGRANT is HIGH and HREADY is HIGH at the rising edge of
HCLK.

• HMASTER - The arbiter indicates which master is currently granted using the
HMASTER signal and, this same signal can be used to control the central address
and control multiplexer, automatically routing the correct HDATA and control sig-
nals to the correct slave. The master number is also required by SPLIT-capable
slaves so that they can indicate to the arbiter which master can complete a SPLIT
transaction.

An Example of a master requesting the bus control is shown in Figure 4.13 where the
arbiter grants the access after a few waiting cycles.

Decoder

Figure 4.10: AHB Decoder interface

The decoder in an AMBA2 system is used to perform a centralized address decoding
function, which improves the portability of peripherals, by making them independent of
the system memory map. The Idea is that the decoder will snoop the address and select
with slave will respond to the transaction, also, as shown in figure 4.5 the decoder will
indirectly control a demultiplexer that will route the signals from the correct slave to the
granted master.
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4.3 CSHIA Components

As Section 2.2.2 discussed, the main resource to provide authentication and integrity are
tags. Since CSHIA uses PUF-based keys to generate tags, we called them PUF-Tags,
or PTAGs for short. PTAGs are the core of CSHIA’s design. They will be unique for
each instance of CSHIA due to the unclonability property of PUFs. That ensures a one-
to-one relationship between programs and instances, providing authenticity. To handle
PTAGs, three main components are added to conventional embedded system architecture.
They are: The PTAG Memory; the Bus Handler (BUS-HDLR); and the Security Engine
(SEC-ENG). Figure 4.2 shows this design and how components communicate between
themselves.

PTAG Memory is an external memory and has its own buses. This architectural
decision gives freedom to designers that can choose bus width, frequency, address space,
etc. Because the processor is not aware of any additional component of CSHIA, BUS-
HDLR intercepts data transfers between processor and memory in order to provide them
to SEC-ENG that generates tags. BUS-HDLR can also request data ( on behalf of the
processor) to main memory so as form complete memory blocks that are necessary to
generate PTAGs.

SEC-ENG has three major sub-components. The main one is the PTAG Generator
(PTAG-GEN), which uses input data whose length is equal to a memory block concate-
nated with its address to generate PTAGs. The Fuzzy Extractor is only used when the
system loses its secret key, for instance, after a power cycle. Thus, when the system
is powered on, the Fuzzy Extractor will extract the PUF-based key and provide it to
PTAG-GEN. Finally, we have the PTAG Memory Management Unit (PMMU). The main
functions of the PMMU are to store and request PTAGs from the PTAG Memory and
also to decode internal addresses of PTAGs to physical addresses of PTAG Memory. This
section explains in detail the CSHIA components that are contributions of this work, pro-
viding the signal description, the internal behavior, and the waveforms of all the essential
operations.

4.3.1 Bus Handler (BUS-HDLR)

To implement the CSHIA architecture, all the security operations described in 4.4 will be
performed using a set of words, ideally an entire cache line that the processor might request
but that can be multiple cache lines or any other combination necessary to be in the format
of the SEC-ENG input, this set of words required to calculate the PTAGs from now on
will be referred as SEC Line. The BUS-HDLR has three main functions, monitoring the
processor request and respond it when necessary, assemble a SEC Line and prevent the
processor the execute unsafe or unverified instructions as well as don’t let it write in the
bus any unsafe operation. In this context any instruction or data requested written by
the processor that was not verified by the SEC-ENG is considered unsafe.
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Figure 4.11: Bus Handler interface

Block Diagram

Signal Description

The inputs and outputs of this block can be split in four interfaces, the signals ahbo_in
and ahbi_out the interface with the processor, ahbo_out and ahbi_in the interface with
the bus, ptag_sval_in and ptag_sreq_out with the security engine and control and debug
signals as described in Table 4.1. The description of each type can be found in Appendix
A.

Port in/out Type Description

clk in std_ulogic system clock
rstn in std_logic negated rset
ptag_sreq_out out ptag_sec_req_type security check request
ptag_sval_in in ptag_sec_val_type security check response
ahbi_in in ahb_mst_in_type AHB input from bus
ahbi_out out ahb_mst_in_type AHB output to processor
ahbo_in in ahb_mst_out_type AHB input from processor
ahbo_out out ahb_mst_out_type AHB output to BUS
std_logic bypass_in out std_logic bypass input
log_in in std_logic log bus activities
watchdog_en_in in std_logic enable a watchdog
enroll_done out std_logic enrollment phase status

Table 4.1: Description of the BUS-HDLR ports .

Functional Description

As shown in Figure 4.2 the processor will see the BUS-HDLR as the bus, and by the bus
as the processor, assembling SEC Lines and constantly sending those lines to SEC-ENG.
To store the SEC Lines, an internal buffer with a configurable size is used; this is the
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Figure 4.12: Bus Handler state machine. The blue text indicate the condition necessary
for the to transition to happen, the red text indicates the BUS-HDLR actions.

BUS-HDLR SEC Line buffer and will be from now on referred to as BHS Buffer. When
the processor requests the bus, the BUS-HDLRwill assert the grant, and depending on
the state of the BHS Buffer, load new SEC Lines from the bus or send one from the
BHS Buffer. The BUS-HDLR is implemented using a state machine which gives the
block stability to assemble the SEC Line and to control the flow to the processor and
to SEC-ENG. Since this state machine controls all BUS-HDLR operations the functional
description of this block can be explained using the state transitions of Figure 4.12 and
the following state description:

• IDLE

The system stays in this state until the processor asserts HBUSSREQ, at this time
the BUS-HDLR, on behalf of the arbiter, will answer these requests according to
one of these scenarios:

1. The BHS Buffer contains the address requested by the processor in a SEC Line -
In this case, the processor can start the transaction in the SERVE LEON state.

2. The address requested is not in the BHS Buffer - In this scenario, the BUS-
HDLR will get the grant in the READ GRANT state and evaluate if its a read
or a write, then assemble a new SEC Line.

3. The processor requested a line that was not verified or verified incorrectly by
SEC-ENG - In this case, the system will halt because a security flaw was
detected.

• READ GRANT

This state is required for any transaction in the bus, it requests the bus grant for the
arbiter, asserting the HBUSSREQ signal on behalf of the processor before beginning
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the transaction. The arbiter can answer in two possible ways, with or without wait
states, for the first, illustrated in Figure 4.13, the HBUSSREQ is asserted in time 2,
by the time the arbiter responds, at time 3, HGRANT and HREADY are asserted
indicating that the transaction can start in the next cycle. For the second, depicted
in figure 4.14, The HBUSSREQ is asserted on time 2, but the HREADY signal is
only asserted on time 5 delaying the start of the transactions to time 7, in situations
like this the HREADY signal regulates all the traffic.

Figure 4.13: Requesting grant with no wait states

Figure 4.14: Requesting grant with wait states

Once the arbiter asserts HGRANT, the BHS Buffer is checked, and one of the
positions is selected to be replaced, if the chosen SEC Line contains any updated
value by the processor, then it needs to be written in the memory before loading
a new SEC Line. In this is the case, BUS-HDLR will send it to the SEC-ENG to
calculate a new PTAG before writing the line in the memory, then change to WAIT
PTAG WRITE state while the security operations are done. If no changes were
made in the SEC Linethen a new one is loaded in the READ LINE state.

• READ LINE

A new SEC Linewill be loaded from the main memory into the BHS Bufferto start
a transaction after the bus is granted and all the control signals are in place, as
described in Section 4.2. The Figure 4.15 illustrates two different incremental read
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transfers, the first starts on time 2 indicated by the first HTRANS=NONSEQ, with
halfword size reading positions 0x20 and 0x22, the second transaction starts at time
4 where a small delay is exemplified to show how the HREADY controls the bus
operations, and then three words are transferred to the master. Once an entire SEC
Lineis transferred, the line is sent to SEC-ENG and the state is set to IDLE again,
where the system will halt until the execution is considered secure. After a power
cycle, all the instructions are read and tagged, in this case, the execution is not safe,
so the state is set to UNSAFE before going back to IDLE. This process is explained
in Section 4.4.

Figure 4.15: Incremental burst transfers with halfword and word.

• WAIT PTAG WRITE When a SEC Lineneed to be written, first is sent to the
SEC-ENG to calculate the respective PTAG and store in the PTAG Memory, this
process can take a different number of cycles depending on the features used in the
SEC-ENG, this process is explained in Section 4.3.2. After the PTAGis calculated
the line can be written in the state WRITE LINE.

• WRITE LINE The write process is much similar to the read, as Figure 4.16 shows
the difference is the HWRITE signal that is asserted during the entire transfer. After
the write is completed the state is set to IDLE and the BUS-HDLR is ready to send
respond the processor requests.

• SERVE LEON

On this state all LEON requests read or write are executed, the BUS-HDLR will
assert the HGRANT and starting acting like the bus until there is data in the BHS
Buffer. The transfers towards the processor are the same as described before in
Figures 4.15 and 4.16, when the processor requests any address that is not on the
BHS Buffer, the state is set to IDLE.

• UNSAFE After a power cycle all the instructions are read and tagged in a pro-
cess called enrollment that can take a different number of cycles depending on the
features used in the SEC-ENG, the enrollment is explained in Section 4.4. After a
SEC Lineis considered secure during the enrollment phase, the state goes to IDLE.
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Figure 4.16: Incremental write burst of words.

4.3.2 Security Engine

Figure 4.17: Security engine interface.

This block is responsible for the security part of CSHIA, as shown in Figure 4.17 it
contains one interface toward the PTAG Memory to read and write PTAGs, one interface
towards the BUS-HDLR and also control and debug signals described in Table 4.2. The
SEC-ENG has three main functions, extract the key from the PUF, generate and validate
PTAGs and make the PTAG Memory operations transparent to BUS-HDLR and the
processor.
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Signal Description

Port in/out Type Description

clk in std_ulogic system clock
rstn in std_logic negated reset
ptag_sreq_in in ptag_sec_req_type security check request
ptag_sval_out out ptag_sec_val_type security check response
ptag_mreq_out out ptag_mreq_type ptag memory request
ptag_mresp_in in ptag_mresp_type ptag memory response
enroll_done in std_logic enroll phase status
status in std_logic internal state

Table 4.2: Description of the SEC-ENG ports.

Functional Description

Figure 4.18: SEC-ENG state machine. The blue text indicate the condition necessary for
the to transition to happen, the red text indicates the SEC-ENG actions.

The SEC-ENG is the core of CSHIA, here all the security features take place. This
block has the following features:

1. Extract the cryptographic key from the SPUF
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2. Create the PTAGs for each SEC Line

3. Validate PTAGsan inform the BUS-HDLR that the execution is secure

4. Control the PTAG Memory

The implementation of SEC-ENG uses a state machine illustrated in Figure 4.18 to syn-
chronize the internal components so, the state machine transactions will be used to ex-
plain how SEC-ENG works. The initial state where IDLE, VALIDATE,CALC PTAG and
WRITE PTAG, after the CSHIA expansion to add a Merkle Tree two more states were
added, WRITE ON TREE and WAIT ON TREE to cooperate with the latency of the
tree operations. There are two possible configurations for the SEC-ENG, with or without
a Merkle Tree to provide extra protection and improve the integrity of the system this
states are explained bellow.

• IDLE

The SEC-ENG stays in the IDLE state until a valid SEC Line is sent by the BUS-
HDLR when the line arrives either is to write or validate a PTAG, for both cases,
the line will be registered, and a PTAG will be generated so that the next state will
be CALC PTAG.

• CALC PTAG After a SEC Line is registered in IDLE state, it is used to generate
a PTAG, a process that can take many clock cycles. After the PTAG is ready,
the initial controls signal from the BUS-HDLR are evaluated, and the state is set to
either VALIDATE for a read operation or WRITE PTAG if this is a write operation.
In the extended CSHIA the next state is set to either WAIT TREE for a read
operation or WRITE ON TREE if this is a write operation. For all possible cases,
if the operation was a read, a request is made to the PMMU to fetch the previously
calculated PTAG of the equivalent SEC Line.

• VALIDATE Since in this state the PTAG from the PTAG Memory and the newly
generated one from the CALC PTAG state are ready, the comparison between the
two values can be done, and the result as a security response to the BUS-HDLR can
be sent. Then the system goes back to IDLE.

• WRITE PTAG This state signalizes to the PMMU that the PTAG from the
CALC PTAG state can be written in the PTAG Memory and confirmation to the
BUS-HDLR is sent.

• WRITE ON TREE When the Merkle Tree is used, this state will utilize the
CSHIA extensions to write the PTAG on the memory. It requires a different set of
operations that is out of this work scope and after the write is done the next state
is IDLE again.

• WAIT TREE After a PTAG is calculated in a read request, if the Merkle Tree is
used, the system will need time to retrieve the current PTAG from the tree. This
state will wait for it, and the next state will be VALIDATE.
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SEC-ENG operation

The SEC-ENG operations described in the previous sections can be better visualized as a
continuous operation, so every time a new SEC Line is loaded it will be called a validate
operation and every time it is written it will be called a write operation. The validate
and the write transactions are described next.

• Validate PTAG - As can be seen in Figure 4.19 on time 2 the BUS-HDLR sends a
SEC Lineto the SEC-ENG, the line is registered and the generation of the PTAG starts,
when the ptag_ready signal is asserted, the equivalent PTAG for the SEC Line is
requested from the PTAG Memory oin time 5. On time 6 in one cycle the com-
parison is made and if the PTAGs match a line_secure flag is asserted and the
BUS-HDLRcan continue to serve the processor.

Figure 4.19: PTAG read and validate on SEC-ENG.

This process is slightly modified in the extended CSHIA, as can be seen in Figure
4.20, on time 5 the new PTAG will be compared to the content of the tree so, the
new state WAIT TREE is used to wait for this operation and then on time 8 the
comparison is made and the SEC-ENG can proceed.

Figure 4.20: PTAG read with Merkle Tree

• Write PTAG - for a write operation, like in the example from Figure 4.19, the
SEC Line that come from BUS-HDLR on time 2 together with a write request
are registered on IDLE state. Next a new PTAG is generated in the CALC PTAG
state, after the PTAG is ready and the ptag_ready signal is asserted on time 5, a
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request to the PMMU is made to write the new PTAGin the PTAG Memoryon time
6, finally the state is back to IDLE and a line_secure flag is asserted on time 7 so
the BUS-HDLR can continue its operation.

Figure 4.21: PTAG write on SEC-ENG.

In the extended CSHIA an extra step is needed as depicted in Figure 4.22 on time
5 a write is performed on the Merkle Tree and after this write is complete on time
8 the SEC-ENG can continue its operations.

Figure 4.22: PTAG write on sec engine with Merkle Tree.

4.3.3 PTAG Memory Management Unit (PMMU)

The main functions of the PMMU are to store and request PTAGs from the PTAG
Memory and also to decode internal addresses of PTAGs to physical addresses of PTAG
Memory. This block is required every time the BUS-HDLR needs to execute a security
check, it needs to provide the PTAG from the equivalent SEC Lines to be compared in the
VALIDATE state of the SEC-ENG and write the newly generated PTAGswhen requested
in the WRITE PTAG state of the SEC-ENG. Other blocks of CSHIA are agnostic to the
PMMUoperation since it controls the PTAG Memory that is not connected to the bus.

4.4 Operation Modes

The previous Sections presented the CSHIA and AMBA2 components, now in a functional
point of view CSHIA can be split into two phases, enrollment and runtime. The enrollment
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phase described in Section 4.4.1 is the initial and crucial step ensure that the security
features works correctly, the runtime phase is the regular operation, where the code will
be executed and protected against attacks as described in Section 4.4.2.

4.4.1 Enrollment Phase

In order to ensure authenticity and integrity, an initial procedure has to be conducted by
the manufacturer/vendor. This enrollment procedure will activate the Fuzzy Extractor to
to extract the secret key from PUFs. Once that is done, the BUS-HDLR brings all memory
blocks for tag generation. Next, this procedure is explained in detail.

Key Extraction

PTAG Generator implements a Pseudo-Random Function (PRF), which is a primitive
cryptographic very similar to a hash function with a significant difference: the input pro-
cessing is based on a secret key. In order to provide uniqueness to every CSHIA instance
this key has to be unique. As aforementioned, PUFs cannot be cloned, thus they can
provide this uniqueness. Nevertheless, one big conundrum of using electronic PUFs to
generate keys is that they are inherently unstable. Due to their nature of leveraging on
the imperfection of the fabrication process, external factors such as temperature variation,
voltage variation, etc., can interfere with their responses. Thus, varying responses to chal-
lenges during the lifetime of devices. In order to provide consistency in PUF responses,
Fuzzy Extractor (FE) are employed. In simple terms, FEs are schemes comprised of an
extraction algorithm and a recovery procedure. Becker provides a solid review and formal
definitions in [9].

There are multiple ways of implementing a Fuzzy Extractor. Originally, CSHIA was
proposed using a Code-offset FE, which is well-known to reduce the entropy of extracted
keys [7]. To strengthen the CSHIA design, we now use an adapted version of the Index-
based Syndrome (IBS) FE proposed by Yu and Devadas in [42]. Figure 4.23 a illustrates
the process of key extraction of CSHIA’s FE. In general terms, a bit string r is extracted
from PUFs. Then, the FE generates a syndrome s of r using a (n, k, t) Error Correction
Code (ECC). The FE also extracts a bit string w and combines it to the syndrome s to
generate an encoded helper data h. This helper data h can be externally exposed and
will not leak information about r (that can be used as a secret key or derive the key).

To fully explain Figure 4.23 a, the chosen parameters are detailed. First, CSHIA incor-
porates PUFs that produce 64-bit responses. These PUFs will be responsible for generat-
ing each string r and w that are 64 bits long. To match the length of r and w, CSHIA has
a (127, 64, 10)-BCH ECC. As Figure 4.23 a depicts, there are four-bit strings ri, which
are compounded two by two and fed to the PRF (Figure 4.24). Such combinations were
specifically designed to match the PRF chosen for CSHIA, the SipHash [8], which has an
output of 64 bits and uses a key of 128 bits. Therefore, the first pair of bit strings ri is
concatenated with a constant and processed by the PRF using the second pair of bit string
ri as key. That generates a hash K1. Then, inverting their places and concatenating the
second pair with a different constant, a hash K2 is obtained. Concatenating K1 with K2

results in K which is the secret key of CSHIA. Notice that C1 and C2 in Figure 4.24 are
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(a) Fuzzy Extractor during key extraction.
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(b) Fuzzy Extractor during key regeneration.

Figure 4.23: Fuzzy Extractor actions during the enrollment and recovery procedure.

replacing addresses for input of the PTAG-GEN. One can notice that assuming that each
bit string ri has at least half of their length of entropy, each part of the key will have full
entropy. Hence, the key has full entropy.

Full Memory Protection

The Enrollment Phase proceeds to tag the memory range the manufacturer/vendor spec-
ified during design. Now that PTAG-GEN has a unique key, SEC-ENG orders BUS-
HDLR to bring all memory blocks and deliver them to it. SEC-ENG will use PTAG-
GEN to generate PTAGs.

4.4.2 Runtime Phase

After the enrollment phase, CSHIA instances are ready for distribution. Here is how
CSHIA’s components work together. BUS-HDLR checks for memory read-write opera-
tions of the processor. When it perceives a memory read, it will capture memory words
and/or request memory words to compose a memory block. Then it sends this memory
block and its address to SEC-ENG. On its turn, SEC-ENG uses PMMU to bring the corre-
sponding PTAG of that memory block from PTAG Memory, while PTAG-GEN computes
a PTAG using the content served by BUS-HDLR. After that, the PTAG brought from
PTAG Memory and the one computed are compared. If they match, SEC-ENG knows
that neither the PTAG nor the memory block were tampered with. Otherwise, SEC-
ENG alerts the handler that can isolate the processor or sends a non-maskable interrupt
to the processor.

For write operations, the process is more straightforward. Once any memory block
that reached the processor was verified for integrity and authenticity, BUS-HDLR can
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Figure 4.24: Key generation on CSHIA.

serve the cache line to SEC-ENG that uses PTAG-GEN to compute a new PTAG and
PMMU sends that PTAG to PTAG Memory. During the product lifetime, the device
can be rebooted and turned off and on multiple times. While this will not affect PTAGs,
which are externally stored in PTAG Memory, the secret key has to be recovered every
time the system comes back from off-line periods. This recovery procedure of the Fuzzy
Extractor is described next.

Key Regeneration

During the enrollment, there were eight challenges selected to produce four ri and four
wi values. These challenges and helper data can be exposed off-chip and stored in
PTAG Memory if the designer chooses to do so. The recovery process of the secret
key can be seen in Figure 4.23 b. After using the challenges and all helper data, the syn-
dromes are recovered. Due to inconsistent nature of PUFs, the fuzzy extractor actually
recovers bit-flipped versions w′

i and r′i, what leads to the BCH decoder receive r′ and s′.
Once bit flips in ri values are corrected, the FE uses all ri to regenerate the secret key as
Figure 4.24 shows.
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Chapter 5

CSHIA Prototype

To test the CSHIA architecture we utilized industry standard IPs provided with no cost
for academic purposes, the target processor to receive the security updates was the Leon3,
any processor with an AMBA2 interface could be used since the goal of this work is to
test how easy the implementation fits an already existing design and the impact on the
performance. This chapter shows the prototype hardware setup in Section 5.1 giving
details of the design kit used for this implementation and Leon3, the processor selected
to host CSHIA, and in Section 5.2 the tools used to make this implementation work and
its features are presented.

5.1 Hardware setup

Figure 5.1: CSHIAintegrated with the DE2-115 kit ,with Leon3 , DSU and all presented
security components.

We chose the Leon3 platform from Cobham Gaisler [4] to implement CSHIA. Leon3 is
a VHDL implementation of a SPARC V8 processor with configurable parameters, which
together with some additional IP cores provide a suitable solution for embedded systems.
In addition, Leon3 has a free version for academic purposes that include sophisticated
debugging tools, and it is available for a variety of FPGA Development kits. Gaisler
keeps an email list for support and constant updates are provided. All these features are
interesting because CSHIA can be an extension of the platform available to the research
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community, and which also has solid design choices since Leon3 is a product available to
the industry.

The implementation is based on Figure 4.3 and better visualized in Figure 5.1. Leon3’s
processor (the core) is connected through the main memory by a AMBA2 Bus version
2.0. In our modification, the processor’s I/O master bus connects it to BUS-HDLR, which
then provides a new I/O master bus for the rest of the components in the platform. Thus,
BUS-HDLR is transparent to all components of the platform, even the core. One of the
components that is specific of Leon3’s platform is the Debug Support Unit (DSU), which
allows a designer using a debug host (such as a computer) to connect to development
kits running Leon3. Through the debugging connection, a program can be loaded to the
FPGA memory, started, paused, among other useful functions.

Table 5.1: CSHIA FPGA implementation configuration.

Component Parameter
Leon3 Processor

Frequency 50 MHz
Instruction Cache 16 KB
Data Cache 16 KB
Cache Line Size 256 bits
Memory Word 32 bits

Code and Data Memory Up to 128 MB
Code Start Address 0x40000000
Data Start Address 1 0x40013000
Data Start Address 2 0x40023000

BUS-HDLR Buffer 128 Bytes
Fuzzy Extractor

ECC (127,64,10)-BCH
PUFs 64 × 64-bit Arbiter PUFs

PTAG-GEN
PRF SipHash-2-4
SipHash-2-4 key 128 bits
PTAG generation 10 cycles
PTAG length 64 bits

PTAG Memory 216,064 bytes
Code and Data PTAGs 18816 words of 64 bits
Merkle Tree PTAGs 8192 words of 64 bits
Data coverage 512 KB
Total coverage 588 KB

PMMU
Time Stamp Memory 214 timestamps
Time Stamp Length 16 bits
PTAG Cache 4 KB
PMMU Buffer for Merkle Tree 2 * number of cache lines

We implemented CSHIA in an Altera FPGA Development Kit DE2-115. The parame-
ters of the processor and CSHIA are in Table 5.1. The Altera’s kit allows the processor to
run at 50 MHz. The total amount of SDRAM memory dedicated to Leon3 is 128 MB. As
convention all programs starts by its .text segment (code) at the address 0x40000000.
We set .data segment (data) to start at 0x40013000, or at 0x40023000, depending on
the size of the code segment. As described in the previous section, BUS-HDLR has a
buffer that stores memory words. When these words form a memory block, it is handed
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to SEC-ENG. We set the size of this buffer to 4 cache lines, which gives a total of 128
bytes. The 128-bit SipHash’s key is extracted from 64 Arbiter PUFs (APUFs). Although
any PUF could be used, due to the simplicity of design we chose the APUF as a proof
of concept. Each APUF has a 64-bit challenge input. PTAG generation lasts 10 cycles,
between SEC-ENG request and PTAG-GEN reply.

Continuing to look at Table 5.1, the PTAG Memory uses internal memory of the
FPGA. This option arose due to limiting options available in the kit. Because we wanted
to design a 64-bit bus memory, no better option than internal memory was available. The
SRAM of the kit only allowed 16-bit words. We also could not increase the frequency
of the SRAM using PLLs since its maximum frequency was limited to 125 MHz, and, to
simulate a 64-bit bandwidth, we would need at least a SRAM operating at 200 MHz. The
option for FPGA internal memory limited our coverage to a maximum of 512 KB of data
memory, which resulted in a memory overhead of 36 % (code, data, and Merkle Tree). In
addition, to reduce unused memory words in PTAG Memory, we split it into two. This
allowed to create an easy decoder to separate PTAGs of memory blocks from those of
chunks of PTAGs.

5.2 GAISLER Tools

Together with Leon3 Gaisler also provides simulation and debug tools, the simulators
to test software while the hardware is being developed and the debug software named
GRMON to load and debug programs directly on hardware. Whit GRMON one can
access all masters and slaves on the bus and perform debug operations like inserting
breakpoints for instance. This section gives us an overview of the GRMON features and
an explanation about how the debug works.

5.2.1 Overview

GRMON [15] is a general debug monitor and control software that can be used after
one SoC design, using GRLIB IP Library cores is loaded to an FPGA or after being
manufactured as an ASIC. With the GRMON console, it is possible to download and
execute Leon3 applications, and it also includes the following features:

• Read/write access to all system registers and memory

• Built-in disassembler and trace buffer management

• Downloading and execution of LEON applications

• Breakpoint and watchpoint management

• Remote connection to GNU debugger (GDB)

• Support for USB, JTAG, RS232, PCI, Ethernet and SpaceWire debug links
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5.2.2 Debug

The GRMON debug monitor is intended to debug SOCs designs based on the LEON
processor. The monitor connects to a dedicated debug interface on the target hardware,
through which it can perform read and write cycles on the on-chip bus (AHB).LEON3
also supports JTAG, ethernet and spacewire (using the GRESB ethernet to spacewire
bridge) debug interfaces. On the target system, all debug interfaces are realized as AHB
masters with the debug protocol implemented in hardware. There is thus no software
support necessary to debug a LEON system, and a target system does in fact not even
need to have a processor present.

Figure 5.2: GRMON Interface

GRMON can operate in two modes: command-line mode and GDBmode. In command-
line mode, GRMON commands are entered manually through a terminal window. In GDB
mode, GRMON acts as a GDB gateway and translates the GDB extended-remote pro-
tocol to debug commands on the target system. As illustrated in Figure 5.2 GRMON is
implemented using three functional layers: command layer, debug driver layer, and debug
interface layer. The command layer consist of a general command parser which imple-
ments commands that are independent of the used debug interface or target system. These
commands include program downloading and flash programming. The debug driver layer
implements custom commands which are related to the configuration of the target system.
GRMON scans the target system at startup, and detects which IP cores are present and
how they are configured. For each supported IP core, a debug driver is enabled which
implements additional debug commands for the specific core. Such commands can consist
of memory detection routines for memory controllers, or program debug commands for
the LEON processors. The debug interface layer implements the debug link protocol for
each supported debug interface. The protocol depends on which interface is used, but
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provides a uniform read/write interface to the upper layers. Which interface to use for a
debug session is specified through command-line options during the start of GRMON.
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Chapter 6

CSHIA Evaluation

The hardware setup described in Chapter 5 was evaluated to measure the impact of
the implemented architecture on the original provided by GAISLER. The evaluation was
performed in two ways, performance, and resources(Area and Power). This chapter de-
scribes the goals of this evaluation, the experimental setup, and results. First, it describes
benchmarks and experiments configuration in Section 6.2. Then, it presents experimental
results on performance in Section 6.3, also in the area and power estimates discussed in
Section 6.4.

6.1 Evaluation Goals

When evaluating a hardware design, two particular metrics are of interest, the perfor-
mance of that design and the resource consumption [41]. In this work, the goal was to use
industry standard benchmarks to measure performance, in this case, the MiBench suite,
and for the resources estimate area and power as close as possible to the final result.

As discussed in the previous chapters, the intention of this evaluation is to measure the
CSHIA extended implementation since it provides a more robust solution, the evaluations
of the next sections include all the previously described components that are part of this
work.

6.2 Experimental Setup

Using GRMON, we are able to load programs, measure runtime, insert breakpoints, and
set some Leon3 parameters. As benchmarks, we chose nine programs from the MiBench
suite [5]: basicmath; bitcount; susan; qsort; fft; fft_inv; sha; stringsearch (or just
search for short). These benchmarks were either executable without input files or easily
modified to run without them. Thus, for some benchmarks we incorporated input files
in their data segment, and these modifications were evaluated against reference outputs.
MiBench usually provides two types of inputs: small and large. We ran both inputs for
most of the benchmarks, except by basicmath, fft, and fft_inv. The large inputs of
these programs did not affect the size of the data segment and yet most of their run time
was dominated by printing their outputs over GRMON.
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Table 6.1: Coverage of data segment in benchmarks.

Benchmark .data segment size (KB) Cover (%)
qsort_small 54.9 100
qsort_large 588.6 86.99
bitcount_small 3.3 100
bitcount_large 3.3 100
sha_small 307.2 100
sha_large 3174.4 16.13
search_small 3.4 100
search_large 13.4 100
fft_small 2.7 100
fft_small_inv 2.7 100
dijkstra_small 31.1 100
dijkstra_large 31.1 100
basicmath_small 2.7 100
susan_small 23.9 100
susan_large 326.7 100

As Section 5.1 discussed, the CSHIA implementation is able to cover up to 512 KB of
data. This was enough for most of the benchmarks except by the large inputs of qsort
and sha, as Table 6.1 shows. Only the .data and .bss segments of the programs were
covered. We did not have enough memory to reach the beginning of the .stack segment
and we would only were able to cover a small portion of .heap segment.

Each benchmark was run in eight different instances of CSHIA in [20](1) The first
CSHIA instance is the one that BUS-HDLR is disabled and bypasses incoming and out-
going bus transfers from the processor. We called this instance as Leon3 Baseline. (2)
The second instance of CSHIA uses the timestamps solution against replay attacks. We
defined it as CSHIA-TS. (3-8) The remaining instances are variations of CSHIA when a
Merkle Tree is used as a solution against replay attacks. Since this works only evaluate
the CSHIA implementation and not the tradeoffs of the CSHIA extended security fea-
tures, we will compare the (1) and (2) with (3) CSHIA-MT -64x2-LRU, an instance of
CSHIA with a Merkle Tree and PTAG Cache of 64 lines and 2 sets.

6.3 Performance Analysis

Table 6.2 shows our results. The first conclusion is that CSHIA-TS performs better than
the instance using the Merkle Tree. CSHIA-TS worst performance penalty is 8.30 % for
sha_small and has an average performance penalty of just 2.76 %. Because CSHIA could
not entirely cover sha_large, its performance penalty ended up being smaller than its
counterpart. The bitcount and fft benchmarks had inconsistent results in some cases,
when comparing all instances together. Delving into reasons for that, we found out that
they are dependent of random number generation and this was affected by the interven-
tion of CSHIA in the AMBA2 bus. Therefore, for those benchmarks, the performance
difference between CSHIA instances should not be considered significant. Another obser-
vation regards to qsort_small and qsort_large. They presented similar behavior of the
sha benchmarks, despite CSHIA almost entirely covers the data segment of qsort_large.
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Table 6.2: Performance overhead in % of the evaluated CSHIA instances in comparison
of running times in Leon3 Baseline.

Benchmarks CSHIA-TS (%) CSHIA-MT instance(64x2-LRU)(%)
qsort_small 3.77 9.90
qsort_large 0.05 0.05
bitcount_small 0.00 0.00
bitcount_large 2.43 0.00
sha_small 8.31 16.55
sha_large 1.78 4.75
search_small 0.10 0.00
search_large 0.00 0.01
fft_small 0.00 1.07
fft_small_inv 0.92 0.00
dijkstra_small 6.40 14.09
dijkstra_large 7.35 16.90
basicmath_small 1.73 1.73
susan_small 1.37 2.73
susan_large 7.23 18.72
Average 2.76 5.77

Because verification of PTAGs of code memory blocks is equal in CSHIA-TS and
CSHIA-MT, the only way to improve performance of CSHIA is reducing the number of
accesses to PTAG Memory for data memory blocks. Thus, increasing the PTAG cache
size may lead CSHIA-MT to obtain better performance than CSHIA-TS. Obviously, these
choices need to take into account other variables such as area and power, which we discuss
next.

6.4 Area and Power Estimates

Since we did not have access to standard tools from industry to synthesize VHDL, we used
the area and power proportionality relation [29] to compute our estimations. For that,
we used well-known open tools like CACTI 5.3 [3] for cache memories estimative of power
and area, and Ahmed et al.’s work [6] that presents area and power for a synthesized
Leon3 processor on 65 nm LPLVT (Low Power Low Voltage Threshold) process using ST
Microelectronics libraries.

Ahmed et al. presented their Leon3 design separating area, static and dynamic power
for the core and its cache memory. We ignore their cache memory values since they differ
from our implementation. Moreover, our primary goal is to estimate the area of logic
elements. Thus, we will assume a proportional relation between their core area, 0.191
mm2, and the number of FPGA logic elements of the Leon3 Baseline implementation,
which is 23,629 in the Altera’s DE2-115 development kit.

Through this proportional relation between area and logic elements, our estimate for
the CSHIA-TS and CSHIA-MT, without additional memories, is 0.246 mm2 and 0.264
mm2, respectively. As we said, area and power can be proportional, and thus we can
use similar reasoning to estimate power. From Ahmed et al.’s work, static and dynamic
power (at 100 MHz) are 85.3 µW and 5.75 mW, respectively. Those numbers result in
static power of 109.48 µW for CSHIA-TS and 117.41 µW for CSHIA-MT. In terms of
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dynamic power, we obtained 7.41 mW for CSHIA-TS and 7.94 mW for CSHIA-MT.

Table 6.3: Area and power for CSHIA implementation without considering instruction
and data cache memories of the processor.

Instance Area (mm2) Static Dynamic
Power
(mW)

Power
(mW)

Leon3 Baseline
Core 0.191 85.3

× 10−3
5.75

CSHIA-TS
Core 0.246 109.48

× 10−3
7.41

Memory 0.141 72.00 7.15
Total 0.387 72.11 14.56

CSHIA-MT -64x2
Core 0.264 117.41

× 10−3
7.94

Cache 0.274 6.90 100.98
Total 0.538 7.02 108.92

We used CACTI to estimate how the timestamp memory and PTAG Cache affects the
design. From Table 5.1, the total timestamp memory size was 2 bytes × 214 (or 32 KB).
Even though CACTI does do not offer an option for non-volatile estimative, a DRAM like
estimation provides an insight of area and power. For the PTAG Cache, we estimated
4-KB PTAG Cache with 64 lines and two sets, all estimations are summarized in Table
6.3.

Even if our estimates are not very accurate, they allow to analyze which solution would
provide the best trade-off among area, power, and performance penalties. Thus, based
on our numbers, the CSHIA-TS would be the best solution. Of course, that would only
apply to this specific memory size we evaluated. In the security side, 16-bit timestamps
will not provide the same security as our CSHIA-MT instances with PTAGs of 64 bits.
In addition, if the coverage of the data segment needs to be increased, the timestamp
memory can reach prohibitive configurations for power and area. In such a situation,
CSHIA-MT would be capable of offering this higher coverage without impacting in on-
chip power and area. Nonetheless, higher penalties in performance would happen.
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Chapter 7

Conclusion

PUFs are physical security primitives which enable trust in the context of digital hardware
implementations of cryptographic constructions, in particular, they can initiate physically
unclonable and secure key generation and storage. In this dissertation, the implementation
of CSHIA, a platform that utilizes PUFs to achieve information security objectives that
are data integrity and authentication is presented.

We described in detail the building blocks of this implementation and the way this
system can work at block level together with the impact of this implementation in com-
parison to the non-secure system.

In Chapter 2, we introduced the basics of PUFs and the information security goals of
this work, in order to make clear what we want to achieve. The importance of authentica-
tion and integrity was highlighted and examples of PUFs in order to give useful examples
of how they work and fit in the context of this work.

A review of the related work was presented in chapter 3, where similar architectures
implemented security features to provide similar features as CSHIA, but in this kind
of work, it is difficult to have a fair comparison between the security features and the
implementation details, mostly because of FPGA limitations and the way synthesis tools
deal with different designs. So the characteristics of each work were resumed and compared
with strong and weak points to make it easier to see where CSHIA fill the gaps of other
works, presenting performance, area, power estimations and now implementations details
of the how the security blocks work on hardware.

The CSHIA architecture implementation was described in Chapter 4, with an extensive
description of the AMBA protocol and all the steps required to get the results achieved,
the initial CSHIA architecture and which components were added to extend CSHIA to
make it more robust and improve integrity. The contributions of this work were described
and an in-depth explanation of how the building blocks of this implementation work with
timing diagrams and interfaces explained.

Chapter 5 presented the details of the prototype, and how using the Leon3 processor
with our tailored security IPs in a DE2-115 FPGA development kit we could sustain
the original 50MHz, and due to the limitations of the kit, we covered 512Kb of memory.
The evaluation of the prototype was presented in Chapter 6 were we show the selected
benchmarks together with the total coverage and performance of the CSHIA extended
implementation where without the Merkle Tree the average performance degradation is
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2.76% and with it goes to 5.77% in exchange of a more robust design. Analyzing area
and power the CSHIA logic overhead achieved 34% mostly due to the BHS Buffer that
scales when accessing big SEC Lines.

The contributions of this work were submitted to the following venues

• TETC-2017 - IEEE Transactions on Emerging Topic in Computing - Achieving
Code Authenticity through Hardware Intrinsic Feature

• MicPro-2018 - Microprocessors and Microsystems: Embedded Hardware Design -
Implementing a Secure Architecture for Code and Data Authenticity and Integrity
in Embedded Systems
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Appendix A

Type Description

Signal Type Description

cache_line std_logic_vector the entire cach line
base_addr std_logic_vector base physical address of the

line
valid std_logic asserted if the line is valid
wr_ptag std_logic asertedif the calculated ptag

will be writen in th e PTAG
mem

Table A.1: ptag_sec_req_type content description

Signal Type Description

ptag std_logic_vector the calculated ptag
valid std_logic asserted when ptag is valid
line_secure std_logic asserted if the provided line is

secure
ready std_logic asserted when ready to receive

a new line

Table A.2: ptag_sec_val_type content description

Signal Type Description

we std_logic; active high write enable
address std_logic_vector memory address
data std_logic_vector data to be writen

Table A.3: ptag_mreq_type content description
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Signal Type Description

data std_logic_vector PTAG read from memory

Table A.4: ptag_mresp_type content description

Signal Type Description

hgrant std_logic_vector bus grant
hready std_ulogic transfer done
hresp std_logic_vector response type
hrdata std_logic_vector read data bus
hcache std_ulogic cacheable
hirq std_logic_vector interrupt result bus
testen std_ulogic scan test enable
testrst std_ulogic scan test reset
scanen std_ulogic scan enable
testoen std_ulogic test output enable

Table A.5: ahb_mst_in_type content description

Signal Type Description

hbusreq std_ulogic bus request
hlock std_ulogic lock request
htrans std_logic_vector transfer type
haddr std_logic_vector address bus (byte)
hwrite std_ulogic read/write
hsize std_logic_vector transfer size
hburst std_logic_vector burst type
hprot std_logic_vector protection control
hwdata std_logic_vector write data bus
hirq std_logic_vector interrupt bus
hconfig ahb_config_type memory access reg.
hindex integer diagnostic use only

Table A.6: ahb_mst_out_type content description
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