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Resumo

Tecnologias de redes ópticas baseadas em fibras mono-núcleo e mono-modo possuem li-
mite de capacidade e não conseguem suprir a demanda crescente de largura de banda.
Um forma de resolver esse problema se dá através do uso de multiplexação por divisão
espacial (SDM - Space-Division Multiplexing). A transmissão de dados em SDM ocorre
através de múltiplos núcleos agrupados em um único filamento de fibra, ou utilizando
múltiplos modos transversais suportados por um núcleo. A combinação da flexibilidade
de redes ópticas elásticas (EON - Elastic Optical Networks) e a alta capacidade do SDM
é promissora para o futuro das redes ópticas.

Na camada de enlace, quando uma nova solicitação para estabelecimento de conexão
chega, é necessário fazer a reserva de recursos para realizar essa conexão. A determinação
dos recursos a serem alocados é dada pela solução do problema de roteamento, alocação de
núcleo e slots (RCSA - Routing, Core and Spectrum Allocation). Na alocação de recursos,
algumas restrições devem ser respeitadas, tais como a contiguidade e continuidade dos
slots de frequência, e tolerância ao crosstalk espacial. Estas restrições implicam em uma
maior complexidade para a acomodação do tráfego das conexões.

A virtualização de redes permite que redes virtuais compartilhem recursos físicos,
simplificando o gerenciamento de recursos na camada óptica, oferecendo flexibilidade na
alocação de recursos e segurança dos serviços. Um dos principais desafios da virtualização
é configurar de forma eficiente as redes virtuais, que consiste na alocação de recursos físicos
para acomodá-las.

Esta tese propõe soluções para o problema do RCSA em redes SDM-EON. A primeira
contribuição desta tese é um algoritmo que considera o equilíbrio entre eficiência ener-
gética e bloqueio de requisições. Propõe-se um algoritmo de agregação de tráfego em
lote, capitalizando na flexibilidade temporal para satisfazer requisições com o objetivo
de formar lotes de requisições, aumentando assim a probabilidade de serem atendidas as
requisições em um outro momento.

A segunda contribuição desta tese é direcionada para a solução do problema da frag-
mentação, que ocorre em cenários onde pequenos conjuntos de slots disponíveis ficam
espalhados no espectro, causando o bloqueio de novas requisição. Propõem-se um con-
junto de algoritmos proativos e reativos. Os algoritmos proativos utilizam diferentes
técnicas, tais como, múltiplos caminhos, priorização de núcleo e área, bem como métricas
de avaliação da fragmentação na composição de caminhos. O algoritmo reativo utiliza
aprendizagem de máquina para fazer um rearranjo espectral e aumentar a capacidade de
prevenção da fragmentação no RCSA.

A terceira contribuição desta tese é uma solução para aumentar a eficiência do com-
partilhamento de recursos em redes virtuais. Este problema consiste na configuração de
enlaces e nós virtuais para caminhos e nós físicos, respectivamente. A solução proposta
introduz uma arquitetura utilizando aprendizado de máquina, que age como um assistente
no processo de configuração de redes virtuais.



Abstract

Optical network technologies based on a single-core and single-mode fibers have a limited
capacity and cannot provide enough resources to a constant increase of bandwidth de-
mands. One approach to overcome this is the use of Space-Division Multiplexing (SDM)
which relies on sending data through multiple cores embedded into a single strand of fiber
or using multiple transverse modes supported by a core. The combination of the flexibility
of Elastic Optical Networks (EONs) and the high capacity of SDM is a promising solution
to cope with the bandwidth demands.

At the network level, when a traffic request arrives, it needs to reserve network re-
sources to establish it. One approach to accommodate traffic demand over optical net-
works is the Routing, Core and Spectrum Allocation (RCSA), in which end-to-end light-
paths are offered for each individual request. In these scenarios, during the allocation
process, some constraints need to be respected, such as contiguity and continuity of slots
(selected in the resource selection process), and spatial crosstalk. These constraints pose
extra complexity to accommodate the requests for the lightpath establishment.

As one of the possible solutions, network virtualization is capable of improving the
efficiency of optical networks, by allowing virtual networks to share the resources of physi-
cal networks, simplifying the management of resource and providing flexibility in resource
allocation. One of the main challenges of network virtualization is to configure a vir-
tual network efficiently which comprises allocating physical resources to accommodate
incoming virtual networks.

This thesis proposes solutions to the RCSA problem and the virtual network con-
figuration problem for SDM-EON networks. The first contribution of this thesis is an
algorithm to promote an equilibrium between reduction of the network energy consump-
tion and reduction of the blocking of requests. For this purpose, we introduce a traffic
grooming algorithm using batches, which takes advantage of the deadline of each request
to form batches, increasing the chances of the requests to be established at another time.

The second contribution of this thesis is a set of algorithms using different techniques
to handle the fragmentation problem, where a small portion of available slot sequences end
up scattered in a fiber link, blocking future requests, called the fragmentation problem.
For this purpose, we propose proactive and reactive algorithms. Proactive algorithms use
different techniques, such as multipath routing, core, and area prioritization, and metrics
to use in the route selection process. The reactive algorithm uses machine learning to
rearrange the spectrum and tune the RCSA algorithm to prevent the fragmentation.

The third contribution of this thesis proposes a solution to improve resource sharing
in network virtualization. This problem consists in configuring virtual links and nodes to
physical nodes and paths. For this purpose, we propose a learning assistant control loop
to handle the virtual network configuration problem.
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Chapter 1

Introduction

Communication networks allow the transfer of information between end-points. Key met-
rics for the evaluation networks are available capacity, reliability, cost, scalability, and
operational simplicity. Network designers are often faced with trade-offs involving these
metrics and are continually looking for technological advances that have the potential to
improve networking on a multitude of ways.

One such watershed development came in the 1980s as telecommunications carriers
migrated much of the physical layer of their intercity networks to fiber-optic cables.
Since then, there have been several changes in the telecommunications industry with
far-reaching implications in our lives. New services, such as mobile data, online gaming,
cloud computing, file sharing and the promising Internet-of-Things (IoT) are growing,
surpassing the system capacity.

In conventional Wavelength-Division Multiplexing (WDM) optical networks, it is pos-
sible to multiplex several optical channels (different wavelengths) into the same fiber [7].
It increases the link capacity by increasing the transmission speed to 40 Gb or 100 Gb or
by filling up more WDM channels. Such increase of works only when transmitting infor-
mation between a two-node point-to-point network. The use of high modulation formats
stretches the capacity of single-core and single-mode fibers, although, bandwidth alloca-
tion in WDM is inefficient since it employs a fixed grid. Such type of grid decreases the
potential transmission capacity, once the allocation unit is a coarse-grained wavelength.
To cope with such limitation, traffic grooming is adopted.

In [22], Elastic Optical Networks (EONs) was presented as a promising technology
to increase the transmission capacity of optical networks, using single-mode and single-
core fibers. EONs can flexibly allot lightpaths to satisfy the bandwidth demands of
clients. In this technology, the spectrum is divided into fine granular spectrum slots, and
the bandwidth demand is satisfied by assigning a sufficient number of contiguous and
continuous frequency slots. This fine granularity improves the spectrum utilization in
optical networks over traditional WDM networks. However, recent studies have shown
that the traffic in backbone networks will soon exhaust the expanded transmission capacity
even using EONs.

Due to these facts, research has focused on the adoption of Space-Division Multiplexing
(SDM), in which multiple data streams are carried in multiple transverse modes of optical
fibers. Combining SDMwithWDM or EON brings several benefits, including an enormous
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increase in transmission capacity, extended flexibility in resource management (because
of introducing of the spatial domain), and potential cost savings thanks to the sharing of
resources and the use of integrated devices.

Figure 1.1 shows the evolution of the transmission capacity versus the capacity de-
mand in optical networks. The data points shown represent the highest capacity transmis-
sion numbers as reported in the post-deadline session of the Optical Fiber Communica-
tions Conference (OFC). The transmission capacity of a single fiber strand has increased

Figure 1.1: Evolution of transmission
capacity in optical fibers as evidenced
by state-of-the-art laboratory transmis-
sion demonstrations over the years–Figure
adapted from [42].

approximately tenfold every 4 years. Key
previous technological breakthroughs in-
clude the development of low-loss Single-
Mode Fibers (SMF), the Erbium-Doped
Fiber Amplifier (EDFA), WDM and more
recently, high-spectral efficiency coding via
Digital Signal Processor (DSP)-enabled co-
herent transmission. The data points
for SDM also include results from the
post-deadline session at the annual Euro-
pean Conference on Optical Communica-
tions (ECOC). As seen, SDM 1 appears
poised to provide the next step change in
transmission capacity [42].

Introducing the space dimension allows
carrying traffic demands by distributing
them over different spatial modes, increasing
the difficulty to set up the traffic demand, respecting physical constraints. The problem
of selecting a route and a set of slots is called Routing, Core/Mode, and Spectrum Al-
location (RCSA/RMSA2) problem. This problem can also include other issues, such as
different modulation formats, power consumption and baud rate [26].

In SDM networks, the spectrum fragmentation problem happens in dynamic network
environments. Setting up and tearing down connections of variable bandwidth yields to
the fragmentation of the spectrum which is characterized by the state of the spectrum
in which there is enough bandwidth to satisfy a request but available frequency slots are
not contiguous and therefore cannot be allocated to satisfy a demand. The complexity to
handle this problem increases when we add different modulation formats.

The aim of this thesis is to study resource allocation in SDM-based EON networks.
First, we introduce the deadline-driven batch requests for multiple core fibers, making the
spectrum usage more efficient and improving the energy efficiency in optical networks.
To deal with the fragmentation problem, we propose a set of proactive and reactive
algorithms, resulting in a significant low blocking ratio of requests to establishment of
connections. Another way to allocate resources in networks is through virtualization,
so we propose an architecture which aims at efficiently allocating the resources while
respecting the constraints in dynamic scenarios.

1SDM in the literature is spelled out either "spatial" or "space" division multiplexing.
2This problem also called Routing, Spatial Mode, and Spectrum Allocation (RSSA)
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1.1 Contributions of this Master Thesis

In this thesis, we developed a set of new methods to improve resource usage in EON-SDM.
The main contributions of the thesis are:

• An algorithm that uses the batch allocation of connections and takes advantage
of requests deadline in order to postpone they to try to allocate them in another
occasion when it is not possible to accommodate it at their arrival time.

• A set of proactive algorithms to avoid the spectrum fragmentation in SDM optical
networks. These algorithms prevent future spectrum fragmentation.

• A reactive algorithm that handles the spectrum fragmentation using an Unsuper-
vised Machine Learning (UML) algorithm, rearranging the spectrum to allow more
future requests, thus decreasing the blocking ratio of the network.

• An architecture based on machine learning to assist the virtual network configuring
process.

1.2 Publications

Conferences

• Silvana Trindade and Nelson L. S. da Fonseca. Proactive Fragmentation-aware
Routing, Modulation Format, Core, and Spectrum Allocation in EON-SDM. 53rd
IEEE International Conference on Communications (ICC), 2019. Accepted.

1.3 Thesis Structure

This thesis is organized as follows. Chapter 2 reviews the general concepts of SDM
networks. Chapter 3 shows a method to allocate resources in SDM networks using the
concept of batches. Chapter 4 shows a set of algorithms to consider fragmentation problem
in SDM networks. Chapter 5 shows an architecture using machine learning to assist
the virtual network configuring process. Finally, Chapter 6, give our outlook for future
research directions in resource management, allocation and routing in SDM networks.
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Chapter 2

Background

This chapter presents concepts in optical networks technologies. Section 2.1 presents
the notion of optical networks. Section 2.2 introduces the notion of Wavelength-Division
Multiplexing (WDM) networks. Section 2.3 introduces Elastic Optical Networks (EONs).
Section 2.4 introduces Space-Division Multiplexing (SDM) networks. Section 2.5 describes
the Routing, Mode/Core Allocation (RMSA or RCSA) problem in SDM optical networks.
Section 2.6 describes the network virtualization concepts in SDM networks. Section 2.7
summarizes this chapter.

2.1 Optical Networks

An optical fiber is a lightweight cable that provides low-loss transmission and has a huge
potential capacity. Fiber optics has become the core of our telecommunications and data
networking infrastructures. The optical fiber is the preferred means of transmission for
any data over a few tens of megabits per second and for distances over a kilometer.

An optical network is composed of fiber-optic cables that carry light, and the equip-
ment deployed along the fiber to propagate light. The capabilities of an optical network
are tied to the physics of light and the technologies that manipulate light-streams. The
optical networks evolution has been marked with major paradigm shifts and breakthrough
technologies.

2.2 Wavelength-Division Multiplexing

By early 1990s, the single-channel system capacity reached 10 Gbps. Amplified systems
came into use in that same period and instantly boosted the capacity of the Internet
by supporting WDM systems. By 2003, the 40 Gbps per channel WDM system was
deployed. To meet the increasing capacity requirements, several innovations in optical
communication systems, including advanced modulation formats and digital equaliza-
tion in the electronic domain, have enabled per-channel bandwidths of 40 Gbps and 100
Gbps with improved transmission distances in traditional fixed-grid single-carrier WDM
networks. The high channel capacity and the extended optical reach enables high rate
transmissions over multiple WDM links and Optical Cross-Connects (OXCs) allows the
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transmission without the need of Optical-Electrical-Optical (OEO) regeneration.
WDM optical networks are categorized in non-transparent, semi-transparent and trans-

parent. Non-transparent (or opaque) comprises links with all the functions at the end of
the link performed in the electrical domain. Because of the high cost of Optical-to-
Electrical (OE) conversions, particularly at the high bit rates, it makes sense to minimize
the number of these converters in the network. Transparent optical networks are all-
optical and transparent to signal format and protocol. Although a transparent network
provides significant advantages, it also has limitations. Certain functions, such as wave-
length conversion, regeneration, and traffic grooming at fine granularities needs to be
done in the electrical domain. The combination of transparent and opaque networks are
the semi-transparent optical networks, in which regenerators are strategically used to
guarantee the quality of the optical signal during the transmission.

Routing and Wavelength Allocation

The Routing and Wavelength Allocation/Assignment (RWA) problem is defined as a set
of lightpaths that need to be established. It is necessary to determine the route over
which these lightpaths should be established and the wavelengths that should be assigned
to these lightpaths.

In a wavelength-routed network, the traffic can be static or dynamic. Under static
traffic, a set of lightpaths is setup all at once and remain in the network for a long time.
Under dynamic traffic, a lightpath is setup for each connection as it arrives, and it is
released after a certain time.

Traffic grooming first came to be recognized as a research area in the mid-1990s; it is
one of the key technologies in WDM optical networks to decrease the blocking ratio and
can be introduced in the RWA process. Traffic grooming attempts to gather connections
with sub-wavelengths demands into a wavelength between two nodes. Thus, demands
with different endpoints can be bundled onto the same wavelength.

2.3 Elastic Optical Networks

In [22], the authors introduced a fine granularity scheme for the allocation of the spectrum
into the optical domain and offered a spectrum efficient and scalable optical transport
network architecture called Spectrum-Sliced Elastic Optical Path Network (SLICE), also
called Elastic Optical Networks (EON). The EON architecture allocates the spectral re-
sources of an optical path with a finer granularity (e.g., slot capacity can be 12.5 GHz
or 6.5 GHz). This is achieved by taking advantage of bandwidth-variable modulation
technologies such as optical Orthogonal Frequency-Division Multiplexing (OFDM) and
the use of Bandwidth-Variable Cross-connects (BV-OXCs).

The main driver of the EON architecture is the ability to allocate bandwidth at the
granularity of an OFDM sub-carrier rather than at the coarse unit of a wavelength
as in traditional WDM optical networks by using bandwidth-variable and format-agile
transponders that can be reconfigured dynamically via software. The OFDM technology
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enables the transmission of data over multiple orthogonal sub-carriers with a frequency
spacing of the inverse symbol duration [22].

This architecture routes optical signals along the path to the destination via multi-
granular optical switches that adapt to the data rate and center frequency of incoming
channels by software control. Transponders and switches make it possible to support
efficiently a range of traffic demands, from sub to super-wavelength, by slicing off just a
sufficient amount of spectral to deliver a connection request.

EON architecture has several advantages compared to WDM networks, such as:

• Resilience to physical impairments : since each sub-carrier operates at a low symbol
rate, inter-symbol interference is reduced and it also reduces the effects of physical
impairments.

• Elastic data rates : the number of allocated sub-carriers and the modulation format
can dynamically adjusted, on a per-connection basis, to account for i) demand
granularity, making it possible to support data rates from Gbps to Tbps, ii) path
distance, trading spectrum utilization for reach, and iii) the time-varying nature
of demands. Therefore, EONs can support multiple data rates, either by grouping
together many subs-carriers or by supporting a different data rate per sub-carrier
depending on the network conditions. In EONs, the transition to higher data rates
would not require major changes in system design.

• Spectral efficiency : two features of OFDM enable highly efficient use of spectral
resources. Adjacent sub-carriers may overlap in the spectrum because of their or-
thogonality. This reusability of the spectrum increases the overall system capacity.
Adapting the data rate to the demand size, path length, and time variations, it is
possible to achieve better use of existing spectrum.

The fine granularity is very attractive as it allows flexible allocation of spectrum re-
sources, but this flexibility introduces new challenges, such as:

• Scalability : with an OFDM sub-carrier as the unit of bandwidth allocation, the
spectral resources to manage network-wide is larger than the number of wavelengths
in existing WDM networks.

• Spectrum contiguity : if a demand requires x units of frequency slots, then x contigu-
ous sub-carriers must be allocated. This constraint, not existing in wavelength-based
networks, can lead to severe fragmentation of the spectral, reducing the inherent
efficiency of fine-grain allocation.

• Spectrum continuity : the same x sub-carriers contiguous must be allocated on each
link along the end-to-end path of a demand. This constraint is analogous to the
wavelength continuity constraint in WDM networks and further aggravates spectrum
fragmentation across the network links.

• Variable data rates : support for elastic data rates, a core feature of EONs, requires
precise tracking of the spectral width and center frequency of optical signals, and
tight coordination between Bandwidth Variable Transponders (BVT) and switches
along end-to-end paths.
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Routing and Spectrum Allocation in Elastic Optical Network

RWA algorithms designed for traditional WDM systems are not applicable to EONs.
Finding a route and a set of frequency slots in EONs is called the Routing and Spectrum
Allocation/Assignment (RSA) problem. The RSA problem can be transformed into the
RWA problem by viewing a sub-carrier in the RSA problem as a wavelength of equal
capacity in the RWA problem. Although traditional RWA algorithms can find a route for
a connection requiring several wavelengths, the wavelengths found by the RWA algorithms
may not be contiguous. Allocating contiguous sub-carriers is necessary in EONs since the
spectrum of adjacent sub-carriers overlap in order to enable higher spectral efficiency.

Considering modulation formats per sub-carrier and in the Routing, Modulation For-
mat, and Spectrum Allocation (RMSA) algorithm requires the development of new algo-
rithms that will: i) use a contiguous region of spectrum, ii) use variables and constraints
that do not depend on the number of sub-carriers, and iii) enable the decision of the
modulation format for each connection.

Spectral guard band in OFDM systems can further complicate the spectrum allocation,
resulting in additional computational complexity, particularly when there are many sub-
wavelengths. Between two spectrum adjacent connections in optical links, the guard
bands are added to avoid inter-channel interference, which takes up one or two frequency
slots. One of the proposed solutions to handle this problem uses traffic grooming in order
to use fewer guard bands [63].

2.4 Space Division Multiplexing

Figure 2.1 shows the channel allocation schemes in different technologies. First, it shows
the traditional WDM network with tunability at the wavelength level. Next, it presents
the EON which spans over both the wavelength and bandwidth dimensions, allowing
allocation of super-channels with different data rates and formats. The third scheme
in Figure 2.1 considers the use of the space dimension only for multiplexing purposes,
increasing the overall capacity per fiber. Here, the flexible spectral super-channels expand
over some or all of the spatial fiber resources and jointly switched in the nodes. In [27],
it is shown the real use of all three dimensions (wavelength, bandwidth, and space) in
the last allocation scheme, using the spectral and spatial fiber resources independently to
allocate the traffic demands over spatial-spectral super-channels.

State-of-the-Art

Increasing fiber capacity with SDM is almost as old as fiber communications itself, with
the fabrication of fibers containing multiple cores or modes. The first and most obvious
approach to SDM was reported as far back as 1979 [42]. In the past few years, a series
of successful experiments using SDM have been carried out in telecommunication net-
works. High capacity SDM networks, combined with WDM transmission trials showed
an increased transmission distance [54].

In [19], it was demonstrated that it is possible to achieve a capacity of 140.7 Tbit/s on
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Figure 2.1: Different channel allocation schemes according to their degrees of freedom–
adapted from [27].

a 201-channel super-Nyquist-WDM transmission over a 7-core Multi-Core Fiber (MCF)
of 7326 km. Mode-Division Multiplexing (MDM) can support a spectral efficiency per
fiber core of 32 bit/s/Hz [45]–almost 3 times larger than the maximum capacity that
Single-Mode Fiber (SMF) can provide over the same distance.

In [44], it was shown the benefits of MDM over a conventional Multiple-Mode Fiber
(MMF) further enhances the possibility for practical applications of SDM by reusing
deployed MMFs. Components for MCF based networks such as multi-core Erbium-
Doped Fiber Amplified (EDFA) [50], MCF-compatible Reconfigurable Optical Add/Drop
(ROADM) [11] and MCF loop [18] upgraded the capacity of the existing SMF-based
ones. The authors in [25, 23, 20, 48] achieved low-loss using modes, so this still limits the
distance, in an accumulated case such as loop measurements.

Space-Division Multiplexing Optical Fiber

It is expected that the capacity of SDM optical networks using Few/Multi-Mode Fibers
(FMF or MMF) or Multi-Core Fibers (MCF) can be enhanced and overcome the antic-
ipated "capacity crunch" due to the rapidly increasing bandwidth demand. Table 2.1
shows the advantages and disadvantages of the use of SDM fibers [26].

Figure 2.2 illustrates different types and properties of SDM optical fibers described
in Table 2.1, MCF is one of the most efficient ways to realize SDM. Single-Mode Fiber
Bundle (SMFB) is the next most addressed SDM transmission medium. In this thesis,
we will consider MCFs as the transmission medium.
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Figure 2.2: Types and properties of SDM optical fibers–adapted from [27].

Table 2.1: Comparison of the main features of SDM fiber solutions [26].

Fiber Type Advantages Disadvantages
SMFB

• commercially available,
• transmission is unaffected by

crosstalk between the spatial
modes,

• very large number of supported
spatial modes in parallel SMF links,

• high switching flexibility,
• no need for SDM multiplexers/de-

multiplexers for component inter-
connections.

• low space efficiency when compared
to other SDM solutions due to large
cable dimensions.

MCF
• high number of supported spatial

modes and high space efficiency,
• high switching flexibility,
• integration of SDM components al-

lowing for cost reduction.

• transmission quality affected by
inter-core crosstalk,

• need for dedicated SDM compo-
nents,

• greater fiber diameters compared
to SMFs, in MCFs supporting high
numbers of cores, which will re-
quire new standards (e.g., concern-
ing connectors).

FMF
• integration of SDM components

and associated cost reduction.
• physical impairments due to mode

coupling affecting transmission
quality,

• need for complex and costly
MIMO (Multiple-Input-Multiple-
Output)-DSP to deal with mode
coupling,

• need for dedicated SDM compo-
nents,

• low switching flexibility.

FM-MCF
• high number of supported spatial

modes and high spatial efficiency,
and

• integration of SDM components
and associated cost reduction.

• physical impairments due to mode
coupling,

• need for MIMO-DSP, however, of
reduced complexity when com-
pared to the FMFs,

• need for dedicated SDM compo-
nents,

• moderate switching flexibility.

Multi-Core Fiber

Recent studies have focused on MCFs, allowing the transmission capacity to be increased
several times as each core can be considered an individual channel. It is common for a
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(a) (b)

Figure 2.3: Example of multi-fiber core structure.

channel to have interactions between spatial modes in MCF. Due to the limited cladding
diameter and high core density requirement, the mode fields of the adjacent cores in-
evitably overlap with each other. This leads to signal crosstalk (Figure 2.3), which impacts
transmission quality and may require the use of signal regenerators in larger networks [16].
In [16], for a coupled multiple core fiber with cores arranged in a hexagonal array, the
mean crosstalk (XT ) in SDM networks for any core can be calculated using the following
equation:

XT =
n− n× exp(−(n+ 1)× 2× h× L)

1 + n× exp(−(n+ 1)× 2× h× L)
, (2.1)

where n represents the number of adjacent cores, e.g. for seven cores n is equal to six for
the center core, while it is equal to three for all the other cores; L is the length of the
fiber, and h denotes the mean increase in crosstalk per length unit and calculated by:

h = k2 ×R/(β × Λ), (2.2)

where k represents the coupling coefficient, R is the bending radius, Λ represents the core
pitch of the lattice, and β is a propagation constant.

Multi-Mode and Few-Mode Fibers

MMFs were the first fibers commercialized in the 1970s, being used for both short and long-
distance telecommunications, operating mainly at 0.85 µm with LED (Light-Emitting
Diode) sources. SMFs recognizes for their higher bandwidth, there were

Figure 2.4: Schematic diagram of
SMUX [54].

no sources to couple light efficiently into the nar-
rower core of SMFs. At the beginning of the 80s,
research on sources resulted in reliable semiconductor
lasers suited for smaller core SMFs, which narrowed
down the application of MMFs to short-distance sys-
tems [54].

In SDM optical networks with MCF, there is a lim-
itation in spectral resource usage caused by crosstalk
interference. As a solution, in [12] the authors in-
troduced another way to deploy SDM systems with
MIMO and MMFs. This technology can support tens
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of modes, increasing the capacity of SDM networks. However, many modes make it
complex to process the signals on the receiver side.

In [47], the authors introduced the Few-Mode Fiber (FMF), transmitting only a few
linear polarized modes, which makes long-distance communication achievable compared
to MMFs, since mitigating the impairments and interference (mixing) of the few co-
propagating modes is less troublesome than with MMFs supporting higher numbers of
modes. Besides that, the MCFs and the FMFs can enlarge the transmission capacity and
reduce the CAPEX (Capital Expenditure or Capital Expense). In FMFs, modal crosstalk
brought by the mode coupling effect becomes a great challenge, generated when two optical
signals on the same wavelength propagate through different modes and accumulate along
the propagation path.

Spatial Multiplexers

The basic functionality of a Spatial Multiplexer (SMUX) is to convert optical power from
a bundle of SMFs into modes or separate cores in an SDM fiber. SMUXs (Figure 2.4)
have evolved from bulky optics with a large footprint to modern photonic integrated,
3-Dimensional Waveguide (3DW) and fiber-bundle based compact solutions. In [54], the
authors categorized the solutions into two groups. The first group uses multiple spots,
which are Gaussian-distributed optical beams from SMFs or single-mode waveguides. The
second group is mode-selective based on creating similar mode profiles to FMF and there-
fore only suitable for Mode-Division Multiplexing (MDM). The performance of SMUXs
can be evaluated in terms of Mode/Core Dependent Loss (MDL or CDL) and Coupler
Insertion Loss (CIL).

Optical Amplifiers

Nowadays, even though optical fibers can be manufactured with low attenuation loss of
around 0.2 dB/km, optical amplifiers such as Erbium-Doped Fiber Amplifiers (EDFA)
and Distributed Raman Amplifiers (DRA) are inevitable to compensate connector and
fiber losses, especially for those amplifiers with distances greater than 100 km. In [51],
the authors showed SDM transmissions with 9–12 dB DRA of gain and less than 1 dB of
Noise Figure (NF), performed over a 75 km 7-core MCF.

Wavelength Selective Switches

A Wavelength Selective Switch (WSS) is a 1 × N optical device which receives multiple
wavelengths at one common input port and enables the dynamic routing of any wavelength
channel to any of the N output ports. Its functionality can be used reversely to combine
the wavelength channels.

In [11, 38], 7-core MCF WSSs was presented, with SMUX being used to demultiplex a
spatially multiplexed signal into seven parallel ones over seven SMFs. The seven parallel
signals are fed into a commercial WSS with over 21 SMF ports (7 cores × (1 common port
+ 2 output ports)), jointly steered to seven output SMF ports, multiplexed by another
SMUX to a 7-core MCF. To minimize beam steering angle and crosstalk [21], it was
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proposed to add a remapping block between the SMUXs and the SMF input/output
section for interleaving the signals from different spatial channels into neighboring single-
mode ports [38].

Fiber Splicers and Connectors

Fiber splicers join two fibers permanently by locally heating the fiber ends to melt and
fuse them together. The functionality of fiber splicers is indispensable for the maintenance
and installation of optical networks. Therefore, whether high-quality splicing for SDM
fibers can be realized efficiently is a critical criterion to judge whether SDM will eventually
become a practical solution.

2.5 Routing, Mode/Core and Spectrum Allocation

Network designers need to automate functions, such as how to find a route, to protect the
network, and to bundle the traffic into the frequency slots. In WDM optical networks,
the problem is called RWA, while in EONs it is called RSA, and in SDM optical networks
it is called Routing, Core/Mode and Spectrum Allocation (RCSA or RMSA).

The RCSA/RMSA problem can be classified as either static or dynamic. In the static
form, mainly associated with network/connection planning phase, all connections to be
established are known in advance and must be allocated in the network at the same time.
The decision on how to allocate the demands (i.e., select the required resources for each
demand such as routing path, spatial mode, spectrum) is made, without strict processing
time constraints. Therefore, complex and time-consuming optimization methods, such as
mathematical programming or meta-heuristics, can be applied for the static scenario.

In dynamic scenarios, which emerges in network operation, it is assumed that demands
are unknown in advance, but they arrive and stochastically leave. The resources required
to establish connections for the requests are chosen dynamically according to the current
state of the network. In these scenarios, the decisions must be taken dynamically, almost
immediately, based on the current availability of network resources [26].

Routing, Modulation Formats, Core/Mode and Spectrum Allocation

Optical networks offer the ability to choose the modulation format and channel bandwidth
to fit the transmission distance and quality of transmission desired. In [61], the authors
presented a Quality-of-Transmission (QoT) aware RSA algorithm for EONs. Their ap-
proach involves three steps, namely— a) path calculation, b) path selection, and c) spec-
trum assignment to construct the complete framework. Routing strategies incorporate
some type of shortest-path algorithm to determine the paths which minimize specific
metrics. For example, to find the path with the shortest geographic distance, each link is
assigned a metric equal to its own distance. The most used algorithm is the K-shortest
paths using Dijkstra, although it has been adapted to compute the candidate paths, taking
into consideration fiber impairments and non-linear effects on the physical layer.
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The Routing, Modulation Formats, Core and Spectrum Allocation (RMCSA) algo-
rithm can select the highest modulation format for a new request while observing the
length of the path pre-computed before. Using different modulation formats to allocate
requests can increase the spectral efficiency. The spectral efficiency of a digital signal is
defined as the ratio of the bit rate to the bandwidth used by the signal. The spectral
efficiency depends on the modulation format and coding scheme used.

Since the WDM technology, a common approach to modeling and solving optimization
problems in communication networks is Mathematical Programming (MP). They can be
formulated using either Mixed-Integer Programming (MIP), Integer Programming (IP),
or Integer Linear Programming (ILP) problems.

2.6 Optical Network Virtualization

Network virtualization refers to the process by which multiple logical (virtual) networks
are supported over a shared physical network infrastructure [4], simplifying the optical-
layer resource management, provides flexibility in spectrum allocation and offers secure
application services. Therefore, network virtualization can stimulate innovations, such as
new architectures and applications.

A virtual network is formed by a set of lightpaths (virtual links) and a set of physical
nodes. These lightpaths are channels between nodes, named in this way because they
traverse several physical links, but information traveling on a lightpath is carried optically
from end-to-end [8]. A virtual network (VN) can be used by an Internet Service Provider
(ISP) or a large institutional user of bandwidth to connect its end equipment by leasing
bandwidth from a network operator who owns the fiber plant and the OXCs. In fact,
multiple virtual topologies, belonging to ISPs, may coexist on the same fiber plant.

A VN needs to meet a certain Quality-of-Service (QoS) so that the operators can
provision high-quality services and increase the utilization of network resources. In [8],
virtual topology design problems can be formulated as optimization problems aimed at
maximizing network throughput or other performance measures. The exact solution is
NP(Non-Polynomial)-hard, and heuristic approaches are needed to find sub-optimal solu-
tions. The network virtualization problem can be divided into the following sub-problems:
a) configure the virtual nodes to physical nodes given a physical topology, b) route the
lightpaths on the physical topology and c) allocate resources. To move from one step to
another some constraints need to be respected, such as computing resources, transponder
limits, spectrum resources, and others that can be introduced depending on the goal of
the algorithm.

2.7 Summary

This chapter introduced the basic concepts of SDM optical networks used to develop this
thesis. Chapter 4 uses the concepts of EON and SDM to propose new algorithms to handle
the spectrum fragmentation problem in SDM-EON optical networks. The RCSA problem
is described in Section 2.5 and used in Chapter 3 and Chapter 4. In chapter 4, we will
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introduce new algorithms to handle the fragmentation problem in SDM networks, these
algorithms need the concepts of modulation format and inter-core crosstalk interference in
MCFs described in this chapter. The concepts of virtual networks described in Section 2.6
will be used in Chapter 5. In Chapter 5, we will introduce a new architecture to assist
the configuration of virtual networks, this architecture needs to analyze the virtual and
physical network.
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Chapter 3

Traffic Grooming of Deadline-Driven
Requests using Batches

In this chapter, we present a solution to optimize the use of network resources by employ-
ing traffic grooming and batch scheduling in Space-Division Multiplexing (SDM)-Based
Elastic Optical Networks (EONs) using Multi-Core Fibers (MCFs).

3.1 Introduction

One of the main characteristics of the Internet architecture is to impose no constraint
on the application layer, which allows applications with diverse requirements to emerge.
In some applications, a pre-defined deadline can be used to decide on the allocation of
resources to the request along with the of time. Postponing a lightpath establishment
when bandwidth is unavailable at the arrival time can avoid blocking of the request at
that time. The postponing of a request demands that higher transmission rate is used,
such rate depends on bandwidth availability in the network links.

This flexibility of allocations allows groups of requests called batches to be formed,
comprised of requests that arrived in a time window for allocation and have the same
source and destination nodes. These batches of requests are treated as a single request,
but benefit from grooming the requests into lightpaths, and which allow the allocation of
network resources (e.g. transponders and spectrum) more efficiently.

Although the fine granularity of EONs allows for more efficient spectrum usage, it
allocates lightpaths in a way that makes it necessary to separate them with guard bands,
as not to interfere with each other. Another problem brought by the high number of sub-
carriers is the need for one transponder to transmit each set in contiguous sub-carriers,
increasing the Operational Expenditure (OPEX) and energy consumption of the net-
work [66].

EONs can accommodate the requirements of deadline-driven applications using an Au-
tomatically Switched Optical Network (ASON)/Generalized Multi-Protocol Label Switch-
ing (GMPLS) or a Software-Defined Networking (SDN) control plane to automate the
establishment and tearing down of lightpaths with variable spectrum widths [36].

This chapter is organized as follows. Section 3.2 presents the related work. Section 3.3
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describes the problem formulation. Section 3.4 describes the proposed batch grooming
algorithm. Section 3.5 presents our proposed Routing, Core and Spectrum Allocation
(RCSA) algorithm to deliver batch requests. Section 3.6 introduces an energy consump-
tion model for EONs using Multi-Core Fibers (MCF). Section 3.7 presents the numerical
results and compares the performance of our algorithms with others found in the litera-
ture. Section 3.8 contains some concluding remarks.

3.2 Related Work

In [49], the authors classify the arrival requests based on the deadline in two types:
Immediate Reservation (IR) and Advance Reservation (AR). IR requests allocation of
bandwidth and start data transmission immediately after the request arrival time. AR
requests can reserve future resources in advance and allocate the bandwidth at the service
starting time. AR requests provide better Quality-of-Service (QoS) for applications that
require large amounts of bandwidth and in which it is possible to postpone the service
starting time, such as off-set backups and grid computing [49]. The authors considered
the request deadline in EON using MCFs, they partitioned each channel in common areas
and prioritize each area to reduce blocking.

In [6, 36] the authors introduced traffic grooming using batches to improve the spec-
trum usage in optical networks. Considering that each request has a deadline, the authors
in [6] consider the deadline as a solution to provide high QoS in Wavelength-Division Mul-
tiplexing (WDM) networks. Their approach creates a batch with requests that have the
same pair of source and destination nodes. The Groom-Solver algorithm allocates the
batch requests using Integer Linear Programming (ILP) to groom them onto existing
paths or create a new one. If a request cannot be allocated, it is possible to postpone the
attempt to establish it. In [36], the authors introduced a batch grooming algorithm for
dynamic connections in EON, allowing the use of any Routing and Spectrum Allocation
(RSA) algorithm.

However, these two methods [6, 36] do not allow to postpone a connection request
several times if the deadline is not close yet, these methods are based on single chance
to postpone it, after that, they are blocked or accepted. In this study, we propose to
apply the batch concept in SDM networks. We adapted the RCSA algorithms presented
in [33, 34] to accept batch requests and use the Multiple Knapsack Problem (MKP) to
choose a set of slots in the spectrum.

The proposed method takes advantage of the fact that we can delay the provisioning
of a connection to create a batch of requests with the same source and destination, using
only one transponder to transmit a set of requests in a batch. Each request in a batch
has its own maximum scheduling time (scheduling deadline), but the batch deadline is
given by the earliest deadline, after which some requests in the batch become unfeasible
and cannot be further postponed.
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3.3 Problem Formulation

Traffic grooming policies determine how to provision connection requests and depend on
the goals that network operators want to achieve, e.g., maximize spectrum efficiency,
minimize the blocking ratio, minimize the number of used transponders, minimize the
energy consumption, etc. Network operators can use policies under different scenarios,
for example, when the traffic load is low, the spectrum efficiency and blocking may not be
the focus, and the network operators may be concerned only about the OPEX. When the
traffic load is high, spectrum efficiency and blocking can become the focus of attention,
so traffic grooming can reduce the decrease in resource efficiency. Table 3.1 shows the
notation used in our traffic grooming with batch scheduling algorithms.

Table 3.1: List of Symbols used in Problem Formulation

Symbol Description
s Source node of a connection request
d Destination node of a connection request
N Number of bytes required to be transmitted
Di Deadline of a connection request
t Holding time of a connection request
b Bandwidth demand in number of slots
R Request for connection establishment
R =
(s, d,N,D) Deadline-driven connection request

r(t)
Transmission rate of a connection request with scheduling time t,
where r(t) = ∆/(D − t)

r(s, d, b,D)
Deadline-driven connection request from node s to node d with band-
width demand b

Bs,d(t) =
(s, d, b)

Set of requests from s to d at time t, where the traffic demand is equal
to the sum of the requests in Bs,d(t)

∆s,d(t)
Scheduling deadline of a batch request Bs,d(t), where ∆s,d(t) =
D(r(s, d, b)) | ∀i D(r(s, d, b)) < Di(r(s, d, b))

Qs,d Set of requests to be blocked
Ps,d Postponed requests with the same source-destination pair

G = (V,E, S)
Network graph composed of a set of nodes V , a set of edges E and a
set of matrices S representing the optical spectrum availability in the
links, which are associated with the edges of the graph

E = {eu,v} Set of edges eu,v connecting u and v in G
Su,v = [si,j ] Matrix representing the spectrum of the links between u and v in G
δ(Pk) Physical distance between the source and destination along path Pk

Lk
Set of regions of the spectrum (output from the image processing
algorithm)

Mk
Matrix obtained performing the logical and operation between all
spectrum along a path k

F = {fi,j} Set of slots allocated by the fitting function
T Current time of simulation.

In this work, we propose a traffic grooming algorithm with batch scheduling, designed
to operate in optical networks for multi-core fibers, with dynamic arrival of requests for
connection establishment. Each request specifies the number of bytes to be transmitted
and the deadline to establish the request. Considering the deadline for each request, we
can allocate it after its arrival time using a scheduling technique. After the deadline
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expires, the request is blocked.

3.4 Traffic Grooming using Batches

The Earliest Deadline First (EDF) is a classic dynamic scheduling approach used in real-
time operating systems to place processes in a priority queue. In this study, we assume a
priority queue to order batches by the maximum time tolerance. Using this method, we
take advantage of the possibility of avoiding the immediate allocation of requests, and we
can postpone the requests as much as possible, resulting in more chances for them to be
allocated. Using batches to groom requests, they are treated as a single request during
resource allocation, and thus use only one lightpath and one transponder.

Algorithm 1: Earliest-Deadline-First
1 if ri 6⊂ Bs,d(t) then
2 Bs,d(t)← Bs,d(t) ∪ {ri};
3 end if
4 Ps,d ← ∅;
5 Qs,d ← ∅;
6 Pn = ∅;
7 while Bs,d(t) 6= ∅ or Pn 6= ∅ do
8 Pn ← RCSA(G,Bs,d(t));
9 if Pn = ∅ then

10 Let lj | ∀Rk ∈ Bs,d(t) Dj > Dk;
11 Bs,d(t)← Bs,d(t)− lj;
12 if (t−Dj) > T then
13 Ps,d ← Ps,d ∪ {lj};
14 else
15 Qs,d ← Qs,d ∪ {lj};
16 end if
17 else
18 Establish Pn as Ps,d to Bs,d(t) ;
19 end if
20 end while
21 Postpone Ps,d;
22 Block requests in Qs,d;

Details of the EDF algorithm is shown in Algorithm 1. If the request r(s, d, b,D) is not
in Bs,d(t), it is added to Bs,d(t) with the same source and destination (Lines 1-3). After
that it tries to allocate Bs,d(t) (Lines 7-20). An RCSA algorithm computes and returns
one path and a set of slots if they are available (Line 8). If there are available resources,
Bs,d(t) is established (Line 18). If Bs,d(t) cannot be allocated, one request is selected
based on the latest deadline lj to try to be postponed (Lines 9-16). If the time remaining
until the deadline of lj is smaller than the threshold T , it is marked to be postponed
(Lines 12-13), otherwise lj is marked to be blocked (Lines 14-16). The requests that were
marked to be postponed are then postponed (Line 21). The requests that were marked
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to be blocked are then blocked (Line 22).
In algorithm 1 the while-loop (Lines 7-20) runs B times, where B represents the number

of requests in a batch. In the worst-case for each request in B the RCSA algorithm is run,
the complexity is O(M) but will vary depending on the used RCSA algorithm (Line 8).
The bounds can be multiplied to give that the total complexity of the Algorithm 1 which
is O(B×M).

3.5 Routing, Core and Spectrum Allocation

In [36], the authors introduced Batch Grooming (BG) algorithm to elastic optical networks
using single core fibers. The difference between the BG algorithm and Algorithm 1 is
that the latter allows requests in a batch to postpone as much as possible up to a certain
threshold. To limit the number of postponements to one, we need to change Lines 9-14
of Algorithm 1 to:

Algorithm 2: Batch Grooming
9 if Pn = ∅ then

10 Let lj | ∀Rk ∈ Bs,d(t) Dj > Dk;
11 Bs,d(t)← Bs,d(t)− lj;
12 if Dj > SBs,d(t) then
13 Rs,d ← Rs,d ∪ {lj};
14 else
15 Qs,d ← Qs,d ∪ {lj};
16 end if
17 end if

In case the deadline of the selected request is further in time than the earliest deadline
SBs,d(t) in a batch, the request is added to Rs,d and then postponed.

The authors in [33, 34] introduced new RCSA algorithms using image processing con-
cepts to allocate a request. However, these algorithms do not handle batch requests, so
in this section we introduce a new version for each algorithm, introducing MKP as a
solution to decrease the blocking. When we use these new versions with Algorithm 2, we
denominate it as BG-MKP.

Empirically, we found that the MKP RCSA variants are not so advantageous for EDF
algorithm as it is for BG, since the former algorithm produces batches containing more
requests than the BG algorithm, which results in a computationally intensive process and
the improvement in blocking results are insignificant compared to EDF using the RCSA
introduced in [33, 34].

Connected Component Labelling RCSA

RCSA algorithms for SDM networks cannot handle batch requests, but some of them have
characteristics that are interesting when the path does not have enough contiguous slots to
allocate all the requests in a batch. In [33], the authors propose an RCSA algorithm using



37

K-shortest paths to find a path, and a Connected Component Labeling (CCL) algorithm
to find slots. Even though the CCL algorithm is based on digital image analysis, they use
it to find regions composed of slots.

Algorithm 3: CCL using MKP
1 if | Bs,d(t) | > 1 then
2 P ← KShortestPaths(G, s, d);
3 forall Pk ∈ P do
4 Lk ← GetRegions(Mk);
5 if Lk > 1 then
6 ω ←MKP (Bs,d(t), Lk);
7 if ω 6= ∅ then
8 PreAllocate(Bs,d(t), ωk, Pk);
9 Remove pre-allocated requests from Bs,d(t);

10 end if
11 end if
12 end forall
13 end if
14 return Paths for pre-allocation;

The RCSA algorithm in [33] allocates each request using only one region (sequence
of slots). However, a batch request comprises a set of requests which results in a bigger
request of slots compared to a usual request. Sometimes the paths do not have enough
slots to allocate a batch in a single region, but it has a set of regions that together can
accommodate this batch. Thus, we changed the CCL algorithm to accept batch requests,
and in case there are not enough slots in a single region to allocate a batch request we
propose to use the MKP [31], which enables us to allocate a batch in different regions.

Algorithm 3 selects a path with slots using the MKP algorithm. The K-shortest paths
are computed to find a set of candidate paths (Line 2). For each path, it tries to find a
sufficient number of slots to allocate Bs,d(t) (Lines 3-12). The CCL algorithm obtains a
matrix Mk, representing the availability of the spectrum of each link in Pk. Performing
a logical AND operation between all the slots on the links of the kth path, it returns a
list of regions Lk of the spectrum (Line 4). If there is a region, the MKP algorithm tries
to map each request into a region (Line 6). If it is possible to allocate any request from
Bs,d(t), the algorithm pre-allocates the resources and then return the path selected.

Inscribed Rectangle RCSA

In [34], the authors introduced the Inscribed Rectangles RCSA algorithm (IR-RCSA). The
RCSA algorithm finds a set of paths using a K-shortest paths algorithm, and for each
path it tries to allocate a request using the IR algorithm. Originally, the IR is an image
processing algorithm used to find rectangles in holes present in images. Analogously, it
was used to find available blocks of slots for the RCSA algorithm, by dividing the problem
into smaller sub-problems by first finding smaller squares and then combining them into
larger ones, as commonly done in dynamic programming solutions [34].
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We have modified the IR-RCSA algorithm to accept batch requests, and in case there
are not sufficient slots in a rectangle to allocate a batch request, the algorithm then
uses the MKP algorithm, which enables the allocation of a single batch using different
rectangles.

Algorithm 4: IR using MKP
1 P ← KShortestPaths(G, s, d);
2 ∀j,k | ∃ej,k ∈ PiMi ← mi and sj,k;
3 ∀i | Li = InscribedRectangles(Mi);
4 if Li 6= ∅ then
5 ω ←MKP (Bs,d(t), Li);
6 if ω 6= ∅ then
7 H ← PreAllocate(Bs,d(t), Pi, Li);
8 ∀hj,k ss,k ← 1

9 end if
10 end if

Algorithm 4 shows the IR-RCSA algorithm using the MKP algorithm. First, the
candidate paths are calculated using the K-shortest paths algorithm, and we store the
results in a set of paths P (Line 1). For each link in the path Pi, the spectrum are summed
using the binary operation, storing the result in Mi (Line 2). This operation guarantees
the spectrum continuity of the connection since the available slots of Mi are available in
all links along the path. The Inscribed Rectangle algorithm runs for each potential path
and the sets of available rectangles for each path i is stored in Li (Line 3). If there is
any rectangle with a size larger than one or more demands required by Bs,d(t), the MKP
algorithm is run, mapping the requests into their respective set of slots and then allocating
them (Line 5-7). The allocated slots are set as occupied in the spectrum matrices (Line
8).

Multiple Knapsack Problem

In the knapsack problem, there is a weight W and N items each associated with a weight
and a value, and one wants to determine which items to choose in order to maximize the
value but also not to exceed the maximum weight W . The Multiple Knapsack Problem
(MKP) is a variant of the Knapsack problem, where there are multiple knapsacks which
are not independent of each other. We used this concept to find available blocks of slots
to allocate requests in our RCSA algorithm.

For example, a batch Bs,d(t) with 3 requests and each of them requires 5 slots, a region
of slots then needs to have at least 15 slots. However, if there is no such region, the MKP
algorithm tries to find regions to accommodate sub-batches of Bs,d(t), making it possible
for one region to accommodate two requests while another region accommodates one.
Let {1, . . . , n} represent the set of requests in a batch Bs,d(t) where each request j has
a corresponding profit pj and weight (number of slots required) wj. We have m regions
of capacity ci, i ∈ {1, . . . ,m}, then the MKP tries to use a sufficient number of regions
to maximize the total profit and the sum of weights in each region i does not exceed the
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capacity ci. The MKP can be formulated as an integer linear programming problem as
follows:

maximize
m∑
i=1

n∑
j=1

pjxi,j

subject to
n∑
j=1

wjxi,j 6 ci, i ∈ {1, . . . ,m},

m∑
i=1

xi,j 6 1, j ∈ {1, . . . , n}

xi,j ∈ {0, 1}, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

where

xi,j =

{
1 if item j is assigned to knapsack

0 otherwise.

When m is 1, the MKP reduces to the 0− 1 (single) knapsack problem.
The result of the MKP algorithm is a mapping of requests in Bs,d(t) into available slot

region(s). When the path does not have enough slots in a single region to accommodate
a batch request, we consider that each request in a batch has a different profit based on
how much time they have until the deadline is reached, giving more profit to requests
that are closer to their deadline, thus, increasing their chances to be allocated.

Figure 3.1 shows an example of how the MKP algorithm is used to allocate the set of
requests in a batch in case it is not possible to allocate this batch using only one set of
slots. In Figure 3.1, a batch composed of four requests R1, R2, R3, and R4 arrives, then
the algorithm finds regions/rectangles of slots and the MKP algorithm tries to distribute
the requests in an optimal way. One region/rectangle can accommodate more than one
request, so the MKP algorithm optimizes the request distribution by finding regions/rect-
angles that more closely match the allocation requirements so that the region/rectangle
is not left with many available slots.

Figure 3.1: Using MKP to allocate a batch request.

In Algorithm 3 the for-loop (Lines 3-12) runsK times, whereK is the number of paths.
The complexity of Algorithm 3 depends on the MKP algorithm (Line 6) and the CCL
algorithm (Line 4). The complexity of the CCL and IR algorithms in [33, 34] is O(ρ),
where ρ is the number of pixels in an image, which is translated to slots in this case.
In Line 6, if m > 1, the MKP is an NP-hard combinatorial optimization problem [31],
due to this, in [31] the authors describe a version of the MKP algorithm with complexity
O(m×n× logm+n2), where m is the number of regions and n is the number of requests
in Bs,d(t). The complexity of the Algorithm 3 is then O(k × ρ×m× n× logm+ n2).
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3.6 Energy Consumption Model

This section presents the energy consumption model used to evaluate the energy con-
sumption of the network. The model proposed in [55] is adapted for multi-core networks.
This model is employed since it accounts for the energy consumption of a wide range of
network devices, such as Optical Cross-Connect (OXC) and optical Erbium-Doped Fiber
Amplifiers (EDFAs), as well as the consumption of optical transmissions.

Table 3.2: List of Symbols used in Energy Consumption Model

Symbol Description
R = {r} Accepted requests
O = {o} Set of OXCs
PCm Power consumption of a slot according to its used modulation
ECreq Energy consumption of all the requests
Hr Lifetime of the rth request
Sr Number of slots allocated by request r, without the band guards
ECtotal Total energy consumption of the network

Equation 3.1 expresses the total energy consumption of the network which is given by
the sum of the energy consumption of all accepted requests and OXCs.

ECtotal = ECreq + ECOXCs, (3.1)

where ECOXCs represents the sum of energy consumption generated by all OXCs during
a simulation, where each OXC consumes 150 Watts [55]. The energy consumption of the
network is given by:

ECreq =
∑
r∈R

Sr × PCm ×Hr (3.2)

Equation 3.2 represents the energy consumption of all the requests (ECreq) which is given
by the sum of the power consumption of all transmissions multiplied by their lifetimes.

3.7 Performance Evaluation

We implemented our algorithms in the FlexGrid simulator [32], and for the ILP algorithm,
the Gurobi optimization solver [15] was used. Each simulation was run for 105 requests,
and the load (erlang traffic) was increased from 0 to 400 in steps of 25 erlangs. The
minimum rate of the connections are distributed according to following probabilistic dis-
tribution: 50/100 for OC-192, 25/100 for OC-768, 15/100 for OC-1536, 7/100 OC-1920,
2/100 for OC-3072 and 1/100 for OC-3840.

For the simulations, the NSFNET and USA topologies were employed. The NSFNET
topology (Figure 4.8) has 16 nodes and 25 fiber links and the USA topology (Figure 4.9)
has 24 nodes and 43 fiber links. Each fiber link is bidirectional and contains 7 cores, each
with 320 slots and slot spacing of 12.5 GHz. The mean arrival rate and mean holding
time were adjusted to simulate the desired load in erlangs.

We compared our algorithm with the algorithms introduced in [33, 34]. The IR-RCSA
algorithm was compared to our EDF algorithm using the IR as the RCSA algorithm
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Figure 3.2: NSFNET topology with 16 nodes and 24 fiber links.

Figure 3.3: USA topology with 24 nodes and 43 fiber links.

while the BG-MKP algorithm used the RCSA described in Section 3.5. The CCL RCSA
algorithm was compared to our EDF algorithm using the CCL algorithm as the RCSA
algorithm while the BG-MKP algorithm used the RCSA described in Section 3.5.

To evaluate the algorithms, we used the following metrics: i) Bandwidth Blocking Ra-
tio (BBR); ii) the number of active transponders used; iii) energy efficiency, to analyze the
amount of data that could be conveyed from end to end per quantum of energy consumed
by the network, and iv) energy consumption, to analyze the total energy consumption
used in the network during the simulation.
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Figure 3.4: Bandwidth blocking ratio as a function of the load for the NSFNET topology

Figure 3.4 shows the BBR as a function of the load for the NSFNET topology. In
Figure 3.4a, the CCL, EDF, and BG-MKP started blocking requests under loads of 50
erlangs. The EDF algorithm produced a BBR value 68% lower than the BBR produced
by the CCL algorithm under loads of 200 erlangs. The BG-MKP algorithm produced
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BBR values 40% lower than the BBR produced by the CCL algorithm under loads of 300
erlangs. The EDF algorithm produced BBR values 40% lower than the BBR produced
by the BG-MKP algorithm under loads of 400 erlangs. In Figure 3.4b the IR, EDF,
and BG-MKP algorithms started blocking requests under loads of 50 erlangs. The EDF
algorithm produced a BBR value 70% lower than the BBR produced by the IR algorithm
under loads of 200 erlangs. The BG-MKP algorithm produced BBR values 30% lower
than the BBR produced by the IR algorithm under loads of 300 erlangs. The EDF
algorithm produced BBR values 65% lower than the BBR produced by the IR algorithm
and 49% lower than the BG-MKP algorithm under loads of 400 erlangs, while BG-MKP
algorithm produced a BBR value 32% lower than the IR algorithm under loads of 400
erlangs. The EDF algorithm yielded the lowest BBR regardless of the load, confirming
that postponing a request multiple times contributes greatly to the avoidance of blocking.
The BG-MKP algorithm also produced BBR values lower than using the pure IR and
CCL RCSA algorithms, since it can form batches and with the MKP introduction, the
batch request can be sub-divided and postponed independently. The BG-MKP algorithm
must have blocking values higher than the used of EDF algorithm resulted by postponing
only once, and the combination of MKP algorithm and the RCSA algorithms (IR or CCL)
improves the allocation process, selecting regions/rectangles that fit optimally.
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Figure 3.5: Bandwidth blocking ratio as a function of the load for the USA topology

Figure 3.5 shows the BBR as a function of the load for the USA topology. In Fig-
ure 3.5a, the CCL, EDF and BG-MKP started blocking requests under loads of 50 erlangs.
The EDF algorithm produced BBR values 85% and 65% lower than the BBR given by the
CCL and BG-MKP algorithms, respectively, under loads of 200 erlangs. The BG-MKP
algorithm produced BBR values 55% lower than that produced by the CCL algorithm
under loads of 300 erlangs. The EDF algorithm produced BBR values one order of mag-
nitude lower than that given by the CCL algorithm under loads of 400 erlangs while the
BG-MKP algorithm produced BBR values 55% lower than that of the CCL algorithm
under loads of 400 erlangs. In Figure 3.5b the IR, EDF, and BG-MKP algorithms started
blocking requests under loads of 50 erlangs. The EDF algorithm produced BBR values
80% and 70% lower than those given by the IR and BG-MKP algorithms, respectively, un-
der loads of 200 erlangs. The BG-MKP algorithm produced BBR values 50% lower than
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that given by the IR algorithm under loads of 300 erlangs. The EDF algorithm produced
a BBR value 87% lower than the IR algorithm under loads of 400 erlangs while BG-MKP
algorithm produced a BBR value 53% lower than that given by the IR algorithm under
loads of 400 erlangs. When the requests are postponed, it increases the chances of being
accepted at another time, decreasing the blocking ratio regardless of the RCSA algorithm
adopted. The number of possibilities to postpone requests is directly connected to the
chances of these requests being accepted. The results produced by the EDF algorithm
confirm this hypothesis, postponing a request as much as possible whereas the BG-MKP
algorithm postpones a request only once. The EDF algorithm produced the best results
for both NSFNET and USA topologies compared to the other algorithms, regardless of
the load and RCSA used.
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Figure 3.6: Mean number of active transponders in a network as a function of the NSFNET
topology

Figure 3.6 shows the mean number of active transponders as a function of the load for
the NSFNET topology. In Figure 3.6a, the BG-MKP algorithm used 50 fewer transpon-
ders than did the CCL algorithm under loads of 150 erlangs. The EDF algorithm used
165 fewer transponders than did the BG-MKP algorithm under loads of 300 erlangs. The
EDF algorithm used 58 fewer transponders than did the CCL algorithm while BG-MKP
used 100 transponders more than did the EDF algorithm under loads of 400 erlangs. In
Figure 3.6b the BG-MKP algorithm used 173 fewer transponders than did the IR algo-
rithm while EDF algorithm used 364 fewer transponders than did the IR algorithm under
loads of 150 erlangs. The EDF algorithm used 15% fewer transponders than did the IR
algorithm under loads of 400 erlangs. The number of transponders used by our algorithms
were close to those used by the CCL and IR algorithms, but our algorithms produced a
significantly lower blocking ratio compared to those produced by the former algorithms,
showing that by using batches we can accept many more requests with a same number of
transponders, with EDF algorithm as the algorithm that produced the best results.

Figure 3.7 shows the mean number of active transponders as a function of the load
for the USA topology. In Figure 3.7a the BG-MKP algorithm used 8% fewer transpon-
ders than did the EDF algorithm under loads of 200 erlangs. The EDF and BG-MKP
algorithms used 15% more transponders than did the CCL algorithm under loads of 400
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Figure 3.7: Mean number of active transponders in a network as a function of the USA
topology

erlangs. In Figure 3.7b the BG-MKP algorithm used 10% more transponders than did
the IR algorithm, while EDF algorithm used 20% more transponders than did the IR
algorithm under loads of 150 erlangs. The EDF algorithm used 20% more transponders
than did the IR algorithm under loads of 400 erlangs. However, since it produced the
lowest blocking under all loads compared to the other algorithms, it naturally leads to a
greater usage in transponders.
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Figure 3.8: Energy consumption as a function of the load for the NSFNET topology

Figure 3.8 shows the energy consumption as a function of the load for the NSFNET
topology. In Figure 3.8a, the energy consumption of CCL, EDF and BG-MKP were close
to each other under loads of 100 erlangs. The energy consumption of BG-MKP algorithm
was 3% lower than that of the CCL algorithm under loads of 400 erlangs, while the EDF
algorithm was 5% lower than that of the CCL algorithm under loads of 400 erlangs. The
results were close since the number of transponders used were close for all algorithms. In
Figure 3.8b, the energy consumption of IR, EDF, and BG-MKP algorithms were similar
to each other under loads of 100 erlangs. The EDF algorithm consumed 15% less energy
than did the IR algorithm and 10% less energy than did the BG-MKP algorithm under
loads of 200 erlangs. The energy consumption of BG-MKP algorithm was 10% lower
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than that of the IR algorithm under loads of 400 erlangs, while the energy consumption
of the EDF algorithm was 20% lower than that of the IR algorithm under loads of 400
erlangs. When the IR algorithm was used as the RCSA algorithm, the energy consumption
values produced by the BG-MKP and EDF algorithms were lower than those given by
the pure IR algorithm. This behavior comes from the advantage of saving guard bands
and transponders, resulting in considerably lower energy consumption compared to the
other algorithms.
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Figure 3.9: Energy consumption as a function of the load for the USA topology

Figure 3.9 shows the energy consumption as a function of the load for the USA topol-
ogy. Since the power consumption is related directly with the data transmitted, there is
a strong correlation with the BBR metric, such that, when the BBR starts to increase
and the energy consumption goes down if the requests accepted have a short lifetime
and the amount of data transmitted is smaller than the amount of data transmitted in
the previous load. Such behavior can be seen in Figure 3.9. In Figure 3.9a, the energy
consumption of CCL, EDF and BG-MKP were similar to each other under loads of 50
erlangs. The EDF algorithm consumed 15% more energy than did the CCL algorithm
and 2% more energy than did the BG-MKP algorithm under loads of 200 erlangs. The
energy consumed by BG-MKP and EDF were 15% lower than that of the CCL algorithm
under loads of 400 erlangs. In Figure 3.9b, the energy consumption of IR, EDF, and
BG-MKP were similar to each other under loads of 50 erlangs. The energy consumed by
the BG-MKP is 10% higher than that of the IR algorithm, while the energy consumption
of the EDF algorithm was 30% higher than that consumed by IR algorithm under loads
of 200 erlangs. The energy consumption of BG-MKP algorithm was 10% higher than that
of the IR algorithm under loads of 400 erlangs, while the energy consumption of the EDF
algorithm was 15% higher than the CCL algorithm under loads of 400 erlangs. The energy
consumption for EDF and BG-MKP decrease more slowly than those generated by IR
and CCL algorithms because the number of requests accepted by the former algorithms
were higher, resulting in more transponders and slots reserved during the simulation.

Figure 3.10 shows the energy efficiency as a function of the load for the NSFNET
topology. Since the energy efficiency is the ratio between the energy consumption and the
data transmitted, there is a strong correlation with the BBR metric, such that, when the
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Figure 3.10: Energy efficiency as a function of the load for the NSFNET topology

BBR and energy consumption starts to increase the energy efficiency goes down. Such
behavior can be seen in Figure 3.10. In Figure 3.10a, the energy efficiency produced by
the EDF algorithm was 20% higher than that of the CCL algorithm and 10% higher
than that of the BG-MKP algorithm under loads of 200 erlangs. The energy efficiency
produced by the BG-MKP algorithm was 20% higher than that of the CCL algorithm
under loads of 300 erlangs. The energy efficiency produced by the BG-MKP and EDF
algorithms were 25% and 40%, respectively, higher than that of the CCL algorithm under
loads of 400 erlangs. In Figure 3.10b the energy efficiency produced by the EDF algorithm
was 40% higher than that of the IR algorithm and 20% higher than that of the BG-MKP
algorithm under loads of 200 erlangs. The energy efficiency produced by the BG-MKP
algorithm was 15% higher than that of the IR algorithm under loads of 200 erlangs. The
energy efficiency produced by the BG-MKP and EDF algorithms were 40% and 60%,
respectively, higher than that of the IR algorithm under loads of 400 erlangs.

 130000

 150000

 170000

 190000

 210000

 0  50  100  150  200  250  300  350  400

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

M
b

it
s/

Jo
u

le
)

Load (erlang)

CCL BG-MKP EDF

(a)

 130000

 150000

 170000

 190000

 210000

 0  50  100  150  200  250  300  350  400

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

M
b

it
s/

Jo
u

le
)

Load (erlang)

IR BG-MKP EDF

(b)

Figure 3.11: Energy efficiency as a function of the load for the USA topology

Figure 3.11 shows the energy efficiency as a function of the load for the USA topology.
In Figure 3.11a the energy efficiency produced by the EDF algorithm was 20% higher than
that of the CCL algorithm and 10% higher than the BG-MKP algorithm under loads of 200
erlangs. The energy efficiency produced by the BG-MKP and EDF algorithms were 20%
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and 30%, respectively, higher than that of the CCL algorithm under loads of 400 erlangs.
In Figure 3.11b the energy efficiency produced by the EDF algorithm was 15% higher than
that of the IR algorithm and 10% higher than the BG-MKP algorithm under loads of 200
erlangs. The energy efficiency produced by the BG-MKP and EDF algorithms were 15%
and 30%, respectively, higher than that of the IR algorithm under loads of 400 erlangs.
When the number of requests accepted is much higher than the number of transponders,
the energy efficiency increases, meaning that more requests are being accepted for the
same number of transponders. The BG-MKP and EDF algorithms effectively increase
energy efficiency while decreasing the blocking ratio.

3.8 Summary

In this chapter, we introduced traffic grooming using batch requests for SDM networks.
The first advantage of BG-MKP and EDF algorithms is that they can use any RCSA al-
gorithm. The second advantage is that these algorithms can reduce the BBR significantly
when compared to traditional RCSA algorithms. Another advantage is that the energy
efficiency of the network increases when the EDF or BG-MKP algorithms are used.

The EDF and BG-MKP algorithms improve significantly the amount of provisioned
bandwidth. The EDF algorithm has the lowest blocking ratio compared to those given by
the other algorithms for the USA and NSFNET topologies. The EDF algorithm produces
BBR values 70% lower than that of the IR algorithm, while the energy efficiency is 20%
higher under loads of 200 erlangs, showing clearly that the EDF algorithm is an optimal
algorithm to decrease the blocking and increase the energy efficiency compared to the
other algorithms.

We introduced a new version of the CCL and IR algorithms to make them able to
allocate batch requests. Moreover, we incorporated the MKP algorithm into them during
the spectrum selection process, used only in the BG-MKP algorithm, which results in
lower blocking given by the IR and CCL algorithms [33, 34].
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Chapter 4

Fragmentation in Space-Division
Multiplexing Optical Networks

In this chapter, we introduce new algorithms to handle the fragmentation problem in
Space-Division Multiplexing (SDM) optical networks using Multi-Core Fibers (MCF).

4.1 Introduction

In dynamic SDM optical networks, the established lightpaths have different setup and
teardown times1, and the bandwidth required is varied. This scenario can generate spec-
trum fragmentation, when a small portion of available frequency slot sequences end up
scattered in a fiber link, blocking future requests. Therefore, the links can have frequency
slots to allocate a connection request, but the contiguous and continuous constraints do
not allow it to be allocated, thus the fragmentation increases the blocking probability and
causes inefficient spectrum use.

In optical networks, fragmentation happens in the spectral and in the spatial di-
mensions. The spectral fragmentation occurs when the continuity constraint cannot be
respected but the network has slots available while the spatial fragmentation occurs when
a set of usable slots are misaligned in the neighboring links [62].

The inter-core crosstalk is one of the biggest challenges in SDM networks using Multi-
Core Fibers (MCFs) since it interferes in the quality of transmission and can cause less
efficiency of resource usage when it is not considered as a constraint in the allocation prob-
lem. All algorithms proposed in this chapter consider the impact of crosstalk generated
before the request allocation, and we also consider different thresholds for each modu-
lation format with distance-adaptive resource allocation for elastic SDM networks, both
handled by the Routing, Modulation Format, Core, and Spectrum Allocation (RMCSA)
algorithms.

Figure 4.1 exemplifies what happens when an SDM network is fragmented and a new
request arrives. Performing a routing algorithm, it gives over one option to allocate a
request with 150 Gb, resulting in P1 = {L1, L2} and P2 = {L4, L3}. But considering the

1Teardown time: the downtime of a request following a given work order which usually involves
deallocating resources that this request is using completely.
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Figure 4.1: SDM optical network with high fragmentation.

state of the network, for the high spectrum fragmentation, this request cannot be estab-
lished. The way the requests are allocated and deallocated causes high fragmentation, but
if these requests were allocated considering the occurrence of fragmentation, they could
be allocated. Figure 4.1 also illustrates an example of defragmentation, when the requests
are re-arranged and it is possible to allocate the required bandwidth.

In the literature, there are two types of solutions to handle the fragmentation problem:
the proactive and the reactive [5]. Proactive solutions try to minimize and prevent frag-
mentation occurrence by trying to find a path and a block of slots to allocate, increasing
the chances of future connection requests to be allocated. The reactive ones focus on
spectrum defragmentation, the processing of reducing the fragmentation by rearranging
already established connections, either by rerouting and/or reallocating them. However,
the reactive techniques can cause traffic disruption and the time spent reallocating the
set of requests are not negligible [5].

A set of proactive and reactive algorithms to prevent fragmentation in SDM networks
are introduced in this chapter. We propose four proactive algorithms: the Split-Demand
and Multipath Routing (SMR) algorithm; the Core and Quadrant Prioritization (CQP)-
RMCSA algorithm; the Fragmentation-aware(FA)-RMCSA and the Fragmentation-aware
Core Prioritization (FACP)-RMCSA algorithms. Most researchers have focused their ef-
forts on adapting proactive algorithms and classical reactive algorithms used in Elastic
Optical Networks (EON) to SDM networks. So, we propose a defragmentation algorithm
using Unsupervised Machine Learning (UML) to classify the requests already established
and arrange them into clusters, and then the RMCSA algorithm uses the cluster infor-
mation to set up new requests more efficiently.

The remainder of the chapter is organized as follows. Section 4.2 describes the related
work in optical networks to prevent the spectrum fragmentation. Section 4.3 describes the
problem formulation considered in this chapter. Section 4.4, describes the SMR algorithm
to reduce the blocking probability. Section 4.5 describes the FA-RMCSA and the FACP-
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RMCSA algorithms. Section 4.6, describes the CQP-RMCSA algorithm. Section 4.7
describes the defragmentation algorithm using UML. Section 4.8 discusses the overhead
generated by all algorithms proposed in this chapter. Section 4.9 shows and discusses the
performance of our proposed algorithms. Finally, Section 4.10 concludes the chapter.

4.2 Related Work

Connection requests are allocated dynamically in the network while respecting the link
and node constraints. RCSA (Routing, Core, and Spectrum Allocation) algorithms use
the following steps to allocate a new connection request: a) first, manage the routing in
the network by selecting the shortest path, then b) calculate the number of frequency slots
necessary to accommodate the required bandwidth, and c) check the availability of net-
work resources to allocate the bandwidth, considering inter-core crosstalk constraint [46].

In [5], fragmentation-aware algorithms are classified into proactive and reactive. Proac-
tive ones try to minimize or prevent future spectrum fragmentation, consisting in select-
ing a set of slots and a path that increases the chances of future connection requests
being established, resulting in less blocking. The reactive algorithms focus on network
defragmentation by rearranging already established connection requests, by rerouting or
reallocating them. Defragmentation algorithms can be triggered periodically or when the
fragmentation metric oversteps a certain threshold.

In [37], the authors introduced a new model of Reconfigurable Optical Add/Drop
Multiplexers (ROADM) and Architecture on Demand (AoD) to avoid blocking in SDM
networks, considering inter-core crosstalk and different modulation formats. In [52, 53],
the authors applied different variations of the First-Fit (FF) algorithm to the same Rout-
ing, Core, and Spectrum Allocation (RCSA) algorithm to select the slots and compare
each other. They used a spectrum partitioning criterion based on [14]. The prioritized
area is divided into blocks of slots, each having the same number of frequency slots.

In [68], the authors introduced the concept of cross-core virtual concatenation in
SDM optical networks with the spectrum contiguity constraint relaxed. They consid-
ered spectral-spatial channels have irregular shapes and their carriers can be distributed
over different cores. They used this concept to split the bandwidth demand into different
cores as much as possible, reducing blocking.

In [10, 49], the authors divided and prioritized the channel in areas. In [10], the spec-
trum is separated into partitions and each demand is assigned to a partition determined
by the links in the selected path. In [49], the prioritized areas are based on immediate
(IR) and advance (AR) reservation requests to reduce blocking. IR requests the start
of transmissions immediately after they arrive, whereas, AR requests can reserve future
resources. However, prioritizing areas can increase blocking compared to those given by
classical RCSA algorithms. The RCSA algorithm using the partition criterion introduces
more blocking under high loads compared to traditional RCSA algorithms because of the
limit of slots in each partition, where even though some partitions have a sufficient num-
ber of available slots to allocate the request, if the assigned partition does not have them,
then the request cannot be allocated.
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In [64, 65], the authors proposed rerouting algorithms, and an algorithm to minimize
the traffic disruption generated in the reconfiguration process. In [30], the authors pro-
posed a parallel algorithm using Simulated Annealing to re-optimize lightpaths in SDM
networks, reducing the blocking probability and increasing the spectrum efficiency. To
achieve the parallel function, they introduced a novel Software-Defined Networking (SDN)
controller, based on lightpath re-optimization. However, the parallelization solutions can
spend a large amount of time communicating with each other, necessary when dealing
with multiple threads.

Most works in the literature only adapted the algorithms used in single-core optical
networks, resulting in a high fragmentation. In this chapter, we introduce proactive and
reactive algorithms to handle the fragmentation problem in SDM optical networks using
MCFs, considering different modulation formats and crosstalk thresholds.

4.3 Problem Formulation

(a) (b) (c)

∆

(d) (e)

Figure 4.2: Transforming multi-graph into graphs: (a) sub-topology of the network, (b)
topology with 3 cores and 3 slots, (c) a multi-graph, separated by cores, each one rep-
resenting 3 slots, (d) a multi-graph where edges are mapped into one edge, contiguity
constraint, and (e) graphs generated [35].

To simplify the slot selection for allocation process, a multi-graph [35, 39] represents
the spectrum, illustrated in Figure 4.2. In the multi-graph, several edges connecting
two nodes represent the possibilities of use of the network link spectrum to allocate the
requested bandwidth. The original multi-graph is divided into C multi-graphs, when C is
the number of cores. Each of these multi-graphs is transformed into other multi-graphs,
each with N − ∆ + 1 edges, when ∆ is the bandwidth demand converted to several of
slots based on the modulation format chosen, and N is the total number of slots. These
multi-graphs are then transformed into N − ∆ + 1 graphs. In other words, the original
multi-graph is transformed into C × (|N | −∆ + 1) graphs. Each edge in these graphs is a
combination of ∆ slots. This representation assures spectrum contiguity in the solution.
In these graphs, the∞ weight value of an edge means that the slot is unavailable, whereas
the value 1 means that the slot is available for allocation. An ∞ value is assigned to an
edge if a slot represented by the edge is reserved or the crosstalk interference does not
allow any allocation in the adjacent core.



52

Table 4.1: Notation used in Problem Formulation

Symbol Description
s Source node of a connection request
d Destination node of a connection request
b Bandwidth of a connection request
C Number of cores in a fiber link
F Number of slots in a core
L Number of physical links
G = (V,E,W ) Graph representing a network topology

E
Set of edges, where E = {ei,j | vi, vj ∈ V } and the size is defined as
|E| = C × F × L

eu,v,n The nth edge connecting u and v
V Set of nodes, where V = {v1, v2, . . . , v|V |}
W Set of edge weights, where W = {w(eu,v) | eu,v ∈ E}

w
Weight of the edge eu,v,n, where w(eu,v,n) <∞ if the nth slot in the
link connecting nodes u to v is available and w(eu,v,n) = ∞ if the
slot is already allocated

Ĝu,v = (V̂ , Ê, Ŵ )

Labeled multi-graph, representing a graph with K-shortest paths be-
tween u and v such that Ê is the set of edges connecting {û, v̂} ∈ Ê,
V̂ is the number of nodes and Ŵ is the set of costs associated with Ê,
corresponding the mapping edges from K-shortest paths in G

w̃

Weight of the edge ẽu,v,n in graph n, where w̃(ẽu,v,n) < ∞ if the
corresponding edges in the graph are available while respecting the
inter-core crosstalk constraint for a selected modulation format and
w(eu,v,n) =∞ if the slot are unavailable

Ṽ Set of nodes, where Ṽ = V

ẽũ,ṽ,n ∈ Ẽ Edge connecting ũ and ṽ

ẽũ,ṽ
ẽũ,ṽ = {eu,v,n} ∈ Ẽ is a chain such that {eu,v,n} is the least ordered
edge, ẽu,v,n+∆ is the greatest ordered edge and | ẽu,v |= ∆

W̃ W̃ = w̃n(ẽũ,ṽ)

G̃n,∆ = (Ṽ , Ẽ, W̃ )

The nth labeled graph such that Ẽ is the set of edges connecting
{ũ, ṽ} ∈ Ṽ and W̃ is the set of costs associated with Ẽ. The edges
in Ẽ correspond to the mapping of ∆ edges in Ĝ, starting at the nth

edge

Ẽ Represents the mapping of ∆ edges in Ĝ, starting at nth edge

σ
Number of graphs extracted from multi-graphs, where σ =

|{G̃n,∆}| = C × (F −∆ + 1)

τ(Ĝ, C,∆) Function which produces all σ graphs from Ĝ

W (pn)

∑
ẽu,v∈pnẽu,v

weight of the path pn (the sum of the weights of all
the edges in the chain)

K Number of shortest paths between a pair of nodes
M Set of modulation formats, where M = {m1,m2, . . . ,m|M|}
XT Set of crosstalk values XT = {xt1, xt2, . . . , xt|XT |}
r(s, d, b) Request from the node s to the node d with a bandwidth demand of b

pn
Chain of G̃n,∆ such that the source node s is the least ordered node
and d is the greatest ordered node

$ Demand b converted in GHz
Ω Capacity in GHz of each slot
∆ Number of slots, obtained by ∆ = d$/Ωe
δ(G̃n,∆, r(s, d, b)) Slot block that satisfies ∆



53

4.4 Parallelized Multipath Routing

Multipath routing algorithms relax the spectrum contiguity constraint in optical net-
works [69, 29, 5], resulting in more possibilities to allocate a new request. In [69, 29],
the authors showed that using multipath routing the spectral efficiency increased, and
the blocking reduced using single-core fiber. This algorithm is also used to reduce the
fragmentation through the splitting of requests in over one path when it is impossible to
allocate using a single path.

In [69, 29, 68], the authors used either single or multipaths to route a request in a
dynamic scenario, reducing the bandwidth blocking. In [29], the authors proposed an
algorithm that tries to allocate as much as possible of the total rate required in the first
potential path, splitting the spectrum required into the path. The problem lies in the
remaining rate that will be destined to other paths. The remaining rate can be allocated
using a single block of slots or split the bandwidth demand into the path which can cause
more fragmentation than a traditional algorithm when the loads increase and need to use
several multipaths during the allocation. When the bandwidth is allocated into the paths,
it is necessary to add one or more slots (depending on the network architecture) to be the
guard band, resulting in more unavailable slots.

In [69], the authors introduced a hybrid single/multipath algorithm, using different
routing selections and considering different modulation formats, resulting in high spectrum
efficiency. To distribute the bandwidth in each selected lightpath, they proposed to use a
few paths. Their algorithm uses the K-shortest paths algorithm, when K represents the
maximum number of paths that each request can be allocated to. However, they did not
consider that each potential route can have different delays which can lead to the need
for additional buffers at the end nodes, and also the delay is a metric to guarantee the
QoS (Quality-of-Service).

In [68], the authors proposed an algorithm using virtual paths to allocate a request on
the same route through different cores, reducing the fragmentation. When a new request
arrives and there is no available slots to allocate it using a single path and a single block
of slots, but the potential path has sufficient number of slots to allocate the request and
it is possible to split the bandwidth demand into different cores, then this path is used.
They used a single modulation format which facilitates the allocation process.

We propose a new Split-Demand and Multipaths Routing (SMR) algorithm for SDM
optical networks. Different from the previous works, the SMR algorithm considers con-
straints to evaluate if the requests can be split into multipaths or not. The SMR algorithm
first tries to allocate a request using a single path, and only if there are not enough avail-
able slots the algorithm splits the bandwidth demand using multipaths. We empirically
found that for low bandwidth requests, it is not worth applying multipaths, as they are
very likely to cause more fragmentation. As many small chunks of slots are allocated and
deallocated, they leave holes in the spectrum, and as the fragmentation gets worse, the
multipath routing becomes the only option to allocate a request.

Figure 4.3, shows the potential allocations supported by our algorithm: one request
(represented in green) is delivered classically, using a single block of slots, another possi-
bility is to use over one block of slots to deliver a request (represented in red), and the
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last possibility is to use over one path to deliver a request (represented in blue).

(a) (b)

(c)

Figure 4.3: Different possibilities to accommodate a request using the SMR algorithm:
(a) network topology, (b) network topology and the latest requests allocated (represented
by dashed lines), (c) the spectrum state of each link according to the possibilities of
allocation.

The set of constraints are included in our algorithm, limiting the number of paths used
to allocate a connection request and the number of times that the bandwidth demand can
be split, preventing a high segmentation of the spectrum because of requests being over-
split into varied sizes causing high fragmentation compared to traditional algorithms [5].
For the NSFNET and USA topologies, we empirically evaluated the bandwidth limits
based on the number of slots necessary to establish a request. To determine the band-
width limitation, our algorithm is executed considering 1. no bandwidth limits, 2. limited
bandwidth and requests with bandwidth higher than 250 Gb were not allocated using
multipaths, 3. only requests higher than 250 Gb were allocated using multipaths. Analyz-
ing the results, we saw that requests higher than 250 Gb demonstrated the best results,
then we ran simulations limiting the bandwidth to use multipaths, starting from 50 Gb
to 250 Gb to find out at which point the bandwidth was an issue for multipaths. The
results confirmed that the blocking ratio decreases if multipaths are not used when the
requests demands are lower than 100 Gb, so if those requests cannot be allocated using a
single path and it is impossible to split the bandwidth demand, so they are blocked.

Our algorithm limits the number of shortest-paths by a request to the number of paths
returned by aK-shortest paths algorithm. The algorithm starts by trying to allocate using
a single path, and if that fails, it will increase the number of paths, until it reaches the
defined bounded K. When the maximum number of paths is used, our algorithm requires
a minimum bandwidth of b × 1/K for each candidate path, when b is the bandwidth
demand in Gb and K is total number of shortest paths.

These constraints prevents an extremely non-uniform allocations. The bandwidth de-
mand can be distributed across the cores on the same path, respecting the same constraints
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as the multipaths routing. The constraints introduced to reduce the fragmentation caused
by excessive allocations of small blocks of slots, lessening the heterogeneity of the blocks
of slots compared to traditional multipath algorithms.

Algorithm 5: Split-Demand and MultiPath Routing
1 P ← kShortestPaths(G, s, d);
2 L← RMCSA(r(s, d, b), P );
3 if L 6= ∅ then
4 Establish request r(s, d, b);
5 W (ẽu,v,i)←∞ ∀{u, v} ∈ P̃ ;
6 else if b ≥ THGb then
7 P̃ ← ∅;
8 foreach path pn ∈ P do
9 P̃ ← P̃ ∪ pn;

10 if |P̃ | ≥ K then
11 Go back to Line 36;
12 end if
13 B̄ ← b;
14 b∗ ← b/|P̃ |;
15 foreach path P ∗n ∈ P̃ do
16 m← m(P ∗n) | ∀im(P ∗n) ≥ mi(P

∗
n);

17 ∆← determine the number of slots;
18 if ∃ δ(G̃n,∆, r(s, d, b

∗)) then
19 Reserve slots request r(s, d, b∗);
20 B̄ ← B̄ − b∗;
21 Update network variables;
22 Go back Line 15;
23 else if m > BPSK then
24 Decrease the modulation format m;
25 Go back to Line 17;
26 else
27 Go back to Line 8;
28 end if
29 end foreach
30 if B̄ = 0 then
31 Establish request r(s, d, b);
32 W (ẽu,v,i)←∞ ∀{u, v} ∈ P̃ ;
33 end if
34 end foreach
35 end if
36 Block the request r(s, d, b);

Algorithm 5 shows the steps to allocate a request r(s, d, b). Line 1 computes the K-
shortest paths for a pair of nodes s and d. If the network has a path with a sufficient
number of slots to allocate r(s, d, b), it is established (Lines 3-5). The RMCSA algorithm
allocates requests using one contiguous and continuous block of slots or at most K block
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of slots. If the number of slots is insufficient to allocate the request in a single path, then
the algorithm tries to allocate it by splitting the bandwidth b and using multipaths if
necessary (Line 6-35). The bandwidth per path is computed (Line 14) and the number
of slots available in each path is calculated based on their own modulation format (Line
17). The algorithm uses parallelization to search for available slots, in order to reduce the
processing time (Lines 15-29), creating |P̃ | parallel functions that try to allocate r(s, d, b)
using multipaths. The algorithm tries to set aside a request using only the set of paths
in P̃ (Lines 15-29). If there is a sufficient number of slots to accommodate r(s, d, b), the
resources are then reserved (Line 19); the bandwidth assigned to this path is decreased
from the counter B̄ (Line 20); the network state is temporarily updated (Line 21) and
the next path is added to P̃ . If the number of slots is not enough, the modulation format
is decreased (Line 24), and the allocation is tried again. If all possibilities to allocate the
request are exhausted, then the request is blocked (Line 36).

In Algorithm 5, the main for-loop (Lines 15-29) runs K2 times, when K represents
the number of paths, but since it is a constant, it is not included in the complexity of the
Algorithm 5. For each candidate path, the steps to find the available blocks of slots (Lines
15-29) can run up to |M | times, whenM is the set of modulation formats. The innermost
condition, the one to find a block of slots to allocate r(s, d, b), runs in V̂ × Ê, representing
the number of edges and the number of nodes in Ĝ. Conditions are nested, so the bounds
can be multiplied and the complexity of the Algorithm 5 is O(|M | × |V̂ | × |Ê|).

4.5 Fragmentation-aware RMCSA Algorithm

When the network has a high traffic load and uses the multipaths algorithm, it can
generate more fragmentation than traditional RCSA algorithms, due to a high number of
divisions made to enable the allocation. This increases blocking and decreases the QoS,
resulting in a high spectrum fragmentation [26]. We also have to store more information
if a request needs over one lightpath, meaning that the number of transponders increases,
and so does the cost. Another problem comes from the delay of each lightpath during
transportation, which cannot be guaranteed to be the same across the set of paths used
to deliver a request.

In this section, we introduce two algorithms: the Fragmentation aware Routing,
Modulation Format, Core, and Spectrum Allocation (FA-RMCSA) algorithm and the
Fragmentation-aware Core Prioritization RMCSA (FACP-RMCSA) algorithm. The RM-
CSA used in our algorithms is divided into two sub-problems, namely routing and modu-
lation format selection and core and spectrum allocation. In the routing and modulation
format selection, the candidate paths to allocate a request are identified and the number
of slots necessary to allocate the requested bandwidth is calculated based on the length of
the paths. In the core and spectrum allocation step, available slots are searched to accom-
modate the request. These two algorithms differ by the employment of core prioritization
to avoid crosstalk as a selection criterion.
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Routing Selection

The paths chosen by the K-shortest paths algorithm are not necessarily completely dis-
joint, i.e., the paths can have links and/or nodes in common, and this can lead to the
formation of bottleneck links and the frequent allocation/de-allocation of slots in these
links increases fragmentation.

Existing RCSA algorithms do not consider the fragmentation state of the spectrum
as a metric in the routing selection; fragmentation is usually handled in the allocation of
spectrum steps of these algorithms.

In our algorithms, after computing K-shortest paths, we calculate the path fragmen-
tation ratio (FR) [56]. This metric captures the impossibility of using the spectrum due
to the generated fragmentation along a path. Besides the allocation, a crosstalk value
higher than a threshold values makes the slot unavailable.

Let Bi be the number of slots in the block. The availability value of each block, ν(Bi),
is defined as the maximum total data rate that can be provisioned using the slot [56].
The path fragmentation ratio for each candidate path is defined as:

FR = 1−

( ∑
i ν(Bi)

ν(
∑

i(Bi))

)
. (4.1)

The ratio is computed using the value of the fragmented spectrum and that of the non-
fragmented one.

∑
i ν(Bi) is the current value of all available blocks along the path

ps,d, while ν(
∑

i(Bi)) is the availability value from the blocks that can be allocated.∑
i ν(Bi) =

∑
k r
∗
k×yk , when r∗k = Rb× (b−1) represents the raw data rate and b−1 the

number of slots, Rb is the data rate achieved for a modulation formatm, and yk represents
the number of lightpaths that can be allocated having bk bandwidth. FR is in the range
[0, 1], when 0 is non-fragmented and 1 indicates a high spectrum fragmentation. In other
words, if a path has FR close to 0, this path is a promising candidate to host a request.

The closeness centrality [13] expresses how close a node is to all other nodes in a net-
work. Nodes with high closeness centrality values impact on the disjointness of paths and
consequently favor the formation of bottleneck link and greater blocking. The closeness
centrality is defined as the inverse of the sum of the shortest distances between each node
and every other node in the network. The closeness centrality measure is defined by:

CC(i) = 1/
n∑
i 6=j

d(i, j), (4.2)

when CC(i) represents the closeness centrality of the node i, n is the number of nodes
in a graph (network topology), and d(i, j) is the shortest path distance between i and j.
To minimize the formation of the bottleneck in the path selection step, we calculate the
closeness centrality of each node in a network and we use this value as a metric to decide
the path that has the lowest closeness centrality.

Figure 4.2a shows an example of a network topology that can be analyzed considering
closeness centrality, when G∗ = (V ∗, E∗) represents the topology with V ∗ nodes and E∗

links. Node U is directly touched by three nodes, Y , V and Z. It must pass messages
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through Z to reach W . Thus U depends upon only one relayer to communicate with
other nodes in the network. On the other hand, Y needs U to communicate with V or Z
and both U and Z to reach W . To reach everyone, then, Y must depend upon U three
times and Z once. Node U is closer to other nodes than Y , resulting in a high closeness
centrality in the sense of being independent of others. If the k-shortest paths algorithm
runs, this node will appear in most shortest paths, showing that the set of links connected
can have bottleneck, increasing the blocking probability.

Numerical values of FR and CC are normalized by the sigmoid function: α = γ/(1 +

exp(x−µ)), when x is the value, given by either Equations 4.1 or 4.2 and µ is a threshold.
This sigmoid function dampens the values, so variations in the FR or CC values are
less intense when combining them in Equation 4.3, and also avoids that numerical values
of one factor dominating the other in the resulting value. For the NSFNET and USA
topologies, an empirical evaluation of the µ thresholds for FR and CC that produced the
least blocking resulted in 0.8 and 0.5, respectively. The following equation combines FR
and CC into a single metric, representing the adequateness of a path for allocation:

ω = ωFR × ωCC , (4.3)

when ω shows the potentiality of path ps,d to accommodate the new request, ωFR repre-
sents the normalized path fragmentation ratio, and ωCC the normalized sum of closeness
centrality.

The RMCSA Algorithm

Algorithm 6 shows the steps to allocate a request r(s, d, b). Line 1 computes the K-
shortest paths for a pair of nodes s and d. If there is no available path, the request is
blocked (Line 22). In Lines 4-8, the algorithm classifies each path, when S stores the
computation of Equation 4.3 for every path in P (Line 7). These paths are then ordered
in ascending order based on the corresponding result in the set R (Line 9). For each
path (Lines 10-20), the algorithm tries to allocate r(s, d, b). Lines 11-12 compute the
number of slots ∆ necessary to allocate the request with modulation format m. Line 13
computes the availability of the spectrum using the adopted multi-graphs representation
of the spectrum. To accommodate a request r(s, d, b) after the route selection process, we
need to find a block of available slots considering the crosstalk level on the slots (Line 14).
For the FA-RMCSA we use the First-Core First-Fit algorithm [26] to find the available
slots. If there is no block of slots available, then we decrease the modulation format m
and go back to Line 12 (Lines 17-18). Otherwise, we establish r(s, d, b) along the path pn
and update the weights of the edges to ∞ for the slots that are allocated to this request
(Lines 14-16). If we try all possibilities and there is no chance to allocate r(s, d, b), the
request is blocked (Line 22).

The Core Prioritization RMCSA Algorithm

In MCFs, crosstalk is generated by the propagation of optical signals between cores due to
an evanescent wave. An evanescent wave decays exponentially with the distance traveled,
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Algorithm 6: Fragmentation-aware RMCSA
1 P ← KSP (G, s, d);
2 if P 6= ∅ then
3 S← ∅;
4 foreach path pn ∈ P do
5 ωCCpn

← SumOfClosenessCentrality(pn);
6 ωFRpn

← FragmentationRatio(pn);
7 S← S ∪ (ωCCpn

× ωFRpn
);

8 end foreach
9 P ← R(pn) | ∀iR(pn) ≥ R(Pi);

10 foreach path pn ∈ P do
11 m← m(pn) | ∀im(pn) ≥ mi(pn);
12 ∆← determine the number of slots;
13 τ(Ĝpn , C̃,∆) for m;
14 if ∃ δ(G̃n,∆, r(s, d, b)) then
15 Establish r(s, d, b) as pn;
16 W (ẽu,v,i)←∞ ∀{u, v} ∈ pn;
17 else if m > BPSK then
18 Downgrade m and go back to Line 12;
19 end if
20 end foreach
21 end if
22 Block the request r(s, d, b);

and the propagation of optical signals depends on the propagation constant of each core.
To calculate the crosstalk in SDM networks, we use the equations given in [16]. Keeping
the overall crosstalk of the network low is key to reduce the fragmentation effect since it
presents a slot to be unavailable for allocation.

By carefully choosing the order of the cores in which slots are selected, we can prevent
high crosstalk in a way that allocations are placed in non-adjacent cores whenever possible.
This allows the network to accept more new requests and accept requests with a high
modulation format.

(a) (b) (c) (d)

Figure 4.4: An example of prioritizing each core by the graph complement.

We adopted the graph-complement approach to define the core prioritization. The
complement of a graph G with V nodes and E edges, is the graph H, with the same
vertex set but with edge set comprising the edges not present in G. The priority of the
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cores for allocation is pre-computed, considering an MCF as a graph G, each core as a
node, and the adjacent cores connected by an edge. To generate the complement of this
graph, one fills in all the missing edges required to form a complete graph and removes
every edges that were previously there. The only edges left are between non-adjacent
cores, the proposed criterion sorts the cores in order of greatest distance between each
core.

Figure 4.4 illustrates the core prioritization criterion. First the algorithm identifies
each neighboring core (Figure 4.4b), then the algorithm generates the graph-complement
H (Figure 4.4c) to determine the priority of each core (Figure 4.4d), showed by P −{x},
when x belongs to {1, 2, 3, 4, 5, 6, 7}, making the center core the last option to allocate
connection requests.

In the Fragmentation-aware Core Prioritization (FACP) RMCSA algorithm, the dif-
ference is that this algorithm uses a specific pre-computed order of cores to select one
core and then apply the First-Fit policy to select a block of slots, in the same way as for
the FA-RMCSA algorithm. To apply core prioritization, we need to change Line 14 in
Algorithm 6 to:

∃ δ(G̃n,∆, r(s, d, b),T), (4.4)

when T is the result of core prioritization, such that the slots will be selected from cores
following the order in T.

In Algorithm 6, the for-loop (Lines 4-8) runs K times the fragmentation calculation
(V̂ × Ê), when K is the constant variable representing the number of candidate paths, Ê
and V̂ are the number of edges and the number of nodes in Ĝ. In Algorithm 6, the main
for-loop (Lines 10-20) runs K times when K is a constant, but since it is a constant, it is
not included in the complexity of the Algorithm 6. For each candidate path, the steps to
determine the modulation format and to find the available slot blocks (Lines 14-19) can
run up to M times, when M is the set of modulation formats. The innermost condition,
the one to find a slot block to allocate r(s, d, b), has time complexity V̂ ×Ê. So in the worst
case, the total execution time will be (K × (V̂ × Ê)) + (K ×M × V̂ × Ê), running for all
options before or establishing or blocking a request. Conditions are nested, so the bounds
can be multiplied to give that the complexity of the Algorithm 6 is O(|M | × |V̂ | × |Ê|).

4.6 Core and Quadrant Priority RMCSA Algorithm

In this section, we will introduce a new RMCSA algorithm using core and area prioritiza-
tion in the allocation process. The Core and Quadrant Priority (CQP)-RMCSA algorithm
runs in two phases: the routing and spectrum selection. For the routing selection, the
CQP-RMCSA algorithm uses theK-shortest paths algorithm. For the spectrum selection,
the CQP-RMCSA algorithm uses our prioritization criteria (from Section 4.5) to select a
block of slots to allocate a request.

The prioritization criteria are defined before the simulation starts, following these
steps: the core prioritization, where the set of cores is sorted logically; and the area prior-
itization where the channel is logically divided into five areas, each one with a prioritized
order to allocate a request. The CQP-RMCSA algorithm is used to prevent crosstalk
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interference since they arrange requests to be on non-adjacent cores as much as possi-
ble, while the quadrant prioritization attempts to keep them from overlapping each other
by carefully selecting slots position for a request. Using both allocation criteria greatly
reduces the spectrum fragmentation.

Figure 4.5: Overview of the Core and Quad-
rant Priority RMCSA algorithm for a 7-core
fiber link: the matrix represents the MCF,
where the quadrant 1 is the first candidate
and slots in white color represent the avail-
able slots. If there is no suitable block of slots
available in quadrant 1, then the algorithm
will search in the next quadrants.

Figure 4.5, shows the Q quadrants pri-
ority criterion. First, the spectrum is di-
vided into five areas, when one of them con-
tains the isolated cores that generate more
crosstalk. Each quadrant has the same
number of cores to manage, and the cores
in each quadrant are given by the core pri-
oritization criterion, e.g., the first quadrant
(Q1) is composed of cores 1, 5 and 3, which
are not adjacent to each other. The quad-
rant prioritization focuses on slots which
are able to reduce the overlaps between
adjacent cores that cause the crosstalk in-
terference, and doing this, the crosstalk is
kept much more in control even under high
loads. For example, in Figure 4.5 the first
core available to allocate requests is core 1
and cores 5 and 3 are subsequently avail-
able to allocate, meaning that if a new re-
quest cannot be allocated in Q1 then the
algorithm tries to allocate it in quadrant Q2 and so on. The quadrant Q2 does not use
the same sequence of slot indices and cores as the quadrant Q1, reducing the inter-core
crosstalk interference. The algorithm does not allow to move on to the next quadrant
before trying to allocate on the current quadrant.

The center core is the last option to allocate a request and allows to allocate requests
with bandwidth up to 100 Gb. The threshold to allocate requests with lower granularity
decreases the crosstalk, because the center core is adjacent to all other cores and when
large amounts of slots are occupied, it interferes in all other cores, so by limiting bandwidth
that can be allocated in the center core, it is possible to decrease the crosstalk and the
blocking probability.

The CQP-RMCSA algorithm uses Flood-Fill algorithm to find available slots. Flood-
fill is a classical algorithm used in computer graphics, and is an extremely useful algorithm
used to mark or isolate portions of an image for processing or analysis, and also to fill
holes in images [24]. The algorithm is used in the bucket fill tool of painting programs
to fill connected areas with a different color, and in games such as Go and Minesweeper
for determining which pieces are cleared. In our algorithm, a graph I represents the
available slots in a corresponding quadrant Qn. To search for available slots, the CQP-
RMCSA algorithm applies the Flood-fill algorithm onto I to determine the connected
area to an aleatory seed, where the seed represents an available slot in I. Since we are
using quadrants, the Flood-Fill algorithm only sees one quadrant at a time as its graph.
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Algorithm 7: Core and Quadrant Priority RMCSA
1 P ← kShortestPaths(G, s, d);
2 if P 6= ∅ then
3 foreach path pn ∈ P do
4 m← m(pn) | ∀im(pn) ≥ mi(pn);
5 ∆← determine the number of slots;
6 τ(Ĝpn , C̃,∆) for m;
7 foreach quadrant Qn ∈ Q do
8 G̃∗ ← FloodF ill(Qn);
9 if ∃ δ(G̃∗n,∆, r(s, d, b)) then

10 Establish r(s, d, b) as pn;
11 W (ẽu,v,i)←∞ ∀{u, v} ∈ pn;
12 end foreach
13 if m > BPSK then
14 Downgrade m and go back to Line 5;
15 end if
16 Try to allocate r(s, d, b) in the center core;
17 end foreach
18 end if
19 Block the request r(s, d, b);

Algorithm 7 shows the steps to allocate a request r(s, d, b). Line 1 computes the K-
shortest paths for a pair of nodes s and d. If there is no path the request is blocked (Line
19). For each path, the algorithm tries to allocate r(s, d, b) (Lines 3-17). The number of
slots ∆ necessary to allocate the request with modulation format m is computed (Lines 4-
6). If there is no sufficient number of available slots in any quadrant, the modulation level
m is decreased and go back to Line 5 (Lines 13-15). Otherwise, we establish r(s, d, b) along
the path pn and update the weights of the edges to ∞ for the slots that are allocated to
this request (Lines 9-11). If there is no sufficient number of available slots in any quadrant
and the modulation level cannot be decreased, then the algorithm tries to allocate the
request in the center core, respecting the maximum bandwidth demand (Line 16). If all
possible modulation formats are attempted to be used and the algorithm cannot allocate
r(s, d, b), the request is blocked (Line 19).

In Algorithm 7, the main-loop (Lines 3-17) runs K times, where K is a constant
representing the number of paths. The time complexity of our algorithm depends on the
Flood-fill algorithm, running |Q| times in the worst-case, when |Q| represents the number
of quadrants. The Flood-fill Algorithm (Line 8) complexity is O(|V | + |E|), when |V |
represents the number of nodes and |E| the number of edges in a graph representing
the state of available slots in a network. For each quadrant, the steps to determine the
modulation format and to find the available slot blocks can run up toM times, whenM is
the set of modulation formats. In the worst-case the total execution for the central-loop
(Lines 7-12) is |Q| × |M | × (|V | + |E|). Conditions are nested, so the bounds can be
multiplied and the complexity of the Algorithm 7 is O(K × |M | × |Q| × (|V |+ |E|)).
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4.7 Machine Learning Defragmentation Algorithm

In this section, we introduce a new algorithm to avoid the fragmentation problem in SDM
networks using a reactive solution, consisting in finding routes or re-arranging the existing
requests, preventing future fragmentation and decreasing the blocking.

In defragmentation algorithms, the existing lightpaths are reallocated in other blocks
of slots and routes could be changed to suppress the fragmentation effect. In [65], the
authors systematically divide the defragmentation problem into four sub-problems:

1. How to reconfigure: Optimize the combination of routing and spectrum selection al-
gorithms for defragmentation, this sub-problem can be solved by designing a suitable
RMCSA algorithm to re-optimize the resource allocation of the existing connections.

2. How to migrate traffic: Design a request migration solution for defragmentation and
try to minimize traffic disruption.

3. When to reconfigure: Determine the moment for each defragmentation operation to
occur.

4. What to reconfigure: Decide how many and which requests will be reconfigured in
each defragmentation operation.

Even though rerouting approaches suppress fragmentation, they can cause traffic disrup-
tion. As a solution, in [64, 65] the authors applied to reroute to only a subset of existing
requests in an optical network.

Previous work for SDM networks did not focus on reactive algorithms as a solution
for fragmentation, hence, we propose an algorithm using machine learning to defragment
channels. The reactive algorithm needs these the following steps: 1. identify if defrag-
mentation is necessary, 2. select a set of requests to defragment, 3. defragment selected
requests, 4. perform traffic migration, and 5. update the network state. Moreover, the
complexity of defragmentation in SDM networks is increased since it has to consider the
crosstalk interference.

Defragmentation Identification

Our reactive solution is denominated Machine Learning Clusterized Reconfiguration (MLCR).
First, the algorithm checks if the defragmentation process is necessary. After a pre-defined
number of requests expire (we assume the request was blocked or it reached its lifetime),
the network fragmentation is computed, defined as χ = 1 − φ, when φ represents the
available slot ratio between the maximum size of the block of slots and the total number
of slots in the network.

Algorithm 8 shows the steps to defragment the spectrum and update the network
state. The algorithm counts the expired requests in κ (Lines 3-5), and if κ is greater
than the threshold then the network fragmentation χ is computed, when κ represents
the number of requests that are expired already (Line 7-8). When the threshold values
are reached, the defragmentation is performed (Lines 7-18). The reconfiguration process
consists in re-optimizing the RMCSA for a set of requests (Line 10). Results are tem-
porarily stored (Line 11) and a dependency graph is constructed representing the network
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Algorithm 8: Defragmentation-I
1 k ← 0;
2 while the network is operational do
3 if r(s, d, b) expires then
4 Release resources assigned to Ci;
5 κ← κ+ 1;
6 end if
7 if κ > TH1 then
8 χ← 1− φ;
9 if χ > TH2 then

10 Re-optimize the RMCSA for Cs,i ∈ C with Defragmentation-II;
11 ∀Cs,i | Cs,i ∈ C store Defragmentation-II output;
12 Construct a dependency graph Gd(V d, Ed);
13 Perform Best-Effort Traffic Migration based on Gd(V d, Ed) ;
14 Reconfigure each request Cs,i according to r(s, d, b)”;
15 Count request disruptions;
16 κ← 0;
17 end if
18 end if
19 end while

after the defragmentation (Line 12). Traffic migration is performed to handle the request
disruptions (Line 13), and then the network is updated (Line 14).

Spectrum Defragmentation

One of the most well-known solutions to avoid fragmentation in optical networks is par-
titioning the spectrum [5]. In optical networks, the spectrum is divided into dedicated
partitions based on a set of rules. Partition algorithms in the literature have used pre-
defined fixed partitions. For example, one partition only accepts requests allocation with
a specific number of slots. The problem of using this method is that sometimes the po-
tential path has enough number of slots to allocate the request, but they are not allocable
because either it is not acceptable in any partition that has slots available or the way
the spectrum was divided is preventing the allocation, causing high blocking. To handle
this problem, we propose to use UML in the defragmentation process and use its output
to reconfigure the partitioning algorithm according to the current state of the network.
This way we are able to take advantage of the resizing of partitions (clusters) during the
simulation that machine learning provides, giving more opportunities to allocate requests
in the future. Also, by using a clustering unsupervised learning algorithm in the defrag-
mentation process increases the probability of having a uniform allocation in the spectrum
and significantly decreases blocking.

The unsupervised learning comprises tasks that uses unlabeled training datasets to
create models that find dominating structures or patterns in the dataset. One of the
most known unsupervised learning techniques is clustering. A given set of objects can be
clustered in various different meaningful ways, depending on the distance (or similarity).



65

The notion of distance is modeled according to the problem being solved, so, in our case,
the advantage of using this method is that we can evaluate the current network state
before making decisions.

Our objective using clustering algorithm is to create dynamic partitions, to reduce the
spectrum fragmentation. We considered two features to clusters of request: the bandwidth
(Gb) and the path distance (Km). The objective is to dimension the number of cores in
each cluster to decrease the blocking probability.

150Gb

Bandwidth (Gb)

C1

C2

C3

Figure 4.6: Defragmentation using machine
learning clustering algorithm.

To optimize the partitions solution
in SDM networks, considering a parti-
tion as a cluster, we dynamically recon-
figure the number of cores that each clus-
ter will have, fixing the number of clus-
ters k as the same number as used in
k-Means algorithm. The k-Means algo-
rithm is one of the most important al-
gorithms in UML. k-Means is a centroid
or prototype based iterative algorithm
that employs partitioning and relocation
methods. The algorithm finds clusters
of spherical shape depending on the dis-
tance metric used, such as the Euclidean
distance, given by

(q, p) = (p, q) = (
n∑
i=1

(qi − P )2)1/2, (4.5)

when p to q is the distance between each
of these points.

In our method, when reconfiguration
occurs, the rearrangement of requests
will happen in each link to guarantee that
each request is allocated in a specific core designated by the k-Means algorithm. Algo-
rithm 8 defragments the spectrum using k-Means only in specific moments, reducing
the operational costs. After the first blocking of a request, the algorithm evaluates the
network state in an interval of 103 expired requests, by checking if the network fragmen-
tation is greater than 0.5, and performing the clustering defragmentation (Algorithm 9)
if necessary.

The network state has this interval pre-determined considering different traffic load
using USA and NSFNET topologies. To determine this interval, the defragmentation
was run for different intervals {101, 102, 103, 10n/2}, n being the total number of requests.
The results were compared and the best result selected, 103 requests. So, after each
103 requests, considering the first blocking, the network fragmentation is calculated and
checked against the aforementioned threshold.

For SDM networks, given a dataset composed of n requests, the objective of k-Means
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is to classify these requests into k different clusters, when k is pre-defined. The goal of
k-Means clustering is to minimize the total intra-cluster variance, or, the squared error
function:

 =
k∑
j=1

n∑
i=1

‖x(j)
i − cj‖2 (4.6)

when,  is objective function, and cj represents the centroid for cluster j. We adopted
k = 4, resulting in a variable number of cores for each cluster using 7-MCFs. Each cluster
is described by a single point known as the centroid, which is the most representative
object among the cluster it belongs. The k-Means algorithm for SDM networks follows
these steps:

1. Input : k, representing the number of requests in the dataset

2. Output : k centroids and a set of requests associated with each cluster

3. Select k arbitrary requests as the initial clusters

4. Calculate all k centroids of the k clusters from the current position

5. Associate each request with the closest cluster (centroid), based on similarity

6. Return to step 2 and stop if there is no significant change between requests.

In k-Means, silhouette refers to a method of interpretation and validation of consis-
tency within clusters of data. The method provides a succinct graphical representation
of how well each object (request) lies within its cluster. The silhouette value is a mea-
sure of how similar an object is to its own cluster (cohesion) compared to other clusters
(separation). The silhouette ranges from −1 to +1, where a high value indicates that the
object is well matched to its own cluster and poorly matched to neighboring clusters. If
most objects have a high value, then the clustering configuration is appropriate. If many
points have a low or negative value, then the clustering configuration may have too many
or too few clusters. Because of this, our defragmentation algorithm uses this method to
evaluate our results before the defragmentation. In case the silhouette returns less than
0.65, the algorithm does not perform the next defragmentation steps.

Algorithm 9 shows the steps to defragment the spectrum. First, the features are
extracted from the R requests (Line 1). The k-Means algorithm is executed to divide the
channels into logical clusters, classifying the requests, and associating each one to a cluster
Cn (Line 2). The result of k-Means is evaluated and if the silhouette is greater than a
threshold (Lines 3-4), the spectrum is then defragmented (5-30). The set of requests that
are already allocated in their respective clusters are removed from R (Line 5). The other
requests will be reallocated using the same paths that they were established before the
defragmentation (Lines 11-29). For each cluster, after the requests are sorted based on
their bandwidth (Line 12), the algorithm iterates through each request, determining the
modulation format (Line 15) and the number of slots necessary to reallocate it (Line 16).
If there is enough number of slots to accommodate the request, then it is pre-allocated and
network state is updated (Lines 18-23). If the request cannot be allocated, the modulation
format is decreased, and the allocation is retried (Lines 24-27).
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Algorithm 9: Defragmentation-II
1 X ← stractFeatures(R);
2 C̃ ← kMeans(X, k);
3 Ŝ ← calculateSilhouette(C̃);
4 if Ŝ > THs then
5 Remove requests that are in the correct cluster;
6 if C̃ = ∅ then
7 Stop executing;
8 end if
9 Store the current state of the network in Ĝ∗;

10 Recalculate the number of cores necessary for each cluster;
11 foreach cluster C̃n ∈ C̃ do
12 Sort the requests in C̃n by the bandwidth in descending order;
13 Hn ← cores in cluster C̃n;
14 foreach request associated with Cn do
15 m← m(pn) | ∀im(pn) ≥ mi(pn);
16 ∆← determine the number of slots;
17 τ(Ĝ∗pn , C̃,∆, C̃) for m;
18 if ∃ δ(G̃n,∆, r(s, d, b)) then
19 Perform pre-allocation of the request r(s, d, b);
20 W (ẽu,v,i)←∞ ∀{u, v} ∈ pn;
21 Store the new RMCSA∗ in {r(s, d, b),W (ẽu,v,i)};
22 Update Ĝ∗pn to include the new RMCSA∗;
23 end if
24 if m > BPSK then
25 Decrease the modulation format m;
26 Go back to Line 17;
27 end if
28 end foreach
29 end foreach
30 end if

Algorithm 9 uses the k-Means algorithm introduced in [9] to cluster requests. The
complexity of the k-Means algorithm is O(t × k × n), when t represents the number
of iterations, n represents the total number of requests and k represents the clusters,
when k is a constant, but since it is a constant, it is not included in the Algorithm 9’s
complexity. The complexity to sort the requests is O(|Rk|× log |Rk|) (Line 12), when |Rk|
represents the set of requests associated with a cluster. The inner for-loop (Lines 14-28)
runs |R| × |C| times, when R represents the requests selected to be reconfigured and C
represents the clusters, when |C| is a constant, hence it is not included in the complexity of
the Algorithm 9. The innermost condition, the one to find a block of slots to reallocate a
request, has time complexity V̂ ×Ê, and the steps to determine the modulation format and
to find the available slot blocks (Lines 15-27) can run up to |M | times, when M is the set
of modulation formats available for a request. Conditions are nested, so the bounds can be
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multiplied to give that the total complexity of the Algorithm 9 is O(|R|×|M |×|V̂ |×|Ê|).

Traffic Migration

Since migrating the traffic on the selected requests involve re-tuning their optical transpon-
ders and reconfiguring the optical switches along with their routing paths, traffic disrup-
tions can happen if the procedures are not designed properly [65]. In our defragmentation
algorithm, we adapted the scheme proposed in [64] for SDM networks as shown in Algo-
rithm 10.

For each request that was reallocated, traffic migration needs to accomplish a one-
to-one move Rs,d 7→ R′s,d. For example, two selected requests Ci,1 and Ci,2, if the target
RCSA of Ci,1 wants to use the slots that are currently occupied by Ci,2, meaning that,
there is an intersection between the lightpaths, such that the block of slots comprises
the same core and slot indices, then there is a dependency of Ci,1 on Ci,2. Therefore, we
cannot migrate Ci,1 until Ci,2 is done, and if the migration of Ci,2 is not possible, there
would be traffic disruption.

Algorithm 10 shows the method to update the request after the Algorithm 9 was
performed. First, a dependency graph Gd(V d, Ed) is constructed for all requests in Cs
based on their relations between before and after the reconfiguration (Line 1). In the
dependency graph Gd(V d, Ed), V d represents the set of nodes that are mapped from Cs
while Ed represents a set of edges, each edge ed ∈ Ed represents the dependence between
two requests, i.e., if vd1 and vd2 are in V d and there is a directed link from vd1 to vd2 , the
request vd1 depends on vd2 to migrate. If theGd(V d, Ed) is a Directed Acyclic Graph (DAG),
so there is no cycle in it, we can obtain the traffic migration sequence by performing a
topological sort on it (Lines 2-6).

Next, it performs the traffic migration (Lines 7-12). If it can use Make-Before-Break
scenario, we might avoid traffic disruption, but there is no guarantee. If there is a cycle,
it is necessary to use Minimum Feedback Vertex (MFV) algorithm to convert Gd(V d, Ed)

into a DAG (Lines 2-6).
The MFV problem is defined by: given a graph G = (V,E), find the smallest subset

S of V whose removal induces an acyclic sub-graph G = (V − S,E). The set S is
called a minimum feedback vertex set for G. In graph theory the set S is called the
decycling set and its cardinality is denoted as the decycling number of the graph G.
The corresponding problem for the removal of the minimum number of edges in order
to eliminate all the cycles in the graph is known as the cycle rank of the graph and its
complexity is O(|E| − |V | − t), when t represents the number of components [28].

After converting the graph to a DAG, we apply the Move-to-Vacancy (MTV) algo-
rithm, comprises searching for temporary blocks of slots to allocate the requests that are
in S, and after that, other requests are allocated, we can then allocate the requests in S
in their designated positions.

Figure 4.7 shows an example of the traffic migration steps applying MTV, using a
directed graph that has five nodes representing the selected requests and seven directed
edges representing their dependency. Figure 4.7a shows three requests that depend on each
other forming a cycle, so in this case, one request has to be stalled during the rerouting
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Algorithm 10: Best-Effort Traffic Migration [65]
1 Construct a dependency graph, Gd(V d, Ed) for all selected requests;
2 if Gd(V d, Ed) is not a DAG then
3 Find the MFVs in Gd(V d, Ed);
4 Delete all links from the nodes in the MFVs;
5 Execute the Best-Effort MTV for the requests whose nodes are in MFVs;
6 end if
7 while Gd(V d, Ed) 6= ∅ do
8 Find the sink nodes and store them in store them in V d

0 ;
9 Execute traffic migration for the requests whose nodes are in V 0

d ;
10 Delete all links are incident to V d

0 ;
11 Delete V d

0 from Gd(V d, Ed);
12 end while

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: An example of traffic migration with MTV, under the assistance of the de-
pendency graph (Adapted of [65]).

and thus traffic disruption will occur. To reduce the traffic disruption, in Figure 4.7b-4.7g
the MTV algorithm is illustrated. Initially, the node (request) with the minimum feedback
vertex is identified, meaning that this node interferes directly in the cycle. In this case,
the node with index 3 is classified as a minimum feedback vertex, then the algorithm tries
to find available resources using MTV to set aside the request temporarily, breaking the
cycle. With the graph free of directed loops, the algorithm then defragments the rest
of the requests, and finally restores the request which was moved using MTV, with the
desired RMCSA. However, since it is not possible to guarantee that the network will have
available slots for the requests on other routes, traffic disruption can occur.

Clustering RMCSA Algorithm

We propose a hybrid algorithm, named Clustering RMCSA (C-RMCSA), based on the
results obtained from our clustering defragmentation algorithm. The data is used to
construct new characteristics (centroid of each cluster) to partition/cluster the resource
channels. Initially, our algorithm allocates the requests using the First-Core First-Fit
(FCFF) algorithm.

After the defragmentation procedure succeeds, Algorithm 11 allocates requests based
on the clustering metric (centroid) (Lines 5-7). Given an arriving request r(s, d, b), the
algorithm sorts the clusters in descending order by the distance between the features of
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the request and the cluster centroid. The C-RMCSA algorithm only takes one cluster
to allocate a request using path pn ∈ P (Line 4). If the defragmentation has not been
executed yet, then the cluster is composed of all cores. To establish a request r(s, d, b),
after the cluster selection (Line 4), the algorithm needs to try to establish r(s, d, b) (Lines
9-17). If there is no block of slots available, then we decrease the modulation format m
and go back to Line 10. Otherwise, we establish r(s, d, b) along the path pn and update
the weights of the edges to∞ for the slots that are allocated to this request (12-14). If all
possibilities are tried and there is no chance to allocate r(s, d, b), the request is blocked
(Line 20).

Algorithm 11: Clustering RMCSA
1 P ← KShortestPaths(s, d,G);
2 if P 6= ∅ then
3 foreach path pn ∈ P do
4 H ← C;
5 if Clusters 6= ∅ then
6 L̃← EuclidianDistance(C, r(s, d, b), pn);
7 H ← L̃ order by the closest cluster for r(s, d, b);
8 end if
9 m← m(pn) | ∀im(pn) ≥ mi(pn);

10 ∆← determine the number of slots;
11 τ(Ĝpn , C̃,∆) for m;
12 if ∃ δ(G̃n,∆, r(s, d, b)) then
13 Establish r(s, d, b) as pn;
14 W (ẽu,v,i)←∞ ∀{u, v} ∈ Pi;
15 else if m > BPSK then
16 Downgrade m and go back to Line 14;
17 end if
18 end foreach
19 end if
20 Block the request r(s, d, b);

In Algorithm 11, the main for-loop (Lines 3-18) runs K times when K represents the
number of paths and it is a constant, hence it is not included in the complexity of the
Algorithm 11. For each potential path, the steps to determine the modulation format
and to find the available blocks of slots (Lines 10-17) can run up to M times, when M is
the set of modulation formats. The innermost condition, the one to find a slot block to
allocate r(s, d, b), has time complexity V̂ × Ê, Ê and V̂ are the number of edges and the
number of nodes in Ĝ (limited by the cores and slots attributed by the selected cluster),
respectively. Conditions are nested, so the bounds can be multiplied to give that the
complexity of the Algorithm 11 is O(|M | × |V̂ | × |Ê|).
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4.8 Discussion on Overhead

Overhead represents the additional cost to provide something. The FCFF and Parti-
tion (PT) algorithms have no additional cost to compute the request allocation. The
SMR algorithm described in Section 4.4, has ω = β representing the cost to allocate a
request using more than one path and the division of the bandwidth demand. The FACP-
RMCSA and FA-RMCSA algorithms have the same overhead regarding the computation
of fragmentation ratio for all potential paths, thus ω = ν. The CQP-RMCSA algorithm
described in Section 4.6, has ω = ζ, when ζ represents the cost of searching a seed (slot
available) in each quadrant. Finally, the Machine-Learning Defragmentation algorithm
described in Section 4.7, has the overhead to check if the defragmentation is necessary,
the overhead of the defragmentation processing and γ the overhead to update the network
state after defragmentation.

4.9 Performance Evaluation

We compared our proposed algorithms with algorithms employing the FCFF and Partition
policies. In [26], among the evaluated algorithms by the authors, the lowest blocking
probability was achieved by using FCFF in SDM networks. In [53], the authors proposed
a partition mechanism with prioritization of cores (PT). In this policy, the spectrum is
partitioned into areas having a specific number of slots, and a shared area to allocate
connections which could not be accepted in a designated area. To make the comparisons
fair, we introduced crosstalk thresholds and adaptative modulation formats to these RCSA
algorithms.

The number of slots depends on the requested capacity and the modulation format.
We consider six modulation formats, BPSK, QPSK, and x-QAM, when x ∈ {8, 16, 32, 64},
with the transmission reach and supported bit-rates as modeled in [40], and each with a
crosstalk threshold of {−14,−18.5,−21,−25,−27,−34}, respectively. Since the minimum
distance between symbols is most strongly affected by the rotated interferer, we expect
a strong impact on the crosstalk generated. The values for calculating the crosstalk [16]
employed the formulation in [37].

We implemented our algorithms in the FlexGrid simulator [32]. Each simulation was
run for 105 requests, and the load (erlang) was increased in steps of 25 erlangs for each
simulation from 0 to 500. We consider a Confidence Interval (CI) of 95% coeffient level,
and used 20 samples for each mean value. The bandwidth requests were generated between
50 Gb and 400 Gb, with granularities of 50 Gb.

In the simulations, we employed the NSFNET and USA topologies. The NSFNET
topology (Figure 4.8) has 14 nodes and 21 fiber links and the USA topology (Figure 4.9)
has 24 nodes and 43 fiber links. Each fiber link is bidirectional and contains 7 cores, each
with 320 slots and slot spacing of 12.5 GHz.

To evaluate the algorithms, we used the following metrics: Bandwidth Blocking Ratio
(BBR); mean crosstalk generated; Jain fairness index J(x), average path length and
network fragmentation [5]. The results can be readily verified that J(x) is continuous and
that its range is the interval [1/M̃, 1], when J = 1/M̃ represents the least fair allocation
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Figure 4.8: NSFNET topology with 14 nodes and 21 links.

Figure 4.9: USA topology with 24 nodes and 43 fiber links.

in which only one user receives a non-zero benefit, and J = 1 corresponds to the fairest
allocation in which all pairs of nodes (M̃) in the network receive the same benefit. The
network fragmentation is defined as χ = 1− φ, when φ represents the available slot ratio
between the maximum size of the block of slots and the total number of slots in the
network.
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Figure 4.10: Bandwidth blocking ratio as a function of the load for the NSFNET topology.

Figure 4.10 shows the BBR as a function of the load for the NSFNET topology. The
PT and FCFF algorithms started blocking requests under loads of 75 erlangs, FA-RMCSA
and SMR algorithms started blocking under loads of 125, the MLCR algorithm started
blocking under loads of 200 erlangs and the CQP-RMCSA algorithm under loads of 150
erlangs. But, the FACP-RMCSA algorithm started blocking requests only under loads
of 400 erlangs. The FA-RMCSA produced BBR values one order of magnitude lower
than that produced by the PT algorithm under loads of 200 erlangs. The FACP-RMCSA
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algorithm produced the lowest BBR values regardless of the load compared to all proactive
techniques, a difference of two orders of magnitude lower than FCFF and PT-RMCSA
algorithms was produced under loads of 400 erlangs. The BBR produced by the MLCR
algorithm under loads of 500 erlangs was 40% lower than the one produced by FACP-
RMCSA and 70% lower than that produced by the PT algorithm. The difference in
blocking produced by FA-RMCSA and FACP-RMCSA resulted from the adoption of core
prioritization. The MLCR algorithm demonstrates that it is efficient for high loads when
compared to other algorithms for the NSFNET topology, because of the defragmentation
and core-clustering partition rearranging frequently according to the current state of the
network, which increases the efficiency in spectrum usage.
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Figure 4.11: Bandwidth blocking ratio as a function of the load for the USA topology.

Figure 4.11 shows the BBR as a function of the load for the USA topology. The
PT and FCFF algorithms started blocking under loads of 25 erlangs, while SMR, CQP-
RMCSA and FA-RMCSA algorithms started blocking under loads of 100 erlangs, MLCR
algorithm started blocking under loads of 150 erlangs and the FACP-RMCSA algorithm
started blocking requests only under loads of 300 erlangs. The BBR produced by CQP-
RMCSA, SMR algorithms were three orders of magnitude lower when compared to the
BBR produced by the PT algorithm under loads of 100 erlangs. The BBR produced by
the FA-RMCSA was three orders of magnitude lower than those produced by the PT
algorithm under loads of 150 erlangs. The BBR produced by the MLCR algorithm was
40% lower than that produced by the PT algorithm under loads of 500 erlangs. The
FACP-RMCSA algorithm produced the lowest BBR regardless of the load, confirming
that our core prioritization contributes to avoiding blocking.

Figure 4.12 shows the Jain fairness index as a function of the load for the NSFNET
topology. When J(x) approaches 1, it means that there is an equilibrium between the
allocations between pairs of nodes, but when J(x) approaches 0, it indicates that the allo-
cations are unfair, when certain pairs of nodes exhibit blocking disproportionately higher
than others. The produced by the PT algorithm started to decrease under loads of 200
erlangs, while produced by the CQP-RMCSA algorithm started to decrease under loads
of 300 erlangs. The MLCR algorithm had only a subtle decrease compared to all other
algorithms after 300 erlangs. The FACP-RMCSA algorithm started to decrease under
loads of 425 erlangs. The SMR and FCFF algorithms had the lowest values compared to
the other algorithms, showing these algorithms did not achieve an equilibrium compared
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Figure 4.12: Jain fairness index as a function of the load for the NSFNET topology.

to our proposed algorithms. The FACP-RMCSA and MLCR algorithms demonstrated
the fairest values regardless of the load, resulting in more equilibrium in the allocation
between the pair of nodes, also resulting in lower BBR values.

Figure 4.13 shows the Jain fairness index as a function of the load for the USA topol-
ogy. The CQP-RMCSA algorithm started to decrease J(x) under loads of 225 erlangs, and
FACP-RMCSA algorithm started to decrease J(x) under loads of 375 erlangs, meaning
that some pairs of nodes blocked more than others in the CQP-RMCSA algorithm, re-
sulting in unfair allocation when compared to the FACP-RMCSA algorithm. The MLCR
algorithm had a greater impact on the USA topology, starting to decrease under loads of
200 erlangs, but under loads of 500 erlangs produced a J(x) only 2% lower than FACP-
RMCSA and 6% higher than FCFF. The SMR and FCFF algorithms had the lowest
values compared to the other algorithms, showing that they produced the most unfair
allocation among the algorithms. FACP-RMCSA, on the other hand, produced the best
J(x) regardless of the load.
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Figure 4.13: Jain fairness index as a function of the load for the USA topology.

Figure 4.14 shows the inter-core crosstalk as a function of the load for the NSFNET
topology. The crosstalk value increases for all algorithms as the traffic load increases. The
crosstalk value produced by the FCFF algorithm was 6 dB higher than that produced by
FACP-RMCSA algorithm under loads of 25 erlangs. The crosstalk value produced by the
MLCR algorithm was 4 dB higher than that produced by FACP-RMCSA algorithm under
loads of 300 erlangs. Regardless of the load, the FACP-RMCSA algorithm produced the
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lowest crosstalk, as a result of the core prioritization criterion adopted.
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Figure 4.14: Inter-core crosstalk as a function of the load for the NSFNET topology.

Figure 4.15 shows the inter-core crosstalk as a function of the load for the USA topol-
ogy. The difference in cross-talk produced by the algorithms were smaller for the USA
topology than they were for the NSFNET topology, since the USA topology has a higher
connectivity degree compared to the NSFNET topology, the degree indicates the possi-
bilities of link selection and direct transmission between adjacent nodes. The crosstalk
produced by FACP-RMCSA was 5 dB lower than that given by the FCFF algorithm un-
der loads of 25 erlangs. The crosstalk given by the FACP-RMCSA algorithm was similar
to the one produced for the NSFNET topology, being the lowest cross-talk value pro-
duced among all algorithms. The mean difference between the cross-talk given by the
FACP-RMCSA algorithm and FCFF was 14% lower under loads of 500 erlangs.
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Figure 4.15: Inter-core crosstalk as a function of the load for the USA topology.

Figure 4.16 shows the network fragmentation for the NSFNET topology. The network
fragmentation metric is not representative for the PT algorithm, as the algorithm divides
the spectrum into partitions, grouping requests by bandwidth. This limitation causes a
misleading impression that it has more available slots, where in reality, it does not. As a
result, we will not use its results in the following discussion. The same behavior happens
to CQP-RMCSA algorithm which also uses a partition mechanism to allocate requests.
The SMR and FA-RMCSA algorithms produced the worst results compared to all algo-
rithms under 100 erlangs resulted from splitting requests. The network fragmentation
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produced by the FACP-RMCSA algorithm was 17% lower than that produced by the FA-
RMCSA algorithm under loads of 125 erlangs. The FCFF, FA-RMCSA, FACP-RMCSA,
and SMR algorithms produced similar results after loads of 200 erlangs. The MLCR al-
gorithm started to decrease the fragmentation under loads of 275 erlangs resulted from
the increasing number of defragmentations.
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Figure 4.16: Fragmentation ratio as a function of the load for the NSFNET topology.

Figure 4.17 shows the network fragmentation for the USA topology. Under loads of
75 erlangs, FCFF algorithm produced the lowest network fragmentation compared to
the FACP-RMCSA and FA-RMCSA algorithms, a difference of 2% and 26%, respec-
tively. After loads of 200 erlangs, the results produced by the FCFF algorithm were close
to the ones produced by the FA-RMCSA, FACP-RMCSA and SMR algorithms. The
MLCR algorithm had the same behavior as in the NSFNET topology, starting to de-
crease the fragmentation under loads of 275 erlangs resulted from the increasing number
of reconfigurations. The MLCR algorithm produced fragmentation values 30% lower than
FACP-RMCSA algorithm under loads of 500 erlangs.
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Figure 4.17: Fragmentation ratio as a function of the load for the USA topology.

Figure 4.18 shows the mean average path length for the NSFNET topology. As the
load increases, the available resources get ever scarce, such that it becomes difficult to
establish requests over lengthy paths due to the contiguity and continuity constraints.
The average path length produced by FCFF, PT, SMR, MLCR, FA-RMCSA, and CQP-
RMCSA algorithms were close under loads of 150 erlangs. The average path length
produced by CQP-RCSA algorithm was 3% lower than the FACP-RCSA algorithm under
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loads of 200 erlangs. The average path length produced by MLCR algorithm was 4% and
10% lower than the FCFF and FACP-RMCSA algorithms, respectively, under loads of
300 erlangs. The SMR algorithm produced an average path length 8% lower than that
produced by the FACP-RMCSA algorithm under loads of 500 erlangs, because of the
division of bandwidth requests and use of multiple paths to establish a request, considering
that the selected paths can share links. The FA-RMCSA algorithm produced an average
path length 10% lower than the FACP-RMCSA algorithm under loads of 500 erlangs.
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Figure 4.18: Average path length as a function of the load for the NSFNET topology.

Figure 4.19 shows the average path length for the USA topology. The average path
length produced by FCFF, PT, SMR, MLCR, FA-RMCSA, and CQP-RMCSA algorithms
were closely under loads of 150 erlangs. The average path length produced by CQP-RCSA
algorithm was 5% lower than the FACP-RCSA algorithm under loads of 300 erlangs. The
average path length produced by MLCR algorithm was 3% and 10% lower than the
FCFF and FACP-RMCSA algorithms, respectively, under loads of 300 erlangs. The SMR
algorithm produced an average path length 10% lower than the FACP-RMCSA algorithm
under loads of 500 erlangs. The FA-RMCSA algorithm produced an average path length
10% lower than the FACP-RMCSA algorithm under loads of 500 erlangs.
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Figure 4.19: Average path length as a function of the load for the USA topology.

Figure 4.20 shows the relationship between crosstalk, BBR and network fragmentation
for the NSFNET and USA topologies. For the NSFNET topology the best results were
produced by the FACP-RMCSA algorithm, where the crosstalk interference and the BBR
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produced were lower compared to the others, demonstrating that when the network frag-
mentation increased, the FACP-RMCSA algorithm could handle it better than the other
algorithms. The results produced by the CQP-RMCSA algorithm demonstrate potential
adaptation of the algorithm to more flexible allocation using partitions, as it produced the
lowest network fragmentation for the NSFNET topology, but it was not reflected in the
BBR produced because of the number of slots limited for each core. The results produced
by the MLCR algorithm demonstrate that this algorithm has high potential to be used
where the network has to allocate new connections under high load traffic since the ML
algorithm can work better with more information about the network state. The behav-
ior for USA topology for FACP-RMCSA, SMR, CQP-RMCSA, and MLCR algorithms
were very similar to the NSFNET topology, meaning that these algorithms could handle
the fragmentation problem for different topologies and still have similar behavior. The
relationship between crosstalk and BBR directly reflects on the network fragmentation
results in SDM networks using MCFs, such that when they increase so does the network
fragmentation, confirming that it is necessary to handle the crosstalk in the spectrum
selection as a way to decrease the fragmentation.
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Figure 4.20: The relation of BBR, network fragmentation and crosstalk for (Figure 4.20a)
NSFNET topology and (Figure 4.20b) USA topology.

4.10 Conclusion

In this chapter, we investigated the problem of fragmentation in SDM optical networks
using MCFs. We introduced five new algorithms using proactive and reactive methods to
avoid fragmentation in dynamic scenarios.

FACP-RMCSA algorithm improves significantly the amount of provisioned bandwidth.
The FACP-RMCSA algorithm started blocking only after 300 erlangs, while the other al-
gorithms started blocking under much lower loads. This is due to the way it handles
fragmentation and the impact that the fragmentation has on the BBR. Under all loads,
the FA-RMCSA and FACP-RMCSA algorithms were able to achieve significant lower
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BBR compared to the FCFF and PT algorithms. The FACP-RMCSA algorithm pro-
duced BBR three orders of magnitude lower than those produced by the FCFF and PT
algorithms. When comparing FACP-RMCSA algorithm with the FA-RMCSA algorithm,
we can clearly see the benefits that the core prioritization technique has on the fragmen-
tation. For the same network fragmentation, FACP-RMCSA algorithm can produce a
BBR much lower than that given by the FA-RMCSA algorithm.

The MLCR algorithm improves significantly the amount of provisioned bandwidth
compared to PT and FCFF algorithm. The MLCR algorithm produces the lowest BBR
under loads of 400 erlangs, demonstrating it is very efficient under high loads compared
to the other algorithms. This algorithm shows that machine learning can be used as a
very efficient method in the defragmentation process.

The CQP-RMCSA algorithm produces the third-best results compared to all other
algorithms, proving that a simple solution can result in high performance in dynamic net-
works where the time for processing information is key. This algorithm also produces the
lowest network fragmentation compared to the others, showing that a future adaptation
to make the spectrum selection more flexible might lead to better results.

The SMR algorithm produces the best results when compared to FCFF and PT al-
gorithms, the BBR values were very close to those given by the FA-RMCSA algorithm,
because of the SDM algorithm uses multiple paths to minimize the fragmentation and al-
locate a request using more than one core using only one path if it is necessary, increasing
the chances to establish a request.

All our proposed algorithms are able to achieve much better BBR values as well as
better management of fragmentation on the network even in high-load situations, thus,
showing their capacity to handle the fragmentation problem.
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Chapter 5

Learning Assistant for Virtual
Networks

In this chapter, we introduce a control loop assistant using machine learning classifiers for
virtual networks configuration in Space-Division Multiplexing (SDM) optical networks.

5.1 Introduction

Network virtualization is the process of combining hardware network resources and soft-
ware network resources into a single administrative unit, a virtual network (VN). The goal
of network virtualization is to provide systems and users with efficient, controlled, and
secure sharing of network resources. A virtual network is designed based on the traffic
pattern and a physical network and comprises deciding the lightpaths to set up based on
source and destination nodes and a set of frequency slots assignment.

Virtual network design over a physical optical network is intended to combine the best
features of optics and electronics. In optical networks, the spectrum resources and the
number of transponders at each switch is limited, making it more difficult to set up all
connection requests using end-to-end lightpaths. Since changing the physical topology is
very expensive, applying the same changes over the virtual topology first is a opportunity
optimize and evaluate the impact caused by proposed changes.

A virtual network can be seen as a logical representation of the network in a specific
state. A Virtual Optical Network (VON) is a network with multiple virtual nodes and
virtual links. Each virtual node maps onto a physical optical node, and each virtual link
maps onto a lightpath connecting the physical optical nodes associated with virtual nodes.
In the literature, when fluctuations in traffic cause temporary congestion, it is necessary
to reconfigure the VON to resolve the traffic congestion, in order to accommodate future
traffic demands.

It is essential for the network operator to configure the VON using a limited set of re-
sources (i.e. frequency slots and transponders at switches) to set aside resources for leased
lightpaths and accommodate increased traffic demands on the VON. This configuration
process takes place when a VON request arrives, mapping each virtual node to a physical
node and each virtual link to lightpaths (set of physical links). This process is key to
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the network operation stability and scalability, being tightly correlated to issues which
a physical network can encounter in the future, such as high cost, blocking, unbalanced
links, creating a bottleneck link, and in multi-core fibers, high crosstalk interference.

Even though the use of SDM networks increases the transmission capacity several times
in optical networks, a physical limitation still limits the performance of these networks.
In the literature, few works related to VONs consider SDM networks as the technology
for the physical network, and the ones that do, often focus on one of the aforementioned
issues, not the overall balance of the network.

The remainder of the chapter is organized as follows. Section 5.2 describes the related
work in virtual optical networks. Section 5.3 describes the problem formulation considered
in this chapter. Section 5.4 describes the proposed method. Section 5.5 demonstrates and
discusses the performance of our proposed algorithm. Finally, Section 5.6 concludes the
chapter.

5.2 Related Work

In the configuration problem, each virtual node is associated with a physical node, and
each virtual link is associated with an end-to-end lightpath (set of physical links). The
VON demand can only be served if every virtual link is successfully associated with
a lightpath. In the virtual link and virtual node configuration process it is necessary
to reserve the requested amount of physical resources (i.e. transponders and frequency
slots). If the physical network does not have enough resources to accommodate the virtual
network, it is rejected.

In [57], the authors introduced a heuristic algorithm to configure VONs over single-
core optical networks. Considering the topology information, based on the centrality
analysis of a virtual embedding, the algorithm tries to configure VONs. They improved
the closeness centrality metric, considering the capacities and states of nodes and edge.
When a virtual network request arrives, their algorithm executes two steps: virtual node
configuration and virtual link configuration. In the virtual node configuration, it computes
the closeness value for each virtual node of the request. Then, the algorithm maps the
virtual node with the largest closeness value to the physical node with the largest closeness
value. In the virtual link configuration, the k-shortest path algorithm is used to find a
path that has enough resources to accept the virtual network. However, this algorithm
does not work with SDM networks.

In [67] the authors introduced a mapping algorithm to improve the load balance of
the network and reduce the spectrum resource usage. For the virtual nodes sorting, they
considered the bandwidth and the computing resources to map virtual nodes. For the
physical nodes sorting, they applied the concept of Resource Contribution Degree (RCD)
of a node, in which each node has different computing resources, and each node will thus
affect other nodes’ mapping differently, since nodes distances are different. The RCD
metric evaluates the capacity of nodes in real time, improving the performance of the
mapping. However, this work can only configure VONs over an optical network using
single-core fibers.
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In [17, 60], the authors introduced a load balancing algorithms to configure the virtual
networks over optical networks using MCFs and Few-Mode Fibers (FMFs). In [60], the
authors proposed a genetic algorithm for static configuration problem in optical networks
using MCFs. To obtain optimal schemes of the virtual nodes configuration, virtual links
mapping and core allocation, they introduced a constrained optimization model with the
maximum index of used frequency slots to be minimized. In [17], the authors introduced
a new procedure during the VON configuration over SDM networks, and this procedure is
specifically designed for SDM using FMFs. Their algorithm first maps the virtual nodes
and links of a VON onto the physical topology, then tries to allocate the resources; if there
are enough resources, it marks the statuses of the used resources as unavailable. The next
step checks the Quality-of-Service (QoS) of each VON that is already allocated as well as
the new VON to see if the QoS of all of them is satisfied, in which case the new VON is
successfully configured. The quality metric considers the fact that active VONs configured
into the same physical resources interfere with each other, so the algorithm calculates the
transmission quality of optical links to determine the configuration. However, this work
cannot be used in SDM networks using MCFs since FMFs is a very different technology.

In the literature, there exist many types of VON configuration solutions using single-
core and single-mode, and Routing, Core, and Spectrum Allocation (RCSA) algorithms
for SDM networks, while the network virtualization has not been investigated extensively
even with its potential to help handle the issues related to SDM technology.

Differently from the previous works, where the authors presented a set of possible
solutions to configure VON demands, in this chapter we introduce an assistant architecture
to work with the existing technologies in SDM networks using MCFs. This architecture
assists the Control Plane to generate efficient VON configurations, doing very effective
monitoring, analyzing and making changes in an attempt to generate equilibrium of trade-
offs, such as blocking, cost, fragmentation, unbalance load. The decisions are made using
machine learning algorithms, responsible for monitoring and analyzing the network in
order to make the necessary changes.

5.3 Problem Formulation

In [57], the physical network topology is modeled as a graph, G = (V,E), where V
represents the set of physical nodes, and E represents the set of physical links of the
network. Each physical node v ∈ V has a number of available transponders associated
with it, each having a capacity limit. Each physical link ei,j ∈ E connecting a pair of
nodes i and j has a number of frequency slots F , which represents the set of slots in
each core multiplied by the number of cores. Every physical link has the same number of
frequency slots.

The ith incoming virtual network request is modeled as a graph Gi
v = (V i

v , E
i
v), where

V i
v and Ei

v represent the set of virtual nodes and virtual links of the ith incoming virtual
network request, respectively. Each virtual node viv ∈ V i

v is associated with a computing
resource requirement c, while each virtual edge eiv ∈ Ei

v is associated with a bandwidth
requirement bw(eiv). Each virtual network has a lifetime t(Gi

v).
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Figure 5.1: Virtual network acceptance process [57].

The acceptance of a virtual network refers to the complete configuration of the set
of virtual nodes and links of the virtual network request Gv = (Vv, Ev) into the physical
network G = (V,E). If the request is accepted, the physical network will reserve the
resources (i.e. transponders and spectrum) in order to create the corresponding virtual
network, and these resources will be dedicated during the lifetime t(Gi

v) of the request.
When the lifetime of the virtual network is over, the allocated substrate resources are
released and can be used for other virtual networks. Figure 5.1 illustrates an example of
the configuration procedure involving two virtual networks requests. G1

v and G2
v coexist

on the same physical network. Physical nodes and links can be shared between the virtual
networks.

Table 5.1: Notation used in Problem Formulation

Symbol Description
V Set of physical nodes, where V = {v1, v2, . . . , vN}
E Set of physical links, where E = {e1, e2, . . . , eNl

}
G G = (V,E) represents the physical network
Nl Number of physical links
N Number of physical nodes

F
F = {f1,1, f1,2, . . . , f|F |,|F |} represents the possibilities of usage
of the network physical link spectrum to allocate the requested
bandwidth.

Gv Gv = (Vv , Ev) represents the current virtual network

Vv
Vv = {v1v , v2v , . . . , v

|Vv|
v } represents a set of virtual requests that

have allocated resources on the physical network
Ev Ev = {e1v , e2v , . . . , v

|Ev|
e } represents a set of virtual links

C
Set of compute resource required, where C = {c1, c2, . . . } repre-
sents a set of compute resource in ei,j , where | C | is the number
of compute resource required by Gv .

5.4 Control Loop Assistant Manager

Autonomic computing copes with management complexity by applying technology to
manage technology. The term autonomic comes from human biology. The autonomic
nervous system monitors your pulse, verifies your blood sugar level and keeps your body
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temperature close to 98.6◦F with no conscious effort on your part. In much the same
way, self-managing autonomic capabilities involve anticipating IT system requirements
and resolving problems with minimal human intervention. As a result, IT specialists can
concentrate on tasks of higher value to business [59].

The autonomic computing system is set up in building blocks that can be constructed
together to form self-managed systems. We can connect these building blocks using en-
terprise service bus patterns that enable the components to collaborate using standard
mechanisms such as Web Services. An enterprise service bus integrates the various build-
ing blocks, which in the proposed method comprises: a) Knowledge: shares accumulated
knowledge across the elements. b) Monitor Function: collects details from the system and
organizes them into situations that need to be analyzed. c) Analyze Function: analyzes
observed situations to decide if any change needs to be made. d) Plan Function: creates
or selects a plan to make the desired change. e) Execute Function: effectively makes the
changes by executing the plan.

Autonomic is achieved via Policy-Based Management (PBM) through a set of pre-
defined self-∗ policies engineered from human expert knowledge or derived from high-
level policies provided by humans. But, considering the high-level complexity of today’s
networking environments with heterogeneous traffic, this model of the autonomic sys-
tem is unreliable. In autonomic systems, some tasks can be learned from the operating
environment, reasoned and adapted to changes while respecting operational goals and
requirements.

In [2] the authors introduced a concept model of the autonomic system using machine
learning, called machine learning for cognitive network management. The use case of the
C (Cognitive)-MAPE (Monitor, Analyze, Plan and Execute) is to detect problems related
to the security of the network, and every MAPE functions use machine learning, but they
did not introduce a specific MAPE for optical networks and network virtualization. So,
in this chapter we propose a MAPE function using machine learning in some of the steps
(Monitor, Analyze and Plan) to assist the VON configuration.

In [41], the authors introduced concepts of machine learning algorithms for optical
networks, and they presented some case studies, one of them is to apply machine learning
in the virtual network reconfiguration problem. In this problem, when the traffic demands
fluctuations cause temporary traffic congestion, it is necessary to reconfigure the VON to
better accommodate the changing traffic demand. Using machine learning, their proposed
approach is able to predict the traffic changes based on data analysis in order to decide if
the VON needs reconfiguration (expand or contract bandwidth). However, their proposal
cannot make the configuration process and is not usable with SDM technology.

Figure 5.2 illustrates how our MAPE is used to manage the VONs configuration.
At every change in the network, for example, when a VON demand is established, all
information regarding the physical and virtual resources (e.g. topology changes), and
data (e.g. VON statistics, link load, nodes’ states) is stored in a database repository.
In our algorithm, at every 500 VON traffic demand arrivals the MAPE is executed.
Our MAPE functions are on the Control Plane, facilitating the automated and flexi-
ble configuration of the network resources. The Control Plane provides the statistics,
while the log (e.g. spectrum allocation and departures) information comes directly from
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the physical network and virtual networks. The database repository periodically sup-
plements the knowledge source and communicates directly with the monitor function.

Figure 5.2: Configuring Manager for anomaly
interference in SDM optical networks using
network virtualization.

As illustrated in Figure 5.2, the Moni-
tor function pull the statistics informa-
tion from the physical network and vir-
tual topologies via the Control Plane.
The physical information includes block-
ing ratio, link load, available spectrum
resources, available transponders ratio,
mean crosstalk, compute resource us-
age and fragmentation ratio. The vir-
tual information includes acceptance ra-
tio, blocking ratio, mean bandwidth re-
quired for each VON, and mean resource
usage for each VON. This function col-
lects these statistics and identifies–using
a machine learning algorithm–if the net-
work has some problem and what the
problem is, for example, considerable
blocking ratio. The problem identified by
the monitor function is passed to the An-
alyze function, which will analyze the risk
of each physical link or node (depending
on the problem) has caused using a ma-
chine learning algorithm. The generated
analysis is then used by the plan function,
and employing a machine learning algorithm, composes an optimal change plan based on
the criticality of the problem. Based on the plan given by the plan function, the execute
function directs the execution plan to the Control Plane, which is responsible to apply
it. The knowledge source is orthogonal to every MAPE function, so after each function is
done, the knowledge source is updated with the information related from each step and if
the executed plan has succeeded.

The control plane adopted in our architecture is centralized, so that, all data generated
by the physical and the virtual layer will be sent to one location that is responsible for
taking actions to improve the network performance.

Monitor Function

The monitor function collects statistics from the network manager and correlates them
into symptoms that are later analyzed. The details of our monitor include a set of statistics
received from the database: link-load distribution, available slot ratio, long-term revenue
to cost ratio, network fragmentation ratio, mean transponder utilization, mean compute
resource utilization, fragmentation degree–number of links that have high fragmentation–,
mean lightpath per link. These statistics are able to determine if there is a problem in
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the network, or otherwise state that the network is in "perfect" state to handle the VON
traffic demand, meaning that no change is necessary and the MAPE execution will halt
at this point (Analyze function).

Statistics Definitions

The statistics are collected during the network execution and stored in the database.
The list of statistics is as follows: the link-load, the network fragmentation, the avail-
able slot ratio, the long-term revenue to cost ratio, the mean crosstalk interference, the
fragmentation degree, the mean transponder utilization, and the mean compute resource
utilization.

To measure the network load uniformity after the spectrum allocation, the standard
deviation SD of every link load is used [67]:

SD =

√
1/(Nl − 1)

∑
li,j∈E

(
max{|Fli,j |} − µs

)2
, (5.1)

µs =
∑
li,j∈E

max{|Fli,j |}/Nl (5.2)

where µs represents the maximum index of frequency slot used in links, and Nl represents
the number of physical links. A network with a smaller SD value indicates a better load
balancing performance.

In [57], the authors introduced the long-term revenue to cost ratio metric. The revenue
denotes the economic benefits of accepting a virtual network request and the cost denotes
the total physical resources allocated to virtual networks. The revenue is described as the
sum of virtual resources that are accepted in the physical network over time. Thus, the
revenue for a request Gv at time t is defined as:

R(Gv, t) =
∑
e∈Ev

bw(ev) +
∑
n∈Nv

c(nv), (5.3)

where bw(ev) and c(nv) are the bandwidth requirement of the virtual link e and the
compute resource of the virtual node n, respectively.

The long-term average revenue is defined as:

lim
T→inf

∑T
t=0R(Gv, t)

T
. (5.4)

The cost of the request Gv at time t is defined as:

C(Gv, t) =
∑

p∈P (Gv)

h(p)× bws(p,Gv) +
∑
n∈Nv

c(nv), (5.5)

where P (Gv) is the entire set of physical paths allocated for the virtual edges in Gv, h(p)

is the number of hops in a path p, and bws(p,Gv) is the reserved bandwidth over a path.
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The long-term average cost is defined as:

lim
T→inf

∑T
t=0 C(Gv, t)

T
. (5.6)

The long-term revenue to cost ratio is used to evaluate the efficiency of resource uti-
lization of physical network:

lim
T→inf

∑T
t=0R(Gv, t)∑T
t=0 C(Gv, t)

. (5.7)

The network fragmentation ratio is defined as χ = 1 − φ, where φ represents the
available slot ratio between the maximum size of the block of slots and the total number
of slots in the network. First, we compute all possible shortest paths between all nodes
in a network topology. Then, for each route we determine the maximum size for a block
of slot (contiguous and continuous) in that route, i.e. we look for blocks of slots that are
available across all the links in that route, and get the block with the maximum size. We
then divide the size in number of slots of the maximum block of slots by the total number
of slots in the core of each link (in case the network has more than one link), and multiply
by 1/Z, where Z is the total number of routes found. We then sum the results of all the
routes to obtain the state of the network’s fragmentation.

The fragmentation degree metric is a complementary metric to the network fragmen-
tation ratio, capable of determining if there is a widespread fragmentation problem in the
network. Having the network fragmentation ratio metric calculated, the fragmentation of
each link is then checked against the network-wide value. Empirically, we found that if
the local link’s fragmentation ratio is 30% higher than the network value, then it can be
considered problematic. If 20% to 40% of the links are fragmented, there is fragmentation
problem. It can be said that there is a local fragmentation issue that might be driving
the network-wide value up, whereas a value higher in that spectrum is a clear indication
that the issue is affecting the whole network.

Learning Random Forest

To monitor what is happening in the network and detect if there is any problem, a Super-
vised Machine Learning (SML) algorithm is used. In the SML, the agent observes some
example input-output pairs and learns a function that maps the input into output [43].
The task of supervised learning is [43]:

Given a training set of N example input-output pairs

(x1, y1), (x2, y2), . . . (xN , yN),

where each yj was generated by an unknown function y = f(x),

discover a function h that approximates the true function f ,

where x can represent any statistic and y represents the problem associated with it. The
function h is a hypothesis. In our case x represents the network statistics collected during
a virtual network simulation, and y is the problem that is occurring in the network.
Learning is searching through the space of possible hypothesis for one that will perform
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well, even on new examples beyond the training set.
A Decision Tree (DT) is one of the simplest and most successful forms of machine

learning. A machine learning DT represents a function that takes as input a vector of
attribute values and returns a "decision", a single output value [43]. This algorithm
reaches its decision by performing a sequence of tests, like the human thinking process.

A tree is composed of a set of internal and external nodes and edges that connect
nodes. Each internal node in the tree corresponds to a test of the value of one of the
input attributes, and the branches from the node are labeled with the possible values of
the attribute. Each leaf node in the tree specifies a value to be returned by the function.
The result is reached by performing a sequence of tests, traversing from the internal node
to one of the external nodes.

In order to increase accuracy, the monitor uses an ensemble method, using multiple
decision trees. The Random Forest (RF) [3] is a classifier that consists of a collection
of classifier trees designed to increase the classification rate. This algorithm combines
random variable selection at each node and bootstrap aggregation, where a collection of
subset data is used to train its decision trees. Injecting randomness simultaneously with
both strategies yields one of the most effective off-the-shelf methods in machine learning.

Figure 5.3 illustrates the random forest classifier, consisting of three steps. Step one
creates random vectors from the original training data, containing statistics from the
virtual and physical networks. Step two uses random vectors to build multiple decision
trees. Step three combines the decision trees into one, and this tree is the one that will
be used to classify the problem.

The possible classifications that this decision tree is trained to give for our problem
are: unbalanced, spectrum usage inefficiency, high cost, overloaded and normal. The time
complexity for building a complete unpruned decision tree is O(v × n log(n)), where n is
the number of records and v is the number of variables/attributes. To build a random
forest with T number of trees, the complexity is O(T × v × n log(n)).

Figure 5.3: Random Forest classifier.

The RF algorithm processes a dataset and generates the final classifier before the
simulation execution. This dataset comprises the statistics generated by a greedy virtual
configuration algorithm. In the greedy algorithm, when a new request arrives it selects
an aleatory available node and route to configure the VON. During the greedy algorithm
execution, the statistics are collected every 103 virtual networks arrives.

The statistics are then classified in groups to determine the characteristics of each
problem, by manually inspecting the network behaviour and analyzing the generated
statistics.

The output is used in the monitor function during the network execution to identify
problems that decrease the network performance. The RF classifier generates a prediction
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which is used to classify the data based on the pattern identified by the RF algorithm.
The output generated by RF contains a possible problem that is interfering in network

efficiency. Other than the normal classification, the classification problem is then stored
into a symptom. Symptoms contain the problem detected, as well as the statistics that
resulted in this problem, since these statistics will be used to analyze the problem. The
classified problem is considered to be the biggest issue undermining the network at the
current state.

Analyze Function

The analyze function executes after the monitor function, which sends a symptom signal
indicating that something has to change. This function provides a mechanism to determine
the criticality of the problem being analyzed (High, Medium or Low), and decide the
possible rules to be applied, or if no change is needed at all. The symptom received from
the Monitor function represents a problem that is happening in the network. The Analyze
function investigates what are the local elements (nodes or links) that cause the issue and
analyzes each node or link according to the problem. Sometimes a collection of nodes are
causing a global metric to increase, but some times a single node or link are so severely
affected, that it causes changes in the global metric, and determine specifically what the
cause of the problem is. So, there are cases in which rules should be applied to maintain
the network efficiency.

The cost problem means that the utilization of resources is low but the associated cost
is high, so to accept a VON request the cost is disproportionate. The cost associated
with a node is directly linked with its links’ resource usage. In order to evaluate the crit-
icality of this problem, the analyze function needs to know the number of transponders
used in each node, bandwidth utilization, number of requests rejected in each node as
the source/destination, and closeness centrality of each node (the concept is described in
chapter 4). For example, when a node has an extreme situation, the number of transpon-
ders used is disproportional to the bandwidth used, and the closeness centrality is high,
the classification is high.

The spectrum usage inefficiency problem means that the spectrum resource were not
used to their full potentiality, indicating that the rules governing the link need to change
in order to minimize this problem. In order to evaluate the criticality of this problem in
each link, the analyze function needs to know the crosstalk generated in each link, the
number of virtual links that are using the physical link, the total number of slots required
from each accepted virtual link. This metric indicates whether high crosstalk is likely the
underlying cause of the problem or this link is simply under a high load, as well as the
fragmentation ratio associated with each link. For example, when a link has high crosstalk
and the number of virtual links that are using the physical link is small, the classification
is high, and the allocation algorithm could be failing due to this. Notice that, sometimes
only two metrics are necessary to classify a problem, but sometimes when the problems
turn more complex, all information is necessary.

The unbalanced problem means that some links are having significantly more load
compared to others. In order to evaluate the criticality of this problem in each link,
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the analyze function needs to know the link-load, the number of virtual links that are
using each link, and the sum of the closeness centrality from the source and destination
nodes associated with each link. The closeness centrality [13] expresses how close a node
is to all other nodes in a network. Nodes with high closeness centrality values impact
on the disjointness of paths and consequently favor the formation of bottleneck link and
greater blocking. The closeness centrality is defined as the inverse of the sum of the
shortest distances between each node and every other node in the network. The closeness
centrality measure is defined by:

CC(i) = 1/
∑
i 6=j

d(i, j), (5.8)

where CC(i) represents the closeness centrality of the node i, d(i, j) is the shortest path
distance between i and j. To minimize the formation of the bottleneck in the path
selection step, we calculate the closeness centrality of each node in a network and we use
this value as a metric to decide the path that has the lowest closeness centrality.

On example of the link classification is medium, when the link has the highest link-
load among all links, only a few numbers of virtual links are using this link, the link-load
is higher than a threshold, and the closeness centrality is high. The issue will be resolved
when the virtual link’s lifetime is reached, but to prevent the link from getting further
unbalanced, we can limit its capacity temporarily.

The overload problem generally means that the network is congested, but another
possibility is that the virtual node and link configuration processes are causing bottleneck
links in the physical network, meaning that this problem could be just artificial congestion.
In order to evaluate the criticality and check the truthfulness of the overload, the analyze
function needs the information of the link load, the number of virtual links that are
associated with each physical link, the crosstalk generated in each link and their respective
available slot ratio.

κ-Nearest Neighbor

In order to analyze and classify each link along with their problem criticality, theNearest
Neighbor (NN) classifier is used, which is an SML algorithm. This classifier is considered
the simplest non-parametric decisions procedure, assigning to the unclassified observation
(incoming test sample) the class/category/label of the nearest sample in the training
set [1]. The κ-nearest neighbor model is denoted as NN(κ,xq), where κ is the number of
examples that are nearest to xq.

To perform the classification, first, the algorithm findsNN(κ,xq), then take a plurality
vote of the neighbors. To avoid ties, κ needs to be an odd number and cannot be a big
number. The distances are measured using Minkowski distance, defined as:

Lp(xj,xq) = (
∑
i

‖xi,j − xq,i‖p)1/p, (5.9)

where the p order is 2 (two) which means the algorithm is using Manhattan distance, as
the values are dissimilar from each other, making this metric more appropriate in this
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case.
The NN algorithm determines the criticality of each node or link as high, medium

or low related to the problem categorized as a symptom from the monitor function.
Figure 5.4 illustrates the nearest neighbor classifier, which comprises by three steps. First,
the training and test data are loaded. These set of data are different, each one uses
different virtual link configuration (routing and spectrum selection), resulting in different
statistics based on the distinct behaviors of the algorithms. Next the value of κ is chosen–
in our case, κ = 3. The value of κ gives the number of possible classifications (high,
medium, and low).

The third step executes, for each point (node or link) in test data: find the distance to
all training data points, store the distances in a list and sort it, choose the first κ points,
and assign a class to the test point based on the majority of classes present in the chosen
points. The complexity of NN(κ,xq) is O(logN) using a binary tree, where N represents
the number of examples.

Original
Training 
Data

Learning
Algorithm Output

x x

xClass A Class B Starting point

Figure 5.4: Nearest Neighbor classifier.

While the possible output values given by the NN classifier does not change regardless
of the problem, each problem is analyzed individually and have their own training data,
comprising specific inputs that vary between problems. After this process, it sends the
analysis to the next function (Plan) which will create the new rules to avoid the problem
on each node/link.

Plan Function

The plan function composes a plan of changes that are necessary to improve the efficiency
of the network, based on the analysis done on the Analyze step. The plan function selects
procedures to enact desired alterations in the Control Plane. To do this, we use a machine
learning algorithm, when the idea of learning is to improve the policy gradually until an
optimal or near optimal policy is reached.

In this function, we employ an Active Reinforcement Learning (ARL) algorithm
to choose a change plan. The basic idea of ARL is that an agent can learn from a series
of successes and failures, from reward and punishment. Using MAPE functions without
learning, a change plan could further increase the problem, potentially generating other
problems or executing a change that is unnecessary. By introducing ARL in the MAPE
functions, we avoid all the aforementioned issues, and if a change plan turn out to be not
so effective, it will learn and adapt.



92

The reward/punishment can be given at the time the action was taken, but sometimes,
the effects of an action taken can be only observed at a later stage.

Figure 5.5: Example of Q-Learning.

For example a chess game, when the ac-
tions are taken will be rewarded/punished
only at the end of the game, when it will
be defined if the course of action taken was
successful or not. Figure 5.5 demonstrates
the interaction between an agent and the
environment in a reinforcement learning al-
gorithm, when the agent can choose an ac-
tion in each state and the feedback the
agent gets from the environment are the
environment’s state after each action, plus
the scalar reward signal.

One of the methods of ARL is the Tem-
poral Difference (TD) learning. Each step in the world (scenario) generates a learning
example which can be used to bring some value in accordance with the immediate reward
and the estimated value of the next state or state-action pair [43]. Since we use dynamic
resource allocation for the network virtualization, we do not have estimates of the state
transition probabilities, and as information about states, actions and rewards can only be
obtained over time by interactions with both physical and virtual networks, this method
is the most suitable, since it is meant to learn incrementally.

Figure 5.6 illustrates the three major components of an agent: the learning algorithm,
the policy and the action selection. The first component is the learning algorithm. The
plan function uses the Q-Learning algorithm [58] to create plans. This algorithm based
on TD learning uses a model-free approach, which directly learns optimal value functions,
from which a greedy policy can be easily computed. These algorithms often have lower
per-step computation complexity and thus are better suited for real-time applications.

State, St+1

Figure 5.6: Agent-Environment interactions in Active Reinforcement Learning.

The second component is the policy. This component defines the learning agent’s way
of behaving at a given time. It is a mapping from each environment state to actions to
be taken when in that state.

This is one of the most popular methods to estimate Q-value functions in model-free
approaches. Q-Learning is exploration-insensitive, meaning that it will converge to the
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optimal policy regardless of the exploration policy being followed, under the assump-
tion that each state-action pair is visited an infinite number of times, and the learning
parameter α is decreased appropriately [58].

In Q-Learning, the policy is composed of a Q-value, Q(s, a) for each of the possible
state-action combinations, where Q(s, a) denotes the value of doing the action a in state
s. After each learning episode the Q-values need to be updated as follows:

Qk+1(st, at) = Qk(st, at) + α
(
rt + γmax

a
Qk(st+1, a)−Qk(st, at)

)
. (5.10)

The agent makes a step in the environment from state st to st+1 using action at while
receiving reward rt. The parameters 0 6 α 6 1 and 0 6 γ 6 1 are referred to as learning
rate and discount factor, respectively.

The third component is the action selection. A reinforcement learning agent usually has
two possible strategies with regards to how actions are selected: i) exploit the knowledge
that it has found for the current state s by taking an action a that maximizes Q(s, a),
or ii) explore by selecting a different action from the one that it currently thinks is the
best one, with the objective of trying to learn if there is an action better than what it
currently thinks is the best one. So, in order to learn, it has to explore, but in order to
perform well, it should exploit what it already knows.

The ε − greedy action selection is used, where almost always the action with the
highest Q-value is selected. ε means the probability for a random action to be chosen.

(R)

(L)

Figure 5.7: Unbalanced problem
(medium criticality).

Translating to our plan function, the actions are se-
lected by their corresponding Q-values.

Considering the unbalanced problem (medium
criticality), illustrated in Figure 5.7, where the mini
grid-world has two plans that are labeled Redirect
(R) and Limit (L), placed in such a way that differ-
ent strategies are created depending on the actions
taken by the agent. The agent’s state consists of
its location in the grid-world (in [x, y] coordinates,
starting from [1, 1]), and the destination, [3, 3]. The
agent’s goal is to navigate from the starting location
to the destination, and it does that by using two ac-
tions: right and down. As the agent navigates the
grid, it can pass by locations associated with a plan, and the direction the agent goes from
there is purely based on the feedback (knowledge) received from previous runs. In our
case, sometimes the agent will take actions that will perform nothing; other times it will
take actions that lead it to perform just Redirect; or maybe from the feedback received it
learned that executing both Limit and Redirect works better than just Redirect. When
the agent reaches its destination, it performs a build action, which signals the algorithm
that it successfully ran. The process of going from start to destination is called an episode.
The rewards are attributed in retrospect when the plan runs later on, and it is possible
to verify if the actions taken had a positive effect or not.

Table 5.2 shows the set of possibilities of action selection. Every problem is associated
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with a mini grid-world as illustrated in Figure 5.7. The resulting plans can be composed
of one or more changes (sub-plans) depending on the classification determined by the
Q-Learning algorithm.

Table 5.2: Classification Problem and Action

Plan Application Associated Problem Type
Reconfiguration link Spectrum efficiency medium
Redirection Link Unbalanced high
Blocking Link Unbalanced/spectrum efficiency high
Blocking Node Cost high
Limiting Link Unbalanced/spectrum efficiency/Overloaded medium
Limiting Node Cost medium
Nothing Node/link – low

The complexity of Q-Learning is O(ln |A|), where A represents the set of actions (i.e.
redirecting and limiting) that could be chosen for a problem.

Execute Function

After the plan is generated, it needs to be applied by the Control Plane. The execute
function is responsible for carrying out the plan that was generated by the plan function,
consisting of a series of actions. These actions are sent in a bucket of steps, and the steps
will be executed one after another until the bucket is empty.

The redirection plan takes one or more virtual links that are configured through the
physical link, in order of bandwidth from largest to smallest, and attempts to reconfigure
these virtual links through another route. Since the redirection plan has a specific goal–
reducing the link-load to a specific value. It will try to reconfigure all virtual links that
are associated with the physical link until it reaches the goal. If by trying to redirect
the virtual links, it still could not reach its goal, then it sends the information to the
knowledge that this plan failed, so it can change the reward negatively.

The reconfiguration plan takes all virtual networks and tries to rearrange them using
the Machine Learning Cluster Reconfiguration (MLCR) algorithm–introduced in chap-
ter 4. After the reconfiguration process, if the fragmentation ratio is lower than it was
before, then it sends the information to the knowledge that the plan succeeded, so it can
change the reward positively. Otherwise, it sends the information to the knowledge that
the plan failed, so it can change the reward negatively.

The blocking plan stops a physical node or physical link from configuring new VON
requests using them temporarily. The node/link turns invisible during the VON configu-
ration, but when some changes involving them occurs, such as deallocation. We can verify
if the condition to unblock them is met or not. To unblock a link, it must have a number
of available slots greater than or equal to the network available slot ratio, and its link-load
must be lower than the network’s link-load. To unblock a node, its compute resource used
must reach a minimum of 110% of the network mean compute resource and the number of
transponders used must reach a minimum of 105% compared to the network mean value.
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The limiting plan limits the resources of a physical node or physical link temporarily,
so new VON requests are configured in other links, thus balancing the load. To remove the
limitation of a link, when one or more VON requests’ lifetime expires and the resources are
released, if the link-load and available slot ratio reach a minimum of 110% of the network
statistics, and the mean crosstalk is 10% lower than the network average. If the limitation
is removed, then it sends the information to the knowledge that this plan succeeded, so it
can change the reward positively, otherwise, it changes the reward negatively. To remove
the limitation of a node–similarly to the link case–, if the compute resource reaches a
minimum of 110% of the network mean compute resource and the number of transponders
used reaches a minimum of 105% compared to the network mean value.

To execute the plan’s changes, a scheduling priority needs to be followed. The redi-
rection plan is only executed after the blocking and limiting plans, in order to guarantee
that these rules will be respected.

The execute function is responsible for sending the plan’s changes to the Control Plane.
Each plan is seen as a rule and the Control Plane will be responsible for enforcing each
of the rules. The execute function also informs the Control Plane the events for which it
has to check if rules applied have reached their goal or they should remain active.

Knowledge Source

Knowledge is where all data related to the MAPE is stored, for example, symptoms,
analysis, policies, plans and statistics. It also includes information about the state of the
virtual and network topology. All this data is shared between all functions in the MAPE
assistant.

Data can also come from the Database whenever an external event happened, for
example, a link redirection was performed, and along with it, there will be statistics that
are used to determine whether the rule had a positive impact on the network or not, and
from there, the knowledge updates the rewards of the Q-Learning algorithm.

Also, the plans applied by the execute are checked by the knowledge to see if the
network efficiency has returned to expected levels where the rule is no longer necessary.
When this happens, the rule is expired and taken out of the Control Plane. The event
which triggers this verification is dependent on the problem associated, where it makes
sense. For example, the node blocking rule is checked whenever the virtual network’s
lifetime of a said node is expired and the resources freed.

Figure 5.8 illustrates a global vision of MAPE functions internally. The functions are
executed in a specific sequence: monitor, analyze, plan and then execute. Each function
depends on one event to start, for example, the monitor function (Section 5.4) starts only
if it receives new statistics, indicating that something has happened and there may be
some changes necessary to improve the network efficiency. First, the monitor function
splits the data, filter the statistics and sends them to the learning classifier, which is
responsible for detecting any issues in the network. If the learning classifier signals a
problem, then a symptom structure is created and delivered to the next function, the
analyze. The Analyze function (Section 5.4) first splits the symptom’s data, and then
extracts the features that are necessary to analyze each node or link. In this step, a
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Q-Learning

Figure 5.8: MAPE: control loop for network virtualization.

k-NN classifier runs and determines the complexity degree of the problem for each node
or link. The results are then sent to the plan function, which uses a Q-Learning classifier
to find a course of action (changes plan) in order to minimize the detected problem. The
changes plan is sent to the execute function, and without using any learning algorithm,
first it heuristically verifies if a similar plan was already executed before–searching the
Knowledge–, and if the result (reward) was positive or negative. If the result is negative,
this plan is not sent to the Control Plane, otherwise, the changes plan is sent and executed.
Before the plan is sent to the Control Plane, however, the execute function determines
when each of the sub-plans will expire, and the criteria to be removed.

5.5 Performance Evaluation

To evaluate the effectiveness and efficiency of the proposed architecture, we compared
our architecture with the Key-Link and Resources Contribution Degree for VONs Map-
pings (KLRVM) algorithm [67], where virtual nodes mapping gets the network status
according to the proposed RCD, which evaluates the capacity of physical nodes in real
time. The physical link selection uses the k-shortest paths algorithm (with k = 3), where
the more promising candidates to compose a path are the links that have more slots
available. In the spectrum selection, we use different modulation formats (chapter 4),
and the First-Core First-Fit (FCFF) algorithm is adopted. As previously mentioned, our
MAPE assistant does not configure the VON requests, so in the configuration process,
the KLRVM algorithm is used.

In the simulations, the NSFNET and CHNNET topologies were employed. The
NSFNET topology (Figure 5.9) has 14 nodes and 21 fiber links and the CHNNET topology
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Figure 5.9: NSFNET topology with 14 nodes and 21 links.

Figure 5.10: CHNNET topology with 15 nodes and 27 fiber links.

(Figure 5.10) has 15 nodes and 27 fiber links.
A new module was developed for the FlexGrid simulator [32], to allow network vir-

tualization in SDM networks. The module is based on the set of information described
on [57], where the virtual network requests arrive in a Poisson process. We assume that
the computing resources of each optical physical node is 100, and each link has 320 fre-
quency slots and 7 cores. For each VON request, the number of virtual nodes is randomly
determined by a uniform distribution between [3, N − 1] and each pair of virtual nodes
are randomly connected with probability 50%. The number of alternative physical nodes
Aml for nmi

v is chosen using a uniform distribution between [2, 4] and the computing re-
sources requirement cmi

v is chosen using a uniform distribution between [1, 4]. The request
capacity of each connection is chosen using a uniform distribution between [50, 400] Gb.
The K for the K-shortest path algorithm was set to 3 candidate paths.

To evaluate the algorithms, we used the following metrics: mean transponders used,
Bandwidth Blocking Ratio (BBR), acceptation ratio (number of virtual networks accepted
during the simulation), mean crosstalk, and link-load distribution standard deviation.

Figure 5.11 shows the acceptance ratio for the NSFNET topology. The KLRVM algo-
rithm started blocking VONs with 103 VON requests, while the MAPE algorithm started
blocking with 2×103 VON requests. The MAPE algorithm produced an acceptance ratio
12% higher than the KLRVM algorithm with 6×103 VON requests. The MAPE algorithm
produced an acceptance ratio two orders of magnitude higher than the one produced by
the KLRVM algorithm with 8 × 103 VON requests. The MAPE algorithm produced an
acceptance ratio 25% higher than the one produced by the KLRVM algorithm with 104

VON requests. The results indicate that the MAPE algorithm achieved better acceptance
ratio than the KLRVM algorithm, thus improving the spectrum resource usage. The re-
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Figure 5.11: Acceptance ratio as a function of the load for the NSFNET topology.

sults also demonstrate that the plan changes were very effective, resulting in a higher
acceptance ratio and lower blocking compared to KLRVM algorithm in every simulation.
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Figure 5.12: Bandwidth blocking ratio as a function of the load for the NSFNET topology.

Figure 5.12 shows the BBR ratio for the NSFNET topology. The KLRVM algorithm
started blocking with 103 VON requests, while the MAPE algorithm started blocking
with 2 × 103 VON requests. The KLRVM algorithm produced BBR values one order of
magnitude higher than the ones produced by the MAPE algorithm with 4 × 103 VON
requests. With 6 × 103 VON requests, the MAPE algorithm produced BBR values 40%
lower than the KLRVM algorithm. The MAPE algorithm produced BBR values two
orders of magnitude lower than the ones produced by the KLRVM algorithm with 8×103

VON requests, and 30% lower with 104 VON requests. The results show that the MAPE
algorithm achieved better BBR than the KLRVM algorithm, improving the spectrum
resource usage since our algorithm applies the reconfiguration providing more chances to
allocate future requests. Also, blocking or limiting future allocations in certain links/nodes
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decrease the chances of generating bottleneck links that can cause blocking, and encourage
to use links and nodes that have more resources available.
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Figure 5.13: Mean crosstalk as a function of the load for the NSFNET topology.

Figure 5.13 shows the mean crosstalk generated for the NSFNET topology. The KL-
RVM algorithm produced mean crosstalk values 6 dB higher than the ones produced by
the MAPE algorithm with 103 VON requests. The MAPE algorithm produced mean
crosstalk values 8 dB lower than the KLRVM algorithm with 3 × 103 VON request, 6
dB lower with 6 × 103 VON requests, and 8 dB lower than the KLRVM algorithm with
8 × 103 VON requests. The MAPE algorithm achieved lower crosstalk results than did
the KLRVM algorithm, improving the quality of the transmission. These results were
achieved by the limiting and blocking rules applied in the physical network, decreasing
the changes of requests be allocated in adjacent cores.
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Figure 5.14: Link-load as a function of the load for the NSFNET topology.

Figure 5.14 shows the link-load distribution standard deviation SD for the NSFNET
topology. The link-load values produced by the MAPE and KLRVM algorithms were very
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close to each other with 103 VON requests. The KLRVM algorithm, however, produced
link-load values 10% lower than that produced by the MAPE algorithm with 5 × 103

VON requests. The MAPE algorithm produced link-load values 13% higher than the
ones produced by the KLRVM algorithm with 7×103 VON requests, and 8% higher with
104 VON requests. Looking at these results isolated, the KLRVM algorithm achieved
better results than the MAPE algorithm, but correlating with the BBR results, it becomes
clear that the higher link-load values produced by MAPE algorithm can be justified by
blocking much less VON requests. Thus, we can say that the MAPE algorithm, in the
end, achieved a much better load-balancing than the KLRVM algorithm.
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Figure 5.15: Acceptance ratio as a function of the load for the CHNNET topology.

Figure 5.15 shows the acceptance ratio for the CHNNET topology. The KLRVM
algorithm produced an acceptance ratio values 8% lower than that produced by the MAPE
algorithm with 103 VON requests, and 8% lower with 6× 103 VON requests. The MAPE
algorithm produced an acceptance ratio 7% higher than the KLRVM algorithm with
7× 103 VON requests, and again 7% higher with 104 VON requests. When the plans are
executed, the MAPE algorithm provides a set of changes based on the network state and
the problems it has, so by dealing with these issues, the result is a lower blocking ratio
compared to the KLRVM algorithm.

Figure 5.12 shows the BBR for the CHNNET topology. With 103 VON requests,
the KLRVM algorithm produced BBR values 50% higher than the ones produced by
the MAPE algorithm. The MAPE algorithm produced BBR values 60% lower than the
KLRVM algorithm with 5 × 103 VON requests, 50% lower with 8 × 103 VON requests,
and 45% lower with 104 VON requests. The results show that MAPE algorithm achieved
better BBR than KLRVM algorithm, improving the spectrum resource usage. The MAPE
algorithm yielded the lowest BBR regardless of the number of VONs, confirming that
identifying the changes that are necessary to resolve the issues given a particular network
state, improve the resource allocation, resulting in lower blocking.

Figure 5.17 shows the mean crosstalk generated for the CHNNET topology. The KL-
RVM algorithm produced mean crosstalk values 3 dB higher than those produced by the
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Figure 5.16: Bandwidth blocking ratio as a function of the load for the CHNNET topology.
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Figure 5.17: Mean crosstalk as a function of the load for the CHNNET topology.

MAPE algorithm with 103 VON requests. The MAPE algorithm produced mean crosstalk
values 8 dB lower than the KLRVM algorithm with 3 × 103 VON requests. The MAPE
algorithm produced mean crosstalk values 7 dB lower than those produced by the KLRVM
algorithm with 6× 103 VON requests, and 15 dB lower with 8× 103 VON requests. The
MAPE algorithm achieved better crosstalk results than the KLRVM algorithm, improving
the quality of the transmission. The changes executed by MAPE algorithm demonstrate
that the blocking, limiting, and redirecting plans are able to manage and decrease the
crosstalk interference. The combination of limiting and redirecting–reconfigure a virtual
link to another path–decreases the crosstalk because the virtual links configured are dis-
tributed and not concentrated in a couple of physical links.

Figure 5.18 shows the link-load distribution standard deviation SD for the CHNNET
topology. The KLRVM algorithm produced link-load values 42% lower than those pro-
duced by MAPE algorithm with 103 VON requests. The MAPE algorithm produced
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Figure 5.18: Link-load as a function of the load for the NSFNET topology.

link-load values 30% higher the KLRVM algorithm with 5× 103 VON requests, and 10%
higher with 104 VON requests. Similarly to the results achieved in the NSFNET topol-
ogy, by just looking at these results alone, the KLRVM would have produced much better
results, but if we correlate the link-load results with the BBR results, we can see that the
link-load values generated by the MAPE algorithm can be justified by a much lower BBR
value, leading to the conclusion that the MAPE algorithm achieved significantly better
results through better management of resources.

5.6 Summary

In this chapter, we investigated the problem of VON configuration considering SDM
optical networks. We introduced a new solution for the VON configuration problem–the
MAPE control loop assistant using machine learning. This new assistant manages the
resources, proposing new changes in order to increase resource use efficiency and resolve
network-wide issues that affect network efficiency.

We started by modeling the VON configuration problem, which involves the physical
node selection to associate physical nodes with virtual nodes, and route selection, to
associate with physical links with virtual links. Using the MAPE algorithm, the VON
acceptance ratio is improved up to 25%, the crosstalk is decreased up to 15% and the
BBR decreased up to 60% compared to the KLRVM algorithm.

One of the key advantages of our proposed algorithm is the fact that it can be used
with any type of configuration algorithm, resulting in efficient use of resources.

In future work, we intend to extend this new architecture using multiple MAPE as-
sistants, to handle other problems, such as the survivability, the VON reconfiguration
problem, in which the virtual links already configured can be contracted, delete or ex-
tended during the VON lifetime. We intend to use this control loop to be adaptive and
choose different RCSA algorithms for different situations during the network execution,
using learning algorithms to analyze and predict the traffic changes.
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Chapter 6

Conclusion and Future Work

One of the major problems in optical networks is the allocation process of physical re-
sources, using network virtualization or not, as this process determines how many requests
can be given by a limited amount of physical resources, respecting constraints determined
by the technology used. In this thesis studied various problems involving the resource
allocation process, such as Quality-of-Service (QoS), spectrum fragmentation, crosstalk
interference, energy consumption, and virtual network configuration. For this purpose,
this thesis introduced a set of algorithms to handle some of these problems that occur in
the resource allocation process in Space-Division Multiplexing (SDM) optical networks.

Chapter 3 introduced batch grooming algorithms in SDM networks. We also intro-
duce a new version of Routing, Core and Spectrum Allocation (RCSA) algorithm proposed
in [33, 34], using Multiple Knapsack Problem (MKP) as a solution to find blocks of slots
to allocate a batch request. This algorithm takes advantage of the fact that a request
has a deadline to be accepted, so it is possible to postpone it and try to allocate again
in another moment, increasing the probability to be accepted. The energy efficiency
values produced by BG (Batch-Grooming)-MKP and Earliest-Deadline-First (EDF) al-
gorithms are 15% and 30%, higher than those of the Inscribed-Rectangle (IR) algorithm.
The results showed that these proposed algorithms are efficient to increase the request
acceptance and maintains an equilibrium of energy consumption.

Chapter 4 introduced five new algorithms to handle the fragmentation problem in SDM
networks, considering crosstalk interference and different modulation formats. Proactive
algorithms used different techniques to prevent the fragmentation problem during the
simulation while the reactive algorithm defragments the spectrum when the problem oc-
curs. The FACP (Fragmentation-aware Core-Prioritization)-RMCSA algorithm produces
blocking values lower than 70% compared to the Prioritization (PT) algorithm. The re-
active algorithm using machine learning also proves to be very effective in handling the
fragmentation, rearranging the spectrum in specific ways, and using the information given
by the k-Means algorithm to adapt the RCSA to reduce the number of defragmentations
necessary. Results showed that our algorithms can handle the fragmentation problem.

Chapter 5 introduced the MAPE (Monitor, Analyze, Plan, Execute) control loop
assistant using learning classification algorithms to detect specific problems and then
propose changes to handle these problems. This algorithm assists the Control Plane
showing new rules, such as, to limit resource usage and to block a node/link. These rules
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are applied for a period and monitored to verify if they are responding and decreasing
the problem and also learn what is happening to better select new plans. The MAPE
algorithm produces blocking values up to 60% lower than the Key-Link and Resources
Contribution Degree for Virtual Networks Mappings (KLRVM) algorithm. The results
proved that, by using it, the virtual network configuration over SDM networks greatly
improves the resource allocation.

In future work we intend to extend the semi-cognitive assistant to a cognitive assistant,
using machine learning algorithms in all functions. We pretend to build an architecture
composed of multiple parallel MAPEs to handle other problems we did not explore in
this thesis, considering network virtualization. To manage these MAPEs, we pretend
to introduce an orchestrator which will manage the communication between the Control
Plane and the MAPEs.

Another future work would be using all our algorithms to build a testbed on a real
network. Currently, though, the technologies of optical networks are very expensive, and
technologies using SDM are unavailable to buy today, making it impossible to perform
such tests.
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