
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Otávio Oliveira Napoli

Timing Side-Channel Analysis of Dynamic Binary
Translators

Análise de Canais Laterais de Tempo em Tradutores
Dinâmicos de Binários

CAMPINAS
2019

Otávio Oliveira Napoli

Timing Side-Channel Analysis of Dynamic Binary Translators

Análise de Canais Laterais de Tempo em Tradutores Dinâmicos
de Binários

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Edson Borin
Co-supervisor/Coorientador: Prof. Dr. Diego de Freitas Aranha

Este exemplar corresponde à versão final da
Dissertação defendida por Otávio Oliveira
Napoli e orientada pelo Prof. Dr. Edson
Borin.

CAMPINAS
2019

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Napoli, Otávio Oliveira, 1994-
 N162t NapTiming side-channel analysis on dynamic binary translators / Otávio

Oliveira Napoli. – Campinas, SP : [s.n.], 2019.

 NapOrientador: Edson Borin.
 NapCoorientador: Diego de Freitas Aranha.
 NapDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Nap1. Tradução binária dinâmica. 2. Criptografia. I. Borin, Edson, 1979-. II.

Aranha, Diego de Freitas, 1982-. III. Universidade Estadual de Campinas.
Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Análise de canais laterais de tempo em tradutores dinâmicos de
binários
Palavras-chave em inglês:
Dynamic binary translation
Cryptography
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Edson Borin [Orientador]
Anderson Faustino da Silva
Julio César López Hernández
Data de defesa: 12-04-2019
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9606-4751
- Currículo Lattes do autor: http://lattes.cnpq.br/6642011418568107

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Otávio Oliveira Napoli

Timing Side-Channel Analysis of Dynamic Binary Translators

Análise de Canais Laterais de Tempo em Tradutores Dinâmicos
de Binários

Banca Examinadora:

• Prof. Dr. Edson Borin
IC/UNICAMP

• Prof. Dr. Anderson Faustino da Silva
DIN/UEM

• Prof. Dr. Julio Cesar López Hernández
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 12 de abril de 2019

Acknowledgements

I would like to thank my family, my friends and my professors for the support. I also would
like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and
Intel for their financial support from the project “Secure Execution of Cryptographic Al-
gorithms”, process FAPESP#: 2014/50704-7, the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) for the proccess #313012/2017-2, Fapesp for the proccess
#2013/08293-7 and the Multidisciplinary High Performance Computing Lab (LMCAD)
for its infrastructure and technical support.

Resumo

Ataques de canal lateral são um importante problema para os algoritmos criptográficos.
Se o tempo de execução de uma implementação depende de uma informação secreta, um
adversário pode recuperar a mesma através da medição de seu tempo. Diferentes aborda-
gens surgiram recentemente para explorar o vazamento de informações em implementações
criptográficas e para protegê-las contra esses ataques. Para tanto, a implementação de
criptografia em tempo constante é uma pratica amplamente adotada visando descorre-
lacionar a dependência entre um dado secreto e suas amostras de tempo. Apesar das
contra-medidas serem eficazes para garantir execução dos algoritmos em um sistema evi-
tando canais laterais de tempo, emuladores podem modificar e reintroduzir pontos de
vazamento durante sua execução. Trabalhos recentes discutem os impactos dos compi-
ladores Just-In-Time (JIT) de linguagens de alto nível no vazamento de informações a
partir do tempo de execução [1, 2]. Entretanto, pouco foi dito sobre a emulação entre
ISAs e seu impacto em vazamentos de tempo.

Neste trabalho, investigamos o impacto de emuladores (tradutores dinâmicos de bi-
nários) entre ISAs na propriedade de tempo constante de implementações criptográficas.
Utilizando métodos estatísticos e rotinas criptográficas, afirmamos a viabilidade de va-
zamentos de tempo em códigos gerados por tradutores dinâmicos de binários, mesmo
utilizando diferentes técnicas de formação de regiões. Mostramos que a emulação pode
ter um impacto significante, inserindo construções de tempo não constante durante sua
tradução, levando a vazamentos de tempo significantes. Esses vazamentos podem ser ob-
servados em tradutores dinâmicos como o QEMU e o HQEMU durante a emulação de ro-
tinas de bibliotecas criptográficas conhecidas, como a mbedTLS e podem ser rapidamente
verificados. Por fim, para garantir a propriedade de tempo constante nós implementamos
uma transformação de compilador baseada na transformação if-conversion nos tradutores
dinâmicos, mitigando os canais laterais de tempo inseridos.

Abstract

Timing side-channel attacks are an important issue for cryptographic algorithms. If the
execution time of an implementation depends on secret information, an adversary may
recover the latter through measuring the former. Different approaches have recently
emerged to exploit information leakage on cryptographic implementations and to protect
them against these attacks. Therefore, implementation of constant-time cryptography is a
widely adopted practice aiming to decorrelate the dependency between a secret data and
its timing samples. Despite the countermeasures are effective to guarantee the execution
of algorithms in a system by avoiding timing side-channels, emulators can modify and
reintroduce leakage points during their execution. Recent works discusses the impact of
high level language Just-In-Time (JIT) compilers in leakages through execution time [1, 2].
However, little has been said about Cross-ISA emulation through DBT and its impact on
timing leakages.

In this work, we investigate the impact of emulators (dynamic binary translators) on
constant-time property of cryptographic implementations. By using statistical methods
and cryptographic routines we asserted the feasibility of timing leaks in codes generated
by a dynamic binary translator, even using different Region Formation Techniques. We
show that the emulation may have a significant impact by inserting non constant-time
constructions during its translations, leading to a significant timing leakage. This leakage
is observed in dynamic binary translation systems such as QEMU and HQEMU when em-
ulating routines from known cryptographic libraries, such mbedTLS and can be quickly
verified. Finally, to guarantee the constant-time property we implemented a compiler
transformation based on the if-conversion transformation in the dynamic binary transla-
tors, mitigating the inserted timing side-channels.

List of Figures

2.1 Guest machine context load and store when transiting between regions and
interpreter. 17

2.2 Architecture of OpenISA Dynamic Binary Translator (OI-DBT). 20
2.3 An example of QEMU DBT translation. The basic block is fetched from

the ARM32 binary (leftmost part), translated to TCG Operations (middle
part) and then translated to native x86-64 code. 22

2.4 Architecture of HQEMU Dynamic Binary Translator. 23

3.1 Boolean Conditional Select Code Generation in QEMU DBT. 45
3.2 Boolean Conditional Select Code Generation in HQEMUDBT (with NETPlus-

E-R). 47
3.3 Get Zeros Padding Code Generation in QEMU DBT. 48
3.4 Constant-time BigDigits Comparison Code Generation in QEMU DBT. . 49

List of Tables

3.1 Number of samples used for each algorithm to perform the Welch t-test. . 40
3.2 QEMU leakage results on Intel System. 40
3.3 QEMU leakage results on AArch64 System. 41
3.4 HQEMU leakage results on Intel System Using Block Translation (Basic

Block RFT). 41
3.5 HQEMU leakage results on AArch64 System Using Block Translation (Ba-

sic Block RFT). 41
3.6 HQEMU leakage results on Intel System Using NET RFT. 42
3.7 HQEMU leakage results on AArch64 System Using NET RFT. 42
3.8 HQEMU leakage results on Intel System Using NETPlus-E-R RFT. 42
3.9 HQEMU leakage results on AArch64 System Using NETPlus-E-R RFT. . 43
3.10 Counter-measure transformation applied on QEMU translating from ARM32.

. 51

List of abbreviations and acronyms

CFG Control-Flow Graph
DBT Dynamic Binary Translator
ISA Instruction Set Architecture
IR Intermediate Representation
HLL High Level Language
JIT Just-In-Time
RFT Region Formation Technique
RISC Reduced Instruction Set Computer
TCC Translated Code Cache
TCG Tiny Code Generator
VLIW Very Long Instruction Word

Contents

1 Introduction 12
1.1 Contributions . 14
1.2 Organization . 14

2 Background 15
2.1 Virtual Machines . 15

2.1.1 Region Formation Techniques (RFTs) 17
2.1.2 Dynamic Binary Translators . 19

2.2 Side-Channel Information . 23
2.2.1 Control-Flow Constructions . 24
2.2.2 Table lookups indexed by secret data 28
2.2.3 Variable-latency instructions . 30

2.3 Timing Leakage Detection Model . 31
2.3.1 The Dudect Timing Leakage Detection Model 31

2.4 Summary . 33

3 Timing Analysis on Dynamic Binary Translators 34
3.1 Materials and Methods . 35

3.1.1 Algorithm implementations . 36
3.1.2 Test Parameters . 39

3.2 Experimental Results . 39
3.3 Discussion . 43

3.3.1 The Boolean Conditional Selection Case 44
3.3.2 The mbedTLS get_zeros_padding Case 47
3.3.3 The BigDigits Compare Case . 48
3.3.4 Other cases . 49

3.4 Counter-measure . 50
3.4.1 QEMU . 51
3.4.2 HQEMU . 52

3.5 Summary . 52

4 Conclusions 53

Bibliography 55

12

Chapter 1

Introduction

Cryptography is a practice used for centuries aiming to keep private information confi-
dential. Along the years, several cryptographic algorithms have been proposed. Although
cryptographic algorithms are designed to be secure against analytic attacks, valuable in-
formation can still be extracted by peculiarities in their implementation and execution.
This undesired leakage of information, coming from variations in execution [3, 4, 5, 6],
system power consumption [7, 8] , memory access pattern [9, 10, 11, 12] and branch pre-
diction behavior [13, 14] is statistically exploited by side-channel attacks aiming to infer
secret information used by the algorithms [15].

Among the different types of side-channel attacks, timing attacks is a class of side-
channel attacks that try to infer secrets based on the execution time behavior of the
algorithm [6]. Roughly speaking, if this behavior depends on a secret value, information
can be leaked. These attacks against modern cryptography algorithms were demonstrated
possible even when including network noise in remote attacks [16]. Since then, they have
become more relevant to various applications in different scenarios, such as IoT, cloud
computing and others.

In this way, several implementation techniques to achieve constant-time execution
were proposed to protect against timing attacks [17], and have become widely used. In
general, these techniques aim to ensure that variations in execution time are not correlated
with a secret data and it is possible to find them in various libraries, such as OpenSSL
(openssl.org), mbedTLS (tls.mbed.org) and BearSSL (bearssl.org). The rules for
constant-time implementation are very conservative and consist of avoiding: branching
based on secret data, variable-latency instructions that operates with secret data, table
look-ups with indexes derived from secret data, among others. Thus, the binary code
must be carefully generated and inspected to guarantee constant-time execution, which
can be difficult for larger cryptographic libraries. Furthermore, a compiler can remove
some of these modifications and reintroduce leakage points to the code [2]. This means
that the final binary needs to be carefully reexamined every time a change is made and
the code is recompiled, complicating the task even more.

For this reason, many automatic countermeasures [1, 18, 19, 20, 21] and leakage detec-
tion tools [22, 23] were introduced in the literature. Some of them make use of (difficult
to create) computation models to remove classes of leakage with soundness while others
remove the complexity of setting up the computational model but only mitigate the leak-

openssl.org
tls.mbed.org
bearssl.org

13

age with no guarantee of removing it. In this scenario, dynamic execution systems such
as emulators may also have an impact on these implementations either by adding noise to
mitigate leakages or by applying optimizations or code transformations that could create
them [24].

An emulator is a piece of software that enables the execution of a binary compiled
to one Instruction Set Architecture (guest ISA) by another (host) [25]. The guest ISA
can be a real one, like emulating an ARM binary on an x86 processor, or a virtual one
(has no real hardware implementation) like Java Bytecode. One of the fastest and most
common ways to implement an emulator is using dynamic compilation (a.k.a. Dynamic
Binary Translation, DBT or JIT Compilation), a technique which starts by interpreting
the guest code, then selects hot regions with a heuristic (Region Formation Techniques,
RFTs) and lastly compiles/translates these regions into host ISA for faster (native) exe-
cution. With emulation becoming more popular, recently studies on JIT protection have
also been performed. A new class of JIT side-channel attack also emerged [26]. These
attacks consists in inducing timing leakages on JIT code from High-Level Languages JIT
compilers. However, little have been studied about timing leakage on dynamic Cross-ISA
translators that also addresses other challenges such as: emulating complex instruction
sets, status flags register emulation and others.

In a paper published in “Simpósio de Sistemas Computacionais de Alto Desempenho
(WSCAD) 2018” [24], we investigate the impact of multiple-target Cross-ISA emulation in
constant-time property using a Cross-ISA DBT named OI-DBT, which emulates OpenISA
code (an architecture designed for emulation). Thus, we have presented the following
contributions:

• We showed that an emulator can interfere with the time-leakage property of some
implementations, i.e. mitigating it. With OpenISA DBT, we showed that an emu-
lator can add enough noise into the execution to the point in which it can actually
mitigate the timing leakage, by obfuscating it.

• Although we did not see in the experiments the opposite result (an emulator adding
leakage to a constant-time implementation), we argued that this is also possible to
happen.

• To the best of our knowledge, it was the first work performing an analysis on timing
leakages in Cross-ISA Dynamic Binary Translator using a statistical method.

In this work we investigate the impact of multiple-target Cross-ISA emulation in
constant-time property of known cryptographic routines, on popular DBT engines, namely:
QEMU and HQEMU. We investigated the feasibility of timing leakages in DBT scenarios
and observed the introduction of some non constant-time constructions on the dynamic
generated code with both DBTs. These constructions leads to a timing side-channel,
where a branch controlled by secret data is generated and which can be noted with about
20000 execution time samples, verified by adopting a timing leakage detection model based
on Dudect Tool, presented by Reparaz et. al. [22] to a dynamic execution environment,
and carefully analysing translated code. Finally, we also discussed and implemented a

14

solution for generating code with QEMU Just-In-Time compiler mitigating the timing
leakage introduced through a safe compiler transformations.

1.1 Contributions

The main contribution of this work include a comprehensive analysis of timing side-
channel in Cross-ISA Multiple-target Dynamic Binary Translators, which emulates com-
plex instruction sets (CISC) and Reduced Instruction Sets (RISC) by using valid statistical
methods. In summary:

• We show that an emulator can interfere with the time-leakage property of some
implementations and verified the occurrence of known timing leakages on crypto-
graphic implementations, by using statistical methods.

• We demonstrate that timing side-channels can be introduced by QEMU and HQEMU
JIT compilers when translating code from ARM32 and x86 architectures, due to
emulation of conditional codes. We implemented and experimentally validated a
solution to mitigate the timing side-channels generated.

• We tested 12 known cryptographic routines on 2 different emulators, some of them
using 3 different region formation techniques. We show that the RFTs may have a
minimal impact on the leakages presented in the translated codes.

1.2 Organization

This dissertation is structured as follows: Chapter 2 presents a theoretical background of
the concepts used in this work including a discussion about Cross-ISA emulation using
dynamic binary translation and presenting an overview of QEMU and HQEMU. It also
discusses timing side-channel on popular cryptographic constructions and the Timing
Leakage Detection model used to detect such existence. Chapter 3 performs a discussion
about side-channels in Dynamic Binary Translation and presents results of the timing
leakage detection model. It shows the proposed a solution based on if-conversion technique
to securely generate dynamic code. Finally, Chapter 4 presents the conclusions and future
works.

15

Chapter 2

Background

This section explain the basic concepts about Virtual Machines and Binary Translation
that is used along the work (2.1). It also discusses the common side-channel leakages en-
countered in the popular cryptographic algorithms/primitives (2.2) and the timing leakage
analysis model used to detect the existence of these leakages (2.3).

2.1 Virtual Machines

In general, an emulator consists of a virtualization software executing on a real system
(called host), which provides means to execute code compiled for another architecture with
the same or different Instruction Set Architecture (ISA) [25]. The virtualized system have
their resources mapped to the real system bypassing existing impositions of compatibility
and hardware restrictions, allowing a better degree of portability and flexibility of the
software. This technology has been useful in a handful of applications such as Virtual
Machines (VMs) [24, 27, 28, 29], support of legacy code [30], simulators [31, 32], among
others. However, as the ISA of modern CPUs is huge, performing an efficient emulation
between architectures is not a trivial task, especially when both ISA have significant
differences in their semantics. Also, as Cross-ISA emulators must exploit architecture-
specific semantics in order to improve its performance (e.g vectorization) and it may be
a challenging task to design an efficient emulator that can be quickly retargetable [33].

The two main ways of implementing an emulator are by interpretation or by transla-
tion. The former usually is simpler and assures better portability. It is used to emulate
cold (seldom executed) parts of the binary and consists on implementing the fetch, decode
and execution cycle, mimicking the behavior of a simple CPU. This approach causes a
great degradation on performance, as the emulation of every single instruction alone will
require tens of actual host instructions to be executed [25]. The latter, on the other hand,
is the one that results in faster emulators (more than 10x faster than an interpreter [34]),
but it is less portable and far more complicated to implement. The translation of an
ISA can be done either statically, by translating the whole binary application beforehand
(Static Binary Translation, SBT), or dynamically, translating hot regions of code from
the binary while interpreting it (Dynamic Binary Translation, DBT). Usually a SBT is
simpler to implement than a DBT, but given binary properties such as code discovery

16

problem, self-modifying code and indirect branches, it cannot translate all programs, thus,
DBT is more common in real scenarios.

DBT engines usually start by interpreting the binary code and only after some exe-
cution it starts translating code. The translation can be done by using various heuristics
aiming to achieve a better performance and a better quality of translated code. While
interpreting, they also collect execution frequency information which is used by heuristics
(Region Formation Techniques, RFTs), further explained, to detect regions of code that
form a cycle or have a high probability of being executed many times in the future. Once
selected, these regions of code are disassembled and sent to a JIT compiler to produce
native code (for the Host ISA) mimicking the behavior of the region in the guest ISA.
These translated code are put in a cache, known as Translated Code Cache (TCC), and
every time the emulator needs to execute one instruction that is in the start address of
one of the TCC regions, the emulator jumps to the native code in the TCC, executing
the translated code. Translation (or compilation) in a DBT happens together with binary
emulation and its execution time impacts directly to the final emulation performance.
However, as the execution of translated code is faster than interpretation, if a region is
executed enough times, the translation cost is paid off by the speedup achieved by using
the translated code instead of interpretation.

As most of the emulation time is spent executing translated code, the quality of re-
gion translation is extremely important for the final emulation performance [27] and RFTs
impact directly in this quality because they are responsible for defining the compilation/-
translation unit of a DBT engine. For instance, RFTs that select larger regions may have
a better performance as they open opportunities for more optimization and, most impor-
tantly, reduce the transitions between regions. In multiple-target DBT engines, such as
OI-DBT [24], QEMU [28] and HQEMU [27], transitions are expensive because it is not
trivial to map register banks between all pairs of architectures they support and then
the DBT needs to apply register allocation separately for each region, creating different
mappings and forcing each one of the regions to load/save the values of the guest registers
when entering/exiting.

An example is showed in Figure 2.1. Selected and translated regions of a guest program
are illustrated as R1, R2 and R3. When finish executing a region, DBT engines may jump
to another compiled region (using an Instruction Branch Target Cache or Direct Block
Chaining mechanisms) or return to the interpreter, if region is not yet compiled. Multiple-
target DBT engines add several extra store and loads which are executed every time a
region-to-region (as arrows (c), (d) and (e) in the Control Flow Graph in Figure 2.1) or
a region-to/from-interpreter (as arrows (a), (b)) transition happens (also called prologue
and epilogue codes).

17

R1
R3

R2

Interpreter

Load Context

Save Context
Save Context

Save Context

Load Context

Load Context

(b)

(a)

(c)

(d) (e)

Figure 2.1: Guest machine context load and store when transiting between regions and
interpreter.

2.1.1 Region Formation Techniques (RFTs)

A DBT engine needs to decide which regions of code it is going to translate and optimize.
This is a responsibility of the RFT which determines when to start recording a region,
what to record and when to stop and send it to be translated/compiled. There are several
factors that affect the choice of policies for the RFTs: size of the created regions, execution
frequency, amount of duplicated code, etc. Hence, RFTs have different purposes.

A näive and simple approach consists in translating one simple region at time (such
as basic blocks), when executed by the first time. This is well suited option for small
programs, with few basic blocks, but the transition overhead for larger programs is very
high. Therefore, different techniques have been proposed in the literature to address this
challenge.

18

NET (Next-Execution Tail)

Initially, Bala et al. [35] presented a dynamic binary optmization system called Dynamo,
aiming to transparently optimize applications performance. By using a JIT compiler,
native instructions are generated from determined pieces of guest code selected by the
NET (Next Execution Tail) heuristic. Previously named MRET (Most Recently Execu-
tion Tail), NET aims to create super-blocks composed of instructions that are executed
in sequence. It considers that every target of backward branches or super-blocks exit is
a candidate for starting a region. A region starts to be recorded when the execution of
one these points reaches an established execution threshold. When recording, every in-
struction emulated is added to the new region and it only stops when: a backward branch
is executed; another region entrance is found or; a predefined number of instructions
included in the region reached a determined threshold.

MRET2

MRET2 [36] executes the NET technique two times and selects the code from the inter-
section of the result of the two executions. The goal is to reduce tail-duplication.

NETPlus

Davis et al. [37], proposes the NETPlus, which extends traces formed by the NET RFT.
NETplus first runs NET and then instead of just finishing the super-block formation, also
runs a static forward search looking for paths which could extend the region. The search
looks for paths which exits the NET region and which returns to its entrance with less
than a given number of steps (branches). The authors conclude that this technique tends
to select larger regions of code and reduce region fragmentation of NET.

NET-R

Hong et at. [27] also mentioned that NET RFT has a problem of region fragmentation,
large number of traces and early exits. To address this problem, they presented a modified
version of NET, a relaxation of it, called NET-R (Next Execution Tail Relaxed), making
it similar to the cyclic-path-based repetition detection scheme [38]. NET-R does not end
recording a region when a backward branch is found, instead, it ends when a cycle is
found (repeated instruction address), creating larger regions and making room for better
intra-procedural optimizations, thus reducing the transition cost.

NETPlus-E-R

Hong et al. [27] also proposed the NETPLUS-e-r RFT, which is an extended and relaxed
version of NETPlus. It uses NET-R to form regions and when expanding, it does not only
include paths which return to the entrance of the region but all paths which return to
any part of the region. This technique aims to reduce the region fragmentation, creating
larger regions with multiple cyclic paths.

19

For multi-target DBTs, reducing the number of transitions between regions is essential
to achieve good performance (because of the need to save and restore register context).
Techniques such as NETPlus-e-r and NET-R have the potential to reduce amount of
transitions and may provide the best performances on DBT engines [27].

2.1.2 Dynamic Binary Translators

To address the challenge of Cross-ISA emulation, several Dynamic Binary Translators
were proposed and implemented along the years.

FX!32

The FX!32 emulator [39] was developed by Hewlett Packard (HP) in order to support
the transition from Windows NT programs compiled for x86 to Alpha hosts. FX!32 com-
bines a x86 machine emulator with a static binary translator, both controlled by a FX!32
server. On the first execution of a binary the emulator captures a profile containing in-
formation that supports the static binary translator, such as: addresses of interpreted
call instructions, source/target address pairs of indirect jumps, addressees of memory ac-
cesses, among others. After the program termination, the server invokes the static binary
translator which uses the collected information to translate the x86 instructions into Al-
pha instructions and optimize the binary. The generated code is stored in a database
(translated code cache) and is used when the same binary is executed again. Using this
approach, a set of original x86/Windows NT programs is incrementally translated to the
Alpha host machine.

Transmeta’s Code Morphing Software

Another approach to dynamic binary translation was Transmeta’s Crusoe, from Dehn-
ert et al. [40]. The custom VLIW processor uses the Code Morphing Software (CMS)
that is composed by an interpreter, a dynamic binary translator, an optimizer and a
runtime system to emulate the x86 ISA binaries. Transmeta’s CMS is a system-level
implementation of a complete dynamic binary translation framework that interprets and
translates guest machine instructions reliably, implements precise exceptions and handles
self-modifying code. The structure of the CMS resembles any common dynamic binary
translator and uses an interpreter that decodes and interprets the x86 guest instructions
and observes their execution frequency. If a sequence of interpreted instructions exceeds
a certain threshold, the CMS passes the address of start of that trace to the translator.
The translator then produces a native VLIW translation of the x86 instructions which is
stored into the Translated Code Cache (TCC) to be latter executed.

In order to translate x86 instructions into native VLIW instructions, the CMS imple-
ments speculations about the interpreted instructions. These speculations are exploited
by the translator and verified at runtime by a combination of hardware and software
mechanisms. Crusoe registers that holds the x86 machine state are shadowed during the
execution of a region (i.e. besides the working registers the CMS contains a copy of the

20

register file). After finishing the execution of a region, the emulated registers are commit-
ted to the working registers (which maintain the system consistency). A failed execution
during the execution of a region triggers a native exception that rolls back to the last
committed state, and then invokes the interpreter to guarantee precise execution.

OI-DBT

The OI-DBT is an open source Multi-target OpenISA Dynamic Binary Translator1 that
is composed by two major components: one that interprets, profiles and executes dy-
namically compiled OpenISA code and another one that dynamically compiles selected
OpenISA code to native host architecture, based on LLVM On-Demand ORC JIT. The
DBT uses at least two threads and its architecture is illustrated in Figure 2.2.

Taking a binary code compiled to OpenISA virtual architecture, the OI-DBT starts
the execution by interpreting one instruction per time and profiling it in one thread.
The profiling is performed when interpreting a branch instruction and, after the defined
threshold is reached, the code trace is then selected using one of the described RFTs.
Traces are feed to the JIT engine by placing in a Compilation Queue, that emits native
code to the host native architecture, using LLVM IR Builder. The code is placed in the
regions cache (the Translated Code Cache, TCC) and every time instructions from that
address are interpreted, it jumps directly to the compiled correspondent. Moreover, OI-
DBT implements in the architecture a mechanism that dumps the traces selected by the
RFTs when interpreting the code. The selected OpenISA code can be later loaded and
compiled and also optimized by merging regions.

The JIT engine executes on another thread and is based in the on-demand JIT com-
piler: LLVM ORC JIT from LLVM 6.0. It takes regions from the Compilation Queue
as input, translates, and insert them on the TCC. The JIT takes all the benefits from
LLVM back-end and optimizer support to emit optimized native code to several host
architectures, on-the-fly.

Figure 2.2: Architecture of OpenISA Dynamic Binary Translator (OI-DBT).

1https://github.com/OpenISA/oi-dbt

https://github.com/OpenISA/oi-dbt

21

QEMU

QEMU [28] is a widely known retargetable dynamic binary translation system that allows
full-system and process-level emulation from several CPUs (x86, PowerPC, ARM and
Sparc) on several hosts (x86, PowerPC, ARM, Sparc, Alpha and MIPS).

To perform the emulation, QEMU consists in a main loop that executes a single basic
block at time. If the block was already translated, QEMU simply jumps to it, passing
through epilogue and prologue codes, when entering and exiting the block, respectively,
to maintain internal state coherence. Otherwise, QEMU fetches the basic block from the
guest code (named translation block), disassembles it and then maps it to a small set of
intermediate representation operations (named TCG Operations) provided by the Tiny
Code Generator (TCG), the core of QEMU DBT Engine, to latter be translated to the
host architecture, as illustrated in Figure 2.3.

The TCG intermediate instruction set is RISC-like, thus there are only few straight-
forward instructions supported directly. In this way, a single guest instruction could be
mapped to a set of TCG instructions, possibly resulting in poor performance for more
complicated ones. Once mapped, TCG improves the quality of its intermediate code by
using simple lightweight optimizations passes: register liveness analysis, store forwarding
optimization and dead code elimination. Lastly, the intermediate code is translated to
the native code, for the host ISA and inserted in the Translated Code Cache to be further
executed.

Every transition from a translated block to another incurs passing through an epilogue
and a prologue code, that is used to maintain the state coherence (when entering and
exiting the translated block, respectively), such as saving the emulated PC state, saving
the status flags, among others. In order to reduce transition overhead, QEMU uses Direct
Block Chaining and after the translation of each block, it patches unconditional branches
directly to the next translation block (if it was already translated), forming chains.

Although the simple and efficient mechanism to translate code, the performance degra-
dation of QEMU generated code is still very severe. Without further optimizations and
intraprocedural analysis, there are often many redundant load and store operations left
in the generated host code, incurring in a poor quality translated code. Even so, due
to lightweight translation system, QEMU is an ideal choice for emulating short-running
applications, with few hot blocks.

22

Figure 2.3: An example of QEMU DBT translation. The basic block is fetched from the
ARM32 binary (leftmost part), translated to TCG Operations (middle part) and then
translated to native x86-64 code.

HQEMU

HQEMU (Hybrid QEMU) is a cross-ISA, retargetable and multi-threaded dynamic binary
translator that integrates the LLVM compiler to QEMU. The authors proposed a hybrid
scheme using QEMU TCG as a fast emulator and once hot regions are detected, by using
the NETPlus-E-R Region Formation Technique, they are optimized by aggressive LLVM
toolchain optimizations on another thread. With this scheme, HQEMU generates a high
quality and a faster translated code, leading to a slowdown of about 2.5X than native
execution (not emulated one) and a speedup of about 4X in comparison to QEMU.

To achieve this HQEMU uses QEMU and translates a single guest binary basic block
at time, and emits translated codes to the TCC, named block code cache in HQEMU, as
shown in Figure 2.4. A profile is executed in HQEMU and when the emulation module de-
tects that some code region has become hot (some of the translation blocks were executed
often, using NETPlus-E-R RFT) it places a request in the optimization request FIFO
queue together with the translation blocks in its TCG IR format. On another thread,
the requests will be serviced by the HQEMU backend translator/optimizer, similar to a
producer-consumer method. When the LLVM optimizer receives an optimization request
from the queue, it converts its TCG IRs to LLVM IRs directly instead of converting guest
binary from its original ISA.

As the TCG IR consists in about 150 different instructions, this approach simplifies
the backend translator instead of translating a much larger instruction sets in most guest
ISAs. Many LLVM compiler optimization passes are performed on the LLVM IR and,
finally, a highly optimized host code is emitted to the trace cache. Then, every time
HQEMU execute a block, it first checks the trace cache to execute a highly optimized
code. If the requested block is not in the trace cache (probably because the region is still

23

cold), the respective block is fetched and executed from the QEMU Block Cache.
The LLVM toolchain counts with a huge set of program analysis facilities and pow-

erful optimization passes that is crucial in generating high quality code. For instance,
redundant memory operations that are usually left on QEMU code, could be eliminated
via the LLVM register promotion optimization. Also, LLVM aims to select the best host
instructions sequences. For instance, it could replace several scalar operations by one
SIMD instruction.

These analysis and optimization passes are not simple nor fast and incur in a con-
siderable overhead on the translation system. Nonetheless, since the LLVM translator is
running on another thread these overheads are hidden and the translation mechanism are
done without interfering with the execution of the guest program [27]. With this design,
HQEMU can have a speedup of 4X than QEMU, making it a great choice for long-time
running programs.

QEMU Emulator

TCG Translator

QEMU Translation
Block Cache

LLVM Translator/
Optimizaer

HQEMU Translated
Trace Cache

Aplication
Binary

Compilation
FIFO Queue

TB

TB

Convert Translation Blocks
in TCG IR to LLVM IR

Blocks are Selected using NETPlus-E-R

Figure 2.4: Architecture of HQEMU Dynamic Binary Translator.

2.2 Side-Channel Information

Side-channel information is undesired and non intentional information produced by the
execution of a cryptographic algorithm. This leaked information (such as variations in
execution time, system power consumption, memory access pattern, branch prediction
behavior, among others) may be exploited leading to side-channel attacks. These attacks
are known by its simplicity and low-cost implementations and proved to be devastating
on modern architectures. Although there are many side-channels, a popular class of side-
channel comes trough the execution time.

A timing leakage happens when the execution time of a program or the emulation
of a program depends on secret information. It was firstly explored by Kocher [6], that
demonstrated a successfully key-extraction attack against implementations of the RSA
cryptosystem by simply measuring the time taken by the private key operation under
execution of several inputs. Kocher concluded that the non constant-time execution of

24

cryptographic operations could leak some information through timing channels. Thus, in
practice, if there is a data dependence between a secret information and the execution
time, an attacker executing a program with different inputs and measuring its execution
time can infer secret information from the program using statistical methods, even re-
motely [41]. Along the years, several characteristics that lead to timing channels were
explored and showed to be a problem when designing and implementing cryptographic
codes.

The three most common implementation/architecture characteristics which end up
creating a dependence between data and execution time are: (1) having control-flow
depending on secret information, which will lead to different executions paths with a
different number of instructions or memory pattern access when using different secrets;
(2) changing the memory access pattern depending on the secret information, as it could
lead to different cache performance, for instance, indexing an array access with secret data;
(3) manipulating secret information with processor instructions that vary their execution
time depending on the processed data.

The following Sections describe the common implementation issues in high-level lan-
guage implementations of cryptographic algorithms that leak secret information through
timing channels.

2.2.1 Control-Flow Constructions

The most impacting timing behaviour comes from the variations in the control-flow exe-
cution. When a routine executes a different number of instructions for different inputs,
it can leak some information if the secret material is used different times. This can be
observed in the C function memcmp implementation showed in Listing 2.1, from GNU libc.
This routine simply compares two byte arrays stored at memory (variables pq and p2)
returning zero for the equality. However, this implementation performs an early exit when
the first different value between the two pointers are found (i.e. the value of v, in the
loop condition, in line 6, is different than 0), causing a significant impact on execution
time when the data are different. This leaked timing information, which is the number
of iterations of a loop that depends on secret material operations, was also successfully
exploited in Google’s Keyczar cryptographic library, that uses a similar memory compar-
ison routine to verify signatures codes allowing an attacker to forge signatures for data
that was authenticated with the SHA-1 HMAC algorithm.

To mitigate this timing leakage, control-flow statements are usually transformed to
branchless versions, using arithmetic and/or bitwise operations. Listing 2.2 shows an
equivalently constant-time version of the prior one, using logical XOR and OR operation
over the input. Despite this simple example construction, may be a difficult task writing
correct constant-time code in high-level languages such as C. Developers must often avoid
common language features, like control-flow statements and structure their code to prevent
the compiler from introducing timing variabilities during optimization passes.

1 EXTERN_C int __cdecl memcmp(const void *Ptr1 , const void *Ptr2 , size_t
Count) {

2 int v = 0;

25

3 BYTE *p1 = (BYTE *)Ptr1;
4 BYTE *p2 = (BYTE *)Ptr2;
5

6 while(Count -- > 0 && v == 0) {
7 v = *(p1++) - *(p2++);
8 }
9

10 return v;
11 }

Listing 2.1: Non constant-time memory comparison.

1 int util_cmp_const(const void * a, const void *b, const size_t size) {
2 const unsigned char *_a = (const unsigned char *) a;
3 const unsigned char *_b = (const unsigned char *) b;
4 unsigned char result = 0;
5

6 for (size_t i = 0; i < size; i++) {
7 result |= _a[i] ^ _b[i];
8 }
9

10 return result; /* returns 0 if equal , nonzero otherwise */
11 }

Listing 2.2: Constant-time memory comparison.

Another significant timing variation occurs when performing branches that depend on
secret values or when executing constructions that uses secret values in different execution
paths.

Modern microprocessors are usually designed to extract a maximum of Instruction
Level Parallelism [42] and its pipeline contains many stages, such as instruction fetching
and decoding, register allocation/renaming, micro-instructions reordering, execution and
retirement. Thus, the microprocessor is able to execute an instruction while next ones
are being fetched and decoded. However, conditional jumps proved to be a big challenge
in pipeline behaviour, since the execution path is not known before evaluating the respec-
tively condition. To address this problem, the microprocessor usually uses the speculative
execution, where the most probable branch of the conditional jump is fetched and fed
into the pipeline. The execution result is not retired into the permanent register file, and
memory writes are pending until the branch instruction is finally resolved. If the branch
was incorrect, the pipeline is flushed, the results of the speculative execution are discarded
and the other branch is fetched and fed into the pipeline, resulting in a waste of clock
cycles2 and also a significant variation in execution time.

For instance, the Binary Square-and-Multiply Exponentiation Algorithm is a binary
version of the Square-and-Multiply Algorithm (SM), being the simplest way to perform
modular exponentiation. The goal is to compute Md(modN), where d is a n-bit num-
ber. The algorithm, showed in Listing 2.3, consists in a fixed count loop (differently
from memcmp function) that squares the number M and reduces modulus N and if the
private i-th bit of the key is 1, a multiplication is also performed. Aciçmez et al. [14]

2This missprediction may result in a 15-20 clock cycles in modern Intel Processor.

26

demonstrated that due to branch predictor behaviour on modern systems a significant
timing leakage could be noticed in cryptosystems that uses modular exponentiation, such
as implementations of RSA cryptosystem without using the Chinese Reminder Theorem.

1 S = M
2 for i from 1 to n-1 do
3 S = S*S (mod N)
4 if d[i] == 1 then
5 S = S*M (mod N)
6

7 return S

Listing 2.3: Binary Square-and-Multiply Exponentiation Algorithm.

A Note for Boolean Expressions

Boolean resulting expressions (i.e. logical and relational expressions) and boolean vari-
ables are targets for compiler optimizations which may end up with non constant-time
behaviour constructions.

The code showed in Listing 2.4 presents an “unsafe” branchless conditional selection
(function ct_select_u32, in line 10) between two unsigned integers x and y, depending
on the value of the bit, using logical expressions. This code is usually used in asymmetric
cryptography to perform a conditional swap. Popular compilers such as clang and gcc
may detect the value range of Boolean resulting operations and variables (in this case the
variable bit of the type bool, from C’s stdbool.h library), which usually ranges between
0 and 1. As the concrete range of values can be inferred, Boolean expressions do not lead
to Undefined Behaviours and it guarantees stronger assumptions, giving the compiler a
chance to optimize the code even more. For instance, the C/C++ as-if rule allows any
and all code transformations that do not change the observable behavior of the program,
as timing is not considered observable behavior in such languages, compilers can generate
some code using different set of instructions than expected, which may affect the constant-
time property of implementations. Trough local and interprocedural analysis passes, such
as: interprocedural constant propagation, interprocedural propagation of value ranges and
interprocedural bitwise constant propagation3, clever compilers may reduce these series of
bitwise operations, within different functions, to a simple evaluation of bit variable. The
generated assembly, is showed in Listing 2.5 for x86 architectures and in Listing 2.6 for
ARM32 architecture. For the x86 architecture, the binary was compiled with gcc (version
5.4) using -m32 flag (for a 32-bit compatibility) and the O3 optimization level. For the
ARM32 architecture, the binary was compiled with arm-linux-gnueabi-gcc (version
5.4) using the O3 optimization level

It’s worth to notice that both generated Assembly codes comes with conditional (pred-
icated) instructions (cmovne for x86-64 architectures, in line 4, and moveq for ARM32
architectures, in line 3), which were selected by the compiler Instruction Selection Phase,
aiming to speedup the code generating a branchless comparison version [43]. The use of

3These optimizations can substantially increase performance if the application has constants passed
to functions and is enabled by default at -O2 optimization level, in gcc and -O1 optimization level, in
clang.

27

hardware conditional instructions showed to be executed in constant-time by Coppens et
al. [44], since it doesn’t suffer from branch stalls. Therefore, conditional instructions are
widely used on timing side-channel mitigation models, to mitigate control-flow dependable
behaviour constructions in binary codes [1, 18, 21, 45].

However, the same code when compiled to an architecture without conditional exe-
cution support, such as i386, results in a branched behaviour, as shown in Listing 2.7.
The binary was compiled with gcc (version 5.4) using -m32 -march=i386 flags and the
O3 optimization level. In this way, implementations that use Boolean values, must be
carefully disassembled and checked to assures the constant-time property.

1 /* Return 1 if condition is true , 0 otherwise */
2 int ct_isnonzero_u32(uint32_t x) {
3 return (x|-x) >>31;
4 }
5 /* Generate a mask: 0xFFFFFFFF if bit != 0, 0 otherwise */
6 uint32_t ct_mask_u32(uint32_t bit) {
7 return -(uint32_t)ct_isnonzero_u32(bit);
8 }
9 /* Conditionally return x or y depending on whether bit is set.

Equivalent to: return bit ? x : y */
10 uint32_t ct_select_u32(uint32_t x, uint32_t y, Bool bit) {
11 uint32_t m = ct_mask_u32(bit);
12 return (x&m) | (y&~m);
13 }

Listing 2.4: Constant selection function.

1 ct_select_u32:
2 testb %dl, %dl
3 movl %esi , %eax
4 cmovne %edi , %eax
5 ret

Listing 2.5: Constant-time select generated Assembly code for x86 ISA.

1 ct_select_u32:
2 cmp r2, #0
3 moveq r0 , r1
4 bx lr

Listing 2.6: Constant-time select generated Assembly code for ARM32.

1 ct_select_u32:
2 cmpb $0, 12(% esp)
3 jne .L8
4 movl 8(%esp), %eax
5 ret
6 .L8:
7 movl 4(%esp), %eax
8 ret

Listing 2.7: Non constant-time select generated Assembly code for i386 architecture.

28

The use of high-level language logical and relational operators (in C: equal, not equal,
less than, or, and, etc.) is also a target for the same optimization since it also produces
Boolean values, which may not always compile down to constant-time code.

To avoid behaviors like this, some cryptographic libraries (e.g., OpenSSL and lib-
sodium) avoid the use of C’s built-in operators and instead, rely on helper functions that
implement the operators in constant time. This approach requires re-implementing al-
most all of C’s operators. Other libraries (e.g., mbedTLS and Crypto++) only transform
logical and relational expressions when necessary. To this end, their developers inspect
the Assembly code and, if the generated Assembly contains branches, they rewrite the C
code into a series of expression-statements using bitwise operators. This approach is deli-
cate because it requires developers to examine Assembly generated by different compilers
and optimization levels. Even so, carefully used conditional movement instructions can
have a great speedup in constant-time constructions, being a good choice for performance
and code size.

2.2.2 Table lookups indexed by secret data

Another impacting variation in execution time comes from the memory access behaviour.
Based on prior analysis of timing side-channels [6], Kelsey, et al. [46] warned that attacks
based on cache hit ratio in ciphers with many table look-ups were possible.

In brief, the cache memory is a high-speed Static Random Access Memory (SRAM),
which is added to the CPU to reduce the performance gap between the main memory
and the CPU. The cache’s operation mechanism is very simple. If the CPU needs data, it
verifies in the cache first. Using part of the address which represent a cache line (cache-
tag) a comparison is made with the values of tag-RAM. If both the values were equal,
the data is found in the cache (called a cache hit) and the data is supplied to the CPU to
execute without accessing the main memory. In the other case (called a cache miss) the
data is fetched from the memory and stored into the cache, for future reuse. Always an
entire cache line is fetched from the memory and more clock cycles, compared to a cache
hit, are needed until the CPU recieves the data.

In 2005, Bernstein [5] claimed that indexing arrays with secret information leaks in-
formation through timing channels due the microprocessor cache performance and demon-
strated a successfully key-extraction attack against the symmetric cipher AES.

The Advanced Encryption Standard [47] (AES) is a widely used symmetric-key ci-
pher, based on substitution–permutation network principle [48] and data is encrypted in
blocks of 128 bits. Each data block is modified by several rounds of processing (10, 12
and 14 rounds, for 128 bits, 192 bits, 256 bits key material, respectively) into four stages:
SubBytes, ShiftRows, MixColumns and AddRoundKey. These operate using mathemati-
cal field operations in GF (28), which are computationally expensive. In order to improve
performance, several implementations make use of pre-computed look-up tables (named
S-Boxes), in their SubBytes stage, avoiding the use of field arithmetic. These tables,
that are accessed with secret information, usually remains on cache during the encryption
process. For instance, some implementations use four 1KB tables, occupying 64 cache

29

lines4.
Based on the assumption that execution time of AES is connected to its input,

Bernestein carried out the attack by using a reference machine as an identical refer-
ence machine with the same implementation as the target machine and collecting a huge
number of samples, in this case, the execution time of encryption processes with different
plain-texts. Based on the samples, the mean time and variance of each plain-text byte
are calculated for all possible values. Afterwards, the correlation between the different
positions are calculated. The same analysis steps are performed for the sample of the
target device. The attacker compares the results and tries to find similarities in order to
extract the secret key information of the target system.

Shortly after Bernstein’s report, Bonneau et al. [49] defined a general attack strategy
using a simplified model of the cache to predict timing variation due to cache-collisions in
the sequence of lookups performed by the encryption. Latter Aciccmez et al. [3] showed
that an attack can be handled even with a network noise and even without the need of
knowing the plain-text beforehand, introducing remote cache-timing attacks. This led to
several other attacks based on the vulnerability of the data cache and the exploration of
shared hardware resources, not limited uniquely to the AES cipher, such as: Last Level
Cache (L3-cache) [50], Content-Page Sharing [9], Cross virtual machines [51, 12], among
others.

As these attacks proved to be dangerous, popular counter-measures aim to decorre-
late the dependency between the memory accesses and the secret material, which is not
simple, since several versions of cache attacks comes to spotlight over and over. For this,
an interesting implementation strategy aiming to provide constant-time operations and
resistance to cache-related attacks is bitslicing5 [52]. The concept consists in expressing
a function in terms of single-bit logical operations (and, or, not, xor, etc.). Thus, instead
of having a single variable storing an 8-bit number (as example), eight variables (slices)
store each bit of the number (leftmost to rightmost). This may seem a very inefficient way
to replace a table lookup, but the bitslicing technique comes with a huge bonus through
parallelism. Since all these operations are done with bitwise operators, then they operate
on several instances in parallel, simultaneously. Also, bitslicing techniques provided a way
to implement efficient code using SIMD operations6 [17].

Even so, software counter-measures to cache-timing attacks are not limited to bitslic-
ing. Page [53], suggested an obfuscation model by manually adding noise to encryption
to make cache timing side-channel attacks more difficult. For instance, Page manually
inserted garbage instructions and random loads into the encryption routine. Crane, et
al. [19] proposed a similar solution through a combination of control flow randomiza-
tion and garbage code insertion, providing a security trough diversification. Cleemput et
al. [21] proposed defenses that do not require manual program modification. In partic-
ular, they described the use of compiler transformations to reduce timing variability. In
their posterior work [1], they proposed an adaptive mitigation model to High Level JIT
environments, that apply mitigation transformations to only regions annotated with their

4Assuming a cache block of 64 bytes.
5Its also known on other areas of computation as data orthogonalisation.
6SIMD stands for Single Instruction Multiple Data instructions.

30

attribute tag named “balanced”.

2.2.3 Variable-latency instructions

Another variation in execution time can come from variable-latency arithmetic instruc-
tions. Some older CPUs and even newer ones, may offer shortcuts to perform multiplica-
tion and/or division, in a non constant-time fashion, via early-terminating mechanisms,
which depend on the input values.

Integer Division

On architectures that provides integer division instructions, hardware implementations
often uses early-terminate mechanisms to trigger a faster execution path. Signed and
unsigned 32-bit and 64-bit integer division instructions usually execute under different
amount of cycles in several modern Intel and ARM CPUs.

For Intel processors, the execution time of an integer division instruction depends on
arguments being zero and on the number of quotient bits that need to be generated. This
number equals the distance in bit positions between the most significant bits of the divisor
and the dividend. Cleemput et al. [21] demonstrated that there are limited number of
distinct latencies by using early-terminating mechanisms (six for the Core 2 processor,
and seven for the Xeon Nehalem core), but the exact latencies and their patterns differ
from one architecture generation to the other.

Despite these problems, integer divisions are not common in cryptographic parts that
handle secret data and are usually avoided beforehand. Several implementations avoid
division instructions by optimizing it into shifts and masking operations.

Data-dependent Shift and Rotation

Even so, architectures without barrel shifter7 or similar designs may also leak some in-
formation through data-dependent shift and rotations based on the shift/rotation count.
The Pentium IV processor, for instance, was a processor that did not offer barrel shifters
and shift and rotation counts could leak through timing. Also, older instruction set ar-
chitectures may not be able to perform data-dependent shift operations efficiently. Since
many instruction sets only have a fixed shift (e.g. 1-bit) or can only shift by an immediate
(e.g. a constant), a data-dependent shift would require a loop that could be a source of
side channel attacks in ciphers due to the difficultly of making them operate in constant
time. Even on an architecture with an instruction for data-dependent shifts, such as the
x86, those shifts will be slower than constant shifts.

Attacks against ciphers using data-dependent rotation have focused on trying to avoid
differences in the rotation amounts. This point impacts mostly algorithms that use shift
or rotations by amounts that depend on potentially secret data. This was the case for the
RC5 lightweight cipher.

7A barrel shifter is a logic circuit for shifting a data word by a varying amount, without the use of
sequential logic. Usually implemented as a series of multiplexers with the output of one multiplexer
connected to the input of another. In modern microprocessors, barrel shifter usually spends a single
clock-cycle.

31

Integer Multiplication

Multiplication instructions may also behave in a non constant-time fashion via early-
terminating mechanisms. Similar to integer division, some architectures try to get a
speedup in the multiplication by looking at the input operands. This is a problem in
some older architectures (80386, 80486) and also in recent ones (ARMv7, ARMv9). For
instance, on the ARM Cortex-M3, the umull instruction takes 3 to 5 cycles to complete.
If both operands are numerically less than 65536 or both operands are powers of 2 the
instructions takes 3 or 4 cycles, otherwise it counts 5 cycles [21]

Even so, on systems where the multiplication opcode results in only the lower 32
bits (as ARM platforms in Thumb mode), a 64-bit result will use a software routine
invoking the multiplication opcode several times and the operands will be truncated. The
truncation may results in smaller values, hence a short cycle count in some cases. The in-
use routine may also have conditional branches. Finally, that 32-bit multiplication opcode
may perform early exits when the high bits are all equal to one (as ARM9T processors in
Thumb mode).

2.3 Timing Leakage Detection Model

To quantify timing leakages, several methodologies were proposed in the literature coming
from diverse areas. Gianvecchio and Wang [54] showed an entropy-based model using a
Kolmogorov-Smirnov test to detect covert timing channels based on estimation. Chen
and Venkataramani [55] presented an algorithm to detect the existence of a covert timing
channel tracking contention patterns on shared processors and memory. Becker [56] uses
statistical tests with different vector assignments. In this work, we used the Dudect
approach, presented by Reparaz et al. [22], mainly because of its efficiency and simplicity
to reproduce. The same is described next.

2.3.1 The Dudect Timing Leakage Detection Model

This methodology consists in maintaining two vectors with executions times from two
different classes of inputs and then comparing the two vectors using some statistical test
to evaluate if they represent the same measurement of time. If not, both vectors have dif-
ferent execution times for two different classes of input and, therefore, the implementation
is not constant-time.

For each test, what we will call an execution, a cryptography key is chosen and N

inputs are randomly generated with an uniform distribution of two classes of inputs. The
first class, C1, consists in only one random plain text which is repeated among all C1

inputs. The second class, C2, consists of different random plain texts, one for each input
of its class. In other words, N inputs are generated with near to half of them fixed (C1)
and another half of them varying (C2). A measure of the execution time for each one of
these inputs is collected and inserted into its respective vector depending on its class.

Finally, a Welch’s t-test [57] is performed (described further), to infer if both vectors
are measuring the same execution time. After every execution and before running the

32

t-test, a post processing is applied in the two vectors, removing some time outliers. As
statistical tests such as Welch’s t-test can have their results accumulated, we can run
this test (of N inputs) E times, each time cleaning the two time vectors, generating a
new cryptography key and new fixed plain-texts for C1 and C2, and running the t-test to
accumulate knowledge about the algorithm being constant or not. This fixed-vs-random
kind of test is very popular in the literature and is considered one of the most powerful
schemes for detecting timing leakages [58].

Welch t-test

The leakage detection model is based on the Welch t-test [57], a generalization of Student’s
t-test for unequal variance populations. This model of detection emerged as a convenient
solution to perform black-box evaluations of resistance against side-channel analysis by
it’s simplicity and low sampling complexity [58].

To assess the constant time execution of a piece of code, the assumptions for the test
are as follows. The population µ1 obey a Gaussian Distribution N(µ1, σ

2
1) as well as µ2

that obey a N(µ2, σ
2
2) and both have unknown variances. The Null Hypothesis (H0) tests

if “The two timing distributions are equal”, that is, if µ1 = µ2.
Let X̄1, X̄2 be the means of the populations µ1, µ2 and s1, s2 the variance from the

same populations, which have n1 and n2 samples each. The Welch t-test defines the
statistical t value by the Equation 2.1. Different from Student’s test it does not assume
homoscedasticity, which means that the test can be performed over populations with
different variances (and not using a common variance) [59]. Besides that, it has a faster
convergence ratio with a low number of samples.

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

(2.1)

Thus, by comparing only two classes one reduces the detection problem to a simpler
estimation task. Since these tests are generally applied independently to many leakage
samples (e.g. full-block cipher encryption, key agreement calculations), they take advan-
tages of the larger signals that occur for some samples with high probability (i.e. the
larger difference of means between the fixed and random classes) dealing better with the
presence of interrupts and interference [58].

However, this lower sampling complexity has a risk of false negatives and positives.
Regarding false negatives, it may for example happen that for some informative samples,
the mean values of the fixed and random classes are identical (or very similar), which
makes detection impossible. Yet, by applying the methodology to large enough traces
(possibly with a few different fixed classes), the risk that significant leakages remain
unnoticed for a complete (e.g., block cipher) implementation is usually expected to remain
negligible [58].

33

Data Pre-Processing

Timing distributions are skewed towards larger execution times. This may be caused by
measurement artifacts such as the main process being interrupted by the OS or other
extraneous activities. To speed up the test process, measurements with very large cycle
counts are discarded (outliers for extraneous activities). Thus, execution time samples
which exceeds the average by 100% are removed. For tests with a high number of samples
(in our case, more than 100000) a high-order processing is performed, by applying the
centered product under the samples.

2.4 Summary

Chapter 2 presented the fundamental concepts of this work, such as emulation through
dynamic binary translation (2.1); concerns raised by the sensitive data manipulation
and common timing channels introduced in the binary by the programming language
semantics (2.2) and; the methodologies commonly used to assess the feasibility of timing
leakages in cryptographic codes (2.3). Implementing constant-time counter-measures may
be a challenging task due to several optimizations used by compilers and microprocessors
to achieve a better performance and parallelism level. In this way, carefully designed
constructions must be used to mitigate these timing channels and guarantee the constant-
time property. In dynamic compiled environments an extra care also must be taken
because the translation may alter this property, which is discussed next.

34

Chapter 3

Timing Analysis on Dynamic Binary
Translators

Although not being a recent problem, side-channel analysis is still relevant and, because of
new attacks appearing from time to time, it is frequently in the spotlight. With predictions
that in the near future tens of billions of devices will be added to the Internet of Things
(IoT), new challenges arise, including the development and deployment of software for a
wide variety of devices, architectures and instruction set architectures. Therefore, it also
generates new challenges for the side-channel security aspect in JIT-based scenarios.

Brennan et al. [26] discussed that JIT compiler mechanisms can be induced to generate
timing side-channels if the input distribution to a program is non-uniform. They verified
that the Java Virtual Machine (JVM) can be primed to favor certain paths, resulting in
optimizations that reduce their execution time. Thus, this can introduce timing side chan-
nels even in programs traditionally considered “balanced”. Cleemput et al. [1], discussed
about side-channel when generating JIT code with invariable latency paths and proposes
a profile-based JIT protection by applying compiler transformations to regions with leak-
ages. Wu et al. [60] discussed about static analysis and transformation-based methods for
eliminating cache-timing side channels, which operates in LLVM IR. Several static anal-
yses are performed to identify the sensitive variables and timing leaks associated to the
same. Renner et al. [2] discussed the timing side-channels in JavaScript runtime systems
and pointed that runtime components such as garbage collectors and JIT compilers can
trivially introduce timing leaks in constant-time implementations and proposed changes
to the WebAssembly language. Other works and counter-measures were also proposed
aiming to analyse and maintain the constant-time execution property [21, 44, 61, 62, 63].

However, none of these works studied and analyzed the potential for multiple-target
Cross-ISA DBT to change the leakage from a program, adding or removing it, during
emulation of a binary. They just perform the analysis over High Level Languages Virtual
Machines (HLL-VM). HLL-VMs are built into a virtual-ISA (bytecode) which is designed
to support virtualization and portability. It usually includes metadata information to
allows type-safe code verification, interoperability, and performance, giving more advan-
tages to optimize code at runtime. For instance, with type information the Java Virtual
Machine (JVM) can keep track of exactly what object types a method is being called
during runtime. For Object-Oriented Languages which provides polymorphism, the infor-

35

mation may allow the inline of virtual methods and then perform even more optimizations
such as escape analysis, register allocation, constant folding, etc.

However, conventional ISAs are not designed for being emulated and may addresses
several issues, such as:

• Maintaining Precise Exceptions: Many instructions need the precise CPU state
to handle certain exceptions. For this, DBT engines usually insert pieces of code (in
the translated code) to update the emulated PC, before potential exception-throw
instructions.

• Different Instruction Set Features: Cross-ISA DBTs must handle translation
for architectures with different register banks. This may lead to a problem when
the number of guest registers is higher than the number of host registers, which
causes several memory spills. Although, many ISAs use condition codes, which
may be difficult to emulate. This is different for HLL virtual-ISA which is usually
stack-oriented (not register oriented) and condition codes are avoided.

• Instruction Discovery During Indirect Jumps: Indirect Branches may jump
to different locations, which are usually avoided in HLLs. Also, the binary program
may mix code with data.

• Self-modifying and Self-referencing code: DBT engines must also handle codes
that alter its own instructions while executing. Usually, this is costly and is done
by flushing the entire Translated Code Cache to assure correctness.

In this section, we analyzed the potential leakage impacts when emulating crypto-
graphic routines on Cross-ISA emulation, using the two aforementioned DBTs: QEMU
and HQEMU.

3.1 Materials and Methods

In order to verify the feasibility of timing side-channels of constant/non-constant trans-
lated cryptographic implementations, we used a timing leakage detection model based on
the Dudect Tool, presented by Reparaz et al. [22] and two dynamic binary translators:
QEMU and HQEMU.

Both the generation of all inputs, the time collection, and the statistical test were
implemented together with the cryptographic algorithm and compiled into one unique ex-
ecutable binary, allowing us to factor out the time for starting the emulator and the time
to construct all random inputs. We executed 12 algorithms that are used on cryptographic
code, between constant-time and non constant-time implementations. Non constant-time
implementations include timing leakage through common timing channels introduced in
Section 2.2, while the other performs counter-measures to achieve constant-time execu-
tion. We also executed these implementations under different RFTs, aiming to verify the
differences that could be generated by selecting different versions of the guest code.

The source code of the experiments was implemented in C language and then compiled
to four instruction sets: x86, x86-64, ARM32 and AArch64. These implementations are

36

all divided into four main parts: (1) a routine which generates all random inputs and
allocates the time vectors, (2) a loop which iterates over each of the inputs calling the
cryptographic routine, (3) the cryptographic routine and (4) the data-processing routine.
We only measured the execution time of the third part, the cryptographic routine. For
this, we added a special instruction to get the execution cycle before and after the routine
execution. In x86 we used the rdtsc instruction1 and in ARM, we use the standard library
clock_gettime function. After the loop consumes all the inputs, the data-processing
routine is called to processes the time-vectors and apply the statistical test in a cumulative
online fashion. All these steps can be repeated indefinitely and, after each execution, the
statistical test updates its assumptions about the algorithm.

The Welch’s t-test statistical test outputs two numbers, the t-value and the p-value.
The first shows the magnitude of the difference between the execution time of the two
classes (time-vectors) and the second describes the exponential tendency for the t-value,
defining a confidence interval for the test. A t-value higher than 4 is usually considered a
strong evidence that the two classes have different execution times and the implementation
is not constant. In the results, we used the t-value in a categorical form and algorithms
with output values higher than 4 are classified as not constant. It is important to note
that a presence of leakage is necessary, but not sufficient for a timing side-channel attack
to work.

All experiments were executed in two different systems. The first one contains a
GNU/Linux Ubuntu 16.04.4 LTS (kernel 4.13.0) operating system and a 4-core 64-bit
processor Intel(R) Core(TM) i7-7700 CPU 3.60GHz with 32GB of RAM. The second one
contains a GNU Debian 8.10 (kernel 4.4.23) operating system and a 4-core 64-bit processor
ARM Cortex-A53 CPU, up to 1.2GHz per core and 1GB of RAM.

Experiments with x86 and x86-64 ISAs were compiled using gcc-7.1 and emulated using
QEMU and HQEMU. Experiments with ARM32 and AArch64 architectures were cross-
compiled using arm-linux-gnueabi-gcc (version 5.4) and aarch64-linux-gnu-gcc (ver-
sion 5.4) and also emulated using QEMU (version 2.12.1) and HQEMU (version 2.5.2).
Finally, the native binaries (the ones not emulated), are referenced during the result sec-
tion as nat-aarch64 for AArch64 system and nat-x86-64 for the x86-64 system. All
implementations were compiled with the O3 optimization set.

3.1.1 Algorithm implementations

In order to perform the desired experiments in a valid manner, we select 12 routines that
are widely used in cryptographic constructions. These are described below.

String Comparison

This is a simple byte-to-byte string comparison given two 128-bit strings as input.
The non constant-time implementation used is the C’s library function memcmp, as

showed in Listing 2.1, that performs an early-termination when the first different byte is
1Read timestamp counter (rdtsc)

37

encountered. The constant-time version uses logical XOR and OR operations, walking
trough the entire string, as showed in Listing 2.2.

Conditional Selection

Given two input variables and a bit flag, the conditional selection routine selects between
the two inputs depending on the value of the flag bit.

The first version is the same showed on Listing 2.4, which is equivalent to a selection
using the ternary C’s operator. The compiled binaries for this version were generated using
conditional movement instructions for all used architectures and did not present side-
channels on their native execution, being considered constant-time. The second version
changes the type of the Boolean variable bit to an integer type (also in ct_select_u32
functions on Listing 2.4), preventing the compiler to optimize the same to conditional
instructions and generating bitwise and arithmetic instructions instead, in a constant-
time version.

In this particular case, two equivalent constant-time implementations were used, but
with different Assembly code (one uses conditional codes and the another one not).

mbedTLS Get Zeros Padding

The get_zeros_padding is a function extracted from mbedTLS library [64], a well-known
TLS/SSL library implemented in C and designed to fit on small embedded devices. The
function takes a buffer of secret data, whose length is public, and computes the number
of elements in the buffer before the all 0x00 suffix.

The first tested version is the original mbedTLS implementation, showed in Listing 3.1.
This version scans the input buffer from the tail end until it finds the first non-zero
element, exposing the padding length trough timing channels. To safely express memory
access computations the mbedTLS developers rewrote the buggy function to iterate over
all elements of the buffer, showed in Listing 3.2. This is the second version that we tested,
as a constant-time approach from the previous one.

1 static int get_zeros_padding(unsigned char *input , size_t input_len ,
size_t *data_len) {

2 unsigned char *p = input + input_len - 1;
3 ...
4 while(*p == 0x00 && p > input)
5 --p;
6

7 *data_len = *p == 0x00 ? 0 : p - input + 1;
8 return 0;
9 }

Listing 3.1: Non constant-time padding length function.

1 static int get_zeros_padding(unsigned char *input , size_t input_len ,
size_t *data_len) {

2 ...
3 for(i = input_len; i > 0; i--) {
4 prev_done = done;

38

5 done |= (input[i-1] != 0);
6 *data_len |= i * (done != prev_done);
7 }
8 return 0;
9 }

Listing 3.2: Constant-time get_zeros_padding function.

BigDigits Compare

BigDigits [65] is an open-source multi-precision arithmetic library that implements com-
mon functionalities including some cryptographic routines and constant-time operations.
The big integer structure is also designed using a byte pointer, a variable storing signal
and another storing the size.

The routine mpCompare compares two given big integer numbers returning a value
for the relation -1, 0 and 1, for less than, equals and greater than, respectively. The
comparison executes in a byte-to-byte fashion, similar to the memset function, in non
constant-time, leaking information through timing channels. The equivalent constant-
time routine mpCompare_ct is showed in Listing 3.3, which traverses the entire digit
and uses a mask to detect inequalities. The binary is often generated using conditional
instructions for the comparisons in the lines 6-8 of Listing 3.3.

1 /** Returns sign of (a - b) as 0, +1 or -1 (constant -time) */
2 int mpCompare_ct(const DIGIT_T a[], const DIGIT_T b[], size_t ndigits) {
3 /* All these vars are either 0 or 1 */
4 unsigned int gt = 0, lt = 0, c, mask = 1; /* Set to zero once first

inequality found */
5 while (ndigits --) {
6 gt |= (a[ndigits] > b[ndigits]) & mask;
7 lt |= (a[ndigits] < b[ndigits]) & mask;
8 c = (gt | lt);
9 mask &= (c-1); /* Unchanged if c==0 or mask==0, else mask=0 */

10 }
11

12 return (int)gt - (int)lt; /* EQ=0 GT=+1 LT=-1 */
13 }

Listing 3.3: Constant-Time mpCompare_ct function.

AES

The Advanced Encryption Standard [47] (AES) is a widely used symmetric-key cipher
based on the substitution–permutation network principle [48] in which data is encrypted
in blocks of 128 bits.

A non constant-time version of AES consists in a tabled implementation, that performs
S-Box look-ups depending on a secret value. As shown in Section 2.2, this implementation
leaks its behaviour trough timing due to different cache-performance.

A constant-time implementation is obtained trough a bitsliced version, which removes
S-boxes and their respectively look-ups.

39

Curve25519

Elliptic curve cryptography (ECC) is based on a generalized discrete logarithm problem
and is widely used for key exchange and digital signatures. Compared to other public-
key schemes, ECC provides the same security level as other discrete logarithm systems
over a prime field, but with shorter operands [66]. Curve25519 [67] was proposed by
Bernstein and is commonly used for the computation of a secret key with the Elliptic
Curve Diffie-Hellmann protocol. The equation of the elliptic curve is given by y2 =

x3 + 486662x2 + x over the prime field (with the prime p = 2255 − 19). The curve was
designed to be resistant to side-channel attacks, avoiding all input-dependent branches,
all input-dependent array indices, and other instructions with input-dependent timings.
For scalar multiplication, Curve25519 uses a specific implementation of the Montgomery
ladder allowing the execution of the exact same instructions whether the key bit value is
0 or 1.

Despite the aforementioned efforts to make it constant-time, Kauffmann et. al. [68]
showed that a dependence of the computation time on the input value can be revealed
by comparing the timings obtained by computing multiple times the scalar multiplication
with the same key and with different keys. The timing leakage comes from a run-time
library routine: llmul, which performs the multiplication of two 64-bit integers. A timing
difference is introduced when the 32 most significant bits of both operands of the multi-
plication are all zero. For the non constant-time application, we tested the Curve25519
with a similar run-time library multiplication code, that imposes an early exit when both
operands are zero.

3.1.2 Test Parameters

The execution time is measured in cycles which could lead to huge variation in the tests.
By running several experiments we realized that the number of samples needed to perform
the Welch t-test on Virtual Machines is higher than the native execution. In Multi-
threaded DBT engines, the execution time for simple measurements could also be somehow
affect by the JIT Compiler. To mitigate this problem, we perform a warm-up phase
on the DBT engines, aiming to generate all needed JIT code, before we start to take
measurements.

For the tested algorithms we used different values for N based on their execution time
and leakage detection speed. The values used are displayed in Table 3.1.

3.2 Experimental Results

The Tables 3.2 to 3.9 exhibit the output values of the leakage detection test on the
presented emulators and architectures.

Concerning with the emulation, in HQEMU we performed the experiments using Basic
Block RFT (which performs a directly block translation from QEMU TCG to LLVM IR,
from every QEMU translation block), NET RFT and NETPlus-E-R RFT. Tables 3.2,
3.4, 3.6, and 3.8 show the leakage results when executing the algorithms on the Intel(R)

40

Algorithm Samples Per Test (N)
Memcmp 100000
Const. String Cmp. 100000
Conditional Select 10000
Bool. Cond. Select 10000
GetZerosPad 100000
GetZerosPad (const) 100000
BigDig Cmp 100000
BigDig Cmp(const) 100000
AES32 500000
AES bitsliced 500000
Curve25519 8000
Curve25519 (const) 8000

Table 3.1: Number of samples used for each algorithm to perform the Welch t-test.

Core(TM) i7-7700 system (host) with QEMU and HQEMU, using NETPlus-E-R, NET
and block selection mode respectively. Tables 3.3, 3.5, 3.7, and 3.9 present the leakage
results when executing the algorithms on the AArch64 system (host) with QEMU and
HQEMU, using NETPlus-E-R, NET and block selection mode, respectively.

Lines of the table represent the execution of the given algorithm implementation and
the columns represent the guest architecture. The results are interpreted categorically,
therefore "LEAK" fields shows that the null-hyphothesis was rejected and "CONST" fields
shows the opposite. Also, the second and third columns, which are replicated along all
tables, stands for the results of the test running natively, without emulation. The 32-
bit native executions were omitted, because they offers the same results as 64-bit native
executions. The next Section discusses these results.

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST LEAK CONST CONST CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST LEAK CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST LEAK CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.2: QEMU leakage results on Intel System.

41

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST LEAK CONST CONST CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST LEAK CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST LEAK CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.3: QEMU leakage results on AArch64 System.

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.4: HQEMU leakage results on Intel System Using Block Translation (Basic Block
RFT).

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.5: HQEMU leakage results on AArch64 System Using Block Translation (Basic
Block RFT).

42

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.6: HQEMU leakage results on Intel System Using NET RFT.

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.7: HQEMU leakage results on AArch64 System Using NET RFT.

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.8: HQEMU leakage results on Intel System Using NETPlus-E-R RFT.

43

Algorithm Nat-aarch64 Nat-x86-64 ARM32 aarch64 x86 x86-64
Memcmp LEAK LEAK LEAK LEAK LEAK LEAK
Const. String Cmp. CONST CONST CONST CONST CONST CONST
Conditional Select CONST CONST CONST CONST CONST CONST
Bool. Cond. Select CONST CONST CONST CONST LEAK CONST
GetZerosPad LEAK LEAK LEAK LEAK LEAK LEAK
GetZerosPad (const) CONST CONST CONST CONST CONST CONST
BigDig Cmp LEAK LEAK LEAK LEAK LEAK LEAK
BigDig Cmp(const) CONST CONST CONST CONST CONST CONST
AES32 LEAK LEAK LEAK LEAK LEAK LEAK
AES bitsliced CONST CONST CONST CONST CONST CONST
Curve25519 bad LEAK LEAK LEAK LEAK LEAK LEAK
Curve25519 CONST CONST CONST CONST CONST CONST

Table 3.9: HQEMU leakage results on AArch64 System Using NETPlus-E-R RFT.

3.3 Discussion

We executed our leakage detection model natively (not emulating) on both systems. These
executions showed a well-defined behaviour regarding to the leakage detection. Constant-
time algorithm implementations don’t reject the null-hypothesis (having the t-value below
4.0) while non constant-time implementations do the opposite, exhibiting a significant
timing difference and validating the correctness of the used model during a emulation.
This is showed in the Tables, on the second and third columns.

Concerning the leakage during emulation, we verified that the emulator performs a
high-quality translation preserving the major algorithm characteristics (in regarding of
timing channels) for most part of the algorithms, behaving as expected for the most
part of the algorithms. We also noted that non constant-time applications always leaks
faster on native execution than emulated one, i.e. it needs less samples to reject the null-
hypothesis. This is expected since emulated algorithms have a higher execution time and
variation due to handling emulation mechanisms, such as State Mapping, block transition
and IBTC, leading to a necessity of more samples for the statistical test. Although the
presence of a leakage is not sufficient condition to carry out an attack, it is a necessary
condition and then, we also verify its feasibility on emulated code.

The results show that some implementations behave differently (the yellow ones in the
Tables) than the native execution when they are emulated, as the case of the emulating
ARM32 Boolean Conditional Selection in QEMU, listed in Tables 3.2 and 3.3. In fact,
some DBTs emulation mechanisms can compromise constant-time implementations ex-
posing significant vulnerabilities on translated code. In the rest of the section, we analyse
these results and discuss the dynamic binary constructions used in the emulators that
compromises the constant-time property. Afterwards, we discuss the solutions for these
issues.

44

3.3.1 The Boolean Conditional Selection Case

QEMU DBT

The Boolean Conditional Selection code uses conditional instructions to perform the se-
lection to execute in constant-time in most of modern processors. Our results verify this
property in native executions. However, the emulation of the same code with QEMU
presents a significant time variation when emulating code compiled for the ARM32 ar-
chitecture, showed in Tables 3.2 and 3.3. By further investigating, we discovered that
the leakage comes from the way that QEMU translates conditional codes from ARM32
architecture.

The 32-bit ARM architecture takes a great advantage of conditional codes and its
present in almost all instructions. To assure a simple and portable translator for ARM32,
QEMU transforms instructions conditional codes (from guest code) into forward jumps (in
its intermediate representation) to the next instruction, that is performed after evaluating
the corresponding flags. This introduces a measurable and significant timing behaviour.

The translation for this algorithm is illustrated on Figure 3.1. The native ARM32
binary uses a move on equal instruction (moveq) to select between the two incoming pa-
rameter values, which comes in r0 and r1 registers depending on the value of r2. This
original branchless version results in a straightforward Control-Flow Graph, showed as
a single basic block in leftmost part of the Figure. Then, the QEMU front-end disas-
sembles the block and maps each instruction to a corresponding set of TCG Operations
(which composes QEMU Intermediate Representation), as showed in the middle block of
Figure 3.1 (after TCG IR optimizations). The conditional movement instruction, moveq,
is translated to a set of instructions, including a branch instruction (brcond_i32 TCG
opcode) to skip the computation if the condition code is evaluated to false. Finally, the
QEMU back-end performs the code generation to the host architecture, which simply
maps each of the TCG Opcode to a corresponding set guest instructions directly. The
QEMU TCG Opcode brcond_i32 and its condition code is directly mapped to a con-
ditional jump instruction in both x86-64 and AArch64 back-ends implementations. The
translation results in the CFGs displayed by rightmost blocks of the Figure 3.1, for x86-64
host (above) and AArch64 (below) and the red blocks (and arrows) represent the basic
blocks inserted in the host generated code to handle the condition part.

Due to the instruction’s conditional codes, both translations (to x86-64 and to AArch64)
end up with a different CFG from the original, compromising its constant-time property.
The inserted branches cause a timing leakage on the implementation which is quickly
verified by the detection model, with about 890000 samples for x86-64 system (giving a
t-value of 4.15) and about 940000 samples (giving a t-value of 4.07) for AArch64 system.
By exploiting this timing leakage, that consists in a branch depending on a secret value,
an attacker could determine which of the elements was indeed selected, compromising
applications that depend on the constant-time swap.

45

cmp	r2,	#0
moveq	r0,	r1

bx	lr

==	Entry	Code	==

mov_i32	NF,	r2
mov_i32	ZF,	NF

movi_i32	CF,	$0x1
movi_i32	VF,	$0x0

movi_i32	tmp5,	$0x0
brcond_i32	ZF,	tmp5,	ne,	$L1

mov_i32	r0,	r1
set_label	$L1

...
==	Exit	Code	==

==	Entry	Code	==

...
test	%ebp,%ebp	;	ZF==0?

jne	<moveq_false>	;
moveq

mov	0x4(%r14),%ebp
mov	%ebp,(%r14)

moveq_false:
mov	0x38(%r14),%ebp

mov	%ebp,%ebx
...

==	Exit	Code	==

True Part:
mov r1 to r0

Skip
mov

==	Entry	Code	==

...
cbnz	w20,	#+0xc

ldr	w20,	[x19,	#4]
str	w20,	[x19]

ldr	w20,	[x19,	#56]
...

==	Exit	Code	==

True Part:
mov r1 to r0

Skip
mov

AArch64

x8
6-
64

Figure 3.1: Boolean Conditional Select Code Generation in QEMU DBT.

HQEMU DBT

HQEMU generates code using LLVM. To achieve this, it selects the hot blocks using
NETPlus-E-R RFT and converts the QEMU intermediate language to LLVM IR. When
converting the QEMU Translation Block code to LLVM IR, the branch introduced in
QEMU with the brcond_i32 from the condition flags is also converted to a branch in-
struction in LLVM IR. However, after LLVM optimization passes (such as SimplifyCFG
pass, that aims to remove branches, i.e. PHI nodes from LLVM IR) the forward branch is
simplified and reduced to a predicated LLVM select instruction since the same can have
several advantages. The LLVM IR select instruction is used to choose one value based
on a condition, without branching. The most common way to implement predicative
instructions is to have an arithmetic and/or data access operations followed by a select
instruction.

Besides the select instruction being able to be translated to a host’s conditional
instruction (predicated instructions), it also has the advantage of being easier to vectorize
(in fact, one of the usual phases of vectorization is the if-conversion pass, the process of

46

converting control-flow dependencies, a conditional branch, to data-flow dependencies, a
select). In this way, the ARM32 conditional instructions for this implementation are also
translated to a predicated instruction for the host system and no timing leakages were
found, as shown in Table 3.5.

However, the LLVM select instruction does not always get translated (lowered) to
host’s predicated instructions and so it cannot rely in the same to generate codes without
side-channels. Similarly to QEMU, HQEMU also leads to a timing leakage as shown in
Table 3.4, however, differently from QEMU, the leakage occurs when translating from
the x86 architecture. as illustrated in Figure3.2. The x86 cmovne conditional instruction
in the guest block (showed in the leftmost part of the Figure 3.2) is disassembled and
mapped to a conditional TCG Opcode (movcond_i32) that is posteriorly mapped to the
LLVM select instruction.

The translation from architectures with different bit widths (e.g. 32-bit to 64-bit)
usually requires an address space translation for memory accesses. Since HQEMU is a
process running under a operating system, it has his own virtual memory. When the guest
code must perform a memory access, QEMU/HQEMU translates Guest Address (that is
address used in the guest binary) to his Host Physical Address (HPA). When generating
code, QEMU usually sets up the initial page from his data HPA in the segment register
(gs, in Intel Processors) and accesses are done with this displacement. For LLVM to
perform the address calculation and a memory access to store the desired result may be
costly using predicated instruction. Thus, LLVM selects a different set of instructions and
a forward branch is inserted, as showed in the rightmost part of the Figure3.2 for x86-64
(above) and AArch64 (below). Thus, as QEMU, HQEMU also compromises the CFG
by inserting a significant timing leakage through branches. This leakage can be quickly
verified by the detection model, with about 20000 samples, 445x less samples than the
leakage on QEMU emulating ARM32.

Also, by using different RFTs to select code, we noted that all of them presented
the same leakage point as using NETPlus-E-R, as shown in Tables 3.6, 3.7, 3.8 and 3.9.
Consequently all of them showed to be executed in a non constant-time. Thus, even
generating larger regions rather than translating basic blocks, LLVM optimizations and
transformations still opt to translate the select instruction into a forward branch.

47

Figure 3.2: Boolean Conditional Select Code Generation in HQEMU DBT (with
NETPlus-E-R).

3.3.2 The mbedTLS get_zeros_padding Case

The constant-time version of the mbedTLS function called get_zeros_padding also pre-
sented a significant timing leak on QEMU translating from ARM32, as indicated in Ta-
bles 3.2 and 3.3. The major problem also comes from the translation of instructions with
conditional codes, similarly to the Boolean conditional select case. In this case however,
the ARM32 binary is generated containing two conditional instructions with contrast-
ing conditions: moveq and orrne, showed on Figure 3.3 in the leftmost part. Also, the
two conditional operations depends on the status flags generated by the same compare
instruction.

The QEMU’s ARM32 front-end generates branches for each conditional instruction
on the guest binary, even if subsequent instructions share the same conditional code.
Because of the two previously instructions, QEMU generates a slightly different CFG for
the translated code regarding the original ARM32 binary CFG, compromising it (showed
Figure 3.3 in the rightmost part). This case may be a little worse than the other since two
branches that operate with secret values are inserted on the translated code, both x86-64
and AArch64 hosts. This demonstrates that the leakages are inserted in a instruction
granularity, that is, for each conditional instruction a branch depending on a secret value
is inserted and, hence an attacker could exploit the secret-material resulting after each
conditional operations with suitable pos-processing analysis. By exploring this timing
leakage, the number of zeros in the pad could be inferred.

Using the leakage test in QEMU, this leakage was detected with about 960000 samples,
with a t-value of 4.02, on Intel and 820000 samples, with a t-value of 4.09.

48

Figure 3.3: Get Zeros Padding Code Generation in QEMU DBT.

3.3.3 The BigDigits Compare Case

The BigDigits Compare implementation also uses conditional instructions in its constant-
time implementation. Similarly to the previous cases, it also presents a timing leakage,
that is inserted by emulating condition codes in QEMU, as shown in Tables 3.2 and 3.3.

The comparison algorithm is generated with 4 conditional operations on ARM32:
movcs, movls, andcc, and andhi, as showed in the leftmost part of Figure 3.4. The
QEMU TCG then disassembles the block and maps the conditional instructions to 4
branch instructions (brcond_i32) in the QEMU intermediate language (Figure 3.4 in
the middle). The arrows from brcond_i32 instructions in TCG IR denotes the skipped
conditional instruction – forward branch). All the TCG branch instructions are translated
to conditional branches on generated code. The compromised CFG for the translated
code is showed in the rightmost part of Figure 3.4, for both x86-64 (above) and AArch64
(below) host architectures. This leakage causes a severe impact on the execution time.
Indeed, this leakage is detected with about 450000 samples in the Intel system (with a
t-value of 4.38) and about 580000 samples in the AArch64 system (with a t-value of 4.27).

49

...
cmp r5, r2
movhs r2, #0
movls r5, #0

andlo r2, r3, #1
andhi r5, r3, #1

...

...
movi_i32 tmp5,$0x0

brcond_i32 CF,tmp5,eq,$L1
...

set_label $L1
...

brcond_i32
tmp5,tmp6,ne,$L2

...
set_label $L2

...
brcond_i32 CF,tmp5,ne,$L3

...
set_label $L3

...
brcond_i32

tmp5,tmp6,eq,$L4
...

set_label $L4
...

x86
-64

aarch64

...

...

Guest block

Conversion to
TCG IR

== Entry Code ==

...
cbz <L1> ; movhs

movhs code

L1:
...
cbnz <L2> ; movls

movls code

L2:
...
cbnz <L3> ; andlo

andlo code

L3:
...
cbz <L4> ; andhi

andhi code

L4:
...
== EXIT CODE ==

== Entry Code ==

...
je <L1> ; movhs

movhs code

L1:
...
jne <L2> ; movls

movls code

L2:
...
jne <L3> ; andlo

andlo code

L3:
...
je <L4> ; andhi

andhi code

L4:
...
== EXIT CODE ==

Figure 3.4: Constant-time BigDigits Comparison Code Generation in QEMU DBT.

3.3.4 Other cases

By observing the results, we note that all RFTs behave identically. See the Boolean
Conditional Select Case (x86) for instance, even forming different regions, LLVM still
optimizes the LLVM select instruction by lowering to a conditional branch in both
architectures: x86-64 and AArch64. In fact, LLVM select instruction can always be
lowered to a conditional branch, but LLVM aims to generate a code where branches
are executed unconditionally, and all the parameters used in the branches are assigned

50

conditionally, since it doesn’t suffer for branch mis-prediction penalty. Thus, LLVM tries
to lower the select instruction to a conditional movement instruction on the host code,
when:

• Overall cycles needed to execute all the operations of all the branches must be less
than the overall possible branch misprediction penalty.

• All the conditions must use the result of a single Assembly comparison operation,
or at least two conditions must use the result of an Assembly comparison operation.

LLVM offers no restrictions on the exact number of parameters of the operations
within the branches. Although the number of general-purpose registers is restricted,
memory variables can also be used, as the penalty of the memory access is insignificant
when compared to the penalty of a single mis-prediction. In this way, we cannot expect
LLVM to generate a constant-time code for implementations that results in a LLVM
select instruction.

The QEMU TCG instead, provides the movcond_i32 operation in its intermediate
language. By examining the QEMU back-ends and our experiments, we noted that this
operation is always lowered to conditional (predicated) instructions on the investigated
host platforms, due the QEMU simplicity and the lack of analysis which could determine
whether movcond_i32 is better translated to a branch or not.

3.4 Counter-measure

In order to assure a constant-time execution, there are approaches to remove or mitigate
the aforementioned problems. Molnar et al. [69] first introduce methods for detecting
control-flow side channel attacks. They model control-flow side channels with a program
counter transcript in which the value of the program counter at each step is leaked to an
adversary. The proposal rely on hardware to guarantee a one-to-one mapping between
the flow of control in a program’s execution and all observable behavior, and to rely
on source-to-source software transformations to remove any control-flow dependency on
cryptographic keys. If control flow is made independent of a key, and if the observable
behavior only depends on control flow (i.e. on the trace of program counter values, but
not on the values being computed during the program execution), no information about
the key can be derived through side channels. Nonetheless, Coppens et al. [44] expose
some flaws in the source-to-source transformation approach proposed, since it doesn’t
handle conditional function calls, and conditional loads or stores

Latter, Cleemput et al. [21] studied some of counter-measures approaches based on
compiler transformations and their effectiveness on x86 processors. However, most of
their approaches affect the overall performance by more than 8-fold. In their posterior
study [1], the authors extended the enforcement of invariable latency paths with a profile-
based JIT protection by applying a selective if-conversion2 and transformations to regions
with leakages.

2If-conversion is a transformation which converts control dependencies into data dependencies, i.e.
tries to convert conditional branches into predicated instructions.

51

None of these works studied and analyzed the potential for multiple-target DBT to
change the leakage from a program, adding or removing it, during emulation of a binary.
Nonetheless these counter-measures can be ported to a DBT scenario. Since Dynamic
Binary Translators such as QEMU introduces a branch that depends on a secret-value,
when emulating the status Flags, it can be mitigated stripping the branch out.

3.4.1 QEMU

On QEMU, the brcond_i32 operation in its intermediate representation is always trans-
lated to a host branch instructions. The simplest way to eliminate the forward branch
generated from a guest’s conditional instruction, is transforming the brcond_i32 to a
movcond_i32 operation. The movcond_i32 operation, conditionally select a desired value
depending on a predicated value (flags, in this case) and is always translated to a con-
ditional instruction on the host platforms (for the four investigated architectures). Since
the QEMU already generates the code to be used when the evaluation is true, the result
of the same can be saved to a QEMU temporary and, latter can be selected by generating
the movcond_i32 operation, in QEMU front-end. The value of the temporary is selected
if the desired condition is true or it just discard otherwise, maintaining the older value.

We implemented this transformation in the QEMU ARM front-end, in the function
disas_arm_insn3, which is responsible to disassembles the guest basic block and to maps
it to the corresponding QEMU TCG operations. The results of the transformation are
displayed in Table 3.10. The table is similar to the another ones, but we filtered only the
algorithms which QEMU inserts a timing side-channel for the ARM32 guest. The x86-64
and AArch64 showed in the table are the host architectures, used for translating from the
ARM32 guest. The yellow columns (columns 2 and 4 of the table) stands for the results
before applying the transformation (labeled as “no transform”) to generate code for x86-64
and AArch64 systems and the green ones (columns 3 and 5) stands for the results after
applying the aforementioned transformation, also in both systems.

Algorithm
x86-64
(no transform)

x86-64
(w/ transform)

AArch64
(no transform)

AArch64
(w/ transform)

Bool. Cond. Select LEAK CONST LEAK CONST
GetZerosPad (const) LEAK CONST LEAK CONST
BigDig Cmp(const) LEAK CONST LEAK CONST

Table 3.10: Counter-measure transformation applied on QEMU translating from ARM32.

It is possible to see that the transformation removes the timing leakage points in-
serted by the QEMU translator. By stripping out the brcond_i32 and replacing to a
movcond_i32 all the tested algorithms remained with their t-test values below 4, denot-
ing a constant-time execution. By using the movcond_i32 operation, branches that were
inserted to skip the conditional instructions when the flags are evaluated to false were all
translated to predicated instructions on the host platforms and presented a constant-time
execution.

3https://github.com/qemu/qemu/blob/master/target/arm/translate.c#L9168

https://github.com/qemu/qemu/blob/master/target/arm/translate.c##L9168

52

3.4.2 HQEMU

In the LLVM, however, we cannot rely on the select instruction for its intermediate
language, since it’s not always lowered to a conditional instruction on the host system.
Also, using the movcond_i32 instruction from the QEMU intermediate representation
does not resolve the problem, since the same gets translated by HQEMU to a select
instruction in the LLVM IR. Instead, LLVM provides an if-conversion transformation Pass,
that performs the if-conversion efficiently, converting conditional branches to conditional
instructions (predicated instructions). As this Pass is architecture-dependent, this must
be attached to a Machine Function Pass, and cannot operate on LLVM IR directly. This
means that changes in LLVM back-ends must be performed and compiled.

3.5 Summary

Chapter 3 explored some timing side-channels presented in Section 2.2 in a cross-ISA
DBT scenario, which has slight different challenges on the translation mechanism than
High Level Languages Virtual Machines. Using a statistical method as a black-box evalu-
ator to detect such leakages, we demonstrated that Dynamic Binary Translators can insert
timing channels on cryptographic implementations compromising the constant-time prop-
erty. We exposed the timing channels on two widely known DBTs: QEMU and HQEMU
and investigated the root cause of the problem, which comes when translating condition
codes from ARM32 guest binaries. Finally, we developed a solution for the aforemen-
tioned problem and mitigate the timing channels introduced in QEMU DBT, restoring
the constant-time property of the application.

53

Chapter 4

Conclusions

Timing side-channel attacks are an important issue for cryptographic algorithms. If the
execution time of an implementation depends on secret information, an adversary may
recover the latter through measuring the former. Different approaches have emerged
recently to exploit information leakage on cryptographic implementations and to protect
them against these attacks. However, little has been said about Cross-ISA emulation and
its impact on timing attacks.

In this work, we analyzed the impact of Cross-ISA emulating a binary with and without
timing leakage using QEMU and HQEMU, two popular multiple-target dynamic binary
translators. Differently from High Level Languages Virtual Machines, Dynamic Binary
Translators also address different challenges as Complex Instruction Set Emulation, which
can lead to different emulation mechanisms. By using valid statistical methods to evaluate
timing leakages we asserted the feasibility of timing side-channels in dynamic generated
code.

In summary, the results show that dynamic binary translators maintain the constant-
time property in several implementations and also, leak information through timing-
channels when emulating non constant-time implementations. However, translating con-
ditional instructions may lead to a break in the constant-time property. Even if condi-
tional instructions assures a constant-time execution in modern systems, dynamic binary
translators such as QEMU, may modify the Control Flow Graph from a binary, inserting
non constant-time constructions, compromising the aforementioned property. This leak-
age compromises several constant-time implementations, including cryptographic codes
used in popular known libraries, such as mbedTLS, and can be verified with about 20000
samples of execution times. We investigated these issues, showed the root cause and im-
plemented a counter-measure that mitigate the same. The compiler transformation im-
plemented is similar to the if-conversion transformation and was also successfully demon-
strated in other works which aims to mitigate timing side-channels [1, 18, 21] due its
efficiency. For this work, the transformation was able to convert branches controlled with
secret data to conditional instructions on the host platform, mitigating the timing chan-
nels inserted by the emulation mechanisms and maintaining the constant-time property
of the application.

Although side-channel analysis was also performed in High Level Languages Just-in-
Time scenarios [1, 44], this is the first work of its kind in analyzing a multiple-target

54

dynamic binary translator impact on side-channel leakage. Cross-ISA emulation diverges
from HLL emulation because imposes other challenges on the translation system such as:
instruction discovery during indirect jumps, status register emulation, precise exceptions,
among others. Given the growing importance of emulators in an internet of things (IOT),
fog and cloud computing world with multiple Instruction Set Architectures, this problem
will become even more important.

55

Bibliography

[1] J. Van Cleemput, B. De Sutter, and K. De Bosschere, “Adaptive compiler strategies
for mitigating timing side channel attacks,” IEEE Transactions on Dependable and
Secure Computing, 2017.

[2] S. C. John Renner and D. Stefan, “Constant-time webassembly,” Technical Report,
2018.

[3] O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing attack on
the aes,” in Cryptographers’ Track at the RSA Conference, pp. 271–286, Springer,
2007.

[4] M. Neve, J.-P. Seifert, and Z. Wang, “A refined look at bernstein’s aes side-channel
analysis,” in Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, pp. 369–369, ACM, 2006.

[5] D. J. Bernstein, “Cache-timing attacks on aes,” Technical Report, 2005.

[6] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems,” in Annual International Cryptology Conference, pp. 104–113,
Springer, 1996.

[7] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual International
Cryptology Conference, pp. 388–397, Springer, 1999.

[8] S. Mangard, “A simple power-analysis (spa) attack on implementations of the aes
key expansion,” in International Conference on Information Security and Cryptology,
pp. 343–358, Springer, 2002.

[9] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3 cache
side-channel attack.,” in USENIX Security Symposium, vol. 1, pp. 22–25, 2014.

[10] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi, “Software grand exposure: Sgx cache attacks are practical,” arXiv preprint
arXiv:1702.07521, p. 33, 2017.

[11] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S $ a: A shared cache attack that works
across cores and defies vm sandboxing–and its application to aes,” in Security and
Privacy (SP), 2015 IEEE Symposium on, pp. 591–604, IEEE, 2015.

56

[12] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a fast, cross-vm
attack on aes,” in International Workshop on Recent Advances in Intrusion Detection,
pp. 299–319, Springer, 2014.

[13] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of simple branch prediction
analysis,” in Proceedings of the 2nd ACM symposium on Information, computer and
communications security, pp. 312–320, ACM, 2007.

[14] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via branch pre-
diction,” in Cryptographers’ Track at the RSA Conference, pp. 225–242, Springer,
2007.

[15] Y.-J. Kang, N. Bruce, S. Park, and H. Lee, “A study on information security attack
based side-channel attacks,” in ICACT, pp. 61–65, IEEE, 2016.

[16] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and limits of remote
timing attacks,” ACM Transactions on Information and System Security (TISSEC),
vol. 12, no. 3, p. 17, 2009.

[17] E. Käsper and P. Schwabe, “Faster and timing-attack resistant aes-gcm,” in Crypto-
graphic Hardware and Embedded Systems-CHES 2009, pp. 1–17, Springer, 2009.

[18] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala, and D. Ste-
fan, “Fact: A flexible, constant-time programming language,” in 2017 IEEE Cyber-
security Development (SecDev), pp. 69–76, IEEE, 2017.

[19] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting cache
side-channel attacks through dynamic software diversity.,” in NDSS, pp. 8–11, 2015.

[20] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level protection
against cache-based side channel attacks in the cloud.,” in USENIX Security sympo-
sium, pp. 189–204, 2012.

[21] J. V. Cleemput, B. Coppens, and B. De Sutter, “Compiler mitigations for time attacks
on modern x86 processors,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 8, no. 4, p. 23, 2012.

[22] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code constant time?,”
in 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1697–1702, IEEE, 2017.

[23] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying
constant-time implementations.,” in USENIX Security Symposium, pp. 53–70, 2016.

[24] O. O. Napoli, V. M. do Rosario, D. F. Aranha, and E. Borin, “Evaluation of timing
side-channel leakage on a multiple-target dynamic binary translator,” 2018.

[25] J. Smith and R. Nair, Virtual machines: versatile platforms for systems and pro-
cesses. Elsevier, 2005.

57

[26] T. Brennan, N. Rosner, and T. Bultan, “Jit leaks: Inducing timing side channels
through just-in-time compilation,”

[27] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M. Wang, and
Y.-C. Chung, “Hqemu: a multi-threaded and retargetable dynamic binary translator
on multicores,” in CGO, pp. 104–113, ACM, 2012.

[28] F. Bellard, “Qemu, a fast and portable dynamic translator.,” in USENIX Annual
Technical Conference, FREENIX Track, vol. 41, p. 46, 2005.

[29] K. P. Lawton, “Bochs: A portable pc emulator for unix/x,” Linux Journal, vol. 1996,
no. 29es, p. 7, 1996.

[30] K. Woods and G. Brown, “Assisted emulation for legacy executables.,” IJDC, vol. 5,
no. 1, pp. 160–171, 2010.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[32] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchitectural simu-
lator,” in Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on, pp. 23–34, IEEE, 2007.

[33] S. Bansal and A. Aiken, “Binary translation using peephole superoptimizers,” in
Proceedings of the 8th USENIX conference on Operating systems design and imple-
mentation, pp. 177–192, USENIX Association, 2008.

[34] I. Böhm, T. J. Edler von Koch, S. C. Kyle, B. Franke, and N. Topham, “General-
ized just-in-time trace compilation using a parallel task farm in a dynamic binary
translator,” in ACM SIGPLAN Notices, vol. 46, pp. 74–85, ACM, 2011.

[35] E. Duesterwald and V. Bala, “Software profiling for hot path prediction: Less is
more,” ACM SIGOPS, vol. 34, no. 5, pp. 202–211, 2000.

[36] C. Wang, B. Zheng, H.-S. Kim, M. Breternitz Jr, and Y. Wu, “Two-pass mret trace
selection for dynamic optimization,” Apr. 6 2010. US Patent 7,694,281.

[37] D. Davis and K. Hazelwood, “Improving region selection through loop completion,”
in ASPLOS, vol. 4, pp. 7–3, 2011.

[38] H. Hayashizaki, P. Wu, H. Inoue, M. J. Serrano, and T. Nakatani, “Improving the per-
formance of trace-based systems by false loop filtering,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 1, pp. 405–418, 2011.

[39] R. Hookway, “Digital fx! 32: Running 32-bit x86 applications on alpha nt,” in com-
pcon, p. 37, IEEE, 1997.

58

[40] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson, “The transmeta code morphing/spl trade/software: using speculation,
recovery, and adaptive retranslation to address real-life challenges,” in Code Gener-
ation and Optimization, 2003. CGO 2003. International Symposium on, pp. 15–24,
IEEE, 2003.

[41] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in European
Symposium on Research in Computer Security, pp. 355–371, Springer, 2011.

[42] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[43] A. Antyipin, A. Góbi, and T. Kozsik, “Low level conditional move optimization,”
Acta Cybernetica, vol. 21, no. 1, pp. 5–20, 2013.

[44] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter, “Practical mitiga-
tions for timing-based side-channel attacks on modern x86 processors,” in Security
and Privacy, 2009 30th IEEE Symposium on, pp. 45–60, IEEE, 2009.

[45] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels through
obfuscated execution.,” in USENIX Security Symposium, pp. 431–446, 2015.

[46] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of product
ciphers,” in European Symposium on Research in Computer Security, pp. 97–110,
Springer, 1998.

[47] T. Jamil, “The rijndael algorithm,” IEEE potentials, vol. 23, no. 2, pp. 36–38, 2004.

[48] F. Ayoub, “The design of complete encryption networks using cryptographically
equivalent permutations,” Computers & Security, vol. 2, no. 3, pp. 261–267, 1983.

[49] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pp. 201–215,
Springer, 2006.

[50] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Security and Privacy (SP), 2015 IEEE Symposium on,
pp. 605–622, IEEE, 2015.

[51] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side channels and
their use to extract private keys,” in Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 305–316, ACM, 2012.

[52] E. Biham, “A fast new des implementation in software,” in International Workshop
on Fast Software Encryption, pp. 260–272, Springer, 1997.

[53] D. Page, “Defending against cache-based side-channel attacks,” Information Security
Technical Report, vol. 8, no. 1, pp. 30–44, 2003.

59

[54] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting covert timing
channels,” TDSC, vol. 8, no. 6, pp. 785–797, 2011.

[55] J. Chen and G. Venkataramani, “An algorithm for detecting contention-based covert
timing channels on shared hardware,” in HASP, p. 1, ACM, 2014.

[56] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, T. Kouzmi-
nov, A. Leiserson, M. Marson, P. Rohatgi, et al., “Test vector leakage assessment
(tvla) methodology in practice,” in International Cryptographic Module Conference,
vol. 1001, p. 13, 2013.

[57] B. L. Welch, “The generalization of student’s’ problem when several different popu-
lation variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947.

[58] F.-X. Standaert, “How (not) to use welch’s t-test in side-channel security evalua-
tions.,” IACR Cryptology ePrint Archive, vol. 2017, p. 138, 2017.

[59] T. Sakai, “Two sample t-tests for ir evaluation: Student or welch?,” in Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 1045–1048, ACM, 2016.

[60] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-channel leaks
using program repair,” in Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pp. 15–26, ACM, 2018.

[61] C. Sung, B. Paulsen, and C. Wang, “Canal: A cache timing analysis framework via
llvm transformation,” arXiv preprint arXiv:1807.03329, 2018.

[62] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution for detecting
concurrency-related cache timing leaks,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pp. 377–388, ACM, 2018.

[63] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy in the
sandbox: Practical cache attacks in javascript and their implications,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 1406–1418, ACM, 2015.

[64] A. Holdings, “Arm mbedtls.”

[65] D. Ireland, “Bigdigits multiple-precision arithmetic source code,” 2016.

[66] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and prac-
titioners. Springer Science & Business Media, 2009.

[67] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in International
Workshop on Public Key Cryptography, pp. 207–228, Springer, 2006.

60

[68] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas, “When constant-time source
yields variable-time binary: Exploiting curve25519-donna built with msvc 2015,” in
International Conference on Cryptology and Network Security, pp. 573–582, Springer,
2016.

[69] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program counter secu-
rity model: Automatic detection and removal of control-flow side channel attacks,”
in International Conference on Information Security and Cryptology, pp. 156–168,
Springer, 2005.

	Introduction
	Contributions
	Organization

	Background
	Virtual Machines
	Region Formation Techniques (RFTs)
	Dynamic Binary Translators

	Side-Channel Information
	Control-Flow Constructions
	Table lookups indexed by secret data
	Variable-latency instructions

	Timing Leakage Detection Model
	The Dudect Timing Leakage Detection Model

	Summary

	Timing Analysis on Dynamic Binary Translators
	Materials and Methods
	Algorithm implementations
	Test Parameters

	Experimental Results
	Discussion
	The Boolean Conditional Selection Case
	The mbedTLS get_zeros_padding Case
	The BigDigits Compare Case
	Other cases

	Counter-measure
	QEMU
	HQEMU

	Summary

	Conclusions
	Bibliography

