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Resumo

Jogos hedônicos são jogos de formação de coalizão nos quais os agentes apenas se importam
ou são influenciados pelos agentes na mesma coalizão que eles estão. Os agentes podem formar
qualquer coalizão que eles queiram e cada agente tem um perfil de preferência, uma ordem
fraca sobre o conjunto de coalizões que o contém indicando sua preferência. Um jogo hedônico
é definido por um conjunto de agentes e seus perfis de preferência. Classicamente, o resultado
de tais jogos é uma partição do conjunto de agentes.

Nesta dissertação, nós revisamos alguns resultados da literatura a respeito da existência de
resultados Nash estáveis, do preço da anarquia e estabilidade, da existência de partições no
núcleo e da complexidade de computar um resultado que está no núcleo.

Estudamos o modelo de jogos hedônicos que permite a formação de coalizões com sobrepo-
sição. Esta extensão permite a representação de vários cenários como interações sociais, grupos
de trabalhos e formação de redes. Nós apresentamos um modelo para jogos fracionários com
sobreposição de coalizões e mostramos que o núcleo não é vazio para jogos representados por
circuitos, caminhos e grafos bipartidos com emparelhamento perfeito. Nós também apresenta-
mos um modelo para jogos hedônicos aditivamente separáveis com sobreposição de coalizões.
Mais ainda, mostramos que, para jogos hedônicos aditivamente separáveis simétricos com so-
breposição de coalizões, o bem-estar social de qualquer estrutura de coalizão é no máximo o
bem-estar social ótimo da versão do jogo sem sobreposição de coalizões.



Abstract

Hedonic games are coalition formation games where the agents only care or are influenced
by agents in the same coalition as they are. Agents may form any coalition they want, and
every agent has a preference profile, a weak ordering on the set of coalitions that contains it. A
hedonic game is defined by a set of agents and their profile preferences.

Classically, the outcome of such games is a partition of the agent set. We review some
literature results regarding the existence of Nash stable outcomes, the price of anarchy and
stability, the existence of core stable partitions, and the complexity to compute a Core stable
outcome.

We extend the hedonic games model by allowing the formation of overlapping coalitions.
This extension permits the representation of many scenarios by hedonic games, such as social
interactions, working groups, and network formation. We give a model for fractional hedonic
games with overlapping coalitions and we show that the core is not empty for games repre-
sented by cycles, paths, and bipartite graphs with perfect matching. We also give a model for
additively separable hedonic games with overlapping coalitions. Moreover, we show that for
symmetric additively separable hedonic games with overlapping coalitions, the social welfare
of any coalition structure is at most the optimal social welfare of the game version without
overlapping coalitions.
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Chapter 1

Introduction

Morgenstern and Von Neumann founded the field of game theory by publishing the book Theory
of Games and Economic Behavior [22]. According to Tardos and Vazirani [30], “game theory
aims to model situations in which participants interact or affect each other’s outcomes”. We call
these participants agents or players. Agents are considered to be self-interested, and they want
to maximize their own gain. Sometimes they can cooperate if this helps them to achieve a better
result. The actions that an agent can do are called strategies. John Nash was one of the first
mathematicians to win the Nobel prize for his work with game theory. He defined a concept
of stability that is achieved when every agent cannot improve her gain, if she, acting alone,
changes her strategy. He also gave sufficient conditions for a game to achieve such stability.

In many scenarios, it is common to have people joining together to achieve shared and non-
shared goals. For example, imagine four people that are going from a place to another. Instead
of each one using her own car and paying for the costs alone, they can use only one car and
share the costs. A union is another example of people acting together. This way they have more
power to negotiate with the employer since the union is more powerful than any individual
worker. As a team, they may achieve goals that otherwise would be difficult to accomplish.
We call a group formed to achieve some objective a coalition. This concept is usual in politics,
where politicians with similar ideology (or goals) group themselves in parties so they can have
more power and influence. Another example is social life, where people arrange themselves
into friendship groups considering similarities and other criteria that lead them to appreciate
each other. Morgenstern and von Neumann analyzed coalition formation games in their work
Theory of Games and Economic Behaviour [22].

Since different coalitions may arise, agents may prefer some over others. The preference
of an agent over the coalitions that she can form with other agents can influence the way these
coalitions are formed, as well as the satisfaction of the agents involved in each of these coali-
tions.

An agent has a hedonic preference if she only cares about the agents in her coalition. She
does not care or is not influenced by the composition of the other coalitions. The word hedonic
comes from Greek hēdonikós and stands for pleasurable [1]. Hedonic formation games were
first considered by Dreze and Grenberg [16]. Since then, many works were published analyzing
the stability and optimality of this class of games. Different types of hedonic games are obtained
considering different possibilities of agents preferences. The simplicity and representativity of
hedonic games facilitate their application in many scenarios such as games in wireless networks,
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Figure 1.1: Example of a graphical hedonic game.

social networks and team formation [27, 13, 25].
An outcome of a hedonic game is a set of coalitions, which is called a coalition structure.

A coalition structure for classical hedonic games is a partition of the agent set. In this work,
we analyze coalition structures where overlapping coalitions are allowed, that is the outcome is
not a partition of the agent set. An agent is called deviant if she changes her current coalition
for another. A coalition structure is considered stable if one or more agents do not have an
incentive to deviate from their current coalitions. The meaning of incentive to deviate depends
on the concept of stability. Since agents may cooperate to deviate as a group, stability concepts
that capture this behavior are interesting to be considered. One of the most important concepts
of stability for coalition formation games is the core [10]. A coalition structure is in the core
if there is no group of agents that strictly prefer a new coalition that could be formed by their
deviation. Unfortunately, in many classes of hedonic games, the core can be empty. In the
literature, there exist many other concepts of stability for hedonic games. See [12, Chapter 15]
for a survey.

Graphical hedonic games are those where agents preferences can be represented as a graph.
In Figure 1.1 we have an example of a graphical hedonic game where the vertices represent
the agents and an arc weight represents how much an agent values another. In this work, we
analyze two classes of graphical hedonic games: fractional hedonic games (FHG) and additive
separable hedonic games (ASHG). Figure 1.1 can represent both an FHG and an ASHG.

Fractional hedonic games can be represented as a direct graph where an arc between two
agents represents the hedonic relation among them. The weight of each arc, if there is one,
accounts for how much an agent appreciate the other. The total satisfaction of an agent partici-
pating in a coalition is the sum of appreciation the agent has for all others in the same coalition
divided by the coalition size, that is, the average appreciation of its neighbors. A fractional
hedonic game is simple if the edge weights are either 0 or 1, and symmetric if the hedonic
relation among the agents is symmetrical. For simple symmetric fractional hedonic games in-
duced by graphs of maximum degree at most 2, forests, k-partite complete graphs and graphs
with girth at least 5, Aziz et al. [7] proved that the core is not empty. They also showed that
for general fractional hedonic games, the core can be empty. Brandl et al. [11] gave an in-
stance of a simple symmetric fractional hedonic game with an empty core. Brandl et al. [11]
also showed that deciding if a symmetric fractional hedonic game has a non-empty core is
NP-hard. Results regarding other stability concepts such as Nash Stability can be found in the
literature [11, 8, 20, 9].



13

Additively separable hedonic games is another widely studied class of such games. This
class is similar to the fractional hedonic, except that the satisfaction of an agent is the sum of
appreciation the agent has for the others in the same coalition. The representation of ASHGs
is similar to FHG. Aziz, Brandt, and Seedig [4] gave an example of symmetric ASHG with an
empty core and they proved that even with symmetric preferences, checking the emptiness of
the core is NP-hard. Other results regarding the existence of stable outcomes and the complexity
to compute such results can be found in the literature [10, 29, 28, 4, 15].

As Aziz and Savani [12, Chapter 15] said, in many realistic scenarios agents may be part of
more than one coalition. For example, an agent may be part of different teams to complete a set
of tasks. So, given that the agent has a finite amount of time available, she could divide her time
between different coalitions. Chalkiadakis et al. [14] give an example of a game of overlapping
team formation where agents have resources they have to invest together with other agents in
tasks to complete them, sharing the gain. Other interesting scenarios are social networks, where
it is usual for a person to be part of many friendship groups. In order to understand how these
groups are formed and what structures emerge, it is necessary to model situations where agents
can participate in multiple coalitions and develop new theoretical results for this model. Thus,
the objective of this work is to extend hedonic games by allowing agents to form overlapping
coalitions and to analyze properties of the games with such an extension.

The rest of the text is organized as follows. In Chapter 2, basic concepts of game theory,
social choice theory, coalition formation games, and overlapping coalition formation games are
defined. These concepts are relevant to understanding the rest of the text. In Chapter 3 we
present results regarding the stability of fractional hedonic games. In Chapter 4 fractional hedo-
nic games with overlapping coalitions are defined. We also give a definition for the core of such
games and we present some game classes for which the core is non-empty. Chapter 5 presents
results regarding the stability of additionally separable hedonic games and defines additionally
separable hedonic games with overlapping coalitions. Finally, Chapter 6 concludes the text by
presenting possible lines of research that can be followed for the study of hedonic games.
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Chapter 2

Preliminaries

In this chapter, we present basic definitions of game theory, computational social choice, and
coalition formation games.

2.1 Game Theory

We give an example of a situation that can be modeled as a game and we use this example to
explain the definitions related to game theory, such as agents (players), strategies, utility, and
stability.

Imagine that countries have agreed that pollution is causing damage to the lives of their
citizens, provoking climate change, and producing economic impacts. Each country can take
actions to reduce pollution, investing in new energy sources, regularizing production sectors or
in some other way. However, a country may consider that the costs of reducing pollution cannot
be borne by its population, or that it will hurt trade and may choose not to reduce pollution. As
the world is very integrated, if a country continues to pollute, it ends up influencing the other
countries, so that if a country is not polluting, it still has to pay the cost of pollution caused by
polluting countries. Let us say that the cost of one country to reduce the pollution is 3 and the
cost it suffers per each other polluting country is 1. Let n be the number of countries and k be
the number of polluting countries, thus the cost for a non-polluting country is 3 + k, and the
cost for a polluting country is k.

Observe that if a country wants to reduce its cost, it must choose to pollute. But, if every
country chooses to pollute, then the cost for every country is n. And if all of them choose not
to pollute, they all would have cost 3. Later on, we will analyze the situation where no country
chooses to pollute.

Definition 2.1. Let N = {1, 2, . . . , n} be a set of agents (players). Each agent i has a set of
possibles strategies Si. We denote the strategy vector by s = (s1, s2, . . . , sn), where si ∈ Si
is the strategy chosen by agent i. We use S = ×i∈NSi to denote the set of possible strategy
vectors that can be picked by the agents. Each agent has a utility function ui : S → R that maps
a strategy vector to a real value. We denote by u = {u1, . . . , un} the set of utility functions. A
game G is a triple (N , S, u). We assume that agents want to maximize their utility.

In our example, the agents are the countries and the set of possible strategies for each country
is pollute and not pollute. As the objective of an agent is to maximize her utility, in our example,
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Boy

Girl
A B

A
6

5

1

1

B
2

2

5

6

Table 2.1: Matrix representation of the battle of the sexes.

we model the utility function as follows, where for a given strategy vector s, ks is the number
of countries that choose to pollute:

ui(s) =

{
−(k + 3), if i chooses to not pollute

−ks, otherwise.

Sometimes when the utility is negative, we call it cost, and we denote by ci = −(ui) the cost
of agent i. When we are dealing with cost functions, the objective of an agent is to minimize the
cost. For a given strategy vector s and an agent i, we denote the strategies picked by all agents,
except i, by s−i, that is, s−i = (s1, s2, . . . , si−1, si+1, . . . , sn). For convenience, sometimes we
denote ui(s) as ui(si, s−i).

For an agent i, a strategy si is said to be dominant if, given that the other agents are playing
s−i, any other strategy in Si cannot give a better utility for i than si does.

Definition 2.2. For an agent i, a strategy si ∈ Si is a dominant strategy if, for every s′ ∈ S, it
holds that

ui(si, s
′
−i) ≥ ui(s

′
i, s
′
−i).

A strategy vector s is a dominant strategy solution if, for each player i, si is a dominant strategy.

Not all games have a single dominant strategy solution, and requiring a game to have one
is a stringent demand [30]. Our pollution game has a single dominant strategy solution, which
is every player pollutes. Observe that a dominant strategy solution does not guarantee optimal
utility for the players, that is the best utility that a player can get. This is the case in our game.
The best utility for each player is achieved when they all choose not to pollute.

Now we give an example of a game without a dominant strategy solution. Consider two
friends (a boy and a girl) who want to go to the movies and have to decide which movie they are
going to watch. The boy prefers movie A and the girl prefers movie B. Both prefer to watch
the same movie than to see different ones. Table 2.1 shows the utility for the boy and for the
girl for every movie choice they make. In the literature, this game is commonly called the battle
of the sexes. Note that the best strategy for an agent of this game depends on the strategy that
the other agent chooses, so this game has no dominant strategy solution.

Given that games rarely have a dominant strategy solution, we need another solution concept
less stringent. Nash [23] introduced a concept of stability that captures the idea that an agent
cannot improve her utility by herself by changing her strategy. If a strategy vector has this
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property, then it is said to be a Nash equilibrium.

Definition 2.3. A strategy vector s is a Nash equilibrium if, for each player i and each alternate
strategy s′i, we have that

ui(si, s−i) ≥ ui(s
′
i, s−i).

In our pollution game, if every country chooses to pollute, then the utility of every agent i
is −n. If an agent j chooses not-pollute, she would have utility −3− (n− 1), and therefore,
she would not improve her utility. Hence, when every player chooses to pollute, we have a Nash
equilibrium (the only one this game has). Observe that a dominant strategy solution is always a
Nash equilibrium.

A game may have none or more that one Nash equilibrium and an agent may have different
utility values for each of them. Because of this, we do not know which equilibrium will emerge.
In the battle of the sexes, when the boy and the girl choose to see the same movie, this is a Nash
equilibrium. We then have two different stable results.

The Nash equilibrium defined above is called pure strategy equilibrium, where an agent de-
terministically chooses her strategy. But, we can consider the case where the agent chooses her
strategy at random. For this, each agent i has a probability distribution over her strategy set Si.

Definition 2.4. For an agent i, a mixed strategy σi is a probability distribution over Si. A mixed
strategy vector is denoted by σ = (σi)i∈N . For convenience, σ−i denotes the strategy vector of
every agent except i.

Given that a mixed strategy is a probability distribution, we have that the expected utility of
an agent is given as

E[ui(σ)] =
∑
s∈S

ui(s)Pσ(s),

where Pσ(s) =
∏

j σj(sj). For convenience, we also denote E[ui(σ)] as E[ui(σi, σ−i)]. Observe
that a pure strategy is a mixed strategy with probability 1 for some strategy. We assume that the
agents are risk neutral, acting only to maximize their expected utility.

A mixed strategy σi is a best response for σ−i if, for every alternate mixed strategy σ′, we
have that

E[ui(σi, σ−i)] ≥ E[ui(σ
′
i, σ−i)].

Definition 2.5. A mixed strategy vector σ is a mixed Nash equilibrium if for every i, σi is a best
response for σ−i.

Nash [23] showed that for a finite game with a finite set of strategies, a mixed Nash equilib-
rium always exists. This is one of the most import results in game theory. The proof is based
on the Brouwer’s theorem which states that for a unit ball B ⊂ Rn, for any continuous func-
tion f : B → B, there is a point x0 for which f(x0) = x0. The point x0 is called a fixed point.
The proof consists in constructing a function f from the space of n-tuples that contains σ to
itself where the fixed points of f are the mixed Nash equilibria.
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2.2 Computational Social Choice

The field of social choice theory is interested in studying mechanisms of aggregation of in-
dividual preferences in a collective choice, which includes developing and analyzing voting
rules [12]. An example of a social choice mechanism is the Brazilian presidential election.
Each Brazilian citizen has a preference over the candidates who are running for the election.
Then the citizen informs his preference by voting on one of the candidates (observe that a voter
can vote for a candidate which is not whom she prefers the most). The mechanism then chooses
the candidate who received the greatest number of valid votes. That is, the Brazilian election
aggregate the preferences of the citizens by choosing a candidate to be president.

Let C = {1, . . . , n} be a set of individuals (agents), and let A be a finite set of alternatives.
The set of all weak orders % on A, binary relations that are complete and transitive, is denoted
by R(A), and the set of all linear orders � on A, binary relations that are total orders, is
denoted by L(A). A preference profile �i of an individual i is a preference linear order of i
on A. Observe that ties are allowed in weak orders, but they are not allowed in linear orders.
A social welfare function receives a sequence of preference profiles P = (�1, . . . ,�n), one
for each individual, and maps it to a single preference order, that is, a social welfare function
aggregates the preferences of individuals in a single order that represents the preference of
society.

Definition 2.6. A social welfare function (SWF) is a function of the form f : L(A)n → R(A).
We refer to the outcome f(�1, . . . ,�n) of a SWF f as social preference order.

Ties are allowed in social preference orders, but the preference profiles in the input are
expected to be strict. In a SWF f representing the Brazilian presidential election, f aggregates
voter preferences in a social preference order in which the first choice is the candidate who
received the most votes.

Arrow [2] determined that a reasonable SWF must have at least two properties: to be weakly
Paretian and independent of irrelevant alternatives. A SWF f is weakly Paretian if all individ-
uals have the same preference between two alternatives a, b ∈ A, then, f ranks a and b accor-
dantly to this preference.

Definition 2.7. A social welfare function f is weakly Paretian if for all profile prefer-
ence P = (�1, . . . ,�n) and for all i ∈ N , a �i b, then a � b where %= f(�1, . . . ,�n).

A SWF f is independent of irrelevant alternatives if, for any two alternatives a, b ∈ A, the
rank of a with respect to b given by f takes into consideration just how individuals ranked a in
respect to b, without considering any other alternative c.

Definition 2.8. Let P = (%1, . . . ,%n) and P ′ = (%′1, . . . ,%
′
n) be sequences of preference pro-

files. A social welfare function f is independent of irrelevant alternatives if for every P and P ′

and for all a, b ∈ A, we have that if a �i b ⇐⇒ a �′i b for all i, then a % b ⇐⇒ a %′ b
where %= f(P ) and %′= f(P ′).

Imagine the following situation of social choice. An entity is conducting an election to
choose the greatest villain of all time. The alternatives are Voldemort (v), Sauron (s), Palpa-
tine (p), and Big Jim (b). Each individual should inform a strict preference order on the alter-
natives. The SWF f ranks alternatives by the number of times it appeared at the top of some
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individual’s order of preference. We show that f is not independent of irrelevant alternatives.
Preference profiles are given as follows:

�1=p � b � v � s,

�2=p � b � s � v,

�3=v � b � s � p,

�4=v � b � p � s.

By the definition of f , the social preference order %= f(�1, . . . ,�n) ranks the alternatives
in the following way: v % p � b % s. If agent 2 changes her preference profile to

%′2= b � p � s � v,

the social preference order would be v � b % p � s. However, the preference between p and v
did not change for all agents. Hence, f is not independent of irrelevant alternatives. Note that
the Brazilian election for president is similar to f .

The above example illustrates that it is not easy for a social welfare function to be weakly
Paretian and independent of irrelevant alternatives. A dictatorship has these properties. In a
dictatorship, one of the preference profiles of the individuals is chosen by f to represent the
social preference order.

Definition 2.9. A social welfare function f is a dictatorship if there is an individual i ∈ N such
that if a �i b then a � b under %= f(�1, . . . ,�n), for any a, b ∈ A.

In fact, Arrow [2] has shown that if the size of the set of alternatives is at least 3, any
social welfare function f that is weakly Paretian and independent of irrelevant alternatives is a
dictatorship.

Theorem 2.10 (Arrow [2]). For a set of alternatives A with |A| ≥ 3, every SWF that is weakly
Paretian and independent of irrelevant alternatives must be a dictatorship.

Arrow’s theorem is considered to be the birth of the modern theory of social choice, with
the following works focusing mainly on axiomatic and normative aspects of voting rules [12].
However, these studies neglected the computational complexity to calculate the result of these
voting rules. The practical acceptability of a voting rule or a fair allocation mechanism should
take into account not only its fairness but also the amount of time to compute a result [12].
Computer science can then make a relevant contribution to the field of social choice.

David Gale and Lloyd Shapley started the stable matching theory [18], which studies how
agents from different sets can be matched taking into account the agents preferences. An ex-
ample of a situation studied by the matching theory is the problem of assigning students to
universities, first defined by Gale and Shapley [18].

Let S = {s1, . . . sn} be a set of students and U = {u1, . . . , um} be a set of universities. Each
university ui has a capacity ci, which is the number of students that it can accept. LetE ⊆ S × U
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be the set of acceptable pairs. Each student si ∈ S has an acceptable universities set given by

A(si) = {uj ∈ U : (si, uj) ∈ E},

and si also has a linear preference order on A(si) denoted by �si . Each university uj ∈ U has
an acceptable students set given by

A(uj) = {si ∈ S : (si, uj) ∈ E},

and uj also has a strict preference order on A(uj) denoted by�uj . An assignment M is a subset
of E. For a pair (si, uj) ∈M , we say that si is assigned to uj and that uj is assigned to si.
The set of assignees for each ak ∈ S ∪ U is denoted by M(ak). A student si is unassigned
if M(si) = ∅. A university uj is undersubscribed if |M(uj)| < cj and it is full if |M(uj)| = cj .
An assignment M is a matching if for ever si ∈ S and every uj ∈ U , it holds that |M(si)| ≤ 1

and |M(uj)| ≤ cj .

Definition 2.11 (Gale and Shapley [18]). An assignment M of students to universities is unsta-
ble if there exist a pair (si, uj) ∈ E \M such that si is unassigned or prefers uj to a member
of M(si), and uj is undersubscribed or prefers si to at least one member of M(uj).

Gale and Shapley [18] showed that a stable matching always exists and proposed an efficient
(polynomial) algorithm to compute such an assignment. The algorithm proposed by them is
used in many scenarios such as matching doctors and hospitals, students and universities, and
housing allocation.

The housing allocation problem consists of a set of applicants who have strict preference
orders in relation to a set of houses, and we have to allocate houses to applicants. This problem
differs from stable matching problem because houses do not have preference orders on the
applicants. Formally, let C = {c1, . . . , cn} be a set of applicants and H = {h1, . . . , hm} be
a set of houses. Let E ⊆ C ×H be the set of acceptable pairs. Each applicant ci ∈ C has
an acceptable houses set given by A(ci) = {hj ∈ H : (ci, hj) ∈ E}, and ci also has a strict
preference order on A(ci) denoted by �ci . Each house hj ∈ H has an acceptable applicants
set given by A(hj) = {ci ∈ C : (ci, hj) ∈ E}. An assignment M is a subset of E. For an
pair (ci, hj) ∈M , we say that ci is assigned to hj and that hj is assigned to ci. The set of
assignees for each pk ∈ C ∪H is denoted by M(pk). An assignment M is a matching if for
every ci ∈ C and hj ∈ H , |M(ci)| ≤ 1 and |M(hj)| ≤ 1. For convenience, we denote the house
assigned to an applicant ci by M(ci), and the applicant assigned to a house hj by M(hj) if M
is a matching.

The house marketing problem is a specific case of the housing allocation problem where the
number of applicants equals the number of houses. Let M and M ′ be matchings for a house
marketing problem. We say that M ′ blocks M with respect to a subset S ⊆ C of applicants if:

• it holds that {M(ci) : ci ∈ S} = {M ′(ci) : ci ∈ S}, that is, the members of S can only
exchange houses between them;

• for every ci ∈ S, M ′(ci) %ci M(ci);

• there exists at least one ck ∈ S, for which M ′(ck) �ck M(ck).
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The members of S only can exchange houses between themselves, every member of S must be
assigned to a house that she prefers at most as she prefers her old one, and there must exist a
member of S that is assigned to a house that she prefers more than she prefers her old one.

We refer to S as a coalition, and we say that S is a blocking coalition if M ′ blocks M with
respect to S.

Definition 2.12. A matching M is in the core if M admits no blocking coalition.

Shapley and Scarf [26] showed that the core of house-marketing problems is not empty by
constructing a matching that is in the core using David Gale’s algorithm called Top Trading
Cycle. Given an initial matching, the algorithm consists of constructing a directed graph as
follows: the vertices are the applicants, and there is an arc from i to j if the most preferred
house of i is assigned to j. Since there is at least one cycle (note that a vertex can be the tail and
the head of the same arc), the algorithm executes the exchanges within each cycle and removes
these agents. In the sequence, it repeats the process over the directed graph with the remaining
applicants. The algorithm stops when there are no more applicants.

2.3 Coalition Formation Games

In the book Theory of Games and Economic Behavior [22], von Neumann and Morgenstern
analyzed a class of games that models situations where individuals join themselves in coalitions
through the framework of n-person games with transferable utility (TU games). A TU game
has a set of n agents and a characteristic function that maps each possible coalition to the value
that their members can achieve by acting together. This value can be transferred between the
coalition’s members without loss.

Definition 2.13. A TU game is a tuple (N , v) where N = {1, 2, . . . , n} is a set of agents
and v : 2N → R is a characteristic function, mapping every coalition C ⊆ N to a value v(C)

representing the total utility thatC can achieve if its members cooperate. By convention v(∅) = 0.
Coalition C = N is called the grand coalition.

Early work with TU games supposed that the function v was superadditive, that is, the sum
of the value of two coalitions is at most the value of the union of this two coalitions. With such
property, it is expected that the grand coalition N emerge as the outcome. Therefore, studies
focused on how to distribute the gain of the grand coalition [19]. However, many scenarios
are not superadditive. For instance, political parties. As a political party gets larger, the more
difficult it is to find an agreement. Hence, subgroups tend to emerge.

The assumption that utility can be freely transferred depends on a commodity whose value
is proportional to its quantity and does not depend on any other factor [19]. Moreover, each
agent may have a different utility for the commodity distributed by the coalition. In this way, it
might be better to represent a coalition by a vector that determines the utility of each agent for
this coalition, rather than simply giving it a unique value. We have then the non-transferable
utility games.

Definition 2.14 (Hajduková [19]). A non-transferable utility game (NTU game) is a tu-
ple (N , V ) where N = {1, 2, . . . , n} is a set of agents and V is a utility map that assigns to
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every coalition S ⊆ N a subset V (S) of RS such that V satisfies the following conditions for
all S 6= ∅:

1. V (S) is a nonempty, closed, and convex subset of RS ,

2. V (S) is comprehensive, that is, if x ∈ V (S) and y ≤ x, then y ∈ V (S),

3. V (S) ∩ RS
+ is bounded.

Condition 2 states that if a coalition S can achieve a payoff vector x, it can achieve a
smaller payoff vector y, and condition 3 limits the payoff that a coalition can achieve. Ob-
serve that a non-transferable utility game can represent a transferable utility game by defin-
ing V (S) = {x ∈ RS :

∑
i∈S xi ≤ v(S)} for all S ⊆ N , with S 6= ∅. Hence, NTU games are a

generalization of TU games.
It is not always possible to determine the value of a coalition for an agent. For example,

when people are dividing themselves into work groups, it is difficult to determine a value for
each group (coalition) or utility vectors for each person. In that case, the benefit to the person
is to be part of the coalition. However, a person may prefer one group to another, which will
determine which group she will try to be a part of. In a coalition formation game, each agent
has a preference order over all possible coalitions she can join. This behavior is captured by
the concept of profile preference of an agent, which is a weak ordering of coalitions containing
such an agent. Observe that the number of possible coalitions that can be formed is exponential
in the number of agents.

Definition 2.15. LetN = {1, 2, . . . , n} be the set of agents and Ci ⊆ 2N be the set of all possi-
ble coalitions that contain i for i ∈ N . The set of all possible coalitions is denoted by C = 2N . A
profile preference %i is a weak ordering over Ci. For anyC,D ∈ Ci,C �i D denotes that agent i
strictly prefers coalition C over coalition D, C ∼i D denotes that i is indifferent between coali-
tions C and D, and C %i D denotes that i weakly prefers coalition C over D, that is C �i D
or C ∼i D. For an agent i, we say that a coalition C ∈ Ci is unacceptable if {i} �i C, that is, i
prefers being alone than being part of C.

A coalition structure is a partition of N and represents a possible way the agents could
organize themselves, and it is said to be stable if the agents have no incentive to deviate from
their current coalitions [12]. Later, we present some stability concepts studied in the literature.

Definition 2.16. For a set N of agents, a coalition structure π is a partition of N where π(i)

denotes the coalition of agent i ∈ N .

When we assume that the preference order is over the coalitions instead of over the coalition
structures (an agent only care about her coalition and it is not affected by how others coalitions
are organized), the game has hedonic profile preferences. The hedonic aspect was introduced
by Dreze and Greenberg [16]. If a coalition formation game has hedonic preferences, it is said
to be a hedonic game.

Definition 2.17. LetN be a finite set of agents and let %= {%1,%2, . . . ,%n} be a set of profile
preferences on coalitions where %i is the profile preference of agent i ∈ N . A hedonic game is
a tuple (N ,%) and an outcome of a hedonic game is a coalition structure π.
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Figure 2.1: Examples of fractional hedonic games.

One must note that the representation of a hedonic game may be very large because of the
size of their profile preferences. Some alternative representations have been proposed in the
literature, see [12] for a survey of some of those representations.

2.3.1 Fractional Hedonic Games

Aziz et al. [7] proposed a class of hedonic games where the utility of an agent for a coalition
she is part of is the average of the value she gives for the agents in the coalition. An agent
values herself with 0. A fractional hedonic game can be represented by a directed graph as we
can see in Figure 2.1a. A vertex represents an agent and an arc weight represents how much
the agent in the arc’s tail values the agent in the arc’s head. In the game in Figure 2.1a, every
agent values the agent that comes after (clockwise direction) more than she values the agent
that comes before, and she pretty much dislikes everyone else.

Now, we define formally this class of games. Let N be a set of agents, a coalition C is a
subset of N , and a coalition structure π is a partition of N . For any agent i ∈ N , we use π(i)

to denote the coalition of agent i in π.

Definition 2.18. For each i ∈ N , let ui : N → R be a valuation function that denotes how
much agent i values each other agent j ∈ N . We define that ui(i) = 0. Given a coalition C,
the utility of agent i is defined as ui(C) =

∑
j∈C ui(j)

|C| . We use ui(π) as a shorthand for ui(π(i)).
A Fractional Hedonic Game is defined as a pair G = (N , u). The outcome of G is a coalition
structure π.

In a fractional hedonic game G, an agent i ∈ N weakly prefers coalition C to D if and
only if ui(C) ≥ ui(D), and i is indifferent between C and D if and only if ui(C) = ui(D). A
fractional hedonic game is said to be symmetric if for all i, j ∈ N , ui(j) = uj(i) and is simple
if for all i, j ∈ N , ui(j) ∈ {0, 1}.

Observe that a simple symmetric fractional hedonic game can be represented by a simple
graph. The vertices represent the agents and there is an edge between agent i and agent j if and
only if ui(j) = 1. We denote by G(G) the game represented by a graph G. For an agent i ∈ N ,
we denote by N(i) the set of neighbors of i. For convenience, we can restrict the neighborhood
of i to a subset S of N , then NS(i) denotes the neighborhood of i in S.
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Fractional hedonic games are a useful tool to model scenarios where large coalitions tend to
become unstable, that is, large coalitions tend to divide in small ones. For instance, in a large
political party, it might be difficult to achieve a consensus. Thus this political party might split.
That is, the cost to add someone in the coalition might not be justified by the value this person
brings to the coalition. See the game in Figure 2.1b. In a coalition with agents 1, 2, and 3, each
one of them has utility 12

3
. If agent 4 would join this coalition the utility of 1, 2, and 3 would

decrease, in spite of they valuing agent 4 positively.

Solution Concepts

In the literature, there exist many concepts of stability for hedonic games. In this Section, we
review some of the most common solution concepts. We define solution concepts to fractional
hedonic games, but the definition for any class of hedonic games is similar.

The strongest concept of stability is the perfect coalition structure where every agent does
not want to leave her current coalition because there exists no other possible coalition that she
strictly prefers. If a coalition structure has this property, then it is also stable for any other
solution concept presented in this section [3]. Although a perfect structure would be a very
good outcome of a hedonic game, it is uncommon for a game to have this property.

Definition 2.19 (Aziz, Brandt, and Harrenstein [5]). A coalition structure π is perfect if for
each agent i ∈ N , there exists no C ∈ Ci such that ui(C) > ui(π).

The game in Figure 2.1b is an example of a game that admits no perfect coalition structure.
The coalition that agent 1 prefers the most is {1, 2, 3}, and the coalition that agent 4 prefers the
most is {1, 2, 3, 4}. Since both agents cannot be in their most preferred coalition at the same
time, this game has no perfect coalition structure.

Since a perfect structure is not guaranteed to exist in a hedonic game, we should analyze the
existence of other stability concepts. One of them, individual rationality, guarantees that there
exists a coalition structure where each agent prefers the coalition she is now as much as staying
alone.

Definition 2.20 (Elkind and Wooldridge [17]). A coalition structure π is individually rational
if for each agent i ∈ N , we have that ui(π) ≥ ui({i}) = 0.

A very important and widely studied concept of stability is the Nash stability, where every
agent in the coalition structure has no incentive to deviate individually [10]. An agent may
deviate from her coalition to another that is more pleasurable, forming a new coalition structure.
The creation of a new coalition structure may incentive some other agents to deviate, changing,
this way, the organization of coalitions again. In a Nash stable coalition structure, this does not
happen.

Definition 2.21. A coalition structure π is Nash stable if for each agent i ∈ N and for
all C ∈ π ∪ {∅}, we have that ui(π) ≥ ui(C ∪ {i}).

This concept does not consider group deviations where more than one agent collaborates
to deviate together. For the game in Figure 2.1b, the grand coalition is Nash stable because
any agent of this game has positive utility for the grand coalition and utility 0 for being alone.
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Observe that Nash stability is similar to Nash equilibrium (Section 2.1) in the sense that, in both
solution concepts, an agent cannot improve her utility by acting alone.

The next concept also captures the idea of agents acting alone. In this case, the agent may
have an incentive to deviate, but if she does, then she will harm the agents in the new coalition.
The idea of this concept is that the agent which wants to deviate must be accepted by the
members of the coalition she intends to join. A coalition structure π is individually stable [10]
if no agent can move to another coalitionC ∈ π ∪ {∅}, without making at least one of the agents
in C worse off. Note that if this deviation could be performed without permission, the agents in
the new coalition could have an incentive to also deviate.

Definition 2.22. A coalition structure π is individually stable if for each agent i ∈ N , and for
any coalition C ∈ π ∪ {∅} such that ui(C ∪ {i}) > ui(π), there is at least one agent j ∈ C such
that uj(C) > uj(C ∪ {i}).

In the game in Figure 2.1b, the coalition structure {{4}, {1, 2, 3}} is not Nash stable be-
cause agent 4 has an incentive to join {1, 2, 3}. Nonetheless, it is individually stable because
agents 1, 2, and 3 will not allow a deviation that will make them worse off. And the three
of them are in the most preferred coalition, therefore, they do not want to leave it. In fact,
individually stability is a necessary condition for Nash stability but it is not a sufficient one.

Agents also may deviate as a group instead of individually, thus, stability concepts that
capture this behavior are interesting to be considered. One of the most important concepts of
stability for coalition formation games is the core [10]. A coalition structure is in the core if
there is no group of agents that strictly prefer a new coalition that could be formed by their
deviation.

Definition 2.23. A coalition C ⊆ N blocks a coalition structure π if for every i ∈ C, it holds
that ui(C) > ui(π). A coalition structure π is in the core if there is no coalition that blocks π.
A coalition structure π that is in the core is said to be core stable.

For instance, in the game in Figure 2.1b, the coalition structure {{1, 2, 3, 4}} is blocked by
coalition {1, 2, 3} because these agents prefer {1, 2, 3} instead of grand coalition. So they have
an incentive to deviate by forming this coalition and, thus, the coalition structure {{1, 2, 3, 4}}
is not in the core.

The Pareto optimality is another stability concept for group deviation. A coalition structure
is Pareto optimal [16] if there exists no coalition structure where every agent values at least as
much as her current coalition structure, and there is one agent that values strictly more than her
current coalition structure.

Definition 2.24. A coalition structure π is Pareto optimal if there is no coalition structure π′

such that for each agent i ∈ N ,
ui(π

′(i)) ≥ ui(π(i))

and at least for one agent j ∈ N ,

uj(π
′(j)) > uj(π(j)).

In Figure 2.1b, the coalition structure {{1, 2, 3}, {4}} is Pareto optimal because, in any
other coalition structure, 1, 2, 3 will be worse given that {1, 2, 3} is the coalition they prefer the
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Figure 2.2: The relation among the solution concepts. An arc indicates that a solution concept
implies the other. Source: Aziz and Brandl [3].

most and any coalition agent 4 wants to form has to be with at least one of them, but all of them
become worse off with agent 4.

A coalition structure π′ is reachable from another coalition π by the deviation of a group of
agents H if any two agents in N \H are in the same coalition in π′ only if they were in the
same coalition in π.

Definition 2.25 (Karakaya [21]). For a coalition structure π, another coalition structure π′ 6= π

is reachable from π by the deviation ofH ⊆ N , if for all i, j ∈ N \H , with i 6= j, π(i) = π(j)

if and only if π′(i) = π′(j).

The Nash stability concept has been extended to capture group deviations. If there exists no
structure π′ reachable from π such that every agent in the deviation group strictly prefers her
new coalition in π′, then π is strong Nash stable [21].

Definition 2.26. A non-empty subset of agentsH ⊆ N strongly Nash blocks π if there exists π′

reachable from π by the deviation of H such that for each i ∈ H , ui(π′) > ui(π). A structure π
is strong Nash stable if it is not strongly Nash blocked by any H ⊆ N .

Aziz and Brandl [3] analyzed the relation between these solution concepts, as shown in
Figure 2.2, and they analyzed the existence of some of them for some classes of hedonic games.
We refer to Bogomolnaia and Jackson [10] for more results regarding stability in hedonic games.

2.3.2 Additively Separable Hedonic Games

In an additively separable hedonic game [10], the preference of agents are denoted by a value
she has for every other agent. The utility of a coalition is the sum of the preferences an agent
has for the other agents in the same coalition.
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Definition 2.27. An Additively Separable Hedonic Game is a pair G = (N , u) such that for
each i ∈ N , ui : N → R is a valuation function that denotes how much agent i values all
other j ∈ N . We define that ui(i) = 0. Given a coalition C, the utility of agent i is given
as ui(C) =

∑
j∈C ui(j). Let u be a set of utility functions ui for each i ∈ N . An outcome of a

game G is a coalition structure π.

For all coalition S, T that contains i, it holds that S %i T ⇐⇒ ui(S) ≥ ui(T ). The social
welfare of a coalition C is given as SW (C) =

∑
j∈C uj(C). The social welfare of a coalition

structure π is given by
SW(π) =

∑
C∈π

SW (C).

An additively separable hedonic game is symmetric if ui(j) = uj(i) for every i, j ∈ N . The
solution concepts defined in Section 2.3.1 also apply to additively separable hedonic games.

2.4 Overlapping Coalition Formation Games

Although the models presented in Section 2.3 can model many situations, they fail to model
scenarios where an agent can be in more than one coalition. For instance, a country can be
part of different trade agreements. We can see each agreement as a coalition. Another scenario
is friendship groups, since a person can have a group of friends from work and a group from
where she lives. In order to provide a framework for analyzing scenarios where coalitions can
overlap, Chalkiadakis et al. [14] generalize the non-transferable utility games framework.

In their model, each agent has a limited amount of resource that she can split between the
coalitions she is part of. Thus, a coalition is a vector in which each dimension represents the
contribution of an agent. There is a characteristic function that maps to each coalition a value
that this coalition can achieve through the cooperation of its members.

Definition 2.28. Let N = {1, 2, . . . , n} be a set of agents. A (partial) coalition is given by
a vector r = (r1, . . . , rn) where ri is the fraction of resource that agent i contributed to this
coalition. If ri = 0, then agent i is not a member of r. The support of a coalition r is denoted
by supp(r) and is defined as {i ∈ N : ri > 0}. A characteristic function v : [0, 1]n → R assigns
to each coalition r ∈ [0, 1]n a real value. An overlapping coalition formation game (OCF) G is
a tuple (N , v).

Observe that a classic coalition C ⊆ N can be represented by a partial coalition r

where ri = 1 if i ∈ C and ri = 0 otherwise.
In a non-overlapping coalition setting, a coalition structure of a game is a partition of N .

For an OCF game, a coalition structure is a list of vectors (the coalitions).

Definition 2.29. For a set of agents T ⊆ N , a coalition structure on T is a list of vectors

πT = (r1, . . . , rk), for some k ∈ N∗,

that satisfies the following conditions:

• ri ∈ [0, 1]n,
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• supp(ri) ⊆ T for i = 1, 2, . . . , k,

•
∑k

i=1 r
i
j ≤ 1 for all j ∈ T .

We denote by |πT | = k the size of a coalition structure on T . The set of all possible coalition
structures on T is denoted by πT .

Observe that an agent is not required to allocate all of her resources. It can be the case
that

∑k
i=1 r

i
j < 1. Also observe that there can be infinitely many different coalitions and, there-

fore, infinitely many coalition structures. Thus, it is impossible to find the coalition structure
that maximizes the social welfare (the sum of the utilities of all agents) by enumerating all
coalition structures because a social welfare maximizing coalition structure might not even
exist. Then, we extend the definition of v to coalition structures as v(π) =

∑
r∈π v(r). Further-

more, for any subset S ⊆ N , we define v∗(S) = supπ∈πS v(π), that is, an upper bound on the
value that a subset S can achieve by forming a coalition structure. We say that v is bounded
if v∗(N ) <∞.

Associated with each coalition structure there is a list of vectors that determine how the
coalition gains will be divided among its members. This list is called imputation.

Definition 2.30. Given a coalition structure π on N , with |π| = k, an imputation for π is a k-
tuple x = (x1, x2, . . . , xk), where xi ∈ Rn for i = 1, . . . , k such that

• for every ri ∈ π,
∑n

j=1 x
i
j = v(ri) and if rij = 0 then xij = 0,

• (individual rationality) the utility of an agent j is at least as much as she can gain by
herself, that is,

∑k
i=1 x

i
j ≥ v∗({j}).

The set of all imputations for π is denoted by I(π).

Observe that an agent only have positive utility for a coalition that she is part of. This
prohibits the transfer of utility to outside the coalition.

An outcome of an OCF game is given by a coalition structure and an imputation.

Definition 2.31. A feasible agreement (outcome) for a set of agents S ⊆ N is a tuple (π, x)

such that π ∈ πS , |π| = k for some k ∈ N, and x = (x1, x2, . . . , xk) ∈ I(π). The set of all
feasible agreements for a set S is denoted by F(S). The utility of an agent j under a feasible
agreement (π, x) is given by uj(π, x) =

∑k
i=1 x

i
j .

We are interested in some feasible agreements, such as those that have the property of being
stable. Chalkiadakis et al. [14] proposed three definitions of stability. Here, we present one of
them, which is based on the core of NTU games. An outcome is core stable if there is no subset
of agents that can form a coalition between them for which their utility is strictly greater than
the utility for the previous outcome.

Definition 2.32. Given an OCF-game G = (N , v), and a subset of agents S ⊆ N , let (π, x)

and (π′, y) be two outcomes of G, such that for any coalition ri ∈ π′, either supp(ri) ⊆ S

or supp(ri) ⊆ N \ S. We say that (π′, y) is a profitable deviation of a subset S from (π, x), if
for all j ∈ S, uj(π′, y) > uj(π, x). A feasible agreement (π, x) is in the core if no S ⊆ N has
a profitable deviation.
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Observe that in a profitable deviation, the deviant agents can only form coalitions between
themselves. This constraint simulates the behavior of deviant agents in the core of NTU games.
For those games, deviant agents are all in the same possible blocking coalition.
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Chapter 3

Fractional Hedonic Games

In this chapter, we present literature results about core and Nash stability for fractional hedo-
nic games. We also give a proof that the core of simple symmetric fractional hedonic games
represented by pseudoforest is non-empty.

3.1 Core stability

In this section, we present some results regarding the existence of core stable coalition structures
for fractional hedonic games. We begin by showing that the core can be empty for fractional
hedonic games in general. Then, we show some classes for which the core is non-empty.

0

1

23

4

2

2

2

2

2
1

1

1

1

1
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-10-10
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Figure 3.1: Example of a fractional hedonic game with empty core.

Theorem 3.1 (Aziz et al. [7]). For fractional hedonic games, the core can be empty.

Proof. We show that the game in Figure 3.1 has an empty core. Since core stability implies
individual rationality, we only have to show that no individually rational coalition structure is
in the core. As every coalition with more than two agents is unacceptable for at least two of
them, no coalition with size at least three is individually rational. If there is no coalition S
with |S| ≥ 3, then there exists at least one coalition with size 1. Let i be an agent that is alone,
and let j be the agent such that uj(i) = 2. Note that j has an incentive to deviate to join i and i
clearly has an incentive to form a coalition with j, so such coalition structures are not stable.
Thus, every coalition structure is blocked by some coalition, then the core is empty.
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Figure 3.2: Example of a simple symmetric fractional hedonic game with empty core. For
all l ∈ {1, . . . , 5}, Al and Cl are isomorphic to K3 and Bl is isomorphic to K2.

Even restricting the valuations to be simple and symmetric does not guarantee the core to
be non-empty. Brandl et al. [11] showed that the game represented by the graph in Figure 3.2
has an empty core. The proof consists of an extensive analysis of cases.

Theorem 3.2 (Brandl et al. [11]). For a simple symmetric fractional hedonic game the core can
be empty.

Now we show classes of simple symmetric fractional hedonic games for which the core is
non-empty. We begin with games represented by cycles and paths.

Theorem 3.3 (Aziz et al. [7]). For a simple symmetric fractional hedonic game represented by
a graph G with ∆(G) ≤ 2, the core is non-empty.

Proof. We give an algorithm to construct a core stable coalition structure. Observe that every
connected component of G is either a path or a cycle. Let V1 be the set of vertices that are in
some connected component isomorphic to K3. Form a coalition for each connected component
isomorphic to K3. Thus, the utility of an agent in V1 is 2

3
. Let G′ = G− V1. Let M be a

maximum matching of G′. Let V2 be the vertices of G′ covered by M and V3 the remaining
vertices of G′. Form a coalition for each edge of M . Leave the vertices in V3 alone. Hence,
the utility of an agent in V2 is 1

2
and the utility of an agent in V3 is 0. Now we show that this

coalition structure is in the core.
The agents in V1 have the best utility possible, as they have no neighbor outside their coali-

tion, therefore, they have no incentive to deviate. A blocking coalition formed only by vertices
in V3 does not exist because there is no edge between vertices in V3 as, otherwise, the match-
ing M would not be maximum. A blocking coalition formed by vertices only in V2 is also not
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Figure 3.3: An output example of the algorithm to compute a core stable coalition structure for
games represented by forests. Each color represents a coalition.

possible, because every coalition with size greater than 2 has at least one agent with utility less
than or equal to 1

2
. If a coalition has size at least 4, the best utility an agent can have is 2

4
= 1

2
.

Hence, any possible blocking coalition must be formed by one vertex from V3 (every agent in V2
has at most one neighbor in V3) and two vertices from V2. But, for one of the vertices of V2, the
utility is 1

3
in this coalition, because one of them is not adjacent to the vertex from V3. Hence,

this coalition is not blocking.

Another class of games for which the core is non-empty is the class containing the games
represented by forests.

Theorem 3.4 (Aziz et al. [7]). For a simple symmetric fractional hedonic game represented by
a forest, the core is not empty.

Proof. We first give an algorithm to construct a core stable coalition structure π. LetG = (V,E)

be the forest that represents the game. We can suppose that G is a tree, otherwise, we can apply
the same argument for each connected component. At first, choose some vertex v0 ∈ V (G).
Let Lk be the set of vertices at distance k from v0. Let Ll be the last layer. For each ver-
tex v ∈ Ll−1 which has a child in Ll let Cv be the set {u : {v, u} ∈ E(G), u ∈ Ll} ∪ {v}. For
each Cv, form a coalition with the vertices in it and remove it from G. Repeat this process until
no more layers are left. If v0 is left alone, put it in the smallest coalition that has one of its
neighbors. Figure 3.3 illustrates how it is a coalition structure formed by this algorithm.

We show that π is in the core. First, we show that no vertex from a coalition containing only
vertices from the lowermost two layers Ll−1 and Ll can be in a blocking coalition. Suppose
that there exists a blocking coalition S with a vertex u that is from Ll. Observe that S must
contain vertex u and its parent v from layer Ll−1 and |S| < π(u)|. Thus, S is not blocking
for v, as uv(S) < uv(π). If vertex u is from layer Ll−1, a possible blocking coalition S has
all u’s children from layer Ll and its parent, but S would not be blocking for the children c of u,
uc(S) < uc(π).

We remove the vertices from coalitions formed only by vertices from Ll and Ll−1and repeat
the argument inductively.
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Now, we show that there is no blocking coalition that contains v0. Let us consider separately
the two cases: uv0(π) < 1

2
and uv0(π) ≥ 1

2
. If uv0(π) < 1

2
, then the algorithm reached v0 when

all its children were already in some coalition and v0 was placed in the smallest one. The only
way that v0 can increase its utility is if it is in a smaller coalition than its current one with at
least one of its children, or to be with more than one of its children. But by the way π was
built, a child of v0 would only increase its utility by being in this coalition if its own children
are too, but this coalition would not be blocking for them. If uv0(π) ≥ 1

2
, a possible blocking

coalition S that contains v0 must contain more children of v0 than π(v0) contains. Thus, S is
not blocking for a child of v0 that is in S and π(v0). Hence, S ∪ π(v0) = {v0}. But, for every
child vi of v0 in S, uvi(π) ≥ 1

2
, then for uvi(S) ≥ 1

2
, S must contain children of vi, but S would

not be blocking for the children of vi.

Aziz et al. [7] showed that games represented by bipartite graphs that admit a perfect match-
ing have a non-empty core by proving that the perfect matching induces a core stable coalition
structure.

Theorem 3.5 (Aziz et al. [7]). For a simple symmetric fractional hedonic game represented by
a bipartite graph that admits a perfect matching, the core is not empty.

Proof. Let G be a bipartite graph that admits a perfect matching. Let {N ′,N ′′} be the parts
of G. For every coalition S ⊆ N , either |S∩N

′|
|S| ≤

1
2

or |S∩N
′′|

|S| ≤
1
2
. Hence, S has one agent i

with ui(S) ≤ 1
2
. Let M be a perfect matching of G. Let each edge of M induce a coalition.

This way, M induces a coalition structure, where every agent has utility 1
2
. Given that in any

coalition S ⊆ N , there is an agent with a utility of at most 1
2
, then there is no blocking coalition

for the coalition structure induced by M .

We now introduce the concept of packing in graphs. Let F be a set of graphs. A F-packing
of a graph G is a subgraph H of G such that each component of H is isomorphic to some
element of F . We can see each component of H as a coalition, this way, if H is a spanning
subgraph of G, then H can induce a coalition structure. A star Sk is a bipartite complete
graph K1,k−1. A center of a star Sk is a vertex with degree equal to k − 1 and vertices with
degree different of k − 1 are called leaves. We say that a star Sk, with k > 2, has one center c
and k − 1 leaves l1, l2, . . . , lk−1. We assume that S2 has two centers and no leaves. A star-
packing is a F-packing such that F = {S1, S2, S3, . . .}, where Si is a star.

The girth of a graph G is the length of a shortest cycle of G. Aziz et al. [7] showed that
games represented by graphs with large girth (at least 5) have a non-empty core by giving an
algorithm to construct a star-packing that induces a core stable partition.

Theorem 3.6 (Aziz et al. [7]). For a fractional hedonic game represented by a graph with girth
at least 5, the core is non-empty.

Proof. LetG = (V,E) be the graph that represents the game. We denote each star-packing by π
and we associate with each π an objective vector ~x(π) = (x1, x2, . . . , x|V |) such that xi ≤ xj if
and only if 1 ≤ i ≤ j ≤ |V |, and there is a bijection f : V → {1, . . . , |V |} with uv(π) = xf(v).
This way, in ~x(π), the vertices’ utility for π are in non-decreasing order. The idea is to compute
a star-packing that maximizes its objective vector with respect to the lexicographical order. In
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Figure 3.4: Non-optimal star-packing of a graph with girth 5. The packing is indicated by the
solid edges.

star-packings with optimal objective vectors, we expect the stars to be balanced in size, without
needlessly leaving a vertex alone.

Given that the number of star-packings for a graphG is finite, we have a star-packing π with
an optimal objective vector. Now we show that such packing induces a core stable coalition
structure.

First, we show that for two leaves l, l′ of stars in π, we have that l and l′ are not neighbors
in G. For the sake of contradiction, suppose that this is not the case. Thus, l and l′ have no
neighbors in common, otherwise G would have a triangle. Therefore, l and l′ are leaves of
different stars. We have that l and l′ are from stars isomorphic to Sk and Sk′ , respectively,
with k > 2 and k′ > 2, because S2 has no leaves. Hence, ul(π) < 1

2
and ul′(π) < 1

2
, but if l

and l′ form a star by themselves, they both would have utility 1
2
. Observe that the centers of π(l)

and π(l′) would still be centers after l and l′ leave their stars, and the leaves of π(l) and π(l′)

would improve their utility after l and l′ leave their star. This means that this new star-packing
has an objective vector greater than the optimal. Hence, we know that two leaves l, l′ of π are
not neighbors in G. For an illustration, see Figure 3.4. Observe that if l3 and l8 became centers,
we have a packing better than the one shown on the figure.

For a contradiction, suppose that π is not in the core. Thus, there exists a blocking coali-
tion S for which ui(S) > ui(π) for all i ∈ S.

If i ∈ N is such that ui(π) = 0, then i must have no neighbors in G. Otherwise, we could
put i in any coalition that has one of its neighbors, which would increase its utility and we would
have an objective vector greater than the optimal. Therefore, S only contains vertices that are
not isolated in G.

We can divide the proof in three cases: S contains no center; S contains only one center;
and S contains more than one center.

If S only contains leaves, then the utility of every vertex in S is 0, since leaves are not
neighbors in G. Therefore S is not blocking.

If S contains only one center of π, we show that ~x(π) is not optimal. Let S consists of
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one center c and m leaves l1, . . . , lm. Since there are no edges between leaves, we have that S
induces a star. Let l be a leaf of S and let c′ be the center of π(l). We construct a star-packing π′

where we move l to the coalition that contains c. We claim that ~x(π′) is lexicographically larger
than ~x(π). Observe that it suffices to show that ul(π′) > ul(π) and uk(π′) ≥ ul(π

′), for all k
with uk(π′) < uk(π).

To show that ul(π′) > ul(π), note that uc(π) < uc(S) since c is a center in π and in S, and S
is blocking. Then, we have that

uc(π) =
|π(c)| − 1

|π(c)|
<
|S| − 1

|S|
= uc(S).

Moreover,

ul(π) =
1

|π(l)|
<

1

|S|
= ul(S).

Thus, |π(c)| < |S| < |π(l)|. It follows that

|π′(l)| = |π(c) ∪ {l}| ≤ |S| < |π(l)|.

Hence, ul(π′) > ul(π).
Let k be such that uk(π′) < uk(π), we will show that uk(π′) ≥ ul(π

′). Either k is c′, the
center of π(l), or k is a leaf of π(c). As c′ is a center in π(l) and l is a leaf, it means that there is
other leaf different of l in π(l), therefore, c′ is still a center in π′. Hence, uc′(π′) ≥ 1

2
> ul(π

′).
Now assume that k is a leaf in π(c), then in π′(c) both k and l are leaves of the same star,
therefore uk(π′) = ul(π

′).
If S contains more than one center in π, let us say c and c′, then uc(π) ≥ 1

2
and uc′(π) ≥ 1

2
.

Hence, either |S| = 2k + 2 or |S| = 2k + 3 for some k ≥ 1, since if |S| ≤ 3, then uc(S) ≤ 1
2

or uc′(S) ≤ 1
2

because girth is at least 5. As both uc(S) > 1
2

and uc′(S) > 1
2
, then

|{i ∈ S : (c, i) ∈ E}| ≥ k + 2

and
|{i : (c′, i) ∈ E}| ≥ k + 2.

If NS(c)∩NS(c′) = ∅, then |S| ≤ 2k+ 4, which is a contradiction to the fact that |S| ≤ 2k+ 3.
Therefore, if NS(c)∩NS(c′) = x ≥ 1, then |S| ≥ 2k+ 6−x. For |S| ≤ 2k+ 3, x ≥ 3. Then, c
and c′ have at least three neighbors in common. But then G has a cycle with size at most 4,
which is a contradiction to the fact that G has girth at least 5. Then, π is core stable.

A pseudoforest is a graph where every connected component has at most one cycle. A pseu-
dotree is a connected component of a pseudoforest. Below, we show that games represented by
pseudoforests has a non-empty core by giving an algorithm to construct a core stable coalition
structure.

Theorem 3.7. For a simple symmetric fractional hedonic game represented by a pseudoforest,
the core is not empty.

Proof. We show how to construct a coalition structure π that is in the core. Let G be the graph
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that represents the game. We can suppose that G is a pseudotree, otherwise, we can apply the
same argument for each pseudotree.

The case where G has no cycle is covered by Theorem 3.4, therefore we can suppose that G
has a cycle. We can suppose that G has girth at most 4 because Theorem 3.6 covers the case
where G has girth at least 5. Let A be the cycle that is a subgraph of G. For every vertex i
of A, let Ti be a maximal tree that contains i and is a subgraph of G \ {j | j ∈ A, j 6= i}.
Perform a breadth first search on Ti beginning at i. Let Lk be the set of vertices at distance k
from i. Let Ll be the last layer. For each vertex v ∈ Ll−1 which has a child in Ll let Cv be the
set {u | {v, u} ∈ E(G), u ∈ Ll} ∪ {v}. For each Cv, form a coalition with the vertices in it and
remove it from G. Repeat this process until no more layers are left.

Now, we consider two cases: (i) if A is a triangle and every vertex of A is either alone or
in a coalition of size at most 2, form a coalition with the vertices of A and leave their previous
partners alone; (ii) otherwise, let A′ be the subgraph of A composed by the vertices of A that
are alone in some coalition. Take a maximum matching of A′, let us say M . Create a coalition
for each edge of M . The vertices of A′ not covered by M are left alone.

Now we prove that π is in the core. We can see every vertex i of A as a root of tree Ti. Then
we can apply an argument similar to the one gave in the proof of Theorem 3.4 to show that
there is no blocking coalition formed only by vertices of Ti. In fact, since there are no edges
between vertices in Ti and vertices outside of Ti (except for i), any possible blocking coalition
cannot contain vertices of Ti, except maybe for i. Now we show that the vertices in A are not
in a blocking coalition.

If A is a triangle and A ∈ π, then by the construction of π, we know that for i ∈ A, we have
two possibilities: either every neighbor of i has a utility at least 1

2
for π or there are at most one

neighbor of i with utility 0 for π. This happens because the coalition A is formed only if every
vertex ofA was either left alone or was put in a coalition of size at most 2. Let S be some subset
of N . We show that if A ⊆ S, then S is not a blocking coalition for π. Since vertices of A do
not share neighbors outside of A, for at least one j ∈ A, uj(S) < 2

3
= uj(A). Thus, S is not

blocking. Now, we analyze the case where A 6⊆ S. If |S ∩ A| = 1, let i ∈ A ∩ S. By the proof
of Theorem 3.4, since S only contains vertices from tree Ti, we know that S is not blocking.
If |S ∩ A| = 2, let i, j ∈ A. As i and j have no neighbor in common in S, at least one of them
has utility of at most 1

2
for S. Then, S is not blocking.

If A is a triangle but not a coalition in π, then by the construction of π in the second case,
there is a vertex j ∈ A, such that uj(π) ≥ 2

3
. A possible blocking coalition S ⊆ N such

that A ⊆ S is not a blocking coalition since S is not blocking for the neighbors of j that are not
in A, and if NS(j) = A \ {j}, then uj(S) ≤ 2

3
≤ uj(π). As j is equivalent to v0 in the proof of

Theorem 3.4, we have that j is not in a blocking coalition with its neighbors outside A. If there
is a vertex k ∈ A with uk(π) = 0, then by the proof of Theorem 3.4, we have that k cannot be
in a blocking coalition with its neighbors outside of A. For two distinct vertices s, t ∈ A \ {j}
we have that us(π) ≥ 1

2
or ut(π) ≥ 1

2
. Thus s and t cannot be in a blocking coalition together

because one of them (maybe both) has utility at least 1
2

for π.
If A is a square, there is at least one agent i ∈ A such that ui(π) ≥ 1

2
, because of the way π

was built. Therefore, A is not a blocking coalition. If a vertex j ∈ A has utility 0, then, by the
way π was built, all of its neighbors have utility at least 1

2
. Hence, a subset of A is not blocking.

Since we can see the vertices of A as roots of trees, we know by the proof of Theorem 3.4 that
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they cannot be in a blocking coalition with a vertex from outside of A. Thus, π is not blocked
by any coalition.

Next, we show that computing a core stable partition for a symmetric fractional hedonic
game is NP-hard. For this, we present a class of ASHGs called aversion to enemies. An ASHG
is aversion to enemies if for all i, j ∈ N with i 6= j, ui(j) ∈ {1,−n}. We show that a class of
FHGs is equivalent to aversion to enemies games, thus, any computational result regarding the
core stability of aversion to enemies games is also valid for FHGs.

Theorem 3.8 (Aziz et al. [7]). Computing a core stable coalition structure is NP-hard for a
symmetric fractional hedonic game, and deciding if a coalition structure is core stable is coNP-
complete.

Proof. Let N be a set of agents. Let G = (V,E) be a graph such that V = N . Let v be a
valuation function such that for all i, j ∈ N with i 6= j, vi(j) = 1 if and only if {i, j} ∈ E,
and vi(j) = −n otherwise. Let be G = (N , v) be an ASHG and G ′ = (N , v) be an FHG. For
some agent i, let S ∈ Ni be a coalition. If S is unacceptable in G for i, then S contains an
agent j for which vi(j) = −n. Hence S is also unacceptable for i in G ′. Observe that the
converse is also true. If S is acceptable for i in G, then i values non-negatively every agent in S.
Let T ∈ Ni be another acceptable coalition for i in G. Now we show that S %i T in G if and
only if S %i T in G ′. Observe that if S %i T in G, then |S| ≥ |T |. Therefore, |S|−1|S| ≥

|T |−1
|T | ,

which implies that S %i T in G ′. The converse is clearly true. Thus, we have that a coalition
structure π is core stable in G if and only if is core stable in G ′.

Dimitrov et al. [15] showed that the core of G is non-empty, but computing a core stable
coalition structure for G is NP-hard. And Sung and Dimitrov [28] showed that deciding if a
coalition structure is core stable for G is coNP-complete.

According to Brandl et al. [11], deciding whether a symmetric fractional hedonic game has
a non-empty core is NP-hard and it is NP-complete to decide if there is a Nash stable coalition
structure. They also proved that deciding if a fractional hedonic game has an individually stable
structure is NP-complete. Table 3.1 summarizes results regarding the complexity of checking
the stability of fractional hedonic games.

Operation Complexity

Computing a core stable coalition structure (SFHG) NP-hard [7]
Checking if a coalition structure is in the core (SFHG) coNP-complete [7]
Deciding emptiness of the core (SFHG) NP-hard [11]
Deciding the existence of a Nash stable coalition structure (SFHG) NP-complete [11]
Deciding the existence of a individually stable coalition structure (FHG) NP-complete [11]

Table 3.1: The complexity of checking the stability of fractional hedonic games (FHG) and
symmetric fractional hedonic games (SFHG).
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Figure 3.5: Example of a fractional hedonic game with no Nash stable coalition structure.

3.2 Nash stability

For fractional hedonic games with positive valuations only, the grand coalition is a Nash stable
outcome. In this case, it’s impossible for an agent alone to have utility greater than the one she
has in the grand coalition, since the worst utility she can have for the grand coalition is 0, which
is her utility for being alone. The following theorem follows from this fact.

Theorem 3.9 (Bilò et al. [8]). For any graphGwith positive weights only, the fractional hedonic
game G(G) has a Nash stable coalition structure.

The next theorem shows that if a game has negative valuations, then it may not have a Nash
stable coalition structure.

Theorem 3.10 (Brandl et al. [11]). There exists a symmetric fractional hedonic game with
negative valuations such that it has no Nash stable coalition structure.

Proof. We show that the game in Figure 3.5 has no Nash stable coalition structure. Observe
that any coalition structure where agents 2 and 3 are in the same coalition is not stable because
such coalition is unacceptable for both of them. Also, note that every coalition structure where
agent 1 is alone is not stable because she prefers any coalition to be alone.

Without loss of generality, due to symmetry, we only have to consider the following possible
coalition structures:

π1 = {{1, 2}, {3, 4}},
π2 = {{1, 4}, {2}, {3}},
π3 = {{1, 2, 4}, {3}}, and

π4 = {{1, 2}, {3}, {4}}.

Partition π1 is not stable because agent 1 can improve her utility by joining 3 and 4. Parti-
tion π2 is not stable because any of 2 or 3 can improve her utility by joining 1 and 4. Partition π3
is not stable because agent 4 can improve her utility by joining agent 3. Partition π4 is not stable
because agent 3 can improve her utility by joining agent 4.
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3.2.1 Price of Stability and Anarchy

Social welfare is a measure of how well a society is. In our case, the social welfare is the sum
of the utility of each agent. The price of stability and the price of anarchy are widely studied
measures of loss efficiency caused by Nash stable outcomes in social welfare. The price of
stability measures how good Nash stable outcomes can be with respect to the optimal social
welfare, and the price of anarchy measures how bad Nash stable outcomes can be with respect
to the optimal social welfare. In the first one, the social welfare from an optimal coalition
structure is divided by the social welfare of some best Nash stable outcome, and in the second,
the social welfare from an optimal coalition structure is divided by the social welfare of some
worst Nash stable outcome.

Definition 3.11. The social welfare SW of a coalition structure π of a fractional hedonic
game (N , u) is

SW(π) =
∑
i∈N

ui(π).

A coalition structure π is optimal if there exits no π′ such that SW(π′) > SW(π).

Definition 3.12. Let π∗ be an optimal coalition structure for an FHG (N , u). Let NS be the
set of Nash stable coalition structures of a fractional hedonic game (N , u). The price of anar-
chy PoA is defined as

PoA(N , u) = max
π∈NS

SW(π∗)

SW(π)
.

And the price of stability PoS is defined as

PoS(N , u) = min
π∈NS

SW(π∗)

SW(π)
.

Bilò et al. [8] gave an upper bound of n − 1 on the price of anarchy for fractional hedonic
games represented by a weighted graph with no negatives weights.

Theorem 3.13 (Bilò et al. [8]). For any weighted graph with non-negative edge weights G, it
holds that PoA(G(G)) ≤ n− 1.

Proof. For an agent i, let Wi = maxj∈N ui(j). For any Nash stable coalition structure π, we
have that ui(π) ≥ Wi

n
, otherwise, agent i would join the coalition where the agent that de-

fines Wi is. Hence, SW(π) ≥ 1
n

∑
i∈N Wi. We also have that for an optimal coalition struc-

ture π∗, ui(π∗) ≤ n−1
n
Wi for all i ∈ N . Thus, SW(π∗) ≤ n−1

n

∑
i∈N Wi. Therefore,

PoA(G(G)) ≤ SW(π∗)

SW(π)
=

n−1
n

∑
i∈N Wi

1
n

∑
i∈N Wi

= n− 1.

Bilò et al. [8] provided a lower bound of Ω(n) for the price of anarchy of fractional hedonic
games by showing that for any n ≥ 2 there exists a simple path Pn such that PoA(Pn) = Ω(n).
They also proved that for any unweighted tree the price of stability is 1, and they provided
an algorithm to compute an optimal Nash stable structure in polynomial time for this type of
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graph. Bilò et al. [8] also gave a lower bound of Ω(n) on the price of stability for symmetrical
fractional hedonic games by showing that for any n ≥ 2, there exists a game with n agents for
which, the price of stability is Ω(n).

Theorem 3.14 (Bilò et al. [8]). For any integer n ≥ 2, there exists a FHG G = (N , v)

with |N | = n for which, PoS(G(G)) = Ω(n).

Proof. Let N be an agent set with |N | = n. Let v be a symmetric valuation function
such that for all i, j ∈ {1, . . . , n− 2}, vi(n) = vn(i) = 1, vi(j) = 0, vi(n− 1) = vn−1(i) = 0,
and vn(n− 1) = vn−1(n) = W , for some W sufficiently greater than n. Let G = (N , v)

be a FHG and π be a coalition structure where all agents are in the same coalition. Ob-
serve that π is the only Nash stable coalition structure for G. In every coalition structure
where i = 1, . . . , n− 1 is not in the same coalition as n, i can improve her utility by join-
ing the coalition that contains n. Hence SW(π) = 2(W+n−2)

n
. A optimal coalition structure π∗

is where n and n− 1 are alone in one coalition. Thus, SW(π∗) = W . Therefore, we have that

PoS(G) =
SW(π∗)

SW(π)
=

nW

2(W + n− 2)
= Ω(n).

Bilò et al. [9] provided upper and lower bounds on the price of stability for the games rep-
resented by bipartite graphs. They proved that for any bipartite graph G, PoS(G(G)) > 1.003

and that PoS(G(G)) ≤ 6(3− 2
√

2) ≈ 1.0294. They also showed an upper bound of 4 on the
price of stability for triangle-free graphs.

Kaklamanis et al. [20] proved that the price of stability of symmetric simple hedonic games
is at least 1 +

√
6
2
− ε for all ε > 0. They also proved that the price of stability for games

represented by a simple symmetric graph with girth at least 5 is 1.
Olsen [24] introduced the following variation of a hedonic game where the calculation of

the utility does not take into account the agent herself:

ui(π) =

{∑
j∈π(i) ui(j)

|π(i)|−1 , |π(i)| > 1

0, |π(i)| ≤ 1

Kaklamanis et al. [20] proved that for any fractional hedonic game, the price of stability is 1

with the above utility function.
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Chapter 4

Fractional Hedonic Games with
Overlapping Coalitions

Now, we present a model that generalizes fractional hedonic game by allowing overlapping
coalitions. We model those games as an agent having a resource that she can divide as she
wants among the coalitions. Time is an example of a resource that an agent can invest in a
coalition. This way, a coalition is determined by the amount of resource every agent contributes
to that coalition. We say that an agent is part of a coalition if she contributes with strictly more
than 0. Note that if we constrain the contribution to be either 0 or 1, we have the classical model.

Definition 4.1. LetN = {1, 2, . . . , n} be a set of agents of size |N | = n. A coalition (or partial
coalition) is a vector r ∈ [0, 1]n, where ri denotes the participation of agent i in r. The support of
a coalition is denoted by supp(r) = {j ∈ N : rj 6= 0}. A coalition structure π on a set S ⊆ N ,
denoted by πS , is a list of k vectors π = (r1, . . . , rk) such that for all rk ∈ π, supp(rk) ⊆ S and
for each i ∈ S,

∑k
j=1 r

j
i = 1. We denote πN simply by π.

The main difference of our model to the model without overlapping coalition is how the
utility of an agent is calculated. The utility of an agent considers the amount of her participation
in a coalition as well as the participation of the other agents in this coalition.

Definition 4.2. As before, let ui : N → R be a valuation function that denotes how much
agent i values each other agent j ∈ N and let ui(i) = 0. Given a coalition r, the utility of
agent i is given as ui(r) = ri

∑
j∈N ui(j)·rj
| supp(r)| . The utility function of agent i for a coalition struc-

ture π = (r1, . . . , rk) is given as ui(π) =
∑k

j=1 ui(r
j). A Fractional Hedonic Game with Over-

lapping Coalition (FHGO) is defined as a pair G = (N , u). The outcome of a game G is a
coalition structure π.

We introduce the idea of the potential of a coalition for an agent as the utility this coalition
would have to her if she were integrally in this coalition. This concept is relevant to simplify
some calculations.

Definition 4.3. Let r be a coalition. For an agent i ∈ supp(r), we say that the potential of r is
the utility that i would get from r, if i were totally in r. More formally, the potential of r to i is
defined as αi(r) =

∑
j∈N rjui(j)

| supp(r)| .



41

Our definition of the core is based on the definition of the conservative core of Chalkiadakis
et al. [14]. Our core is similar to the classical one in the sense that the deviants, agents that
are in a blocking set, can only form coalitions among themselves. That is, there is no coalition
formed by deviants and non-deviants.

Definition 4.4. For a FHGO, a coalition structure π = (r1, . . . , rk) is blocked by a sub-
set S ⊆ N if there is a coalition structure π′ such that for each coalition ri ∈ π′, ei-
ther supp(ri) ⊆ S or supp(ri) ⊆ N \ S, and for all j ∈ S, uj(π′) > uj(π). If a coalition struc-
ture π has no blocking set S ⊆ N , then π is said to be in the core.

Let π be a coalition structure that is blocked by some set S. We denote by π′S the coalition
structure on S, such that for each i ∈ S, ui(π′S) > ui(π). We show that if a set S blocks a
coalition structure π, then for each agent in S, there exists a coalition in π′S for which the
potential of this coalition is greater than the utility of π.

Lemma 4.5. For a FHGO represented by a simple graph and a coalition structure π, a
set S ⊆ N blocks π with overlapping coalitions if and only if for every i ∈ S there is a coali-
tion r ∈ π′S for which holds that i ∈ supp(r) and αi(r) > ui(π).

Proof. In a fractional hedonic game with overlapping coalitions, the utility of an agent i ∈ N
can be seen as the convex combination of the potential of each coalition this agent is part of.
Thus, for ui(π′S) > ui(π) there must exist a coalition r ∈ π′S such that αi(r) > ui(π).

In the following sections, we present results regarding the existence of core stable coalition
structures.

4.1 Cycles and Paths

We analyze fractional hedonic games with overlapping coalitions represented by graphs such
that every connected component is either a cycle or a path. We show that the algorithm given
by Aziz et al. [7] produces core stable coalition structures. The idea of the algorithm is to
decompose the graph into disjoint cliques.

Theorem 4.6. For a FHGO represented by a simple graph G with maximum degree at most 2,
the core is non-empty.

Proof. We will use the algorithm provided by Aziz et al. [7] to construct a coalition structure π
and show that it is in the core. First, for each component C isomorphic to K3 form a coali-
tion r with ri = 1 for all i ∈ C. Let V1 be a subset of V (G) such that v ∈ V1 if v is in a K3.
LetG′ = G− V1. LetM be a maximum matching ofG′. For each edge {u, v} ∈ E(M), form a
coalition with u and v. The vertices not covered byM are left alone. Let V2 be a subset of V (G)

such that v ∈ V2 if v is covered by M . Note that, if an agent is in a K3, she has utility 2
3

and if
an agent is covered by a maximum matching of G′, she has utility 1

2
.

Now we prove that there is no subset S ⊆ N that blocks π. In Theorem 3.3, we proved that
an integral coalition formed by all the agents in S does not block π. Hence, the agents in S must
form at least two partial coalitions. An agent of a K3 component has the best possible utility



42

because she is in a coalition with all the other agents she values with 1. Therefore, agents from
a K3 component are not in S.

We only have to worry about the vertices fromG′. Now we show that a vertex from a path or
a cycle is not in S. Let i be a vertex from G′. If i is covered by M then i has utility 1

2
. Observe

that a vertex from V2 that has degree 1 cannot be in a blocking set. The only way i can have
a utility greater than 1

2
is when she is with her two neighbors in some coalition because every

coalition with only two agents has utility (and potential) at most 1
2
. By Lemma 4.5, we know

that i needs some coalition with potential greater than 1
2
. Let us call this coalition r. We know

that | supp(r)| ≥ 3 since the potential of i for r must be greater than 1
2
. Let x =

∑
j∈N ui(j) · rj .

We need that x
3
> 1

2
. But there are only two agents that i values with 1, and both of them have

to contribute to r with at least 1
2
. Observe that one of the neighbors of i has utility 1

2
for π,

let us say t. As αt(r) ≤ 1
3
, t also needs to be in some other coalition, let us say r′. Note

that αt(r′) ≤ 2
3
. But, since rt ≥ 1

2
, ut(r′) ≤ 1

2
· 2

3
. Hence, the utility of t for a coalition

structure πS on S is at most 1
2

(
1
3

+ 2
3

)
. Therefore, S is not blocking for t.

If i is not covered by M , then she has utility 0. She needs only another agent to improve her
utility. Let j be such an agent. Since a maximum matching of a path or a cycle does not cover
at most one vertex, j has utility 1

2
for π and S is not blocking by the argument given above.

4.2 Forests

In this section, we show that for fractional hedonic games with overlapping coalitions repre-
sented by forests the core is non-empty. For this, we show that the algorithm used in the proof
of Theorem 3.4 produces a core stable coalition structure.

Theorem 4.7. For a FHGO represented by a forest, the core is non-empty.

Proof. We use the same algorithm used in the proof of Theorem 3.4 to construct a coalition
structure π. Observe that the support of every coalition of π induces a star. Now we show that π
is core stable. The proof follows by induction in the number of layers.

We begin by the base cases, where there are two and three layers. If there are two layers,
for vertex v0 to be in a blocking set S, it needs more neighbors in S than there is in the support
of its coalition in π. But, all the neighbors of v0 are already in the same coalition in π. If
there are three layers, we have two cases: either uv0(π) < 1

2
or uv0(π) ≥ 1

2
. If, uv0(π) < 1

2
,

every neighbor of v0 has utility greater than 1
2

for π, then, for a neighbor vi of v0 to be in a
blocking set S, vi needs for all its neighbors and v0 to be in S, but since v0 is only neighbor
of vi, then S is not blocking for the neighbors of vi. If uv0(π) ≥ 1

2
, then v0 has neighbors that

are centers and neighbors that are leaves in the stars induced by the support of their coalitions.
Let r ∈ π be the coalition of π such that v0 ∈ supp(r). For v0 to be in a blocking set S, it
needs that |S ∩NS(v0)| ≥ | supp(r)|. Hence, at least a neighbor of v0 that is a center has to be
in S, let us say vk. Moreover, for S to block, it needs that the neighbors which are in the same
coalition as vk in π to be in S. However, S is not blocking for these neighbors of vk since they
value each vertex in S with 0, except vk.

Now, we show that no vertex from a coalition formed only by vertices from Ll and Ll−1
can be in a blocking set S. Let v be a vertex from Ll−1. For vertex v to be in S, it needs that
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its parent and all of its children to be in S and to be in some coalition (partial or not) with it.
This is because v needs some coalition with potential greater than the utility it has for π, thus,
it needs to be in some coalition with all of its children and its parent. But the children of v will
not improve their utility because the only neighbor they have is v, therefore S would not be
blocking. Let u be a vertex from Ll, let t be the parent of u. Vertex u would be in S only if its
parent t is in S and some child of t is not. But, S is only blocking for t if its parent and all of its
children are in S. Hence, S is not blocking for u. Remove all vertices from coalitions formed
only by vertices from Ll and Ll−1 and repeat the argument inductively.

4.3 Bipartite graphs with perfect matching

In this section, we prove that for fractional hedonic games with overlapping coalitions repre-
sented by bipartite graphs with a perfect matching, the core is non-empty by showing that a
coalition structure in which the coalitions induce edges of a perfect matching is core stable.

Lemma 4.5 provided an important condition for the existence of a blocking set. The main
proof of this section is built upon showing that this condition can not be satisfied. The proof
idea is to show that in every coalition, the number of agents for whom the coalition potential is
greater than a half is less than the number of agents that contribute with more than a half for this
coalition. So we show that this coalition structure fails to satisfy the condition of Lemma 4.5.

Now we prove that, if there exists some blocking set S, then for each coalition r

in a blocking coalition structure on S, the set of agents for whom the potential of r is
greater than one half is an independent set. More formally, for every coalition r ∈ π′S ,
let Hr = {i : i ∈ supp(r), αi(r) > ui(π)}. We denote the neighborhood of some vertex i on
a subset T ⊆ N by NT (i).

Lemma 4.8. Let π be a coalition structure for a FHGO represented by a bipartite graph G that
admits a perfect matching, such that the coalitions of π induce a perfect matching of G. If π is
not in the core, it holds that Hr induces an independent set for each r ∈ π′S , such that S is a
blocking set for π.

Proof. Suppose that there exists some coalition r ∈ π′S for which Hr does not induce an inde-
pendent set. Let i, j ∈ Hr such that i and j are adjacent in G, thus Nsupp(r)(i) ∩Nsupp(r)(j) = ∅
because supp(r) induces a subgraph of G and G is bipartite. We know that both i and j must be
adjacent to strictly more than a half of the agents in supp(r), because αi(r) > 1

2
and αj(r) > 1

2
.

Thus, i and j must have a neighbor in common, which is a contradiction with the fact that G is
bipartite. Hence, Hr must induce an independent set.

Now we show that the number of agents that contribute to a coalition r with more than 1
2

is
strictly greater than the number of agents for whom r has potential greater than 1

2
.

Lemma 4.9. Let π be a coalition structure for a FHGO represented by a bipartite graph G
that admits a perfect matching, such that the coalitions of π induce a perfect matching of G.
If π is blocked by some set S, then for every coalition r ∈ π′S and for every agent i ∈ Hr,
let Ur(i) = |{j : j ∈ Nsupp(r)(i), rj >

1
2
}|. It holds that |Ur(i)| > |Hr|.
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Proof. Let r ∈ π′S be a coalition. For contradiction, suppose that there exists some agent i ∈ Hr

for which |Ur(i)| ≤ |Hr|. We know by Lemma 4.8 that Hr induces an independent set. Now
we show that αi(r) ≤ 1

2
. If |Ur(i)| ≤ |Hr|, even if each agent in Ur(i) contributes with 1 to r,

there is at least the same number of vertices j ∈ Hr with ui(j) = 0, since Ur(i) ∩Hr = ∅,
hence αi(r) ≤ 1

2
. This is a contradiction because, by definition, αi(r) > 1

2
. Hence, for ev-

ery i ∈ Hr, |Ur(i)| > |Hr|.

Below, we prove that a coalition structure that induces a perfect matching on the graph
representing the game is in the core by showing that any subset S ⊆ N fails to form a coalition
structure that satisfies the condition stated in Lemma 4.5.

Theorem 4.10. For a FHGO G = (N , u) represented by a bipartite graph G that admits a
perfect matching, the core is non-empty.

Proof. Let M be a perfect matching of G. Let π be a coalition structure where each coalition
of π corresponds to an edge of M . Note that, for every i ∈ N , ui(π) = 1

2
. Suppose for the sake

of contradiction that π is not in the core. Then, there must be some blocking set S ⊆ N for π.
Let πS be a coalition structure such that for every i ∈ S, ui(πS) > ui(π). Let D be a directed
graph where there is one vertex for each agent of S and a vertex for each coalition of πS . An arc
of D goes from the vertex that represents an agent i to the vertex that represents a coalition r
only if ri > 1

2
, and it goes from the vertex that represents r to the vertex that represents i only

if αi(r) > 1
2
. Observe that the out-degree of a vertex that represents an agent is at most 1. Note

that, by Lemma 4.5, each vertex that represents an agent must have in-degree at least 1. By
Lemma 4.9, we know that the in-degree of a vertex that represents a coalition is strictly greater
than the out-degree. Since in a directed graph the sum of the in-degrees must equal the sum of
the out-degrees, there must exist some vertex that represents an agent with in-degree equals to 0.
Then, there must exists some agent i ∈ S for which there exists no r ∈ πS such that αi(r) > 1

2
.

Therefore, there is no blocking set S for π.
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Chapter 5

Additively Separable Hedonic Games

In this chapter, we present some results regarding the stability of additively separable hedonic
games and our model for additively separable hedonic games with overlapping coalitions. We
begin by showing that a ASHG with symmetric preferences has a Nash stable outcome, and
therefore it also has an individually stable outcome.

Theorem 5.1 (Bogomolnaia and Jackson [10]). An additively separable hedonic game with
symmetric preferences has an individually stable coalition structure, as well as a Nash stable
structure.

Proof. As shown in Figure 2.2, the Nash Stability implies individual stability, so we have only
to show that there is a Nash stable coalition structure.

Let π∗ be a coalition structure that maximizes the social welfare. We will show that π∗ is
Nash stable. Suppose, by contradiction, that there exists an agent i that can deviate forming the
coalition structure π such that

∑
j∈π(i) ui(j) = ui(π) > ui(π

∗) =
∑

j∈π∗(i) ui(j).
Note that, except for the coalition from where i left and the coalition to which i joined, any

other coalition is equal in π and π∗, so the social welfare of those coalitions are equal in the two
coalition structures. Then

SW(π)−SW(π∗) = ui(π)− ui(π∗) +
∑
k∈π(i)

uk(i)−
∑

j∈π∗(i)

uj(i) = 2 · ui(π)− 2 · ui(π∗) > 0,

which is a contradiction since SW(π∗) is maximum. Note that the last equivalence is true
because the game is symmetric.

The price of stability and anarchy can be defined for additively separable games in a similar
way as they were defined for fractional hedonic games in Section 3.2.

Corollary 5.2. The price of stability for an additively separable hedonic game with symmetric
preferences is 1.

Proof. It follows from the proof of Theorem 5.1.

Sung and Dimitrov [29] proved that deciding whether an additively separable hedonic game
has a Nash stable coalition structure or has a coalition structure in the core is NP-complete in the
strong sense. Deciding if a coalition structure is in the core is coNP-complete according to Sung
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and Dimitrov [28]. Aziz et al. [4] showed that even with symmetric preferences, checking the
emptiness of the core and the strict core is NP-hard in the strong sense and verifying whether
the grand coalition is Pareto optimal is coNP-complete. The problem of checking if a structure
is Pareto optimal is coNP-complete in the strong sense, even if the preferences are symmetric
and strict, according to Aziz, Brandt, and Seedig [6]. They also used the concept of serial
dictatorship to show that a Pareto optimal coalition structure, under strict preferences, can be
computed in polynomial time. Table 5.1 summarizes the results regarding the complexity of
checking the stability of additively separable hedonic games.

Operation Complexity

Checking if a coalition structure is in the core coNP-complete [28]
Deciding emptiness of the core NP-complete [29]
Deciding the existence of a Nash stable coalition structure NP-complete [29]
Checking if a coalition structure is Pareto optimal coNP-complete [4]
Computing a Pareto optimal coalition structure with strict preference P [6]

Table 5.1: The complexity of checking stability for additively separable hedonic games.

5.1 Additively Separable Hedonic Games with Overlapping
Coalitions

In this section, we present a model that generalizes additively separable hedonic games by
allowing overlapping coalitions. The model is similar to the model from fractional hedonic
games. The definitions of coalition and coalition structure are identical to the definitions given
in Chapter 4. We can interpret the participation of an agent in a partial coalition as the proba-
bility the agent is in the non-partial version of this coalition. Thus, each agent has a probability
distribution over all possible non-partial coalitions. An agent’s utility for a coalition structure
can be seen as the expected utility if the coalitions are formed at random using the probability
distributions given by the agents.

Definition 5.3. An Additively Separable Hedonic Game with Overlapping Coalition (ASHGO)
is a pair G = (N , u) such that for each i ∈ N , ui : N → R is a valuation function that denotes
how much agent i values every other agent j ∈ N . We say that ui(i) = 0. Given a coalition r,
the utility of agent i is given as

ui(r) = ri
∑
j∈N

ui(j) · rj.

The outcome of a game G is a coalition structure π. The utility function can be overloaded
to define utility of a coalition structure π = (r1, . . . , rk) as

ui(π) =
k∑
j=1

ui(r
j).
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The social welfare of a coalition r is given as

SW (r) =
∑
j∈N

uj(r),

and the social welfare of a coalition structure π = (r1, . . . , rk) is given as

SW(π) =
k∑
j=1

SW (rj).

For an agent i and a coalition r, we say that ri is the participation of agent i in r. If ri = 1,
we say that ri is an integral participation.

We give a definition of potential of coalition for an agent in a similar way we did for FHGOs.
This concept is relevant to simplify some calculations.

Definition 5.4. Let r be a coalition. For an agent i ∈ supp(r), we say that the potential of r is
the utility that i would get from r, if i were totally in r. More formally, the potential of r to i is
defined as αi(r) =

∑
j∈N rjui(j).

The following theorem shows that for an additively separable hedonic game with overlap-
ping coalitions, the expected social welfare is limited by the optimal social welfare of the clas-
sical version of the game. Which means that the expected social welfare is equal to the optimal
social welfare.

Theorem 5.5. The social welfare of a symmetric ASHGO is less than or equal to the optimal
social welfare of this game without overlapping coalitions.

Proof. Let π be some coalition structure of some ASHGO. The proof follows by induction in
the number of non-integral participation in coalitions of π. If all participations are integral, then
every agent is part of only one coalition. Trivially, the social welfare of this outcome is less than
or equal to the optimal social welfare of the version of this game without overlapping coalitions.

Let i be an agent and π a coalition structure such that for at least two partial coalitions rk

and rl we have rki > 0 and rli > 0. Without loss of generality, suppose that αi(rk) ≥ αi(r
l).

Let π′ be a coalition structure constructed in the following way: rk′ is a partial coalition such
that rk′i = rki + rli, and for all j 6= i, rk′j = rkj ; and rl′ is a partial coalition such that rl′i = 0 and
for all j 6= i, rl′j = rlj; any other partial coalition from π is also in π′.

We show that SW(π′) ≥ SW(π). Suppose by contradiction that SW(π′) < SW(π).
Hence, SW(π)− SW(π′) > 0.

We have that

SW(π)− SW(π′) = ui(r
k) + ui(r

l) + rki

 ∑
j∈supp(rk)

rkj uj(i)

+ rli

 ∑
s∈supp(rl)

rlsus(i)


− ui(rk

′
)− (rki + rli)

 ∑
j∈supp(rk)

rkj uj(i)

 .

By the symmetry of preferences, we have that
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SW(π)− SW(π′) = 2ui(r
k) + 2ui(r

l)− ui(rk
′
)− rki

∑
j∈supp(rk)

rkj uj(i)

− rli
∑

j∈supp(rk)

rkj uj(i)

= 2ui(r
k) + 2ui(r

l)− 2rki
∑

j∈supp(rk)

rkj uj(i)− 2rli
∑

j∈supp(rk)

rkj uj(i)

= 2ui(r
l)− 2rli

∑
j∈supp(rk)

rkj uj(i)

= 2rli
∑

s∈supp(rl)

rlsus(i)− 2rli
∑

j∈supp(rk)

rkj uj(i)

= 2rliαi(r
l)− 2rliαi(r

k).

Given that αi(rk) ≥ αi(r
l), we have

SW(π)− SW(π′) ≤ 0.

This is a contradiction. Then, we have that SW(π) ≤ SW(π′). As π′ has less non-integral
participations than π, then by induction hypothesis, the social welfare of π is less than or equal
to the optimal social welfare of this game without overlapping coalitions.
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Chapter 6

Conclusion

In many relevant scenarios that can be modeled with hedonic games, it is common that an agent
is part of more than one coalition at the same time, therefore allowing overlapping coalitions in
hedonic games is a straightforward generalization of the model of such games. We initiated the
study of hedonic games with overlapping coalitions, approaching these two appealing classes
of games. This work focused on one definition of core, but others may be considered as well
as non-cooperative stability concepts. We showed that for fractional hedonic games with over-
lapping coalitions represented by cycles and paths, forests, and bipartite graphs with perfect
matching, the core is non-empty. We also showed that for fractional hedonic games represented
by pseudoforests the core is non-empty. For symmetric additively separable hedonic games
with overlapping coalitions, we showed that the social welfare of any coalition structure is at
most the optimal social welfare of the game version without overlapping coalitions.

Next, we highlight some open problems. It is still unknown if for symmetric fractional
hedonic games there always exists an individually stable outcome. It would be interesting to
identify which are the classes of fractional hedonic games with negative valuations for which
Nash stable results exist. For simple FGHs represented by bipartite graphs that do not admit
perfect matching and with girth 4, it is still unknown whether the core is non-empty. There
are many classes of hedonic games with overlapping coalitions that can be analyzed to verify
the emptiness of the core, in particular, those for which the core is non-empty in the non-
overlapping version. We highlight in particular the class of FHGO represented by a graph with
girth at least 5. Following in this direction, it is interesting to verify whether, for a FHGO, the
core is non-empty if the core of the non-overlapping version is also non-empty.
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