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Resumo

Avanços na tecnologia digital aumentaram as capacidades de reconhecimento de eventos
por meio do desenvolvimento de dispositivos com alta resolução, pequenas dimensões fí-
sicas e altas taxas de amostragem. O reconhecimento de eventos complexos em vídeos
possui várias aplicações relevantes, particularmente devido à grande disponibilidade de
câmeras digitais em ambientes como aeroportos, bancos, estradas, entre outros. A grande
quantidade de dados produzidos é o cenário ideal para o desenvolvimento de métodos
automáticos baseados em aprendizado de máquina profundo. Apesar do progresso signi-
ficativo alcançado com as redes neurais profundas aplicadas a imagens, a compreensão do
conteúdo de vídeos ainda enfrenta desafios na modelagem de relações espaço-temporais.
Nesta dissertação, o problema do reconhecimento de ações humanas em vídeos foi investi-
gada. Uma rede de múltiplos canais é a arquitetura de escolha para incorporar informações
temporais, uma vez que se pode beneficiar de redes profundas pré-treinadas para imagens
e de características tradicionais para inicialização. Além disso, seu custo de treinamento
é geralmente menor do que o das redes neurais para vídeos. Imagens de ritmo visual
são exploradas, pois codificam informações de longo prazo quando comparadas a quadros
estáticos e fluxo ótico. Um novo método baseado em rastreamento de pontos é deesnvol-
vido para decidir a melhor direção do ritmo visual para cada vídeo. Além disso, redes
neurais recorrentes foram treinadas a partir das características extraídas dos canais da
arquitetura proposta. Experimentos conduzidos nas desafiadoras bases de dados públicas
UCF101 e HMDB51 mostraram que a abordagem é capaz de melhorar o desempenho
da rede, alcançando taxas de acurácia comparáveis aos métodos da literatura. Embora
os ritmos visuais sejam originalmente criados a partir de imagens RGB, outros tipos de
fontes e estratégias para sua criação são explorados e discutidos, tais como fluxo ótico,
gradientes de imagem e histogramas de cores.



Abstract

Advances in digital technology have increased event recognition capabilities through the
development of devices with high resolution, small physical dimensions and high sampling
rates. The recognition of complex events in videos has several relevant applications, par-
ticularly due to the large availability of digital cameras in environments such as airports,
banks, roads, among others. The large amount of data produced is the ideal scenario for
the development of automatic methods based on deep learning. Despite the significant
progress achieved through image-based deep neural networks, video content understand-
ing still faces challenges in modeling spatio-temporal relations. In this dissertation, we
address the problem of human action recognition in videos. A multi-stream network is
our architecture of choice to incorporate temporal information, since it may benefit from
pre-trained deep networks for images and from hand-crafted features for initialization.
Furthermore, its training cost is usually lower than video-based networks. We explore
visual rhythm images since they encode longer-term information when compared to still
frames and optical flow. We propose a novel method based on point tracking for decid-
ing the best visual rhythm direction for each video. In addition, we experimented with
recurrent neural networks trained from the features extracted from the streams of the
previous architecture. Experiments conducted on the challenging UCF101 and HMDB51
public datasets demonstrated that our approach is able to improve network performance,
achieving accuracy rates comparable to the state-of-the-art methods. Even though the
visual rhythms are originally created from RGB images, other types of source and strate-
gies for their creation are explored and discussed, such as optical flow, image gradients
and color histograms.
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Chapter 1

Introduction

In recent years, one of the main sources of new data has been video cameras. This
type of devices is widely available in all places presented as mobile devices, robotics
and video surveillance. Due to the significant growth of this type of data and rapid
technological advances, many video datasets have become available, allowing the research
and development of several applications oriented to video analysis in public, private and
restricted areas such as streets, banks and radioactive places, respectively. Therefore,
automatic procedures are needed to extract useful information from videos (spatial and
temporal) to analyze and make the best decisions.

The problem addressed in this work is the recognition of human actions in video
sequences [8,16,45,58,73,80,91], which aims to detect and identify actions of one or more
agents. It is a challenging task since the same action may vary according to the actor
and the scene may present difficult conditions, such as occlusions, background clutter
and camera motion. This problem has several relevant applications, such as intelligent
surveillance [33], human-computer interaction [27,63] and healthy monitoring [13].

Based on the taxonomy proposed by Goodfellow et al. [26], the approaches to this
problem can be categorized into two groups: (i) traditional methods [6, 56, 77, 92], where
the action representation is explicitly chosen and the action recognition is defined un-
der conventional machine learning algorithms, and (ii) representation-learning strategies
that explore machine learning techniques for both tasks. The latter includes shallow
approaches, such as dictionary-based methods [44, 55, 57, 83], and deep learning strate-
gies [33, 34,35,50,59,67].

The majority of current approaches that address this problem employ deep learning,
since it has shown to be a useful tool to generalize data in complex scenarios, achieving im-
pressive results in different computer vision problems (for instance, image classification).
However, the inclusion of temporal information may increase the number of parameters
in the network, leading to a significant increase in the training cost. Moreover, designing
spatio-temporal models brings a major issue: choosing a proper temporal extension that
encloses every possible action without compromising the computational cost. For this rea-
son, many recent deep learning proposals have explored hand-crafted inputs, such as opti-
cal flow images, in order to encode action dynamics. Image networks and fusion techniques
are used to process these inputs and capture temporal evolution [34,35,50,59,67,84,88].

In this work, we propose a three-stream architecture based on the two-stream one [67]
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that explores complementary modalities to recognize the action: RGB (Red-Green-Blue)
frames (spatial) and optical flow images (temporal). In our architecture, a third modality
called visual rhythm is used to provide dynamic information of the entire video for the
network. In addition, we modify the original spatial and temporal streams to incorporate
a temporal extension using Long Short-Term Memory (LSTM) networks.

1.1 Problem and Motivation

Video recognition involves its semantic understanding, which consists of labeling all ob-
jects, people and their events. In other words, it contains levels that are responsible for
particular objectives, such as object-level understanding (location of people and objects),
tracking (trajectories of objects), pose (parts of the human body) and activity (recognition
of human actions and events). These levels are of great importance due to the variety of
applications that each one offers. For example, the detection and tracking of objects can
be adapted to applications related to the analysis and behavior of pedestrians, which is to
detect the human agents present in a given video and analyze their movement patterns.
On the other hand, action recognition in real time with the help of video surveillance
cameras plays a very important role in the prevention and detection of actions that go
against the rules of certain places [2, 31].

Figure 1.1: Frame captured by a video-surveillance camera that shows two people in a
discussion. Extracted from [94].

Automatic video analysis is a challenging task. Similarly to image analysis, it requires
previous stages for the extraction and processing of its features by means of classification
techniques [21]. However, since a video is a sequence of several images, the two mentioned
tasks demand more sophisticated algorithms and approaches that are not only based on
the analysis of spatial information, but also use the temporal information contained in
each sequence of frames [31].

In the last few decades, in order to obtain effective predictions of human actions in
videos, many approaches and frameworks oriented to the construction of deep architec-
tures have been proposed, leaving aside the hand-crafted representations and traditional
video processing and classification techniques [31].

Motivated by the previous premise and inspired by a successful framework known as
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multi-stream convolutional neural networks [24, 87,88], we investigated a temporal infor-
mation representation and its influence as extra source of information in videos. The vi-
sual rhythm, as described in the following chapters, is a way to represent a video sequence
through an image, compacting the video information in order to be more representative
and easier to process it.

1.2 Research Questions

We drive our research through some investigative questions, considering the problem
of human action recognition in video sequences. Our main research questions are the
following.

• Is the visual rhythm representation a useful data source to train a deep learning
architecture?

• Is the spatio-temporal information extracted from the visual rhythm method useful
for the action recognition problem?

• Only one RGB frame per video is sufficient to train a spatial stream?

• Is the visual rhythm stream more/less discriminative than the optical flow and RGB
streams?

1.3 Objectives

This work aims to propose, implement and analyze the use of visual rhythms for human
action recognition in videos sequences. Based on the followed strategy and the need for a
large amount of data, we conducted experiments on two challenging datasets.

To be consistent with our goals, the following guidelines represent the focus of this
work:

• Evaluation of different methods for extracting visual rhythms.

• Investigation of spatio-temporal features from the visual rhythm data.

• Investigation of spatio and temporal information from RGB and optical flow images,
respectively.

• Evaluation of each individual stream1 trained with RGB, optical flow and visual
rhythm data and their contribution to the final result.

• Classification of human actions in video sequences.

• Comparison of the obtained results to state-of-the-art approaches.
1The word stream here is referred to as a convolutional neural network.
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1.4 Contributions

Even though the visual rhythm has been previously used in some image and video clas-
sification problems using hand-crafted representations (see Chapter 2 for more details),
this representation has not been yet explored with deep architectures.

In this work, we demonstrate the importance of visual rhythms as a source of spatial-
temporal information, achieving competitive results compared to the state of the art.
In this sense, we propose an innovative and robust visual rhythm method based on the
tracking of interest points of the video frames. In addition, we experiment with the
combination of convolutional neural network (CNN) and recurrent neural network (RNN)
architectures as feature extractor and classifier, respectively.

1.5 Text Organization

This text is organized as follows. In Chapter 2, we describe some relevant concepts and
approaches related to the topic of human action recognition in videos. In Chapter 3, we
present a brief description of the datasets used in our experiments, as well as the hardware
and software resources used in the development of the project. In Chapter 4, we describe
the proposed action recognition approaches. In Chapter 5, we report the experimental
results and a comparison against the state of the art. In Chapter 6, we conclude the
work with some final remarks and directions for future work. Finally, some bibliographic
references associated with the problem investigated in this dissertation are presented.
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Chapter 2

Background

This chapter presents some relevant concepts related to visual rhythm, optical flow, deep
learning and the problem under investigation in this dissertation. Due to the importance
of the visual rhythm representation in our work, the first section is dedicated exclusively
to its revision, based on its antecedents, previous works, origins and techniques used for
its construction. In the remainder of the chapter, we describe and discuss some concepts,
techniques and applications associated with optical flow (tracking of interest points in
videos), deep learning (types, architectures and transfer learning) and state-of-the-art
approaches to human action recognition in video sequences as a computer vision task.

2.1 Video Sequence Understanding and XT-YT slices

Nowadays, there are robust frameworks that allow computers to reach high levels of preci-
sion, even better than human performance in the image recognition task, such as standard
images that are presented in the ImageNet dataset (vehicles, musical instruments, flowers,
animals, among others) [19,29]. Furthermore, there are approaches that are even capable
of recognizing distorted images, demonstrating that some problems related to this task
can be better executed by a computer than by a human [20].

However, video recognition is a more complex task compared to the aforementioned
one, which requires an understanding of concepts such as three-dimensional geometry.
Therefore, a common way to represent a video sequence is through a 3D object (Fig-
ure 2.1(a)), varying in X, Y and T , where X and Y correspond to the spatial dimensions,
and T to the temporal dimension (number of frames). Nevertheless, based on previous
information, a video sequence will be defined in this work as a set of frames related to
each other (Figure 2.1(b)). This last part is very important because a video sequence can
only have a meaning or message as long as the spatial information of the frame i and i+1

are related, where i ∈ {0, 1, ..., T} (see two types of video sequences in Figure 2.1).
Similar to the previous idea, let X, Y and T be planes of the 3D object or video

sequence. Then, the XT and Y T slices are defined as a portion of this volume for a
certain z value in the Y or X plane for XT and Y T slice, respectively. That is, the XT
plane would have X along the T axis for a value z ∈ Y (Figure 2.2(b)), whereas the Y T
plane would have Y along the T axis for a value z ∈ X (Figure 2.2(c)). Therefore, we
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Figure 2.1: A video sequence can be considered as: (a) 3D object or (b) set of frames. In
the last one, assume that (b.1) and (b.2) are two video sequences of actions that contain
frames of red, green and blue types. Therefore, (b.1) has a set of frames related to
each other, because they belong to the same action (green type), thus generating a video
sequence with meaning or message, whereas (b.2) generates a meaningless video due to
its randomness of frames (red and blue types).

are able to create slices that contain spatio-temporal information in a two-dimensional
plane [77].

X axis

Y 
ax

is

Tim
e

(a)
z value

z 
va

lu
e

(c)(b)

X axis
Tim

e

Y 
ax

is

Tim
e

Figure 2.2: XT and Y T slices are the compression of a 3D volume in a 2D plane. (a) 3D
object, (b) XT slice with z ∈ Y axis and (c) Y T slice with z ∈ X axis.

Even though the temporal slices are a proper strategy for solving certain tasks related
to video analysis, such as human actions recognition (with static camera), abnormal event
detection, gesture recognition and face spoofing detection [66,77], Torres et al. [77] high-
lighted that it is necessary to satisfy two special assumptions in the video recording: (i)
static scenario and a moving camera and (ii) static camera recording objects in movement.

In this work, we demonstrated that, even going against such requirements, the spatio-
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temporal information provided by this technique can significantly benefit human action
recognition tasks in video sequences.

2.2 Visual Rhythm

This section briefly reviews some concepts, related approaches and techniques used for
the construction of two visual rhythm representations.

2.2.1 Literature Review

Since the beginning of the 1990s, there have been works that focused on the extraction
of spatial-temporal features from videos, looking for the compression of this to reduce
computational costs in its processing and analysis. A great variety of techniques have
been proposed for the aforementioned purpose, for instance, the extraction of slices of
a volume (video), also known as slices XT -Y T . Over the years, however, researches
have renamed this type of technique as visual rhythm due to the type of patterns that it
presents [52,66,77,93].

The concept of spatio-temporal slice was introduced by Ngo et al. [51,52]. It consists
of a set of predefined pixels sampled from a frame and arranged in a 1D image, e.g., a
fixed row or column per frame. The result of this technique is a 2D image obtained from
the concatenation of the slices over time. The authors proposed a method for locating
video transitions and classifying them as cut, wipe or dissolve, through the analysis of
vertical, horizontal and diagonal slices. This is possible because transitions in videos
generally results in boundary lines in the 2D image. The shots (i.e. a video segment
between two transition frames) are further subdivided according to the camera motion
also based on patterns found in spatio-temporal slices, but using horizontal and vertical
slices [53]. This way, by choosing proper slices, the resulting image may contain rich
patterns to detect and classify events in videos. The authors also argued that, compared
to other spatio-temporal features, the slices have the advantage of providing long-term
information instead of encoding only a few frames.

Yeo et al. [93] is one of the first works that described a way to reduce 3D volumes to
2D, creating direct current (DC) images from motion compensated P-frames and B-frames
of Moving Picture Expert Group (MPEG) compressed video.

Ngo et al. [52] proposed to use the temporal slices analysis in the detection of gradual
transitions, that is, for the detection of camera cuts, wipes and dissolves, reducing a video
segmentation problem to a image segmentation problem.

Almeida et al. [4] investigated a strategy for extracting visual rhythms to address the
task of video caption detection. They proposed to scan each frame through a certain curve
to produce a slice, demonstrating that their choice is simple and effective for detecting
captions in arbitrary orientations.

Pinto et al. [66] extracted the already known XT an Y T slices taking as a z value
the center of each pixel on the Y and X axes, respectively, to address the face spoofing
detection. They worked with the Fourier spectrum instead of directly handling the images
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in the spatial domain. Therefore, the visual rhythms contained data from the frequency
domain.

Almeida et al. [3] studied the fine-grained plant species identification based on encoding
time series as a visual rhythm, showing that their representation is compact and suitable
for long-term series.

Torres et al. [77] explored a methodology to extract a descriptor of features from
visual rhythms. They evaluated their proposal in three different tasks: abnormal event
detection, human action classification, and gesture recognition. It is worth mentioning
that they explored different strategies for obtaining visual rhythms, such as horizontal,
vertical, circular, zig-zag and random paths.

Although there is a considerable amount of researches that use of the analysis of
spatial-temporal features obtained through the extraction of processing of visual rhythms,
none of them used this source of information in deep architectures or deep learning in
general.

2.2.2 Construction

Let V = {F1, F2, · · · , Ft} be a video with t frames Fi, where each frame is an h×w matrix,
and P = {p1, · · · , pn} a set of 2D image coordinates. A spatio-temporal slice i is given
by the n× 1 column vector Si = [Fi(p1) Fi(p2) · · · Fi(pn)]T , with Fi(pj) representing the
RGB value of the point pj in the frame Fi. Then, the visual rhythm for the entire video
V following P is given by the n× t matrix:

VRP = [S1 S2 · · · St].

Figure 2.3 shows an example of visual rhythm construction, where each slice corresponds
to the central row of a frame. Considering the video as volume XY T , the resulting image
can be seen as a plane parallel to XT .

S1

Figure 2.3: Example of visual rhythm image generated for WallPushups class from
UCF101. The central row of each frame becomes a slice in the resulting image. Ex-
tracted from [17].

For encoding the entire information contained in the frames, we compute a visual
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rhythm image using the following modification [71]. Let pj = (yj, xj) be a point in P . We
define F ′i as:

F ′i (pj) =

∑
y Fi(y, xj)

h
(2.1)

for horizontal slices and
F ′i (pj) =

∑
x Fi(yj, x)

w
(2.2)

for vertical ones. In other words, F ′i (pj) is the mean intensity of the column (hor-
izontal) or row (vertical) corresponding to pj. Then, the modified slice Si becomes
Si = [F ′i (p1) F ′i (p2) · · · F ′i (pn)]T , as illustrated in Figure 2.4. Henceforth, we refer to these
rhythms using the mean intensity as horizontal-mean and vertical-mean visual rhythms.
For simplicity and for better visualization, we maintain the direction of the slices in the
horizontal-mean rhythm, this way the corresponding image will have the t× n dimension
instead of n× t.

Vertical-mean

Horizontal-mean

Figure 2.4: Modified spatio-temporal slice: the horizontal-mean/vertical-mean slice from
a given frame contains the average of the columns/rows. The slices were resized for
illustration purposes. Extracted from [17].

2.3 Optical Flow

The optical flow is the pattern of motion originated by the object or the camera, that is,
the relative motion between an observer and a scene (see Figure 2.5). This method seeks
to calculate this pattern between two consecutive frames through partial derivatives with
respect to spatial and temporal coordinates, that is, it is based on local approximations
of the Taylor series of the image signal [7, 22].

The optical flow technique operates under certain assumptions, such as:

1. the pixel intensities of an object do not change between consecutive frames.

2. neighboring pixels have similar motion.

Let I(x, y, t) a pixel in first frame, where t described the current frame. It moves by
distance (∆x,∆y) in the next frame after ∆t time. Since the value of the pixel is the



23

figs/optical_flow.pdf

Figure 2.5: Assume that images (a), (b), (c) and (d) video frames at times t, t+ 1, t+ 2
and t+ 3, respectively; (d) optical flow vector of the movement of an object in the video
sequence formed by the frames described previously (a ball in 4 consecutive frames).

same because it belongs to the same object (it was moved), we can define the value of
pixel I as Equation 2.3.

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.3)

Assuming that the movement will be small, we develop the Taylor series on the frame
I to obtain Equation 2.4. From this expression, Equation 2.5 is obtained, which is reduced
to Equation 2.6.

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t (2.4)
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δI

δx

∆x

∆t
+
δI

δy

∆y

∆t
+
δI

δt

∆t

∆t
= 0 (2.5)

fxu+ fyv + ft = 0 (2.6)

where fx, fy, ft are δI
δx
, δI
δy

and δI
δt

respectively (derivatives of the frame I) and ∆x
∆t

, ∆y
∆t

are
the x and y components of the velocity or optical flow of I.

The concept of optical flow has been applied to various fields, such as structure from
motion, video compression, video stabilization and object tracking. Thus, due to its broad
field of action, several methods based on partial derivatives of the image signal have been
proposed in the literature, however, the five most relevant are: Lucas-Kanade [48], Horn-
Schunck [97], Buxton-Buxton [32], Black-Jepson [7] and General variational methods [23].
The first one is used for the purpose of this work, therefore, it will be explored in the
following subsections in more details.

2.3.1 Lucas-Kanade Method

Lucas et al. [48] developed a differential method for optical flow estimation. It assumes
that, for local neighboring pixels, the flow is essentially constant (have similar motion) and
solves the optical flow equations, shown in the previous section, for the entire neighboring
using the least square criterion. For the first purpose, it is taken a 3 × 3 patch around
each point, obtaining 9 points (fx, fy, fr) with the same motion. Thus, the problem is
reduced to solving 9 equations with 2 variables (u, v).

Equation 2.7 shows the final solution obtained from Equation 2.6. Another important
detail is that this method is supported with the Harris corner detector, since corners are
interesting points to be tracked (see the inverse matrix in Equation 2.7).[

u

v

]
=

[∑
i fxi

2 ∑
i fxifyi∑

i fxifyi
∑

i fxi
2

]−1 [−∑i fxifti
−
∑

i fyifti

]
(2.7)

2.4 Deep Learning

Deep learning is a particular subset of machine learning methods using artificial neural
networks. This approach is inspired by the behavior and structure of neurons in the
human brain. Informally, the word deep refers to a large number of layers in a neural
network architecture, however, this meaning has changed over time. Many references
consider a network as deep without the need to use many layers.

Currently, there are many deep neural network architectures [47]. However, for the
purpose of this work, we have considered two of them: convolutional neural networks
(CNN) and recurrent neural networks (RNN) [39,96].

The basic concepts and mathematical representation of the CNN and RNN architec-
tures are described in the following subsections.
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2.4.1 Transfer Learning

Many works related to deep learning do not perform the training stage from scratch,
because the number of data is rarely sufficient. Instead, it is common to use pre-trained
networks with large amounts of data, such as ImageNet (it contains 1.2 million images
with 1000 categories) [62].

In summary, transfer learning is a very powerful deep learning technique that consists
in using prior knowledge of some previously trained network. This technique has many
applications in different domains [54].

Figure 2.6 illustrates two best known transfer learning strategies. The first one is to
freeze the weights of certain layers of the network and leaving the rest open to be retrained.
The second one is known as fine tune and consists of retraining the entire network by
making a simple modification on the last layer (softmax), because the number of classes
are not always the same.

Transfer 
Parameters

Input A

Input B

      Back - propagation

                                  Back - propagation

Task A

Task B

Frozen Weights

Fine-tuning

Figure 2.6: Transfer learning between two CNN architectures. The first one designed to
person detection, whereas the second is designed to face detection. For the first approach,
the back-propagation is performed only on the red boxes (layers). However, for the fine-
tuning approach, the entire network is retraining.

2.4.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a popular deep learning technique inspired by
the organization of the animal visual cortex. Similarly to all deep learning techniques,
CNN is very dependent on the size and quality of the training data [39].

A CNN consists of one or more convolutional layers with nonlinear activation functions,
pooling layers and one or more fully connected layers as in a standard multilayer neural
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network. The task performed by each layer is described as follows:

• convolution layer performs most of the heavy computational lifting. This layer is
responsible for the extraction of features in images or videos through filters and
convolution operators.

• pooling layer is a form of non-linear downsampling. This layer serves to progres-
sively reduce the spatial size of the representation in order to decrease the number
of parameters and amount of computation in the network and thus control the
overfitting.

• fully connected layer performs the high-level reasoning of the neural network.

CNNs usually use little pre-processing of data in compared to other approaches. This
means that the CNNs learn the filters, while other algorithms are hand-engineered.

To obtain a CNN architecture that is capable of dealing with input videos, a straight-
forward process is to simply replace 2D convolutions by 3D ones. These types of network
are strongly used to perform the extraction of features from images and videos, how-
ever, the processing of these types of data is very expensive and, therefore, requires great
computing power [33].
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Figure 2.7: The three most important processes of a CNN architecture: the red and blue
dotted boxes show the process of convolution and sub-sampling, respectively (both belong
to the feature learning phase), whereas the green box involves part of the classification
process (fully connected layers).
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Two-Stream Architecture

In the two-stream network developed by Simonyan and Zisserman [67], a single frame is
used to train the spatial stream and 10 pairs of consecutive optical flow images to train the
temporal one. Although dynamic information is relevant for action recognition, static and
context information such as actor poses, the objects involved and standard scenarios may
help distinguish the classes. A green grass field, for instance, may be a clue for actions
related to soccer games; a horse may help to recognize a horse riding action. For this
reason, even using a single video frame, the spatial stream alone is capable of achieving
good results.

Since spatial stream works with the same modality as image networks for classification
and has a comparable goal (appearance recognition), it is reasonable that it can be pre-
trained using image datasets such as ImageNet [62], followed by fine-tuning on the desired
video dataset. Surprisingly, experiments indicate that the same pre-training process may
be applied to the temporal stream [87].

The original network is based on AlexNet [39] (Figure 2.8). However, Wang et al. [87]
argued that deeper networks, such as VGG [68] and GoogLeNet [74], are preferable to
address our target problem, since the concept of action is more complex than object.
Here, we explore even deeper networks: ResNet152 [30] and Inception V3 [75]. For both
streams, the training data is augmented using random cropping, horizontal flipping and
RGB jittering. To avoid overfitting in very deep CNNs, two additional data augmentation
techniques were proposed by Wang et al. [87]: corner and multiscale cropping.

Figure 2.8: Two-stream architecture for video classification proposed by Simonyan and
Zisserman [67].

For testing, 25 frames/stacks of optical flow images are selected from each video and
used to produce 10 new samples per frame/stack by cropping and flipping techniques.
Each sample is individually tested in the corresponding stream. Finally, the class scores
computed in each CNN (softmax scores) are combined through a weighted average.
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Figure 2.9: Figure (a) shows an unrolled recurrent neural network, where Xi is some input
that outputs a value ht, whereas (b),(c) and (d) show a chuck of the basic RNN, LSTM
and GRU architectures.

2.4.3 Recurrent Neural Networks

In the last years, Recurrent Neural Networks (RNN) have proven to be a very powerful
technique for extracting temporal features in analysis and classification of videos, which is
complex to perform through traditional techniques. In essence, RNNs are neural networks
that employ recurrence. This architecture is able to learn tasks which involve short time
intervals between inputs, however, this memory usually becomes insufficient when dealing
with real-world problems (for instance, video sequences) and, like most neural networks,
the vanishing gradient problem is present.

In order to alleviate these problems, Gers et al. [25] proposed a specific recurrent
architecture, namely Long Short-Term Memory (LSTM). These networks use a special
node, called Constant Error Carousel (CEC), that allows for constant error signal propa-
gation through time [5]. A variation on the LSTM is the Gated Recurrent Unit (GRU),
introduced by Cho et al. [15]. Figures 2.9(c) and (d) show a chunk of these architectures,
respectively.

The following equations are the mathematical representation of the two previous
architectures mentioned, Equation 2.8 for LSTM and Equation 2.9 for RGU.

it = σ(Wi.[ht−1, xt] + bi)

C ′t = tanh(WC .[ht−1 + bC ])

Ct = ft ∗ Ct−1 + it ∗ C ′t
ot = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(2.8)
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zt = σ(Wz.[ht−1, xt])

rt = σ(Wr.[ht−1, xt])

h′t = tanh(W.[rt ∗ ht− 1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h′t

(2.9)
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Figure 2.10: Shows an unrolled Bi-directional recurrent neural network architecture, where
Xi is some input, that outputs a value ht.

Bi-Directional Recurrent Neural Networks

Bi-Directional Recurrent Neural Networks were introduced by Graves et al. [28] and basi-
cally consist of putting two independent RNN together. Nevertheless, the input sequences
are not fed the same way for both, that is, the first RNN receives the data in the original
order while the second one in the reverse, thus allowing both backward and forward in-
formation about the sequence. Finally, the output is the concatenation of both previous
outputs at each time step (Figure 2.10).

2.5 Human Action Recognition

In the Oxford Dictionary, action is defined as the fact or process of doing something,
typically to achieve an aim. and activity is a thing that a person or group does or has
done. However, in this work, the term action covers the two concepts mentioned above,
this to maintain a standard title of related works in the literature.

This section briefly reviews some concepts and related approaches to the human action
recognition problem.

2.5.1 Problem Definition

Videos have been used for many tasks in our daily lives, such as surveillance, health
monitoring, and entertainment. In general, a human operator has to constantly examine
video sequences to identify events of interest. However, this procedure is very time-
consuming and susceptible to failure. Moreover, an increasing amount of data has been
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produced and released every day, making the process sometimes impracticable. In many
real-world scenarios, video output is stored without any further processing due to the
massive amount of data involved. Therefore, automatic procedures are needed to extract
useful information from videos.

Although many studies have been conducted in the literature to recognize human
activities in video sequences, there is no generic methodology for solving the problem and
many questions remain open. Some challenges include the diversity of actions present
in the scenes, modeling spatio-temporal relations, understanding of interactions among
persons and objects, difficulties related to scene conditions such as occlusions, background
clutter, camera motion, lighting conditions, among other factors.

2.5.2 Literature Review

Before the use of Deep Learning techniques for the problem of human action recogni-
tion, several approaches based on traditional strategies using hand-crafted features were
developed. They basically have two main components: representation and classification
of actions. The action representation focuses on converting a video into a feature vector
that is subsequently used to perform the classification step. Traditionally, since these
two processes have been performed separately, there was a lack of end-to-end architec-
tures to address the problem, which is efficiently performed by most of the deep-learning
techniques [31].

Bobick [10] presented an approach based on the representation and recognition of
the actor movement during the performance of actions by encoding motion information
through a simple image. For this purpose, Motion Energy Image (MEI) and Motion
History Image (MHI) were employed, where MEI is a binary image that describes where
the movement occurs, whereas MHI shows how the image is moving. Due to the useful
contextual information extracted by MEI and MHI representations, many other works
based on this information were proposed. Tian et al. [76] extracted gradient from MHI to
filter out moving and cluttered background. Blank et al. [9] introduced a mechanism for
performing the volumetric extension of the MEI images. Weinland et al. [90] represented
MHI images through spatio-temporal volumes.

Local representation in images usually follows a point detection pipeline, that is, local
descriptor extraction and local descriptor combination. However, several works were pro-
posed to extend this approach to video sequences. Laptev [42] extended the Harris corner
detector to 3D Harris. Traditional 2D Harris corner detector focuses on finding spatial
locations in an image with significant changes in two orthogonal directions, whereas 3D
Harris approach identifies points with large spatial variations and non-constant motions.
Klaser et al. [37] proposed the 3D Histogram of Gradient Orientations (HoG3D) as a
motion descriptor, which is spanned to the spatio-temporal domain. Laptev et al. [44]
developed the Histogram of Optical Flow (HoF) as a spatio-temporal descriptor over lo-
cal regions. Dalal et al. [18] introduced the Motion Boundary Histogram (MBH), a more
robust extension of the HoF descriptor. Zhao and Pietikainen [98] proposed the Volume
Local Binary Patterns (VLBP), a extension of the Local Binary Pattern (LBP) descriptor,
where the main idea consists of encoding local volumes through the histogram of binary
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patterns.
Associated with action representation, various traditional action classifiers, such as

Support Vector Machine (SVM) [43], K-Nearest Neighbors (KNN) [9], were applied to rec-
ognize actions using the feature vector previously obtained. A Bag-of-Word (BoW) model
encodes the distribution of local motion patterns using a histogram of visual words [49].

Torres and Pedrini [77] explored these 2D images, referred to as visual rhythm [81], to
tackle three computer vision problems: abnormal event detection, human action recogni-
tion and hand gesture recognition. Visual rhythm is used to estimate object trajectories
throughout the video. Slices that capture leg motion, for instance, produce an interest-
ing braided pattern in actions as walking. For the action recognition problem, high-pass
filters are applied, followed by the selection of regions of interest (ROI) to keep only the
information relating to the trajectory. Since the representation process is entirely hand-
crafted, this approach belongs to the first group (traditional methods). In our method,
the sequence of hand-crafted processes that extract information from visual rhythm im-
ages are replaced by a 2D CNN (Convolutional Neural Network). Thus, the network
automatically learns relevant patterns to describe actions.

Most of the recent action recognition approaches employ deep learning since it has
shown to be a useful tool to generalize data in complex scenarios, achieving impressive
results in different computer vision problems, especially in image classification [14,30,39,
68]. According to Herath et al. [31], in general the main drawback of video networks
(that is, CNNs composed of 3D filters) is the rigid temporal structure. The architectures
usually require a fixed and small number of frames which does not take into account the
duration of the action. Moreover, the higher training cost of 3D extensions caused by
the number of trainable parameters and the absence of large video datasets compared to
image ones have led the researchers to explore image networks for videos.

In order to create a more sophisticated feature extractor, Tran et al. [78] proposed
an approach to spatio-temporal feature learning using 3D deep convolutional networks
(3D ConvNets) with a simple linear classifier. Such deep feature descriptor presents
important properties, such as generality, compactability, simplicity and efficiency. The
feature learned by a linear classifier can produce high performance on various video anal-
ysis tasks. The classification model consists of extracting features with 3D ConvNets
and inputs them to a multiclass linear SVM for training models. However, despite being
powerful in the extraction of features, the computational power required to perform this
approach is typically very expensive and lacks an end-to-end architecture for training.

Temporal information may be incorporated at different stages of the process. Several
works explore 2D CNN to capture only static information (frame-level feature extractor),
and incorporate motion in the fusion stage [34,35,59]. Other approaches use hand-crafted
inputs for early incorporation of the dynamics, achieving higher accuracies. The two-
stream network [67] is composed of two parallel CNNs individually trained, working with
different image modalities. The first one, the spatial stream, receives a single RGB frame
randomly sampled from the video representing appearance information. To capture mo-
tion information, the temporal stream has as input 20 stacked optical flow images, 10 for
each direction (horizontal and vertical). Although the combination of complementary in-
formation achieves promising results, the short temporal extension encoded in the inputs
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is once more an issue.
To consider longer temporal evolution, Ng et al. [50] repeated the feature extraction

process from the two-stream network [67] for several frames and stacks of optical flow
images on a given video. They considered two different feature aggregation methods:
pooling layers and LSTM (Long Short-Term Memory) cells. This architecture is capable
of processing up to 120 frames per video. A similar approach is proposed by Wang et
al. [88], however, for each input (RGB frame or stack of optical flow images) the network
outputs a preliminary prediction of the action classes instead of features. The predictions
are then fused using a segmental consensus function that does not impose temporal limits.

Song et al. [69] proposed an end-to-end spatio-temporal attention model from skeleton
data. Their work built a model using Recurrent Neural Networks (RNNs) with Long
Short-Term Memory (LSTM), which learns to selectively focus on discriminative joints
of skeleton within each frame of the inputs. The network is designed to automatically
select dominant joints through the spatial attention module and assign different degrees
of importance to different frames through the temporal attention module.

An alternative strategy consists in exploring additional long-term input modalities.
Wang et al. [84] proposed a three-stream network, adding a new stream to the network
from [67]. The third stream receives as input dynamic images that encode simultaneously
appearance and motion information along 20 consecutive frames. Compared to original
RGB and optical flow, it represents a long-term input and its inclusion improves network
performance. Here, we explore a longer-term modality, the visual rhythm, that encodes
information from the entire video in a single image, so the network has access to the
complete slice evolution at once to learn patterns. An important contribution of our work
is how to select proper slices that presents useful patterns for the 2D CNN.

Some more sophisticated works pre-trained their networks using the large Kinetics
dataset, which contains 400 human action classes and over 400 clips per class. Based on
the 2D ConvNets, Carreira et al. [12] introduced a new Two-Stream Inflated 3D ConvNet
(I3D), where pooling kernels and filters are expanded into 3D, making it possible to
learn spatio-temporal feature extractor from videos while leveraging well-known ImageNet
architectures and their parameters. Choutas et al. [16] introduced a novel representation
that encodes the movement of some semantic keypoints. They used human joints as
keypoints in a scheme known as pose motion (PoTion) representation. They extracted
heatmaps for the human joints from each frame and used a shallow convolutional neural
network to classify the actions. Popular deep models for action recognition in videos
generated independent predictions for short clips, which were then pooled heuristically to
assign an action label to the full video segment. Wang et al. [85] proposed discriminative
pooling based on the notion that, among the deep features generated on all short clips,
there is at least one that characterizes action. The method learned a hyperplane that
separates this unknown, yet discriminative, feature from the remaining parts.
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Chapter 3

Materials

In this chapter, we present the datasets used in the experiments to validate our results,
as well as the hardware and software resources employed in the implementation.

3.1 Action Datasets

Although there are many dataset available for this problem, only some have large amounts
of data that allow a proper training of deep networks (Table 3.1). In our experiments,
we used the two most challenging datasets, HMDB51 and UCF101, to evaluate the effec-
tiveness of our action recognition approach. However, despite there are other larger and
more varied dataset than the previous two, they were not considered due to the intensive
computing power required.

Datasets Year Videos Actions Modality Environment
KTH [64] 2004 599 6 RGB Controlled
Weizmann [9] 2005 90 10 RGB Controlled
INRIA XMAS [90] 2006 390 13 RGB Controlled
IXMAS [95] 2006 1,148 11 RGB Controlled
UCF Sports [61] 2008 150 10 RGB Uncontrolled
Hollywood2 [49] 2009 3,669 12 RGB Uncontrolled
UCF11 [46] 2009 1,100+ 11 RGB Uncontrolled
HMDB51 [41] 2011 7,000 51 RGB Uncontrolled
UCF50 [60] 2012 50 50 RGB Uncontrolled
UCF101 [70] 2012 13,320 101 RGB Uncontrolled
CAD-120 [38] 2013 120 10 RGB-D Controlled
Sports-1M [35] 2014 1,133,158 487 RGB Uncontrolled
YouTube-8M [1] 2016 8,000,000 4,716 RGB Uncontrolled
Kinetics [36] 2017 500,000 600 RGB Uncontrolled

Table 3.1: Most used datasets in the human action recognition problem in videos.

In the following subsections, we briefly describe each dataset, including details about
its number of classes and video clips.



34

3.1.1 UCF101 Dataset

UCF101 is a dataset of realistic action videos, collected from YouTube, with 13320 videos
from 101 action categories, each grouped into 25 groups, where each group can consist
of 4-7 videos of an action. The videos from the same group may share some common
features, such as similar background, viewpoint, etc.

The samples have a fixed resolution of 320×240 pixels, frame rate of 25 FPS (frames
per second) and various lengths. The dataset also includes recommended three splits,
where each of them contains approximately 70-30 for training and testing, respectively.
The validation protocol consists of evaluating each split individually, then the final result
is the average of the three. UCF has proposed a few datasets (UCF11 [46], UCF50 [60]
and UCF101 [70]) for human action recognition. UCF101 is an extended version of UCF50
and UCF11 [70]. Some examples are shown in Figure 3.1.

Figure 3.1: Frames of some videos from the UCF101 dataset. Extracted from [70].

3.1.2 HMDB51 Dataset

This dataset was collected from various sources, mostly from movies, and a small propor-
tion from public databases, such as the Prelinger archive, YouTube and Google videos.
The dataset contains 6849 clips divided into 51 action categories, each containing a min-
imum of 101 clips. The actions categories can be grouped in five types: General facial
actions, facial actions with object manipulation,general body movements, body move-
ments with object interaction and body movements for human interaction [40].

Since it combines commercial and non-commercial sources, it presents a rich variety
of sequences, including blurred videos or with lower quality and actions from different
points of views. The authors also provide a recommended three splits of the samples,
where each split contains 70 samples for training and 30 for testing per action class. The
validation protocol follow the same steps of the previous dataset. Some video clips are
shown in Figure 3.2.

3.2 Computational Resources

We used convolutional and recurrent neural network in several experiments conducted
in this work. Graphics processing units (GPUs) are suitable for performing operations,
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Figure 3.2: Frames of some videos from the HMDB dataset. Extracted from [40].

such as multiplication of matrices, which are carried out in the CNNs and accelerate the
process of training and testing of these types of architectures.

Our method is based on the PyTorch implementation of the very deep two-stream
network [87] provided by Zhu [101]. All experiments were performed on a machine
with an Intel R© CoreTM i7-3770K 3.50GHz processor, 32GB of memory, an NVIDIA
GeForce R© GTX 1080 GPU and Ubuntu 16.04.

Our adaptive visual rhythm approach was implemented in Python programming lan-
guage. The most important libraries used in the code development were Numpy, Scipy,
Scikit-Learn and OpenCV, which provided mechanisms for image processing, interest
point tracking, matrix manipulation, and generation of confusion matrices.
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Chapter 4

Proposed Action Recognition Method

In this chapter, we described the proposed methodology for action recognition in video
sequences [17]. Section 4.1 presents an overview of the methods, where each stage of
our two approaches are described, both focused on the adaptive visual rhythm (AVR)
representation. Section 4.2 reports the AVR in more details and explains how the rep-
resentation is built. Section 4.3 presents our multi-stream convolutional neural network,
highlighting the improvement over the spatial stream proposed by previous works [67,87]
and also describes all the used streams. Finally, Section 4.4 reports our LSTM stream
and the weighted average fusion used in both approaches.

For the human action recognition problem, two main sources of information to be
considered are spatial and temporal. Therefore, our methodology is focused on the ex-
traction and evaluation of both information. In addition, the spatio-temporal information
(visual rhythm representation) is explored and analyzed to demonstrate its importance
and effectiveness in the action recognition problem.

We implemented a method for human action recognition in videos based on deep
learning using CNN and RNN architectures in conjunction with hand-crafted techniques
for the pre-processing of the data (videos). This combination of two approaches have
been addressed more recently (traditional computer vision techniques with deep learning),
achieving levels of precision competitive to those of the state-of-the-art methods.

4.1 Methodology Overview

In this work, we propose two main approaches, the second based on the first one (see
the next subsections for more information). Figure 4.8 (seen later in the text) illustrates
the first one, which basically follows two main stages: one of them consists of fine-tuned
three CNNs (ResNet152 [30]/Inception V3 [75]) with RGB, optical flow and visual rhythm
images respectively, whereas the other is responsible for the fusion of their results (softmax
layers) through a weighted average strategy (see Section 4.3 and Section 4.2 for more
details).

Figure 4.13 (also seen later in the text) illustrates the second approach, that basically
is a extension of the first one. The three CNNs are trained in the same way, however, in
addition to that, the RGB and optical flow streams are used as feature extractors. Next,



37

the feature vectors obtained from the two previous streams are concatenated and used
as data to feed an RNN. Finally, the softmax layer of the RNN, optical flow and visual
rhythm streams are merged to obtain the final result through the same strategy of the
previous approach.

Despite having two slightly different approaches, the core of this work is based on
our adaptive visual rhythm. The use of this type of data as a source of spatio-temporal
information, along with our innovative proposal for CNN training of the visual rhythm
stream, demonstrates that this type of information is useful and complementary for the
well-known two-stream approach [67,87].

4.2 Visual Rhythms

This section describes the core technique explored in this work. This is a representation
that allows us to encode videos into images, facilitating the access to the spatio-temporal
information through patterns represented in these images.

4.2.1 Visual Rhythm Construction

As mentioned in the literature review (Section 2.2), there are two types of strategies for
the construction of visual rhythms, both focused on the creation of a row or column
from each frame of the video, but with slight differences. The first is based on the path
that must be tracked, such as horizontal, vertical, circular, zig-zag and random path (See
Figure 4.1), whereas the second one is more oriented to the selection of a small number of
pixels, such as diagonal pixels, and to the information compression, such as the choice of
a single row or column, or the average of the pixels of each of these ones (See Figure 4.2).

The base technique used in our proposal for the construction of the visual rhythm
is the compression of information, that is, for each frame i of the video sequence v, we
get a row or column ri = {pi,0, pi,1, pi,2, ..., pi,w}/ci = {q0,i, q1,i, q2,i, ..., qh,i}, where w, h are
the dimensions of the frame and pi,k/qk,i is the mean of all pixel values in column/row
k of frame i. This results in the visual rhythm image V Rr = {r0, r1, r2, ..., rt}/V Rc =

{c0, c1, c2, ..., ct}, which, from this point, it will be referred to as horizontal-mean and
vertical-mean, respectively, where t corresponds to the number of frames (See Figure 4.2).
It is worth mentioning that the resulting row/column i is the row/column i of the visual
rhythm image.

4.2.2 Resizing of Visual Rhythm Images

Resnet [30] and Inception V3 [75] are networks that have defined the dimensions of their
input images that are used for their training. Due to this fact, it is necessary to generate vi-
sual rhythm images that satisfy this requirement, in such a way that the information saved
by each one is maintained without losing details that may influence its pre-processing and
extraction of features.

As shown in Figure 4.1, one of the dimensions of the visual rhythm resulting from a
video depends on the number of frames it has, therefore, short videos in time may be a
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Figure 4.1: Examples of visual rhythm construction using the tracking a certain path,
such as (a) vertical, (b) horizontal and (c) circular.
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Figure 4.2: Examples of visual rhythm construction using the diagonal pixels and com-
pression of the information through the mean operation.

problem, since their dimensions do not satisfy the required size due to the small number
of frames. Let n′ × t′ be the required dimensions. In this work, we opted to replicate
(
⌊
t′

t

⌋
+ 1) times the first (t′ mod t) frames, and (

⌊
t′

t

⌋
) the remaining ones. In long videos,

we keep only the first t′ frames. This technique is performed before the visual rhythm
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calculation.

4.2.3 Analysis of Vertical-Mean and Horizontal-Mean Visual
Rhythms

Initially, multiple techniques for the creation of visual rhythm images were explored,
training Resnet [30] and Inception V3 [75] networks with these data. However, the results
showed higher precision levels using the vertical-mean and horizontal-mean visual rhythms
(see Section 5), where one was slightly higher than the other.

video

2D CNN 
(Resnet/Inception)

Vertical

Horizontal One at 
a time

two visual rhythms images

Figure 4.3: Horizontal-mean and vertical-mean visual rhythm images as a unique dataset.

Since both techniques presented the best results among all the others, we decided
to join their visual rhythm images generated as a single dataset for the training of the
aforementioned networks, that is, networks were trained with two different visual rhythm
images by video (horizontal-mean and vertical-mean) (Figure 4.3). This assumes that an
improvement would be obtained because there would be more than one type of information
and, therefore, more data to be used in the training stage. However, the results did
not improve, on the contrary, they worsened considerably, which led us to analyze the
individual behavior of these two techniques in order to enhance their precision rates.

Our first attempt to discover and understand their individual behavior was based on
simulating their creation using two possible videos composed of white background and a
black square figure that moves from left to right and down to up, respectively (Figure 4.4).
This was an important resource, because it showed us relevant information that could be
considered and a possible explanation of why it worsened the results by joining both data
for training.

By analyzing in Figure 4.4 two videos where the actor (black square) and background
(white) are the same or similar, but the direction of the movement is different, it is
possible to observe some interesting behaviors. For example, we can notice that, in the
horizontal-mean visual rhythm of both videos, a vertical movement predominates, that
is, there are small concatenated rectangles, where each one represents a line or column
(depending on the type of visual rhythm used) obtained from a video frame, where clearly
the displacement is more vertical than horizontal. The opposite occurs with the vertical-
mean visual rhythm. Then, when training a network with both data, this learns that,
regardless of the original direction of the actor in the video, it will have a vertical and
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(a) video (b) horizontal-mean (c) vertical-mean

Figure 4.4: Examples of modified visual rhythms for a white background video and a
black square figure that moves according to the direction of the arrows drawn next to it.

horizontal movement that is represented in the horizontal-mean and vertical-mean visual
rhythm images, respectively, which confuses it, so that the accuracy obtained is smaller
than individually.

An important question is to understand what would happen if, for the first and second
videos, we used as training data only the vertical-mean or horizontal-mean visual rhythm
image, respectively. We will revisit this issue in Subsection 4.2.4.

Figure 4.6 shows examples of horizontal-mean and vertical-mean visual rhythms for
TrampolineJumping and WallPushups classes from UCF101 dataset. It is worth men-
tioning that the predominant direction of the movement affects the resulting rhythm.
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(b) parallel movement

Figure 4.5: A moving object considering two consecutive frames and horizontal-mean
slices. Parallel movement is better captured in the slice.

From Figure 4.6, we mentioned the relation between the predominant movement and
the resulting rhythm. Consider a point pj ∈ P , the set {F ′1(pj), F

′
2(pj), · · · , F ′t(pj)} rep-

resents the variation in the average value regarding pj across the time and can be seen
in the columns/rows of the horizontal-mean/vertical-mean rhythm. If the mean value
remains constant in pj, the corresponding column/row will form a line with homogeneous
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(a) video (b) horizontal-mean (c) vertical-mean

Figure 4.6: Examples of modified visual rhythms for TrampolineJumping and Wall-
Pushups classes from UCF101 dataset. Red arrows indicate the predominant direction of
the action. Extracted from [17].

intensity. Assuming, without loss of generality, that we are working with horizontal-mean
slices. If a given object moves vertically (that is, orthogonally to the slice direction)
between two frames, it is very likely that the mean color of the corresponding column
remains the same (Figure 4.5). However, a horizontal movement affects the average color
of all columns spanned by the object. Therefore, movements parallel to the slice direction
tend to produce more distinctive patterns.

4.2.4 Adaptive Visual Rhythm

The previous subsection described why using both types of visual rhythms as a single
training dataset is not recommended. Therefore, in this subsection, we propose a tech-
nique that allows us to make a decision to generate the most appropriate visual rhythm
image for a video (horizontal-mean or vertical-mean visual rhythm image), based on the
direction of movement that is predominant.

Tracking
(track points of interest in the 

video)

video

  X   Y

  X

  Y

Amount of horizontal 
movement

Amount of vertical 
movement

X>Y

 Y>=X

Visual Rhythm

Figure 4.7: Construction process of the adaptive visual rhythm. Extracted from [17].
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As explained in subsection 4.2.3, Figure 4.4 clearly shows that the visual rhythm
image that best adapts to a video depends on the direction of the its most predominant
movement, that is, if the horizontal movement is greater than the vertical, the vertical-
mean visual rhythm will be the best choice, otherwise, the horizontal-mean visual rhythm
(Figure 4.7). Based on this observation, we propose a decision algorithm (Algorithm 1)
named Adaptive Visual Rhythm (AVR) to define only one visual rhythm direction for a
given video using the tracking of its interest points.

Algorithm 1 Decision(V)
Input Video V = {F1, F2, · · · , Ft}.
Output Visual rhythm direction {1: vertical-mean; 2: horizontal-mean}.
1: H ← 0 . Initialize the accumulated horizontal displacement.
2: V ← 0 . Initialize the accumulated vertical displacement.
3: Pa ← goodFeaturesToTrack(F1) . Find corners in F1.
4: for each Fi ∈ V − {F1} do:
5: Pb, St← PyrLK(Fi−1, Fi, Pa) . Pyramidal Lucas-Kanade point tracking.
6: Pa, Pb ← SelectGoodPoints(Pa, Pb, St) . Select good points

7: H ← H +
n∑
j=1

|Pb[j].x− Pa[j].x| . n = size of Pa.

8: V ← V +
n∑
j=1

|Pb[j].y − Pa[j].y|

9: Pa ← Pb
10: if H ≤ V then
11: return 1 . Vertical movement is predominant.
12: else
13: return 2 . Horizontal movement is predominant.

The AVR algorithm consists in estimating the total movement in each direction using
Lucas-Kanade vectors, such that the highest value defines the rhythm direction. First, the
function goodFeaturesToTrack() is used to extract Shi-Tomasi [65] interest points in the
first frame. It returns a set Pa containing the selected points. At each iteration, PyrLK()
tracks the reference points from Pa in the frame Fi, returning the corresponding points
Pb along with flags indicating if they were found in Fi. We use the pyramidal version [11]
of the Lucas-Kanade tracker [48]. The flags are used by the SelectGoodPoints() function
to filter out some points in Pa and Pb, keeping only the points that were found by the
tracker.

The absolute horizontal and vertical displacement given by Pa and Pb are accumulated
in two scalars H and V , respectively. The points from Pb become the reference for
the next search. Finally, H and V are compared to choose the most suitable visual
rhythm. We use the vertical-mean response if H ≤ V and horizontal-mean otherwise.
The goodFeaturesToTrack() and PyrLK() routines correspond to goodFeaturesToTrack()
and calcOpticalFlowPyrLK() from OpenCV. The method is depicted in Figure 4.7.
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4.3 Multi-Stream Convolutional Neural Network

Our network consists of three streams (Figure 4.8): (i) an improved spatial stream, (ii)
the temporal stream, and (iii) a new spatio-temporal stream. The inputs are, respectively,
two RGB frames per video (one at time), using a random choice in the first and second
halves of the video frames, a stack of optical flow images and a single visual rhythm image
computed from the video. Each stream is individually trained as proposed by Simonyan
and Zisserman [67] using the parameters from ImageNet training as initialization, ap-
plying a fine-tuning and all the training data is augmented using multiscale and corner
cropping [87] and random horizontal flipping.

Spatial Stream

two RGB frames

Temporal Stream

stacked optical flow

T=1 2D CNN

video

Spatio-temporal Stream

single visual rhythm image

2D CNN

2D CNN
Random 

choice in the 
1st and 2nd 

half

Optical flow 
algorithm

Decision 
algorithm Vertical

class 
score 
fusion

...

classes (softmax)

...

classes (softmax)

...

classes (softmax)

Horizontal

One at 
a time

Figure 4.8: Overview of our three-stream proposal for action recognition. Extracted
from [17].

Given a video, the output of each stream is a vector containing the softmax score for
every class. A weight is assigned to each softmax layer using a grid search in the train-
ing/validation set. Then, the class decision is obtained by applying a weighted average
strategy in the scores. Further details about the streams are given as follows.

4.3.1 Improved Spatial Stream

Despite the good results achieved by the original spatial stream exploring a single frame,
the appearance of the scene may change significantly during the time, either by scene
conditions as lighting and occlusions or by the variety of poses, objects and background
in the video (Figure 4.9). Therefore, a single appearance may not be sufficient to describe
the action, since the elements that characterize it may not be apparent in the frame. As
such, we collect two frames per video, using a random choice, to train the network: one
in the first half of the video and another in the second half.

Let V be a video with N frames. Indices i and j are random floating point numbers
returned in the range [0, 1) by means of the random() function in Equations 4.1 and 4.2,
respectively. These indices are used to select the corresponding frames in each half of the
video.
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Figure 4.9: Fragments from the UCF101 that show the significant variation in appearance
in the two halves of the videos. Each column contains a frame from the first and the second
half of the same video, respectively. The background changes in the first video, different
actors are present in each frame in the second one and the balls are not in the first frame
from the third video. Extracted from [17].

Finally, our spatial stream receives each of both frames at a time (Figure 4.10). As
mentioned previously, this approach is used to cover the possible variations produced
during the course of the video.

i = brandom() ∗ bN
2
c+ 1c (4.1)

j = bN
2
c+ brandom() ∗ bN

2
c+ 1c (4.2)

video 2D CNN
Random 

choice in the 
1st and 2nd 

half

One at 
a time

One RGB frames

2D CNNRandom 
choice 

versus
two RGB frames

Figure 4.10: Overview of our improved spatial stream versus the spatial stream of the
literature.

Testing protocol remains the same in our spatial stream: we use 25 frames evenly
sampled from each testing video, and 10 new samples are produced from them, derived
from data augmentation. Finally, all the computed outputs are combined through the
average of the scores to obtain the stream result.
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4.3.2 Temporal Stream

Since the temporal stream achieves great individual results, as reported in the works by
Simonyan and Zisserman [67] and Wang et al. [87], it remains the same in our architecture.
It consists of a CNN that receives 10 pairs of consecutive optical flow images in the form of
a 20-channel image (stack) for training. An overview of the temporal stream is illustrated
in Figure 4.11.

Similar to the spatial stream, 25 stacks of optical flow images were used for testing.
They were sampled from each video and used to produce 10 new samples per stack by
corner cropping (4 corners and 1 central crop) and horizontal flipping techniques. Each
sample is individually tested, and all the computed outputs are combined through the
average of the scores to obtain the stream result.

stacked optical flow

video

2D CNNOptical flow 
algorithm

Figure 4.11: Overview of the temporal stream of the literature.

4.3.3 Spatio-Temporal Stream

Our spatio-temporal stream is very similar to the spatial stream, that is, it consists
of a CNN that receives a single grayscale image. We consider two main approaches to
computing our input: horizontal-mean and vertical-mean slices, following the modification
given by Equations 2.1 and 2.2. Nevertheless, the final input is obtained through the
decision algorithm proposed in Subsection 4.2.4. An overview of our spatio-temporal
stream is illustrated in Figure 4.12.

2D CNN

video

single visual rhythm image

Decision 
algorithm Vertical

Horizontal

Figure 4.12: Overview of our spatial-temporal stream.

As mentioned previously, this spatial-temporal stream was explored with multiple
types of visual rhythm, showing better results our innovative proposal of adaptive visual
rhythm. These results are presented and analyzed in Chapter 5.
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4.4 Multi-Stream Convolutional and Recurrent Neural
Network

As mentioned in the beginning of the chapter, this approach is an extension of the first
one, where the main contribution or core of the work remains the adaptive visual rhythm.
In addition, RNN is integrated into the first approach in order to take advantage of its
ability to preserve sequential information in its hidden states.

An overview of our three-stream network is shown in Figure 4.13. Similar to our
previous approach, it contains three deep CNNs working with different modalities: RGB
(spatial), optical flow (temporal) and AVR (spatio-temporal) and each CNN is pre-trained
in ImageNet dataset and independently fine-tuned with its corresponding modality. How-
ever, the trained spatial and temporal CNNs are frozen and used as feature extractors
(without the fully connected layer) to feed an LSTM network. This combination of spa-
tial, temporal and LSTM networks represents the first stream of our architecture and is
referred to as LSTM stream. Further details about this strategy are given in the following
subsections.

...
S

iz
e 

= 
20

48

...

RNN

Feature vectors

...
S

iz
e 

= 
20

48

S
iz

e 
= 

40
96

Spatial Stream

two RGB frames

Temporal Stream

stacked optical flow

T=1

video

Spatio-temporal Stream

single visual rhythm image

Random 
choice in 

the 1st and 
2nd half

Optical flow 
algorithm

Decision 
algorithm Vertical

Horizontal

One at 
a time

class 
score 
fusion

...

classes (softmax)

...

classes (softmax)

...

classes (softmax)

2D CNN

2D CNN

2D CNN

Figure 4.13: Overview of our CNN-RNN multi-stream proposal for action recognition.

4.4.1 LSTM Stream (RGB + Optical Flow)

The LSTM stream is composed of three different networks: two parallel CNNs for spatial
and temporal information, and one LSTM. Each network is trained separately. The main
premise of the spatial CNN is that the appearance of the scene may help to distinguish
the classes. A green grass field, for instance, may be a clue for actions related to soccer
games; a horse may help to recognize the horse riding action. Therefore, in the training
step, two RGB frames are extracted per video: one in the first half of the video and
another in the second half, both randomly chosen. The CNN receives one of those frames
at a time. However, by presenting two samples taken at different positions of the video,
we are able to capture variations in appearance such as different background that may be
characteristics of certain actions.
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After the training steps, these networks are frozen and used to generate feature vectors.
For the spatial CNN 25 frames per video are used, which are selected every A frames of N
in total ({F1, FA, F2×A, ..., F25×A}), where A = N

25
, and Fi represents the ith frame. The

same approach is used to select the first 25 frames of each stack for the temporal stream,
in other words, from each frame Fi, this one with the next 9 frames are stacked. We
decided to take this number of frames per video in order to have a uniform distribution
and thus not overlook frames that may have relevant information.

In both CNNs, the fully connected layer is not considered and thus the size of the
outputs is 2048. Each pair of vectors generated for a RGB and corresponding stack are
concatenated and used to train the LSTM.
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Figure 4.14: Overview of our innovative LSTM stream.

For network training, multiple configurations of parameters were explored, such as:
sequence length, input size, hidden size, number of layers, dropout and number of epochs.
The best configuration was: 4, 1024, 124, 1, without dropout and 200 epochs, respectively,
that is, each feature vector of size 4096 was divided into 4 chunks (sequence length) of
sizes 1024 each (input size), which are sequentially passed to the network. Then, N × 25

is the total number of feature vectors that are independently passed as input data, where
N is the number of videos for the training stage (Figure 4.14).

The test stage follows the same sequence of steps as the training and are also considered
25 samples per video. However, the final result is the average of their softmax vectors,
thus obtaining only one of them per video.

4.4.2 Weighted Average Fusion

In the testing stage, the three weights for softmax fusion were defined through a grid search
strategy. For each weight, we tested every value from 0.5 to 10 with a 0.5 step. The best
combination for the first and second approach is 3 for temporal, 2 for spatial/LSTM and
1 for spatio-temporal stream (Figure 4.15).
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Figure 4.15: Overview of our weighted average fusion technique.
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Chapter 5

Experiments

Results obtained with our experiments are described in this chapter. Two datasets are
used to evaluate the effectiveness and precision of our two proposed architectures. Both
were chosen due to their complexity and amount of data, as described in the previous
chapter (Table 3.1 shows a summary of the most commonly used datasets most used in
the human action recognition problem in video sequences). This chapter is organized into
three sections. The first describes experiments of several visual rhythm representations
and compares their results with our proposal (AVR). The second one presents the experi-
ments and results obtained with our two proposed architectures. Finally, we compare our
results to those of the state of the art.

In this work, as mentioned in the previous chapter, we adopt the ResNet152 [30]/In-
ception V3 [75] as CNN architectures for the three streams. We train the spatial and
temporal stream using the same strategy provided by Wang et al. [87] and we follow the
temporal stream strategy for the spatio-temporal one.

The first three sections are divided as follows: tables that show individual results
(for each split and final results) with both networks mentioned before, comparison of
individual results and, finally, a bar graph that shows the accuracy rates obtained for
each action class present in the videos.

5.1 Visual Rhythms

In the first experiment, we compare five different approaches to the spatio-temporal stream
separated from the other streams. The results are shown in Tables 5.1, 5.2 and 5.3. The
first three approaches consider, respectively, one horizontal-mean, one vertical-mean and
diagonal image as input; in the fourth one, the input is a stack of both images, that is, a
2-channel input; the fifth approach consists of our adaptive method, so the input image
is taken according to the direction of the video calculated in Algorithm 1, described in
the previous chapter. Figures 5.1 and 5.2 show visual rhythm and optical flow images
extracted from the UCF101 dataset.

Tables 5.1 and 5.2 show the individual results in more details, where the results are
presented for each split. It is possible to observe that split 2 is slightly higher than the
others in most cases and our AVR approach has the best results in all splits.
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Figure 5.1: First row, from top to bottom, shows some videos of the UCF101 dataset
that belong to the Typing class. The second, third and fourth row exhibit visual rhythm
images obtained from the horizontal-mean, vertical-mean and diagonal strategies.

Table 5.1: Individual results for ResNet152.

Approach (Visual Rhythm)
UCF101 HMDB51

Split 1 Split 2 Split 3 Average Split 1 Split 2 Split 3 Average

Horizontal-mean 62.12 62.51 61.04 61.89 35.95 37.32 33.14 35.47
Vertical-mean 53.40 54.87 53.35 53.87 29.92 30.41 30.03 30.12
Diagonal 59.08 59.78 56.42 58.43 33.38 34.12 30.76 32.75
Stacked previous approaches 50.65 50.83 48.22 49.90 28.76 30.04 29.82 29.54
Adaptive Visual Rhythm 64.13 64.38 63.23 63.91 38.56 39.80 39.48 39.28

Table 5.3 reports the final results for each approach, where clearly our AVR approach
presents superior results compared to the others. It is worth mentioning that the combi-
nation of both directions at the same time (third approach) achieves the lowest accuracy
rates, even compared to the individual ones. This means that, although each video is bet-
ter represented by a specific direction, the presence of the second one has an adverse effect
on the performance. This observation is reinforced by the adaptive results, since it im-
proves the performance using only one chosen direction per video. In addition, Table 5.3
shows that, for this stream, Inception V3 works slightly better than ResNet152.
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Figure 5.2: Videos of the UCF101 dataset with their respective optical flow images below
each of them.

Table 5.2: Individual results for Inception V3.

Approach (Visual Rhythm)
UCF101 HMDB51

Split 1 Split 2 Split 3 Average Split 1 Split 2 Split 3 Average

Horizontal-mean 61.93 62.02 63.15 62.37 36.15 34.92 35.65 35.57
Vertical-mean 55.18 57.17 53.12 55.16 29.38 31.24 30.18 30.27
Diagonal 59.31 56.28 58.74 58.11 33.18 32.31 33.92 33.14
Stacked previous approaches 50.60 48.15 47.22 48.65 29.12 29.88 30.21 29.74
Adaptive Visual Rhythm 65.24 63.85 65.12 64.74 39.35 39.08 40.46 39.63

Figures 5.3 and 5.4 show bar graphs that help us better understand the results obtained
for each class. From Figure 5.3, corresponding to the results for the HMDB51 dataset,
it is observed that no class is predicted with accuracy of 100%, however, only 3 of them
are below 10%. Another fact to notice is that the results are not well distributed, that is,
some classes have very high or very low accuracy rates. Similarly, Figure 5.4 shows that
no class is predicted with accuracy of 100% for the UCF101 dataset, however, only 1 is
below 20% and most of them are above 40%. The results are not well distributed either.

Figure 5.1 shows some examples of visual rhythm images for the Typing class of the
UCF101 dataset. In this set of images, we can notice an interesting behavior: different
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Table 5.3: Results and comparison of different approaches used to create the visual
rhythms.

Approach (Visual Rhythm)
ResNet152 Inception V3

UCF101 HMDB51 UCF101 HMDB51

Horizontal - mean 61.89 35.47 62.37 35.57
Vertical - mean 53.87 30.12 55.16 30.27
Diagonal 58.43 32.75 58.11 33.14
Stacked previous approaches 49.90 29.54 48.65 29.74
Adaptive Visual Rhythm 63.91 39.28 64.74 39.63

approaches show similar patterns for videos of the same class, which is a great advantage
of training our convolutional neural network since, thanks to it, our network can associate
these patterns in common for their respective classes in a more effective way.

Figure 5.3: Bar graph for the accuracy obtained for each class of the HMDB51 dataset
using our adaptive visual rhythm.

5.2 Multi-Stream Architectures

This section describes the experiments and respective results obtained with our two pro-
posed architectures.



53

Figure 5.4: Bar graph for the accuracy obtained for each class of the UCF101 dataset
using our adaptive visual rhythm.

5.2.1 Approach 1

The results of the second experiment are shown in Tables 5.4, 5.5, and 5.6, which is fun-
damental to understand the importance of each stream individually. RGB* corresponds
to our improved spatial stream and RGB to the original one. For the visual rhythms, we
report the best approach (AVR) from Table 5.3.

Concerning the two spatial approaches, the proposed stream (RGB*) outperforms the
original (RGB), since it collects more appearances from each video. Similar to the other
multi-stream networks [67, 87], the temporal stream achieves the best results among the
four strategies. It is followed by RGB*, RGB and AVR, in this order. This justifies
the set of weights found with grid search strategy (Subsection 4.4.2). We can also see
in this table that Inception V3 presents superior results than ResNet152 in the spatial
and spatio-temporal streams, especially for the HMDB51 dataset, however, the opposite
occurs in the temporal stream for UCF101 dataset.

Table 5.9 reports the accuracy rates of every combination for the three streams: im-
proved spatial, temporal and spatio-temporal. Note that RGB* + AVR and optical flow
+ AVR outperform individual RGB* and optical flow. Thus, AVR provides complemen-
tary information for the network by encoding long-term dynamics. The worst results
were achieved by the combination of two temporal features (optical flow + AVR), sug-
gesting that appearance is very relevant for the recognition task. The combination of the
three streams outperforms the others, therefore, all the three features contribute to the
recognition process.
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Table 5.4: Individual results for ResNet152.

Single-Stream
UCF101 HMDB51

Split 1 Split 2 Split 3 Average Split 1 Split 2 Split 3 Average

RGB* images 85.65 85.94 86.72 86.10 46.08 47.06 44.71 45.95
RGB image 85.57 86.15 85.93 85.88 44.27 43.37 43.99 43.88
Optical flow 85.28 88.38 87.91 87.19 57.45 58.10 60.00 58.52
AVR 64.13 64.38 63.23 63.91 38.56 39.80 39.48 39.28

Table 5.5: Individual results for Inception V3.

Single-Stream
UCF101 HMDB51

Split 1 Split 2 Split 3 Average Split 1 Split 2 Split 3 Average

RGB* images 86.73 86.50 86.61 86.61 54.58 51.37 49.35 51.77
RGB image 85.83 86.35 86.08 86.09 52.71 51.12 48.45 50.76
Optical flow 86.04 87.44 87.36 86.95 59.67 60.52 59.54 59.91
AVR 65.24 63.85 65.12 64.74 39.35 39.08 40.46 39.63

Table 5.6: Results and comparison of the individual results (streams).

Single-Stream
ResNet152 Inception V3

UCF101 HMDB51 UCF101 HMDB51

RGB* images 86.10 45.95 86.61 51.77
RGB image 85.88 43.88 86.09 50.76
Optical flow 87.19 58.52 86.95 59.91
AVR 63.91 39.28 64.74 39.63

Table 5.7: Results for RGB*, optical flow and adaptive visual rhythm stream fusion for
ResNet152.

Multi-Stream
UCF101 HMDB51

split1 split2 split3 Average split1 split2 split3 Average

RGB* + AVR 90.64 90.26 90.54 90.48 59.74 57.31 58.30 58.45
RGB* + optical flow 93.29 93.60 93.31 93.40 64.88 63.08 65.12 64.36
optical flow + AVR 87.92 87.40 87.90 87.74 64.06 64.41 64.13 64.20
RGB* + AVR + optical flow 93.79 94.81 94.30 94.30 67.58 68.43 68.95 68.32

Figure 5.5 and 5.6 show the bar graphs for the HMDB51 and UCF101 datasets, re-
spectively. In the first we can note that all the classes are above 20% and the most of
them above 60%. In the second one, a important detail to observe is that almost half
reach 100% of accuracy and all are above 70%. Both bar graphs show that the result are
not well distributed.
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Table 5.8: Results for RGB*, optical flow and adaptive visual rhythm stream fusion for
Inception V3.

Multi-Stream
UCF101 HMDB51

split1 split2 split3 Average split1 split2 split3 Average

RGB* + AVR 90.91 90.79 90.52 90.74 63.86 59.87 60.20 61.31
RGB* + optical flow 93.16 92.60 93.06 92.94 68.10 65.31 65.88 66.43
Optical flow + AVR 89.12 89.62 88.95 89.23 65.62 65.49 65.24 65.45
RGB* + AVR + optical flow 93.87 93.55 93.80 93.74 70.96 70.00 68.97 69.98

Table 5.9: Results for RGB*, optical flow and adaptive visual rhythm stream fusion.

Multi-Stream
ResNet152 Inception V3

UCF101 HMDB51 UCF101 HMDB51

RGB* images + AVR 90.48 58.45 90.74 61.31
RGB* images + optical flow 93.40 64.36 92.94 66.43
Optical flow + AVR 89.74 64.20 89.23 65.45
RGB* image + AVR + optical flow 94.30 68.32 93.74 69.98

Figure 5.5: Bar graph for the accuracy obtained for each class of the HMDB51 dataset
using our three-stream approach 1.

5.2.2 Approach 2

Tables 5.10, 5.11 and 5.12 show the results for our third experiment conducted on the
UCF101 and HMDB51 datasets using ResNet152 and Inception V3. The results obtained
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Figure 5.6: Bar graph for the accuracy obtained for each class of the UCF101 dataset
using our three-stream approach 1.

individually for the spatio-temporal (AVR) and temporal stream are not exhibited since
they are the same of the previous experiments (Subsection 5.2.1). The first rows of each
table correspond to the LSTM stream. The following four rows show the results of all
possible combinations using the previous three stream.

Table 5.10: Results for stream combination using the ResNet152.

Modality
UCF101 HMDB51

split1 split2 split3 Average split1 split2 split3 Average

LSTM 88.18 91.54 91.80 90.50 63.27 63.79 62.55 63.20
LSTM + optical flow 91.09 92.47 93.24 92.27 65.36 65.36 65.95 65.56
LSTM + AVR 91.67 92.42 93.26 93.45 67.39 66.60 68.63 67.54
Optical flow + AVR 87.79 91.48 90.07 89.78 62.88 64.71 65.23 64.27
LSTM + optical flow + AVR 92.76 94.19 93.99 93.65 69.61 70.13 69.93 69.89

In both experiments, LSTM+ optical flow and LSTM+AVR presented similar results.
However, since with both networks the worst combination was the optical flow + AVR,
we can infer that the context information provided by the RGB frames are relevant to
recognize the action instead of using only temporal modalities.

Although our LSTM stream obtains significantly better results than the other two,
its weight in the fusion process is smaller than the temporal stream, but larger than the
spatio-temporal (Figure 4.15). However, the combination of the three streams allows us
to achieve in the UCF101 dataset a considerable improvement of 3% in the best individual
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Table 5.11: Results for stream combination using the Inception V3.

Modality
UCF101 HMDB51

split1 split2 split3 Average split1 split2 split3 Average

LSTM 90.53 91.76 92.01 91.43 63.82 64.33 64.20 64.12
LSTM + optical flow 92.20 93.11 93.18 92.86 65.82 64.91 66.15 65.63
LSTM + AVR 91.91 92.78 93.43 92.71 67.52 67.42 68.93 67.96
Optical flow + AVR 89.12 90.64 90.31 90.02 63.11 64.93 65.18 64.41
LSTM + optical flow + AVR 93.75 94.98 94.78 94.50 69.82 70.45 70.01 70.09

result (LSTM) and almost 2% in the best pair (LSTM + AVR and LSTM + optical flow)
and 6% and 3%, respectively, in the HMDB51 dataset.

Table 5.12: Results for RGB*, optical flow and adaptive visual rhythm stream fusion.

Modality
ResNet152 Inception V3

UCF101 HMDB51 UCF101 HMDB51

LSTM + optical flow 92.27 65.56 92.86 65.63
LSTM + AVR 93.45 67.54 92.71 67.96
Optical flow + AVR 89.78 64.27 90.02 64.41
LSTM + optical flow + AVR 93.65 69.89 94.50 70.09

An important detail to notice here is that the LSTM + AVR combination obtains
superior results than any other pair in most of the experiments (three out of the four
results). This may be due to the fact that our LSTM stream already contains temporal
information from optical flow images.

Unlike the first approach (Subsection 5.2.1), the bar graph for the HMDB51 dataset 5.7
shows that more than one class reach the accuracy of 100%, however, similarly to it, all
the classes are above 20%. On the other hand, the bar graph for the UCF101 dataset
(Figure 5.8) shows the same behavior as the previous approach, reaching almost half of
the classes accuracy of 100% and all above 70%.

5.3 State-of-the-Art Comparison

After reporting and analyzing the results obtained in both datasets, we compare our
accuracy rates to state-of-the-art approaches in Table 5.13. An important detail must be
mentioned before comparing our results: the methods use different pre-training strategies.
Some of them are not based on deep networks, so they do not have a pre-training step.
Concerning the remaining methods, one group is pre-trained on the ImageNet dataset,
whereas the others use the ImageNet and Kinetics. The approaches pre-trained with
both have an advantage over those trained only on ImageNet, since the Kinetics is one of
the largest and most varied dataset for the action recognition problem, generating more
effective networks. However, it is difficult to use due to the intensive computing power
required.
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Figure 5.7: Bar graph for the accuracy obtained for each class of the HMDB51 dataset
using our three-stream approach 2.

Figure 5.8: Bar graph for the accuracy obtained for each class of the UCF101 dataset
using our three-stream approach 2.
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Table 5.13 shows that our second approach is slightly better than the first one, achiev-
ing 94.5% and 70.1% in the UCF101 and HMDB51 datasets, respectively, both trained
over the Inception V3 network and pre-trained with the ImageNet. However, the most
recent approaches pre-trained with ImageNet + Kinetics reach approximately 97-98% on
UCF101 and 78-82% on HMDB51, outperforming our best results in up to 3.7% and 12%
in each dataset, respectively. Nonetheless, the best results of the approaches only trained
with ImageNet are 94.6% on UCF101 and 70.4% on HMDB51, placing us as the second
best result in this group. Therefore, our method achieves competitive results against other
methods available in the literature.

Table 5.13: Comparison of accuracy rates (%) for UCF101 and HMDB51 datasets. Cells
on bold represents the overall highest accuracies, whereas underlined cells consist of the
best results using only ImageNet to pre-train the network.

Method Pre-training Dataset UCF101 HMDB51

iDT + HSV [55] — 87.9 61.1
Two-Stream [67] ImageNet 88.0 59.4
Two-Stream + LSTM [50] ImageNet 88.6 —
Two-Stream TSN [88] ImageNet 94.0 68.5
Three-Stream TSN [88] ImageNet 94.2 69.4
Three-Stream [84] ImageNet 94.1 70.4
TDD + iDT [86] ImageNet 91.5 65.9
LTC + iDT [82] — 92.7 67.2
KVMDF [100] ImageNet 93.1 63.3
STP [89] ImageNet 94.6 68.9
L2STM [72] ImageNet 93.6 66.2
Two-Stream I3D [12] ImageNet+Kinetics 98.0 80.9
I3D+PoTion [16] ImageNet+Kinetics 98.2 80.9
DTPP [99] ImageNet+Kinetics 98.0 82.1
SVMP + I3D [85] ImageNet+Kinetics — 81.3
R(2+1)D-TwoStream [79] Kinetics 97.3 78.7
Our method 1 (ResNet152) ImageNet 94.3 68.3
Our method 1 (Inception V3) ImageNet 93.7 69.9
Our method 2 (ResNet152) ImageNet 93.6 69.9
Our method 2 (Inception V3) ImageNet 94.5 70.1
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Chapter 6

Conclusions and Future Work

In this work, we addressed an investigation based on multi-stream convolutional neural
network approaches applied to the action recognition problem. We proposed two multi-
stream architectures. The first is composed of an improved spatial stream, a temporal
stream and a spatio-temporal stream, whereas the second one is composed of the second
and third streams previously mentioned and an LSTM stream, which is the result of the
fusion of the two first streams of our previous approach.

Our improved spatial stream uses twice as many samples as proposed in the original
to capture variations in the appearance information, achieving superior results. The in-
put of the spatio-temporal stream is defined through a new decision algorithm based on
point tracking that estimates the predominant direction in each video. We referred to
this method as Adaptive Visual Rhythm (AVR). Our experiments showed that the AVR
approach outperformed fixed-direction approaches and provided complementary informa-
tion for the network, so that such technique was the core of the two proposed approaches.
We also demonstrated that our methods achieved fairly competitive results compared to
state-of-the-art approaches on two challenging datasets.

The visual rhythm method provided spatio-temporal information that is very useful
to create representative patterns that are shown through an image. This type of infor-
mation can be used as a data source to train deep learning architectures. This is an
additional stream in the well known two-stream CNN, providing complementary informa-
tion that helped us improve previous results and reaching competitive results compared
to approaches available in the literature. Moreover, the confusion matrices (shown as bar
graphs) provided us a better comprehension of the individual results for each action class,
offering new opportunities for addressing the weaknesses of our architecture in future
approaches.

The visual rhythm proved to be a powerful representation to reduce a video into an
image, creating a compact and rich source of spatio-temporal information. However, there
are several strategies for the visual rhythm image construction, each one used to train
a VR stream of our multi-stream architecture. The AVR approach was the best way to
train the spatio-temporal stream, achieving results clearly superior to the other methods.

The visual rhythm images presented certain patterns that are very similar to videos
of the same class, which allowed us to create models capable of achieving a high level of
accuracy and also improving the overall results when combined with other models trained



61

with other types of information (RGB and optical flow). Even though the individual
results did not surpass others, each stream contributed enormously to the final result,
providing insightful ideas about the relevance of spatio-temporal features for video analysis
problems.

Based on these conclusions, we are able to answer the research questions described in
Chapter 1:

• Is the visual rhythm representation a useful data source to train a deep learning
architecture?
Answer: Although it is the core of our work, individual results after training a deep
learning architecture with this type of data did not show a very good performance.
This is due to the restriction of the amount of data available, since we obtain only
a VR image for each video sequence. A possible solution would be to create more
than one VR image using small segments of a video. Longer videos would also aid
the VR construction process. Another issue is the complexity of the videos due to
their low resolution and unstable background.

• Is the spatio-temporal information extracted from the visual rhythm method useful
for the action recognition problem?
Answer: As well as some other methods mentioned in the literature review (Chap-
ter 2), our approach showed that the spatio-temporal information is complementary
and an important source of data for video analysis tasks. Spatial or temporal infor-
mation individually is not sufficient to explored the relations between them, making
necessary the use of representations that contain both information in a single type
of data, such as the VR images.

• Only one RGB frame per video is sufficient to train a spatial stream?
Answer: Although some previous works of the literature employ a single frame in
spatial stream, our work showed that additional frames (two in our case) can be a
better choice since the background and actors may vary over time.

• Is the visual rhythm stream more/less discriminative than the optical flow and RGB
streams?
Answer: According to our experiments carried out using the weighted average fusion,
the visual rhythm stream is the least important, but essential, contributing a few
percentage points to the final results. On the other hand, the temporal stream is
the most important.

As directions for future work, we intend to use the ImageNet and Kinetics datasets to
pre-train each CNN, as well as take advantage of attention modules for LSTM training.
Additionally, from Figure 5.8, we noticed that only five classes in the UCF101 dataset
achieved results below 80%. Therefore, in a following work, we plan to analyze the content
of these classes to explore potential weaknesses of our architecture and thus improve it.
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