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RESUMO 

No âmbito do gerenciamento dos resíduos sólidos, os resíduos da construção civil (RCC) 

representam um dos maiores desafios para o poder público, devido ao grande volume e altas 

taxas de geração, principalmente em municípios de médio e grande portes. Os RCC possuem alto 

potencial de reutilização e reciclagem, no entanto, tais práticas são incipientes no Brasil, sendo a 

disposição final em aterros a principal alternativa de gerenciamento adotada pelos municípios. 

Nesse contexto, o objetivo deste estudo consistiu em avaliar o desempenho ambiental do 

gerenciamento dos RCC nos municípios representativos das Bacias Hidrográficas dos Rios 

Piracicaba, Capivari e Jundiaí, localizados no Estado de São Paulo, por meio da Avaliação do 

Ciclo de Vida, a partir da abordagem atribucional. Todas as etapas do sistema de gerenciamento 

dos RCC conduzidas pelo poder público municipal foram consideradas e, os impactos ambientais 

potenciais foram avaliados por meio das metodologias CML baseline (v3.03) e Impact 2002+ 

(v2.12). Os resultados obtidos por ambas metodologias evidenciaram a importância dos impactos 

evitados provenientes dos materiais recuperados, principalmente àqueles advindos da reciclagem 

do metal ferroso, do vidro e dos plásticos. Em específico, a metodologia CML baseline indicou 

a categoria de impacto “Toxicidade Humana” como a mais importante, principalmente devido 

aos impactos evitados da reciclagem do metal ferroso e dos impactos gerados de todas as etapas 

de transporte do sistema de gerenciamento dos RCC. Por outro lado, a metodologia Impact 2002+ 

indicou as categorias de impacto “Efeitos Respiratórios Inorgânicos” e “Aquecimento Global” 

como as mais importantes, devido aos impactos evitados da reciclagem do metal ferroso e dos 

impactos gerados da etapa de transporte dos resíduos sólidos para o aterro. Na fase de 

interpretação, a análise de sensibilidade consistiu na avaliação de cenários alternativos para o 

gerenciamento da fração mineral e, na análise do efeito da variação de alguns parâmetros, como 

o transporte, composição do RCC e modelagem das emissões da disposição dos resíduos em 

aterro. Os resultados demonstraram as vantagens ambientais do aumento das taxas de reciclagem 

em conjunto com a melhoraria da qualidade dos agregados reciclados e, revelaram que 

determinadas variações na composição dos RCC podem afetar significantemente os resultados; 

desse modo, o controle do fluxo de resíduos é fundamental para a determinação do desempenho 

ambiental do sistema de gerenciamento dos RCC. 

  

PALAVRAS-CHAVE: resíduos da construção civil; avaliação do ciclo de vida; fração mineral; 

reciclagem; gerenciamento.  



 

 

 
 

ABSTRACT 

In the context of solid waste management, the construction and demolition waste (C&DW) 

represents one of the greatest challenges for the public authorities, mainly due to the large volume 

and high generation rates, especially in medium and large-sized municipalities. C&DW has high 

potential for reuse and recycling, however, such practices are incipient in Brazil; therefore, the 

final disposal in landfill consists the main management alternative adopted by the municipalities. 

In this context, this study evaluated the environmental performance of the C&DW management 

in the area of Piracicaba, Capivari and Jundiaí Watershed, located in the São Paulo State, Brazil, 

by means of an attributional Life Cycle Assessment. The entire C&DW management under the 

responsibility of the municipal government was considered. The potential environmental impacts 

were assessed by using two specific life cycle impact assessment methodologies, CML baseline 

(v3.03) and Impact 2002+ (v2.12). The results obtained by both methodologies highlighted the 

importance of the avoided impacts from recovered materials, mainly those related to steel, glass 

and plastics recycling. In particular, the CML baseline indicated “Human Toxicity” as the most 

important category, mainly due to the avoided impacts from steel recycling and the generated 

impacts from transportation in all the C&DW management stages. The Impact 2002+ highlighted 

instead the role of the categories of “Respiratory Inorganics” and “Global Warming”, in 

accordance with the results related again to steel recycling and transportation but also to 

landfilling of solid residues. In the interpretation, the sensitivity analysis consisted of the 

evaluation of alternative scenarios for the mineral fraction management and, in the analysis of 

the effect of the variation of some parameters, such as the transportation, C&DW composition 

and landfill modelling. The results highlighted the environmental advantages of increasing 

recycling rates along with improving the quality of recycled aggregates and, revealed that 

variations in the C&DW composition may significantly affect the results, which suggests that the 

control of the waste stream is fundamental to determine the environmental profile of the C&DW 

management system. 
 

KEYWORDS: construction and demolition waste; life cycle assessment; mineral fraction; 

recycling; management. 
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1 
 

 

INTRODUCTION 

The construction industry is an important sector of the global economy, mainly 

because of its infrastructure works and the potential of job creation, which have great influence 

in the development of a country. On the other hand, this sector needs special attention regarding 

its environmental aspects, mainly those related to the natural resources consumption and solid 

waste generation. 

In 2014, 45 billion tonnes of natural aggregates were consumed, accounting for 

about 70% of the world's total mineral production. In the same year, 741 million tonnes were 

consumed in Brazil (ANEPAC, 2015). Despite the abundance of natural aggregates reserves in 

Brazil, there are economic and environmental constraints that influence the relation between 

the quantity of existing reserves and those that are reasonably available for use. For instance, 

the low price of the natural aggregates demands reducing the distance between the extraction 

site and the consumer market; it is estimated that extraction sites should be located at a 

maximum distance of 100 km from the consumer market to ensure the economic viability. From 

the environmental point of view, the natural aggregates production generates noise and air 

pollution, landscape degradation, depletion of natural resorces, among others environmental 

impacts (LA SERNA; REZENDE, 2009). 

In addition to the high resource consumption, the activities of construction, 

renovation and demolition generate large amounts of wastes, which comprise a serious 

environmental problem in many countries. In 2017, the Brazilian municipalities collected about 

45 million tonnes of construction and demolition waste (C&DW), which means a generation 

rate of 0.6 kg/inhabitants/day. In fact, the generation is even higher, since this amount refers 

only to the C&DW managed by the municipalities, not including wastes from large generators, 

such as building contractors (ABRELPE, 2018). 

The C&DW is composed mostly by mineral fraction (ceramic components, mortar, 

concrete, soil, and others), which has a high potential for reuse and recycling as aggregates, 

when properly segregated (CARNEIRO et al., 2001; JOHN, 2001; MARQUES NETO, 2003; 

BLENGINI; GARNARINO, 2010; SINDUSCON-SP, 2015). The Brazilian standards provide 



24 

 

 

 

the requirements for the use of recycled aggregates in the production of non-structural concrete 

and as material for base, subbase and subgrade reinforcement of roads (ABNT, 2004a; 2004b). 

Currently, it is estimated that less than 20% of the C&DW generated in Brazil are recycled for 

utilisation in rural road maintenance and, as base and subbase material in road construction 

(ABRECON, 2015); the remaining C&DW are sent to inert landfills, reused as backfill material 

or disposed in illegal areas. 

The main reasons of the low recycling rates are the absence of public policies that 

encourage the recycled aggregates consumption along with the lack of technical knowledge of 

the consumer market on the use of recycled aggregates (MIRANDA, 2005; ABRECON, 2015). 

Moreover, the high content of impurities in C&DW, resulting from mixing the mineral with the 

non-mineral fraction (metals, plastics, paper and paperboard, glass, hazardous materials, etc.), 

impairs the quality of recycled aggregates, reducing their price and market acceptance 

(ABRECON, 2015; BORGUI; PANTINI; RIGAMONTI, 2018). 

The CONAMA Resolution nº 307/02 divides the C&DW generators into small and 

large, and the municipalities define  the criteria for their classification. Usually, small generators 

are defined as those that generate less than 1 tonne of C&DW per day and, large generators 

those that generate more than 1 tonne of C&DW per day. In this sense, this Resolution 

determines that both generators are responsible for the C&DW management, but, the 

municipalities must provide infrastructures for receiving, sorting and temporary storage of 

small volumes of C&DW and, at the same time, encourage and supervise the proper 

management of the C&DW from large generators (BRASIL, 2002). It is important to note that 

about 70% of the C&DW generated are from small constructions, renovations and demolition 

works; and the remaining are from formal construction and demolition sector (SÃO PAULO; 

SINDUSCON, 2012). 

Despite the existence of legal requirements on C&DW (BRASIL, 2002; 2004; 

2010; 2011a; 2012a; 2015), due to the scarcity of technical and financial resources, as well as 

lack of supervision by the environmental agencies (SCREMIN; CASTILHOS JUNIOR; 

ROCHA, 2014), most Brazilian municipalities often adopt corrective measures in the C&DW 

management, resulting in high costs for public cleaning systems and environmental impacts 

related to the illegal waste disposal (MARQUES NETO, 2009). 

In order to improve this scenario, the municipalities must develop and implement  

a C&DW Management Plan in accordance with the requirements of CONAMA Resolutions 

(BRASIL, 2002; 2012a) and National Solid Waste Policy (BRASIL, 2010), taking into account 
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a reliable diagnosis of the local characteristics and peculiarities. After the publication of 

CONAMA Resolution nº 307/2002, several studies have been conducted to assist the municipal 

C&DW management (TAVARES, 2007; VEIGA, 2008; MARQUES NETO, 2009; 

BRÖNSTRUP, 2010; CÓRDOBA, 2010; SILVA, 2010; CALDAS, 2016; LOCH, 2017; 

VARGAS, 2018), providing a set of data on C&DW generation and composition of a specific 

region as well as suggesting management strategies to the policy makers. 

In this context, it is important to analyse the environmental impacts resulting from 

the proposed strategies for solid waste management. This analysis requires systematic methods 

of collecting and comparing data, which must be interpreted in an appropriate way to be useful 

in the decision making process. Life Cycle Assessment (LCA) is one of the most appropriated 

methodology to obtain a reliable quantification of environmental impacts of a product or 

service, and has been used to evaluate solid waste management systems (CLIFT; DOIG; 

FINNVEDEN, 2000; MCDOUGALL et al., 2001; SANER; WALSER; VADENBO, 2012; 

LAURENT et al., 2014; BOVEA; POWELL, 2016). 

The LCA methodology allows to determine the environmental profile of the current 

C&DW management system and the comparison with other alternatives, providing results that 

may be used to justify investments in new technologies, to indicate the waste flow that must be 

sorted and sent to reuse or recycling, as well as, to quantify the environmental benefits (avoided 

impacts) obtained from these practices (CLIFT; DOIG; FINNVEDEN, 2000; COLTRO, 2007; 

CLEARY, 2009; LAURENT et al., 2014a). 

The LCA studies applied to C&DW management are increasing, especially from 

2010 to date, and they have been developed to verify the environmental impacts of end-of-life 

of buildings (COELHO; BRITO, 2012; ZAMBRANA-VASQUEZ et al., 2016; VITALE et al., 

2017), compare the benefits of recycled aggregates versus natural aggregates (MARINKOVIC´ 

et al., 2010; FALESCHINI et al., 2016; ROSADO et al., 2017), determine the environmental 

impacts of recycling processes (MERCANTE et al., 2012; COELHO; BRITO, 2013; 

LOCKREY et al., 2018), and analyse the environmental profile of C&DW management 

systems (ORTIZ; PASQUALINO; CASTELLS, 2010; BUTERA; CHRISTENSEN; ASTRUP, 

2015; PENTEADO; ROSADO, 2016; HOUSSAIN; WU; POON, 2017; DI MARIA; 

EYCKMANS; ACKER, 2018; BORGHI; PANTINI; RIGAMONTI, 2018; 

YAZDANBAKHSH, 2018). 

In accordance with a literature review of 222 LCA studies applied to evaluate the 

environmental performance of solid waste management systems (LAURENT et al., 2014a), 
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only two studies have been developed in Brazil, both elaborated by Mendes, Armaki and Hanaki 

(2003; 2004) and, only three are specific on C&DW management. In addition, a literature 

review of 80 LCA studies applied to C&DW management published until 2014 (BOVEA; 

POWELL, 2016), only one study refers to the Brazilian context, developed by Condeixa, 

Haddad and Boer (2014). Although the increase of Brazilian theses and dissertations related to 

LCA, only few studies are focused on solid waste management (PASQUALI, 2005; 

FERREIRA, 2009; DMITRIJEVAS, 2010; PETROLL, 2010; PAES, 2013; BARRETO, 2014; 

ROSADO, 2015; ZAPPE, 2016), of which, only four refers to C&DW management 

(PASQUALI, 2005; FERREIRA; 2009; BARRETO, 2014; ROSADO, 2015). 

Considering the existence of few LCA studies applied to C&DW management at 

municipal level, both in the international and Brazilian context, there is no consolidated 

methodological approach related to this type of study. Thus, the main motivation of this study 

was to develop a LCA model to evaluate the environmental profile of the C&DW management 

system in a municipality or in a set of municipalities. For this, the following hypothesis was 

verified: "the LCA methodology allows the analysis of the current environmental profile of the 

municipal C&DW management system and its comparison with alternative scenarios, in order 

to provide guidelines for the decision making process on the municipal management level". 

In order to verify the hypothesis, the municipalities of Piracicaba, Capivari and 

Jundiaí Watershed (PCJ Watershed), located in the São Paulo State, were defined as the object 

of study. Particularly, a watershed was selected since it can be considered an appropriate spatial 

scale to assess the impacts of current urban occupation (MINISTÉRIO DAS CIDADES, 2004). 

The PCJ Watershed is an organizational model for the other watershed committes, and 

represents 0.18% of the Brazilian territory, 2.7% of the population and 6% of the GDP (Gross 

Domestic Product) (COBRAPE, 2011). 
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1.1 AIM OF THE STUDY 

The overall objective of this study is to evaluate the environmental performance of 

the construction and demolition waste (C&DW) management in the municipalities of 

Piracicaba, Capivari and Jundiai (PCJ) Watershed, located in the State of Sao Paulo, Brazil. 

The Life Cycle Assessment (LCA) methodology was used to evaluate the environmental 

performance of the current C&DW management and alternative scenarios. The specific goals 

are: 

 To gather data about the current C&DW management system in the PCJ 

Watershed; 

 To select the representative municipalities according to the C&DW generation; 

 To identify and quantify the environmental burdens of the C&DW management 

of the selected municipalities in order to elaborate the Life Cycle Inventory; 

 To evaluate the potential environmental impacts of the current C&DW 

management systems of the selected municipalities and alternative scenarios; 

 To recommend potential measures to improve the management system of the 

C&DW from small generators. 

1.2 THESIS STRUCTURE 

This thesis is structured in six chapters. This first chapter presents an overview 

about the research topic, justification and main objectives of the study. 

Chapter 2 presents the literature review about C&DW, including its characteristics 

and the current management system adopted by the Brazilian municipalities. In addition, this 

chapter presents a set of studies focused on C&DW management in the international and 

Brazilian context. Finally, it presents a content about watershed as planning unit for solid waste 

management.  

Chapter 3 comprises a literature review about Life Cycle Assessment (LCA), 

including the origin of this methodology and its four main stages (goal and scope definition, 

life cycle inventory, life cycle impact assessment and interpretation). This chapter also presents 

the main studies about LCA applied on C&DW management. 

Chapter 4 refers to the methodology used in this study, which is composed by three 

main steps: (i) selection of the representative municipalities from Piracicaba, Capivari and  

Jundiaí Watershed; (ii) collection of primary data, and (iii) the methodological stages of the life 

cycle assessment study, namely “Goal and scope definition” and “Life cycle Inventory”. 
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Chapter 5 presents the “Life Cycle Impact Asssessment” and “Interpretation” 

stages. In addition, it comprises the discussion of the results and some recommendations of 

potential improvements on the management system of the C&DW from small generators. 

Finally, Chapter 6 presents the conclusions and suggestions for future research.  

The Appendixes include the supplementary materials that support the data 

presented throughout the study. 

It is worth to note that the main results, discussion and conclusions of this thesis 

have been published in Rosado et al. (2019). The articles and conference proceedings related 

to this doctoral thesis, published or submitted, are listed in the final part.  
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 CHAPTER 

 

2 
 

 

CONSTRUCTION AND DEMOLITION WASTE 

The construction industry is one of the most important sectors of the global 

economy, being considered crucial to the economic growth of a nation. This sector accounts for 

about 5% of total GDP (Gross Domestic Product) in developed countries, while in developing 

countries it accounts for more than 8% of GDP. It is expected a great growth of the construction 

industry in the upcoming years (WE FORUM, 2016), with estimated revenues of $15 trillion 

by 2025, and three countries (China, United States and India) accounting for 57% of the global 

growth (GCP GLOBAL, 2015). 

In Brazil, it was estimated that the investments in construction achieved 

approximately R$ 592 billion in 20161, which is equivalent to 9.3% of the GDP in the same 

year. In that period, the construction activities employed 12.5 million people, representing 

13.7% of the total number of employees in the country (CONSTRUBUSINESS, 2016). 

In recent years, institutional changes have contributed for increasing public and 

private investments in urban development in Brazil, such as reinstatement of the housing 

financing system (Law 10.931/2004); regulatory framework for sanitation (Law 11.445/2007) 

and National Policy on Urban Mobility (Law 12.587/2012). The Federal Government Program 

“My Home My Life” is one example of Brazilian initiatives, which aimed to deal with the 

international economic crisis and reduce the housing deficit. However, the years of 2015 and 

2016 were recognized by the scarcity of public investments in housing financing 

(CONSTRUBUSINESS, 2016). 

In this context, Brazil still requires meaningful investments in urbanization 

(housing, sanitation and mobility) and infrastructure (energy, transport and 

telecommunications). Therefore, according to data from Construbusiness (2016), the main 

demands of investments in infrastructure in Brazil are: (i) building of 8.810 million houses, 

between 2017 and 2022, in order to assist the new families, eliminate substandard housing and 

the housing deficit; (ii) installing 8.184 million new water connections and 9.951 million new 

                                                           
1 1 R$ = US$ 0,26 (exchange rate obtained in 12th April, 2019). 
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sewage connections, between 2016 and 2022, to provide water distribution for 95% of the 

houses and sewage collection for 80% of the houses; (iii) investing R$ 684.5 billion in 

infrastructure, of which about 60% for the transport sector, 15% for the electric energy sector, 

18% for the mineral production and 7% for the telecommunications . 

These investments present a clear benefit for the life quality of people, however, 

construction activities have economic, environmental and social impacts, which must be 

minimized during the planning phase. Thus, the use of new technological tools should be 

encouraged, such as Building Information Model (BIM) and 3D printers, which can increase 

productivity, reduce project delays, improve construction quality and working conditions, as 

well as minimize environmental impacts, in terms of the rational use of resources, reduction of 

waste generation, among other aspects (WE FORUM, 2016). 

Apart from the need of investment and technical capacity, one of the main barriers 

to the application of novel tools is the conservative approach of the construction industry. In 

comparison to many other industries, the construction has been slow in the technological 

development, not presenting sudden changes in its processes and in efficiency improvements. 

Considering the representativeness of this sector, it is important to apply new technologies of 

the digital space, since a small improvement can bring substantial benefits to the society. For 

example, 1% rise in construction productivity worldwide could save $ 100 billion a year (WE 

FORUM, 2016). 

In the environmental context, the construction industry is responsible for huge 

impacts, mainly in terms of natural resources consumption, air pollution and solid waste 

generation (BRIBIÁN; CAPILLA; USÓN, 2011; YUAN et al., 2012; UNEP GEAS, 2014; 

VITALE et al., 2017). This sector is the largest global consumer of resources and raw materials 

(about 3 billion tons of raw materials per year are used to manufacture building products 

worldwide), and constructed objects account for 25-40% of the world’s total carbon emissions 

(WE FORUM, 2016; 2018). 

With regard to the construction and demolition wastes (C&DW), it has been 

estimated a generation of 858 million tons in Europe in 2014 (representing 34.7% of the total 

waste generated) (EUROSTAT, 2017) and, an annual generation of 2,360 million tons in China, 

between 2003 and 2013 (ZHENG et al., 2017). In the United States, this type of waste accounts 

for 26% of the total non-industrial solid waste produced, and only 20 to 30% of all C&DW is 

reused or recycled (Figure 1), mainly because buildings are designed and built in a way that 

does not enable the selective demolition, which would allow the recovery of large amounts of 
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recyclable materials, such as steel, wood and concrete (ELLEN MACARTHUR 

FOUNDATION, 2013). 

The high C&DW generation represents a significant loss of resources around the 

world. Therefore, to make the construction industry more sustainable, it is important to consider 

the principles of closed-loop circular design (Figure 2), and incorporate them into their product 

portfolio and business models (ELLEN MACARTHUR FOUNDATION, 2013; WE FORUM, 

2016). As an example, since 2015 there is a project named “Buildings as Material Banks” 

(BAMB), composed by 15 partners from 7 European countries, which are working to enable a 

systemic shift in the building sector. Two main tools have been developed to increase materials 

recovery and reuse: “Materials Passports” is a database on product/materials characteristics 

and, “Reversible Building Design” is a source of information on how dismantle buildings while 

preserving the quality of the components for further use (APELMAN; HENROTAY; 

CORNET, 2016; BAMB, 2018). 

 

Figure 1. Data on C&DW generated and recovered in 

United States. 
 Figure 2. Circular economy principles 

in the construction value chain. 

 

  

 
Source: adapted from Ellen MacArthur Foundation (2013).  Source: Dobson (2017). 

 

2.1 CONSTRUCTION AND DEMOLITION WASTE 

In Brazil, the construction and demolition waste is defined as those arising from the 

construction, renovation and demolition of civil works, including those resulting from the 

preparation and excavation of land (BRASIL, 2002; 2010). C&DW has been classified into four 

classes, in order to enable their proper management (Table 1). In addition, Chapter 17 of 

Brazilian Solid Waste List (BRASIL, 2012b) has been used for a more detailed classification. 
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Table 1. Brazilian classification of construction and demolition waste. 

Class Definition Examples 

A 
Materials that may be reused or recycled as 

aggregates 

Ceramic components (bricks, blocks, tiles, 

etc.), mortar, concrete, soil from 

earthworks, and others 

B Other recyclable materials 

Plastic, paper, cardboard, metals, glass, 

wood, empty containers of paints1 and 

gypsum  

C 
Materials for which economically feasible 

recycling technologies do not exist 

Cardboard packaging containing 

cementitious materials, sealants, neoprene 

plastics, fiber reinforced plastics, and 

others2 

D 
Hazardous wastes from the construction 

processes 
Paints, solvents, oils, resins, and others 

Notes: 1Empty containers of paints should contain only a dry film of paint, without the accumulation of liquid 

paint residue (BRASIL, 2015). 2Examples based on São Paulo (2014a). Sources: Brasil (2002; 2004; 2011 and 

2015).  

 

In accordance with the last report published by ABRELPE (Brazilian Association 

of Public Cleaning and Special Waste Companies), the Brazilian municipalities collected about 

45 million tonnes of C&DW in 2017, which represent a decrease of 0.1% compared to 2016. 

This report has been elaborated based on data from a questionnaire answered by the 

municipalities, and the results comprise an estimate about the C&DW collected by the 

municipalities mainly from illegal disposal, not including C&DW from demolitions and 

constructions collected by private companies (ABRELPE, 2018). 

Figure 3 shows the C&DW collected from 2011 to 2017. The increase between 

2012 and 2013 may be justified by the implementation of economic measures, such as tax 

reduction of some construction materials, expansion of housing loans, especially the “My Home 

– My Life” Program, and the increase of resources provided by the Growth Acceleration 

Program (MONTEIRO FILHA; COSTA; ROCHA, 2010). In recent years, the C&DW 

generation is stable as consequence of the economic retraction. Figure 4 highlights the 

difference of per capita C&DW collected among the Brazilian regions in 2017, which is related 

to economic development. 
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Figure 3. C&DW collected by Brazilian 

municipalities from 2011 to 2016. 

Figure 4. Per capita C&DW collected by 

Brazilian municipalities in 2017. 

  
Sources: Abrelpe (2012; 2013; 2014; 2015; 2016; 

2017; 2018). 

Source: Abrelpe (2018). 

 

The last version of “Municipal Solid Waste Management Report” (SNIS, 2018) 

comprises data on 3,670 municipalities, which represents 65.9% of the total and 84% of the 

urban population. Table 2 lists the quantity of C&DW collected by (i) the municipalities; (ii) 

the private transport services contracted by the generators and, (iii) the generators with their 

own cars, small trucks or other devices. There is an inconsistency between both documents 

(ABRELPE and SNIS), since they comprise data from a sample of Brazilian municipalities, 

gathered by different methodologies, along with the lack of reliable data about C&DW 

management. 

 

Table 2. Quantity of C&DW collected by the municipalities (tonnes), private service and own generators 

in 2016, and the representativeness of São Paulo State (%). 

 Municipalities Private service C&DW generator Total 

Brazil (t) 8,556,036  8,105,334  815,026  17,476,396 

São Paulo State (%) 20 41 25 30 
Source: SNIS (2018). 

 

Figure 5 shows the type and quantity of infrastructures used by Brazilian 

municipalities, which are managed by public sector (60%), private sector (29%), intermunicipal 

consortium (2%) and other (9%). In addition, Table 3 lists the quantity of C&DW received in 

each infrastructure in 2016. The total amount of C&DW received in the infrastructures 

represents 22% of the total shown in Table 2, which means an inefficiency in the control of 

C&DW flows by the municipalities or, it suggests that about 80% of the C&DW generated is 

(i) sent to not registered infrastructures, (ii) reused directly after generation – especially 

excavation soil materials, (iii) sent to sanitary landfills, dump sites, or other illegal disposal 

areas. 
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Figure 5. C&DW management infrastructures used by the Brazilian municipalities in 2016. 

 
Source: SNIS (2018). 

 

Table 3. Quantity of C&DW(tonnes) received in the infrastructures used by the Brazilian municipalities 

in 2016. 

Infrastructure North Northeast Southeast South Midwest Total 

Sorting area 0 138,240 62,507 274,097 0 474,844 

Recycling facility 0 0 702,778 124,161 0 826,939 

Inert landfill 0 116,447 1,946,457 92,350 485,340 2,640,594 

Total 0 254,687 2,711,742 490,608 485,340 3,942,377 

Source: SNIS (2018).  

 

The C&DW composition and quantity are related to the raw materials, technology 

used in the construction sector and waste management practices. Thus C&DW composition is 

influenced by regional parameters and varies over time, due to the characterisation method, 

period and source of sample - construction site, different phases of construction, renovation, 

demolition, recycling facility or landfill (JOHN, 2001). 

The analysis of the Solid Waste Management Plans of municipalities located in the 

PCJ Watershed (São Paulo State), carried out in 2016, revealed that only twelve of the 

municipalities (about 20%) performed a characterisation of the C&DW (Amparo, Atibaia, 

Limeira, Monte Alegre do Sul, Morungaba, Pedra Bela, Pinhalzinho, Santo Antônio de Posse, 

Serra Negra, Socorro, Torrinha and Tuiuti). This suggests that most municipalities have 

elaborated their waste management plans based on literature data. The average C&DW 

composition based on data of the twelve municipalities is 65% of C&DW Class A, 23% of 

land/soil, 4% of wood, 4% of recyclable wastes (metal, plastic, glass, cardboard) and 4% of 

others. 

Figures 6 to 11 show some C&DW compositions based on samples from different 

Brazilian regions, the methodologies used for the characterisation are described in the figures. 
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Figure 6. Gravimetric composition of C&DW generated in the demolition of a school in Maceió 

(Alagoas State, Northeast region). 

 

 Sample: demolition of a school. 

 Previous sorting of impurities, 

crushing and sieving. 

 Determination of the composition of 

the large size materials. 

 Manual characterisation of two 

samples of 12 kg each. 

Source: Vieira (2003). 

 

Figure 7.  Gravimetric composition of C&DW generated at construction sites in Brasília (Distrito 

Federal, Midwest region). 

 

 Sample: 14 construction sites of civil 

works in different phases. 

 C&DW collected directly in the skips. 

 Method used to determine the 

composition manually: washing (fine 

fraction removal); drying in an oven; 

manual sorting and weighing. 

Source: Rocha (2006). 

 

Figure 8. Gravimetric composition of C&DW disposed of in an inert landfill in Porto Alegre (Rio 

Grande Sul State, South region). 

 

 Sample: inert landfill. 

 Manual characterisation. 

 Fractions not considered in the 

composition: impurities (wood, metal, 

gypsum, plastic and asbestos) and fines 

(material with size < 4.8 mm, containing 

organic matter and clay soils). 

Source: Lovato (2007). 
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Figure 9. Gravimetric composition of C&DW disposed of in inert landfills in São Carlos (State of São 

Paulo, Southeast region). 

 

 Sample: municipal inert 

landfills. 

 Manual characterisation: sorting 

and weighing of C&DW from three 

different skips. 

Source: Marques Neto and Schalch (2010). 

 

Figure 10. Gravimetric composition of C&DW disposed in an inert landfill in Fortaleza (Ceará State, 

Northeast region). 

 

 Sample: inert landfill. 

 Sampling was carried out twice a week, 

during three non-consecutive months, 

during a year. 

 Manual characterisation. 

 Other fraction comprises: residues of 

glass, iron, bitumen, yard wastes, wood, 

paper, plastic, paint, aluminium, impurities, 

asbestos, styrofoam and organic matter. 

Source: Oliveira et al. (2011). 

 
Figure 11. Gravimetric composition of C&DW generated in constructions of low income housings in 

São Luís (Maranhão State, Northeast region). 

 

 Sample: construction sites of low income 

housings of “My Home – My Life” 

Program. 

 Houses of 42m². 

 Manual characterisation. 

Source: Córdoba; Martins Filho and Lino (2014). 
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The C&DW gravimetric compositions shown in the previous figures reveal the 

predominance of C&DW Class A, also named as mineral fraction, which comprises from 75% 

to 100% of the C&DW, regardless of source and/or characterisation methodology used. The 

C&DW characterisation adopted by the Solid Waste Management Plan of São Paulo State has 

a similar characteristic, with 95% of C&DW Class A (32% of soil, 30% of ceramic materials, 

25% of mortar and 8% of concrete) and 5% of other materials (SÃO PAULO, 2014b). 

The Resolutions nº 307/2002 and nº 448/2012 of CONAMA (Brazilian Council of 

Environment) determine that C&DW Class A, after sorting, should be primarily reused or 

recycled as aggregates. If these practices are not possible, the waste can be sent to landfill for 

C&DW Class A, which aim to reserve the material for further uses or for the future use of the 

area (BRASIL, 2002; 2012). 

Usually, the landfill of C&DW Class A, also known as inert landfill, does not have 

lining and leachate drainage systems. Therefore, if the C&DW Class A is mixed with other 

types of C&DW (Class B, C and D) and/or with wastes from other sources (such as organic 

matter), it may cause contamination of the landfill areas, as well as jeopardize recycling, due to 

the potential contamination of the recycled aggregates (RA) (CÓRDOBA; SCHALCH, 2015). 

 

2.2 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT SYSTEMS 

The C&DW collection and transport can be performed by public service, private 

companies or by the generator itself (SÃO PAULO, 2014a). Usually, the collection system 

comprises skip bins from 3 m³ to 5 m³ capacity or roll off containers from 15 m³ to 40 m³ 

capacity (SÃO PAULO; SINDUSCON, 2012). 

The collection and transport companies have an important role for the C&DW 

management, since they are responsible for the proper destination of the C&DW in TSA, 

recycling facilities or landfills. Moreover, these companies should provide instructions for the 

generators about the type of waste that can be stored into the skip bins, in order to avoid 

mixtures of C&DW with another wastes. 

Most municipalities have established regulations for proper use of skip bins, 

considering traffic safety, environmental and public health aspects. In order to avoid the mixture 

of C&DW with other types of waste, some municipalities have recommended that the skip bins 

remain inside of the construction site, and only if it is not possible, the skip bin can remain on 

the sidewalk or street during few days. The use of a coverage in the skip bins would be a solution 

to avoid accumulation of water and inadequate disposal of waste that can be thrown by the 
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people who pass through the streets. However, most of the skip bins currently used do not have 

coverage (Figures 12 and 13) (ROSADO; PENTEADO, 2018a). 

 
Figure 12.  Skip bin with C&DW Class A and other 

types of wastes. 

Figure 13. Skip bin with amount of C&DW 

above the allowed. 

  
Source: Author (2018). Source: Author (2017). 

 

Another strategy adopted to reduce the mixture of C&DW with other types of waste 

is the increase of landfill taxes. For example, in the public landfill of Limeira, the disposal tax 

for a skip bin containing only C&DW is R$ 15/m³, while for a skip bin containing C&DW 

mixed with other type of waste it is R$ 110/m³ (LIMEIRA, 2018). 

The C&DW generator, the transport company and the responsible for the final 

destination (TSA, recycling facility and landfill) share responsibility for the C&DW 

management, if any of them perform an illegal disposal, they may be fined by the public 

authorities (SÃO PAULO; SINDUSCON, 2012). The control of the C&DW flow must be 

carried out by means of the Waste Transport Control (WTC), that is a document issued in three 

copies: one for the generator, another for the transport company and the last one for the final 

destination. Each of the three parties must retain the copy, for further verification, if necessary. 

Figure 14 presents the current options for the management of C&DW generated by 

small and large generators in the Brazilian municipalities. Drop-off sites have been used to 

eliminate the illegal disposal of C&DW from small constructions, renovations or demolitions. 

In this way, the municipalities install these infrastructures in areas with high frequency of illegal 

disposal. It is important to highlight that the proper operation, periodic inspection and 

environmental awareness campaigns are essential factors to ensure that the drop-off sites 

effectively improve waste management, otherwise such sites may become a dumping site 

(SINDUSCON-SP, 2015). 
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Figure 14.  Recommended flow for the C&DW management generated by small and large generators 

in the Brazilian municipalities. 

 
Source: adapted from São Paulo State (2014a). 

 

The drop-off sites can receive C&DW, yard wastes, recyclable wastes and bulk 

waste (not removed by the municipal public collection, such as furniture and another unused 

household equipments) free of charge. The daily quantities vary from 1 to 2 tonnes per 

inhabitant; for higher quantities, the generator must contract a transport company to send the 

waste to sorting areas, recycling facilities or landfills. Figure 15 shows a common infrastructure 

of a drop-off site used by Brazilian municipalities, and Figure 16 shows a drop-off site located 

in Limeira, São Paulo State. (ROSADO; PENTEADO, 2018b). 

 

Figure 15. Infrastructure of a drop-off site. Figure 16. Drop-off site located in Limeira, 

São Paulo State. 

  
Source: adapted from Pinto and González (2005). Source: Author (2016). 
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Sorting areas are used to receive larger quantities of C&DW and bulk waste, for 

sorting, temporary storage of the sorted materials, eventual transformation and subsequent 

removal for recycling or final disposal (Figures 17 and 18). The layout and operation must 

follow the Brazilian standard NBR 15.112:2004 (ABNT, 2004c). Unlike the drop-off sites, the 

sorting area must issue the WTC. In the São Paulo State, if the sorting area also performs the 

C&DW recycling, an environmental license from the State Environmental Agency (CETESB) 

is necessary. 

 

Figure 17. Infrastructure of sorting area. Figure 18. Sorting area located in Campinas, São 

Paulo State. 

 
 

Source: adapted from Pinto and González (2005). Source: Author (2016). 
 

C&DW Class A can be sent to stationary recycling facilities (Figure 19) and/or to 

mobile recycling facilities (Figure 20) for processing it into recycled aggregates. These facilities 

should be installed and operated in accordance with NBR 15.114 (ABNT, 2004d). According 

to ABRECON (2015), there are about 310 C&DW recycling facilities (74% stationary, 21% 

mobile and 5% semi-mobile) in Brazil, and 54% of them are located in São Paulo State.  

 

Figure 19. Stationary C&DW recycling facility 

located in São Paulo State. 

Figure 20. Mobile C&DW recycling facility 

located in São Paulo State. 

  
Source: Author (2016). Source: Author (2016). 

 

Figure 21 shows the common process flow diagram of C&DW recycling. Firstly, 

the C&DW is sorted to remove plastics, wood, paper, cardboard, metal and other waste 
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materials. Typically, this step is performed manually and, in case of existing heavy materials, 

a wheel loader is used. After that, the C&DW Class A is separated into three fractions: gray 

fraction (composed by concrete, mortar, stones), red fraction (composed by ceramic, bricks, 

tiles) and others (containing C&DW class A mixed with other types of wastes). Some recycling 

facilities do not separate the gray and red fraction. 

 

Figure 21. C&DW Class A recycling process. 

 
Source: Author (2019) 
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The gray fraction recycling produces the “recycled concrete aggregate” (composed 

of at least 90% by mass of cement-based fragments and stones), while the red fraction recycling 

produces the “recycled mixed aggregate” (composed of less than 90% by mass of cement-based 

fragments and stones). Both aggregates can be used as base and sub-base material in paving 

roads, and in manufacturing of concrete without structural function. The procedures for the use 

of recycled aggregates are regulated by the standards NBR 15.115 and NBR 15.116 (ABNT, 

2004a; 2004b). 

After sorting, the mixed C&DW is transferred to a vibrating feeder by a wheel 

loader, where the excavated soil and other fine materials are separated in a grate, and sold for 

different uses, mainly for environmental reclamation and filling works. The C&DW follows 

through a conveyor belt where small fractions of other recyclables materials are manually 

sorted, such as (i) wood – cut into chips and sold as biomass fuel; (ii) ferrous metals – removed 

by an electromagnet and sold as metal scraps; (iii) paper/cardboard, plastics and non-ferrous 

metals – sent to recycling industries and, (iv) refuses - sent to a sanitary landfill (organic and 

non-inert wastes) or to an inert landfill (mineral fraction). In some facilities, air blowers are 

used to improve the removal of lightweight materials such as paper and plastics. 

In the next step, the C&DW passes through a crusher (jaw crusher or impact 

crusher), if there is market demand for a material with a wide particle size range, the obtained 

aggregate is sold directly; if not, the material is screened and different particle size ranges of 

aggregates are produced. There is a water sprinkler, located nearby to the crusher, which 

minimizes dust emissions. The recycled aggregates obtained are stored in open-air piles, 

according to type (concrete or mixed) and particle size range. 

In general, the production of recycled aggregate is simpler than the production of 

natural aggregate, considering that in some cases, the last requires the extraction of sand and 

basalt for example. According to Menezes, Pontes and Afonso (2011) the price of recycled 

aggregates can be reduced up to 80%, compared to natural aggregates. However, John and 

Agopyan (2000) pointed out that the distances between the C&DW generation and the recycling 

facilities are the most critical aspects, since this factor directly affects the competitiveness of 

the recycled aggregate. Thus, it is important that C&DW recycling facilities are located as close 

as possible to the generation site, but, in some cases, there may be restrictions related to 

environmental licensing, urban zoning and even opposition of local residents (SÃO PAULO, 

2014a). 
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Figure 22 shows the main factors that hind the marketing of recycled aggregates, 

according to a survey carried out in 105 C&DW recycling facilities located in Brazil 

(ABRECON, 2015). The absence of public policies encouraging the use of recycled aggregates 

and the lack of technical knowledge on the aggregates properties by the potential consumers, 

are the first and second factors, respectively. The third most important factor is related to the 

resistance of recycled aggregates use, especially due to the lack of quality assurance, which is 

associated to the variability in the C&DW composition. The fourth factor is related to the 

difficulties faced by the recycling facilities in order to make their products appealing to the 

consumers, and it is partially relataled to the lack of public policies and technical and marketing 

training for the facilities managers. Finally, the high taxes of the recycled aggregates, which are 

unfairly similar to those of natural aggregates appear as the last factor. According to Miranda 

(2005), this factors could be overcomed with a more effective participation of the public sector, 

by supporting the recycled aggregate consumption and by consuming it in the public 

construction and infrastructure works. 

 

Figure 22. Factors related to the challenges of selling recycled aggregates. 

 
Source: ABRECON (2015). 

 

If it is not possible to send the C&DW Class A to a TSA or recycling facility, this 

waste can be sent to specific landfills. The C&DW disposed in this type of landfill must be free 

of other types of waste in order to allow its future use or future use of the area, without any risk 

for the public health and the environment (BRASIL, 2012a). 

In practice, the operation of a landfill of C&DW Class A requires an efficient 

control, as it is common to find C&DW Class A mixed with other types of waste in the skip 

bins, as highlighted in Figures 23 and 24. In some cases, the generator stores the mixed waste 

in the lower part of the skip bin and fill the top (more visible) only with C&DW Class A. Then, 
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the operator will discover the irregularity only after the waste has been disposed in the landfill, 

and often, the problem cannot be corrected. (ROSADO; PENTEADO, 2018a). 

 

Figure 23. Landfill for C&DW Class A 

and inert wastes located in Limeira, São 

Paulo State. 

Figure 24. Wastes disposed in the landfill for C&DW 

Class A and inert wastes (before compaction) located in 

Limeira, São Paulo State. 

  
Source: Author (2018). Source: Author (2018). 

 

According to the Brazilian standard (ABNT, 2004e), landfills for C&DW Class A 

do not need lining and leachate collection systems, however, groundwater and surface water 

monitoring is required for landfills with areas larger than 10,000 m² and disposal volume 

capacity that exceeds10,000 m³. There are no guidelines establishing permeability coefficients 

for soil or geomembrane liners, as well as there is no requirement for the installation of leachate 

drainage systems.  

In the São Paulo State, the inert waste and C&DW Class A landfills should 

accomplish the ABNT 15.113 (ABNT, 2004e) requirements. However, if the total capacity 

exceeds 500,000 m³ and/or the landfill receives more than 300 m³ of waste per day, an 

additional environmental study is required, including soil and groundwater monitoring 

according the parameters specified in the environmental regulation (CETESB, 2019). The 

Environmental Agency also determines three conditions that do not require environmental 

licensing: (i) fill works of an area up to 1,000 m² using a volume up to 1,000 m³; (ii) areas of 

reception and storage of excavated soil for use in fill works, and (iii) areas of C&DW sorting 

and storage (CETESB, 2010). 

The main management practice adopted for C&DW is still the landfilling (67%), 

despite the existence of several studies that prove the technical, economic and environmental 

viability of the C&DW recycling (CARNEIRO et al., 2001; FERNANDES, 2004; MOTTA, 

2005; LEITE et al., 2011). Therefore, it is essential to create specific laws and regulations 
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encouraging the use of recycled aggregates; formalize environmental education programs at the 

construction sites and develop new technologies for the C&DW recycling sector. 

2.3 BRAZILIAN REGULATIONS ON CONSTRUCTION AND DEMOLITION WASTE 

Table 4 lists the main regulations applied to Brazil (Federal Laws and CONAMA 

Resolutions) and specific regulations applied to São Paulo State, both have been established 

with the purpose of defining guidelines, objectives and instruments for the integrated 

management of solid wastes in general and, in some cases, specifically for the C&DW 

management. 

 

Table 4. Regulations about solid waste in general and construction and demolition waste. 

Year Legislation 

1998 
Federal Law nº 9,605: imposes criminal and administrative sanctions derived from 

conducts and activities that are harmful to the environment. 

2001 

Federal Law nº 10,257: establishes rules of public order and social interest that regulate 

the use of urban property for the collective good, security and well-being of citizens, as 

well as environmental balance. 

2002 
CONAMA Resolution nº 307: establishes the guidelines, criteria and procedures for the 

C&DW management. 

2004 
CONAMA Resolution nº 348: amends the Resolution no 307, including asbestos in the 

Class D (hazardous waste). 

2006 São Paulo State Law nº 12,300: establishes the Solid Waste Policy of São Paulo State. 

2009 São Paulo State Decree nº 54,645: regulates the Law nº 12,300. 

2007 Federal Law nº 11,445: establishes the national guidelines for basic sanitation. 

2010 Decree nº 7,217: regulates the Law nº 11,445. 

2010 Federal Law nº 12,305: establishes the National Solid Waste Policy. 

2010 Decree nº 7,404: regulates the Law nº 12,305. 

2011 
CONAMA Resolution nº 431: amends the Resolution no 307, switching the classification 

of gypsum to Class B (recyclable waste). 

2012 
CONAMA Resolution nº 448: amends the Resolution no 307, modifying  nomenclatures 

and deadlines. 

2014 
São Paulo State Decree nº 60,520: establishes the System of Online Solid Waste 

Management (SIGOR). 

2015 
CONAMA Resolution nº 469: amends the Resolution no 307, instructing that empty 

paint containers are considered C&DW Class B (recyclable waste). 

Source: Author (2019). 

 

CONAMA Resolution nº. 307 of 2002 is the main regulation for C&DW 

management, defining responsibilities for municipalities, small and large generators, transport 

companies and infrastructures, also including the guidelines for reducing the environmental 

impacts caused by the C&DW. This Resolution was updated by Resolution nº. 348 of 2004, 
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Resolution nº. 431 of 2011, Resolution nº. 448 of 2012 and Resolution nº. 469 of 2015, as 

shown in Table 4. 

Based on a diagnostic about the C&DW (IPEA, 2012), the preliminary version of 

the National Solid Waste Plan has proposed the six goals described below (BRASIL, 2012c): 

 Goal 1: Elimination of all illegal disposal areas. 

 Goal 2: Disposal of C&DW Class A only into authorized landfills. 

 Goal 3: Implementation of drop-off sites and sorting areas. 

 Goal 4: C&DW reuse and recycling. 

 Goal 5: Request of C&DW Management Plans from large generators, and 

implementation of a declaratory system to gather data from generators, transporters 

and management infrastructures (TSA, recycling facilities and landfills). 

 Goal 6: Elaboration of quantitative and qualitative diagnostics of C&DW 

generation, collection and destination. 

The deadline established for the fulfilment of the goals by all Brazilian 

municipalities was 2015, except for goal number 5, whose deadlines vary according to each 

region of the country (Table 5).  

 
Table 5. Goals for C&DW reuse and recycling according to the National Solid Waste Plan. 

Brazilian region 2015 2019 2023 2027 

North 75% 100%   

Northeast 60% 80% 100%  

South 60% 80% 100%  

Southeast 50% 70% 85% 100% 

Midwest 75% 100%   
Source: Brasil (2012c). 

 

In accordance with the IBGE (2010), only 392 municipalities (about 7% of the total) 

have some process or initiative of C&DW reuse and/or recycling; in this way, the 

aforementioned goals are not consistent with the national scenario. In this sense, it is expected 

that these goals be reformulated, based on an inventory containing real data on the amount 

generated and management practices adopted by the public and private sectors. 

The Solid Waste Plan of São Paulo State, published in 2014 (SÃO PAULO, 2014b), 

presents the following detailed goals for the C&DW management, which must be met by all 

municipalities until 2019: (i) elimination of all illegal disposal areas; (ii) implementation of 

drop-off sites, sorting areas and, if necessary, landfills for C&DW Class A; (iii) elaboration of 

C&DW Management Plans by large generators; (iv) promotion of measures to reduce the 

C&DW generation throughout the State. 
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In addition, the Solid Waste Plan of São Paulo State aims to implement reverse 

logistics, promote good practices initiatives to reduce waste generation at source and encourage 

the use of recyclable materials. In this sense, the targets for C&DW reuse and recycling for all 

municipalities located in the São Paulo Stare are: 70% in 2019; 85% in 2023 and 100% in 2025 

(SÃO PAULO, 2014b). 

São Paulo State has also created the System for Online Management of Solid Waste 

(SIGOR) in order to gather data on solid waste flows, and the C&DW was chose as the initial 

module. The main goal of SIGOR is to control de C&DW management, considering the 

generator, transport companies and management infrastructures. Figure 25 shows how the 

SIGOR works. According to CETESB (2018), until September 2018, only three municipalities 

had registered in SIGOR (Catanduva, Santos and São José do Rio Preto). 

 
Figure 25. Operation of the System for Online Management of Solid Waste (SIGOR). 

 
Source: adapted from São Paulo (2014a). 

 

According to the National Solid Waste Policy and CONAMA Resolution nº. 448 of 

2012, the municipalities should elaborate the C&DW Management Plan in accordance with the 

Municipal Solid Waste Management Plan. The C&DW Plan must comprise the guidelines for 

the generators (small and large), transport companies and management infrastructures. 

The municipal government is responsible for managing the C&DW from small 

generators, whether natural person or legal entity, public or private. The definition of small 

generator is not provided by law, then, the municipalities usually adopt the volume of 1 to 2 m³ 

of C&DW generated per day per inhabitant. Large generators, who generate more than 1 or 2 

m³ of C&DW per day, must elaborate the C&DW Management Plan (SÃO PAULO, 2014a). 
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2.4 STUDIES ABOUT CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT 

The literature review of the main studies related to C&DW management systems 

was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) statements, by using explicit and systematic search methods (MOHER et al., 2009). 

The search was performed in the databases Science Direct, Web of Science, Scopus, Scielo and 

Brazilian Digital Library of Theses and Dissertations (BDTD), by using the keywords described 

in Table 6.  

 
Table 6. Keywords and search strategies used in each database. 

Database Search strategies 

National 

Scielo 

BDTD 

(“resíduo da construção civil” OR “resíduo da construção e demolição” OR 

“RCC” OR “RCD”) AND (“gerenciamento”) 

International 

Science Direct 

Web of Science 

Scopus 

(“construction and demolition waste” OR “construction waste” OR “demolition 

waste” OR “C&DW” OR “C&DW” or “CDW”) AND (“management”) 

 

Figure 26 shows the results of the search carried out from 2015 to 2016 (concluded 

in November). In total, 5,390 articles were obtained, filters were used to exclude articles without 

the search terms in the title, abstract or keywords, articles published in languages other than 

English and Portuguese and, articles published before 2010, resulting in 732 articles. After the 

exclusion of duplicate articles, the final result consisted of 470 articles, of which 81 were 

selected according to the reading of the titles. At the end, according to the reading of the 

abstracts, 10 articles related to the international context and 8 articles related to the Brazilian 

context were selected. In the Google Scholar search, two Brazilian articles were found and 

added in this review. The main contributions of each article are described in the sections 2.5.1 

and 2.5.2, and additional information about the selected articles are listed in the Appendix A1 

(Tables A1.1 and A1.2). 

The search was updated in October 2018, considering only articles published in 

2017 and 2018 in the main journals related to C&DW management: Waste Management, 

Journal of Cleaner Production, Construction and Building Materials and, Resources, 

Conservation and Recycling. In this search 98 articles were obtained, and after the title reading, 

7 were selected. The search of theses and dissertations was carried out between 2015 and 2016 

and updated in October 2018; 6 theses and 35 dissertations about C&DW management systems 

were selected. The discussion on the selected studies are presented in the section 2.5.2. 
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Figure 26. Data about the search on C&DW management carried out from 2015 to 2018. 

 
Source: Author (2019). 
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2.4.1 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT SYSTEMS – INTERNATIONAL 

CONTEXT 

In 2014, the European countries generated more than 870 million tonnes of C&DW, 

which corresponds to 1,729 kg/inhabitants/year (EUROSTAT, 2017), which comprise several 

types of materials, including concrete, bricks, gypsum, wood, glass, metals, plastics, solvents, 

asbestos and excavated soil (EUROPEAN COMMISSION, 2018). 

C&DW has been identified as a priority waste stream by the European Union (EU), 

due to its high generation rate and, reuse and recycling potential (EUROPEAN COMMISSION, 

2018). In this context, one of the targets by 2020 of the Waste Framework Directive of EU 

(2008/98/CE), determines that the Member States should adopt measures to ensure that at least 

70% (by weight) of non-hazardous C&DW2 is sent to reuse, recycling or other practice of 

material recovery, including backfilling operations using waste as a substitute of other materials 

(EUROPEAN COMMISSION, 2008). 

Despite the existence of economically viable technologies for C&DW recycling, 

the recycling rates varies widely (from less than 10% to more than 90%) across the EU (Figure 

27). The countries with the highest recycling rates are the United Kingdom, Poland, Ireland, 

Czech Republic and Spain, while the others use the C&DW mainly for backfilling operations 

(EUROPEAN COMMISSION, 2011). 

 

Figure 27. C&DW recovery and recycling rates in the European Union in 2011. 

 
Source: adapted from European Commission (2011a). 

 

                                                           
2 Excluding naturally occurring material defined in category 17 05 04 in the list of waste (soil and stones). 
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Backfilling is defined as “a recovery operation where suitable waste is used for 

reclamation purposes in excavated areas or for engineering purposes in landscaping and where 

the waste is a substitute for non-waste materials”. In this sense, it differs from recycling because 

the waste is not processed before the use, which means that its physicochemical properties are 

not modified, and, in case of necessity, the material can be used again for the original function 

or for other purposes (EUROPEAN COMMISSION, 2016). 

The EU members with high recycling rates have in common high taxes for waste 

landfilling and, strong financial incentives for the construction companies that carry out the 

waste sorting. On the other hand, the main factors that justify the low rates of C&DW 

recovering and recycling in some EU members are (i) low taxes for C&DW landfilling and 

reduced or non-existent fines for illegal disposal; (ii) relative low cost of natural raw materials, 

(iii) lack of or differences in the C&DW regulations among the countries. Usually, countries 

that have introduced measures to improve the waste management have achieved higher 

recycling rates (SÁEZ et al., 2011). 

Currently, the EU has technology to achieve high performing waste management 

systems and, municipalities, waste authorities or waste contractors willing to improve their 

performance. On the other hand, the heterogeneity among the EU member regarding to the 

C&DW management, shown in Figure 27, reveals that the construction sector still has a 

traditional behaviour, since the low impact of any decisions related to waste management on 

construction project budgets does not encourage improvement beyond the current standard 

practices (GÁLVEZ-MARTOS et al., 2018). 

Design for Deconstruction (planned disassembly of buildings) allows the recovery 

of materials and components after the end of life of buildings, and therefore, it is a 

recommended strategy to reduce the generation of mixed C&DW and, consequently, minimize 

landfilling. Deconstruction is not a new concept in the construction industry, but its planning 

depends to a large extent on the proper specification of building components, to facilitate 

disassembly. Experts from the UK construction industry consider that the main factors that 

encourage the deconstruction are: stringent legislation and policy, design process and 

competency for deconstruction, design for material recovery, reuse and building flexibility 

(AKINADE et al., 2017). 

Finland is one of the EU members with the lowest recovery rates, and the country 

does not carry out recycling. Dahlbo et al. (2015) evaluated the environmental and economic 

performance of the C&DW management system in this country (Figure 28), by means of three 



52 

 

 

 

methodologies: material flow analysis, life cycle assessment and environmental life cycle 

costing. The current and two alternative scenarios were evaluated, considering the amount of 2 

million tonnes of C&DW (not including hazardous waste), with variations in the composition 

(current scenario – 13,5% metal; 35% mineral; 36% wood and 15.5% others; scenario 1 – 15% 

metal; 20% mineral; 45% wood and 20% others and, scenario 2 – 10% metal; 50% mineral; 

20% wood and 20% others). 

 

Figure 28. C&DW management system of Finland. 

Source: adapted from Dahlbo et al. (2015). 

 

Although the management system of Finland presents environmental benefits and 

economic viability, the results indicated that a recycling rate of 70% would not be achieved, 

even with the changes in waste composition. One of the critical components is wood; currently, 

a large fraction of this material is recovered as energy generating environmental and economic 

benefits, but it does not increase the recycling rate. In this case, the generation rate should be 

reduced or technologies to recycle the low quality wood (containing nails, concrete debris, 

paints and other contaminants) should be developed. Mixed waste presented major 

contributions for the impacts of climate change, costs and recycling of materials, then it was 

identified the need of improving the material sorting at source, in order to reduce the volume 

and to obtain fractions with recycling potential, such as plastics (DAHLBO et al., 2015). 

C&DW also represents a significant waste flow in the United States (US). It was 

estimated a generation of 534 million tonnes of C&DW in 2014. Concrete represents the largest 

portion (76%), followed by asphalt concrete (15%), asphalt shingles (3%), drywall and plasters 
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(3%), brick and clay tile (2%), and steel (1%). Demolition wastes accounted for more than 90% 

of total generation and construction for less than 10% (U.S. EPA, 2014). 

The US Environmental Protection Agency (U.S. EPA) encourages the reduction, 

reuse and recycling practices in order to avoid the C&DW landfilling. In this context, the 

agency provides the following tools to improve the C&DW management: (i) manuals of 

C&DW reduction at generation source; (ii) selective deconstruction and material reuse guides; 

(iii) information on C&DW recycling and recycling facilities around the country, provided by 

the Construction & Demolition Recycling Association (CDRA) and, (iv) information about 

businesses that sale recycled materials and/or materials that can be reused (U.S. EPA, 2014). 

In the US, the recycling rates also vary widely, then, an estimate-based study was 

developed to analyse the benefits of recycling. This study took into account the generation of 

480 million tonnes of C&DW in 2012 (65% concrete, 20% mixed C&DW and 15% asphalt 

pavement). The results indicated that if more than 70% of the waste were recycled, 17 km² of 

landfill area (with a depth of 15 meters) would be avoided, with an energy saving of 85 million 

barrels of oil (CDRA, 2015). 

Among the 17 articles selected in the literature review, 12 refer to studies about 

Asian countries, such as China and Hong Kong, which demonstrates that the fast economic 

growth and urbanization of these countries are demanding studies on C&DW management 

strategies. 

C&DW accounts for 30% to 40% of the total amount of waste generated in China 

(HUANG et al., 2018). In 2016, it was estimated a generation of 336 million tonnes of C&DW, 

composed of bricks (44%), mortar (15%), concrete (15%), wood (9%), metal (4%), packaging 

materials (4%) and other types of waste (6%) (SONG et al., 2016). China’s government has 

established regulations and policies on waste management, which require improvements, since 

the C&DW management is still under development when compared to other wastes, such as 

municipal and industrial (DUAN; WANG; HUANG, 2015). For instance, no regulation related 

to C&DW had been established by the central government until 2005 (YUAN, 2017). 

Wang et al. (2010) identified the critical success factors (CSF) for the 

implementation of C&DW on-site sorting in Shenzhen, a typical economically developed 

region of south China. The benefits of on-site sorting consist in the increase of reuse and 

recycling rates, the reduction of the transport and disposal costs, the increase of the landfills 

lifespan and the minimization of illegal waste disposal. The study defined the following factors 

as the most important to implement the on-site sorting: (i) manpower (extra labour for 
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performing the waste sorting); (ii) market for recycled materials and, (iii) waste sortability (the 

better way is to separate the waste at source). Moreover, the support of the local government 

along with the construction companies contribute to the achievement of on-site sorting. 

In addition to the challenge of improving the C&DW on-site sorting, China presents 

low recycling rates. According to an online survey (JIN et al., 2017) answered by 77 

professionals with experience in C&DW management, landfilling is the main management 

option (70%), followed by recycling and reuse (30%) and, the remain that chose "others" (10%), 

specified that C&DW are mainly used as road base paving material or backfilling. The lack of 

demand for recycled materials was determined as the main responsible for this scenario. This 

research also revealed that, in addition to the role of government in the C&DW management, it 

is necessary to increase the C&DW recycling and reuse experience by the involved 

professionals, in order to provide a more positive perception of the reused/recycled products 

quality, while ensuring their economic viability (JIN et al., 2017). According to Zheng et al. 

(2017), considering the current management scenario, the potential economic profits of 

recycling were estimated at 201 billion US dollar in 2013, and could increase to 401 billion US 

dollar assuming the most optimistic scenario (with recycling rates of 99% for metal scraps and 

95% for the mineral fraction). 

Huang et al. (2018) conducted an analysis of the policies and management practices 

through 3R principles (reduction, reuse and recycle) and the results revealed the following 

barriers: 

 Reduction: lack of building design standards, low disposal taxes and 

inappropriate urban planning.  

 Reuse: lack of guidance for effective C&DW collection and sorting, lack of 

knowledge and standards for C&DW reuse, and under-developed market for reused 

C&DW.  

 Recycling: ineffective management system, immature recycling technology, 

under-developed market for recycled C&DW products and immature recycling 

market operation.  

In this context, in order to improve the current management system, taking into 

account the 3R principle, it was recommended to ensure the C&DW sorting at source, the 

adoption of innovative technologies and market models, as well as, implementation of specific 

economic incentives (HUANG et al., 2018). 
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In Hong Kong the C&DW is classified as inert and non-inert. The inert fraction is 

mainly composed of sand, bricks and concrete and is sent to public filling areas for land 

reclamation, while the non-inert fraction is mainly composed of bamboo, plastics, glass, wood, 

paper, vegetation and other organic materials, and is disposed of in landfills. Figure 29 shows 

the C&DW sorting performed on-site and off-site (LU; TAM, 2013). 

 

Figure 29. C&DW management system in Hong Kong. 

 
Source: Lu and Tam (2013). 

 

The C&DW sorting before its final disposal, as detailed in Figure 30, has been one 

of the most important strategies for the C&DW minimization in Hong Kong; from 2006 to 

2012, 5.11 million tonnes of C&DW were sorted. It is important to highlight that this result was 

achieved due to the waste taxing scheme implemented in 2006: HK$ 125/t of C&DW disposed 

of in landfills; HK$ 100/t of C&DW sent to the sorting facility and, HK$ 27/t of C&DW 

composed only by inert materials3, which can be used for land reclamation by the public 

facilities (WEISHENG; HONGPING, 2012). 

According to information from six construction sites, the C&DW management 

regulations have significantly improved C&DW on-site sorting in Hong Kong, mainly due to 

the aforementioned waste taxing scheme. The overall costs of the on-site sorting were not 

considered as the main obstacles, however, the available area in the working site and project 

stakeholders’ attitudes are still considered as the most critical factors (YUAN; LU; HAO, 

2013). Although the efforts to improve the C&DW management, illegal dumping still happens 

at alarming rates in the city (DUAN; WANG; HUANG, 2015). 

 

 

                                                           
3 1 HK$ = R$ 0.48; 1 HK$ = US$ 0.13 and, 1 HK$ = 0.11 € (exchange rates obtained in 17th November, 2018).  
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Figure 30. C&DW sorting process in Hong Kong. 

 
Source: Weisheng and Hongping (2012). 

 

According to Ghisellini et al. (2018), to improve the sustainability of C&DW 

management in China, policies should be based on a stronger integration of economic and 

environmental assessment tools, such as the adoption of the waste tax scheme in Hong Kong, 

which has contributed to reduce the C&DW landfilling and to increase the adoption of on-site 

sorting and C&DW recycling. 

According to a literature review of 81 articles published from 2000 and 2015, public 

support by means of legislation and financial investments, along with awareness programs for 

the citizens and practitioners involved in the C&DW management system, are the key factors 

to achieve efficient management in a global context. Despite the existence of a set of 

environmental policies worldwide, several articles have shown the inefficiency of C&DW 

management, mainly due to the high landfilling and low reuse and recycling rates. This scenario 

is justified by the deficiency of public instruments encouraging the C&DW management and, 

especially in developing countries, due to the inefficiency of statistical data on the C&DW 

flows (UMAR et al., 2016). 
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Beyond reuse and recycling practices, the concept of circular economy (CE) also 

emphasizes the importance of prevention and minimization practices throughout the production 

chain of construction. Currently, CE has been used mainly in developed countries, such as the 

United Kingdom, Netherlands, and other European countries. In this context, Esa, Halog and 

Rigamonti (2016) proposed a theorical framework for CE, using Malaysia - which generates 

26,000 tonnes of C&DW/day, as a case study. Based on a literature review, this study developed 

a three-layer approach: 

 Micro level focuses on the adoption of a cleaner production process, moving 

from the traditional to a modern construction method, such as the IBS 

(Industrialized Building System), ensuring that the waste can be monitored at 

source. 

 Meso level encourages a waste trading system and requires that the clauses on 

the responsibilities of C&DW management in contracts and documents be clearly 

specified. 

 Macro level involves the creation of monitoring and communication 

mechanisms to ensure the effective C&DW management, which must be 

implemented during the construction process. The authors pointed out the 

strengthening of an advanced collaborative network between industries, with 

incentives for reduction, reuse and recycling, as a potential solution. 

 

2.4.2 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT SYSTEMS – BRAZILIAN 

CONTEXT 

The selected articles about C&DW management in Brazil, published between 2010 

and 2018, are mainly focused on C&DW quantification, characterisation and illegal disposal. 

Marques Neto and Schalch (2010) carried out a study in the municipality of São Carlos (São 

Paulo State), by using three parameters to quantify the C&DW: (i) waste from building works 

approved by the municipal government; (ii) waste collected by transport companies and, (iii) 

waste landfilling. In addition, this study quantified the waste generated by different types of 

building works and determined the rate of 137.02 kg of C&DW per constructed m². The 

characterisation data of the C&DW sent to landfills along with the analysis of 28 areas of illegal 

disposal allowed the authors to propose an integrated management model, which involves the 

local construction sector and the municipal government (Figure 31). 
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Figure 31. C&DW integrated management system of São Carlos, São Paulo State. 

 
Source: adapted from Marques Neto and Schalch (2010). 

 

Oliveira et al. (2011) analysed the annual C&DW generation and composition of 

Fortaleza (Ceará State). The data obtained from the transport companies and the municipal 

government indicated that the authorized areas received about 702 tonnes/day, with an average 

composition of 65% of mortar, concrete and ceramic materials. It was also verified that a large 

fraction of C&DW are sent to illegal disposal areas, and as a result, the two main irregular 

landfills comprise an area of approximately 26 hectares. 

Silva and Fernandes (2012) studied the main environmental impacts resulting from 

the inefficiency of the C&DW management system in Uberaba (Minas Gerais State). After 

visits to the drop-off sites and areas of illegal disposal, it was verified the need of C&DW 

composition data and the identification of the regions that generate large volumes of waste, in 

order to determine the most appropriate location for a recycling facility. This study indicated 

that the drop-off sites are not effective for C&DW management, since some of them work as a 
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storage area (without waste sorting), including some that are located in permanent preservation 

areas. After the establishment of a management system, the next step would be the recovery of 

the degraded areas from the C&DW illegal disposal. 

Tessaro, Sá and Scremin (2012) used a software to collect the following data: (i) 

agents involved in the C&DW generation; (ii) agents involved in the C&DW collection and 

transport; (iii) areas of illegal disposal; (iv) qualitative and quantitative data on C&DW and, 

(v) registration of potential areas for the installation of drop-off sites, sorting areas and 

landfills. The data input from the municipality of Pelotas (Rio Grande do Sul State) in this 

software presented the following results: generation of 315.08 m³/day (1.23 

kg/inhabitant/day); C&DW density of 1.28 tonnes/m³ and, about 88% of the C&DW 

classified as Class A (with a great potential for reuse and recycling). 

Paz and Lafayette (2016) developed a software namely “C&DW Management 

System” (SIGERCON) based on the aforementioned software, in order to facilitate the analysis 

of waste management strategies in construction sites, through the use of indexes. The efficiency 

of the C&DW generated by constructed area index is questioned by some researchers and 

constructors, therefore, this study evaluated other types of indexes, such as generation of waste 

by working time (36.85 tonnes/month, for an average time of 35 months), or generation by 

numbers of floors (52.36 tonnes/floor, for an average of 27 floors). In relation to the generation 

rate for each stage of the building work, it was obtained the amount of 10.84 tonnes/month for 

the foundation stage, while for the structure stage it was obtained 22.91 tonnes/month, and in 

the finishing stage 47.66 tonnes/month. The use of these indexes allows to specify the C&DW 

amount throughout the building work, improving the proper management. 

Melo, Ferreira and Costa (2013) presented the influence of the inefficiency of 

C&DW management on the production of recycled aggregates in the Northeast region. A large 

fraction of the C&DW sent to these facilities is mixed with other types of waste, which 

jeopardize the production of high quality recycled aggregates (mineral purity). In order to 

improve this scenario, this study suggests the implementation of an area for previous inspection 

of the C&DW composition, allowing the rejection of wastes with high contaminants content. 

Lima and Cabral (2013) analysed the chemical composition of the C&DW 

generated in Fortaleza (Ceará State), located in the Northeast region. The results classified the 

C&DW as Class II-A (non-hazardous and non-inert), since some parameters, such as chrome 

(Cr), lead (Pb) and phosphate (SO4
2-) were above to the limits specified by ABNT NBR 10.004 

(ABNT, 2004f). Córdoba and Schalch (2015) carried out a similar study, in order to evaluate 
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the potential of contamination of leachate generated at C&DW Class A landfills located in São 

Carlos (Southeast region), and the results have also classified the C&DW as Class II-A. 

Galarza et al. (2015) elaborated a system dynamic model for the study of the 

variables involved in the production of non-structural concrete blocks with recycled aggregates 

in a non-governmental organization (NGO) located in Porto Alegre (Rio Grande do Sul State), 

focusing on economic aspects. For this case study, the C&DW is a socio-environmental 

alternative with economic potential. Considering the productive capacity of the facility, an 

average of 87,000 blocks can be produced, consuming 273 tonnes of C&DW. According to the 

simulations, the manufacturing process of non-structural blocks will use 1.1% of C&DW 

generated in Porto Alegre. 

Santos, Pinto and Catunda (2015) analysed the perception of 14 construction 

companies about the environmental legislation in force. The results revealed that most of the 

companies are concerned about meeting the legal requirements, however 21% of those 

interviewed had no knowledge of the laws. 

Rosado and Penteado (2018a) presented a participatory methodology for Municipal 

Management Plans for Construction and Demolition Waste elaboration, based on case study of 

Limeira (São Paulo State). The analysis of the steps involved in the plan elaboration showed 

that the union of efforts and knowledge resulted in a plan with a detailed diagnosis of the 

municipality, including its peculiarities, which made possible the establishment of the goals, 

programs and actions in accordance with the local reality. Another study of this municipality 

(ROSADO; PENTEADO, 2018b) revealed the difficulties of the municipal government in 

dealing with the C&DW from small generators. Despite the existence of drop-off sites, a 

considerable amount of waste is daily disposed improperly, even in areas close to the drop-off 

sites, confirming the need of effective monitoring programs, environmental communication and 

cultural change of the citizens. 

Figure 32 shows the distribution over the years, of dissertations and theses selected 

in the literature review carried out between 2015 and 2018, and Figure 33 presents the 

classification according to the main topic of the research. The main objectives of the 6 theses 

and 35 dissertations about C&DW management systems are detailed in Appendix A (Tables 

A1.3 and A1.4). The studies focused on the evaluation of the quality and use of the recycled 

aggregates were not included in this literature review, because they are more close related to 

materials sciences than waste management. 
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Figure 32. Dissertations and theses about C&DW management. 

 
Source: Author (2019). 

 

Figure 33. Classification of the main topics of the dissertations and thesis selected from the BDTD in 

2018. 

 
Source: Author (2019). 

 

The majority of the aforementioned studies aim to provide a set of data on C&DW 

generation and composition of a specific Brazilian region. The number of this type of study has 

increased after the publication of CONAMA Resolution nº. 307 of 2002, due to the lack of 

reliable data available by the public government, which are necessary to evaluate the 

compliance of the law and to propose strategies to improve the management systems. Some 

studies advance in the area of software development to assist in the C&DW management by the 

public and private sector, and to perform economic analysis of the recycling feasibility.  

The main challenge reported by the studies is the on-site sorting, which jeopardize 

the C&DW reuse and recycling. In this sense, economic instruments could be used to encourage 

the sorting practices along with environmental education programs. In relation to the small 

generators, the drop-off sites need better monitoring by the municipal government, to reduce 
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the mixed waste sent to these areas. On the other hand, the transport companies have an essential 

role to assist the on-site sorting of C&DW from large generators, by means of inspection of the 

materials stored in the skip bins (MARQUES NETO, 2009; CÓRDOBA, 2010). 

Moreover, most of the municipalities elaborate their Municipal Management Plans 

for C&DW based on literature data, therefore, some of the reported studies seek to fill this gap, 

providing details on the municipal C&DW management, taking into account the peculiarities 

of the region of interest (MARQUES NETO, 2009; SILVA, 2010; BRÖNSTRUP, 2010; 

BUSELLI, 2012; LUCIO, 2013; FARIAS, 2014; MANN, 2015; ALBERICI, 2017; VARGAS, 

2018). 

 

2.5 WATERSHED AS A PLANNING UNIT 

The watershed is the region comprised of a territory and several watercourses 

(BRASIL, 2011b). It consists of a main river and its tributaries, which carry water and 

sediments along its channels (GUERRA, 2003). This ecosystem is related to several natural 

components (land relief, soil, subsoil, flora, fauna) and can therefore be considered the most 

appropriate planning unit for the management of natural resources (ROSS, DEL PRETTE, 

1998; MARQUES NETO, 2009). 

According to the Brazilian Ministry of Cities (2004, p. 103): "the watershed is the 

appropriate spatial scale to assess the impacts of current urban occupation and new 

urbanization projects on hydrological processes and on diffuse pollution loads". In this context, 

the watershed is a portion of space formed by a set of physical, biological, social and political 

elements that interact with each other, modifying the entire system. In relation to anthropic 

influences, the inadequate disposal of solid wastes, domestic and industrial effluents compose 

one of the variables that have the greatest impact on the hydrological balance of watersheds 

(SCHUSSEL; NETO, 2015). 

According to the National Water Resources Policy, the Brazilian water 

management model adopts the watershed as the territorial planning unit (BRASIL, 1997). In 

this sense, the model is composed of Water Resources Management Units (UGRHIs), 

Watershed Committees and other interest groups that offer technical support (LOPES, 2007). 

The Watershed Committees assist in the financing of essential projects, such as 

sewage treatment plants, landfills, equipment acquisition, dam construction, river clean-up, 

among others, since they consider that the actions related to the treatment of the domestic 

sewage and solid wastes are essential for a good management of the water resources (LOPES, 
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2003). In this sense, the study of the integrated system of solid waste management of 

municipalities belonging to a watershed allows a broad view of the problematic of this topic 

and its environmental impacts. 

 

2.6 REMARKS OF THE CHAPTER 

This chapter presented the paramount importance of the construction industry for 

the economic development of a country and highlighted its consequences for the environment, 

such as the consumption of natural resources, emissions to air, water and soil, as well as, high 

generation of solid waste. The last environmental aspect is the main topic of this study, 

therefore, an overview about the C&DW was developed in this chapter. 

The first sections detailed the main characteristics of the C&DW according to the 

Brazilian context, including its classification (Classes A, B, C and D), generation estimative, 

differences in the composition among the Brazilian regions, and the infrastructures used for the 

C&DW management. The Brazilian laws on C&DW and the current management system 

adopted by the majority of the Brazilian municipalities were also presented. 

The section 2.5 presented a literature review, carried out from 2015 to 2018, about 

C&DW management studies. In relation to the international context, it was presented mainly 

data on the Europe Union, United States and China, based on 17 articles. The Brazilian context 

was developed based on 12 articles, 6 theses and 35 dissertations. Finally, the last section 

comprises an explanation about the adoption of a watershed as planning unit for studies about 

solid waste management.  
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 CHAPTER 

 

3 
 

 

LIFE CYCLE ASSESSMENT 
 

The first specific standard on the evaluation of the life cycle of a product emerged 

in 1997 (ISO 14.040), in the following years, three other standards with details of the 

methodology were published (ISO 14.041, 14.042 and 14.043). In 2006, these standards were 

compiled in two: ISO 14.040, with the principles and structures of the Life Cycle Assessment 

(LCA), and ISO 14.044 with the requirements and guidelines for LCA studies. In 2009, the 

Brazilian Association of Technical Standards (ABNT) published the Portuguese version of 

these  standards. 

The LCA study aims to evaluate the environmental interventions and potential 

impacts throughout the life cycle of a product (or service), from the raw material acquisition to 

the product manufacturing, use and end-of-life. For a LCA study, it is necessary to define its 

objective and scope; to draw up an inventory with inputs and outputs of the system under 

analysis; to evaluate the potential environmental impacts and, to perform the results 

interpretation. The LCA stages are iterative, and can be adapted during the elaboration of the 

study, as appropriate (Figure 34) (ABNT, 2009a). 

 

Figure 34. Life cycle assessment stages. 

 
Source: adapted from ABNT (2009a). 
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The life cycle inventories generally collect data on the extraction of raw materials, 

to define the "cradle" of the product, and for the final disposal ("grave"), it is common to 

consider the landfill. However, when considering the life cycle of a waste, it is recommended 

to consider another type of "cradle", while the final disposal may also be the landfill 

(MCDOUGALL et al., 2001).  

Figure 35 shows the differences between life cycle inventories for a LCA of a 

product and of a solid waste management system. Manufacturers that aim to optimize the 

performance of their products and/or packages, develop a vertical analysis, while waste 

managers, municipalities and policy makers conduct a horizontal analysis to optimize the 

integrated waste management system. In specific, a solid waste LCI (the horizontal approach 

in Figure 35) attempts to assess the environmental burdens of the waste (MCDOUGALL et al., 

2001). 

 

Figure 35.  The life cycle of a product (a), the life cycle of waste (b), and a practical approach to 

environmental optimisation (c). 
 

 
Source: adapted from Mc Dougall et al. (2001). 

 

The LCA of waste management systems can be used to predict environmental and 

economic costs (Figure 36). The predictions may not be accurate, but provide valid estimates 

for planning future strategies, using data that allow investments with greater credibility 

(MCDOUGALL et al., 2001). 

Life-cycle thinking has been applied for the evaluation of waste management 

systems since the early 1990s (MANFREDI; TONINI; CHRISTENSEN, 2011). Currently, 

LCA is increasingly been used in waste management to identify strategies that prevent or 
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minimize impacts on ecosystems, human health or natural resources. In the international 

context, the popularity of the LCA application on waste management systems is evidenced by 

several published studies, as well as by the considerable number of softwares for LCA 

modelling (CLEARY, 2009; LAURENT et al., 2014a; KHANDELWAL et al., 2019). 

 

Figure 36. Solid waste management system based on the life cycle assessment methodology. 

 

Source: adapted from Mc Dougall et al. (2001); Coltro (2007). 

 

Moreover, the Waste Framework Directive of EU determines that when it is not 

possible to apply the waste hierarchy (prevention, preparing for re-use, recycling, other 

recovery methods and disposal), the Member States needs to justify by means of a life-cycle 

thinking the overall impacts of the waste generation and management (EUROPEAN 

COMMISSION, 2008). 

The application of LCA is one of the guidelines of the Brazilian Solid Waste Policy 

(BRASIL, 2010), then, to assist this objective, the CONMETRO (National Council of 

Metrology, Standardization and Industrial Quality) has created the Brazilian Program of LCA 

(PBACV) through the Resolution nº. 03/2010, in order to gather data from Brazilian LCA 

studies. According to CONMETRO (2010), LCA studies are important instruments for the 

quantitative evaluation of the environmental effects associated to products and services, both 

in their manufacture and consumption, which includes the solid waste management phase. 

Therefore, the National Life Cycle Inventory Bank (SICV) was created in 2016, with the main 

purpose of share a life cycle inventories database about the current scenario of industry 

production and agribusiness, in order to allow the development of further studies and 

improvements in the available studies (IBICT, 2016). 
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3.1 LIFE CYCLE ASSESSMENT STAGES 

This section presents the four main stages of a LCA study, in accordance with ISO 

14.040:2009 - Environmental management - Life cycle assessment - Principles and structure 

(ABNT, 2009a) and ISO 14.044:2009 - Environmental management - Life cycle assessment - 

Requirements and guidelines (ABNT, 2009b), along with the recommendations of the ILCD 

System Manual - International Product and Process Life Cycle Data Reference System (EC-

JRC, 2010). 

 

3.1.1 STAGE 1 – GOAL AND SCOPE DEFINITION 

The goal and scope definition has strong implications in the LCA study 

development, mainly due to the selection of the LCI modelling approach (attributional or 

consequential); determination of what can be concluded from the results and definition of the 

limitations, which assist the interpretation stage (LAURENT et al. 2014b). 

An attributional LCA aims at describing environmentally significant physical flows 

to and from a life cycle and its subsystems (EKVALL; ANDRAE, 2006). This methodology 

makes use of historical, fact-based, measureable data of known uncertainty, and includes all the 

processes that significantly contribute to the system under study (EC-JRC, 2010). On the other 

hand, a consequential LCA investigates both direct burdens and indirect consequences of the 

system under study by considering various possible future scenarios: it can be defined as 

“change-oriented” by its aim to describe how environmentally significant flows will change in 

response to possible decisions (FINNVEDEN et al., 2009; WEIDEMA, 2003).  

ISO 14.044 establishes that the goal should contain: the intended application; the 

reasons for carrying out the study; the target audience, and whether there is an intention to use 

the results in comparative statements to be made publicly available (ABNT, 2009a). In addition, 

the ILCD System Manual adds the necessity of clarifying the specific limitations of the results 

usability (due to applied methodology, assumptions or limited impact coverage) and, 

identifying who commissioned the study and name all funding or other organizations that have 

any relevant influence on the study, this mainly includes the experts who carry out the LCA 

study and their respective organizations (EC-JRC, 2010). 

A system under evaluation can be divided into two main components, the 

foreground system, related to the processes whose selection is affected directly by decisions 

based on the study, and the background system, related to all other processes which interact 

with the foreground (CLIFT; DOIG; FINNVEDEN, 2000). 
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There are four main types of context situations: situation A (micro-level decision 

support), situation B (meso/macro-level decision support) and situations C1 and C2 (accounting 

with no decision support) (Figure 37) (EC-JRC, 2010). In accordance with Laurent et al. 

(2014b): 

“They are dependent on the intended decision implications of the study as well 

as on either the existence of large-scale consequences on some processes in 

the background system and in other systems (differentiation of situations A 

and B), or the existence/consideration of interactions of the system with other 

systems (differentiation of situations C1 and C2, the latter being very rare)” 

(LAURENT et al., 2014, p. 592). 

 

Figure 37. Identification of context situations and LCI modelling framework. 

 
Source: Laurent et al. (2014b). 

  

An adequate identification of the study's context situation is important as it 

determines the type of the LCI modelling, which influence the results and interpretation. For 

example, the use of allocation or expansion system in an attributional LCA study may generate 

opposite results (LAURENT et al., 2014b). The allocation consists of the partition of the inputs 

or outputs of a process or product system between the product system under study and other 

product system(s), while the system expansion comprises the addition of specific processes or 

products and their life cycle inventories to the analysed system (EC-JRC, 2010). 

The ILCD manuals were developed focused on products and services, not providing 

a specific content on how to apply these concepts in waste management studies, therefore, most 

of the published LCA studies on waste management did not clearly determine the context target 

of the study. In accordance with Laurent et al. (2014b), several studies seem to adopt the 
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evaluation at the micro level (situation A), in which specific scenarios of waste treatment are 

investigated in a specific region or company. 

The scope must be sufficiently defined to ensure that the coverage and level of detail 

of the study are consistent and sufficient to meet the established goal (ABNT, 2009a), including 

the following items: 

 Product system: set of elementary processes, materially and energetically 

connected, necessary for one or more functions defined in the goal and scope 

(SILVA; BRÄSCHER, 2011). 

 Functional unit (FU): the function of the product or service studied in 

quantitative terms. It is the reference flow to which all other flows (inputs and 

outputs) of the system are related (EC-JRC, 2010). 

 System boundaries: a set of criteria that specify which elementary processes 

comprise the product system (ABNT, 2009a). 

 Allocation procedure: definition of the proportionality criterion to be used for 

the distribution of inputs and outputs (SILVA; BRÄSCHER, 2011). 

 Impact categories and life cycle impact assessment methodology: the impact 

categories represent the relevant environmental issues to which the results of the 

life cycle inventory analysis can be associated (such as, global warming, 

acidification, human toxicity, etc.) (ABNT, 2009b). The LCIA methodologies can 

be grouped into two types: 

- Midpoint: the characterisation uses indicators located along the environmental 

mechanism, before reaching the endpoint of the category (MENDES, 2013). 

- Endpoint: the characterisation considers the whole environmental mechanism to 

its endpoint, i.e. refers to specific damage related to the wider area of protection 

(human health, natural environment or natural resources) (MENDES, 2013). 

 Data requirements: the type of data required to meet the goal and scope of the 

study. It includes the definition of time, geographic and technological coverage, 

accuracy, completeness, representativeness, consistency, reproducibility and 

uncertainty (SILVA; BRÄSCHER, 2011). 

 Critical analysis: process to ensure the consistency between the study and the 

principles and requirements of LCA standards (ABNT, 2009b). 

 Type and format of the study report: document that reports the LCA results 

to the target audience (SILVA; BRÄSCHER, 2011). 
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3.1.2 STAGE 2 - LIFE CYCLE INVENTORY (LCI) 

The life cycle inventory comprises the quantification of the inputs and outputs for 

each process included in the system boundary (ABNT, 2009a). This stage is considered iterative 

because, during data gathering, the knowledge of the system under study increases, therefore, 

the goal and scope should be updated when necessary (RIBEIRO, 2003). According to ISO 

14.044 (ANBT, 200b) this stage has the following phases: 

 Data gathering: a process that most often demands many resources, especially 

time, so the limitations should be considered in scope and be documented in the 

study report. In general, the data for each elementary process included in the system 

boundary can be classified into: (a) energy raw material, auxiliary and other 

physical inputs; (b) products, co-products and waste; (c) emissions to air, water and 

soil, and (d) other environmental burdens. 

 Calculation procedures: include the validation of the data gathered, the 

correlation of the data to the elementary processes, and the correlation of the data 

to the reference flows and the functional unit. 

A set of software has been developed to assist the LCA studies, due to the 

significant amount of data to be calculated and analysed. In the area of waste management, one 

of the most used is SimaPro, followed by EASEWASTE and Gabi. For the LCI elaboration, it 

is common to use secondary data, which are obtained from databases such as Ecoinvent and 

BUWAL (BOVEA; POWELL, 2016; LAURENT et al., 2014b). However, it is recommended 

to use primary data whenever possible; especially when it is related to processes that occur in 

the foreground system, such data can be reported by third parties (such as companies, 

government agencies, environmental agencies, laboratories, etc.) or obtained by field 

measurements.    

 

3.1.3 STAGE 3 - LIFE CYCLE IMPACT ASSESSMENT (LCIA) 

The life cycle impact assessment stage aims to study the significance of the 

potential environmental impacts, based on the LCI results. In general, this process associates 

inventory data with specific impact categories and indicators, with the purpose of understanding 

these impacts and providing information for the interpretation stage. The mandatory elements 

are: (i) selection of impact categories, category indicators and characterisation models; (ii) 

correlation of LCI results (classification) and, (iii) calculation of results of category indicators 

(characterisation) (ABNT, 2009b). 
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Currently, there are no accepted methodologies for consistently and accurately 

associating inventory data with potential specific environmental impacts. As a result, a number 

of impact assessment methods have been developed, which can be grouped into two types:  

 Midpoint methodologies: the characterisation uses indicators located throughout the 

environmental mechanism before reaching the endpoint of the category (ABNT, 2009a). 

LCIA midpoint methods: CML, EDIP, Impact 2002+, TRACI, LUCAS, ReCiPe, 

USEtox, Impact 2002+ World;  

 Endpoint methodologies: the characterisation considers the whole environmental 

mechanism to its endpoint, i.e. refers to specific damage related to the broader area of 

protection, such as human health, natural environment or resources (ABNT, 2009a). 

LCIA endpoint methods: EPS2000, Eco-Indicator 99, LIME, Impact 2002+, ReCiPe. 

Moreover, there are LCIA methodologies comprising midpoint and endpoint 

approaches, such as Impact 2002+ and ReCiPe.  

In 2011, the ILCD published the recommendations for LCIA in the European 

context, based on existing environmental impact assessment models and factors, which are 

listed in Table 7. The recommended characterisation models and associated characterisation 

factors are classified according to their quality into three levels: “I” (recommended and 

satisfactory), level “II” (recommended, but in need of some improvements) or level “III” 

(recommended, but to be applied with caution). The classification “interim” indicates that a 

method was considered the best among the analysed methods for the impact category, but still 

immature to be recommended (EC-JRC, 2011). 

There are three optional elements in the LCIA: normalisation, grouping and 

weighting. The most used is normalisation, in which the results of the category indicators are 

related to a reference situation, providing information about their relative significance (ABNT, 

2009b). After the normalisation, it is possible to compare the results among all impact category, 

as they acquire a single unit, so it is possible to verify the presence of errors and inconsistencies 

(for example, the lack of inventory data can generate low normalized values, close to zero) (EC-

JRC, 2010). 

However, these methods have been developed in countries such as the Netherlands, 

Denmark, Switzerland, Sweden, the United States, among others, which have environmental, 

socioeconomic and cultural realities considerably different from Brazil. These countries use 

national data, values from their respective regions or global values as a reference. Thus, the use 
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of these local and regional references in studies conducted in any other country, can lead to 

questionable reliability results (SOUSA, 2008). 

 

Table 7. Recommended methods and their classification at midpoint for the European context, 

according to International Reference Life Cycle Data System. 

Impact category 
Recommended default 

LCIA method 
Indicator Classification* 

Climate change 
Baseline model of 100 

years of the IPCC 

Radiative forcing as 

Global Warming Potential 

(GWP100) 

I 

Ozone depletion 
Steady-state ODPs 1999 as 

in WMO assessment 

Ozone Depletion 

Potential (ODP) 
I 

Human toxicity, cancer 

effects 
USEtox model  

Comparative Toxic Unit 

for humans (CTUh) 
II/III 

Human toxicity, non-

cancer effects 
USEtox model  

Comparative Toxic Unit 

for humans (CTUh) 
II/III 

Particulate 

matter/Respiratory 

inorganics 

RiskPoll model and Greco 

et al. 2007 

Intake fraction for fine 

particles (kg PM2.5-eq/kg) 
I 

Ionising radiation, 

human health 

Human health effect model 

as developed by Dreicer et 

al. 1995 (Frischknecht et 

al., 2000) 

Human exposure 

efficiency relative to 

U235 

II 

Ionising radiation, 

ecosystems 
No methods recommended  Interim 

Photochemical ozone 

formation 

LOTOS-EUROS  

as applied in ReCiPe 

Tropospheric ozone 

concentration increase 
II 

Acidification Accumulated Exceedance  Accumulated Exceedance  II 

Eutrophication, 

terrestrial 
Accumulated Exceedance  Accumulated Exceedance  II 

Eutrophication, aquatic 
EUTREND model as 

implemented in ReCiPe 

Fraction of nutrients 

reaching freshwater end 

compartment (P) or 

marine end compartment 

(N) 

II 

Ecotoxicity 

(freshwater) 
USEtox model 

Comparative Toxic Unit 

for ecosystems (CTUe) 
II/III 

Ecotoxicity (terrestrial 

and marine) 
No methods recommended   

Land use 
Model based on Soil 

Organic Matter 
Soil Organic Matter III 

Resource depletion, 

water 

Model for water 

consumption as in Swiss 

Ecoscarcity 

Water use related to local 

scarcity of water 
III 

Resource depletion, 

mineral, fossil and 

renewable** 

CML 2002  Scarcity II 

Notes: *A mixed classification sometimes is related to the application  to different types of substances. **Depletion 

of renewable resources is included in the analysis but none of the analysed methods is mature for recommendation. 

Classification: level “I” - recommended and satisfactory; level “II” - recommended, but in need of some 

improvements; and level “III” - recommended, but to be applied with caution. Source: EC-JRC (2011). 
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3.1.4 STAGE 4 - INTERPRETATION 

The interpretation includes the identification of significant issues based on the 

results of the previous stages along with the evaluation in comparison to the goal and scope, in 

order to provide the conclusions, limitations and recommendations of the study. This stage is 

also iterative, then, in some cases it is necessary to improve the quality of LCI data or update 

the scope, for example. In addition, this stage includes the analyses of completeness, sensitivity 

and consistency (ABNT, 2009b).  

The completeness analysis aims to ensure that all significant data required for 

interpretation are available and complete, while the consistency analysis determines whether 

the assumptions, methods and data are consistent with the defined goal and scope. Finally, the 

sensitivity analysis evaluates the reliability of the final results and conclusions, determining 

how they are affected by data uncertainties, methods of allocation or other calculation 

procedures (ABNT, 2009b). 

In LCA studies about C&DW management, aspects related to the evaluation of 

elements for enhancing the reliability of the results are rarely included. Usually, the studies 

apply only the sensitivity analysis, based on the variation of the parameters related to transport 

distance, energy consumption, type of transport, secondary data source, application of different 

LCIA methods, recycling rates, waste composition, among others (BOVEA; POWELL, 2016). 

 

3.2 LIFE CYCLE ASSESSMENT STUDIES ON C&DW MANAGEMENT  

The literature review about the LCA studies on C&DW management was 

elaborated based on the PRISMA statements (MOHER et al., 2009). The search was performed 

in Science Direct and Web of Science databases and, in The International Journal of Life Cycle 

Assessment, since it is not included in the selected databases. The Brazilian Digital Library of 

Theses and Dissertations (BDTD) was used to search the PhD theses and Master dissertations. 

The search was carried out from 2015 until 25th May 2018, by using the following search 

strategy: (“construction and demolition waste” OR “construction waste” OR “demolition 

waste” OR “C&DW” OR “C&D” OR “CDW”) AND (“life cycle assessment” OR “LCA”) 

AND (“management”).  

The first search resulted in 2571 articles, after the exclusion of those without the 

search topics in the title, abstract or keywords and published before 2010, 1708 articles were 

obtained (Figure 38). After the title and abstract reading and exclusion of duplicate articles, 97 

articles were obtained. These articles were classified in LCA studies on C&DW management 
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(34 articles), LCA studies on C&DW recycling (44 articles) and LCA studies about other topics 

related to C&DW, such as LCA of building or construction materials (19 articles). After a 

detailed reading of the 34 studies on C&DW management,  12 articles were excluded, mainly 

due to the absence of details on the LCA methodology. Moreover, one study was added by 

using the search alert of the Science Direct database, resulting in the selection of 23 studies for 

this literature review. Finally, the search on BDTD resulted in 2 theses and 8 dissertations, most 

of them related to LCA of construction materials (2 theses and 4 dissertations), followed by 

LCA on C&DW management (4 dissertations). 

 

Figure 38. Data about the search on LCA studies focused on C&DW management carried out from 

2015 to 2018. 

 
Source: Author (2019). 

 

In the context of solid waste management, C&DW is one of the challenges for 

public managers, mainly due to its high volume and heterogeneous composition. As this type 

of waste usually presents low pollutant content, in some cases, its management is neglected. In 

this sense, the LCA studies allow the evaluation of scenarios that indicate the management 

option with the lowest environmental impacts. Usually, the scenarios comprise reuse, recycling 

and landfilling. The majority of LCA studies applied to C&DW has been developed in Europe 
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(66.3%), followed by America (17.5%), with emphasis on the United States; Asia (10.0%), with 

emphasis on China; Oceania (3.8%) and Africa (2.5%) (BOVEA; POWELL, 2016). 

These studies increased in 2003 and 2010, coiciding with the publication of the 

European Directive 2002/91/EC (on the energy performance of buildings), replaced by 

Directive 2010/31/EC (BOVEA; POWELL, 2016). In the last years (2013-2018) the number of 

studies has increased (Figure 39). On the other hand, in comparison with the number of studies 

on municipal solid waste management, LCA studies on C&DW management are still a minority 

(LAURENT et al., 2014a). 

 

Figure 39. Classification of the 98 analysed articles according to the year and aim of the LCA study. 

 
Source: Author (2019). 

 

The analyses of 80 articles published about LCA and C&DW management carried 

out by Bovea and Powell (2016) revealed that off-site recycling and incineration, both 

combined with landfilling, are the main management strategies, reuse and on-site recycling are 

less used. The authors also included the following notes about the LCA methodology applied 

to C&DW management: 

 System boundaries: in all revised articles, the system boundary considers the 

C&DW after its generation as the "cradle" (the construction/demolition process 

remains outside the system boundary); the remaining of the system boundary is 

specific to each study. For example, when recycling is considered as a strategy for 

some C&DW fractions, the system boundary can be expanded to consider avoided 

burdens (credits) due to the production of a secondary material as a substitute for a 
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primary material (virgin). The avoided burdens related to on-site or off-site 

recycling or incineration are included in almost 75% of the analysed studies. 

 Transport: there is a general agreement to include the transport between the 

construction site and treatment facilities within the system boundary. However, the 

impact due to the use of containers for waste storing (skip bins and other types of 

containers) is rarely considered; being covered only by Mercante et al. (2012). 

 Data source: most of the studies use secondary data in the LCI elaboration, 

based on literature sources or databases. Case studies from Europe usually use 

inventory data from Ecoinvent, BUWAL250 or Idemat; United States studies use 

the USLCI or Ecoinvent; and Australian studies use the Australian National Life 

Cycle Inventory; only ten of the reviewed studies include data obtained from 

primary sources. 

 Impact categories: “global warming” and “energy” are the main impact 

categories included in the analysed studies, followed by "acidification", 

"eutrophication" and "ozone layer depletion". The characterisation factors from the 

CML methodology are mainly used to obtain indicators for these categories.  

 

 

The general data about the 23 selected LCA studies on C&DW management are listed 

in Table A2.1 (Appendix A2). Table A2.2 (Appendix A2) presents the location, aim of the study 

and waste management strategies of each study. This preliminary analysis reveals that most 

studies were developed in Europe (13 studies; 57%), followed by America (5 studies; 22%), 

Asia (4 studies; 17%) and Oceania (1 study; 4%). In addition, Figure 40 shows that the off-site 

recycling combined with landfilling is the main waste management strategy (10 studies; 44%), 

followed by off-site recycling combined with landfilling and reuse (3 studies; 13%) and, off-

site recycling combined with landfilling and incineration (2 studies; 9%). The remaining studies 

adopted only off-site recycling as alternative (2 studies; 9%) or combined different management 

strategies (6 studies; 25%) in accordance with the goal and scope definition. 
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Figure 40. Management strategies of the 23 analysed LCA studies on C&DW management. 

 
Source: Author (2019). 

 

The high C&DW generation rates in Europe has overburden the landfills capacity, 

and as a consequence, most of the studies conducted in this region aim to evaluate the 

environmental impacts of the C&DW from construction, use, refurbishment and/or demolition 

stages of buildings, in order to determine the environmental viability of other management 

alternatives, such as reuse and recycling (ORTIZ; PASQUALINO; CASTELLS, 2010; 

COELHO; BRITO, 2012; MARTÍNEZ; NUÑEZ; SOBABERAS, 2013; ZAMBRAMA-

VASQUEZ et al., 2016; VITALE et al., 2017).  

Demolition wastes represent a significant portion of the total C&DW generated, 

then, some studies have analysed the influence of selective demolition to improve the 

environmental performance of waste management compared to conventional demolition 

(MARTÍNEZ; NUÑEZ; SOBABERAS, 2013; VITALE et al., 2017; DI MARIA; 

EYCKMANS; ACKER, 2018). In addition, there is an increase of studies focused on the 

characterisation of building material stocks at the urban scale, in order to assess the potential 

environmental impact associated with the end-of-life of buildings to support decision on waste 

management strategies (MASTRUCCI et al., 2017). 

Moreover, other studies evaluate the environmental performance of C&DW 

management systems of a specific region, mainly considering the recycling and transport stages 

(BLENGINI; GARBARINO, 2010; MERCANTE et al., 2012; BORGHI; PANTINI; 

RIGAMONTI, 2018). The remaining studies, besides evaluating the environmental impacts of  

C&DW management systems, have focused on specific topics, such as the leaching of inorganic 

pollutants from C&DW landfilling and utilisation of recycled aggregates in road construction 

(BUTERA; CHRISTENSEN; ASTRUP, 2015); LCA combined with life cycle cost (DI 
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MARIA; EYCKMANS; ACKER, 2018); analysis of specific wastes, as those from 

deconstruction and milling of old pavements (PANTINI; BORGHI; RIGAMONTI, 2018) and, 

the inclusion of waste prevention activities in the evaluation of construction waste management 

scenarios (BIZCOCHO; LLATAS, 2018). 

Studies in America are concentrated in the United States, which aim to evaluate the 

environmental impacts of management alternatives for the C&DW from end-of-life of buildings 

generated in a particular region (CARPENTER et al., 2013; KUCUKVAR; EGILMEZ; 

TATARI, 2014; YAZDANBAKHSH, 2018). The studies have proposed different approaches 

in addition to the LCA methodology, such as an economic input–output-based hybrid LCA 

(KUCUKVAR; EGILMEZ; TATARI, 2014) and, a framework for modelling alternative waste 

management scenarios to measure and compare the impacts at two scales of strategy and 

decision-making (YAZDANBAKHSH, 2018). A Brazilian study compared the current and six 

management scenarios, taking into account the C&DW from small generators of a medium-size 

municipality (PENTEADO; ROSADO, 2016) and, a Canadian study proposed a conceptual 

C&DW management framework to maximise the 3R (reduce, reuse and recycle) and minimise 

the C&DW landfilling (YEHEYIS et al., 2013). 

The studies developed in Asia are from Hong Kong and Shenzhen city,  China, 

compare management strategies for construction waste (HOUSSAIN; WU; POON, 2017) and 

demolition waste (WANG et al., 2018a) respectively. Another study focused on the 

environmental profile of the wood waste management (HOSSAIN; POON, 2018). Some of 

them have applied the LCA methodology combined with other tool, such as the Building 

Information Modelling (BIM), to quantify the carbon emissions generated over the life cycle of 

building demolition waste (WANG et al., 2018b), and the willingness-to-pay approach, to 

determine the environmental costs and benefits of recycling, compared with a traditional 

landfill (WANG et al., 2018a). Oceania is represented by one study from New Zealand, which 

aims to verify if the material procurement and construction waste management strategies could 

reduce the environmental impacts and provide benefits to buildings in terms of energy 

efficiency (GHOSE; PIZZOL; MCLAREN, 2017). 

Table A2.3 (Appendix A2) presents some methodological aspects used by the 

selected LCA studies on C&DW management, including functional unit, C&DW composition, 

system boundaries and life cycle inventory data, which are discussed below. 

The LCA study is developed based on the functional unit, which provides a 

reference for all inputs and outputs  in the inventory, ensuring the comparability of results 
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(ABNT, 2009a). In accordance with Laurent et al. (2014b), the LCA studies on solid waste 

management systems have been used four major types of functional unit: (i) unitary functional 

unit (e.g. management of 1 tonne of waste); (ii) waste generated in a region in a specific period 

of time; (iii) quantity of waste entering a particular facility and, (iv) the waste by-products (e.g. 

amounts of recovered energy or recycled material). Among these types, the unitary functional 

unit is the most used. However, the authors highlighted that LCA studies on solid waste 

management systems require additional information on the waste composition, characteristics 

of the region under study and, any other significant aspects to ensure the comparability of the 

systems. 

Figure 41 presents the functional units utilised by the analysed studies in this 

literature review. Most of the LCA studies on C&DW management system of a specific region 

utilised the unitary functional unit (BLENGINI; GARBARINO, 2010; MERCANTE et al., 

2012; KUCUKVAR; EGILMEZ; TARTARI, 2014; BUTERA; CHRISTENSEN; ASTRUP, 

2015; PENTEADO; ROSADO, 2016; BORGHI; PANTINI; RIGAMONTI, 2018; 

HOUSSAIN; POON, 2018; PANTINI; BORGHI; RIGAMONTI, 2018), the remaining studies 

adopted the total C&DW generated in a year (CARPENTER et al., 2013; YAZDANBAKHSH, 

2018) and the supply of an equal amount of fine aggregates for road construction and coarse 

aggregates for concrete production (DI MARIA; EYCKMANS; ACKER, 2018).  

 

Figure 41. Types of functional units used by the selected LCA studies on C&DW management. 

 

Source: Author (2019). 
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The LCA studies on management system of wastes from building construction 

and/or demolition utilised as functional unit the total or unitary area of the building (COELHO; 

BRITO, 2012; MARTÍNEZ; NUÑEZ; SOBABERAS, 2013; GHOSE; PIZZOL; MCLAREN, 

2017; MASTRUCCI et al., 2017; VITALE et al., 2017), the total or unitary amount of waste 

generated (ZAMBRAMA-VASQUEZ et al., 2016; HOUSSAIN; WU; POON, 2017; WANG 

et al., 2018a; WANG et al., 2018b; BIZCOCHO; LLATAS, 2018) or, the amount of 

construction waste generated per m² of built area (ORTIZ; PASQUALINO; CASTELLS, 

2010). 

Among the LCA studies on C&DW management systems of a specific region that 

utilised the unitary functional unit, most presented a detailed composition of the waste along 

with the peculiarities of the region under study (ORTIZ; PASQUALINO; CASTELLS, 2010; 

MERCANTE et al., 2012; BUTERA; CHRISTENSEN; ASTRUP, 2015; PENTEADO; 

ROSADO, 2016; BORGHI; PANTINI; RIGAMONTI, 2018) and, two studies refer only a 

specific type of C&DW, as wood (HOUSSAIN; POON, 2018) and asphalt (PANTINI; 

BORGHI; RIGAMONTI, 2018). On the other hand, two studies did not specify clearly the 

functional unit utilised (KUCUKVAR; EGILMEZ; TARTARI, 2014; YAZDANBAKHSH, 

2018). 

The waste composition is a fundamental data to develop a solid waste management 

plan, since this information allow to determine the feasibility of prevention, reduction, reuse 

and recycling alternatives (CASTRO, 1997). In this sense, the type of materials present in the 

waste flow may affect the results of LCA studies on waste management systems (BISINELLA 

et al., 2017). C&DW composition data of the analysed studies were obtained from reports of 

environmental public departments, literature, previous studies developed by the authors 

themselves or by a characterisation procedure performed specifically for the study. From now 

on, the discussion is focused on the LCA studies about C&DW management systems from a 

specific region4, since their objectives are closer to those of the present study. 

Table 8 presents the C&DW composition in percentage by mass provided by six 

studies; the five other studies included a qualitative composition (BUTERA; CHRISTENSEN; 

ASTRUP, 2015; YAZDANBAKHSH, 2018), or presented the data in a graph, not allowing the 

reading of the exact percentage values of each composition fraction (KUCUKVAR; EGILMEZ; 

TARTARI, 2014), and two studies are related to only one type of waste, like wood (HOSSAIN; 

POON, 2018)  or asphalt (PANTINI; BORGHI; RIGAMONTI, 2018).

                                                           
4 Studies number 2, 4, 5, 8, 9, 10, 16, 18, 19, 21 and 23 (as referenced in Tables 10 and 11). 
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Table 8. C&DW composition data of the LCA studies on C&DW management system of a specific region. 

Authors (year) 
Blengini and 

Garbarino (2010) 

Mercante et al. 

(2012)1,2 

Carpenter  

et al. (2013)1 

Penteado and 

Rosado 

(2016)1 

Borghi, Pantini and 

Rigamonti (2018) 

Di Maria, Eyckmans 

and Acker (2018)1 

Location Italy Spain United States Brazil Italy Belgium 

Code Composition % (by mass) 

1701 
Concrete, bricks, tiles and 

ceramics 
- - - - - 10.9 - 

170101 Concrete 2.30 - - - 8 - - 

170103 Tiles and ceramics - - - - 12 - - 

170107 
Mixtures of concrete, 

bricks, tiles and ceramics 
5.10 82.00 83.22 15 - - 88 

170201 Wood - 1.50 0.62 40 5 - 1 

170203 Plastic - 0.50 0.003 3 - - 0.5 

170302 Bituminous mixtures  15.70 - - - - 8.4 - 

170407 Mixed metals - 0.70 0.04 6 - - 4 

170504 Soil and stones 28.60 - - - 50 - - 

170604 Insulation materials - - - - - - - 

170802 
Gypsum-based 

construction materials 
- - - 14 - 0.3 - 

170904 Mixed C&DW 47.30 - - - 10 80.4 - 

- Paper/cardboard - 0.30 0.02 2 - - - 

- 
Roofing  

(asphalt shingles) 
- - - 10 - - - 

- Other waste 1.1 - - 10 - - 0.5 

- Hazardous waste - - - - - - 6 

- Reject with hazardous - 15.00 16.09 - - - - 

- Refuses - - - - 15 - - 

Notes: 1C&DW characterisation data adapted to the European List of Waste codes. 2Input C&DW of a sorting and treatment plant type I (left) and type II (right). 
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The mineral C&DW represents the main fraction of all C&DW compositions of the 

analysed studies, with exception of the studies conducted in the United States (CARPENTER 

et al., 2013; KUCUKVAR; EGILMEZ; TARTARI, 2014), in which the wood is the main 

fraction corresponding to the construction technique used in that region. Kucukvar, Egilmez 

and Tartari (2014) presented the waste composition related to different US building sectors: 

drywall and wood wastes are the main fractions generated in residential renovation or new 

construction, while wood and concrete wastes are the main generated in residential demolition, 

commercial renovation and commercial new construction; and wood and ferrous metals are the 

main generated in the commercial demolition. Another study from the US 

(YAZDANBAKHSH, 2018) adopted only the analysis of the mineral fraction, which is 

composed by concrete, brick and clay tiles, unwanted rocks and inorganic soils. 

Butera, Christensen and Astrup (2015) also analysed solely the management of the 

mineral fraction, including concrete, possibly mixed with soil, tiles, bricks and mortar. The 

authors excluded the other material fractions potentially present in C&DW (plastic, paper, 

gypsum, wood and metal), as a consequence of the sorting at source performed during the 

demolition process in accordance to Danish legislation. Penteado and Rosado (2016) followed 

this same approach, as well as Borghi, Pantini and Rigamonti (2018), who analysed the 

management of the non-hazardous C&DW. Mixtures of bituminous material were only present 

in the C&DW composition of Italian studies, while hazardous wastes were only reported in the 

studies from Spain and Belgium. Finally, it is important to highlight the large amount of refuse 

in the Brazilian study, which refers to household solid waste mixed with the C&DW. 

The system boundary determines the unitary processes considered in the LCA 

study. Figure 42 shows a generic system boundary with the main alternatives considered by the 

LCA studies on C&DW management. In addition, this step also includes information on the 

geographical, temporal and technological coverage of the study. 

The analysed studies present the system boundary by using a figure and/or a 

description of each unitary process, however, those studies that chose to use LCA along with 

other methodologies (KUCUKVAR; EGILMEZ; TARTARI, 2014; YAZDANBAKHSH, 

2018) do not have a clear definition of the system boundary.  

In most studies, the system boundary has as first stage the collection of the C&DW 

from the construction and/or demolition and, the transport to off-site sorting and recycling 

and/or to an appropriate landfill. Usually, the mineral fraction sorting is performed along with 

the recycling process, or in some cases, a mobile facility is used in the worksite or in collection 
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centres. In relation to the non-mineral fraction, there are studies that consider only the ferrous 

metals, while others include the management of all non-mineral fractions. 

 

Figure 42. System boundary for LCA studies on C&DW management. 

 
Source: adapted from Bovea and Powell (2016). 

 

The next stage is the life cycle inventory elaboration, which is performed by data 

collection and calculation procedures for the quantification of the inputs and outputs of each 

unit process included in the system boundary. This stage can be conducted in accordance with 

two approaches: attributional or consequential. Among the analysed studies, only one reported 

the use of a consequential approach (BUTERA; CHRISTENSEN; ASTRUP, 2015). Others 

adopted an attributional approach, although only two (VITALE et al., 2017; DI MARIA; 

EYCKMANS; ACKER, 2018) has justified explicitaly this choice. The absence of this aspect 

in ISO 14.040 and ISO 14.044 may be a reason for the absence of this information in the studies. 

Another important aspect that affect the LCI elaboration is the methodology used 

to deal with multifunctional processes. Most analysed studies avoided the allocation, by using 

the system expansion method (also called “avoided burden” or “substitution”), in which the life 

cycle inventory of the processes or products replaced by the obtained co-products is subtracted 

from the analysed system (FINNVEDEN et al., 2009; EC-JRC, 2010). 

In this context, it is important to note that the secondary material obtained by the 

recycling may have lower quality compared to the primary material that it will replace. In this 

way, it is necessary to report the substitution factor adopted and justify it. Most of the studies 

have considered the substitution factor of 1:1 for the mineral fraction (i.e. 1 t of recycled 
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aggregates substitutes 1 t of natural aggregates), however, some assumptions have been 

adopted. For instance, Blengini and Garbarino (2010) considered three types of recycled 

aggregates (A - high quality RA for concrete and road construction; B - medium quality RA for 

road, airport and harbour construction and, C - low quality RA for environmental filling and 

rehabilitation of depleted quarries and landfill sites), and different recycling facilities 

configurations (stationary - produces the three types of RA; semi-mobile - produces the RA 

type B and C and, mobile - produces only the RA type C). In this context, that LCA study 

assumed that “RA of type A, B and C roughly correspond to the equivalent type of NA that 

would be employed for the same end-use”. 

Borghi, Pantini and Rigamonti (2018) proposed a methodology to determine the 

substitution factor for RA, considering the quality and market demand, based on data from 

Lombardy region (Italy) in 2014. This methodology, performed by the Equation 1, is coherent 

with the reality of the current scenario of C&DW recycling and is an effective tool to understand 

in what magnitude the RA substitutes NA. However, studies can still be developed to improve 

the methodology for determining the RA quality coefficient (Q1). 

𝑅 =  𝑄1  ×  𝑄2  × 𝑀     (Equation 1) 

Where:   

 R = replacement coefficient; 

 Q1 considers the quality of RAs in terms of “clean composition”. 

 Q < 1, when there are impurities, such as soil, woof, plastics, etc.  

 Q2 considers the technical characteristics of RAs compared to those of the 

substituted material in relation to the specific application. 

 Q2 = 1, when RA are used in road construction (unbound materials and 

sub-base layers). 

 Q2 < 1, when RA are used for environmental reclamations and fillings. 

 M is the market coefficient and is defined as the ratio between the amount of 

RAs sold and produced in the recycling facility in a time period 

 M = 0, when all the produced RAs are unsold due to the absence of 

demand; 

 M = 1, when RA are totally sold. 

Among the studies that consider the non-mineral fraction management, some 

included only the avoided burdens (environmental credits or benefits) from the ferrous metal 

recycling (BLENGINI; GARBARINO, 2010; BORGHI; PANTINI; RIGAMONTI, 2018); the 
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avoided burdens from wood and ferrous metal recycling (DI MARIA; EYCKMANS; ACKER, 

2018); the avoided burdens from different alternatives of wood management (CARPENTER et 

al., 2013; HUSSAIN; POON, 2018) or, the avoided burdens from recycling of metal, plastic, 

paper/cardboard and wood (MERCANTE et al., 2012). These LCA studies adopted different 

approaches to consider the environmental benefits from recycling, taking into account the 

ferrous metal as example. The following approaches were used: 

 Blengini and Garbarino (2010) considered the impacts generated by steel 

recycling via electric arch route (secondary steel), while the avoided virgin product 

is primary steel (converter steel), re-melting yield from steel scrap was assumed to 

be 90%. 

 Mercante et al. (2012) considered that the ferrous metal substitutes the pig iron 

at a substitution ratio of 1:1. 

 Di Maria, Eyckmans and Acker (2018) considered that ferrous metals is re-

melted in furnaces to produce new iron and steel, then, it is assumed that the 

recovered metals can avoided the mining iron ores, which are used as raw materials 

to produce an equivalent amount of iron and steel. 

Gala, Raugei and Fullana-i-Palmer (2015) provided an alternative method for 

calculating the environmental credits associated with material recycling in LCA of waste 

management systems. As in the aforementioned method, there is a need for research to 

determine quality factors (Q), mainly for plastics. Equation 2 can be used to calculate the 

environmental credit associated to 1 tonne of recycled material. 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑟𝑒𝑑𝑖𝑡 = 𝑥 × 𝑅𝐸𝐶 + (1 − 𝑥) × 𝑄 × 𝑉𝐼𝑅 (Equation 2) 

Where: 

 x is the proportion of recycled material in the average market mix. 

 (1-x) is the proportion of virgin material in the average market mix. 

 Q is the quality factor of recycled material vs. virgin material (Q ≤ 1). 

 REC is the environmental load of the recycling process (1 t of recycled material 

in output). 

 VIR is the environmental load of the production process of the virgin material 

(1 t in output). 

The frequent use of the avoided burden approach can be justified by the difficulty 

of using the most common allocation criteria (by mass and economic value of product and co-

product) in an appropriate way. On the other hand, the avoided burden approach currently used 
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fails to distribute the environmental benefits in a fair way, since the environmental avoided 

burdens due to the replacement of primary material by the co-product are totally subtracted 

from the multifunctional process that generated the co-product, that is, the whole benefit is 

attributed only to the generating industry (SAADE, 2017). 

In order to solve this issue, Saade (2017) proposed the avoided net impact approach 

(Equation 3). By applying this concept to the C&DW management, it can be considered that 

when the mineral fraction is recycled, the benefits obtained due to the avoided landfilling and 

transport are computed for the management system, and the benefits due to the avoided natural 

aggregate production and transport are computed for the productive sector that will use the 

recycled aggregate. 

𝐼𝑙𝑖𝑞 =  𝐼𝑝𝑟𝑜𝑑.𝑠𝑢𝑏𝑠.  − [𝐼𝑏𝑒𝑛𝑒𝑓.𝑐𝑜−𝑝𝑟𝑜𝑑. +  𝐼𝑜𝑡ℎ𝑒𝑟  − 𝐼𝐹𝑉𝐷]  (Equation 3) 

Where: 

 𝐼𝑙𝑖𝑞 avoided net impact, to be subtracted from the environmental impacts of the 

multifunctional process. 

 𝐼𝑝𝑟𝑜𝑑.𝑠𝑢𝑏𝑠. is avoided impact, associated with the raw material replaced by the 

co-product (which in the traditional approach is subtracted entirely from the 

multifunctional process). 

 𝐼𝑏𝑒𝑛𝑒𝑓.𝑐𝑜−𝑝𝑟𝑜𝑑. impact associated with the co-product recycling. 

 𝐼𝐹𝑉𝐷 is the impact associated with the final disposal of the co-product - if it is 

not used. 

 𝐼𝑜𝑡ℎ𝑒𝑟 any charges that may arise due to the use of the co-product, for example, 

associated with transport if the co-product is not available locally. 

 

The landfilling is compared to the recycling scenario in most of the studies, usually, 

it is considered that the mineral fraction is sent to inert landfills, while the non-mineral fraction 

is sent to specific landfills, such as sanitary landfill, or to incineration. It is important to note 

that most inventories rarely include leachate or gas emissions from mineral C&DW fraction 

disposed in inert landfills, since this fraction has a low content of pollutants, and can be 

considered chemically inert (DOKA, 2009). However, it is recommended that inventories 

consider such emissions, since a small percentage of biodegradable materials (wood, paper, 

cardboard, etc.) can be sent to inert landfills due to inefficiencies in the sorting process 

(BUTERA; CHRISTENSEN; ASTRUP, 2015). 
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In relation to the data source used in the inventory, in most cases, the C&DW 

composition and the general management information, such as the transport distances and the 

technology currently used, are obtained from primary data, based on documents or interviews 

with enterprises and/or public government. Some studies provide a detailed inventory for the 

mineral fraction recycling process, elaborated from primary data, which mainly include the 

consumption of diesel and electricity (BLENGINI; GARBARINO, 2010; MERCANTE et al., 

2012; BORGHI; PANTINI; RIGAMONTI, 2018). Studies that do not have access to primary 

data, use data from the literature or databases; Ecoinvent is the most used both to complete the 

foreground data and to provide most of the background data. 

Table A2.4 (Appendix A2) presents the life cycle impact assessment, optional 

LCIA elements, aspects considered in the sensitivity analysis and the software used by the 

studies. The most utilised LCIA methodology is the CML baseline, followed by the Impact 

2002+ and the LCIA methodologies recommended by the ILCD (Figure 43). The objective and 

scope must report the selected LCIA methodology, however, four studies (14%) only informed 

the selected impact categories. Table A2.5 (Appendix A2) reveals that global warming impact 

category was selected by all studies, followed by acidification and eutrophication (61%); ozone 

layer depletion and photochemical ozone formation (48%); human toxicity (43%); respiratory 

inorganics (35%); resource depletion, non-renewable energy and freshwater ecotoxicity (26%), 

among others. Normalisation is the LCIA optional step most used by the studies, however, the 

majority analyse only the characterised impacts, probably, to avoid the uncertainties.  

 

Figure 43. LCIA methodologies used in the LCA studies on C&DW management. 

 
Source: Author (2019). 
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Sensitivity analysis evaluates the effect of a change on a single input in the final 

results of a LCA study. This analysis is performed during the interpretation, which the aims to 

evaluate the reliability of the final results and conclusions, determining how they will be 

affected by data uncertainties (ABNT, 2009b; BUENO et al., 2016). 

The LCA studies of waste management have used various methods to performed an 

uncertainty analysis, without a systematic method (CLAVREUL; GUYONNET; 

CHRISTENSEN, 2012). The analysed studies evaluated the uncertainties by means of scenarios 

analysis where assumptions are changed one-at-a-time, variations on the transport distances, 

comparison between selective and traditional processes, recycling efficiency, among others. 

SimaPro was the software most used by the LCA studies (52%). Other software 

used were LCAManager, US EPA Municipal Solid Waste Decision Support Tool, US EPA’s 

WARM, WASTED model, EASETECH and Gabi. Only five studies (22%) have not used a 

software or not reported it. 

Table A2.6 (Appendix 2) summarizes the main results and contribution of the 

studies to the decision makers and scientific community. C&DW recycling is the most 

recommended management alternative, followed by landfilling. However, some studies 

suggested that the mineral fraction recycling not always provide environmental benefits, since 

the production of high quality recycled aggregates depends on the waste quality, which means 

that the on-site sorting is the key factor to increase the benefits of recycling.  

The crucial role of transport for the generated impacts is highlighted in all studies, 

mainly due to the high volume and mass of mineral fraction and long distances. In this context, 

all transport stages should be considered in  specific LCA studies on C&DW management. The 

Geographical Information System is an important tool that can be used along with the LCA  to 

model the transport stages based on reliable data. 

The environmental benefits provided by the selective demolition differ among the 

studies. On the one hand, there is a consensus regarding to the benefits of on-site sorting, which 

increase the quality and quantity of wastes recovered and safely disposed. On the other hand, 

selective demolition may require an extra transport. 

Prevention is the first priority in the waste management hierarchy, however, it is 

rarely considered in LCA studies. Currently, case studies that include waste prevention in LCA 

have presented significant avoided impacts, due to the elimination of some product and, 

consequently, reduction of waste generation (NESSI; RIGAMONTI; GROSSO, 2012). The 

quantification of environmental benefits from prevention in a LCA study requires knowledge 
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of the waste management system and the product system to be avoided or replaced; that is 

because prevention is often related to modifications that could potentially have a greater impact 

than the ones provided by the wastes generated before the prevention activity occurred 

(LAURENT et al., 2014). However, there is no established procedure in standards and manuals 

on how to consider prevention in LCA studies of solid waste management. 

Bizcocho and Llatas (2018) proposed two methodological approaches (option 1 and 

option 2) to include prevention scenarios in LCA studies of construction waste management, 

considering that “prevention includes both the reduction of the amount and the degree of 

toxicity of the C&DW generated and the reduction of the adverse environmental impacts”. In 

this context, the C&DW prevention activities were classified into optimization measures (the 

components of the building elements are optimized; the amount of waste is reduced and the 

composition remains constant) and substitution measures (the building elements are replaced 

by other building elements without toxic materials or that generate less waste; the amount of 

waste and the composition vary).  

To develop the methodological approaches some adjustments in the system 

boundary and functional unit were proposed (BIZCOCHO; LLATAS, 2018). In the option 1, 

the system boundary of prevention and non-prevention scenarios considered the upstream 

processes (those occurring during the production and construction stages) and the downstream 

processes (those related to the waste management, once generated). In the option 2, based on 

the “zero burden approach”, therefore, the system boundary of prevention and non-prevention 

scenarios considered the downstream processes and, the upstream processes are only taken into 

account in prevention scenarios. The functional unit of both options was defined as “the 

management of the construction waste in a construction work which fulfills a given set of 

functions”; however, in option 1, the amount of construction waste managed can differ between 

prevention and non- prevention scenarios and, in option 2, it must be identical in all scenarios 

and equal to the baseline amount of construction waste generated in a non-prevention scenario. 

In addition, the authors applied the two methodological approaches in a case study, considering 

to the management of 1 tonne of concrete waste. The results showed that the prevention scenario 

provided a reduction of 60% of construction waste, as a consequence, the impacts were reduced 

in 60% in option 1 and 150% in option 2. 

Among the four Brazilian dissertations that address the LCA applied to C&DW 

management (Table 9), only two comprise the four stages required in a LCA study. One of 

these studies, conducted by Barreto (2014), evaluated the management of 1 tonne of C&DW 
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considering the economic and environmental aspects, and three scenarios: sanitary landfill, 

landfill of C&DW Class A and inert waste, and recycling. The LCI was elaborated based on 

data collected from recycling, mining, landfill and sanitation companies, complemented by 

Ecoinvent database. The impacts were calculated using the CML 2001 (v3.0) baseline method, 

adapted by the Research Group on LCA (CICLOG) with the assistence of SimaPro 8.0 software. 

The results showed that recycling scenarios have the potential of avoiding 37% of economic 

costs and environmental impacts by up to 20% for abiotic depletion, 149% for global warming 

and 662% for energy demand. 

Using the same functional unit, Rosado (2015) evaluated the environmental impacts 

of three C&DW management scenarios (landfilling, recycling and reuse) in the municipality of 

Limeira/SP. Primary data were obtained from interviews with the public government, visits in 

the management infrastructures and official documents, complemented by Ecoinvent database 

and literature. The results demonstradted that recycling is beneficial when efficient C&DW 

sorting takes place at construction sites, avoiding the transport of refuse to sorting and recycling 

facilities, and the distance between the generation source and the recycling unit is within 30 

km. 

The other two studies confirmed the feasibility of using LCA in the C&DW 

management. Pasquali (2005) used the iterativity aspect of the LCA methodology along with 

the principle of “continuous improvement” of Environmental Management System to propose 

improvements for the C&DW management in the municipality of Santa Maria/RS. The 

concepts were applied during the diagnosis of the current scenario, allowing the public 

government to implement some of the strategies proposed by the study and, at the same time, 

the results were evaluated and corrected when necessary. 

Ferreira (2009) used Life Cycle Thinking in the analysis of the social, 

environmental and economic impacts of C&DW management in the Distrito Federal. The study 

compared the C&DW management system of Distrito Federal in relation to other municipalities 

with proper C&DW management, such as Belo Horizonte and São José do Rio Preto, and also  

to the international context (the Netherlands). The study concluded that the C&DW 

management in the Distrito Federal is conducted by a corrective approach with negative impacts 

in all stages. The Life Cycle Thinking assisted the identification of positive and negative 

impacts in the collection and transport stages, recycling, landfilling and illegal disposal of 

waste. 
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Table 9. Brazilian theses and dissertations about life cycle assessment studies related to construction 

and demolition waste. 
Author (year) University Main goal of the thesis or dissertation Main topic 

Pasquali 

(2005) 
UFSM 

To utilise the LCA as a tool to assist the management 

of C&DW generated in Santa Maria (Rio Grande do 

Sul State). 

LCA of 

C&DW 

management 

Ferreira 

(2009) 
UnB 

To utilise the life cycle thinking as a support for 

C&DW management, based on the Distrito Feral, 

Belo Hozironte (Minas Gerais State), São José do Rio 

Preto (São Paulo State) and Netherlands case studies. 

LCA of 

C&DW 

management 

Santos 

(2010) 
UNESP 

To develop a comparative LCA study of different 

types of particle boards composed of agroindustrial 

residues manufactured at UNESP. 

LCA of 

construction 

materials 

Barreto 

(2014) 
UFSC 

To evaluate the environmental and economic 

performance of C&DW management scenarios in 

Brazil by means of the life cycle assessment and life 

cycle costing. 

LCA of 

C&DW 

management 

Pedroso* 

(2015) 
UnB 

To study the Energy LCA in the pre-use, use and 

demolition phases of a typical project of a social 

housing of 45,64 m² in Distrito Federal. 

LCA of 

construction 

materials 

Oliveira 

(2015) 
USP 

To estimate the consumptions of raw materials and 

water, embodied energy, emissions of CO2 and solid 

wastes generated in the concrete blocks production 

based on the modular LCA. 

LCA of 

construction 

materials 

Rosado 

(2015) 
UNICAMP 

To develop and analyse a life cycle inventory of 

C&DW management systems, in order to identify the 

best alternatives to minimize environmental impacts. 

LCA of 

C&DW 

management 

Bento* 

(2016) 
USP 

To analyse the use of the LCA methodology to assist 

the decision making in structural projects of 

reinforced concrete, aiming at the improvement of 

environmental performance. 

LCA of 

construction 

materials 

Vinhal 

(2016) 
UFSCar 

To evaluate environmental indicators of ceramic 

blocks, based on LCA, from the extraction of raw 

materials (cradle) to the block production (gate), 

considering the Brazilian context. 

LCA of 

construction 

materials 

Coelho 

(2016) 
UFES 

To associate the production of self-compacting 

concrete with the incorporation of wastes and 

industrial by-products with the concept of life cycle, 

using the LCA methodology to make comparisons of 

mixtures in a specific scenario. 

LCA of 

construction 

materials 

Note: *Thesis. 
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3.3 REMARKS OF THE CHAPTER  

The first section of this chapter presented a brief background of the LCA 

methodology and its application to evaluate the environmental performance of solid waste 

management systems. In addition, the main aspects of the four LCA stages are included in the 

section 3.2. 

The last section presented a literature review based on 23 articles and 4 Brazilian 

dissertations, selected based on a systematic approach. The studies, published between 2010 

and 2018, were analysed and discussed, taking into account the characteristics of the 

management system, the aspects of the LCA methodology and, the main results and 

contributions. 

Specifically, the analysis of Table A2.2 and Table 8 showed the heterogeneity 

regarding to the main objective of the studies, waste management alternatives and waste 

composition. The analysis of Tables A2.3 and A2.4 revealed the absence of standardization in 

the use of the LCA methodology on C&DW management, mainly in relation to the system 

boundary definition, LCI elaboration and life cycle impact assessment methodology.  

Usually, the collection of data for the LCI is considered one of the main limitations 

of the studies, due to the unavailability of specific and reliable sources of information. In 

addition to the absence of a standardization among the studies, some authors did not report 

important methodological aspects in the article, such as the functional unit and the used LCIA 

methodology.  

In general, the results and contributions of the selected studies confirmed the LCA 

as a useful methodology to analyse the current environmental performance of the C&DW 

management, in order to determine the alternative management strategies, providing 

recommendations to the decision makers and scientific community. 
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 CHAPTER 

 

4 
 

 

METHODOLOGY 
The methodology comprises the following three main stages: (i) selection of the 

representative municipalities from Piracicaba, Capivari and Jundiaí Watershed; (ii) primary 

data gathering, and (iii) the methodological stages of the life cycle assessment study, namely 

“Goal and scope definition” and “Life cycle Inventory”. 

 

4.1 REPRESENTATIVE MUNICIPALITIES OF THE STUDY AREA  

The Piracicaba, Capivari and Jundiaí Watershed (PCJ Watershed) has 15,303 km² 

and comprises 58 municipalities from São Paulo State and 4 municipalities from Minas Gerais 

State (SHS, 2006). Tables 10 and 11 list the municipalities of São Paulo State totally and 

partially located in the PCJ watershed, respectively. 

 
Table 10. Municipalities of São Paulo totally located in the PCJ Watershed. 

Municipality 
Area 

(km²) 
Municipality 

Area 

(km²) 
Municipality 

Area 

(km²) 

Águas de São Pedro 3 Iracemápolis 105 Rafard 140 

Americana 144 Itatiba 325 Rio Claro 521 

Amparo 463 Itupeva 196 Rio das Pedras 221 

Analândia 312 Jaguariúna 96 Saltinho 99 

Artur Nogueira 192 Jarinu 200 Salto 160 

Atibaia 478 Joanópolis 377 S. Bárbara 

D'Oeste 

270 

B. Jesus dos 

Perdões 

120 Jundiaí 450 Santa Gertrudes 100 

Bragança Paulista 489 Limeira 579 Santa Maria da 

Serra 

266 

Cabreúva 267 Louveira 54 S.Antônio da 

Posse 

141 

Campinas 887 Mombuca 136 São Pedro 596 

Campo Limpo 

Paulista 

84 Monte Alegre do 

Sul 

117 Sumaré 164 

Capivari 319 Monte Mor 236 Tuiuti 128 

Charqueada 179 Morungaba 143 Valinhos 111 

Cordeirópolis 123 Nazaré Paulista 322 Vargem 145 

Corumbataí 264 Nova Odessa 62 Várzea Paulista 36 

Cosmópolis 166 Paulínia 145 Vinhedo 80 

Elias Fausto 203 Pedra Bela 148   

Holambra 65 Pedreira 116   

Hortolândia 62 Pinhalzinho 161   

Indaiatuba 299 Piracaia 374   

Ipeúna 170 Piracicaba 1353   

Source: SHS (2006). 
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Table 11.  Municipalities of São Paulo partially located in the PCJ Watershed. 

Municipality 
Area 

(km²) 
Municipality 

Area 

(km²) 
Municipality 

Area 

(km²) 

Anhembi 728 Itirapina 567 Serra Negra 203 

Botucatu 554 Itu 642 Socorro 442 

Cabreúva 267 Mairiporã 307 Tietê 398 

Dois Córregos 599 Mineiros do Tietê 198 Torrinha 323 

Engenheiro Coelho 112 Mogi Mirim 484   

Source: SHS (2006). 

 

According to the “Diagnosis of Urban Solid Waste Management” (SNIS, 2015), the 

58 municipalities from São Paulo State totally located in the PCJ watershed generated 

1,877,274 tonnes of C&DW in 2013. Among them, 13 municipalities account for 96% of the 

total C&DW generation, which are highlighted in Table 12, and were the focus of this study. 

 

Table 12. C&DW generation in tonnes/year of the municipalites of São Paulo totally located in the PCJ 

watershed and the representative municipalites highlighted. 

Municipality 
C&DW 

(t/year) 
Municipality 

C&DW 

(t/year) 
Municipality 

C&DW 

(t/year) 

Águas de S.Pedro 3,216 Ipeúna 1,200 Piracaia NI 

Americana NI Iracemápolis 1,500 Piracicaba 180,672 

Amparo NI Itatiba NI Rafard NI 

Analândia 80 Itupeva 92 Rio Claro 69,600 

Artur Nogueira 11,000 Jaguariúna 13,200 Rio das Pedras NI 

Atibaia 84,950 Jarinu 20 Saltinho NI 

B. Jesus Perdões NI Joanópolis 576 Salto 40,389 

Bragança Paulista 4,826 Jundiaí 147,018 Santa B. D'Oeste 20,000 

Cabreúva NI Limeira 189,949 Santa Gertrudes 9,000 

Campinas 792,001 Louveira 9,636 S. Maria da Serra 5 

Campo Limpo 

Paulista 
NI Mombuca NI 

Santo Antônio da 

Posse 
NI 

Capivari NI 
Monte Alegre 

do Sul 
NI São Pedro NI 

Charqueada 30 Monte Mor NI Sumaré 86,000 

Cordeirópolis 255 Morungaba NI Tuiuti NI 

Corumbataí 24 Nazaré Paulista NI Valinhos NI 

Cosmópolis 26,340 Nova Odessa 22,000 Vargem 2,400 

Elias Fausto 650 Paulínia NI Várzea Paulista NI 

Holambra 7,640 Pedra Bela NI Vinhedo 414 

Hortolândia 57,260 Pedreira 2,000   

Indaiatuba 90,931 Pinhalzinho 2,400   

Note: NI – not informed. Source: SNIS (2015). 
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4.2 PRIMARY DATA GATHERING OF THE REPRESENTATIVE MUNICIPALITIES 

A questionnaire (Appendix A3) was elaborated for the primary data gathering about 

the C&DW management system, which was submitted to the Ethics Committee of UNICAMP; 

only after approval by the Committee, the questionnaire was applied to those responsible for 

the C&DW management system of each municipality. 

The first contact was made by e-mail requesting a meeting with the sector 

responsible for the C&DW management system, then a telephone contact was made and, 

finally, the visit was carried out on the dates presented in Table 13. The municipalities agreed 

with the survey by signing the "Authorization for Data Collection" and the "Free and Informed 

Consent Form" (Appendix 3). 

 

Table 13. Information on data gathering in selected municipalities carried out in 2016. 

Municipality 
Visit 

date 
Position of the interviewee Agency / Department / Secretary 

Atibaia 26/04 Director of Solid Waste SAAE (Environmental sanitation) 

Campinas 01/06 
Coordinator of the C&DW 

Recycling Facility 
Secretary of Public Services 

Cosmópolis 06/04 Technical director 
Intermunicipal Consortium of 

Environmental Sanitation (CONSAB) 

Hortolândia 05/04 

Manager of the 

Environmental Inspection 

Sector 

Secretary of Environment 

Indaiatuba 23/05 
Coordinator of Urban Solid 

Waste 

Secretary of Urbanism and 

Environment 

Jundiaí 15/06 
Director of works, 

maintenance and waste 
Secretary of Public Services 

Limeira 26/12 
Director of Environmental 

Education 

Municipal Department of Rural 

Development and Environment 

Nova Odessa 24/05 
Director of Environmental 

Licensing and Inspection 
Secretary of Environment 

Piracicaba 10/05 Solid Waste Sector 
Secretary of Defense of the 

Environment 

Rio Claro* 19/05 Waste Control Manager 
Secretariat of Planning, Development 

and Environment 

Salto 24/04 Secretary of Environment Secretary of Environment 

Santa Bárbara 

D'Oeste 
18/05 Environmental engineer Secretary of Environment 

Sumaré* - Superintendent 
Intermunicipal Consortium for Solid 

Waste Management (CONSIMARES) 
* The data on the C&DW management system of Rio Claro and Sumaré were obtained from their Solid Waste 

Management Plans and literature. Despite the visit in Rio Claro, the municipality did not answer the questionnaire. 

The Municipal Government of Sumaré requested that the interview be made with CONSIMARES, however, those 

responsible for the consortium was not available to schedule the visit. 
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4.3. LIFE CYCLE ASSESSMENT STUDY 

The LCA study was developed in accordance with the requirements of ISO 14.040 

and ISO 14.044 standards (ABNT, 2009a; 2009b), including its four major stages: (i) goal and 

scope definition, (ii) life cycle inventory, (iii) life cycle impact assessment and, (iv) 

interpretation. The first and second stages are related to the methodological aspects of the LCA 

study, and then, are presented in this chapter, while the third and fourth stages are presented in 

Chapter 5 (Result and Discussion). 

In addition, this study follows the framework proposed by Zampori et al. (2016) for 

interpreting the LCA results, which are based on the Product Environmental Footprint guide 

elaborated by the European Commission (EC-JRC, 2017) to harmonize the application of LCA 

for evaluation of green products. Figure 44 reports the procedures used to identify the most 

relevant impact categories, life cycle stages, processes and elementary flows of the study. 

 

Figure 44. Hotspot analysis procedure used in this study. 

 

Source: adapted from Zampori et al. (2016). 
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4.3.1 GOAL AND SCOPE DEFINITION 

4.3.1.1 INTENDED APPLICATION AND AUDIENCE 

In order to improve the quality of water resources in areas of higher urban-industrial 

development, public policy proposals on water resource management began to emerge in Brazil 

in the early 90’s. The watershed was adopted as a reference, aiming a regionalized management, 

conducted by watershed committees. As a result of this approach, the PCJ Watershed 

Committee was created in 1993, and so far it has been considered as an organizational model 

for the committees that have been created (BARBI, 2014). 

According to the PCJ Watershed Plan 2010-2020, one of the requirements for 

recovering the water quality comprises studies to control diffuse sources of pollution caused by 

the absence or inefficiency in solid waste management systems (COBRAPE, 2011). Thus, it is 

important to evaluate the environmental performance of the current C&DW management 

system in this region, in order to propose alternative management scenarios.  

In this context, the overall goal of this study is to evaluate the environmental 

performance of the C&DW management in the municipalities from PCJ Watershed, 

considering the current (base case scenario) and some alternative scenarios. The PCJ Watershed 

comprises 15,303 km², 58 municipalities belonging to the State of São Paulo (SP) and 4 to the 

State of Minas Gerais (MG) (SHS, 2006), and represents 0.18% of the Brazilian territory, 2.7% 

of the population and 6% of the GDP (COBRAPE, 2011). 

This study considered thirteen municipalities, located in the State of São Paulo, 

which account for 35% of the total area, 87% of the inhabitants and 96% of the PCJ Watershed 

C&DW generation. Figure 45 and Table 14 report the main data of each municipality, including 

C&DW generation per capita in 2013 (latest reported data), proportion of C&DW generated (in 

tonnes) in relation to the functional unit5, type and quantities of infrastructures used by the 

municipalities for the C&DW management in 2016.  

The primary audience is that of the municipal departments responsible for the 

C&DW management and the PCJ Watershed Committee, both interested in assessing the 

environmental profile of current and alternative management scenarios. The results may also 

be useful to LCA practitioners and C&DW planners from other Brazilian regions, if adjustments 

in geographical, time and technology coverage are performed. 

 

 

 

                                                           
5 This approach is explained in the section 5.2 – Life cycle inventory. 



98 

 

 

 

Figure 45. Study area (PCJ Watershed) and main data about the thirteen selected municipalities. 

 
Source: Rosado et al. (2019). 

 

Table 14. General data on the selected municipalities for this study. 

Municipality 
Area1 

(km²) 
Inhabitants2 

C&DW3 

(t/year) 
% 

C&DW  

(kg/inhabitants/day) 

Atibaia 479 126,603 84,950 5 1.84 

Campinas 795 1,080,113 792,001 44 2.01 

Cosmópolis 155 58,827 26,340 1 1.23 

Hortolândia 62 222,186 57,260 3 0.71 

Indaiatuba 312 201,619 90,931 5 1.24 

Jundiaí 431 370,126 147,018 8 1.09 

Limeira 581 276,022 189,949 11 1.89 

Nova Odessa 74 51,242 22,000 1 1.18 

Piracicaba 1,378 364,571 180,672 10 1.36 

Rio Claro 498 186,253 69,600 4 1.02 

Salto 133 105,516 40,389 2 1.05 

Santa Bárbara D'Oeste 271 180,009 20,000 1 0.30 

Sumaré 153 241,311 86,000 5 0.98 

Total 5,322 3,464,398 1,807,110 100 1.22* 
Sources: 1SEADE (2017). 2IBGE (2010). 3SNIS (2015). *Average C&DW per capita generation (kg/inhabitants/day). 

 

4.3.1.2 THE SYSTEM UNDER ANALYSIS AND FUNCTIONAL UNIT 

The system of interest comprises the C&DW management stages whose 

responsibility belongs to the municipal government. The functional unit was defined as the 

management of 10,000 tonnes of C&DW per year. The C&DW generation of the representative 
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municipalities varies from 20,000 tonnes/year to 792,001 tonnes/year, therefore, this functional 

unit aims to assist the estimation of environmental impacts by means of a multiplication. 

Only four municipalities have carried out C&DW characterisation studies (Table 

15), by using different methodologies. The samples were collected in different management 

infrastructures, resulting in variations in the composition. The poor quality of composition data 

available in the selected municipalities of Atibaia, Limeira and Santa Bárbara suggested the 

utilisation of a different reference for this study. Data from Torrinha (which is not one of the 

thirteen selected municipalities, but belongs to the PCJ watershed) were used as reference, since 

they appear of high quality and have in any case a good geographical and time consistency.  

 

Table 15. Available data on C&DW composition (%) of municipalities from PCJ Watershed. 

C&DW composition 
Type of 

Waste1 
Atibaia2 Limeira3 

Santa 

Bárbara4 
Torrinha5,* 

MixC&DW 17 09 04 93.15 19.00 60.00 68.80 

Excavated soil 17 05 04 0.35 50.34 20.00 18.10 

Wood 17 02 01 0.42 4.66 10.00 3.70 

Gypsum 17 08 02 0.82 - - - 

Recyclable fraction  0.08 10.66 10.00 - 

Iron and steel 17 04 05 - - - 3.20 

Glass 17 02 02 - - - 1.70 

Plastics 17 02 03 - - - 1.50 

Paperboard 15 01 01 - - - 1.20 

Mixed waste 20 03 01 5.18 15.34 - 1.80 

Total 100 100 100 100 
Notes: 1Brazilian Waste Codes, which are equivalent to European Waste Codes. 2 Atibaia (2015). 3 Limeira (2015). 
4 Santa Bárbara D’Oeste (2015). 5Torrinha (2014). *Reference composition used in this study. 

 

The official management infrastructures used by the municipalities comprise 

sorting areas, C&DW recycling facilities (stationary or mobile) and/or inert landfills. In 

addition, for the management of non-mineral C&DW fraction, it is necessary the use of different 

configurations of recycling facilities, as well as sanitary landfills (see Figure 45). The entire 

C&DW management activities, from the sorting areas or illegal storage areas, to its ultimate 

disposition were considered in the system boundaries (Figure 46), with the indication of the 

background and foreground systems. 
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Figure 46. System boundaries for the municipal C&DW management systems considered in this study, with the indication of the foreground and background 

systems. Dashed lines refer to the streams that have differences among the management systems analysed. 

 
Source: Rosado et al. (2019). 
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4.3.1.3 TYPE OF LCA AND LCIA METHODOLOGY 

The LCA study utilised an attributional approach and was developed with the 

support of SimaPro® 8.0.2 software. An attributional LCA aims at describing the potential 

environmental impacts of a system over its life cycle. This methodology uses historical, fact-

based, measureable data of known uncertainty, and includes all the processes that significantly 

contribute to the system under study (EC-JRC, 2010). 

The life cycle inventory was elaborated with most of the inputs from foreground 

system (fuel, electricity, water and other materials) obtained from official reports or technical 

visits to management infrastructures. The remaining inputs, direct, indirect and avoided 

burdens6 were obtained from the literature and Ecoinvent v.3.1 database (2014), updated with 

Brazilian data where possible.  

The allocation problem in the LCA model was avoided by using the system 

expansion method (also called “avoided burden” or “substitution”), in which the life cycle 

inventory of the processes or products replaced by the obtained co-products is subtracted from 

the analysed system (FINNVEDEN et al., 2009; EC-JRC, 2010).  

In accordance with the literature review about LCA studies on C&DW, the most 

used methodologies are CML, Impact 2002+ and ILCD (see Figure 44). It is worth noting that 

ILCD methodology comprises recommendations for LCIA in the European context and Impact 

2002+ has normalised factors only for European reference, while CML methodology provides 

normalised factors that covers the global environmental consequences. 

The life cycle environmental impacts were evaluated by using CML baseline v.3.03 

(GUINÉE et al., 2002) and Impact 2002+ v.2.12 (JOLLIET et al., 2003). The lack of a specific 

LCIA methodology related to the Brazilian context (BUENO et al., 2016) suggested utilising 

both LCIA methodologies, making it possible to compare the obtained results and analyse the 

influence of the methodology.  

CML methodology was developed at the University of Leiden in 2001, comprising 

a set of impact categories and characterisation methods for the impact assessment step 

(GUINÉE et al., 2002). Normalisation factors are provided for the following reference 

situations: Netherlands in 1997; West Europe in 1995; Europe in 2000 and World in 2000. The 

normalised results are presented in terms of person equivalent units; for the World reference, 

                                                           
6 Direct burdens – arising in the foreground waste management system (e.g. air emissions from vehicles). Indirect 

burdens – arising in the supply chains of materials and energy provided to the foreground (e.g. materials use and 

emissions arising from extraction and refining of transport fuels). Avoided burdens – associated with economic 

activities displaced by material and/or energy recovered from the waste (CLIFT; DOIG; FINNVEDEN, 2000). 
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one person equivalent represents the global average impact in the specific category associated 

with one person during one year (HUIJBREGTS et al., 2003). 

Impact 2002+ methodology proposes a feasible implementation of a combined 

midpoint/damage approach. This methodology develops new concepts for the comparative 

assessment of human toxicity and ecotoxicity, and for other midpoint categories it adapts 

concepts from previous characterizing methods as Eco-indicator 99 and CML 2002 (JOLLIET 

et al., 2003). In addition, it has been frequently utilised in other studies of the same field 

(BLENGINI; GARBARINO, 2010; VITALE et al., 2017; ROSADO et al., 2017; HOSSAIN; 

WO; POON, 2017), suggesting that this methodology is adequate for this study. Normalisation 

can be performed at both midpoint and damage level, and the result is indicated as the number 

of equivalent persons affected during one year per unit of emission (person*year), in the 

European context. 

Table 16 lists the midpoint impact categories utilised in the two LCIA 

methodologies, highlighting that, even though some impact categories have the same reference 

unit, only the categories of acidification and eutrophication have the same characterisation 

models. 

 

Table 16. Midpoint impact categories and units used by Impact 2002+ and CML methodologies. 

Impact 2002+ v2.12 Unit CML baseline v3.03 Unit 

Human toxicity  

(carcinogens, non-

carcinogens)  

kg chloroethylene eq Human toxicity kg 1,4-dichlorobenzene eq 

Ozone layer depletion kg CFC-11 eq Ozone layer depletion kg CFC-11 eq 

Photochemical oxidation  

(respiratory organics)  
kg ethylene eq 

Photochemical 

oxidation 
kg ethylene eq 

Aquatic ecotoxicity kg triethylene glycol eq 

Fresh water aquatic 

ecotoxicity 
kg 1,4-dichlorobenzene eq 

Marine aquatic 

ecotoxicity 
kg 1,4-dichlorobenzene eq 

Terrestrial ecotoxicity kg triethylene glycol eq Terrestrial ecotoxicity kg 1,4-dichlorobenzene eq 

Aquatic acidification kg SO2 eq Acidification kg SO2 eq 

Aquatic eutrophication kg PO4
3- eq Eutrophication  kg PO4

3- eq 

Global warming kg CO2 eq Global warming kg CO2 eq 

Non-renewable energy MJ primary 
Abiotic depletion  

(fossil fuel) 
MJ 

Mineral extraction MJ surplus Abiotic depletion kg Sb eq 

Respiratory inorganics kg PM2.5 eq   

Ionizing radiations Bq carbon-14 eq   

Terrestrial 

acidification/nitrification 
kg SO2 eq  

 

Land occupation m²organic arable land   
Sources: Guinée et al. (2002) and Jolliet et al. (2003). 
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4.3.1.4 ASSUMPTIONS, LIMITATIONS AND DATA QUALITY 

In the interviews with the responsible for the C&DW management municipal 

systems, it was observed that one of the main problems is the lack of control over the C&DW 

management flow. Hence, in Brazil it is common to elaborate Municipal Plans for Solid Waste 

Management based on data from the literature. Therefore, for this study, some data were 

estimated as detailed below. 

 

a. Illegal storage areas 

The illegal storage areas comprise some spots located usually in the periferic 

regions of the municipalities, where for different reasons the generators dispose of their C&DW 

and other wastes in a completely improper way. That happens because the scarce consciousness 

of the population regarding their responsabilities on the environmental quality maintenance, 

associated with insufficient technical and financial resources, and the weak supervision by the 

environmental control authorities. For this reason, the C&DW management system in Brazil, 

in different degrees, depending on the municipality, is mostly based on corrective actions. In 

such cases, the management basically involve the cleaning of illegal storage areas. The wastes 

removed from these areas are classified by a visual inspection, and depending on the 

composition, disposed of in an inert or sanitary landfill. There is anyway a clear absence of 

control on the quantities collected in the illegal storage areas.  

According to the Municipal Plans for Solid Waste Management of Atibaia, Limeira 

and Piracicaba, the amount of C&DW sent to illegal storage areas are 66%, 10% and 43%, 

respectively. The other municipalities do not provide this information, therefore, this study 

assumed that, approximately, 30% of the C&DW generated in each municipality is sent to 

illegal storage areas, based on the Panorama of Solid Waste in Brazil of 2016 (ABRELPE, 

2017).  

The C&DW collection from illegal storage areas is done by using wheel loaders 

and trucks. Based on the average capacity of a wheel loader commonly used for this activity (3 

m³) and the C&DW density (1.5 t/m³) (SINDUSCON-SP, 2015), it was estimated that this 

equipment manages 36 tonnes of C&DW/h. The consumption of diesel and lubricating oil of 

the wheel loader were obtained form primary data. The direct and indirect burdens derived from 

the processes “Diesel, burned in building machine {GLO}| processing | Alloc Def, U” and 

“Lubricating oil {RoW}| production | Alloc Def, U” of Ecoinvent v.3.1 (2014).  

The distances from illegal storage areas to landfills were estimated based on 

primary data. The direct and indirect burdens of transport were calculated considering the 
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process “Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| Alloc Def, U” of 

Ecoinvent v.3.1. (2014). 

 

b. Sorting areas (drop-off sites)  

The C&DW sorting is performed manually, then, for this stage only the transport 

and in some cases, wheel loader operation were considered. As aforementioned, the direct and 

indirect burdens derived from Ecoinvent v.3.1 (2014). 

 

c. Transport phases 

The sorting areas (drop-off sites), named as “Ecopontos”, receive up to 2 tonnes of 

C&DW per inhabitant per day, free of charge. The transport from generation source to sorting 

areas is done mostly by the generators by using their own cars, while the C&DW transport from 

the sorting areas to management infrastructures is done by trucks owned by the municipalities 

or contracted by them. The distances were estimated based on primary data, and the direct and 

indirect burdens of transport were obtained from the processes “Transport, passenger car, 

EURO 4 {RoW}| Alloc Def, U - tkm” and “Transport, freight, lorry 16-32 metric ton, EURO 4 

{RoW}| Alloc Def, U” of Ecoinvent v.3.1. (2014). 

 

d. Recycling rates (amount sent to recycling) 

In most cases, the municipalities that have C&DW recycling facilities do not control 

the quantities of mineral fraction that are effectively recycled. Thus, based on data from a 

survey with Brazilian C&DW recycling facilities (ABRECON, 2015) it can be assumed a 

recycling rate of 20%. Table 17 lists the recycling rates of non-mineral fraction. The recycling 

rates for wood, iron and steel are based on the information gathered during the technical visits 

in the sorting areas, while the rates for plastics and glass were obtained in publications from 

Brazilian recycling associations. It was assumed that the paperboard is sent to landfill because 

of its poor quality. 

 
Table 17. Recycling rates of non-mineral fraction. 

Non-mineral fraction Recycling rate (% in weight) Source 

Wood 90 Primary data 

Iron and steel 95 Primary data 

Plastics 22 Abiplast (2011) 

Glass 47 Cempre (2011) 
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e. Recycling chains and avoided materials production  

Table 18 lists the main data used for the life cycle inventory elaboration of the 

recycling processes. The inventory of transport stages was developed based on primary data 

about the distances. The direct and indirect burdens were obtained from the process “Transport, 

freight, lorry 16-32 metric ton, EURO4 {RoW}| Alloc Def, U” of Ecoinvent v.3.1. (2014). The 

complementary data are presented in the section 5.2 – Life cycle inventory. 

 

Table 18. Main data used for the life cycle inventory elaboration of the recycling processes. 

Process Data source  
Avoided 

production 
Data source 

Substitution 

ratio 
Data source 

Mineral  

fraction  

recycling 

Primary data 

and Rosado et 

al. (2017) 

Soil (20%) 
Clay, clay pit 

operation1,2,* 

1:1 
Rosado et al. 

(2017) 

Sand and 

gravel (10%) 

Sand, gravel and 

quarry operation1,2,* 

Natural 

aggregate 

(70%) 

Rosado et al. 

(2017) 

Wood  

recycling 

Primary data 

and Rosado et 

al. (2017) 

Wood chips 

Wood chips, wet, 

measured as dry 

mass1,2 

1:1 
Rosado et al. 

(2017) 

Plastics  

recycling 

Ye et al. 

(2017)* and 

Perugini et al. 

(2005)* 

PVC (52%)4  

PVC, suspension 

polymerized, 

production1,2,* 
1:0.81 

Rigamonti et 

al. (2009) HDPE (29%); 

PET (11%) 

and PP (8%)4 

HDPE/PET/PP, 

granulate 

production1,2,* 

Steel  

recycling 

Steel 

production, 

electric, low-

alloyed1,2,* 

Primary steel 

(60%)5 

Steel production, 

electric, low-

alloyed1,2,* 

1:0.98 

Vitale et al. 

(2017) and 

WSA (2011) Secondary 

steel (40%)5 

Steel production, 

converter, 

unalloyed1,2,* 

Glass  

recycling 

Glass cullet, 

sorted , 

treatment of 

waste glass1,2,* 

Glass 

production 

without cullet 

Packaging glass, 

brown, production, 

without cullet1,4,* 

1:0.82 
Cremiato et 

al. (2017) 

Notes: 1Ecoinvent v.3.1 (2014). 2RoW, Alloc Def, U. 3GLO, Alloc Def, U. 4Plastics composition based on Prestes et al. (2011). 
5Based on Vitale et al. (2017) and WSA (2011). *Updated with Brazilian energy mix. 

 

f. Landfilling 

The direct and indirect burdens from inert landfilling are only related to energy use 

for operation, as leachate emissions were not considered. This assumption appears reasonable 

since the waste material disposed in this type of landfill has a low pollutant content and is 

chemically inert to a large extent (DOKA, 2009). For the sanitary landfilling, the leachate 

emissions were considered. The following processes were used, which derived from Ecoinvent 
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v.3.1 (2014): “Inert waste, for final disposal {RoW}| treatment of inert waste, inert material 

landfill | Alloc Def, U”; “Inert waste {RoW}| treatment of, sanitary landfill | Alloc Def, U”; 

“Waste paperboard {RoW}| treatment of, sanitary landfill | Alloc Def, U” and, “Waste plastic, 

mixture {CH}| treatment of, sanitary landfill | Alloc Def, U (updated with Brazilian energy 

mix)”. 

 

g. Capital goods 

The skip bins and other types of containers used for the C&DW storage, the 

infrastructure and its maintenance, as well as the transport equipment maintenance, were not 

considered. This assumption is related to the lack of reliable data. Anyway, these burdens are 

almost similar for the considered alternatives, then the assumption will not affect the validity 

of final results. 

 

4.3.1.5 BASE CASE AND ALTERNATIVE C&DW MANAGEMENT SCENARIOS 

The base case scenario comprises the current C&DW management of the PCJ 

Watershed and assumes that 30% of the C&DW generated in each municipality is sent to illegal 

storage areas (ABRELPE, 2017)7. The waste removed from these areas are classified by  visual 

inspection, and disposed of in inert or sanitary landfills, depending on their composition.  

Seven municipalities recycle 20% of the mineral fraction (ABRECON, 2015), using 

different facilities (one mobile and six stationary recycling facilities with different 

configurations, as shown in Figure 46). Therefore, the type and quality of the produced recycled 

aggregates (RA) are different. Figure 48 reports the quantity of each type of RA produced and 

their uses in the base case scenario. Details about the recycling process of each municipality 

are presented in the section “4.3.2 – Life cycle inventory”.  

The recycling rates for wood (90%), iron and steel (95%) have been based on the 

information gathered during the technical visits in the sorting areas, while the recycling rates 

for plastics (22%) and glass (47%) have been obtained from publications of Brazilian recycling 

associations (ABIPLAST, 2011; CEMPRE, 2011). It has been assumed that the paperboard is 

sent to landfill due to its poor quality. 

 

  

                                                           
7 With exception for Atibaia, Limeira and Piracicaba, where the amount of C&DW sent to illegal storage areas are 

66%, 10% and 43%, respectively. 
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Figure 47. Overview of the mineral fraction recycling, in the base case scenario. 

 
Source: Rosado et al. (2019). 

 

The alternative management scenarios (Table 19) took into account the crucial role 

of mineral fraction, which accounts for 87% of C&DW composition, without modifications in 

other parameters, such as C&DW sent to illegal storage areas and recycling rates of wood, iron 

and steel, plastics and glass.  

 

Table 19. Base case and alternative scenarios of mineral fraction management considered in this study. 

Scenarios 
Mineral fraction 

recycling rate (%) 

Low quality recycled 

aggregate (%) 

Medium quality recycled 

aggregate (%) 

Base case 20 67.5 32.5 

1a 20 64 36 

1b 40 to 100 64 36 

2a 20 43 57 

2b 40 to 100 43 57 

3.1a 20 64 36 

3.1b 40 to 100 64 36 

3.2a 20 64 36 

3.2b 40 to 100 64 36 
Notes: In the base case scenario, seven municipalities recycle the mineral fraction. In the alternatives scenarios it 

was assumed that all municipalities recycle the mineral fraction. 

 

 Scenario 1a considers that all municipalities recycle the mineral fraction, with 

a recycling rate of 20%. For the small-sized municipalities that do not have a recycling facility 

(Nova Odessa and Salto), it was assumed the use of a mobile recycling facility (Mobile RF) 

and the use of a stationary recycling facility (Stationary RF) for the other municipalities. The 

Mobile RF configuration was based on the equipment used by Cosmópolis, and the stationary 

facility configuration is described by Rosado et al. (2017). When all municipalities perform 

recycling, the amount of each RA produced and their uses are slightly different due to 
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differences in the recycling facilities (Figure 48). In the Scenarios 1b the recycling rates 

increase from 20% to 100%, then assuming the values of 40%, 60%, 80% and 100%. 

 

Figure 48. Overview of the mineral fraction recycling in the scenarios 1a and 1b. 

 
Source: Rosado et al. (2019). 

 

Scenario 2a considers that all Stationary RF utilised by the municipalities perform 

the recycling process by using the best RF configuration, obtaining a largest fraction of medium 

quality recycled aggregate (57%). Scenarios 2b consider the increase in recycling rates from 

20% to 100%. Figure 49 shows the quantity of each type of RA produced and their uses in 

scenarios 2a and 2b. 

 

Figure 49. Overview of the mineral fraction recycling in the scenarios 2a and 2b. 

 
Source: Rosado et al. (2019). 
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The scenarios 1 and 2 consider the existence of recycling facilities in the six 

municipalities that currently do not have such facilities, therefore, scenarios 3.1 and 3.2 assume 

that those municipalities use the recycling facilities of the nearest municipalities (Figure 50), in 

order to analyse the influence of the transport distances.  

 

Figure 50. Indication of the recycling facilities that can be used by the municipalities that do not have 

a recycling facility, considering the shorter transport distances. 

 
Source: adapted from Google Earth (2018). 

 

Scenario 3.1a considers that all mineral fraction is transported to the existing 

recycling facilities, regardless of the recycling rate, following the same approach adopted in the 

base case scenario and alternative scenarios (1a, 1b, 2a and 2b); however, only 20% is recycled, 

and the remaining 80% is stored for future use. Scenarios 3.1b consider the increase in 

recycling rates from 20% to 100%. 

Scenario 3.2a considers the transport of the mineral fraction that will be effectively 

recycled to the recycling facility (20%), the transport of the remaining mineral fraction to the 

inert landfill, and the environmental burdens of inert landfilling. Scenarios 3.2b consider the 

increase in recycling rates from 20% to 100%.  

 

4.3.2 LIFE CYCLE INVENTORY 

The inventory took into account a specific proportion of the C&DW generation rate 

of each municipality, with reference to the functional unit (10,000 tonnes), as indicated in Table 

20. This approach aims to compensate the significant differences in the C&DW generation rates 

and management systems. For example, Campinas accounts for 44% of the C&DW generation 
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of the PCJ Watershed, then, the LCI considers that 4,440 tonnes of C&DW are managed 

according to the management system of Campinas. 

 

Table 20. Proportion of C&DW generation in each municipality related to the functional unit. 

Municipality C&DW generation (t/year) % 
Proportion of the 

functional unit (t) 

Atibaia 84,950 5 500 

Campinas 792,001 44 4,400 

Cosmópolis 26,340 1 100 

Hortolândia 57,260 3 300 

Indaiatuba 90,931 5 500 

Jundiaí 147,018 8 800 

Limeira 189,949 11 1,100 

Nova Odessa 22,000 1 100 

Piracicaba 180,672 10 1,000 

Rio Claro 69,600 4 400 

Salto 40,389 2 200 

Santa Bárbara D’Oeste 20,000 1 100 

Sumaré 86,000 5 500 

Total  1,807,110 100 10,000 

 

4.3.2.1 INVENTORY OF TRANSPORT STAGES  

The first stage refers to the C&DW transport from generation source to illegal 

storage areas (tu1) or to sorting areas (tu2). The urban area covered by each sorting area was 

determined by Google Earth Pro, defining a circle around it for estimating each delivery 

distante.  

According to Pinto and González (2005), the average distance from C&DW 

generation to sorting area should be between 1.5 and 2.5 km. Then, the first radius was defined 

as 1.5 km and the percentage coverage was verified; if the value was less than 50% other radius 

was defined until the coverage of approximately 50% of the urban area. Thereafter, it was 

defined another radius obtaining approximately 100% of the urban area. Thus, according to the 

average of the radius required to serve approximately 50% and 100% of the urban area, it is 

possible to estimate the distance from the generation source to the sorting area.  

For example, the municipality of Hortolândia has six storage areas and one C&DW 

recycling facility, which also receives C&DW from small generators. The radius of 1.5 km 

covers more than 50% of the urban area and the radius of 2.5 km covers approximately 100% 

of the urban area (Figure 51). Then, it was assumed an average distance from generation source 
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to sorting areas of 2 km. This analysis was carried out for each municipality, taking into account 

65 sorting areas. 

The distance from generation source to illegal storage areas was assumed to be the 

same of that from generation source to sorting area, since both are located in the central region 

and peripheral regions throughout the municipalities.  

Table 21 shows the complete set data set, including the delivery distances, the 

quantity of C&DW sent to illegal storage areas or to sorting areas, and the transport unit 

obtained by multiplying the transported quantity by the covered distance. 

 

Figure 51. Coverage area of 1.5 km and 2.5 km of the sorting areas and C&DW recycling facility of the 

municipality of Hortolândia. 

 
Source: adapted from Google Earth (2018). 

 
Table 21. Transport from generation source to illegal storage areas (tu1) and to sorting areas (tu2). 

Municipality 

Proportion of 

the functional 

unit (t) 

C&DW quantity (t)1 Distance (km) Transport unit (tkm) 

Illegal areas Sorting areas d1 d2 tu1 tu2 

Atibaia 500 330 170 12 12 3,960 2,040 

Campinas 4,400 1,320 3,080 8 8 10,560 24,640 

Cosmópolis 100 30 70 11 11 330 770 

Hortolândia 300 90 210 2 2 180 420 

Indaiatuba 500 150 350 10 10 1,500 3,500 

Jundiaí 800 240 560 7 7 1,680 3,920 

Limeira 1,100 110 990 3 3 330 2,970 

Nova Odessa 100 30 70 7 7 210 490 

Piracicaba 1,000 430 570 6 6 2,580 3,420 

Rio Claro 400 120 280 4 4 480 1,120 

Salto 200 60 140 3 3 180 420 

Santa Bárbara 100 30 70 6 6 180 420 

Sumaré 500 150 350 11 11 1,650 3,850 

Total  10,000 3,090 6,910 90 90 23,820 47,980 
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Six municipalities send the C&DW preliminary stored in the illegal storage areas 

to sorting areas (transport distance tu3), and the other municipalities send the waste to landfills 

(transport distance tu4), as it has been sketched in Figure 46. Table 22 lists all the distances of 

interest.  

 

Table 22. Transport from illegal storage areas to sorting areas (tu3) or to landfill disposal (tu4). 

Municipality 
C&DW collected in illegal 

storage areas (t) 

d3 d4 tu3 tu4 

(km) (km) (tkm) (tkm) 

Atibaia 330 9 0 2,970 0 

Campinas 1,320 13 0 17,160 0 

Cosmópolis 30 11 0 330 0 

Hortolândia 90 8 0 720 0 

Indaiatuba 150 0 10 0 1,500 

Jundiaí 240 10 0 2,400 0 

Limeira 110 0 12 0 1,320 

Nova Odessa 30 0 19 0 570 

Piracicaba 430 18 0 7,740 0 

Rio Claro 120 0 18 0 2,160 

Salto 60 0 6 0 360 

Santa Bárbara 30 0 7 0 210 

Sumaré 150 0 14 0 2,100 

Total 3,090 69 86 31,320 8,220 

 

Indaiatuba, Limeira, Nova Odessa, Rio Claro, Salto and Santa Bárbara D’Oeste 

send the mineral fraction to landfills, and Cosmópolis, Rio Claro, Salto and Sumaré send the 

wood to landfills. In all municipalities, paperboard and mixed waste are sent to sanitary 

landfills. It is important to note that the mixed waste includes the wood, steel, plastics and glass 

that are not recycled (see item 4.3.1.4-d). Table 23 presents the quantity of mineral fraction, 

wood, paperboard and mixed waste separated in the sorting areas and the transport distances to 

landfills.  
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Table 23. Transport from sorting areas to landfill disposal (tu5). 

Municipality 

Quantity (t) Distance (km) Transport unit (tkm) 

Mineral 

fraction 
Wood  

Paper 

board 
Mixed waste 

Mineral 

fraction 
Wood 

Paper/  

Mixed 

waste 

Mineral 

fraction 
Wood 

Paper 

board 

Mixed 

waste 

Atibaia 0 0 6 22 0 0 57 0 0 342 1,254 

Campinas 0 0 53 194 0 0 14 0 0 742 2,716 

Cosmópolis 0 4 1 5 0 30 30 0 120 30 150 

Hortolândia 0 0 4 13 0 0 28 0 0 112 364 

Indaiatuba 304 0 4 15 6 0 12 1,824 0 48 180 

Jundiaí 0 0 10 35 0 0 58 0 0 580 2,030 

Limeira 860 0 12 44 12 0 12 10,320 0 144 528 

Nova Odessa 61 0 1 3 19 0 19 1,159 0 19 57 

Piracicaba 0 0 12 44 0 0 82 0 0 984 3,608 

Rio Claro 243 10 3 11 18 18 18 4,374 180 54 198 

Salto 122 5 2 6 6 7 7 732 35 14 42 

Santa Bárbara 61 0 1 3 7 0 7 427 0 7 21 

Sumaré 0 13 4 14 0 14 14 0 182 56 196 

Total 1,651 32 113 409 68 69 358 18,836 517 3,132 11,344 

 

Table 24 shows the quantity of all C&DW fractions separated in the sorting areas 

and sent to recycling facilities. In the municipality of Atibaia the mineral fraction and wood are 

recycled within the sorting area; the same occurs for the mineral fraction in the municipality of 

Cosmópolis.  

The data used to estimate all transport distances are shown in Table 25. The data 

based on real distance represents the distances calculated by Google Earth Pro, according to the 

information gathered by the questionnaires. The distances from sorting areas to recycling 

facilities were estimated considering the nearst recycling facility, since the municipalities do 

not have the control of the waste flow. 
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Table 24. Transport from sorting areas to recycling facilities (tu6). 

Municipalities 

Quantity (t) Distance (km) Transport unit (tkm) 

Mineral 

fraction 
Wood Steel Plastics  Glass 

Mineral 

fraction 
Wood Steel Plastics Glass 

Mineral 

fraction 
Wood Steel Plastics Glass 

Atibaia 435 17 15 2 4 0 0 154 55 69 0 0 2,310 110 276 

Campinas 3824 147 134 15 35 13 129 99 20 119 49,712 18,963 13,266 300 4,165 

Cosmópolis 87 0 3 0 0 0 0 57 0 0 0 0 171 0 0 

Hortolândia 261 10 9 1 2 8 8 88 27 118 2,088 80 792 27 236 

Indaiatuba 0 12 11 1 3 0 6 107 27 113 0 72 1,177 27 339 

Jundiaí 695 27 24 3 6 6 6 122 44 77 4,170 162 2,928 132 462 

Limeira 0 33 30 3 8 0 12 35 64 89 0 396 1,050 192 712 

Nova Odessa 0 2 2 0 1 0 30 58 38 122 0 60 116 0 122 

Piracicaba 869 33 30 3 8 18 53 63 103 146 15,642 1,749 1,890 309 1,168 

Rio Claro 0 0 9 1 2 0 0 65 101 86 0 0 585 101 172 

Salto 0 0 4 0 1 0 0 106 39 124 0 0 424 0 124 

Santa Bárbara 0 2 2 0 1 0 30 45 59 124 0 60 90 0 124 

Sumaré 304 0 11 1 3 3 0 59 35 116 912 0 649 35 348 

Total 6,475 283 284 30 74 48 274 1,058 612 1,303 72,524 21,542 25,448 1,233 8,248 
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Table 25. Data source for the estimation of transport distances. 

Municipalities 

Distance (km) 

Generator to 

illegal areas 

Generator to 

sorting areas 

Illegal area to 

sorting areas 

Illegal area 

to landfill 

Mineral fraction  

to inert landfill  

Mineral fraction 

to recycling 

Wood to 

landfill 

Wood to 

recyling 

Steel to 

recycling 

Plasctics to 

recycling 

Glass to 

recycling 

Paper to 

landfill 

Mixed waste 

to landfill 

tu1 tu2 tu3 tu4 tu5 tu6 tu5 tu6 tu6 tu6 tu6 tu5 tu5 

Atibaia 12 12 9 0 0 0 0 0 154 55 69 57 57 

Campinas 8 8 13 0 0 13 0 129 99 20 119 14 14 

Cosmópolis 11 11 11 0 0 0 30 0 57 0 0 30 30 

Hortolândia 2 2 8 0 0 8 0 8 88 27 118 28 28 

Indaiatuba 10 10 0 10 6 0 0 6 107 27 113 12 12 

Jundiaí 7 7 10 0 0 6 0 6 122 44 77 58 58 

Limeira 3 3 0 12 12 0 0 12 35 64 89 12 12 

Nova Odessa 7 7 0 19 19 0 0 30 58 38 122 19 19 

Piracicaba 6 6 18 0 0 18 0 53 63 103 146 82 82 

Rio Claro 4 4 0 18 18 0 18 0 65 101 86 18 18 

Salto 3 3 0 6 6 0 7 0 106 39 124 7 7 

Santa Bárbara 6 6 0 7 7 0 0 30 45 59 124 7 7 

Sumaré 11 11 0 14 0 3 14 0 59 35 116 14 14 

Total 90 90 69 86 68 48 69 274 1,058 612 1,303 358 358 

 

Legend 

  Based on the real distance. 
  Estimated based on Google Earth Pro.  
  Non-existent stream. 
  No need for transport. 
  It was assumed equal to another distance. 
  Estimated data (the data were not provided by the municipality). 
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4.3.2.2 INVENTORY OF C&DW COLLECTION FROM ILLEGAL STORAGE AREAS 

The C&DW from illegal storage areas  is collected by a wheel loader, with capacity 

of 36 t/h, diesel consumption of 10 L/h and lubricating oil consumption of 0.165 kg/h 

(ROSADO et al., 2017). Table 26 shows the data about the wheel loader operation for each 

municipality. 

 

Table 26. Data about wheel loader operation used for the C&DW collection from illegal storage areas.   

Municipality 

C&DW sent to 

illegal areas 

Wheel loader 

operation 

Diesel  

consumption 

Lubricating oil 

consumption 

(t) (hour) (L) (kg) 

Atibaia 330 9 90 1.49 

Campinas 1,320 37 370 6.11 

Cosmópolis 30 1 10 0.17 

Hortolândia 90 3 30 0.50 

Indaiatuba 150 4 40 0.66 

Jundiaí 240 7 70 1.16 

Limeira 110 3 30 0.50 

Nova Odessa 30 1 10 0.17 

Piracicaba 430 12 120 1.98 

Rio Claro 120 3 30 0.50 

Salto 60 2 20 0.33 

Santa Bárbara 30 1 10 0.17 

Sumaré 150 4 40 0.66 

Total 3,090 87 870 14.40 

 

4.3.2.3 INVENTORY OF C&DW SORTING 

Seven municipalities sort the C&DW by using a wheel loader similar to that used 

for collecting the waste from illegal storage areas (Table 27), but manual sorting is also 

performed. Then, based on technical visits in the sorting areas, it was assumed that 30% of the 

C&DW is sorted by using a wheel loader. 
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Table 27. Data on wheel loader operation used for the C&DW sorting. 

Municipality 

C&DW sent 

to sorting 

areas 

C&DW from 

illegal area 

sent to sorting 

areas 

Total 

Wheel 

loader 

operation 

Diesel 

consumption 

Lubricating oil 

consumption 

 (t) (t) (t) (hour) (L) (kg) 

Atibaia 170 330 500 4 40 0.66 

Campinas 3,080 1,320 4,400 37 370 6.11 

Cosmópolis 70 30 100 1 10 0.17 

Hortolândia 210 90 300 3 30 0.50 

Jundiaí 560 240 800 7 70 1.16 

Piracicaba 570 430 1,000 8 80 1.32 

Sumaré 350 0 350 3 30 0.50 

Total 5,010 2,440 7,450 63 630 10.42 

 

4.3.2.4 INVENTORY OF MINERAL FRACTION RECYCLING 

In the base case scenario, seven municipalities recycle the mineral fraction using 

different facilities configurations, which produce different quantities of each recycled aggregate 

(Table 28). Table 29 presents the different use of the recycled aggregates generated in the 

recycling facilities, based on information gathered in the Solid Waste Management Plans and 

interviews with the representatives of municipalities. 

 
Table 28. Recycled aggregates produced in the recycling facilities. 

Municipality 

Recycled material produced (% in weight) 

Coarse RA 

Type A  

(4.75 to 25 mm) 

Coarse RA 

Type B 

(0.10 to 50 mm) 

Fine RA 

(0.15 to 4.75 mm) 
Soil excavation 

Atibaia 0.00 99.60 0.00 0.40 

Campinas 4.94 46.75 2.06 46.25 

Cosmópolis 0.00 60.00 0.00 40.00 

Hortolândia 15.00 40.00 5.00 40.00 

Piracicaba 30.00 40.00 20.00 10.00 

Jundiaí 30.00 40.00 10.00 20.00 

Sumaré 30.00 40.00 10.00 20.00 
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Table 29. Use of the recycled aggregates produced in the recycling facilities (% in weight). 

Municipality 

Coarse RA 

Type A 

Coarse RA 

Type B 
Fine RA Soil excavation 

Medium Medium Low Medium Low Low 

Atibaia 0% 0% 100% 0% 0% 100% 

Campinas 100% 40% 60% 50% 50% 100% 

Cosmópolis 0% 0% 100% 0% 0% 100% 

Hortolândia 100% 40% 60% 20% 80% 100% 

Piracicaba 100% 40% 60% 40% 60% 100% 

Jundiaí 100% 50% 50% 40% 60% 100% 

Sumaré 100% 50% 50% 40% 60% 100% 

Note: “medium” refers to medium quality application and “low” to low quality application. 

 

Primary data from five C&DW recycling facilities were collected (Atibaia, 

Campinas, Cosmópolis, Hortolândia and Piracicaba). Available data of the other recyclinf 

facilities were not sufficient to elaborate a complete LCI. For this reason, data from Rosado et 

al. (2017) were used. Table 30 contains the productive capacity of the recycling facilities and 

data on the consumptions of diesel, lubricating oil, electricity and water (used for dust control) 

for the production of 1 tonne of recycled aggregate. It was assumed 5% of losses during the 

recycling process, which are disposed of in inert landfills; with the exception of the municipality 

of Cosmópolis, where losses remain at the site. 

 

Table 30. Productive capacity of recycling facilities and data about materials and energy consumption 

for the production of 1 tonne of recycled aggregate. 

Municipality 

Productive 

capacity 

Materials and Energy consumption 

Diesel Lubricating oil Electricity Water 

(t/h) (L/t) (kg/t) (kWh/t) (L/t) 

Atibaia 20 0.35 0.003 0.88 0.40 

Campinas 70 0.61 0.008 3.22 1.40 

Cosmópolis 45 0.63 0.0009 - 0.34 

Hortolândia 45 0.35 0.003 2.94 0.90 

Piracicaba 35 0.34 0.002 2.80 0.70 

Jundiaí 40 0.35 0.003 2.54 0.80 

Sumaré 40 0.35 0.003 2.54 0.80 

 

4.3.2.4.1 RECYCLING FACILITY OF ATIBAIA  

The recycling facility used by the municipality of Atibaia has a productive capacity 

of 20 t/h, which comprises 99.60% of coarse RA and 0.40% of soil excavation. Figure 52 shows 

the recycling process and Table 31 lists the data related to the equipments. 

Energy consumption is calculated by multiplying the power rating of each 

equipment by the operation hour required to produce 1 tonne of RA. Then, the recycling of 1 

tonne of RA consumes 0.88 kWh.  
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The wheel loader used to transfer the mineral fraction to the vibrating feeder has a 

bucket capacity of 3 m³ and rated net power of 116 kW. It was calculated that in one hour it is 

possible to handle 24 m³ of material, which corresponds to 36 t (density of 1.5 t/m³). For an 

average diesel consumption of 0.20 L/kWh,  for wheel loader operating in a medium intensity 

(55% of the net power), it was obtained a diesel consumption of 12.71 L/h. The lubricating oil 

consumption was calculated based on the information available in the study of Rosado et al. 

(2017), that is 0.125 kg/h. 

 

Table 31. Data related to equipment used in the mineral fraction recycling facility of Atibaia. 

Equipment Power (kW) Quantity Total Power (kW) 

Vibrating feeder 2.21 1 2.21 

Conveyor 2.21 4 8.84 

Screen 2.21 1 2.21 

Crusher 4.42 1 4.42 

Total 11.05 7 17.68 

 

Figure 52. Process of the mineral fraction recycling in the municipality of Atibaia. 

 
Source: Author (2019). 
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4.3.2.4.2 RECYCLING FACILITY OF CAMPINAS 

In the recycling facility of Campinas, the mineral fraction is classified in grey 

(concrete, asphalt, gravel, tiles without asbestos) and red (ceramic tiles, bricks, soil, and others). 

The two types of waste are recycled separately as shown in Figure 53. The grey fraction 

recycling produces three different types of coarse RA type A, one type of fine RA and one type 

of coarse RA type B. The recycling of the red fraction produces excavated soil and coarse RA 

type B. 

It is important to note that the recycling of grey and red fractions does not occur 

simultaneously, because there is only one vibrating feeder and one crusher. Then, when the 

grey fraction is recycled, the mobile conveyor is linked with the vibrating screen. According to 

the total equipment power presented in Table 32, and considering that the productive capacity 

is 70 t/h, the electricity consumption for the recycling of 1 tonne of RA is 3.22 kWh. 

The hydraulic excavator used to transfer the mineral fraction to vibrating feeder has 

bucket capacity of 1.8 m³ and rated net power of 110 kW. It was calculated that in one hour it 

is possible to handle 14.4 m³ of material, which corresponds to 21.6 t (density of 1.5 t/m³). 

Using the same approach aforementioned, it was found that the hydraulic excavator consumes 

12.21 L of diesel/h and 0.125 kg of lubricating oil/h.  

 

Table 32. Data related to equipment used in the mineral fraction recycling facility of Campinas. 

Equipment Power (kW) Quantity Total Power (kW) 

Vibrating feeder 22.37 1 22.37 

Crusher  111.86 1 111.86 

Vibrating screen 14.91 1 14.91 

Electromagnet 1.49 1 1.49 

Conveyor (mobile) 5.59 1 5.59 

Conveyor 5.97 2 11.94 

Conveyor 5.59 1 5.59 

Conveyor 11.93 4 47.72 

Anti-dust system 3.73 1 3.73 

Total 183.44 13 225.20 

 

  



121 

 

 
 

Figure 53. Process of the mineral fraction recycling in the municipality of Campinas. 

 
Source: Author (2019). 

 

4.3.2.4.3 RECYCLING FACILITY OF COSMÓPOLIS 

The mineral fraction is recycled by using two mobile recycling facilities, whose 

productive capacity is 45 t/h. In the recycling process, the waste is transferred to a vibrating 

feeder by a wheel loader, then the material is comminuted in an impact crusher and follows to 

a magnet conveyor (Figure 54). This type of recycling facility produces approximately 40% 

soil excavation and 60% coarse RA type B. Table 33 shows the average production in ton per 

day (t/d) and data about diesel, lubricating oil and water consumption per day (L/d or kg/d) and 

per tonne of RA (L/t or kg/t) produced.  
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Figure 54. Process of the mineral fraction recycling in the municipality of Cosmópolis. 

 

Source: Author (2019). 

 

Table 33. Data on mobile recycling facilities operation in 2016 in the municipality of Cosmópolis. 

Mobile 

recycling 

facility 

Total 

production 

Average 

production  

(t/d) 

Diesel 

consumption 

Lubricating oil 

consumption 

Water 

consumption 

(t/y) (L/d) (L/t) (kg/d) (kg/t) (L/d) (L/t) 

1 1935 194.49 60 0.31 0.14 7.20E-04 50 0.26 

2 11,445 142.88 40 0.28 0.14 9.80E-04 50 0.35 

 

Considering that the mobile recycling facility 1 was responsible for 15% of the total 

recycled aggregates produced in 2016  and the mobile recycling facility 2 accounted for 85%, 

the average consumption per ton are 0.28 L of diesel, 9.41E-04 kg lubricating oil and 0.34 L of 

water (used for dust control). For the wheel loader it was assumed the same type used in the 

recycling facility of Atibaia (capacity of 3 m³ and rated net power of 116 kW).  

 

4.3.2.4.4 RECYCLING FACILITY OF HORTOLÂNDIA 

The recycling facility of Hortolândia has a productive capacity of 45 t/h and uses 

the equipments listed in Table 34. The quantity produced of each recycled aggregate was not 
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informed by the facility, then, the values indicates in Figure 55 were estimated. For the wheel 

loader it was assumed the same type used in the recycling facility of Atibaia (capacity of 3 m³ 

and rated net power of 116 kW).  

 
Table 34. Data related to equipment used in the mineral fraction recycling facility of Hortolândia. 

Equipment Power (kW) Quantity Total Power (kW) 

Vibrating feeder 3.68 1 3.68 

Crusher  106.28 1 106.28 

Vibrating screen 5.52 1 5.52 

Electromagnet 0.74 1 0.74 

Conveyor  1.47 5 7.35 

Conveyor 2.94 1 2.94 

Conveyor 3.68 1 3.68 

Anti-dust system 2.21 1 2.21 

Total 126.52 11 132.40 

 

Figure 55. Process of the mineral fraction recycling in the municipality of Hortolândia. 

 

Source: Author (2019). 
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4.3.2.4.5 RECYCLING FACILITY OF PIRACICABA 

The recycling facility of Piracicaba has a productive capacity of 35 t/h, it uses the 

equipment listed in Table 35 according to the process presented in Figure 56. It was informed 

that the wheel loader consumes an average of 12 L of diesel/h and 0.069 kg of lubricating oil/h; 

and has the capacity of 3 m³ (one hour it is possible to handle 24 m³ of material, which 

corresponds to 36 t). 

 

Table 35. Data related to equipment used in the mineral fraction recycling facility of Piracicaba. 

Equipment Power (kW) Quantity Total Power (kW) 

Vibrating feeder 7.35 1 7.35 

Crusher 1 18.39 1 18.39 

Conveyor 2.21 5 11.05 

Electromagnet 2.21 1 2.21 

Crusher 2 55.16 1 55.16 

Vibrating screen 3.68 1 3.68 

Total 89.00 10 97.84 

 

Figure 56. Process of the mineral fraction recycling in the municipality of Piracicaba. 

 

Source: Author (2019). 
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4.3.2.4.6 RECYCLING FACILITIES OF JUNDIAÍ AND SUMARÉ 

Data on the equipment power and productive capacity of the recycling facilities of 

Jundiaí and Sumaré were not available, then it was assumed the life cycle inventory elaborated 

by Rosado et al. (2017). 

 

4.3.2.5 INVENTORY OF NON-MINERAL FRACTION RECYCLING  

Data for the life cycle inventory of non-mineral fraction recycling were obtained 

from literature and from Ecoinvent v.3.1 (2014) database, with exception for those related to 

wood recycling, whose data were collected in technical visits and updated with data from 

Rosado et al. (2017). Table 36 presents the data source used to elaborate the LCI of recycling 

processes and the respective efficiencies, determined by multiplying the sorting and 

reprocessing efficiencies reported in the analysed studies.  

 

Table 36. Data source of life cycle inventory of non-mineral fraction recycling and efficiencies. 

Non-mineral 

fraction 

LCI of  

recycling process 

Efficiency of 

sorting stage (A) 

Efficiency of 

reprocessing stage (B) 

Recycling 

efficiency (AxB) 

(% in weight) (% in weight) (% in weight) 

Wood 
Primary data and 

Rosado et al. (2017) 
70.0 95.0 66.5 

Steel 

WSA (2011) and 

Ecoinvent v. 3.1 

(2014) 

90.5 100.0 90.5 

PVC (52%) Ye et al. (2017) 93.6 97.1 90.9 

HDPE (29%) 
Perugini et al. 

(2005) 
75.0 88.0 66.0 

PET (11%) 
Perugini et al. 

(2005) 
75.0 76.0 57.0 

PP (8%) 
Perugini et al. 

(2005) 
75.0 88.0 66.0 

Glass 
Ecoinvent v. 3.1 

(2014) 
85.0 100.0 85.0 

 

4.3.2.5.1 INVENTORY OF WOOD RECYCLING 

Wood waste after grinding (recycled wood chips) can be used as feedstock in 

biomass combustion systems (with temperature above 750°C) and in industrial wood 

production (SINDUSCON-SP, 2015). According to the technical visits, the recycled wood 

chips are commonly used as biomass fuel. 

Generally, the wood waste arrives to the recycling facility mixed with other 

materials such as concrete, mortar, metals and mold release agents for concrete (SINDUSCON-

SP, 2015). Based on the study of Costa (2007), it was assumed the efficiency of sorting stage 
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as 70%; while the efficiency of reprocessing was assumed to be 95%, based on the technical 

visits. 

Although nine municipalities recycle the wood, only data related to the recycling 

process carried out in Hortolândia are available. For the other municipalities it was utilised the 

inventory reported in the study of Rosado et al. (2017), since this study was based on data from 

a wood recyclinf falicity located in the São Paulo State. Table 37 presents the equipment used, 

and Table 38 contains the productive capacity of wood recycling facilities and data on materials 

and energy consumption for the production of 1 tonne of recycled wood chips. 

The backhoe loader used to transfer the wood to the recycling process consumes an 

average of 7.5 L of diesel/h and 0.122 kg of lubricating oil/h; and it has a capacity of 1.8 m³. It 

was estimated that in one hour it is possible to handle 14.4 m³ of material, which corresponds 

to 3.02 tonnes (density of 0.21 t/m³). 

 

Table 37. Data about the equipments used in the wood recycling processes. 

Municipality Equipment Power (kW) Quantity Total Power (kW) 

Hortolândia Cutter 147.00 1 147.00 

Other municipalities 

Pre-cutter 

Conveyor 

Cutter 

Conveyor 

36.77 

5.15 

36.77 

5.15 

1 

1 

1 

1 

83.84 

 

Table 38. Productive capacity of wood recycling facilities and data about the materials and energy 

consumption for the production of 1 ton of recycled wood chips. 

Municipality 

Productive 

capacity 

Materials and Energy consumption 

Diesel Lubricating oil Electricity 

(t/h) (L/t) (kg/t) (kWh/t) 

Hortolândia 60 2.48 0.04 2.45 

Other 

municipalities 
10 2.48 0.04 8.38 

 

4.3.2.5.2 INVENTORY OF STEEL RECYCLING 

The steel scrap from construction and demolition waste, classified as post-consumer 

scrap, requires a previous process before its use for steel production. These processes mainly 

comprise scrap shredding, reduction of impurities and adequacy of contaminant content (WSA, 

2011; BATISTA, 2014). 

The iron and steel scraps can be recycled by two processes, basic oxygen furnace 

(BOF) or electric arc furnace (EAF). The EAF process is the main technology used for steel 

scrap recycling because it can receive 100% of scraps, while the BOF process only accepts 25 

to 30% of steel scrap (DAMGAARD; CHRISTENSEN, 2010). Direct and indirect burdens of 
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steel recycling were obtained from the process “Steel, low-alloyed {RoW}| steel production, 

electric, low-alloyed | Alloc Def, U” of Ecoinvent v. 3.1 (2014) database updated with Brazilian 

energy mix. 

 

4.3.2.5.3 INVENTORY OF PLASTICS RECYCLING 

The composition of plastic waste was assumed as 52% of PVC, 29% of HDPE, 11% 

of PET and 8% of PP, based on Prestes et al. (2012). Plastic waste are recycled by mechanical 

processes, which comprise manual sorting, grinding, washing, drying and processing into 

granules (ABIPLAST, 2017). Data from Brazilian plastics recycling industries were not found 

in the literature, then, LCI data were obtained from the study of Ye et al. (2017) for PVC 

recycling and from the study of Perugini, Mastellone and Arena (2005) for the recycling of 

other plastics. Both LCIs were updated with Brazilian energy mix.  

 

4.3.2.5.4 INVENTORY OF GLASS RECYCLING 

Data about the consumption of energy, water and other materials related to sorting 

and crushing of glass to obtain glass cullets were obtained from the process “Glass cullet, sorted 

{RoW}| treatment of waste glass from unsorted public collection, sorting | Alloc Def, U” of 

Ecoinvent v.3.1 (2014) database updated with Brazilian energy mix. 

 

4.3.2.6 ENVIRONMENTAL CREDITS ASSOCIATED WITH MINERAL FRACTION RECYCLING 

Recovered materials obtained from mineral fraction recycling are used in 

substitution of the primary materials listed in Table 39. The Brazilian Standard NBR 15.115 

(ABNT, 2004a) establishes the procedures for the use of C&DW recycled aggregates in 

pavement layers, allowing its use as material for base, subbase and subgrade reinforcement of 

roads. In particular, the use as base material is only permitted for low-traffic roads, with a daily 

traffic lesser than 400 vehicles (KELLER; SHERAR, 2003; ABNT, 2004a; LEITE et al., 2011). 

Then, it was assumed that fine RA, coarse RA type A and B and, excavated soil correspond to 

the equivalent type of natural raw material that would be employed for the same end-use. 
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Table 39. Substitute materials obtained from mineral fraction recycling. 

Recovered material Substitute material 
LCI of substitute material 

production 

Excavated soil Soil1 Ecoinvent v. 3.1 (2014) 

Fine RA 

(0.15 to 4.75 mm) 
Sand and gravel2 Ecoinvent v. 3.1 (2014) 

Coarse RA Type A 

(4.75 to 25 mm) 

Natural aggregate  

(4.75 to 25 mm) 
Rosado et al. (2017) 

Coarse RA Type B 

(0.1 to 50 mm) 

Natural aggregate  

(0.1 to 50 mm) 
Rosado et al. (2017) 

Notes: 1Process “Clay {RoW}| clay pit operation | Alloc Def, U” of Ecoinvent v.3.1 (2014) database updated with 

Brazilian energy mix. 2Process “Sand {RoW}| gravel and quarry operation | Alloc Def, U” of Ecoinvent v.3.1 

(2014) database updated with Brazilian energy mix.  

 

Table 40 lists the direct burdens of the primary materials production. Data about 

soil extraction, sand and gravel were obtained from Ecoinvent v.3.1 (2014) database and data 

about natural aggregate production were obtained from Rosado et al. (2017). 

 

Table 40. Inputs from background system for soil, sand and gravel, and natural aggregates production. 

Consumptions for the  

production of 1 t 
Soil Sand and gravel 

Natural aggregate  

(4.75 to 25 mm) 

Natural aggregate  

(0.1 to 50 mm) 

Soil, in ground (t) 1.00 - - - 

Gravel, in ground (t) - 1.04 - - 

Basalt, mineral (t) - - 1.05 1.05 

Explosive (g) - - 145 145 

Electricity (kWh) - 2.72 3.67 1.00 

Diesel (MJ) 29.70 14.70 7.67 7.67 

Lubricating oil (kg) - 0.002 0.002 0.002 

Water (L) - 1390 8.10 8.10 

Handling (tkm) - - 1.00 1.00 

Landfilling (t) - 0.003 - - 

 

4.3.2.7 ENVIRONMENTAL CREDITS ASSOCIATED WITH NON-MINERAL FRACTION RECYCLING 

Table 41 lists the substitute materials obtained from the non-mineral fraction 

recycling and the substitution ratio used to estimate the environmental credits associated with 

the recovered materials. The environmental credits of the recovered materials obtained from 

steel and glass recycling have been calculated based on the approach proposed by Gala et al. 

(2015), taking into account the current proportion of recycled and virgin material in the average 

market mix. The inventory data of all substitute material production were obtained from 

Ecoinvent v.3.1 (2014). 
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Table 41. Substitute material obtained from non-mineral fraction recycling and the susbtitution ratio 

used in this study. 

Recovered 

material 
Substitute material Source1 

Substitution 

ratio 
Source 

Recycled wood 

chips 
Wood chips Primary data 1:1 Primary data 

Recycled steel 
Primary (60%) and 

secondary (40%) steel 

Vitale et al. (2017) 

and WSA (2011) 
1:0.98 

Vitale et al. (2017) 

and WSA (2011) 

Recycled 

granules of PVC 

Primary granules of 

PVC  

Brazilian PVC 

Institute (2017) 
1:0.81 

Rigamonti et 

al.(2009) 

Recycled 

granules of 

HDPE 

Primary granules of 

HDPE 
Abiplast (2017) 1:0.81 

Rigamonti et al. 

(2009) 

Recycled 

granules of PET 

Primary granules of 

PET 
Abiplast (2017) 1:0.81 

Rigamonti et al. 

(2009) 

Recycled 

granules of PP 
Primary granules of PP Abiplast (2017) 1:0.81 

Rigamonti et al. 

(2009) 

Glass cullet  
Primary (55%) and 

secondary (45%) glass 
Cempre (2011) 1:0.82 

Cremiato et al. 

(2017) 
Note: 1Source used to determine the substitute materials. 

 

4.3.2.7.1 RECYCLED WOOD CHIPS  

The recycled wood chips have similar caracteristics in relation to the wood chips 

obtained from firewood grinding (Table 42). In Brazil, the wood chips used in the industries as 

biomass are obtained from eucalyptus (83%), pinus (9%) and other wood species (8%) 

(ABRAF, 2013). Then, it was assumed that the recycled wood chips substitute the wood chips 

made from eucalyptus, which is classified as hardwood. Direct and indirect environmental 

burdens of wood chips production were obtained from the process “Residual wood, dry {GLO}| 

shaving, hardwood, measured as dry mass to generic market for residual wood, dry | Alloc Def, 

U” of Ecoinvent v.3.1 (2014) database. 

 

Table 42. Caracteristics of wood materials used as biomass. 

Wood materials 
Moisture 

(%) 

Calorific Value 

(kcal/kg) 

Density 

(kg/m³) 
Note 

Sawing chips 45 2200 380 
Containing up to 30% 

sawdust. 

Sawdust 45 2200 380  

Wood chips 35 2900 280 
From eucalyptus and pinus 

grinding. 

Recycled wood 

chips 
22 3200 250 

Free from metals and other 

impurities. 
 Note: 1Data from Schürhaus (2007) and Opção Verde Biomass Industry (2017). 
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4.3.2.7.2 RECYCLED STEEL 

Steel recycling accounts for significant energy and raw material savings. According 

to the World Steel Association (2018), over 1.4 t of iron ore, 0.74 t of coal, and 0.12 t of 

limestone are saved for every 1 t of steel scrap made into new steel. LCA studies have been 

adopting different approaches to calculate the environmetal credits of recycled steel. Houssain, 

Wo and Poon (2017) assumed that the reycled steel avoids the iron ore extraction, while 

Mercante et al. (2012) and Turk et al. (2015) assumed that it avoids the pig iron production, 

and Rigamonti, Grosso and Sunseri (2009) assumed that it avoids the liquid iron production.  

Vitale et al. (2017) assumed that the recycled steel replaces the average mix of 

virgin and recycled materials utilised by the market, that represent 60% of primary steel 

(produced by BOF process) and 40% of secondary steel (produced by EAF process), based on 

data from World Steel Association report (WSA, 2011) and using the approach proposed by 

Gala et al. (2015). Then, considering that globally, about 70% of steel is produced using the 

BOF process, 29% is produced via the EAF process and 1% using the open hearth furnace 

(WSA, 2011), the assumption of Vitale et al. (2017) appears as the most adequate, and was 

adopted in this study. The direct and indirect burdens of primary steel production were obtained 

from the process “Steel, unalloyed {RoW}| steel production, converter, unalloyed | Alloc Def, 

U” of Ecoinvent v.3.1 (2014), updated with Brazilian energy mix.  

 

4.3.2.7.3 RECYCLED PLASTICS 

Granules of recycled plastics are used in the industry to replace their respective 

virgin resins. However, due to changes in their properties, it is not appropriate to consider that 

1 ton of granules of recycled plastic replaces 1 ton of virgin resin. In this context, LCA studies 

related to C&DW management have been adopting the substitution ratio of 1:0.81, which means 

that 1 ton of granules of recycled plastic replaces 0.81 ton of virgin resin (MERCANTE et al., 

2012; HOSSAIN; WO; POON, 2017). Originally this factor was defined by Rigamonti, Grosso 

and Sunseri (2009), based on the Italian market price of granules of recycled plastic in relation 

to virgin resin. Considering the absence of data, in this study, the substitution factor of 1:0.81 

was used.  

The direct and indirect burdens related to the primary plastics production were 

obtained from the processes of Ecoinvent v.3.1 (2014): “Polyethylene, high density, granulate 

{RoW}| production | Alloc Def, U”; “Polyethylene terephthalate, granulate, amorphous 

{RoW}| production | Alloc Def, U”; “Polypropylene, granulate {RoW}| production | Alloc Def, 
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U”; “Polyvinylchloride, suspension polymerised {RoW}| polyvinylchloride production, 

suspension polymerisation | Alloc Def, U”. 

 

4.3.2.7.4 RECYCLED GLASS 

Recycled glass (cullets) are sent to production of glass packaging. It is estimated 

that the packaging sector uses 45% of cullets (CEMPRE, 2011). In this context, it was 

considered that the recycled glass susbtitutes 55% of primary glass and 45% of secondary glass. 

The substitution ratio of 1:0.82 adopted was obtained from the study of Cremiato et al. (2017). 

 

4.3.2.8. SUMMARY OF THE BASE LIFE CYCLE INVENTORY 

Figure 57 describes the C&DW management system related to the base case 

scenario, as quantified by a material flow analysis, and taking into account all the assumptions 

adopted in the phase of goal and scope definition and the inventory data. There is a significant 

amount of mineral fraction that remain stored in the recycling facilities (5,180 tonnes), and in 

this case, only the environmental burdens related to its transport from sorting areas to recycling 

facilities have been considered in the LCI.  

Table 43 summarizes the transport phases, which are related to the system 

boundaries (see Figure 46), and Tables 44, 45 and 46 report the main environmental burdens, 

direct and avoided, related to the base case scenario considering the management of 10,000 t of 

C&DW per year. 

 

  



132 

 

 
 

Figure 57. Material flow analysis of C&DW management system related to the base case scenario, with 

the indication of the main input (I) and exit (E). Data are expressed in tonnes. 

 
Source: Rosado et al. (2019). 
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Table 43. Transport phases related to 10,000 tons of C&DW management, in the base case scenario. 

Transport 
Quantity 

(t) 

Distance 

(km) 

Transport unit 

(tkm) 

C&DW from generator to illegal storage areas (tu1) 3,090 90 23,820 

C&DW from generator to sorting areas (tu2) 6,910 90 47,980 

C&DW from illegal storage areas to sorting areas (tu3) 2,440 69 31,320 

C&DW from illegal storage areas to landfill (tu4) 650 86 8,220 

Mineral fraction from sorting areas to landfill (tu5) 1,651 68 18,836 

Wood from sorting areas to landfill (tu5) 32 69 517 

Paperboard from sorting areas to landfill (tu5) 113 358 3,132 

Mixed waste from sorting areas to landfill (tu5) 409 358 11,344 

Mineral fraction from sorting areas to recycling (tu6)  6,475 48 72,524 

Wood from sorting areas to recycling (tu6) 283 274 21,542 

Steel from sorting areas to recycling (tu6) 284 1,058 25,448 

Plastics from sorting areas to recycling (tu6) 30 612 1,233 

Glass from sorting areas to recycling (tu6) 74 1,303 8,248 

 

Table 44. Main direct burdens related to the collection, sorting and landfilling of 10,000 t of C&DW 

management, in the base case scenario. 
Consumptions  

C&DW collection from illegal storage areas  

Diesel (MJ) 31,320 

Lubricating oil (kg) 14.40 

C&DW sorting  

Diesel (MJ) 22,680 

Lubricating oil (kg) 10.42 

Air emissions  

Carbon dioxide, fossil (kg) 4,051.50 

Nitrogen oxides (kg) 79.22 

Carbon monoxide, fossil (kg) 21.04 

Particulates, > 2.5µm, and < 10µm (kg) 2.48 

VOC, volatile organic compounds (kg) 2.03 

Sulfur oxides (kg) 0.90 

Methane, fossil (kg) 0.20 

Dinitrogen monoxide (kg) 0.10 

Propene (kg) 0.06 

Formaldehyde (kg) 0.03 

Benzene (kg) 0.02 

Acetaldehyde (kg) 0.02 

Toluene (kg) 0.01 

Xylene (kg) 0.01 

PAH, polycyclic aromatic hydrocarbons (kg) 0.004 

Acrolein (kg) 0.002 

Butadiene (kg) 0.001 

Landfilling  

C&DW from illegal storage areas inert landfilling (t) 350 

C&DW from illegal storage areas sanitary landfilling (t) 300 

Mineral fraction from sorting areas inert landfilling (t) 1,651 

Wood from sorting areas sanitary landfilling (t) 32 

Paperboard from sorting areas sanitary landfilling (t) 113 

Mixed waste from sorting areas sanitary landfilling (t) 310 

Mixed waste from sorting areas inert landfilling (t) 100 
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Table 45. Main direct burdens related to the C&DW recycling, in the base case scenario (Part I). 
Consumptions   

Mineral fraction recycling  

Diesel (MJ) 23,588 

Lubricating oil (kg) 7.55 

Electricity (kWh) 18,434 

Water (m³) 1.44 

Wood recycling  

Diesel (MJ) 25,266 

Lubricating oil (kg) 11 

Electricity (kWh) 2,312 

Steel recycling  

Iron scrap, sorted (kg) 283,956 

Electricity (kWh) 146,387 

Quicklime (kg) 13,410 

Oxygen, liquid (kg) 13,117 

Natural gas (m³) 6,476 

Hard coal (kg) 3,598 

Water (m³) 1,325 

Ferrosilicon (kg) 951 

Diesel (MJ) 889 

Argon, liquid (kg) 846 

Propane (MJ) 702 

Plastics recycling  

Diesel (MJ) 367 

Electricity (kWh) 39,991 

Water (m³) 23.68 

Sodium hydroxide (kg)  6 

Glass recycling  

Water (m³) 15.81 

Electricity (kWh) 235.62 

Air emissions  

Carbon dioxide, fossil (kg) 3,692.27 

Carbon monoxide, fossil (kg) 619.67 

Nitrogen oxides (kg) 119.91 

Ammonia (g) 49.80 

Particulates, > 2.5 µm, and < 10µm (kg) 46.89 

Particulates, < 2.5 µm (kg) 42.25 

Hydrocarbons, aromatic (kg) 19.79 

Sulfur dioxide (kg) 19.79 

Particulates, > 10 µm (kg) 15.05 

Zinc (kg) 5.85 

NMVOC, non-methane volatile organic compounds, unspecified origin (kg) 3.75 

VOC, volatile organic compounds (kg) 1.85 

Sulfur oxides (kg) 1.42 

Hydrogen chloride (kg) 1.34 

Xylene (kg) 1.06 

Benzene (kg) 0.61 

Hydrogen fluoride (kg) 0.60 

Mercury (kg) 0.58 

Lead (kg) 0.46 

Chromium (kg) 0.32 

Methane, fossil (kg) 0.18 

Nickel (kg) 0.18 
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Table 45. Main direct burdens related to the C&DW recycling, in the base case scenario (Part II). 
Air emissions  

Dinitrogen monoxide (kg) 0.09 

Copper (kg) 0.06 

Propene (kg) 0.06 

Acetaldehyde (kg) 0.02 

Formaldehyde (kg) 0.02 

PAH, polycyclic aromatic hydrocarbons (kg) 0.01 

Benzene, hexachloro- (kg) 0.01 

Cadmium (kg) 0.01 

Polychlorinated biphenyls (kg) 0.01 

Toluene (kg) 0.01 

Acrolein (kg) 0.002 

Butadiene (kg) 0.001 

Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- (kg) 1.17E-06 

Emissions to water  

Suspended solids, unspecified (g) 228 

BOD5, Biological Oxygen Demand (g) 185 

COD, Chemical Oxygen Demand (g) 1,614 

Oils, unspecified (g) 39 

Ammonia (g) 50 

Landfilling  

Inert residues (t) 65 

Wood residues (t) 95 

Steel process losses (t) 27 

Plastic residues (t) 7 

Glass residues (t) 11 

 

Table 46. Avoided burdens related to 10,000 tons of C&DW management, in the base case scenario. 
Avoided burdens Quantity (t) 

Soil 418 

Natural aggregates  812 

Wood chips 188 

Primary steel 154 

Secondary steel 103 

Granules of PVC  10 

Granules of HDPE 5 

Granules of PET 2 

Granules of PP 1 

Primary glass 29 

Secondary glass 24 
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CHAPTER 

 

5 
 

 

RESULTS AND DISCUSSION 
 

This chapter presents the “Life Cycle Impact Asssessment” and “Interpretation” stages. 

In addition, it  comprises the discussion of the results and some recommendations of potential 

improvements on the management system of the C&DW from small generators. 

5.1 RESULTS OBTAINED BY CML BASELINE V3.03 

Table 47 presents the characterised and normalised results obtained by using the 

CML baseline v3.03 methodology, and the contributions of each impact category with reference 

to the total impact after normalisation. According to Zampori et al. (2016), the identification of 

the significant impact categories shall be based on the normalised and/or weighted results of 

the study, thence, “Marine Aquatic Ecotoxicity” is the most important impact category, 

accounting for almost 90% of the total impacts. 

 

Table 47. Environmental profile of C&DW management system related to the functional unit, in the 

base case scenario. Data obtained by CML baseline. 

Impact category Characterisation 
Normalisation 

(World) 

Contribution 

(based on normalisation) 

Marine aquatic ecotoxicity -6.79E+07 kg 1,4-DB eq -3.50E-07 89.70% 

Human toxicity -3.30E+04 kg 1,4-DB eq -1.28E-08 3.27% 

Terrestrial ecotoxicity 1.13E+04 kg 1,4-DB eq 1.03E-08 2.64% 

Abiotic depletion (fossil fuels) -2.00E+06 MJ -5.25E-09 1.34% 

Acidification -8.55E+02 kg SO2 eq -3.58E-09 0.92% 

Photochemical oxidation -1.14E+02 kg C2H4 eq -3.10E-09 0.79% 

Global warming -9.71E+04 kg CO2 eq -2.32E-09 0.59% 

Abiotic depletion 3.03E-01 kg Sb eq 1.45E-09 0.37% 

Fresh water aquatic ecotox. 2.65E+03 kg 1,4-DB eq 1.12E-09 0.29% 

Eutrophication 4.47E+01 kg PO4
3- eq 2.83E-10 0.07% 

Ozone layer depletion 2.16E-03 kg CFC-11 eq 9.54E-12 0.00% 
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Figure 58 shows the processes contribution of each stage of the C&DW 

management system, based on the characterised inventory results. C&DW management stages 

have been grouped in order to simplify the analysis. In the legend of the following graphs, 

transport includes all transport phases (see Figure 46 and Table 43); C&DW collection refers 

to C&DW disposed in illegal storage areas (see Table 26); C&DW sorting comprises all 

sorting operations detailed in section 4.3.2.3; C&DW landfilling includes the final disposal of 

mineral fraction, wood, paperboard and mixed wastes, as reported in Tables 22 and 23; and 

recycling items are related to the recycling processes, as described in the sections 4.3.2.4 and 

4.3.2.6 for mineral fraction and sections 4.3.2.5 and 4.3.2.7 for non-mineral fraction. 

 

Figure 58. Environmental impact contribution of the main stages related to C&DW management system 

in the base case scenario (in percentages of the total impact). Data obtained by CML baseline. 

 
 

Table 48 presents the contribution of the stages for each impact category. The 

values in bold represent the most significant stages that together contribute over 80% to a 

specific impact category. The highlighted values represent the avoided impacts showed in 

Figure 58. 

The avoided impacts of steel recycling are important for most impact categories, 

with the exception of that of “Abiotic Depletion”, “Fresh Water Aquatic Ecotoxicity” and 

“Terrestrial Ecotoxicity”. 
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Considering that the production of recycled aggregates avoids the natural resources 

extraction, it was expected avoided impacts for “Abiotic Depletion”, but the mineral fraction 

recycling avoids less than 1% of the impacts of this category. Although “Abiotic Depletion” 

comprises the environmental impacts of resource use, it does not consider the extraction of soil, 

sand and gravel used for the production of natural aggregates as an important contributer for 

the impacts. This fact can be justified by the availability of quarries and readiness extraction of 

these raw materials. 

In fact, in the CML baseline method the majority of the impacts of “Abiotic 

Depletion” are related to the scarcity of silver (61%), lead (18%), zinc (14%) and copper (7%) 

(BENINI et al., 2014). The abiotic depletion factor is determined for each mineral based on its 

reserves at a global scale (EC-JRC, 2011). 

Transport and C&DW landfilling are the main responsible for the generated impacts 

of almost all impact categories. Transport mainly influences “Ozone Layer Depletion” (42%), 

Human Toxicity (24%) and “Abiotic Depletion (fossil fuels)” (18%), while C&DW landfilling 

mainly influences “Eutrophication” (47%), “Global Warming” (31%) and “Photochemical 

Oxidation” (20%). 

Glass and plastics recycling contributes for the avoided impacts of most impact 

categories. Glass recycling mainly contributes to “Marine Aquatic Ecotoxicity” (36%) and 

plastics recycling to “Abiotic Depletion (fossil fuels)” (32%). Otherwise, mineral fraction and 

wood recycling have minor contribution for the avoided impacts. 
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Table 48. Contribution percentage of the main stages related to C&DW management system in the base case scenario. The values in bold represent the most 

significant stages that together contribute over 80% to a specific impact category and the values highlighted in grey indicate avoided impacts. Data obtained by 

CML baseline. 

Impact category Transport 
C&DW 

collection 

C&DW  

sorting 

C&DW 

landfilling 

Mineral fraction 

recycling 

Wood 

recycling 

Steel  

recycling 

Plastics 

recycling 

Glass 

recycling 
Total 

Abiotic depletion 0.11% 0.00% 0.00% 0.03% 0.03% 0.03% 97.51% 0.28% 1.99% 97.51% 

Abiotic depletion (fossil fuels) 17.81% 1.14% 0.83% 3.99% 0.16% 0.47% 33.58% 32.31% 9.70% 83.71% 

Global warming 8.81% 0.55% 0.39% 30.60% 0.08% 0.25% 46.00% 7.42% 5.91% 85.40% 

Ozone layer depletion  41.83% 2.70% 1.95% 8.41% 0.37% 0.60% 31.01% 0.24% 12.89% 85.72% 

Human toxicity 23.65% 0.18% 0.13% 2.04% 0.16% 1.00% 48.11% 3.58% 21.14% 92.90% 

Fresh water aquatic ecotoxicity 12.06% 0.27% 0.19% 11.52% 0.08% 2.26% 58.25% 1.19% 14.19% 84.49% 

Marine aquatic ecotoxicity 3.52% 0.11% 0.08% 4.12% 1.35% 1.42% 48.10% 4.84% 36.47% 84.57% 

Terrestrial ecotoxicity 0.34% 0.00% 0.00% 0.11% 0.00% 0.12% 98.56% 0.66% 0.21% 98.56% 

Photochemical oxidation 3.15% 0.24% 0.17% 19.68% 0.01% 1.12% 67.57% 3.50% 4.56% 87.25% 

Acidification 9.59% 1.55% 1.12% 6.57% 1.89% 0.49% 52.59% 8.50% 17.70% 88.39% 

Eutrophication 9.35% 1.98% 1.44% 46.90% 2.80% 0.07% 26.15% 4.25% 7.06% 82.39% 
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Figure 59 shows the normalised results in terms of person*year units, which 

represents the global average impact in a specific category associated with one person during 

one year (considering the world in the year 2000 as reference). As highlighted in Table 48, 

“Marine Aquatic Ecotoxicity” appears as the most important category. Normalised results 

confirm the importance of steel and glass recycling for the avoided impacts. The same 

observations can be applied for the normalised results acquired by using the normalisation 

factors with reference to Europe (Figure A4.1 – Appendix 4). 

 

Figure 59. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained by using normalised factors for World (2000) of CML baseline 

methodology. 

 
 

The contribution analysis for “Marine Aquatic Ecotoxicity” category (Figure 60) 

shows that the avoided impacts of steel and glass recycling are related to air emissions of 

hydrogen fluoride from iron pellet production and primary glass production, respectively.  

It is important to develop a critical assessment about the reliability of the above 

reported results, since the various characterisation models can have different degree of 

uncertainty. The comparison with the results obtained by other LCIA methodologies is a 

possible approach to develop this assessment and verify if these results can be considered as 

sufficiently reliable. 

Taking into account the ILCD recommendations, there are no methodologies 

recommended for the assessment of “Marine Aquatic Ecotoxicity”, since none of them is 
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developed enough. Amongst the four ecotoxicity methodologies currently recommended 

(USEtox, Impact 2002+, ReCiPe and TRACI), only USEtox midpoint model appears 

sufficiently developed and only for “Fresh Water Aquatic Ecotoxicity” impacts (EC-JRC, 

2011). For this reason, it is not appropriate taking into account “Marine Aquatic Ecotoxicity”, 

“Fresh Water Aquatic Ecotoxicity” and “Terrestrial Ecotoxicity” categories. Table 49 and 

Figure 61 processed the previous results based on this conclusion.  

 

Figure 60. Contribution analysis for the impact category “Marine Aquatic Ecotoxicity” for the C&DW 

management system in the base case scenario. 

 
 

Then, the new results show “Human Toxicity” as the most important category, 

accounting for 44% of the total impacts. Five impact categories, reported in bold in Table 49, 

were selected as significant for this study, since they account for 94% of the total impacts.  
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Table 49. Environmental profile of C&DW management system related to the functional unit, in the 

base case scenario. Excluding “Marine Aquatic Ecotoxicity”, “Fresh Water Aquatic Ecotoxicity” and 

“Terrestrial Ecotoxicity” categories. Data obtained by CML baseline. 

Impact category Characterisation 
Normalisation 

(World) 

Contribution 

(based on normalisation) 

Human toxicity -3.30E+04 kg 1,4-DB eq -1.28E-08 44.45% 

Abiotic depletion (fossil fuels) -2.00E+06 MJ -5.25E-09 18.23% 

Acidification -8.55E+02 kg SO2 eq -3.58E-09 12.44% 

Photochemical oxidation -1.14E+02 kg PO4
3- eq -3.10E-09 10.76% 

Global warming -9.71E+04 kg CO2 eq -2.32E-09 8.06% 

Abiotic depletion 3.03E-01 kg Sb eq  1.45E-09 5.03% 

Eutrophication 4.47E+01 kg PO4
3- eq  2.83E-10 0.98% 

Ozone layer depletion 2.16E-03 kg CFC-11 eq 9.54E-12 0.03% 

 

Figure 61. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained by using normalised factors for World (2000) of CML baseline 

methodology. Excluding “Marine Aquatic Ecotoxicity”, “Fresh Water Aquatic Ecotoxicity” and 

“Terrestrial Ecotoxicity” categories. 

 
 

The contribution analysis for the categories highlighted in Table 49 are available in 

Appendix A (Figures A4.2 to A4.6), and Table 50 supports the analysis of data obtained from 

the contribution analysis. “Abiotic Depletion”, “Eutrophication” and “Ozone Layer Depletion” 

were not included in the contribution analysis due to negligible contribution for the total 

impacts. 
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After exclusion of “Marine Aquatic Ecotoxicity”, “Fresh Water Aquatic 

Ecotoxicity” and “Terrestrial Ecotoxicity”, the normalised results still confirm the importance 

of steel recycling for the avoided impacts, followed by glass recycling. 

The environmental benefits of steel recycling result from the avoided consumptions 

of coal for “Abiotic Depletion (fossil fuels)”, pig iron for “Global Warming”, coke for “Human 

Toxicity”, and sinter iron for “Photochemical Oxidation” and “Acidification”, which are used 

in the primary steel production.  

The contribution of glass recycling for “Human Toxicity” and “Acidification” is 

related to the avoided emissions of selenium and sulphur dioxides, both from the primary glass 

production. 

The recovery of PVC and HDPE are the main responsible for the environmental 

benefits of plastics recycling. For “Abiotic Depletion (fossil fuels)”, it is related to the avoided 

consumption of crude oil and natural gas, and for “Acidification” due to the avoided emission 

of sulphur dioxide from primary plastics production.  

The transport stages are responsible for the consumption of 76% of the total crude 

oil used throughout the C&DW management system, which justifies its contribution for 

“Abiotic Depletion (fossil fuel)”. C&DW freights from generator to sorting areas and those for 

mineral fraction from sorting areas to recycling facilities appear as the main stages responsible 

for the air emissions of carbon dioxide (for “Global Warming”) and nitrogen oxides (for 

“Acidification”). The contribution for “Human Toxicity” is related to air emissions of antimony 

from brake wear of trucks. 

The impacts of C&DW landfilling are important for “Global Warming” and 

“Photochemical Oxidation”, due to emissions of biogenic methane related to paperboard waste 

landfilling.  
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Table 50. Main data obtained from contribution analysis of life cycle impact assessment results acquired by CML baseline. 

Impact categories Important stages Important elementary flows Important processes 

Human toxicity 

Steel recycling (-) Benzene Coke production 

Glass recycling (-) Selenium Primary glass production (without cullets)  

Transport (+) Antimony Brake wear emissions (lorry) 

Abiotic depletion  

(fossil fuels) 

Steel recycling (-) Hard coal Hard coal mine operation 

Plastics recycling (-) 
Crude oil 

PVC suspension polymerised and HDPE granulate production 
Natural gas 

Transport (+) Crude oil Petroleum production 

Acidification 

Steel recycling (-) Sulphur dioxide Sinter iron production 

Glass recycling (-) Sulphur dioxide Primary glass production (without cullets) 

Plastics recycling (-) Sulphur dioxide PVC suspension polymerised and HDPE granulate production 

Transport (+) 
Nitrogen oxides Transport, lorry 16-32 metric ton (EURO4) 

Sulphur dioxide Petroleum refinery operation 

Photochemical oxidation 
Steel recycling (-) Carbon monoxide (fossil) Sinter iron production 

C&DW landfilling (+) Methane (biogenic) Paperboard waste landfilling 

Global warming 

Steel recycling (-) Carbon dioxide (fossil) Pig iron production 

C&DW landfilling (+) Methane (biogenic) Paperboard waste landfilling 

Transport (+) Carbon dioxide (fossil) Transport, lorry 16-32 metric ton (EURO4) 

 

Legend 

 

(+) Environmental impact                  (-) Avoided environmental impact 

             Emission into air              Emission into soil              Emission into water              Raw material 

 



145 

 

 
 

5.2 RESULTS OBTAINED BY IMPACT 2002+ V2.12 

Table 51 lists the characterised and normalised results obtained by Impact 2002+. 

As already highlighted, normalisation factors for Brazil or World are not available for this 

methodology. Nevertheless, the normalised results were analysed considering that no difference 

was observed by comparing World normalised factors with European ones using CML baseline 

methodology (see Figure A4.1 – Appendix 4), except for the magnitude of the values 

(normalised impacts for Europe presented highest values). Five impact categories, reported in 

bold in Table 51, appeared significant, accounting for 95% of the total impacts. 

 

Table 51. Environmental profile of C&DW management system related to the functional unit, in the 

base case scenario. Data obtained by Impact 2002+. 

Impact category Characterisation 
Normalisation 

(Europe) 

Contribution 

(based on normalisation) 

Respiratory inorganics -2.36E+02 kg PM2.5 eq -2.33E+01 27.65% 

Global warming -2.06E+05 kg CO2 eq -2.08E+01 24.70% 

Carcinogens 4.02E+04 kg C2H3Cl eq 1.59E+01 18.84% 

Non-renewable energy -2.16E+06 MJ primary -1.42E+01 16.87% 

Non-carcinogens 1.57E+04 kg C2H3Cl eq 6.19E+00 7.35% 

Terrestrial ecotoxicity 4.50E+06 kg TEG soil 2.60E+00 3.08% 

Land occupation -8.12E+03 m2org.arable -6.46E-01 0.77% 

Mineral extraction -5.81E+04 MJ surplus -3.83E-01 0.45% 

Terrestrial acid/nutri -2.09E+03 kg SO2 eq -1.59E-01 0.19% 

Respiratory organics -2.33E+02 kg C2H4 eq -7.00E-02 0.08% 

Ionizing radiation 3.45E+05 Bq C-14 eq 1.02E-02 0.01% 

Aquatic ecotoxicity -2.78E+06 kg TEG water -1.02E-02 0.01% 

Ozone layer depletion 2.16E-03 kg CFC-11 eq 3.20E-04 0.0004% 

Aquatic acidification -3.44E+02 kg SO2 eq 0.00E+00 - 

Aquatic eutrophication -8.24E+00 kg PO4 P-lim 0.00E+00 - 

 

The results obtained by Impact 2002+ are reported in Figure 62 and with more detail 

in Table 59. Steel recycling is the stage that gives the most important contribution for the higher 

number of impact categories, namely in terms of avoided impacts. However, the process 

contributes significantly to generated impacts of the two human toxicity categories (86% for 

“Carcinogens” and 76% for “Non-Carcinogens”). C&DW transport and landfilling stages also 

appear crucial, with the first which provides the largest contribution to “Aquatic and Terrestrial 

Ecotoxicities” and, above all, to “Ionizing Radiation” and “Ozone Layer Depletion”. On the 

other hand, C&DW collection and sorting stages determine only nugatory impact. 
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It appears remarkable the contribution of wood recycling for “Land Occupation” 

(70%), and the contribution of mineral fraction recycling for “Aquatic Ecotoxicity” (19%) and 

“Terrestrial Ecotoxicity” (19%) categories. The relative importance of all these contributions is 

better showed by the normalised results in Figure 63. They indicate that five impact categories, 

namely “Carcinogens”, “Non-Carcinogens”, “Respiratory Inorganics”, “Global Warming” and 

“Non-Renewable Energy” have a major role and must be carefully monitored. For all these 

categories, the key stages are always steel recycling, plastics recycling, glass recycling, 

transport and landfilling.  

It is important to highligh the negligible importance of the avoided impacts of 

recycled aggregates for the results of “Mineral Extraction”. This category considers that the 

extraction of a specific amount of mineral resource leads to an additional energy requirement 

for future mining of this resource (JOLLIET et al., 2003). Despite the difference in comparison 

with the “Abiotic Depletion” category of CML baseline, the results are similar, since extraction 

of metals (as nickel and copper) appears as the most important for the impacts of “Mineral 

Extraction” category. 

 

Figure 62. Environmental impact contribution of the main stages related to C&DW management system 

in the base case scenario (in percentages of the total impact). Data obtained by Impact 2002+. 

 
 

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

P
ro

ce
ss

 c
o

n
tr

ib
u

ti
o

n

Glass recycling

Plastics recycling

Steel recycling

Wood recycling

Mineral fraction recycling

C&DW landfilling

C&DW sorting

C&DW collection

Transport



147 

 

 
 

Table 52. Contribution percentage of the main stages related to C&DW management system in the base case scenario. The values in bold represent the most 

significant stages that together contribute over 80% to a specific impact category and the values highlighted in grey indicate avoided impacts. Data obtained by 

Impact 2002+. 

Impact category Transport 
C&DW 

collection 

C&DW 

sorting 

C&DW 

landfilling 

Mineral fraction 

recycling 

Wood 

recycling 

Steel 

recycling 

Plastics 

recycling 

Glass 

recycling 
Total 

Carcinogens 1.54% 0.03% 0.02% 0.19% 0.06% 0.03% 86.32% 9.21% 2.59% 95.53% 

Non-carcinogens 4.76% 0.02% 0.02% 0.93% 0.80% 0.20% 76.19% 8.43% 8.64% 93.27% 

Respiratory inorganics 9.20% 1.97% 1.42% 6.98% 1.21% 0.45% 65.71% 3.83% 9.22% 84.14% 

Ionizing radiation 42.81% 2.75% 1.99% 14.58% 1.17% 4.60% 6.32% 4.76% 21.02% 83.02% 

Ozone layer depletion 41.83% 2.70% 1.95% 8.40% 0.37% 0.60% 31.02% 0.24% 12.89% 85.73% 

Respiratory organics 4.69% 1.06% 0.77% 3.15% 1.17% 1.44% 65.09% 20.28% 2.34% 85.37% 

Aquatic ecotoxicity 39.72% 0.04% 0.03% 0.34% 19.36% 3.89% 30.73% 0.22% 5.67% 89.81% 

Terrestrial ecotoxicity 39.72% 0.04% 0.03% 0.34% 19.36% 3.89% 30.73% 0.22% 5.67% 89.81% 

Terrestrial acid/nutri 14.50% 3.34% 2.42% 10.90% 4.79% 0.26% 43.28% 7.99% 12.52% 89.20% 

Land occupation 0.10% 0.00% 0.00% 12.10% 3.27% 69.92% 5.89% 2.76% 5.96% 82.02% 

Aquatic acidification 7.89% 1.44% 1.04% 27.39% 1.80% 3.14% 38.81% 6.18% 12.31% 86.40% 

Aquatic eutrophication 10.43% 0.66% 0.47% 24.82% 0.14% 1.82% 51.15% 2.76% 7.75% 86.40% 

Global warming 11.23% 0.70% 0.50% 11.29% 0.11% 0.33% 59.33% 9.15% 7.36% 81.86% 

Non-renewable energy 17.07% 1.09% 0.79% 3.94% 0.17% 0.53% 31.62% 35.27% 9.52% 83.96% 

Mineral extraction 0.03% 0.00% 0.00% 0.01% 0.06% 0.00% 99.75% 0.05% 0.10% 99.75% 
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Figure 63. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained by using normalised factors for Europe of Impact 2002+ methodology. 

 
 

The contribution analyses for the selected impact categories are available in 

Appendix 5 (Figures A5.1 to A5.5). Table 53 reports the important stages, elementary flows 

and processes for each of the five selected categories. 

The generated impacts on the environment of steel recycling are related to 

emissions of aromatic hydrocarbons from the EAF process for “Carcinogens” and to emissions 

of arsenic into soil and water for “Non-Carcinogens”. The emission of arsenic into soil derives 

from an herbicide used in sugarcane cropping, as the sugarcane bagasse is used as biomass in 

the Brazilian energy mix8, while the emission of arsenic into water is related to the landfilling 

of the dust that is generated in the EAF process.  

On the other hand, steel recycling determines remarkable avoided impacts for 

“Respiratory Inorganics”, mainly due to the avoided emissions of PM2.5 related to the 

production of coke used in the BOF process. The avoided consumption of coke also contributes 

for “Non-Renewable Energy”, due to the coal mining to obtain coke. For “Global Warming”, 

the considerable avoided impacts refer to carbon dioxide emissions from pig iron production. 

The impact of plastics recycling for “Non-Carcinogens” is due to emissions of 

arsenic into soil related to the electricity consumption in the recycling process. The avoided 

                                                           
8 Appendix 9 reports an analysis on the environmental impacts from the Brazilian energy mix. 
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impact for “Carcinogens” is related to aromatic hydrocarbons emission, mainly from the 

production of HDPE granulates. The remarkable contribution for “Non-Renewable Energy” 

indicates that plastics recycling saves the use of crude oil and natural gas, which also justifies 

the avoided impact for “Global Warming” category. 

The avoided impacts of glass recycling for “Non-Renewable Energy”, “Respiratory 

Inorganics” and “Global Warming” are related to the avoided consumption of diesel and 

emissions of PM2.5, SO2, NOx and CO2, resulting from the production of primary glass. For 

“Non-Carcinogens”, the emission of arsenic into the soil is due to the spreading of the 

wastewater sludge from the primary glass production.  

The diesel used in the inert landfill operation is the main responsible for 

“Respiratory Inorganics”, due to emissions of NOx and PM2.5, and for “Non-Renewable 

Energy” category. The emission of methane biogenic from paperboard waste landfilling is the 

main reason for the impact of “Global Warming”. 

Transport are significant mainly for “Global Warming”, due to emissions of carbon 

dioxide, and for “Respiratory Inorganics”, due to emissions of NOx and PM2.5, the latter coming 

from tyre wear emissions.  
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Table 53. Main data obtained from contribution analysis of life cycle impact assessment results acquired by Impact 2002+. 

Impact categories Important stages Important elementary flows Important processes 

Respiratory inorganics 

Steel recycling (-) PM2.5 Coke production 

Glass recycling (-) PM2.5, SO2 and NOX Primary glass production (without cullets) 

Transport (+) 
Nitrogen oxides Transport, freight, lorry 16-32 metric ton (EURO4)  

PM2.5 Tyre wear emissions from trucks 

Global warming 

Steel recycling (-) Carbon dioxide (fossil) Pig iron production 

C&DW landfilling (+) Methane (biogenic) Paperboard waste landfilling 

Transport (+) Carbon dioxide (fossil) Transport, lorry 16-32 metric ton (EURO4)  

Carcinogens 
Plastics recycling (-) 

Hydrocarbons, aromatic 
HDPE granulate production 

Steel recycling (+) Steel recycling process by electric arc furnace 

Non-renewable energy 

Steel recycling (-) Hard coal Hard coal mine operation 

Plastics recycling (-) 
Crude oil 

PVC suspension polymerised and HDPE granulate production 
Natural gas 

Transport (+) Crude oil Petroleum production 

Non-carcinogens 

Glass recycling (-) Arsenic Wastewater from primary glass production 

Steel recycling (+) 
Arsenic Sugarcane production (Brazilian energy mix) 

Arsenic Landfilling of dust generated in the steel recycling process by electric arc furnace 

Plastics recycling (+) Arsenic Sugarcane production (Brazilian energy mix) 

 

Legend 

 

(+) Environmental impact                  (-) Avoided environmental impact 

             Emission into air              Emission into soil              Emission into water              Raw material 
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5.3 COMPARISON OF THE LCIA RESULTS OBTAINED BY CML BASELINE AND 

IMPACT 2002+ 

Figure 64 present the normalised results considering the three main stages of the 

C&DW management system, according to the selected impact categories of CML baseline and 

Impact 2002+ methodologies, respectively. The results indicate the great importance of C&DW 

recycling. Its role is not only related to the diversion of materials from landfill, but also mainly 

to the avoided impacts from recovered materials. 

 

Figure 64. Normalised results of impact assessment for the three main stages of C&DW management 

system in the base case scenario, obtained by using normalised factors for World of CML baseline 

methodology (top) and for Europe of Impact 2002+ methodology (bottom). 
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There is a fair similarity between the results related to the following pairs of impact 

categories: “Abiotic Depletion (fossil fuels)” and “Non-Renewable Energy”; “Global 

Warming”; “Acidification” and “Respiratory Inorganics”. However, the results of “Human 

Toxicity” of CML baseline and “Human Toxicity” (“Carcinogens” and “Non-Carcinogens”) of 

Impact 2002+ are not directly comparable.  

Figures from 64 to 67 allow to analyse all these results in detail, by showing the 

process contribution to a specific impact category of each C&DW management stage, as 

obtained by using the two methodologies.  

Transport is the main contributor for the generated impacts on the environment for 

“Abiotic Depletion (fossil fuels)” of CML baseline and for “Non-Renewable Energy” of Impact 

2002+ (Figure 65), since both attribute the same importance to the consumption of crude oil. 

With reference to the avoided impacts, the stages that provide the main contributions are those 

of steel recycling and plastics recycling. The avoided impacts of steel recycling are related to 

the avoided consumption of coal, while those of plastics recycling correspond to avoided 

consumption of crude oil and natural gas.   

 
Figure 65. Percentage contribution of each management stage to the generated and/or to the avoided 

impacts for “Abiotic Depletion (fossil fuels)” and “Non-Renewable Energy”. Data related to the 

characterisation analyses of base case scenario. 

 
 

Figure 66 shows that C&DW landfilling provides the greatest contribution for 

“Global Warming”. This is mainly due to the emission of biogenic methane from paperboard 

waste landfilling, whatever methodology (Figure A4.7 – Appendix A; Figure A5.6 – Appendix 

5). The characterisation factor of biogenic methane is 22.25 kgCO2eq.kg-1 in CML baseline and 

4.85 kgCO2eq.kg-1 in Impact 2002+, which justifies the difference between the results. It is 
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important to note that paperboard waste accounts for less than 5% on mass basis of the total 

C&DW landfilling, but it contributes to 67% and 33% of the total impacts of “Global Warming” 

according to the results obtained by CML baseline and Impact 2002+, respectively. Both 

methodologies highlight that transport provides a remarkable contribution even for this 

category.  

The avoided impacts in “Global Warming” of steel recycling are always related to 

the emission of carbon dioxide from pig iron production. The avoided impacts of plastics and 

glass recycling are instead due to the emission of carbon dioxide from the production of primary 

plastics (mainly PVC) and glass. 

 

Figure 66. Percentage contribution of each management stage to the generated and/or to the avoided 

impacts for “Global Warming”. Data related to the characterisation analyses of base case scenario. 

 
 

Figure 67 reports the results related to the categories of “Acidification” and 

“Respiratory Inorganics”. There is again a large contribution of transport and C&DW 

landfilling for the generated impacts, since both are related to emissions of nitrogen oxides, 

which have comparable significance in both methodologies. With reference to the avoided 

impacts, the two methodologies indicate the main contribution of steel recycling. For CML this 

is due to emission of sulphur dioxide related to sinter iron production, while for Impact 2002+ 

this is mainly due to the emission of PM2.5 related to coke production. The contributional 

analysis for “Respiratory Inorganics” of Impact 2002+ (Figure A5.1 - Appendix 5) indicates 

the emission of sulphur dioxide as the third most important elementary flow, which is in 

agreement to the result of CML. It is important to note that in the CML methodology there is 

no characterisation factor for PM2.5 flow, but there is a factor for PM10. The avoided impacts of 

plastics and glass recycling are related to avoided emission of sulphur dioxide in the production 
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of their virgin materials. The contributions are higher in CML because this methodology 

attributes major importance to sulphur dioxide emission. The minor contribution of mineral 

fraction recycling to the avoided impacts is mainly due to emissions of nitrogen oxides, which 

are generated during the blasting process required in the basalt extraction. 

 

Figure 67. Percentage contribution of each management stage to the generated and/or to the avoided 

impacts for “Acidification” and “Respiratory Inorganics”. Data related to the characterisation analyses 

of base case scenario. 

 
 

Figure 68 indicates that, according to the results of “Human Toxicity” (CML 

baseline), transport is the most important stage for the generated impacts and, steel recycling 

for the avoided impacts. On the other hand, according to the results of “Carcinogens” and “Non-

Carcinogens” (Impact 2002+), steel recycling is the most important stage for the generated 

impacts and, glass and plastics recycling for the avoided impacts. 

The results obtained by Impact 2002+ report the generated impacts of steel 

recycling due to emissions of aromatic hydrocarbons for “Carcinogens” and emissions of 

arsenic into water and soil for “Non-Carcinogens”. Aromatic hydrocarbons emissions do not 

appear in the results obtained by CML baseline, due to the absence of a generic characterisation 

factor for this flow. There is a characterisation factor only for the emission of arsenic into water 

in CML, but the value is not significant.  

 The results obtained by CML baseline report the avoided impacts of steel recycling 

due to air emission of benzene (Figure A4.2 - Appendix A). Although this emission also appears 

as avoided in the results obtained by Impact 2002+ (Figure A5.3 - Appendix 5), the generated 

emissions of aromatic hydrocarbons (from recycling process) are higher than those of benzene 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Acidification
CML baseline

Respiratory Inorganics
Impact 2002+

Acidification
CML baseline

Respiratory Inorganics
Impact 2002+

Generated impacts Avoided impacts

P
ro

ce
ss

 c
o

n
tr

ib
u

ti
o

n

Transport

C&DW collection

C&DW sorting

C&DW landfilling

Mineral fraction recycling

Wood recycling

Steel recycling

Plastics recycling

Glass recycling



155 

 

 
 

(from primary steel production). For this reason, the final result does not provide avoided 

impacts related to the steel recycling for “Carcinogens”. 

The avoided impacts of glass and plastics recycling for “Carcinogens” correspond 

to the avoided emissions of aromatic hydrocarbons in the production of primary plastics and 

glass. Glass recycling is the only contributor for the avoided impacts of “Non-Carcinogens” 

and the second most important for “Human Toxicity”. For CML baseline, the contribution is 

related to the avoided air emission of selenium in the primary glass production (Figure A4.2 – 

Appendix 4), while for Impact 2002+, it is related to electricity energy saving (represented by 

the avoided emission of arsenic into the soil in Figure A5.5 – Appendix 5). 

 

Figure 68. Percentage contribution of each management stage to the generated and/or to the avoided 

impacts for “Human Toxicity”, “Carcinogens” and “Non-Carcinogens”. Data related to the 

characterisation analyses of base case scenario. 

 
 

In summary, it is possible to observe that: (i) there is a general agreement in the 

results obtained with the two methodologies with reference to “Abiotic Depletion (fossil 

fuels)/”Non-Renewable Energy”, “Global Warming”, “Acidification”/Respiratory Inorganics”; 

(ii) the results of CML methodology for “Human Toxicity” cannot be directly compared with 

those of “Carcinogens” + “Non-Carcinogens” obtained by Impact 2002+; (iii) transport is the 

main contributor for the generated impacts of “Abiotic Depletion (fossil fuels)” and “Non-

Renewable Energy”; (iv) C&DW landfilling provides the greatest contribution for the generated 

impacts of “Global Warming”; (v) steel recycling is the main contributor for the avoided 

impacts of “Global Warming”, “Acidification” and “Respiratory Inorganics”. 
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5.4. INTERPRETATION  

In this LCA stage, a sensitivity analysis was developed by two criteria: (i) assessing 

the LCIA results related to alternative scenarios and base case scenario and, (ii) analysing the 

effect of variations of some selected input data.  

Scenarios analysis consists in verifying different options individually and observing 

the effect of these changes on the final result (CLAVREUL; GUYONNET; CHRISTENSEN, 

2012). In this study, the evaluation of alternative scenarios aims to analyse changes in the 

environmental profile of the C&DW management systems due to the increase of recycling rates 

and determine in which scenarios this strategy provides environmental benefits. 

The main parameters that can affect the LCIA results of this study are: C&DW 

composition, transport stages, recycling rates, recycling efficiency (including sorting and 

reprocessing stages), recycling technology, substitute material and substitution ratio assumed 

for each recovered material, and landfill modelling. 

In particular, C&DW composition, transport stages and landfill modelling were 

defined as the most important for this study. The C&DW composition analysis is important due 

to the differences between the data provided by the municipalities (see Table 15), which may 

lead to uncertainties in the final results. Transport stages were one of the the main contributors 

for almost all impact categories for both LCIA methodologies, consisting of an important 

parameter to define the environmental profile of C&DW management systems. Landfilling 

modeling was considered due to its meaningful influence on the results obtained by CML 

baseline methodology. 

The effects of transport stages were evaluated considering the mineral fraction 

management, which is the most representative. The existence of few recycling facilities 

increases the transport distances, making the mineral fraction the largest contributor to the 

transport stages. The results of this analysis are reported in the analysis of alternative scenarios 

3.1 and 3.2. In addition, the standard of emissions from trucks were evalatuted, considering the 

use of trucks EURO 3 and EURO 5 instead of EURO 4, and the results does not provide 

significative differences (Figures A6.1 and A6.2 – Appendix 6). The analysis of the variation 

data related to C&DW composition and landfill modelling are reported in the sections 5.4.1.3 

and 5.4.1.4 respectively. 
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5.4.1 LIFE CYCLE IMPACT ASSESSMENT OF ALTERNATIVE SCENARIOS 

The alternative management scenarios were elaborated focusing on the mineral 

fraction waste (see section 4.3.1.5). Appendix 6 reports the main data of mineral fraction 

management, specially the transport distances, quantities of C&DW recycled, landfilled and 

stored, diesel and electricity consumptions. 

 

5.4.1.1 ALTERNATIVE SCENARIOS 1 AND 2 

The characterised results related to the base case scenario and those related to the 

alternative scenarios are reported in terms of variation factor (VF), which has been defined by 

Ardolino et al. (2018) as the ratio between the results for the alternative scenario and the base 

case scenario. A variation factor equal to 1 indicates no variation; some variations occur when 

VF<1 or VF>1; and a negative value of VF indicates a modification of the potential impact 

from positive to negative or viceversa. For example, when the result of the base case scenario 

of a certain impact category is negative, VF>1 indicates larger environmental benefits. In other 

words, it indicates the increase of the avoided impacts and, therefore, the reduction of generated 

impacts of the category. When the result of the base case scenario of a certain impact category 

is positive, VF>1 indicates the increase of the impacts of the category analysed. These data are 

listed in Tables 54 and 55, as obtained by means of CML baseline and Impact 2002+ 

methodologies, respectively. 

 

Table 54. Characterised results of the base case scenario and the results of the alternative scenarios in 

terms of variation factor. Data obtained by CML baseline. 

Impact category 

Base case 

scenario 

Alternative scenarios and recycling rates (%) 

1a 1b 2a 2b 

20 20 40 60 80 100 20 40 60 80 100 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 1.03 1.03 1.03 1.02 1.02 1.04 1.04 1.04 1.04 1.04 

Global warming  

(kg CO2 eq) 
-9.71E+04 1.05 1.04 1.04 1.04 1.03 1.05 1.06 1.06 1.07 1.07 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 1.01 1.01 1.02 1.02 1.03 1.01 1.02 1.03 1.04 1.04 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 1.01 1.01 1.01 1.01 1.02 1.01 1.02 1.02 1.02 1.03 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.05 1.09 1.13 1.17 1.21 1.06 1.11 1.16 1.21 1.26 
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Table 55. Characterised results of the base case scenario and the results of the alternative scenarios in 

terms of variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case 

scenario 

Alternative scenarios and recycling rates (%) 

1a 1b 2a 2b 

20 20 40 60 80 100 20 40 60 80 100 

Non-renewable energy 

(MJ) 
-2.16E+06 1.03 1.03 1.02 1.02 1.02 1.03 1.04 1.04 1.04 1.04 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.02 1.02 1.02 1.02 1.01 1.02 1.03 1.03 1.03 1.03 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.00 1.01 1.02 1.03 1.04 0.99 1.00 1.00 1.01 1.01 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 1.05 1.08 1.11 1.14 1.16 1.06 1.10 1.14 1.17 1.21 

 

The results indicate that the increase of the mineral fraction recycling and the 

production of medium quality recycled aggregates improve significantly the impact categories 

of “Acidification” and “Respiratory Inorganics” with reference to the base case scenario. For 

these categories, scenarios 2a and 2b provide a reduction in the impacts of 6% and 26% in 

CML, and 6% and 21% in Impact 2002+, respectively, while scenarios 1a and 1b provide a 

reduction of 5% and 21% in CML, and 5% and 16% in Impact 2002+. 

In the scenarios 2a and 2b the recycling facilities produce higher amount of medium 

quality recycled aggregate, which substitute a larger amount of natural aggregates, avoiding air 

emissions of ammonia, nitrogen oxides and PM2.5 related to the basalt extraction (Figures A6.3 

and A6.4 – Appendix 6). 

In both methodologies, the increase of the recycling rates improves the impact 

categories “Abiotic Depletion (fossil fuels)”, “Global Warming” and “Non-Renewable Energy” 

only in scenarios 2a and 2b. In scenarios 1a and 1b this does not occur because the higher the 

recycling rates, the greater are the diesel consumption (Table A6.1 – Appendix A).  

It is important to note that in the scenarios 2, it was assumed that the recycling 

facilities consume the lowest possible amount of diesel in order to produce the higher amount 

of medium quality aggregates. Thus, considering the results of “Global Warming”, “Abiotic 

Depletion (fossil fuels)” and “Non-Renewable Energy”, in both methodologies scenarios 2a 

and 2b appear as a better solution. 

Although the increase in recycling rates decreases the need of inert landfilling and, 

therefore, decreases the diesel consumption used in the landfill operation, this reduction is not 

significant in the overall management system. 
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5.4.1.2 ALTERNATIVE SCENARIOS 3.1 AND 3.2 

Tables 56 and 57 show the results of base case scenario and alternative scenarios 

(1, 3.1 and 3.2) in terms of variation factor, obtained by using CML and Impact 2002+ 

methodologies. The comparison of the alternative scenario 3.1a (20%) and the base case 

scenario indicates “Human Toxicity” as the most influenced category, with an increase of 13% 

in the impacts. However, the result of this category is still negative, which means avoided 

impacts. It is also possible to note a slight increase of the impacts for “Abiotic Depletion (fossil 

fuels)” (5%), “Non-Renewable Energy” (5%) and “Global Warming” (7% in CML and 3% in 

Impact 2002+). This results confirm the environmental feasibility of the use of the recycling 

facilities currently in operation, instead of the disposal of the mineral fraction into inert landfills, 

despite the transport distances. 

The comparison of alternative scenarios 3.1b (100%) and 1b (100%) with the base 

case scenario, also indicates “Human Toxicity” as the most influenced category, with an 

increase of 11% in the impacts of the alternative scenario 3.1b (100%). This comparison reveals 

a slight increase of the impacts for “Abiotic Depletion (fossil fuels)” (6%), “Non-Renewable 

Energy” (6%) and “Global Warming” (8% in CML and 4% in Impact 2002+). As the previous 

case, the increase of impacts is not so high, then, it is possible to confirm that the use of 

recycling facilities currently in operation can be an alternative, instead of constructing new 

ones. It is important to note that the impacts related to the construction of new recycling 

facilities were not considered. 

The comparison between alternative scenarios 3.1 and 3.2 reveals that the transport 

of the mineral fraction that will be effectively recycled to the recycling facility, and the transport 

of the remaining fraction to an inert landfill, provides minor variations in the impacts. 
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Table 56. Characterised results of base case scenario and alternative scenarios (1, 3.1 and 3.2) in terms of variation factor. Data obtained by CML baseline. 

Impact category 

Base case  

scenario 

Alternative scenarios and recycling rates (%) 

1a 1b 3.1a 3.1b 3.2a 3.2b 

20% 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 

Abiotic depletion (fossil fuels)  

(MJ) 
-2.00E+06 1.03 1.03 1.03 1.02 1.02 0.95 0.95 0.94 0.94 0.94 0.98 0.96 0.95 0.94 0.95 

Global warming  

(kg CO2 eq) 
-9.82E+04 1.05 1.04 1.04 1.04 1.03 0.93 0.93 0.93 0.92 0.92 0.97 0.95 0.94 0.92 0.93 

Human toxicity 

(kg 1,4-DB eq) 
1.18E+05 1.00 1.00 0.99 0.99 0.99 0.87 0.87 0.88 0.88 0.89 0.95 0.93 0.91 0.89 0.87 

Photochemical Oxidation  

(kg C2H4 eq) 
-1.14E+02 1.01 1.01 1.01 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.05 1.09 1.13 1.17 1.21 1.00 1.04 1.08 1.12 1.16 1.05 1.08 1.12 1.16 1.00 

 

Table 57. Characterised results of base case scenario and alternative scenarios (1, 3.1 and 3.2) in terms of variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case  

scenario 

Alternative scenarios and recycling rates (%) 

1a 1b 3.1a 3.1b 3.2a 3.2b 

20 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 

Non-renewable energy 

(MJ) 
-2.16E+06 1.03 1.03 1.02 1.02 1.02 0.95 0.95 0.95 0.94 0.94 0.99 0.98 0.97 0.95 0.94 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.02 1.02 1.02 1.02 1.01 0.97 0.97 0.97 0.96 0.96 0.99 0.99 0.98 0.97 0.96 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.00 1.01 1.02 1.03 1.04 1.02 1.03 1.04 1.05 1.06 1.01 1.02 1.03 1.05 1.06 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 1.05 1.08 1.11 1.14 1.16 1.01 1.03 1.06 1.08 1.11 1.01 1.03 1.06 1.08 1.11 
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5.4.1.3 SENSITIVITY ANALYSIS OF VARIATIONS IN THE C&DW COMPOSITION  

The waste composition has fundamental influence on environmental emissions 

associated with waste treatment, recycling and disposal, and may affect the LCA results of 

waste management systems (BISINELLA et al., 2017). The study about the influence of 

variations in the C&DW composition used in the base case scenario is crucial due to the lack 

of data about this parameter and the variations in the available data (see Table 15). 

The analysis of the C&DW compositions presented in Table 15 reveals that wood, 

gypsum and mixed waste are the main fractions that may vary among the C&DW generated in 

the municipalities and that three municipalities consider steel, glass, plastics and paperboard in 

the same category (recyclable fraction). For this reason, it was decided to analyse the variation 

in the weight-percentage of these fractions. 

In the variation of a specific C&DW fraction, the mineral fraction (MixC&DW) 

was increased or decreased in order to maintain the total as 100%, keeping the quantities of the 

other fractions fixed. The following assumptions were considered to perform a systematic 

analysis of variations in the C&DW composition:  

 Increase from 10% to 100% of wood in relation to its weight-percentage in the 

composition used in the base case scenario (Table A7.1 – Appendix 7). 

 Include from 1% to 10% of gypsum in relation to its weight-percentage in the 

composition used in the base case scenario (Table A7.2 – Appendix 7). 

 Increase from 10% to 1000% of mixed waste in relation to its weight-percentage 

in the composition used in the base case scenario (Table A7.3 – Appendix 7). 

 Decrease from 10% to 100% of steel in relation to its weight-percentage in the 

composition used in the base case scenario (Table A7.4 – Appendix 7). 

 Variation from -100% to +100% of glass in relation to its weight-percentage in 

the composition used in the base case scenario (Table A7.5 – Appendix 7). 

 Variation from -100% to +100% of plastics in relation to its weight-percentage in 

the composition used in the base case scenario (Table A7.6 – Appendix 7). 

 Variation from -100% to +100% of paperboard in relation to its weight-

percentage in the composition used in the base case scenario (Table A7.7 – 

Appendix 7). 

 



162 

 

 
 

The variations in the weight-percentage of a specific fraction may influence other 

stages of the C&DW system, for example, the transport units (tkm). The changes required for 

each variation in the composition are detailed in Tables A7.8 to A7.14 (Appendix 7). 

Tables 58 and 59 show the characterised results obtained with the variations of the 

weight-percentage of wood (from +10% to +100%) in relation to the composition used in the 

base case scenario. The results indicate that the increase of wood in the C&DW composition 

does not affect the results of both LCIA methodologies, since the variation factors for all impact 

categories are close to 1. 

 
Table 58. Characterised results of the base case scenario and the results of the variations from +10% to 

+100% of wood in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by CML baseline. 

Impact category 

Base case Variation in the weight-percentage of wood 

3.70% of 

wood 
+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 

Global warming  

(kg CO2 eq) 
-9.71E+04 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 

 

Table 59. Characterised results of the base case scenario and the results of the variations from +10% 

to +100% of wood in relation to its weight-percentage in the reference composition in terms of 

variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of wood 

3.70% of 

wood 
+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% 

Non-renewable energy 

(MJ) 
-2.16E+06 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 

 

Tables 60, 61, 62 and 63 show the characterised results obtained with the inclusion 

of gypsum in the C&DW composition (from 1% to 10%). The results reported in Tables 67 and 

68 refer to the current management practice, considering that the gypsum wastes are sent to 

landfills authorized to receive industrial wastes classified as non-inert. The results indicate that 

the existence of gypsum in the C&DW composition does not affect the results of both 

methodologies. 
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There are recycling alternatives for this type of waste, in which the secondary 

product obtained can be used in agriculture or clinker production (DRYWALL, 2009). 

Currently, the recycled gypsum is those obtained from the waste generated by large construction 

companies, due to the higher generation rates and quality (absence of impurities). In this 

context, recycling alternatives for gypsum waste were not considered in this sensitivity analysis, 

since they are not applied to small C&DW generators, and consequently to the municipal 

C&DW management.  

 
Table 60. Characterised results of the base case scenario and the results of the addition from 1% to 

+10% of gypsum in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by CML baseline. 

Impact category 
Base case Variation in the weight-percentage of gypsum 

0% of gypsum 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 

Global warming  

(kg CO2 eq) 
-9.71E+04 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.96 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 

 

Table 61. Characterised results of the base case scenario and the results of the addition from 1% to 

+10% of gypsum in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by Impact 2002+. 

Impact category 
Base case Variation in the weight-percentage of gypsum 

0% of gypsum 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Non-renewable energy 

(MJ) 
-2.16E+06 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 

 

In some cases, the gypsum waste can be sent to sanitary landfills due to inefficiency 

of the management system. When gypsum (CaSO4·2H2O) is disposed along with biodegradable 

wastes, the dissolved sulphate (SO4
2-) will be metabolised by the anaerobic microbes in the 

landfill and converted to sulphide (S2-), which is mainly precipitated with iron ions (FeS) or it 

can be transferred to the landfill gas as dihydrogen sulphide (H2S). In the second case, the H2S 
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is oxidised to sulphur dioxide (SO2) either by incineration or flaring of the landfill gas or by 

atmospheric oxidation (ALTHAUS et al., 2004). 

For this reason, Tables 69 and 70 present the results considering the final disposal 

of gypsum waste in sanitary landfills. The results indicate that the emissions of sulphur dioxide 

from gypsum landfilling affect significantly the categories of “Acidification”, “Human 

Toxicity” and “Photochemical Oxidation” of CML and “Respiratory Inorganics” and “Non-

Carcinogens” of Impact 2002+. 

According to the results obtained by CML, the existence of 1% of gypsum in the 

C&DW composition change the results of “Acidification” and “Human Toxicity” to positive, 

increasing the generated impacts of these categories by 323% and 165%, respectively. In 

relation to the results obtained by Impact 2002+, the existence of 2% of gypsum change the 

results of “Respiratory Inorganics” to positive, increasing the impact of this category by 153%. 

The comparison of the results of “Acidification” (CML) and “Respiratory 

Inorganics” (Impact 2002+) indicate that the emissions of SO2 are highly emphasised in CML 

methodology, which explain the difference in results. In CML, the existence of 10% of gypsum 

provides an increase of 3222% in the impacts, while in Impact 2002+ it provides an increase of 

765%. 

 

Table 62. Characterised results of the base case scenario and the results of the addition from 1% to 

+10% of gypsum in relation to its weight-percentage in the reference composition in terms of variation 

factor. Results considering the disposal of gypsum in sanitary landfills. Data obtained by CML baseline.  

Impact category 

Base case Variation in the weight-percentage of gypsum 

0% of 

gypsum 
1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 

Global warming  

(kg CO2 eq) 
-9.71E+04 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.92 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 -0.65 -2.27 -3.92 -5.55 -7.19 -8.82 -10.46 -12.09 -13.74 -15.36 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 0.03 -0.93 -1.91 -2.87 -3.84 -4.80 -5.77 -6.73 -7.71 -8.67 

Acidification  

(kg SO2 eq) 
-8.55E+02 -2.24 -5.44 -8.68 -11.89 -15.13 -18.33 -21.57 -24.77 -28.01 -31.22 
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Table 63. Characterised results of the base case scenario and the results of the addition from 1% to 

+10% of gypsum in relation to its weight-percentage in the reference composition in terms of variation 

factor. Results considering the disposal of gypsum in sanitary landfills. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of gypsum 

0% of 

gypsum 
1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Non-renewable energy 

(MJ) 
-2.16E+06 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.96 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.03 1.05 1.08 1.10 1.13 1.15 1.18 1.20 1.23 1.25 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 0.23 -0.53 -1.29 -2.05 -2.82 -3.58 -4.34 -5.10 -5.87 -6.63 

 

Tables 64 and 65 show the characterised results obtained with the variations of the 

weight-percentage of mixed wastes (from +10% to +1000%) in relation to the composition used 

in the base case scenario. It was decided to analyse an extensive variation of this fraction due 

to the existence of a large amount of mixed wastes in the C&DW, mainly caused by the absence 

of sorting at the construction sites. 

The increase of mixed waste in the C&DW composition hardly affects the results 

obtained by both methodologies. The increase of 1000% of mixed waste in the C&DW 

composition (19.8% of mixed waste) provides the increase of impacts of “Global Warming” 

(12% in CML and 6% in Impact 2002+), “Abiotic Depletion (fossil fuels)” (9%), “Non-

Renewable Energy” (8%), “Acidification” (9%) and “Respiratory Inorganics” (10%). It is 

important to emphasize that this result does not mean that the mixed wastes landfilling does not 

bring serious consequences for the environmental performance of C&DW management, since 

there is a possibility of recovering glass, plastics, wood and other materials present in this 

fraction, which were not included in this analysis. 

Tables 66 and 67 show the characterised results obtained with the variations of the 

weight-percentage of steel (from -10% to -100%) in relation to the composition used in the base 

case scenario. The results of both methodologies show that the decrease of steel in the 

composition increase the impacts of all impact categories, with exception of “Carcinogens” and 

“Non-Carcinogens”. The latter are influenced by air emissions and electricity consumption in 

EAF process, therefore, the decrease of steel recycling provides benefits for these categories.  
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Table 64. Characterised results of the base case scenario and the results of the variations from +10% to +1000% of mixed waste in relation to its weight-

percentage in the reference composition in terms of variation factor. Data obtained by CML baseline. 

Impact category 
Base case Variation in the weight-percentage of mixed waste 

1.80% of 

mixed 
+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% +200% +300% +400% +500% +600% +700% +800% +900% +1000% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.91 

Global warming  

(kg CO2 eq) 
-9.71E+04 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.96 0.95 0.94 0.93 0.91 0.90 0.89 0.88 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.93 

Photochemical 

Oxidation  

(kg C2H4 eq) 

-1.14E+02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.92 0.91 

 

Table 65. Characterised results of the base case scenario and the results of the variations from +10% to +1000% of mixed waste in relation to its weight-

percentage in the reference composition in terms of variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of mixed waste 

1.80% of 

mixed 
+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% +200% +300% +400% +500% +600% +700% +800% +900% +1000% 

Non-renewable  

Energy (MJ) 
-2.16E+06 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.93 0.92 0.92 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 

Respiratory  

Inorganics  

(kg PM2.5 eq) 

-2.36E+02 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 
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The results obtained by CML baseline indicate that the decrease from 50% to 100% 

of steel makes the impacts of “Global Warming” positive (generated impacts), increasing the 

impacts by 119% to 237%, respectively. The results obtained by Impact 2002+ indicate that the 

decrease from 90% to 100% makes the impacts of “Global Warming” positive, increasing the 

impacts by 101% to 112%. 

 

Table 66. Characterised results of the base case scenario and the results of the variations from -10% to 

-100% of steel in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by CML baseline. 

Impact category 

Base case Variation in the weight-percentage of steel 

3.20% of 

steel 
-10% -20% -30% -40% -50% -60% -70% -80% -90% -100% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 0.94 0.88 0.81 0.75 0.69 0.63 0.56 0.50 0.44 0.38 

Global warming  

(kg CO2 eq) 
-9.71E+04 0.77 0.52 0.29 0.06 -0.19 -0.42 -0.66 -0.89 -1.14 -1.37 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 0.91 0.81 0.71 0.62 0.52 0.42 0.33 0.23 0.13 0.04 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 0.88 0.75 0.62 0.50 0.37 0.25 0.12 -0.01 -0.14 -0.26 

Acidification  

(kg SO2 eq) 
-8.55E+02 0.92 0.83 0.75 0.67 0.58 0.50 0.42 0.34 0.25 0.17 

 

 

Table 67. Characterised results of the base case scenario and the results of the variations from -10% to 

-100% of steel in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by Impact 2002+. 

Impact category 
Base case Variation in the weight-percentage of steel 

3.20% of steel -10% -20% -30% -40% -50% -60% -70% -80% -90% -100% 

Non-renewable energy 

(MJ) 
-2.16E+06 0.94 0.89 0.83 0.77 0.72 0.66 0.60 0.55 0.49 0.43 

Global warming 

(kg CO2 eq) 
-2.06E+05 0.89 0.78 0.66 0.55 0.44 0.33 0.22 0.11 -0.01 -0.12 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 0.89 0.77 0.66 0.55 0.43 0.32 0.21 0.10 -0.02 -0.13 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 0.91 0.81 0.72 0.63 0.54 0.45 0.35 0.26 0.16 0.07 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 0.89 0.79 0.68 0.58 0.47 0.36 0.25 0.15 0.04 -0.07 

 

Tables 68 and 69 present the characterised results obtained with the variations of 

the weight-percentage of glass (from -100% to +100%) in relation to the composition used in 

the base case scenario. The increase of glass in the composition provides the decrease of impacts 

of all impact categories.  

According to the results obtained by CML, “Human Toxicity” is the main category 

affected by the variations of glass in the composition. For example, the inexistence of glass in 

the C&DW composition increase the impact by 42%.  
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The results of “Abiotic Depletion”/“Non-Rewable Energy”, “Global Warming” and 

“Acidification”/“Respiratory Inorganics” are similar and indicate that the inexistence of glass 

in the C&DW composition increase approximately 20% of the impacts of each category. 

  

Table 68. Characterised results of the base case scenario and the results of the variations from -100% 

to +100% of glass in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by CML baseline. 

Impact category 

Base case Variation in the weight-percentage of glass 

1.70%  

of glass 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 0.82 0.97 0.93 0.90 0.86 1.18 1.04 1.07 1.11 1.14 

Global warming  

(kg CO2 eq) 
-9.71E+04 0.71 0.94 0.88 0.82 0.77 1.30 1.06 1.12 1.18 1.24 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 0.58 0.92 0.83 0.75 0.66 1.43 1.09 1.18 1.26 1.34 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 0.92 0.98 0.97 0.95 0.93 1.08 1.02 1.03 1.05 1.07 

Acidification  

(kg SO2 eq) 
-8.55E+02 0.72 0.95 0.89 0.84 0.78 1.28 1.06 1.12 1.17 1.22 

 

 

Table 69. Characterised results of the base case scenario and the results of the variations from -100% 

to +100% of glass in relation to its weight-percentage in the reference composition in terms of variation 

factor. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of glass 

1.70%  

of glass 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Non-renewable energy 

(MJ) 
-2.16E+06 0.83 0.87 0.90 0.93 0.97 1.04 1.07 1.10 1.14 1.17 

Global warming 

(kg CO2 eq) 
-2.06E+05 0.87 0.89 0.92 0.95 0.97 1.03 1.06 1.08 1.11 1.14 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.03 1.03 1.02 1.01 1.01 0.99 0.99 0.98 0.97 0.97 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 1.10 1.08 1.06 1.04 1.02 0.98 0.96 0.94 0.92 0.90 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 0.86 0.89 0.91 0.94 0.97 1.03 1.06 1.09 1.12 1.15 

 

Tables 70 and 71 present the characterised results obtained with the variations of 

the weight-percentage of plastics (from -100% to +100%) in relation to the composition used 

in the base case scenario. “Abiotic Depletion (fossil fuels)”/“Non-Renewable Energy” and 

“Global Warming” are the most influenced impact categories. The inexistence of plastics in the 

C&DW composition increase approximately 61% of impacts of “Abiotic Depletion (fossil 

fuels)”; 65% of “Non-Renewable Energy”; 29% of “Global Warming” in CML and 15% of 

“Global Warming” in Impact 2002+. On the other hand, the decrease of plastics in the 



169 

 

 
 
 

composition decrease the impacts of “Non-Carcinogens”, due to the electricity consumption in 

the recycling process. 

 

Table 70. Characterised results of the base case scenario and the results of the variations from  -100% 

to +100% of plastics in relation to its weight-percentage in the reference composition in terms of 

variation factor. Data obtained by CML baseline. 

Impact category 

Base case Variation in the weight-percentage of plastics 

1.50% of 

plastics 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 0.39 0.51 0.62 0.76 0.88 1.12 1.24 1.36 1.49 1.61 

Global warming  

(kg CO2 eq) 
-9.71E+04 0.71 0.77 0.82 0.89 0.94 1.06 1.11 1.17 1.23 1.29 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 0.94 0.95 0.96 0.98 0.99 1.01 1.03 1.04 1.05 1.06 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 

Acidification  

(kg SO2 eq) 
-8.55E+02 0.87 0.90 0.92 0.95 0.97 1.02 1.05 1.07 1.10 1.13 

 

Table 71. Characterised results of the base case scenario and the results of the variations from  -100% 

to +100% of plastics in relation to its weight-percentage in the reference composition in terms of 

variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of plastics 

1.50% of 

plastics 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Non-renewable energy 

(MJ) 
-2.16E+06 0.35 0.48 0.60 0.75 0.87 1.13 1.25 1.38 1.52 1.65 

Global warming 

(kg CO2 eq) 
-2.06E+05 0.85 0.88 0.91 0.94 0.97 1.03 1.06 1.09 1.12 1.15 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.12 1.10 1.07 1.05 1.02 0.98 0.95 0.93 0.90 0.88 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 0.90 0.92 0.94 0.96 0.98 1.02 1.04 1.06 1.08 1.10 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 0.94 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.06 

 

Tables 72 and 73 present the characterised results obtained with the variations of 

the weight-percentage of paperboard (from -100% to +100%) in relation to the composition 

used in the base case scenario. “Global Warming” is the most influenced impact category. The 

increase of 80% and 100% of paperboard in the composition (2.16 and 2.40% of paperboard, 

respectively) makes the impact positive, increasing 112% and 140% of the impacts of Global 

Warming in CML. The results of Impact 2002+ for this category were not change to positive, 

but there is an increase of impacts by 15% for the composition with 2.4% of paperboard. This 

difference is due to the higher biogenic methane characterisation factor in the CML 

methodology compared to Impact 2002+. 
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Table 72. Characterised results of the base case scenario and the results of the variations from -100% 

to +100% of paperboard in relation to its weight-percentage in the reference composition in terms of 

variation factor. Data obtained by CML baseline. 

Impact category 

Base case Variation in the weight-percentage of paperboard 

1.20% of 

paperboard 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Abiotic depletion 

(fossil fuels) (MJ) 
-2.00E+06 1.01 1.01 1.01 1.01 1.00 1.00 1.00 0.99 0.99 0.99 

Global warming  

(kg CO2 eq) 
-9.71E+04 2.42 2.14 1.85 1.58 1.29 0.72 0.45 0.16 -0.12 -0.40 

Human toxicity 

(kg 1,4-DB eq) 
-3.30E+04 1.03 1.02 1.02 1.01 1.01 0.99 0.99 0.98 0.98 0.97 

Photochemical 

Oxidation (kg C2H4 eq) 
-1.14E+02 1.33 1.27 1.20 1.13 1.07 0.94 0.87 0.80 0.74 0.68 

Acidification  

(kg SO2 eq) 
-8.55E+02 1.03 1.02 1.02 1.01 1.01 0.99 0.99 0.98 0.98 0.97 

 

Table 73. Characterised results of the base case scenario and the results of the variations from -100% 

to +100% of paperboard in relation to its weight-percentage in the reference composition in terms of 

variation factor. Data obtained by Impact 2002+. 

Impact category 

Base case Variation in the weight-percentage of paperboard 

1.20% of 

paperboard 
-100% -80% -60% -40% -20% +20% +40% +60% +80% +100% 

Non-renewable energy 

(MJ) 
-2.16E+06 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.99 0.99 0.99 

Global warming 

(kg CO2 eq) 
-2.06E+05 1.15 1.12 1.09 1.06 1.03 0.97 0.94 0.91 0.88 0.85 

Carcinogens 

(kg C2H3Cl eq) 
4.02E+04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Non-carcinogens 

(kg C2H3Cl eq) 
1.57E+04 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01 1.01 1.01 

Respiratory inorganics 

(kg PM2.5 eq) 
-2.36E+02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98 0.98 

 

5.4.1.4 SENSITIVITY ANALYSIS OF LANDFILL MODELLING 

This sensitivity analysis aims at discussing the difference verified in the LCIA 

results of CML baseline when long-term emissions from leachate are included. Long-term 

emissions are considered to happen beyond 100 years. Previous studies have been indicated 

that only a minor part of the harmful substances contained in waste are released to the 

environment after this period (DOKA, 2009).  

According to Zampori et al. (2016) the models used to estimate long-term emissions 

are affected by a high uncertainty, since the temporal dynamics of these emissions are difficult 

to predict over such long timespans (DOKA, 2009). Thus, following the recommendation of 

Product Environmental Footprint Guide (EC-JRC, 2017), this study assessed the base case and 

alternative scenarios, excluding long-term emissions (sections 5.1 and 5.2) and, performed this 

sensitivity analysis, including them. It is important to note that the results obtained by Impact 
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2002+ are not affected by long-term emissions, therefore, only the results obtained by CML 

baseline are presented in this section. 

Table 74 lists the characterised and normalised results obtained by using the CML 

baseline v3.03 methodology including long-term emissions, and the contributions of each 

impact category with reference to the total impact after normalisation. The results show that 

“Marine Aquatic Ecotoxicity” and “Fresh Water Aquatic Ecotoxicity” are the most important 

impact categories, accounting for over 90% of the total impacts.  

 

Table 74. Environmental profile of C&DW management system related to the functional unit, in the 

base case scenario. Data obtained by CML baseline (including long-term emissions). 

Impact category Characterisation 
Normalisation 

(World) 
Contribution 

(based on normalisation) 

Marine aquatic ecot. 2.90E+08 kg 1,4-DB eq 1.50E-06 86.22% 

Fresh water aquatic ecot. 3.87E+05 kg 1,4-DB eq 1.64E-07 9.44% 

Human toxicity 1.18E+05 kg 1,4-DB eq 4.58E-08 2.64% 

Terrestrial ecotoxicity 1.14E+04 kg 1,4-DB eq 1.04E-08 0.60% 

Abiotic depletion (fossil fuels) -2.00E+06 MJ -5.25E-09 0.30% 

Acidification -8.55E+02 kg SO2 eq -3.58E-09 0.21% 

Eutrophication 5.32E+02 kg PO4
3- eq 3.36E-09 0.19% 

Photochemical oxidation -1.14E+02 kg C2H4 eq -3.11E-09 0.18% 

Global warming -9.82E+04 kg CO2 eq -2.35E-09 0.14% 

Abiotic depletion 3.03E-01 kg Sb eq 1.45E-09 0.08% 

Ozone layer depletion  2.16E-03 kg CFC-11 eq 9.52E-12 0.001% 

 

Table 75 presents the contribution of the stages for each impact category. The 

values in bold represent the most significant stages that together contribute over 80% to a 

specific impact category. The highlighted values represent the avoided impacts showed in 

Figure 69. 
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Figure 69. Environmental impact contribution of the main stages related to C&DW management system 

in the base case scenario (in percentages of the total impact). Data obtained by CML baseline (including 

long-term emissions). 

 
 

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

P
ro

ce
ss

 c
o

n
tr

ib
u

ti
o

n

Glass recycling

Plastics recycling

Steel recycling

Wood recycling

Mineral fraction recycling

C&DW landfilling

C&DW sorting

C&DW collection

Transport



173 

 

 
 
 

Table 75. Contribution percentage of the main stages related to C&DW management system in the base case scenario. The values in bold represent the most 

significant stages that together contribute over 80% to a specific impact category and the values highlighted in grey indicate avoided impacts. Data obtained by 

CML baseline (including long-term emissions). 

Impact category Transport 
C&DW 

collection 

C&DW 

sorting 

C&DW 

landfilling 

Mineral fraction 

recycling 

Wood 

recycling 

Steel 

recycling 

Plastics 

recycling 

Glass 

recycling 
Total 

Abiotic depletion 0.11% 0.00% 0.00% 0.03% 0.03% 0.03% 97.52% 0.28% 1.99% 97.52% 

Abiotic depletion (fossil fuels) 17.81% 1.14% 0.83% 3.98% 0.16% 0.47% 33.59% 32.32% 9.70% 83.72% 

Global warming 8.83% 0.55% 0.40% 30.45% 0.08% 0.25% 46.10% 7.43% 5.92% 85.38% 

Ozone layer depletion  41.83% 2.70% 1.95% 8.40% 0.37% 0.60% 31.02% 0.24% 12.89% 85.73% 

Human toxicity 11.03% 0.09% 0.07% 73.59% 0.07% 4.13% 0.71% 0.02% 10.29% 94.91% 

Fresh water aquatic ecotoxicity 0.20% 0.01% 0.00% 64.74% 0.01% 3.13% 28.82% 2.37% 0.71% 93.56% 

Marine aquatic ecotoxicity 0.95% 0.03% 0.02% 78.92% 0.29% 2.34% 6.01% 1.01% 10.41% 95.35% 

Terrestrial ecotoxicity 0.34% 0.00% 0.00% 1.14% 0.00% 0.10% 97.59% 0.61% 0.21% 97.59% 

Photochemical oxidation 3.15% 0.24% 0.17% 19.57% 0.01% 1.12% 67.67% 3.50% 4.56% 87.24% 

Acidification 9.59% 1.55% 1.12% 6.55% 1.89% 0.49% 52.61% 8.50% 17.70% 88.40% 

Eutrophication 1.88% 0.38% 0.27% 67.03% 0.57% 1.37% 24.42% 1.64% 2.44% 91.45% 
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After the inclusion of long-term emissions, the characterised results of “Human 

Toxicity”, “Fresh Water Aquatic Ecotoxicity” and “Marine Aquatic Ecotoxicty” reveal the 

C&DW landfilling as the main important stage. These results are different if compared to those 

obtained by excluding the long-term emissions (see Figure 58), where steel recycling provides 

significant avoided impacts for “Human Toxicity” and “Marine Aquatic Ecotoxicity” and, 

impacts of transport are the most important for “Human Toxicity”. 

Figure 70 presents the normalised results which confirm C&DW landfilling as the 

main contributor for the generated impacts, and reveal that only glass recycling has a significant 

contribution for the avoided impacts. The contribution analysis of “Marine Aquatic 

Ecotoxicity” (Figure 71) shows that the emissions of vanadium, beryllium and nickel into water 

comes from long-term leachate, mainly caused by paperboard and plastics wastes. 

There is an important difference related to the impacts of steel recycling. The 

previous results (without long-term emissions) present a significant avoided impacts due to 

steel recycling (see Figure 59), while in this sensitivity analysis results (Figure 70) steel 

recycling provides generated impacts. The contribution analysis (Figure 71) show that the 

impacts are related to the emission of vanadium into water due to the landfilling of the slag and 

dust produced in the EAF process. 

 

Figure 70. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained by using normalised factors for World (2000) of CML baseline 

methodology (including long-term emissions). 

 

-5.00E-07

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

p
er

so
n

*y
e

ar

Glass recycling

Plastics recycling

Steel recycling

Wood recycling

Mineral fraction recycling

C&DW landfilling

C&DW sorting

C&DW collection

Transport

Total



175 

 

 
 
 

Figure 71. Contribution analysis for the impact category “Marine Aquatic Ecotoxicity” for the C&DW 

management system in the base case scenario (including long term-emissions). 

 
 

Table 76 presents the results after the exclusion of the ecotoxicity impact categories, 

following the same criteria used in the LCIA of base case and alternative scenarios. “Human 

Toxicity” account for 71% of total impacts, while in the previous results this category account 

for 44% (see Table 56). In addition, there is a slightly change in the ranking of the impact 

categories, including “Eutrophication” among the selected impact categories. 
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Table 76. Environmental profile of C&DW management system related to the functional unit, in the 

base case scenario. Excluding “Marine Aquatic Ecotoxicity”, “Fresh Water Aquatic Ecotoxicity” and 

“Terrestrial Ecotoxicity” categories. Data obtained by CML baseline (including long-term emissions). 

Impact category Characterisation 
Normalisation 

(World) 

Contribution 

(based on normalisation) 

Human toxicity 1.18E+05 kg 1,4-DB eq 4.58E-08 70.56% 

Abiotic depletion (fossil fuels) -2.00E+06 MJ -5.25E-09 8.09% 

Acidification -8.55E+02 kg SO2 eq -3.58E-09 5.52% 

Eutrophication 5.37E+02 kg PO4
3- eq 3.39E-09 5.18% 

Photochemical oxidation -1.14E+02 kg C2H4 eq -3.11E-09 4.79% 

Global warming -9.71E+04 kg CO2 eq -2.32E-09 3.62% 

Abiotic depletion 3.03E-01 kg Sb eq 1.45E-09 2.23% 

Ozone layer depletion  2.16E-03 kg CFC-11 eq 9.54E-12 0.01% 

 

Normalised results (Figure 72) still confirm the C&DW landfilling as the main 

contributor to the generated impacts, followed by transport. Unlike the previous results (Figure 

70), steel recycling is decisive to the avoided impacts. 

 

Figure 72. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained by using normalised factors for World (2000) of CML baseline 

methodology (including long-term emissions). Excluding “Marine Aquatic Ecotoxicity”, “Fresh Water 

Aquatic Ecotoxicity” and “Terrestrial Ecotoxicity” categories. 
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The contribution analysis for the impact categories listed in Table 83 are available 

in Appendix 8 (Figures A8.1 to A8.6), and Table 77 supports the analysis of data obtained from 

the contribution analysis. “Abiotic Depletion” and “Ozone Layer Depletion” categories were 

not included in the contribution analysis due to their negligible contribution to the total impacts. 

Among the selected impact categories, differences have been noticed only in the 

results of “Human Toxicity”. The previous results have pointed out the transport as the most 

important stage for the generated impacts, while in the sensitivity analysis, impacts from 

C&DW landfilling are the most important, due to emissions into groundwater of vanadium and 

thallium, from short- and long-term leachate of plastics wastes, which are also related to the 

impacts of “Eutrophication”.  

Figure 73 presents the normalised results considering the three main stages of the 

C&DW management system, according to the selected impact categories of CML baseline. The 

comparison with the results obtained by Impact 2002+ (see Figure 64) shows again a fair 

similarity between the results related to the following groups of impact categories: “Abiotic 

Depletion (fossil fuels)” and “Non-Renewable Energy”; “Global Warming”; “Acidification” 

and “Respiratory Inorganics”. However, the results of “Human Toxicity” of CML baseline and 

“Human Toxicity” (“Carcinogens” and “Non-Carcinogens”) of Impact 2002+ are not directly 

comparable. Moreover, it should be noted a limited, but not negligible, value of 

“Eutrophication” by using CML methodology, which is instead almost nugatory by using 

Impact 2002+.  
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Table 77. Main data obtained from contribution analysis of life cycle impact assessment results acquired by CML baseline (including long-term emissions). 

Impact categories Important stages Important elementary flows Important processes 

Human toxicity 

Glass recycling (-) Selenium Primary glass production (without cullets)  

C&DW landfilling (+) 
Thallium 

Plastics wastes landfilling 
Vanadium 

Transport (+) Antimony Brake wear emissions (lorry) 

Abiotic depletion  

(fossil fuels) 

Steel recycling (-) Hard coal Hard coal mine operation 

Plastics recycling (-) 
Crude oil 

PVC suspension polymerised and HDPE granulate production 
Natural gas 

Transport (+) Crude oil Petroleum production 

Acidification 

Steel recycling (-) Sulphur dioxide Sinter iron production 

Glass recycling (-) Sulphur dioxide Primary glass production (without cullets) 

Plastics recycling (-) Sulphur dioxide PVC suspension polymerised and HDPE granulate production 

Transport (+) 
Nitrogen oxides Transport, lorry 16-32 metric ton (EURO4) 

Sulphur dioxide Petroleum refinery operation 

Eutrophication 
Steel recycling (-) Phosphate Spoil from hard coal mining leachate 

C&DW landfilling (+) Chemical oxygen demand Plastics wastes landfilling 

Photochemical oxidation 
Steel recycling (-) Carbon monoxide (fossil) Sinter iron production 

C&DW landfilling (+) Methane (biogenic) Paperboard waste landfilling 

Global warming 

Steel recycling (-) Carbon dioxide (fossil) Pig iron production 

C&DW landfilling (+) Methane (biogenic) Paperboard waste landfilling 

Transport (+) Carbon dioxide (fossil) Transport, lorry 16-32 metric ton (EURO4) 

 

Legend 

 

(+) Environmental impact                  (-) Avoided environmental impact 

             Emission into air              Emission into soil              Emission into water              Raw material 



179 

 

 
 
 

Figure 73. Normalised results of impact assessment for the three main stages of C&DW management 

system in the base case scenario, obtained by using normalised factors for World of CML baseline 

methodology (including long-term emissions). 

 
 

Figure 74 allows to analyse the results of “Human Toxicity” (with long-term 

emissions), “Carcinogens” and “Non-Carcinogens” in detail. Unlike the results showed in 

Figure 68, C&DW landfilling is the most important stage for the generated impacts of “Human 

Toxicity”, because the influence of long-term emissions from landfills is highly emphasised in 

CML baseline. In contrast, these emissions do not appear so important for Impact 2002+, which 

uses different characterisation models for toxicity categories. In the previous results (Figure 

68), steel recycling represents 65% of the avoided impacts for “Human Toxicity”, and when 

long-term emissions are considered, it represents only 0.71% of the generated impacts. 

 
Figure 74. Percentage contribution of each management stage to the generated and/or to the avoided 

impacts for “Human Toxicity”, “Carcinogens” and “Non-Carcinogens”. Data related to the 

characterisation analyses of base case scenario (including long-term emissions). 
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5.5 DISCUSSION 

The results obtained by the LCA study indicate steel recycling as crucial for the 

avoided impacts of the C&DW management system, since it is the main contributor for “Global 

Warming” (77%), “Acidification” (65%) and “Respiratory Inorganics” (82%). LCA studies 

about end-of-life phase of residential buildings reported the same importance of steel recycling 

for the avoided impacts of the C&DW management (BLENGINI, 2009; VITALE et al., 2017). 

Iron and steel represents only 3.2% of the C&DW composition, but its role in the overall 

environmental performance of the management system is crucial. 

Although the avoided impacts resulting from glass and plastics recycling are lower 

compared to those of steel recycling, these fractions cannot be neglected. Glass recycling 

contributes to the avoided impacts of “Human Toxicity” (29%), “Acidification” (22%), “Non-

Carcinogens” (51%) and “Respiratory Inorganics” (11%). In this study, it was assumed that 

recycled glass (glass cullet) can be used as raw material in the glass package production, with 

the substitution ratio of 1:0.82 (CREMIATO et al., 2017), i.e. 1 tonne of recycled glass 

substitutes 0.82 tonne of primary glass. In addition, it has been considered that the recycled 

glass substitutes 55% of primary glass and 45% of secondary glass (CEMPRE, 2011), following 

the approach proposed by Gala et al. (2015). 

In practice, glass scraps from construction and demolition activities are not recycled 

in the same process than the scraps from glass packages (bottles, jars, etc.), as assumed in this 

study due to the absence of data. Thus, a detailed study about the recycling potential of glass 

from the construction industry is necessary, including accurate data gathering on the current 

recycling process and recycling rates, as well as the avoided product and its substitution factor. 

In accordance with Prestes et al. (2012), the composition of plastics was adopted as 

PVC (52%), HDPE (29%), PET (11%) and PP (8%), whose recycling contributes mainly to the 

avoided impacts of “Abiotic Depletion (fossil fuels)” (42%), “Acidification” (65%), 

“Carcinogens” (78%) and “Non-Renewable Energy” (46%). In this case, there are limitations 

related to data quality, since the LCI of the recycling processes and avoided products (virgin 

resins) were obtained from literature (YE et al., 2017; PERUGINI; MASTELLONE; ARENA, 

2005) and Ecoinvent v3.1 (2014) database (both updated with Brazilian energy mix), due to the 

lack of availability of local data.  

The recycled plastics have application in the industry, replacing their virgin resins; 

however, in some cases, the recycled plastics are applied in low value products. For that, it was 

assumed the substitution factor of 1:0.81 (RIGAMONTI; GROSSO; SUNSERI, 2009), in order 
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to reflect the loss of quality of recycled vs. virgin resins. Although this factor has been used by 

LCA studies on C&DW management (MERCANTE et al., 2012; HOUSSAIN; WO; POON, 

2017), it does not seem the most appropriate, because it was defined based on market price of 

granules of recycled plastics in relation to virgin resins. Gala et al. (2015) have identified a 

demand for studies comparing the properties of recycled vs. primary materials, especially in the 

case of plastics. 

Wood recycling provides minor avoided impacts for all selected categories (less 

than 3%), with exception of “Non-Carcinogens”. Usually, the wood wastes from construction 

sites are mixed with other materials (such as concrete, mortar, metals), therefore, it was assumed 

that 30% of wood wastes are sent to landfills, based on the study of Costa (2009). In this sense, 

better management practices both at construction sites (through source segregation) and 

recycling facilities (by increasing the process efficiency), could improve the quality of wood 

wastes, and consequently, provide larger environmental benefits. 

Although the mineral fraction accounts for approximately 87% of C&DW, the 

results pointed out that its impacts are insignificant. Considering the selected municipalities, 

15% of the mineral fraction is recycled, 25% landfilled and 60% stored for future use. The 

avoided impacts of recycling represent less than 2% for the selected impact categories and, the 

alternative scenarios showed that the increase of recycling rates only improve the results for the 

categories “Acidification” and “Respiratory Inorganics”.  

It is important to highlight that this type of mineral, such as soil, gravel and sand, 

are not considered in the impact categories of “Abiotic Depletion” of CML baseline and 

“Mineral Extraction” of Impact 2002+. In this context, Borghi, Pantini and Rigamonti (2018) 

have adopted an indicator in order to quantify the non-renewable virgin and raw material 

consumption, expressed in terms of kg of sand and gravel consumed or saved. Moreover, Vitale 

et al. (2017) mentioned that the small contribution of mineral fraction recycling cannot be 

neglected, since it has been highlighted in terms of land occupation due to the avoided 

landfilling; however, further studies should be carried out to investigate the role of mineral 

fraction recycling in a life cycle perspective.  

The mineral fraction represents 73% of the C&DW landfilled, and the impacts refer 

to diesel and other materials consumptions required to the landfill operation. Then, mineral 

fraction landfilling has the largest contribution for “Abiotic Depletion (fossil fuels)”, 

“Acidification”, “Respiratory Inorganics” and “Non-Renewable Energy”, mainly due to diesel 

emissions. In accordance with Bovea and Powell (2016), future LCI models for inert landfilling 
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should include leachate or gas emissions, since small amounts of biodegradable materials 

(wood, painted wood, paper/cardboard, etc.) can be disposed into landfills. Some studies have 

pointed out the impacts of leachate from C&DW landfilling (ENGELSEN et al., 2010; 

BUTERA; CHRISTENSEN; ASTRUP, 2014; CÓRDOBA; SCHALCH, 2015); on the other 

hand, current studies (HOUSSAIN; WU; POON, 2017; DI MARIA; EYCKMANS; ACKER, 

2018; BORGHI; PANTINI; RIGAMONTI, 2018) have not considered this issue. In future 

studies, it would be interesting include this type of data, since the presence of unsorted waste 

mixed with the mineral fraction is disposed into inert landfills. Regarding to the mineral fraction 

stored, there is a consensus of not considering the environmental burdens about this stage, but 

it is very important to assure that this fraction remains stored during a short period of time, 

avoiding the creation of illegal landfills. 

As highlighted in several studies (see section 3.3), transport is one of the most 

important stages in the C&DW management, due to the large volumes of waste transported and 

transport distances. In this study, the C&DW transport from the generator to sorting areas (tu2) 

and mineral fraction transport from sorting areas to recycling facilities (tu6) are the main 

responsible for the impacts of C&DW transport. The largest impacts of both cases are related 

to the high amount of waste transported (6,910 and 6,475 tonnes, respectively), and not to the 

distance (90 km and 48 km, respectively). The installation of new sorting areas could reduce 

the transport distance (tu2) and reduce the illegal disposal. An alternative to reduce the transport 

distance of mineral fraction from sorting areas to recycling facilities is the use of small mobile 

facilities, which would be shared among some sorting areas. That would be especially helpful 

for the municipality of Campinas, due to its large size. 

The sensitivity analysis related to the variations of the C&DW composition reveals 

the main fractions that may significantly affect the results, such as gypsum (if it is sent to 

sanitary landfills), steel, glass, plastics and paperboard. This suggests that the control of the 

waste stream is fundamental to determine the environmental profile of the C&DW management 

system. 

Finally, based on the literature review, visits on the C&DW management 

infrastructures, interviews with the responsible for the C&DW management of the 

municipalities from PCJ Watershed and, results of the LCA study, a set of recommendations of 

potential improvements on the management system of the C&DW from small generators is 

summarized in Figure 75, and discussed below. 
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Figure 75. Proposed management system for the C&DW from small generators. 

 

 
 

In order to reduce or eliminate the illegal disposal of C&DW, the municipalities 

could implement routines for registration and monitoring of irregular disposal areas, with the 

support of tools, such as the Geographic Information System (GIS). The municipal departments 

responsible for the C&DW management could issue warnings and fines, and disseminate these 

occurrences in local media and social networks to raise public awareness. In addition, the 

municipalities should create systematic awareness programs about environmental and socio-
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economic impacts from C&DW illegal disposal, along with the dissemination of the available 

alternatives for the proper C&DW management. 

The sorting areas or drop-off sites are an important alternative to manage the 

C&DW from small generators. In this sense, it is suggested the analysis of demand of new drop-

off sites along with the study on the coverage of the existing drop-off sites, with the support of 

tools, such as GIS and Google Earth. In order to ensure the proper utilisation of these areas, it 

is essential to provide information about the drop-off sites operation on the municipality’s 

website, local media and social networks. 

The sorting areas must comprise a material flow control (generation source, waste 

composition and quantity); employees training about the waste sorting; proper containers with 

clear identification to ensure the effective waste sorting; storage site or container for materials 

that can be reused (leftover materials). Moreover, these areas must be monitored by the public 

authorities and environmental agencies. 

During the technical visits in the sorting areas of the selected municipalities, it was 

observed a considerable amount of materials with potential to reuse. Thus, the municipalities 

could develop a mobile app to sale the materials that can be reused, with the information of the 

material type (composition), quantity and drop-off site location. 

The mineral fraction represents the large portion of the C&DW, with high potential 

to reuse or recycle. In this context, the municipalities must provide areas for temporary storage, 

organizing the mineral fraction according to their further application (direct reuse or recycling) 

and types (red fraction – ceramic materials; grey fraction – concrete materials and mixed 

fraction), and keeping a record on the amount of stored material. 

Regarding to the mineral fraction recycling , it is important the analysis on the 

economic feasibility of installing a stationary recycling facility in the municipality, considering 

the C&DW generation and demand for recycled aggregates; and, the analysis of the possible 

use of a shared mobile recycling facility with other municipalities. Considering that most of the 

Brazilian municipalities are small sized, it is recommended to encourage the public-private 

partnerships and/or intermunicipal consortia for the operation of recycling facilities. 

Regardless of the existence of a recycling facility, the municipalities could 

elaborate laws/decrees on the mandatory use of a certain percentage of recycled aggregates in 

public and private works, and provide technical capacitation about the applications of the 

recycled aggregates. 
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Usually, the transport of C&DW from small generator can also be carried out by 

self-employed, which must be registrated and receive training on good environmental practice. 

In addition, the contact of the self-employed transport who received training could be available 

on the municipality’s website. 

Finally, it is fundamental the development of guidelines on C&DW prevention and 

minimisation focused on small construction, demolition and renovation works. A potential 

initiative could be the creation of a materials bank to receive leftovers construction materials to 

donation to low-income families or sale through a mobile app. 

 

  



186 

 

 
 
 

 CHAPTER 

 

6 
 

 

CONCLUSIONS 

The potential environmental impacts of the C&DW management of thirteen 

representative municipalities located in the Piracicaba, Capivari and Jundiaí Watershed (São 

Paulo State, Brazil) were evaluated by means of an attributional LCA, taking into account two 

LCIA methodologies: CML baseline and Impact 2002+.  

The results obtained by CML baseline indicate that “Human Toxicity” was the most 

important category, where the avoided impacts of steel recycling and the impacts generated by 

the transport were the main contributors. The results obtained by Impact 2002+ indicate that 

“Respiratory Inorganics” and “Global Warming” were the most important categories, where 

the avoided impacts of steel recycling had a crucial role, along with the generated impacts of 

transport and landfilling. 

In general, the results highlighted the importance of the avoided impacts from 

recovered materials, mainly those related to steel, glass and plastics recycling. In this sense, the 

municipalities should invest in programs to encourage the sorting at construction sites, 

improving the quality of the recovered materials and, increasing the recycling rates. Moreover, 

the sensitivity analysis of the variation of the C&DW composition indicated that the non-

mineral fraction may significantly affect the results. In this sense, the control of the waste 

stream is fundamental to determine the environmental profile of the C&DW management 

system. In this sense, it is important that LCA studies of C&DW management avoid analyses 

focusing only in the mineral fraction, neglecting the presence of other materials. 

Although the mineral fraction represents a large quantity of the C&DW, its 

recycling does not appear remarkable for the avoided impacts. Conversely, its contribution to 

the impacts of transport was significant, consuming 76% of the total crude oil used throughout 

the management system. In this context, it is important to develop studies determining the 

impacts of the scarcity of natural aggregates used in the construction sector, in order to reveal 

the benefits of the C&DW recycling. 
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The results of the alternative scenarios indicated that the increase of the mineral 

fraction recycling and the production of medium quality recycled aggregates improve 

significantly the impact categories of “Acidification” (CML baseline) and “Respiratory 

Inorganics” (Impact 2002+) with reference to the base case scenario. In addition, the sensitivity 

analysis confirm the environmental feasibility of the use of the recycling facilities currently in 

operation, instead of the disposal of the mineral fraction into inert landfills, despite the transport 

distances. 

Finally, it is important to mention that the main limitation of this study is the 

absence of local data on the C&DW flow, specially the waste composition. This aspect was 

partially overcome by the sensitivity analysis performed. Moreover, another important 

limitation is the lack of inventories on recycling processes of plastics, glass and gypsum, based 

on the Brazilian context. Regardless of these aspects, considering the existence of few LCA 

studies about C&DW management at municipal level, the applied methodology can be used as 

a starting point for future studies, as well as supporting the decisions of public managers. 

 

6.1 SUGGESTIONS FOR FUTURE RESEARCH 

Based on the results of this research and the experience acquired during this PhD, 

further research may be suggested on the following topics: 

 To obtain primary data for the life cycle inventory of the recycling processes of plastics, 

glass and gypsum. Moreover, there is a need for studies to determine the substitution 

factor (quality factor) of the recovered materials, as suggested by Gala, Raugei and 

Fullana-I-Palmer (2015).  

 To determine how the recycled aggregates can complement natural aggregates in a 

sustainable approach, as evaluated by Blengini and Garbarino (2010) for a Italian 

region, by means of the Geographical Information System and Life Cycle Assessment. 

Despite the abundant availability of natural aggregates in Brazil , in some regions it is 

not possible to extract this raw material, increasing the transport distances. This further 

study could include the development of a methodology to determine the impacts of the 

scarcity of natural aggregates used in the construction sector along with the impacts of 

land use. In addition, it is important to analyse the emissions from transport according 

to the Brazilian context. 
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 To propose an experimental study to determine the quality factor of the mineral fraction 

in order to apply it in the methodology developed by Borghi, Pantini and Rigamonti 

(2018).  

 To develop a LCI of inert landfilling with the inclusion of leachate emissions from 

C&DW, based on Brazilian studies, such as Lima and Cabral (2013) and Córdoba and 

Schalch (2015). 

 To include prevention scenarios as a management alternative for the C&DW, since it is 

the highest priority according to the waste hierarchy and, there are a limited number of 

LCA studies on this topic. 

 To propose a model to gather primary data from the environmental licensing processes 

(for exemple, from the SIGOR of São Paulo State) in order to improve the Brazilian 

LCI data and further LCA studies on C&DW management.  
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APPENDIXES 
 

APPENDIX A1 – LITERATURE REVIEW: CONSTUCTION AND DEMOLITION WASTE  

This appendix reports additional information about the articles, theses and dissertations used in 

the Literature Review about C&DW management systems.  

 

Table A1.1. Articles about construnction and demolition waste management systems in the international 

context (Part I).  

Published in 2010  

Title: Critical success factors for on-site sorting of construction waste: A China study 

Authors: Jiayuan Wang, Hongping Yuan, Xiangping Kang and Weisheng Lu 

Journal: Resources, Conservation and Recycling  

Cited by 141 (Google Scholar, 8th October 2018)  Journal Impact: 5.120 (JCR, 2017) 

Published in 2011 

Title: European legislation and implementation measures in the management of construction and 

demolition waste 

Authors: Paola Villoria Sáez, Mercedes del Río Merino, César Porras Amores and Alicia de San 

Antonio González 

Journal: The Open Construction and Building Technology Journal 

Cited by 24 (Google Scholar, 8th October 2018)  Journal Impact: not informed (JCR, 2017) 

Published in 2012 

Title: Off-site sorting of construction waste: What can we learn from Hong Kong? 

Authors: Lu Weisheng and Yuan Hongping  

Journal: Resources, Conservation and Recycling 

Cited by 31 (Google Scholar, 14th November 2018)  Journal Impact: 5.120 (JCR, 2017) 

Published in 2013 

Title: Construction waste management policies and their effectiveness in Hong Kong: A longitudinal 

review 

Authors: Weisheng Lu and Vivian W. Y. Tam 

Journal: Renewable and Sustainable Energy Reviews 

Cited by 76 (Google Scholar, 8th October 2018)  Journal Impact: 9.184 (JCR, 2017) 

Title: The evolution of construction waste sorting on-site 

Authors: Hongping Yuan, Weisheng Lu and Jane Jianli Hao 

Journal: Renewable and Sustainable Energy Reviews 

Cited by 52 (Google Scholar, 8th October 2018)  Journal Impact: 9.184 (JCR, 2017) 

Published in 2015 

Title: Encouraging the environmentally sound management of C&D waste in China: An integrative 

review and research agenda 

Authors: Huabo Duan, Jiayuan Wang and Qifei Huang 

Journal: Renewable and Sustainable Energy Reviews 

Cited by 25 (Google Scholar, 8th October 2018)  Journal Impact: 9.184 (JCR, 2017) 

Title: Construction and demolition waste management – a holistic evaluation of environmental 

performance 

Authors: Helena Dahlbo, John Bachér, Katja Lähtinen, Timo Jouttijärvi, Pirke Suoheimo, Tuomas 

Mattila, Susanna Sironen, Tuuli Myllymaa and Kaarina Saramäki 

Journal: Journal of Cleaner Production 

Cited by 67 (Google Scholar, 8th October 2018)  Journal Impact: 5.651 (JCR, 2017) 
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Table A1.1. Articles about construnction and demolition waste management systems in the international 

context (Part II).  

Published in 2016 

Title: Developing strategies for managing construction and demolition wastes in Malaysia based on 

the concept of circular economy 

Authors: Mohd Reza Esa, Anthony Halog and Lucia Rigamonti 

Journal: Journal of Material Cycles and Waste Management 

Cited by 15 (Google Scholar, 8th October 2018)  Journal Impact: 1.693 (JCR, 2017) 

Title: Development of a hybrid model to predict construction and demolition waste: China as a case 

study 

Authors: Yiliao Song, Yong Wanga, Feng Liu and Yixin Zhang 

Journal: Waste Management 

Cited by 4 (Google Scholar, 8th October 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: A review on adoption of novel techniques in construction waste management and policy 

Authors: Usman Aminu Umar, Nasir Shafiq,  Amirhossein Malakahmad, Muhd Fadhil Nuruddin and 

Mohd Faris Khamidi 

Journal: Journal of Material Cycles and Waste Management 

Cited by 7 (Google Scholar, 8th October 2018)  Journal Impact: 1.693 (JCR, 2017) 

Published in 2017 

Title: An empirical study of perceptions towards construction and demolition waste recycling and 

reuse in China 

Authors: Ruoyu Jin, Bo Li, Tongyu Zhou, Dariusz Wanatowski and Poorang Piroozfar 

Journal: Resources, Conservation & Recycling 

Cited by 25 (Google Scholar, 14th November 2018)  Journal Impact: 5.120 (JCR, 2017) 

Title: Barriers and countermeasures for managing construction and demolition waste: A case of 

Shenzhen in China 

Author: Hongping Yuan 

Journal: Journal of Cleaner Production 

Cited by 11 (Google Scholar, 14th November 2018) Journal Impact: 5.651 (JCR, 2017) 

Title: Characterizing the generation and flows of construction and demolition waste in China 

Authors: Lina Zheng, Huanyu Wu, Hui Zhang, Huabo Duan, Jiayuan Wang, Weiping Jiang, Biqin 

Dong, Gang Liu, Jian Zuo and Qingbin Song 

Journal: Construction and Building Materials 

Cited by 22 (Google Scholar, 14th November 2018) Journal Impact: 3.485 (JCR, 2017) 

Published in 2017 

Title: Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from 

landfills 

Authors: Olugbenga O. Akinade, Lukumon O. Oyedele, Saheed O. Ajayi, Muhammad Bilal, Hafiz 

A. Alaka, Hakeem A. Owolabi, Sururah A. Bello, Babatunde E. Jaiyeoba, Kabir O. Kadiri 

Journal: Waste Management 

Cited by 19 (Google Scholar, 14th November 2018) Journal Impact: 4.723 (JCR, 2017) 

Published in 2018 

Title: Construction and demolition waste best management practice in Europe 

Authors: José-Luis Gálvez-Martos, David Styles, Harald Schoenberger and Barbara Zeschmar-Lahl 

Journal: Resources, Conservation & Recycling 

Cited by 5 (Google Scholar, 14th November 2018) Journal Impact: 5.120 (JCR, 2017) 
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Table A1.1. Articles about construnction and demolition waste management systems in the international 

context (Part III).  

Published in 2018 

Title: Construction and demolition waste management in China through the 3R principle 

Authors: Beijia Huang, Xiangyu Wanga, Harnwei Kua, Yong Geng, Raimund Bleischwitz and 

Jingzheng Ren 

Journal: Resources, Conservation & Recycling 

Cited by 17 (Google Scholar, 14th November 

2018) 

Journal Impact: 5.120 (JCR, 2017) 

Title: Evaluating the transition towards cleaner production in the construction and demolition sector 

of China: A review 

Authors: Patrizia Ghisellini, Xi Ji, Gengyuan Liu and Sergio Ulgiati 

Journal: Journal of Cleaner Production 

Cited by 2 (Google Scholar, 8th October 2018)  Journal Impact: 5.651 (JCR, 2017) 

 

Table A1.2. Articles on construnction and demolition waste management systems in the Brazilian 

context (Part I).  

Published in 2010 

Title: Gestão dos Resíduos de Construção e Demolição: Estudo da Situação no Município de São 

Carlos-SP, Brasil 

Authors: José da Costa Marques Neto and Valdir Schalch 

Journal: Engenharia Civil UM 

Cited by 15 (Google Scholar, 18th October 2018)  Journal Impact: not informed (JCR, 2017) 

Published in 2011 

Title: Diagnóstico da geração e da composição dos RCD de Fortaleza/CE 

Authors: Maria Elane Dias de Oliveira, Raquel Jucá de Moraes Sales, Lúcia Andréa Sindeaux de 

Oliveira e Antonio Eduardo Bezerra Cabral 

Journal: Engenharia Sanitária e Ambiental 

Cited by 20 (Google Scholar, 18th October 2018)  Journal Impact: 0.22 (JCR, 2017) 

Published in 2012 

Title: Cenário do Gerenciamento dos Resíduos da Construção e Demolição (RCD) em Uberaba-MG 

Authors: Vinícius Arcanjo da Silva and André Luís Teixeira Fernandes 

Journal: Sociedade & Natureza 

Cited by 2 (Google Scholar, 18th November 

2018)  

Journal Impact: not informed (JCR, 2017) 

Title: Quantificação e classificação dos resíduos procedentes da construção civil e demolição no 

município de Pelotas, RS 

Authors: Alessandra Buss Tessaro, Jocelito Saccol de Sá and Lucas Bastianello Scremin 

Journal: Ambiente Construído 

Cited by 39 (Google Scholar, 18th October 2018)  Journal Impact: not informed (JCR, 2017) 

Published in 2013 

Title: Fatores críticos para a produção de agregado reciclado em usinas de reciclagem de RCC da 

região nordeste do Brasil 

Authors: Adriana Virgínia Santana Melo, Emerson de Andrade Marques Ferreira and Dayana Bastos 

Costa 

Journal: Ambiente Construído 

Cited by 4 (Google Scholar, 18th October 2018)  Journal Impact: not informed (JCR, 2017) 

Title: Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza (CE) 

Authors: Adriana Sampaio Lima and Antonio Eduardo Bezerra Cabral 

Journal: Engenharia Sanitária e Ambiental 

Cited by 16 (Google Scholar, 20th October 2018)  Journal Impact: 0.22 (JCR, 2017) 
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Table A1.2. Articles sbout construnction and demolition waste management systems in the Brazilian 

context (Part II).  

Published in 2015 

Title: Modelo dinâmico de sistemas para o gerenciamento de resíduos da construção civil na cidade 

de Porto Alegre: estudo de caso 

Authors: Luis Hernando Walteros Galarza, Sandra Tatiana Reyes Gómez, Estela Oliari Garcez, Érico 

Cunde Correa, Álvaro Chávez Porras and Isaac Huertas Forero 

Journal: Engenharia Sanitária e Ambiental 

Cited by 1 (Google Scholar, 18th October 2018)  Journal Impact: 0.22 (JCR, 2017) 

Title: Percepção da legislação ambiental, gestão e destinação final dos RCD – resíduos da construção 

e demolição: um estudo de caso em Parnamirim/RN/Brasil 

Authors: Carlos Henrique Catunda Pinto, Alcimar Laurentino dos Santos and Ana Clea Marinho 

Miranda Catunda 

Journal: Holos Environment 

Cited by 3 (Google Scholar, 18th October 2018)  Journal Impact: not informed (JCR, 2017) 

Title: Estudo do potencial de contaminação de lixiviados gerados em aterros de resíduos da 

construção civil por meio de simulações em colunas de lixiviação 

Authors: Rodrigo Eduardo Córdoba and Valdir Schalch 

Journal: Engenharia Civil UM 

Cited by 0 (Google Scholar, 20th October 2018)  Journal Impact: not informed (JCR, 2017) 

Published in 2016 

Title: Forecasting of construction and demolition waste in Brazil 

Authors: Diogo Henrique Fernandes Paz and Kalinny Patrícia Vaz Lafayette 

Journal: Waste Management & Research 

Cited by 9 (Google Scholar, 18th October 2018)  Journal Impact: 1.90 (JCR, 2015) 

 
Table A1.2. Articles about construnction and demolition waste management systems in the Brazilian 

context (Part III).  

Published in 2018 

Title: Uso de metodologia participativa na elaboração de Plano Municipal de Gestão de Resíduos da 

Construção Civil 

Authors: Laís Peixoto Rosado and Carmenlucia Santos Giordano Penteado 

Journal: Revsita DAE 

Cited by 0 (Google Scholar, 18th November 

2018) 

Journal Impact: not informed (JCR, 2017) 

Title: Análise da eficiência dos Ecopontos a partir do georreferenciamento de áreas de disposição 

irregular de resíduos de construção e demolição 

Authors: Laís Peixoto Rosado and Carmenlucia Santos Giordano Penteado 

Journal: Sociedade & Natureza 

Cited by 0 (Google Scholar, 18th November 

2018) 

Journal Impact: not informed (JCR, 2017) 
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Table A1.3. Theses about C&DW management system in Brazil. 

Author (year) Main objective 

Marques Neto 

(2009) 

To study the current scenario of the C&DW management in the municipalities 

from Turvo Grande Watershed. 

Buselli 

(2012) 

To develop a detailed diagnosis of the C&DW management in Viçosa (Minas 

Gerais State), in order to propose a more consistent municipal management 

system. To evaluate the presence of trace metals in fine particulates of C&DW, 

considering their use in chemical barriers. 

Pimentel 

(2013) 

To estimate the amount of C&DW in João Pessoa (Paraíba State) by analysing the 

material flow from the generation to the C&DW Recycling Facility and estimating 

the fraction sent to illegal disposal areas. 

Farias 

(2014) 

To contribute to the municipal government by means of a proposal to implement 

a preventive C&DW management in Teresina (Piauí State). 

Magagnin Filho 

(2016) 

To analyse the C&DW recycling in Londrina (Paraná State), verifying the 

compliance with environmental requirements and, the existence of a procedure to 

identify contamination in the C&DW as well as in the recycled aggregates 

produced. 

Amorin 

(2016) 

To analyse the economic and environmental viability of the C&DW recycling 

performed by PROGUARU in Guarulhos (São Paulo State). 

 

Table A1.4. Dissertations about C&DW management system in Brazil (Part I). 

Author (year) Main objective 

Sapata 

(2002) 
To propose an integrated C&DW management in Maringá (Paraná State). 

Marques Neto 

(2003) 

To analyse the current C&DW management in São Carlos (São Paulo State), 

through a qualitative and quantitative waste characterisation, analysis of the 

infrastructures used for the management, in order to provide strategies for an 

integrated C&DW management system, including recycling and reuse practices. 

Rocha 

(2006) 

To evaluate the current C&DW management, through a qualitative and 

quantitative characterisation by means of physical and microstructural tests, in 

order to determine the composition, granulometry, density and minerals present in 

the samples collected from work sites located in Brasília. 

Silva 

(2006) 

To study the environmental and business solutions implemented by the 

municipality of Jundiaí (São Paulo State), in its Solid Waste Management Centre 

- GERESOL, from the point of view of partnerships with the private sector. 

Tavares 

(2007) 

To analyse the C&DW management practices in Aracajú (Sergipe State) from 

interviews with actors involved in the management (public government, 

cooperatives, transporters, and consulting firms). 

Ramos 

(2007) 

To obtain quality indicators of the C&DW generated in the municipality of Vitória 

(Espírito Santo State) managed by the public government, in order to evaluate its 

potential as recycled aggregate for use in the construction industry. 

Veiga 

(2008) 

To identify the municipal experiences carried out in accordance with the C&DW 

legislation and standards, by means of case studies focused on the management in 

Belo Horizonte (Minas Gerais State) and São José do Rio Preto (São Paulo State). 

Ribeiro 

(2008) 

To conduct an analysis on the C&DW management of the metropolitan region of 

São Paulo, based on information provided by the involved agents and visits to 

storage, sorting, recycling and final disposal sites. 

Santos 

(2008) 

To identify the materials generated by ten construction companies and the 

environmental impacts of eleven illegal disposal areas, in order to analyse the 

potential of reuse of these materials. 
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Table A1.4. Dissertations about C&DW management system in Brazil (Part II). 

Author (year) Main objective 

Lucero 

(2008) 

To analyse the corrective approach adopted by the C&DW management system, 

its particularities and difficulties, and the current scenario of the C&DW recycling 

in Rio de Janeiro.  

Wiens 

(2008) 

To analyse the C&DW management of the five largest municipalities of the 

Tietê-Jacaré Watershed. 

Simões 

(2009) 

To determine the efficiency of the drop-off sites in Belo Horizonte (Minas Gerais 

State) in relation to its main users, and propose improvements. 

Ferreira 

(2009) 

To analyse the C&DW management in Brasília, with emphasis on the influence of 

the life cycle thinking. 

Rios 

(2009) 

To analyse the socioenvironmental and economic implications caused by the 

C&DW in Fortaleza (Ceará State). 

Uwai 

(2009) 

To propose a method for the planning and management of processes and costs of 

alternative C&DW drop-off sites. 

Brönstrup 

(2010) 

To present guidelines for the development of a C&DW management system for 

the municipality of Gramado (Rio Grande do Sul State), in accordance with 

CONAMA Resolution nº 307/2002, from the perspective of the public authority. 

Córdoba 

(2010) 

To study the integrated C&DW management system of São Carlos (São Paulo 

State) and develop indexes for management strategies elaboration, through 

quantitative and qualitative characterisation. 

Silva 

(2010) 

To study the current C&DW management in Taubaté (São Paulo State), based on 

the CONAMA Resolution nº 307/2002, in order to provide alternatives for the 

management system. 

Inojosa  

(2010) 

To elaborate a timeline on the C&DW management in Brasilia, through a literature 

review and interviews. 

Melendres 

(2011) 

To analyse the concept of integrated C&DW management in accordance with the 

CONAMA Resolution nº 307/2002 and discuss how this concept was applied in 

Uberlândia (Minas Gerais State) between 2003 and 2010. 

Prata  

(2013) 

To propose a management model to minimize the current problems associated with 

the C&DW management in the urban area of Lagarto (Sergipe State). 

Lúcio 

(2013) 

To study the current situation and the evolution of the integrated C&DW 

management system in Belo Horizonte (Minas Gerais State), by analysing local 

basic indicators, C&DW generation and public equipment used in the 

management. 

Dondo 

(2014) 

To evaluate the C&DW management in Cuiabá and Várzea Grande (Mato Grosso 

State) and propose improvements for the management. 

Barreto 

(2014) 

Environmental and economic evaluation of the C&DW management scenarios: 

landfilling versus reuse/recycling. 

Mann 

(2015) 

To investigate the technical and legal compliance of C&DW management systems 

in Curitiba (Paraná State) from the application of a checklist in 24 building works. 

Rosado  

(2015) 

To develop a life cycle inventory of C&DW management system of Limeira (São 

Paulo State) in order to identify the best alternatives to minimize environmental 

impacts. 

Cruvinel  

(2016) 

To analyse the current C&DW management in Brasília and propose indicators of 

environmental sustainability. 

Barreto  

(2016) 

To analyse the current C&DW management of Palmas (Tocantins State), based on 

a theoretical framework of good practices and management, and carry out a 

C&DW classification and quantification during one year. 

Caldas  

(2016) 
To verify the performance of the C&DW management of João Pessoa (Paraíba 

State) in relation to the legislation. 
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Table A1.4. Dissertations about C&DW management system in Brazil (Part III). 

Author (year) Main objective 

Palamin  

(2016) 
To propose alternatives for the elaboration of the Municipal Management Plan of 

C&DW for small municipalities. 

Alberici  

(2017) 
To propose a sustainable management for C&DW from small generators in São 

Carlos (Santa Catarina State). 

Lombardi Filho  

(2017) 
To analyse the transport and destination of C&DW generated in São Paulo (São 

Paulo State) and propose a tutorial program to assist C&DW generating users. 

Loch  

(2017) 
To develop a model for assessing the legitimacy of the integrated municipal waste 

management plan. 

Vargas 

(2018) 
To analyse the state of art of the waste management in the construction sector in 

the State of Paraná and in the municipality of Cascavel. 
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APPENDIX A2 – LITERATURE REVIEW: LIFE CYCLE ASSESSMENT  

This appendix reports additional information about the articles used in the Literature Review 

on LCA studies applied to C&DW management. 

 

Table A2.1. Life cycle assessment studies about construnction and demolition waste management (Part 

I). 

Published in 2010 

Title: Environmental performance of construction waste: Comparing three scenarios from a case 

study in Catalonia, Spain 

Authors: O. Ortiz, J.C. Pasqualino and F. Castells 

Journal: Waste Management 

Cited by 125 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: Resources and waste management in Turin (Italy): the role of recycled aggregates in the 

sustainable supply mix 

Authors: Gian Andrea Blengini and Elena Garbarino 

Journal: Journal of Cleaner Production 

Cited by 136 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Published in 2012 

Title: Influence of construction and demolition waste management on the environmental impact of 

buildings 

Authors: André Coelho and Jorge de Brito 

Journal: Waste Management 

Cited by 120 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: Life cycle assessment of construction and demolition waste management systems: a Spanish 

case study 

Authors: Irma T. Mercante, María D. Bovea, Valeria Ibáñez-Forés and Alejandro P. Arena 

Journal: The International Journal of  Life Cycle Assessment 

Cited by 56 (Google Scholar, 26th November 2018)  Journal Impact: 4.195 (JCR, 2017) 

Published in 2013 

Title: Life cycle assessment of end-of-life management options for construction and demolition 

debris 

Authors: Alberta Carpenter, Jenna R. Jambeck, Kevin Gardner, and Keith Weitz 

Journal: Journal of Industrial Ecology 

Cited by 22 (Google Scholar, 26th November 2018)  Journal Impact: 4.356 (JCR, 2017) 

Title: End of life of buildings: three alternatives, two scenarios. A case study 

Authors: Eva Martínez, Yolanda Nuñez and Elena Sobaberas 

Journal: The International Journal of  Life Cycle Assessment 

Cited by 18 (Google Scholar, 26th November 2018)  Journal Impact: 4.195 (JCR, 2017) 

Title: An overview of construction and demolition waste management in Canada: a lifecycle analysis 

approach to sustainability 

Authors: Muluken Yeheyis, Kasun Hewage, M. Shahria Alam, Cigdem Eskicioglu, Rehan Sadiq 

Journal: Clean Technologies and Environmental Policy 

Cited by 152 (Google Scholar, 26th November 2018)  Journal Impact: 2.337 (JCR, 2017) 
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Table A2.1. Life cycle assessment studies about construnction and demolition waste management (Part 

II). 

Published in 2014 

Title: Evaluating environmental impacts of alternative construction waste management approaches 

using supplychain-linked life-cycle analysis 

Authors: Murat Kucukvar, Gokhan Egilmez and Omer Tatari 

Journal: Waste Management & Research 

Cited by 29 (Google Scholar, 26th November 2018)  Journal Impact: 1.90 (JCR, 2015) 

Published in 2015 

Title: Life cycle assessment of construction and demolition waste management 

Authors: Stefania Butera, Thomas H. Christensen and Thomas F. Astrup 

Journal: Waste Management 

Cited by 55 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Published in 2016 

Title: Comparison of scenarios for the integrated management of construction and demolition waste 

by life cycle assessment: A case study in Brazil 

Authors: Carmenlucia Santos Giordano Penteado and Laís Peixoto Rosado 

Journal: Waste Management & Research 

Cited by 12 (Google Scholar, 26th November 2018)  Journal Impact: 1.90 (JCR, 2015) 

Title: Analysis of the environmental performance of life-cycle building waste management strategies 

in tertiary buildings 

Authors: David Zambrana-Vasquez, Ignacio Zabalza-Bribían, Alberto Jáñez and Alfonso Aranda-

Usón 

Journal: Journal of Cleaner Production 

Cited by 6 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Published in 2017 

Title: Comparative environmental evaluation of construction waste management through different 

waste sorting systems in Hong Kong 

Authors: Md. Uzzal Hossain, Zezhou Wu and Chi Sun Poon 

Journal: Waste Management 

Cited by 19 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: Consequential LCA modelling of building refurbishment in New Zealand - an evaluation of 

resource and waste management scenarios 

Authors: Agneta Ghose, Massimo Pizzol and Sarah J. McLaren 

Journal: Journal of Cleaner Production 

Cited by 12 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Title: Geospatial characterization of building material stocks for the lifecycle assessment of end-of-

life scenarios at the urban scale 

Authors: Alessio Mastrucci, Antonino Marvuglia, Emil Popovici, Ulrich Leopold and Enrico Benetto 

Journal: Resources, Conservation and Recycling 

Cited by 27 (Google Scholar, 26th November 2018)  Journal Impact: 5.120 (JCR, 2017) 

Title: Life cycle assessment of the end-of-life phase of a residential building 

Authors: Pierluca Vitale, Noemi Arena, Fabrizio Di Gregorio and Umberto Arena 

Journal: Waste Management 

Cited by 26 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 
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Table A2.1. Life cycle assessment studies about construnction and demolition waste management (Part 

III). 

Published in 2018 

Title: Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) 

management in Lombardy Region (Italy) 

Authors: Giulia Borghi, Sara Pantini and Lucia Rigamonti 

Journal: Journal of Cleaner Production 

Cited by 5 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Title: Estimating the environmental costs and benefits of demolition waste using life cycle assessment 

and willingness-to-pay: A case study in Shenzhen 

Authors: Ting Wang, Jiayuan Wang, Peng Wu, Jun Wang, Qinghua He and Xiangyu Wang 

Journal: Journal of Cleaner Production 

Cited by 18 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Title: Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC 

to support sustainable policy making 

Authors: Andrea Di Maria, Johan Eyckmans and Karel Van Acker 

Journal: Waste Management 

Cited by 8 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: Comparative LCA of wood waste management strategies generated from building construction 

activities 

Authors: Md. Uzzal Hossain and Chi Sun Poon 

Journal: Journal of Cleaner Production 

Cited by 6 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Title: Combining life cycle assessment and Building Information Modelling to account for carbon 

emission of building demolition waste: A case study 

Authors: Jiayuan Wang, Huanyu Wu, Huabo Duan, George Zillante, Jian Zuo and Hongping Yuan 

Journal: Journal of Cleaner Production 

Cited by 8 (Google Scholar, 26th November 2018)  Journal Impact: 5.651 (JCR, 2017) 

Title: A bi-level environmental impact assessment framework for comparing construction and 

demolition waste management strategies 

Authors: Ardavan Yazdanbakhsh 

Journal: Waste Management 

Cited by 0 (Google Scholar, 26th November 2018)  Journal Impact: 4.723 (JCR, 2017) 

Title: Inclusion of prevention scenarios in LCA of construction waste management 

Authors: Nuria Bizcocho and Carmen Llatas 

Journal: The International Journal of  Life Cycle Assessment 

Cited by 0 (Google Scholar, 06th December 2018)  Journal Impact: 4.195 (JCR, 2017) 

Title: Towards resource-efficient management of asphalt waste in Lombardy region (Italy): 

Identification of effective strategies based on the LCA methodology 

Authors: Sara Pantini, Giulia Borghi and Lucia Rigamonti 

Journal: Waste Management 

Cited by 0 (Google Scholar, 06th December 2018)  Journal Impact: 4.723 (JCR, 2017) 
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Table A2.2. General data about LCA studies on C&DW management, including the location, aim of the study and management strategies (Part I). 

Authors (year) Location Aim of the study Management strategies 

1 

Ortiz, Pasqualino 

and Castells 

(2010) 

Catalonia  

(Spain) 

Evaluate the environmental impacts of C&DW in terms of the LIFE98 ENV/E/351 

project, which aims at increase the environmental awareness in the construction 

sector. 

Off-site recycling, 

incineration and landfilling. 

2 
Blengini and 

Garbarino (2010) 

Provincia di 

Torino  

(Italy) 

Analyse energy and environmental implications of the C&DW recycling chain in 

the administrative territory of Provincia di Torino in Northern Italy, take into 

account the transport distances, quality and availability of recycled aggregates and 

its geographic market coverage.  

Off-site recycling. 

3 
Coelho and Brito 

(2012) 
Portugal 

Quantify the environmental impacts of building demolition, considering different 

scenarios of waste/material management, based on a “top-down” LCA 

methodology. 

Off-site recycling and 

landfilling. 

4 
Mercante et al.  

(2012) 
Spain 

Present and analyse an inventory that includes the processes and materials involved 

in the C&DW management system in Spain, with emphasis on assessing the 

environmental profile of inert waste sorting and treatment facilities. 

Off-site recycling and 

landfilling. 

5 
Carpenter et al.  

(2013) 

New 

Hampshire 

(United 

States) 

Develop an LCA of end-of-life management options for the C&DW generated in 

New Hampshire (United States), by using the U.S. Environmental Protection 

Agency’s Municipal Solid Waste Decision Support Tool. 

Off-site recycling, 

combustion and landfilling. 

6 

Martínez, Nuñez 

and Sobaberas 

(2013) 

Spain 

Identify the most important processes for the environmental assessment of the end-

of-life of a building, and the demolition process variables that significantly affect 

non-renewable energy consumption, human toxicity potential and greenhouse gases 

emissions. 

Reuse, pre-treatment, off-

site recycling, incineration 

and landfilling. 

7 
Yeheyis et al.  

(2013) 
Canada 

Propose a conceptual C&DW management framework to maximise the 3R (reduce, 

reuse and recycle) and minimise the C&DW landfilling, by implementing 

sustainable and comprehensive strategy throughout the lifecycle of construction 

projects. 

Reuse, off-site recycling, 

composting, incineration 

and landfilling. 

8 

Kucukvar, 

Egilmez and Tatari 

(2014) 

United States 

Evaluate the environmental impacts (net carbon, energy and water footprints) by 

using an economic input–output-based hybrid LCA, taking into account nine 

different C&DW: concrete, wood, metals, paper, cardboard, plastic and glass. 

Off-site recycling, 

incineration and landfilling. 

9 

Butera, 

Christensen and 

Astrup (2015) 

Denmark 

Evaluate the environmental impacts related to the end-of-life of mineral fraction of 

C&DW, considering its utilisation as unbound aggregate in road construction or 

landfill disposal, with special emphasis on leaching of inorganic contaminants. 

Off-site recycling and 

landfilling. 
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Table A2.2. General data about LCA studies on C&DW management, including the location, aim of the study and management strategies (Part II).  

Authors (year) Location Aim of the study Management strategies 

10 
Penteado and 

Rosado (2016) 

Limeira/São 

Paulo State 

(Brazil) 

Comparison of the environmental impacts of the current C&DW management in a 

medium-sized municipality with six other proposed scenarios, considering the 

waste produced by small and large generators, in order to identify the best 

management alternatives. 

Reuse, off-site recycling 

and landfilling. 

11 

Zambrama-

Vasquez et al. 

(2016) 

Zaragoza City 

(Spain) 

Present a methodology, based on LCA, for evaluation of the environmental 

performance of different life-cycle building waste management strategies, 

considering the municipal solid waste generated during a building's use stage, and 

the C&DW generated during its construction and end-of-life.  

Off-site recycling and 

landfilling. 

12 
Houssain, Wu 

and Poon (2017) 
Hong Kong 

Compare the environmental performance of building construction waste 

management systems in Hong Kong. 

Reuse, off-site recycling 

and public fill/landfilling. 

13 
Ghose, Pizzol and 

McLaren (2017) 
New Zealand 

Verify if the material procurement and construction waste management strategies 

could reduce the environmental impacts at the same time as delivering the benefits 

of more energy efficient buildings. 

Reuse, off-site recycling 

and landfilling. 

14 
Mastrucci et al.  

(2017) 

Esch-sur-

Alzette 

(Luxembourg) 

Develop a framework for the characterisation of building material stocks and the 

assessment of the potential environmental impact associated with the end-of-life of 

buildings at the urban scale to support decision on waste management strategies.  

Sorting plant 

(downcycling), off-site 

recycling, incineration and 

landfilling. 

15 
Vitale et al.  

(2017) 
South of Italy 

Investigate the potential environmental impacts related to the end-of-life phase of a 

residential building (multifamily dwelling of three levels), constructed in the South 

of Italy by utilizing conventional materials and up-to-date procedures. 

Off-site recycling and 

landfilling. 

16 

Borghi, Pantini 

and Rigamonti 

(2018) 

Lombardy 

Region (Italy) 

Evaluate the environmental performance of the current C&DW management and to 

identify critical aspects and possible improving actions, with emphasis on the mixed 

non-hazardous waste (identified by the European Waste Code 170904). 

Off-site recycling and 

landfilling. 

17 
Wang et al.  

(2018a) 

Shenzhen City 

(China) 

Investigate the environmental impacts of demolition waste recycling and landfilling 

in Shenzhen, by means of an LCA and willingness-to-pay methodologies. 

Off-site recycling and 

landfilling. 

18 

Di Maria, 

Eyckmans and 

Acker (2018) 

Flanders 

(Belgium) 

Analyse the environmental and the economic drivers in four alternative C&DW 

end-of-life scenarios in the region of Flanders, in Belgium, by using a combined 

LCA and life cycle costing (LCC) methodologies. 

Off-site recycling 

(downcycling, advanced 

and after selective 

demolition) and landfilling. 
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Table A2.2. General data about LCA studies on C&DW management, including the location, aim of the study and management strategies (Part III).  

Authors (year) Location Aim of the study Management strategies 

19 
Hossain and 

Poon (2018) 
Hong Kong 

Evaluate the environmental profile of the wood waste management, in order to 

minimize the environmental impacts and to provide a scientific basis for the decision-

making process on the management systems. 

Off-site recycling and 

landfilling. 

20 
Wang et al. 

(2018b) 

Shenzhen City 

(China) 

Propose a conceptual framework and calculation model to quantify the carbon 

emissions generated over the life cycle of building demolition waste by combined 

the Building Information Modelling (BIM) and LCA. 

On-site recycling, off-site 

recycling and landfilling. 

21 
Yazdanbakhsh 

(2018) 

New York 

City 

(United States) 

Present a bi-level LCA framework for modelling alternative waste management 

approaches in which the impacts are measured and compared at two scales of strategy 

and decision-making, taking into account four potential management strategies for 

the mineral C&DW in New York City. 

Off-site recycling and 

landfilling. 

22 
Bizcocho and 

Llatas (2018) 

Seville 

(Spain) 

Evaluate construction waste management scenarios that include waste prevention 

activities, by using a case study of new buildings in Spain as an illustration of the 

model approaches, which includes the comparison of four management scenarios. 

Prevention, off-site 

recycling and landfilling. 

23 

Pantini, Borghi 

and Rigamonti 

(2018) 

Lombardy 

Region  

(Italy) 

Evaluate the current management of waste from deconstruction and milling of old 

pavements not containing tar (reclaimed asphalt pavement – RAP), in order to 

identify critical aspects and to suggest improvements. 

Off-site recycling. 
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Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part I). 

Author (year) Functional unit 
C&DW  

composition 

Stages included in the system 

boundaries 
Life cycle inventory data 

1 

Ortiz, 

Pasqualino 

and Castells 

(2010) 

206 kg of waste/m2 

of constructed area 

(including new 

works, renovation 

and repairs). 

Construction 

process and 

packaging 

material. 

Collection; transport; inert, sanitary 

and hazardous landfilling; recycling 

(stones, metals, plastic, timber, 

paper/cardboard); incineration 

(plastic, paper/cardboard and special 

wastes). 

Primary data from the LIFE98 ENV/E/351 project 

(transport distance from waste generation to 

landfill, recycling or incineration plant). Secondary 

data from Ecoinvent v2.01 (2007) database, 

adapted to the Spanish electrical mix and European 

transport system. 

2 

Blengini and 

Garbarino 

(2010) 

1 t of collected and 

recycled C&DW. 

Average 

composition from 

Provincia di 

Torino (Italy). 

Collection; transport; recycling; 

recycled aggregates transport; avoided 

products (steel and natural aggregates) 

and avoided inert landfill. 

Primary data from the database of Provincia di 

Torino or interviews with operators (amount of 

C&DW collection, recycling and landfilling, NA 

quarrying and land use); average distances were 

obtained from a GIS model. Secondary data from 

Ecoinvent 2.0 database (2006). 

3 
Coelho and 

Brito (2012) 

1 m² of a reference 

building of Portugal. 

Demolition of a 

reference building 

in Portugal. 

Building demolition (complete and 

selective); transport; landfilling and 

recycling. 

Primary data from real buildings and demolition 

operations (demolition operations, transport 

distances and management options). Secondary 

data from the literature, based on a “top-down 

approach” (environmental impacts of the materials 

and end-of-life of building).  

4 
Mercante et 

al. (2012) 
1 t of C&DW. 

Inert waste sorting 

and treatment 

plant (types I and 

II). 

All the stages of the C&DW life cycle, 

from the on-site waste generation to its 

transformation into recycled material 

or its disposal on a landfill. 

Primary data were collected directly from some 

Spanish enterprises involved in the life cycle of 

C&DW management. Secondary data from 

Ecoinvent (2008) database (materials, fuel and 

electricity). 

5 
Carpenter et 

al. (2013) 

702,000 t of C&DW 

(total generated in 

New Hampshire in 

2006). 

Composition from 

New Hampshire. 

Transport, processing, sorting, 

recycling, combustion to generate 

electricity and landfilling. 

Primary data from the case study (specific wood 

composition, metal content, and energy content 

values). Secondary data from Municipal Solid 

Waste Decision Support Tool (default values for the 

non-wood materials). 
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Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part II). 

Author (year) Functional unit 
C&DW  

composition 

Stages included in the system 

boundaries 
Life cycle inventory data 

6 

Martínez, 

Nuñez and 

Sobaberas 

(2013) 

Demolition of a 

residential building 

(1,600 m² of built 

area). 

Estimation of 

based on the waste 

generated in 

demolitions in 

Spain. 

Demolition process; C&DW sorting and 

pre-treatment; transport; reuse; 

recycling; landfilling and incineration.  

Secondary data from literature sources and 

Ecoinvent database (waste generated; energy 

consumption of hydraulic systems used in the 

demolition; emissions of particulate matter 

during the demolition process; distance of 

transport; waste treatment at the transfer plant - 

storage, milling and sieving/sorting; final 

disposal - landfill or incinerator municipal) 

updated with primary data from case study. 

7 
Yeheyis et al. 

(2013)2 
Not applied. 

Based on 

Canadian 

Construction 

Association 

(1992). 

Not applied. Not applied. 

8 

Kucukvar, 

Egilmez and 

Tatari (2014) 

1 t of C&DW. 

Based on Franklin 

Associates (1998) 

and the US EPA 

(2003). 

Material production from virgin and 

recycled products; transport; material 

recovery; incineration with heat 

recovery and landfilling. 

Secondary data from literature sources and 

databases/software,  such as US EPA’s WARM 

(2010), WASTED model (2006) and National 

Renewable Energy Laboratory (2010). 

9 

Butera, 

Christensen 

and Astrup 

(2015) 

Management of 1 

Mg of C&DW 

obtained after 

sorting at source 

(demolition or 

construction site). 

Material includes 

concrete, possibly 

mixed with soil, 

tiles, bricks and 

mortar. 

Transport; treatment processes; 

utilisation in road construction; 

landfilling (leaching of inorganic 

pollutants was included); substitution of 

virgin aggregates and related avoided 

emissions (avoided extraction from 

gravel pit, transport to the road 

construction site and leaching) and 

capital goods. 

Primary data from the case study (C&DW 

composition, transport distances). Secondary 

data from literature sources and Ecoinvent 

database.  
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Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part III). 

Author (year) Functional unit 
C&DW  

composition 

Stages included in the system 

boundaries 
Life cycle inventory data 

10 

Penteado and 

Rosado 

(2016) 

Management of 0.8 t 

of C&DW classified 

as inert. 

Inert fraction disposed 

in a municipal inert 

landfill, composed by 

soil, mixed C&DW, 

concrete and ceramics. 

Transport; sorting; reuse; recycling; 

landfilling; avoided burdens (natural 

aggregates transport and extraction). 

Primary data obtained from the sorting 

areas and landfill through the application 

of questionnaires (data on C&DW 

management). Secondary data from 

literature sources and Ecoinvent 

database (v.3.1), updated with the 

Brazilian energy mix.  

11 

Zambrama-

Vasquez et al. 

(2016) 

1 t of MSW and 

C&DW generated, 

collected and treated 

during the life cycle 

of a building. 

Construction waste 

composition based on  

the literature; source of 

the demolition waste 

composition not 

informed. 

Collection; transport; sorting; recycling 

and landfilling. 

Primary data from the case study 

(inventory analysis of the construction 

and packaging waste generated during 

the construction and demolition). 

Secondary data from Ecoinvent v2.0 

database, environmental product 

declarations and literature sources. 

12 

Houssain, Wu 

and Poon 

(2017) 

1 t of construction 

waste. 

Construction waste 

generated in two 

construction sites of 

residential buildings. 

Transport; sorting, public fill or landfill 

disposal; recovery and reuse; 

transformation and valorisation into 

secondary products. 

Primary data from two real building 

construction. Secondary data from 

literature sources and databases (China 

Light and Power, Chinese Life Cycle 

Database, European reference Life Cycle 

Database and Ecoinvent). 

13 

Ghose, Pizzol 

and McLaren 

(2017) 

Demand for 

refurbishment and 

subsequent use of 1 

m² gross floor area in 

an office building. 

Based on the building 

prototypes modelled in 

the EnergyPlus and 

SketchUp software. 

Raw material extraction and 

processing; product manufacture; 

product transport to the construction 

site and construction process; transport 

and waste management of demolished 

material produced during the 

refurbishment. 

Secondary data from literature sources 

(foreground processes) and Ecoinvent v3 

(2013) (background processes).   
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Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part IV). 

Author (year) 
Functional 

unit 

C&DW  

composition 
Stages included in the system boundaries Life cycle inventory data 

14 
Mastrucci et 

al. (2017) 

Overall 

net usable 

area of the 

building 

(1550 m²). 

Based on National 

Waste 

Management Plan 

of Luxembourg. 

Demolition operations; transport to the treatment 

plants and final waste treatments; credits for 

recycling and downcycling. 

Primary data from the case study updated with 

secondary data from literature sources, 

national statistics, technical reports, guidelines 

and previous studies. Ecoinvent 2.2 (2010) 

database for the background inventory data. 

15 
Vitale et al. 

(2017) 

Overall 

net usable 

area of the 

building 

(1550 m²). 

C&DW generated 

by the demolition 

of the reference 

building. 

All the activities of selective demolition; 

collection; sorting; transport; material and 

energy recovery and landfilling. 

Most of the environmental burdens (direct, 

indirect, and avoided) have been obtained 

processing data deriving from scientific papers 

as well as technical visits and interviews to 

operators of small and medium enterprises 

active in areas of South of Italy. The 

remaining, mainly indirect, burdens derived 

from the database Ecoinvent 3.01. 

16 

Borghi, 

Pantini and 

Rigamonti 

(2018) 

1 t of non-

hazardous 

C&DW 

mixture 

managed in 

2014. 

Based on the case 

study (cement, 

tiles and ceramics 

and mixed waste). 

Unloading, moving and uploading CDW in 

transfer stations; recycling processes; treatment 

of the fractions separated from the inert mineral 

fraction (i.e. recycling of ferrous metals and 

landfilling of unrecoverable residues); C&DW 

disposal; natural aggregates avoided production; 

primary steel avoided production; transport of 

C&DW to plants, transport of RAs from 

recycling plants to final users and transport of 

NAs from quarries to final users. 

Primary data from the case study (recycling 

processes, avoided production of NAs, 

C&DW transport to the treatment plants and, 

waste storage operations). Secondary data 

from  literature and Ecoinvent 3.3 database 

(CDW disposal and ferrous metals recycling), 

with modifications in some datasets. 

 

  



232 

 

 
 
 

Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part V). 

Author (year) Functional unit 
C&DW  

composition 

Stages included in the system 

boundaries 
Life cycle inventory data 

17 
Wang et al.  

(2018a) 

1 t of demolition 

waste from 

demolished buildings. 

Composition of 

demolition waste in 

Shenzhen 

(concrete, brick, 

mortar and metal). 

On-site sorting and pre-treatment; 

transport from a demolition site to a waste 

treatment plant; recycling processes; 

landfilling and recycling credits. 

Primary data from the case study 

(transport distance from a demolition 

site to a waste treatment plant and 

demolition waste composition). 

Secondary data from the literature 

sources (brick recycling, production of 

steel, diesel and electricity) and 

Ecoinvent database (2016). 

18 

Di Maria, 

Eyckmans and 

Acker (2018) 

Treatment of 840,000 

t of C&DW/year. 

Average C&DW 

composition in 

Belgium based on 

Deloitte report 

(2015). 

Building demolition; transport; 

landfilling; traditional and advanced 

recycling; credits of recycling. 

Primary data from the case study 

(transport distances). Secondary data 

from the literature and Ecoinvent 

database. 

19 
Hossain and 

Poon (2018) 
1 t of wood waste. Not applied. 

On-site sorting and collection; transport 

stages; store in open and dry place; 

recycling processes; baggage and store; 

energy generation from wood pellets; 

landfilling and credits of recycling.  

Primary data obtained from recycling 

factory (foreground processes) and 

secondary data from literature, previous 

studies, environmental product 

declaration and databases (Chinese Life 

Cycle Database and Ecoinvent). 

20 
Wang et al. 

(2018b) 

14,803.12 t of 

demolition wastes. 

Based on data from 

Building 

Information Model 

of specific cases. 

Demolition stage; collection and sorting; 

transport; recycling  processes; landfilling 

and credits of recycling. 

Primary data of demolition process 

were obtained from a series of 

interviews to the project managers in 

companies related to the case study. The 

remaining data (secondary data) were 

obtained from literature review and 

Ecoinvent 3 database. 
 

 



233 

 

 
 
 

Table A2.3. Data on the LCA methodology of the C&DW management studies, including functional unit, C&DW composition, system boundaries and life 

cycle inventory data (Part VI). 

Authors (year) Functional unit 
C&DW 

composition1 
Stages included in the system boundaries Life cycle inventory data 

21 
Yazdanbakhsh 

(2018) 

Managing all the 

available mineral 

C&DW. 

Based on City of 

New York 

Department of 

Sanitation.  

Transport; recycling; landfilling and credits 

of recycling. 

Primary data from City of New York 

Department of Sanitation, collected from 

21 waste management facilities. 

Secondary data from literature and 

Ecoinvent v. 3.3 database (with 

modifications in the datasets). 

22 
Bizcocho and 

Llatas (2018) 

Management of the 

waste generated 

during the 

construction of a 

13,910 m² residential 

building in Seville. 

Composition 

based on the 

project of the 

selected building. 

Downstream processes (transport, waste 

processing and disposal) and upstream 

processes (raw material supply, transport 

and manufacturing). 

Secondary data from literature sources 

and Ecoinvent v2 database. 

23 

Pantini, 

Borghi and 

Rigamonti 

(2018) 

1 t of non-hazardous 

asphalt waste. 

75% hot-mix 

asphalt and 25% 

cold-mix asphalt. 

Transport from road worksites to the 

recycling plants; pre-processing; recycling; 

avoided production of natural aggregates; 

avoided production and transport of virgin 

bitumen; manufacturing and transport of 

rejuvenating agents, bitumen emulsion and 

concrete. 

Primary data collected from several 

sources (MUD declarations, Provinces’ 

documents, asphalt manufacturing plants, 

some road companies). Secondary data 

related to other foreground processes were 

taken from Ecoinvent 3.3 database 

(allocation, recycled content). 
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Table A2.4. Data on the LCA methodology of the C&DW management studies, including life cycle impact assessment methodology, aspects considered in the 

sensitivity analysis and software utilised (Part I). 

Author (year) LCIA methodology LCIA optional steps 
Aspects considered in the  

sensitivity analysis 
Software 

1 

Ortiz, 

Pasqualino and 

Castells (2010) 

CML 2 baseline 2000. Not applied. 

Management scenario (incineration with 

recycling). Variations in the transport 

distances.  

LCAManager developed by 

SIMPPLE SL. 

2 

Blengini and 

Garbarino 

(2010) 

IMPACT 2002+ and 

Eco-Indicator 99. 

Normalisation (per capita yearly 

impacts of one European citizen) 

and normalisation of the 

endpoint indicators. 

Variations in the transport distances. SimaPro 7. 

3 
Coelho and 

Brito (2012) 

Only the impact 

categories were 

mentioned. 

Not applied. Not applied. Not applied. 

4 
Mercante et al. 

(2012) 
CML (2002). Not applied. Not applied. SimaPro 7.3. 

5 
Carpenter et al. 

(2013) 

Only the impact 

categories were 

mentioned. 

Normalisation (the impact 

annually generated per capita in 

the United States). 

Assessment of the basis chosen for 

determining the energy offset affect the 

energy offset results and energy contents 

of C&D wood debris. 

U.S. Environmental 

Protection Agency’s 

Municipal Solid Waste 

Decision Support Tool. 

6 

Martínez, 

Nuñez and 

Sobaberas 

(2013) 

CML (2001) baseline 

and cumulative energy  

demand. 

Not applied. 

Scenario analysis with the comparison of 

selective and conventional demolition 

processes.  

SimaPro 7.2.4. 

7 
Yeheyis et al. 

(2013) 
Not applied. Not applied. Not applied. Not applied. 

8 

Kucukvar, 

Egilmez and 

Tatari (2014) 

Only the impact 

categories were 

mentioned. 

Not applied. Not applied. 
US EPA’s WARM and 

WASTED model. 

  



235 

 

 
 
 

Table A2.4. Data on the LCA methodology of the C&DW management studies, including life cycle impact assessment methodology, aspects considered in the 

sensitivity analysis and software utilised (Part II). 

Author (year) LCIA methodology LCIA optional steps 
Aspects considered in the  

sensitivity analysis 
Software 

9 

Butera, 

Christensen 

and Astrup 

(2015) 

ILCD-recommended 

midpoint categories 

(2013). 

Normalisation (per capita yearly 

impacts of one European 

citizen). 

Sensitivity analysis for transport 

(comparison scenarios with EURO 3 

versus EURO 5 transport trucks). 

EASETECH. 

10 
Penteado and 

Rosado (2016) 

CML 2 baseline 2001 

methodology. 

Normalisation (per capita yearly 

impacts of one person in World). 
Not applied. Not applied. 

11 

Zambrama-

Vasquez et al. 

(2016) 

IPCC 2007 GWP 100a 

v1.02. 
Not applied. 

Scenario analysis: construction waste 

recovery and  demolition waste recovery. 
SimaPro 7.3.2. 

12 

Houssain, Wu 

and Poon 

(2017) 

IMPACT 2002+. Weighting. 
Influence of materials recovery rates on 

the environmental profile. 
SimaPro 8.1.0 

13 

Ghose, Pizzol 

and McLaren 

(2017) 

CML; ILCD 2011+ 

and ReCiPe (H) 

methodologies. 

Not applied. 

Sensitivity analysis of the recycling 

efficiency, specific marginal suppliers, 

and potential change in electricity grid 

mix. 

Not applied. 

14 
Mastrucci et 

al. (2017) 
CML 2 baseline 2000. 

Normalisation (factors for the 

year 1995 covering Western 

Europe). 

Not applied. SimaPro 7.3.3. 

15 
Vitale et al. 

(2017) 
Impact 2002+ v2.11. 

Normalisation (per capita yearly 

impacts of one European 

citizen). 

Different criteria for the demolition 

process, management of demolition 

waste and assessment of avoided burdens 

of the main recycled materials. 

SimaPro 8.0.2. 

16 

Borghi, 

Pantini and 

Rigamonti 

(2018) 

ILCD 2011, 

cumulative energy 

demand, kg of sand 

and gravel consumed 

or saved. 

Not applied. 

Scenario analysis on the method for the 

management system; recycling facilities; 

transport distances; replacement 

coefficient, and quality of recycled 

aggregates. 

SimaPro 8.3. 

 



236 

 

 
 
 

Table A2.4. Data on the LCA methodology of the C&DW management studies, including life cycle impact assessment methodology, aspects considered in the 

sensitivity analysis and software utilised (Part III). 

Author (year) LCIA methodology LCIA optional steps 
Aspects considered in the  

sensitivity analysis 
Software 

17 
Wang et al.  

(2018a) 

Only the impact 

categories were 

mentioned. 

Not applied. Not applied. Not applied. 

18 

Di Maria, 

Eyckmans and 

Acker (2018) 

ReCiPe 1.08 (H/H). 

Weighting (per capita yearly 

impacts of one European 

citizen). 

Perturbation analysis (variation of 15 

parameters). 
Gabi. 

19 
Hossain and 

Poon (2018) 
IMPACT 2002 +. Not applied. 

Sensitivity analysis for the varying wood 

waste transport distance. 
SimaPro 8.1.0. 

20 
Wang et al. 

(2018b) 

IPCC 2013 GWP 100a 

v1.01. 
Not applied. Not applied. SimaPro 8.1. 

21 
Yazdanbakhsh 

(2018) 
TRACI 2.1. Not applied. Not applied. Not applied. 

22 
Bizcocho and 

Llatas (2018) 
CML 2001. Not applied. Not applied. SimaPro 7.1. 

23 

Pantini, 

Borghi and 

Rigamonti 

(2018) 

ILCD 2011 and 

Cumulative Energy 

Demand. 

Not applied. 

Sensitivity analysis on the transport of 

the asphalt waste, virgin bitumen, cement 

and chemical additives. 

SimaPro 8.3. 
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Table A2.5. Impact categories selected by the LCA studies on C&DW management (Part I). 

Authors 

(year) 

Midpoint impact categories 
Endpoint impact 

categories 
Other indicators 

AC GW 
EC 

EU HT IR LU OD POF RD RI HH EQ CC R RE NRE ME WU 
f m t 

1 
Ortiz, Pasqualino and 

Castells (2010) 
x x x  x x x           x x x x 

2 
Blengini and Garbarino 

(2010) 
x x x x x x x x x x x  x x x x x     

3 
Coelho and Brito 

(2012)1 
x x    x     x           

4 Mercante et al. (2012) x x    x    x x           

5 Carpenter et al. (2013)2  x                x x   

6 
Martínez, Nuñez and 

Sobaberas (2013) 
 x     x            x   

7 Yeheyis et al. (2013) Theorical LCA study. 

8 
Kucukvar, Egilmez and 

Tatari (2014) 
 x                 x  x 

9 
Butera, Christensen and 

Astrup (2015) 
x x x   x x x  x x x x         

10 
Penteado and Rosado 

(2016) 
x x    x     x x          

11 
Zambrama-Vasquez et 

al. (2016) 
 x                    

12 
Houssain, Wu and Poon 

(2017) 
x x    x    x   x      x   

13 
Ghose, Pizzol and 

McLaren (2017) 
x x x   x x x  x x x x       x  

Legend: AC – Acidification; GW – Global warming; EC – Ecotoxicity (f – freshwater; m – marine; t – terrestrial); EU – Eutrophication; HT – Human toxicity; IR – Ionising 

radiation; LU – land use; OD - Ozone layer depletion; POF - Photochemical ozone formation; RD – Resource depletion; RI – Respiratory inorganic; HH – human health; EQ – 

Ecosystem quality; CC – Climate change; R – Resources; RE – Renewable energy; NRE – Non-renewable energy; ME – mineral extraction; WU – Water use. 1This study also 

evaluate the heavy metals (kg Pb eq/m² of building). 2This study also evaluates the air emissions of lead, and the emission to water of lead, arsenic, zinc, cadmium, chromium, 

copper, mercury, and selenium. 
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Table A2.5. Impact categories selected by the LCA studies on C&DW management (Part II). 

Authors 

(year) 

Midpoint impact categories 
Endpoint impact 

categories 
Other indicators 

AC GW 
EC 

EU HT IR LU OD POF RD RI HH EQ CC R RE NRE ME WU 
f m t 

14 
Mastrucci et al. 

(2017) 
x x    x    x x x          

15 
Vitale et al. 

(2017) 
 x   x  x  x    x      x x  

16 

Borghi, Pantini 

and Rigamonti 

(2018)1 

x x x   x x   x x x x        x 

17 
Wang et al.  

(2018a)2 
x x    x   x x            

18 

Di Maria, 

Eyckmans and 

Acker (2018)3 

All impact categories of ReCiPe 1.08 (H/H) weighting methodology. 

19 
Hossain and 

Poon (2018) 
 x                 x   

20 
Wang et al. 

(2018b) 
 x                    

21 
Yazdanbakhsh 

(2018)3 
x x    x x   x x  x         

22 
Bizcocho and 

Llatas (2018)4 
x x    x x   x x           

23 

Pantini, Borghi 

and Rigamonti 

(2018)1 

x x x   x x   x x x x        x 

Legend: AC – Acidification; GW – Global warming; EC – Ecotoxicity (f – freshwater; m – marine; t – terrestrial); EU – Eutrophication; HT – Human toxicity; IR – Ionising radiation; LU – land 

use; OD - Ozone layer depletion; POF - Photochemical ozone formation; RD – Resource depletion; RI – Respiratory inorganic; HH – human health; EQ – Ecosystem quality; CC – Climate change; 

R – Resources; RE – Renewable energy; NRE – Non-renewable energy; ME – mineral extraction; WU – Water use. 1This study also included the Cumulative Energy Demand and non-renewable 

virgin raw material consumption, expressed in terms of kg of sand and gravel consumed or saved. 2This study also considered suspended particulate matter and solid waste as impact categories. 
3This study also include ecotoxicity and fossil fuel depletion.4This study also included the Cumulative Energy Demand. 
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Table A2.6 Main results, conclusions and contribution of the LCA studies on C&DW management (Part I). 

Author (year) Main results and conclusions  Main contributions 

1 

Ortiz, Pasqualino 

and Castells 

(2010) 

Construction waste recycling is the recommended option, followed by 

landfilling and incineration. This study highlights the influence of 

transport for the environmental impacts. 

It was one of the first studies focused on the evaluation of the 

environmental impacts of construction waste. 

2 
Blengini and 

Garbarino (2010) 

The LCA of the C&DW recycling chain in Turin showed that avoided 

impacts are higher than induced impacts. It was also estimated that the 

transport distance of recycled aggregate should increase 2–3 times before 

the induced impacts outweigh the avoided impacts. 

The application of GIS model combined with LCA provided a 

reliable simulation of transport stages. This study highlighted 

that when modelling land use of mining/recycling activities, 

site specific data are highly recommended, as Ecoinvent 

database may be inconsistent. 

3 
Coelho and Brito 

(2012) 

The results showed that selective demolition may not reduce the 

environmental impacts, mainly due to the need of extra transport.  

However, the sorting of the main material into demolition operations and 

their recycling and/or reuse provided environmental benefits. 

To develop a “top down” LCA rather than ‘bottom-up’, which 

usually involves large amounts of data and required the use of 

specific software. 

4 
Mercante et al. 

(2012) 

Environmental impacts of inert waste sorting and treatment can be 

reduced by selective collection at source, since it avoids the separation 

of light fractions in the facilities. Transport stage plays a decisive role. 

The containers (skip bins) contribute to less than 1% for the 

total impacts of all categories. 

5 
Carpenter et al. 

(2013) 

In general, C&DW recycling is more favourable than C&DW landfilling, 

even without wood combustion to generate electricity. 
A set of data about the characteristics and management of 

wood from C&DW. 

6 

Martínez, Nuñez 

and Sobaberas 

(2013) 

The main environmental burdens related to selective demolition are: 

waste transport from the demolition work to the treatment plant or to the 

final disposal and, the fuel consumption by the equipments used in the 

demolition and treatment facilities. The main environmental burdens 

related to a conventional demolition is waste transport from the 

demolition work to final disposal. 

Highlighted the importance of further study to assess the 

particulate matter emissions during the demolition processes 

(selective and conventional). 

7 
Yeheyis et al. 

(2013) 

Propose a conceptual integrated C&DW management framework divided 

into three life cycle stages of the construction project: the pre-

construction (planning and design), the construction and renovation 

stages and the demolition, based on the 3R approach. 

The proposal is important to conducted LCA studies on 

C&DW management, since it provides an overview of a 

sustainable C&DW management. 

8 

Kucukvar, 

Egilmez and 

Tatari (2014) 

Recycling of concrete, drywall, and wood did not have a significant 

contribution to the net environmental footprint savings. The results 

indicated that recycling of ferrous and non-ferrous metals improve the 

environmental sustainability. Landfilling and incineration can be 
considered as a secondary strategy after recycling. 

Provided results of the environmental impacts related to nine 

different types of C&DW and six major building sectors. 
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Table A2.6. Main results, conclusions and contribution of the LCA studies on C&DW management (Part II). 

Author (year) Main results and conclusions  Main contributions 

9 

Butera, 

Christensen and 

Astrup (2015) 

C&DW utilisation in road construction was preferable to landfilling 

for most impact categories. Transport represented the most important 

contribution for most non-toxic impacts. Leaching played a critical 

role for the toxicity categories, where landfilling had lower impacts 

than utilisation. Capital goods contributed with negligible impacts. 

Compared with the overall life cycle of building and 

construction materials, leaching emissions were shown to be 

potentially significant for toxicity impacts. 

10 
Penteado and 

Rosado (2016) 

The results highlighted that recycling is beneficial when efficient 

C&DW sorting takes place at construction sites, avoiding the 

transport of refuse to sorting and recycling facilities. 

The development of a LCA on a municipal C&DW 

management system. 

11 

Zambrama-

Vasquez et al. 

(2016) 

The increase of the recovery rates of metals wastes provided greater 

benefits in terms of the global warming. The recovery of demolition 

materials, in replacement of virgin building materials, saves capacity 

of landfills. 

The detailed analysis of the building design phase presented 

in this study enables to predict the C&DW generation and 

their environmental implications for management purposes. 

12 
Houssain, Wu 

and Poon (2017) 

The C&W management system by using off-site sorting and direct 

landfilling resulted in significant environmental impacts. However, a 

considerable net environmental benefit was observed through an on-

site sorting system. 

The assessment of different waste sorting strategies on the 

environmental performance of building C&W management 

systems would be valuable to assess the economic 

feasibility. 

13 

Ghose, Pizzol 

and McLaren 

(2017) 

Increasing the rates of construction waste recovery and reuse at site 

can reduce the overall environmental impact of a building 

refurbishment compared to use of construction materials with 

recycled content. The net impact results were sensitive to the quality 

of recyclable material, location of the marginal supplier and marginal 

energy source. 

The outcome of this study can assist both policy makers and 

stakeholders in the building sector, and LCA practitioners.  

14 
Mastrucci et al. 

(2017) 

The recycling from 50% to 70% of inert materials resulted in an 

average reduction of 25.6% on abiotic depletion potential and 9.2% 

on global warming. 

The methodology combined a bottom-up material stock 

model based on geographical information systems and a 

spatial–temporal database with LCA. 

15 
Vitale et al. 

(2017) 

The selective demolition could increase the quality and quantity of 

wastes recovered and safely disposed. The recycling of reinforcing 

steel presented an important role, accounting for 65% of the total 

avoided impacts related to respiratory inorganics, 89% of those for 

global warming and 73% of those for mineral extraction. 

The results can be use by the European Union to propose 

recommendations on selective demolition in the action plan 

for the Circular Economy. 
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Table A2.6. Main results, conclusions and contribution of the LCA studies on C&DW management (Part III). 

Author (year) Main results and conclusions  Main contributions 

16 

Borghi, Pantini 

and Rigamonti 

(2018) 

The LCA of the current C&DW management system showed that the 

induced environmental impacts are higher than the benefits from 

recycling. However, the current system performs better than a scenario 

where all the C&DW is landfilled. 

Development of a methodology to determine the substitution 

factor for recycled aggregates. Recommendations were 

formulated to improve the environmental performance of the 

current management system. 

17 
Wang et al.  

(2018a) 

The results showed that recycling can bring an environmental benefit of 

¥1.21 per tonne, while direct landfilling leads to an environmental cost 

of ¥12.04 per tonne.  

The results can be used by regulatory authorities to establish 

strategies and policies, such as the provision of monetary 

incentives to encourage recycling activities. The results can 

also be used to establish appropriate landfill tax. 

18 

Di Maria, 

Eyckmans and 

Acker (2018) 

Implementing a high landfill tax, increasing the gate fee to the recycling 

plant, and boosting the sales price of recycled aggregates are the most 

effective drivers to facilitate a transition towards a more sustainable 

C&DW management system. 

This study demonstrated that the combined LCA and LCC 

results are an useful tool to to support sustainable policy 

making. 

19 
Hossain and 

Poon (2018) 

The energy generation from bio-fuel derived from wood waste was the 

best strategy. In addition, significant reductions of environmental 

impacts were observed for the production of particleboard and wood-

cement composite from wood waste compared to the use of virgin wood. 

This study provided guidelines to design a sustainable and 

resource-efficient wood waste management system. 

20 
Wang et al. 

(2018b) 

The environmental benefit derived from recycling of building demolition 

waste varies from one material to another (e.g. recycling of metal has 

higher environmental benefits compared to masonry wastes).  

Development of large-scale inventories, which provide useful 

inputs to improve the recycling of building demolition waste, 

reducing associated carbon emissions. 

21 
Yazdanbakhsh 

(2018) 

The bi-level LCA framework developed was able to determine if the use 

of recycled aggregates in substitution of natural aggregates is 

environmentally competitive compared to other waste management 

alternatives. 

The model can be used to perform sensitivity analyses and 

dynamic LCA. In addition, it is particularly useful for project-

specific studies where accurate local data are available.  

22 
Bizcocho and 

Llatas (2018) 

Prevention was the most favourable scenario, reducing by 60% the 

amount of construction waste generated and, at least 60% of all impacts 

of the categories analysed. 

Development of a methodology that allow a greater insight into 

the effects on the environment of prevented construction waste, 

which could support further LCA studies. 

23 

Pantini, Borghi 

and Rigamonti 

(2018) 

Results indicate that recycling reclaimed asphalt pavement (RAP) in 

hot/cold mixes is significantly more beneficial than its recovery as 

unbound material.  

Provided some recommendations to the local government to 

further improve the management of asphalt waste and 

highlighted the absence of primary data related to the 

production of bitumen emulsion and cement. 
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APPENDIX A3 – QUESTIONNARIE 

This appendix reports the questionnaire used for primary data gathering of the representative 

municipalities. The questionnaire was approved by the Ethics Committee of University of 

Campinas (CEP - UNICAMP), with the Certificate of Presentation for Ethical Appreciation 

(CAAE) number 52961316.3.0000.5404. The interviewees agreed to the survey by signing the 

"Authorization for Data Collection" and the "Free Informed Consent Term", these documents 

are archived in the CEP online system. 

 

School of Technology – University of Campinas 

Postgraduate Program in Technology for the Environment 

Research project: “Life Cycle Assessment of Construction and Demolition Waste 

Management in a large area of São Paulo State, Brazil. 

Researcher: Laís Peixoto Rosado 

Advisor: Professor Dr. Carmenlucia Santos G. Penteado  

QUESTIONNARIE 

Municipality/Consortium: 

Name:     

Office:              

Department:  

1. Does the municipality have the Municipal C&DW Management Plan? Is it available on the 

internet? 

2. What are the main municipal laws applied to the C&DW management? How does the 

municipality classify small and large C&DW generators? 

3. What is the annual and per capita generation of C&DW? 

4. What are the structures for the C&DW management (sorting areas, landfills and recycling 

facilities)? How do they work?  

5. How does work the management of C&DW from small generators? 

6. How does work the management of C&DW from large generators? Are the C&DW 

Management Plans of large construction works required and controlled? 

7. How does work the management of C&DW generated in public construction sites? 

8. Are the C&DW transport companies registered and monitored? If yes, how does this work? 
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9. Are the sites of C&DW illegal disposal registered? Are there the application of warnings or 

fines for the responsible that perform the illegal disposal?  

10. How many employees are involved in the C&DW management system?  

11. Is there an environmental education program for C&DW? 

12. Are there any future projects for improvements in the municipal C&DW management 

system? 

13. What are the main difficulties and challenges in relation to the C&DW management? 

 

*General comments and notes: 
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AUTHORIZATION FOR DATA COLLECTION 

 

Autorização para Coleta de Dados 

 

Eu, nome, profissão da Prefeitura de município, declaro estar ciente dos 

requisitos da Resolução CNS/MS 466/12 e suas complementares e declaro que tenho 

conhecimento dos procedimentos/instrumentos aos quais os participantes da presente 

pesquisa serão submetidos. Assim autorizo a coleta de dados do projeto de pesquisa 

intitulado “Avaliação do Ciclo de Vida de Alternativas para o Gerenciamento dos 

Resíduos da Construção Civil nos Municípios das Bacias Hidrográficas dos Rios 

Piracicaba, Jundiaí e Capivari (UGRHI-05)”, sob-responsabilidade da pesquisadora 

Laís Peixoto Rosado após a aprovação do referido projeto de pesquisa pelo Comitê de 

Ética em Pesquisa-Unicamp. 

 

________________________________________________ 
Assinatura e carimbo 

Data: 
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FREE INFORMED CONSENT TERM  

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO 
 
Avaliação do Ciclo de Vida de Alternativas para o Gerenciamento dos Resíduos da Construção Civil 

nos Municípios das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí (UGRHI-05). 
Nome dos responsáveis: Laís Peixoto Rosado e Carmenlucia Santos Giordano Penteado. 

Número do CAAE: 52961316.3.0000.5404. 
 
 Você está sendo convidado a participar como voluntário de um estudo. Este documento, 
chamado Termo de Consentimento Livre e Esclarecido, visa assegurar seus direitos e deveres como 
participante e é elaborado em duas vias, uma que deverá ficar com você e outra com o pesquisador.  
 Por favor, leia com atenção e calma, aproveitando para esclarecer suas dúvidas. Se houverem 
perguntas antes ou mesmo depois de assiná-lo, você poderá esclarecê-las com o pesquisador. Se 
preferir, pode levar para casa e consultar seus familiares ou outras pessoas antes de decidir participar. 
Se você não quiser participar ou retirar sua autorização, a qualquer momento, não haverá nenhum 
tipo de penalização ou prejuízo. 
 
Justificativa e objetivos: 
 O crescimento exponencial da população e da urbanização, juntamente com as atividades de 
construção, demolição e reforma, resultou no aumento da geração dos resíduos da construção civil 
(RCC) em todo o mundo. Nesse sentido, o sistema de gerenciamento dos resíduos da construção civil 
(SGRCC) é um componente chave para evitar ou minimizar os efeitos adversos das atividades 
econômicas, com vistas a proteção do meio ambiente. Para realizar um estudo dos impactos dos 
SGRCC, a Avaliação do Ciclo de Vida (ACV) é uma das ferramentas mais indicadas para avaliar os 
impactos de cada etapa do gerenciamento.  

Diante do exposto, este trabalho pretende avaliar o desempenho do sistema de 
gerenciamento de resíduos da construção civil que integram a 5ª Unidade de Gerenciamento de 
Recursos Hídricos (UGRHI-5) do Estado de São Paulo. A avaliação será realizada de acordo com a 
metodologia de ACV, com a finalidade de subsidiar as ações do poder público municipal, provendo 
informações sobre os impactos ambientais atuais bem como a proposição de melhorias, por meio de 
simulações de cenários incluindo outras formas de tratamento e destinação final. 
 
Procedimentos: 
 Participando do estudo você está sendo convidado a: responder um questionário sobre o 
sistema municipal de gerenciamento dos resíduos sólidos, com ênfase para os resíduos da construção 
civil e resíduos volumosos. As informações solicitadas no questionário referem-se à quantidade 
gerada, manejo dos resíduos, infraestruturas existentes e projetos futuros. O tempo médio para 
responder as questões é de uma hora, sendo que não haverá gravação de áudio durante a entrevista. 
 
Desconfortos e riscos: 
 Não há desconforto ou riscos envolvidos nesta pesquisa. Você não deve participar deste 
estudo se não possui autorização para responder as questões sobre o sistema municipal de 
gerenciamento dos resíduos sólidos. 
 
Benefícios: 

Não há benefícios diretos ao participante da pesquisa. 
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Acompanhamento e assistência: 
 A tese de doutorado estará disponível para consultas da pesquisa e utilização dos resultados, 
caso seja viável. 
 
Sigilo e privacidade: 
 Você tem a garantia de que sua identidade será mantida em sigilo e nenhuma informação será 
dada a outras pessoas que não façam parte da equipe de pesquisadores. Na divulgação dos resultados 
desse estudo, seu nome não será citado. 
  
Ressarcimento: 
 Não haverá ressarcimento, reembolso ou premiação financeira ao participante da pesquisa. 
Não haverá nenhuma despesa, o pesquisador irá até o local para coletar as respostas do questionário, 
no horário agendado. 
 
Contato: 

Em caso de dúvidas sobre o estudo, você poderá entrar em contato com Profa. Dra. Carmenlucia 
Santos Giordado Penteado, Departamento – Coordenação dos Cursos de Engenharia Ambiental e 
Tecnologia em Saneamento Ambiental e Controle Ambiental da Faculdade de Tecnologia da UNICAMP 
- Rua Paschoal Marmo, 1888 - CEP: 13484-332 - Jd. Nova Itália - Limeira, SP, contato telefônico (19) 
2113-3479 e e-mail: carmenlucia@ft.unicamp.br. 

Em caso de denúncias ou reclamações sobre sua participação no estudo, você pode entrar em 
contato com a secretaria do Comitê de Ética em Pesquisa (CEP): Rua: Tessália Vieira de Camargo, 126; 
CEP 13083-887 Campinas – SP; telefone (19) 3521-8936; fax (19) 3521-7187; e-mail: 
cep@fcm.unicamp.br 
 
Consentimento livre e esclarecido: 

Após ter sido esclarecimento sobre a natureza da pesquisa, seus objetivos, métodos, benefícios 
previstos, potenciais riscos e o incômodo que esta possa acarretar, aceito participar: 

 
Nome do(a) participante: ________________________________________________________ 
 
_______________________________________________________ Data: ____/_____/______. 
 (Assinatura do participante ou nome e assinatura do responsável)  
 
 
Responsabilidade do Pesquisador: 

Asseguro ter cumprido as exigências da resolução 466/2012 CNS/MS e complementares na 
elaboração do protocolo e na obtenção deste Termo de Consentimento Livre e Esclarecido. Asseguro, 
também, ter explicado e fornecido uma cópia deste documento ao participante. Informo que o estudo 
foi aprovado pelo CEP perante o qual o projeto foi apresentado e pela CONEP, quando pertinente. 
Comprometo-me a utilizar o material e os dados obtidos nesta pesquisa exclusivamente para as 
finalidades previstas neste documento ou conforme o consentimento dado pelo participante. 

 
______________________________________________________ Data: ____/_____/______. 

(Assinatura do pesquisador) 

  

mailto:carmenlucia@ft.unicamp.br
mailto:cep@fcm.unicamp.br
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APPENDIX A4 – LIFE CYCLE IMPACT ASSESSMENT DATA: CML BASELINE V3.03 

METHODOLOGY 

This appendix reports supplementary data of life cycle impact assesment obtained by using the 

CML baseline v3.03 methodology. 

 

Figure A4.1. Normalised results of impact assessment related to the C&DW management system in the 

base case scenario, obtained from normalised factors for World (2000) and for Europe (2000) of CML 

baseline methodology. 
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Figure A4.2. Contribution analysis for the impact category “Human Toxicity” for the C&DW 

management system in the base case scenario. 

 
 

Figure A4.3. Contribution analysis for the impact category “Abiotic Depletion (fossil fuels)” for the 

C&DW management system in the base case scenario. 

 
 
 
 

Transport
C&DW

collection
C&DW
sorting

C&DW
landfilling

Mineral
fraction
recycling

Wood
recycling

Steel
recycling

Plastics
recycling

Glass
recycling

Antimony (air) 7.89E+03 1.13E+00 8.15E-01 3.88E+00 -1.31E+01 -2.74E+02 -2.52E+02 -1.18E+01 -1.13E+02

Benzene (air) 4.99E+02 1.13E+01 8.19E+00 7.57E+01 1.02E+01 -8.20E+01 -5.80E+04 -5.89E+01 -3.48E+02

Benzene (water) 7.64E+01 4.92E+00 3.56E+00 1.50E+01 3.75E-01 -9.76E-01 3.18E+03 2.03E+00 -1.37E+02

Benzene, hexachloro- (air) 6.56E-03 3.37E-04 2.44E-04 9.53E-01 -1.75E-03 -1.97E-02 1.16E+04 2.28E-02 6.82E-01

Chromium VI (air) 6.57E+01 2.91E+00 2.11E+00 6.99E+01 -5.29E+00 -5.02E+01 5.74E+03 -7.47E+01 -2.48E+02

Copper (air) 2.64E+03 6.04E+00 4.37E+00 1.92E+01 -3.65E+00 -9.76E+01 -2.72E+02 -1.04E+01 -5.24E+01
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Figure A4.4. Contribution analysis for the impact category “Acidification” for the C&DW management 

system in the base case scenario. 

 
 
Figure A4.5. Contribution analysis for the impact category “Photochemical Oxidation” for the C&DW 

management system in the base case scenario. 
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Figure A4.6. Contribution analysis for the impact category “Global Warming” for the C&DW 

management system in the base case scenario. 

 
 
Figure A4.7. Contribution analysis for the impact category “Global Warming” related to the C&DW 

landfilling in the base case scenario. 
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APPENDIX A5 – LIFE CYCLE IMPACT ASSESSMENT DATA: IMPACT 2002+ V2.12 

METHODOLOGY 

This appendix reports supplementary data of life cycle impact assessment obtained by using the 

Impact 2002+ v2.12 methodology. 

 
Figure A5.1. Contribution analysis for the impact category “Respiratory Inorganics” for the C&DW 

management system in the base case scenario. 

 
 

Figure A5.2. Contribution analysis for the impact category “Global Warming” for the C&DW 

management system in the base case scenario. 
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Figure A5.3. Contribution analysis for the impact category “Carcinogens” for the C&DW management 

system in the base case scenario. 

 
 

Figure A5.4. Contribution analysis for the impact category “Non-Renewable Energy” for the C&DW 

management system in the base case scenario. 

 
 
 
Figure A5.5. Contribution analysis for the impact category “Non-Carcinogens” for the C&DW 

management system in the base case scenario. 
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Figure A5.6. Contribution analysis for the impact category “Global Warming” related to the C&DW 

landfilling in the base case scenario. 
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APPENDIX A6 – LCI AND LCIA DATA: ALTERNATIVE SCENARIOS (1, 2, 3.1 AND 3.2)  

This appendix reports supplementary data of life cycle inventory and life cycle impact 

assessment of mineral fraction management in the base case and alternative scenarios (1, 2, 3.1 

and 3.2). 

 
Figure A6.1. Comparison of the base case scenario when the EURO 4 transportation trucks in all steps 

of both scenarios are replaced with EURO 3 and EURO 5 transportation trucks. Data obtained by CML 

baseline. 

 

Figure A6.2. Comparison of the base case scenario when the EURO 4 transportation trucks in all steps 

of both scenarios are replaced with EURO 3 and EURO 5 transportation trucks. Data obtained by 

Impact 2002+. 
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Table A6.1. Main direct burdens of the mineral fraction management in the base case and alternative scenarios 1 and 2. 

Life cycle inventory data 
Scenarios 

Base case 1a (20%) 1b (40%) 1b (60%) 1b (80%) 1b (100%) 2a (20%) 2b (40%) 2b (60%) 2b (80%) 2b (100%) 

Transport stages (tkm) 

From sorting areas to inert landfills 18836 0 0 0 0 0 0 0 0 0 0 

From sorting areas to recycling facilities 72524 90201 90201 90201 90201 90201 90201 90201 90201 90201 90201 

From recycling facilities to inert landfills 454 467 933 1400 1866 2333 467 933 1400 1866 2333 

Total (tkm) 91814 90668 91134 91601 92067 92534 90668 91134 91601 92067 92534 

Recycling processes (direct burdens) 

Diesel consumption (L) 655 781 1562 2343 3124 3905 584 1168 1752 2336 2920 

Electricity consumption (kWh) 3687 4433 8865 13298 17730 22163 3991 7982 11973 15963 19954 

Inert landfilling (t) 

Mineral fraction from sorting areas 1651 0 0 0 0 0 0 0 0 0 0 

Process losses from recycling process 65 81 163 244 325 406 81 163 244 325 406 

Total (t) 1716 81 163 244 325 406 81 163 244 325 406 

Mineral fraction storage (t) 5180 6501 4876 3250 1625 0 6501 4876 3250 1625 0 

 

Table A6.2. Main avoided burdens of the mineral fraction management in the base case and alternative scenarios 1 and 2. 

Life cycle inventory data 
Scenarios 

Base case 1a (20%) 1b (40%) 1b (60%) 1b (80%) 1b (100%) 2a (20%) 2b (40%) 2b (60%) 2b (80%) 2b (100%) 

Natural aggregate production (avoided burdens) 

Diesel consumption (L) 530 649 1299 1948 2598 3247 548 1096 1644 2192 2740 

Electricity consumption (kWh) 1377 1951 3903 5854 7805 9757 3109 6217 9326 12434 15543 
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Table A6.3. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

inert landfill or recycling facility, and the quantity of process losses (t) and transport distances (km) from 

recycling facility to inert landfill in the base case scenario. 

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 4 57 248 

Campinas2 - - - 3824 13 49712 38 0 0 

Cosmópolis1,3 - - - 87 0 0 1 0 0 

Hortolândia - - - 261 8 2088 3 28 73 

Indaiatuba 304 6 1824 - - - - - - 

Jundiaí2 - - - 695 6 4170 7 0 0 

Limeira 860 12 10320 - - - - - - 

Nova Odessa 61 19 1159 - - - - - - 

Piracicaba - - - 869 18 15642 9 10 87 

Rio Claro 243 18 4374 - - - - - - 

Salto 122 6 732 - - - - - - 

Santa Bárbara 61 7 427 - - - - - - 

Sumaré - - - 304 3 912 3 15 46 

Total 1651 68 18836 6475 48 72524 65 110 454 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.4. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenarios 1a (20%) and 2a (20%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 4 57 248 

Campinas2 - - - 3824 13 49712 38 0 0 

Cosmópolis1,3 - - - 87 0 0 1 0 0 

Hortolândia - - - 261 8 2088 3 28 73 

Indaiatuba2 - - - 304 6 1824 3 0 0 

Jundiaí2 - - - 695 6 4170 7 0 0 

Limeira2 - - - 860 12 10320 9 0 0 

Nova Odessa1 - - - 61 0 0 1 21 13 

Piracicaba - - - 869 18 15642 9 10 87 

Rio Claro2 - - - 243 18 4374 2 0 0 

Salto2 - - - 122 6 732 1 0 0 

Santa Bárbara2 - - - 61 7 427 1 0 0 

Sumaré - - - 304 3 912 3 15 46 

Total 0 0 0 8126 97 90201 81 131 467 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.5. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenarios 1b (40%) and 2b (40%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 9 57 496 

Campinas2 - - - 3824 13 49712 76 0 0 

Cosmópolis1,3 - - - 87 0 0 2 0 0 

Hortolândia - - - 261 8 2088 5 28 146 

Indaiatuba2 - - - 304 6 1824 6 0 0 

Jundiaí2 - - - 695 6 4170 14 0 0 

Limeira2 - - - 860 12 10320 17 0 0 

Nova Odessa1 - - - 61 0 0 1 21 26 

Piracicaba - - - 869 18 15642 17 10 174 

Rio Claro2 - - - 243 18 4374 5 0 0 

Salto2 - - - 122 6 732 2 0 0 

Santa Bárbara2 - - - 61 7 427 1 0 0 

Sumaré - - - 304 3 912 6 15 91 

Total 0 0 0 8126 97 90201 163 131 933 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.6. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenarios 1b (60%) and 2b (60%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 13 57 744 

Campinas2 - - - 3824 13 49712 115 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 8 28 219 

Indaiatuba2 - - - 304 6 1824 9 0 0 

Jundiaí2 - - - 695 6 4170 21 0 0 

Limeira2 - - - 860 12 10320 26 0 0 

Nova Odessa1 - - - 61 0 0 2 21 39 

Piracicaba - - - 869 18 15642 26 10 261 

Rio Claro2 - - - 243 18 4374 7 0 0 

Salto2 - - - 122 6 732 4 0 0 

Santa Bárbara2 - - - 61 7 427 2 0 0 

Sumaré - - - 304 3 912 9 15 137 

Total 0 0 0 8126 97 90201 244 131 1400 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.7. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenarios 1b (80%) and 2b (80%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 17 57 992 

Campinas2 - - - 3824 13 49712 153 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 10 28 292 

Indaiatuba2 - - - 304 6 1824 12 0 0 

Jundiaí2 - - - 695 6 4170 28 0 0 

Limeira2 - - - 860 12 10320 34 0 0 

Nova Odessa1 - - - 61 0 0 2 21 52 

Piracicaba - - - 869 18 15642 35 10 348 

Rio Claro2 - - - 243 18 4374 10 0 0 

Salto2 - - - 122 6 732 5 0 0 

Santa Bárbara2 - - - 61 7 427 2 0 0 

Sumaré - - - 304 3 912 12 15 182 

Total 0 0 0 8126 97 90201 325 131 1866 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.8. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area to 

recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenarios 1b (100%) and 2b (100%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 22 57 1240 

Campinas2 - - - 3824 13 49712 191 0 0 

Cosmópolis1,3 - - - 87 0 0 4 0 0 

Hortolândia - - - 261 8 2088 13 28 365 

Indaiatuba2 - - - 304 6 1824 15 0 0 

Jundiaí2 - - - 695 6 4170 35 0 0 

Limeira2 - - - 860 12 10320 43 0 0 

Nova Odessa1 - - - 61 0 0 3 21 65 

Piracicaba - - - 869 18 15642 43 10 435 

Rio Claro2 - - - 243 18 4374 12 0 0 

Salto2 - - - 122 6 732 6 0 0 

Santa Bárbara2 - - - 61 7 427 3 0 0 

Sumaré - - - 304 3 912 15 15 228 

Total 0 0 0 8126 97 90201 406 131 2333 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.9. Data about the quantities (in tons) of mineral fraction landfilled, recycled and stored in the 

base case and alternative scenarios 1 and 2. 
Scenarios and 

Recycling rate 

Inert  

landfilling  

Mineral 

fraction recycling  

Recycled aggregates  

produced 

Process  

Losses1  

Mineral  

fraction stored 

Base case (20%) 1651 1295 1230 65 5180 

1a (20%) 0 1625 1544 81 6501 

1b (40%) 0 3250 3088 163 4876 

1b (60%) 0 4876 4632 244 3250 

1b (80%) 0 6501 6176 325 1625 

1b (100%) 0 8126 7720 406 0 

2a (20%) 0 1625 1544 81 6501 

2b (40%) 0 3250 3088 163 4876 

2b (60%) 0 4876 4632 244 3250 

2b (80%) 0 6501 6176 325 1625 

2b (100%) 0 8126 7720 406 0 

Note: 1This material is disposed of in an inert lanfill. 

 

Table A6.10. Quantity (in tons) and types of recycled aggregates produced in the base case and 

alternative scenarios 1 and 2. 
Scenarios and 

Recycling rate 

Excavated  

soil 

Fine recycled  

aggregate 

Coarse recycled  

aggregate - Type A 

Coarse recycled  

aggregate - Type B 
Total 

Base case (20%) 418 62 172 578 1230 

1a (20%) 494 93 278 679 1544 

1b (40%) 988 185 556 1359 3088 

1b (60%) 1482 278 834 2038 4632 

1b (80%) 1976 371 1112 2717 6176 

1b (100%) 2470 463 1390 3397 7720 

2a (20%) 309 154 602 479 1544 

2b (40%) 618 309 1204 957 3088 

2b (60%) 926 463 1806 1436 4632 

2b (80%) 1235 618 2409 1914 6176 

2b (100%) 1544 772 3011 2393 7720 
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Table A6.11. Total consumption of diesel (D) in liter and electricity (E) in kWh used in the production of the recycled aggregates in the base case and alternative 

scenarios 1 and 2. 

Municipalities 
Base case 1a (20%) 1b (40%) 1b (60%) 1b (80%) 1b (100%) 2a (20%) 2b (40%) 2b (60%) 2b (80%) 2b (100%) 

D E D E D E D E D E D E D E D E D E D E D E 

Atibaia 30 77 30 77 61 153 91 230 122 306 152 383 30 221 61 442 91 663 122 884 152 1105 

Campinas 467 2463 467 2463 933 4925 1400 7388 1866 9851 2333 12313 268 1943 535 3885 803 5828 1071 7770 1338 9713 

Cosmópolis 11 0 11 0 22 0 33 0 44 0 55 0 11 0 22 0 33 0 44 0 55 0 

Hortolândia 18 153 18 153 37 307 55 460 73 614 91 767 18 133 37 265 55 398 73 530 91 663 

Indaiatuba 0 0 21 154 43 309 64 463 85 618 106 772 21 154 43 309 64 463 85 618 106 772 

Jundiaí 49 353 49 353 97 706 146 1059 195 1412 243 1765 49 353 97 706 146 1059 195 1412 243 1765 

Limeira 0 0 60 437 120 874 181 1311 241 1748 301 2184 60 437 120 874 181 1311 241 1748 301 2184 

Nova Odessa 0 0 8 0 15 0 23 0 31 0 38 0 8 0 15 0 23 0 31 0 38 0 

Piracicaba 59 487 59 487 118 973 177 1460 236 1947 295 2433 61 441 122 883 182 1324 243 1766 304 2207 

Rio Claro 0 0 17 123 34 247 51 370 68 494 85 617 17 123 34 247 51 370 68 494 85 617 

Salto 0 0 15 0 31 0 46 0 61 0 77 0 15 0 31 0 46 0 61 0 77 0 

Santa Bárbara 0 0 4 31 9 62 13 93 17 124 21 155 4 31 9 62 13 93 17 124 21 155 

Sumaré 21 154 21 154 43 309 64 463 85 618 106 772 21 154 43 309 64 463 85 618 106 772 

Total 655 3687 781 4433 1562 8865 2343 13298 3124 17730 3905 22163 584 3991 1168 7982 1752 11973 2336 15963 2920 19954 
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Figure A6.3. Contribution analysis for the impact category “Acidification” for the C&DW management 

system in the base case and alternative scenarios (CML baseline methodology). 

 
 

Figure A6.4. Contribution analysis for the impact category “Respiratory Inorganics” for the C&DW 

management system in the base case and alternative scenarios (Impact 2002+ methodology). 
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Table A6.12. Main direct burdens of the mineral fraction management in the base case and alternative scenarios 3.1 and 3.2. 

Life cycle inventory data 
3.1a 

(20%) 

3.1b 

(40%) 

3.1b 

(60%) 

3.1b 

(80%) 

3.1b 

(100%) 

3.2a 

(20%) 

3.2b 

(40%) 

3.2b 

(60%) 

3.2b 

(80%) 

3.2b 

(100%) 

Transport stages (tkm) 

From sorting areas to inert landfills 0 0 0 0 0 15069 11302 7534 3767 0 

From sorting areas to recycling 

facilities 
167788 167788 167788 167788 167788 91577 110629 129682 148735 167788 

From recycling facilities to inert 

landfills 
590 1180 1769 2359 2949 590 1180 1769 2359 2949 

Total (tkm) 168378 168968 169557 170147 170737 107236 123111 138985 154861 170737 

Recycling processes (direct burdens) 

Diesel consumption (L) 784 1569 2353 3138 3922 784 1569 2353 3138 3922 

Electricity consumption (kWh) 4624 9248 13873 18497 23121 4624 9248 13873 18497 23121 

Inert landfilling (t)  

Mineral fraction from sorting areas 0 0 0 0 0 1321 991 660 330 0 

Process losses from recycling 81 163 244 325 406 81 163 244 325 406 

Total Inert Landfilling (t) 81 163 244 325 406 1402 1153 904 655 406 

Mineral fraction storage (t) 6501 4876 3250 1625 0 5180 3885 2590 1295 0 

 

Table A6.13. Main avoided burdens of the mineral fraction management in the base case and alternative scenarios 3.1 and 3.2. 

Life cycle inventory data 3.1a (20%) 3.1b (40%) 3.1b (60%) 3.1b (80%) 3.1b (100%) 3.2a (20%) 3.2b (40%) 3.2b (60%) 3.2b (80%) 3.2b (100%) 

Natural aggregate production (avoided burdens) 

Diesel consumption (L) 1225 2450 3675 4900 6125 1225 2450 3675 4900 6125 

Electricity consumption (kWh) 1884 3768 5652 7536 9419 1884 3768 5652 7536 9419 
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Table A6.14. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.1a (20%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 4 57 248 

Campinas2 - - - 3824 13 49712 38 0 0 

Cosmópolis1,3 - - - 87 0 0 1 0 0 

Hortolândia - - - 261 8 2088 3 28 73 

Indaiatuba2 - - - 304 40 12190 3 0 0 

Jundiaí2 - - - 695 6 4170 7 0 0 

Limeira - - - 860 69 59082 9 10 86 

Nova Odessa - - - 61 4 262 1 21 13 

Piracicaba - - - 869 18 15642 9 10 87 

Rio Claro - - - 243 63 15406 2 10 24 

Salto2 - - - 122 59 7149 1 0 0 

Santa Bárbara - - - 61 19 1174 1 21 13 

Sumaré - - - 304 3 912 3 15 46 

Total 0 0 0 8126 302 167788 81 173 590 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.15. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.1b (40%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 9 57 496 

Campinas2 - - - 3824 13 49712 76 0 0 

Cosmópolis1,3 - - - 87 0 0 2 0 0 

Hortolândia - - - 261 8 2088 5 28 146 

Indaiatuba2 - - - 304 40 12190 6 0 0 

Jundiaí2 - - - 695 6 4170 14 0 0 

Limeira - - - 860 69 59082 17 10 172 

Nova Odessa - - - 61 4 262 1 21 26 

Piracicaba - - - 869 18 15642 17 10 174 

Rio Claro - - - 243 63 15406 5 10 49 

Salto2 - - - 122 59 7149 2 0 0 

Santa Bárbara - - - 61 19 1174 1 21 26 

Sumaré - - - 304 3 912 6 15 91 

Total 0 0 0 8126 302 167788 163 173 1180 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 



264 

 

 
 
 

Table A6.16. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.1b (60%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 13 57 744 

Campinas2 - - - 3824 13 49712 115 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 8 28 219 

Indaiatuba2 - - - 304 40 12190 9 0 0 

Jundiaí2 - - - 695 6 4170 21 0 0 

Limeira - - - 860 69 59082 26 10 258 

Nova Odessa - - - 61 4 262 2 21 39 

Piracicaba - - - 869 18 15642 26 10 261 

Rio Claro - - - 243 63 15406 7 10 73 

Salto2 - - - 122 59 7149 4 0 0 

Santa Bárbara - - - 61 19 1174 2 21 39 

Sumaré - - - 304 3 912 9 15 137 

Total 0 0 0 8126 302 167788 244 173 1769 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.17. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.1b (80%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 17 57 992 

Campinas2 - - - 3824 13 49712 153 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 10 28 292 

Indaiatuba2 - - - 304 40 12190 12 0 0 

Jundiaí2 - - - 695 6 4170 28 0 0 

Limeira - - - 860 69 59082 34 10 344 

Nova Odessa - - - 61 4 262 2 21 52 

Piracicaba - - - 869 18 15642 35 10 348 

Rio Claro - - - 243 63 15406 10 10 97 

Salto2 - - - 122 59 7149 5 0 0 

Santa Bárbara - - - 61 19 1174 2 21 52 

Sumaré - - - 304 3 912 12 15 182 

Total 0 0 0 8126 302 167788 325 173 2359 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.18. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.1b (100%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 22 57 1240 

Campinas2 - - - 3824 13 49712 191 0 0 

Cosmópolis1,3 - - - 87 0 0 4 0 0 

Hortolândia - - - 261 8 2088 13 28 365 

Indaiatuba2 - - - 304 40 12190 15 0 0 

Jundiaí2 - - - 695 6 4170 35 0 0 

Limeira - - - 860 69 59082 43 10 430 

Nova Odessa - - - 61 4 262 3 21 65 

Piracicaba - - - 869 18 15642 43 10 435 

Rio Claro - - - 243 63 15406 12 10 122 

Salto2 - - - 122 59 7149 6 0 0 

Santa Bárbara - - - 61 19 1174 3 21 65 

Sumaré - - - 304 3 912 15 15 228 

Total 0 0 0 8126 302 167788 406 173 2949 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 

Table A6.19. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.2a (20%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 4 57 248 

Campinas2 - - - 3824 13 49712 38 0 0 

Cosmópolis1,3 - - - 87 0 0 1 0 0 

Hortolândia - - - 261 8 2088 3 28 73 

Indaiatuba2 243 6 1459 61 40 2438 3 0 0 

Jundiaí2 - - - 695 6 4170 7 0 0 

Limeira 688 12 8256 172 69 11816 9 10 86 

Nova Odessa 49 19 927 12 4 52 1 21 13 

Piracicaba - - - 869 18 15642 9 10 87 

Rio Claro 194 18 3499 49 63 3081 2 10 24 

Salto2 98 6 586 24 59 1430 1 0 0 

Santa Bárbara 49 7 342 12 19 235 1 21 13 

Sumaré - - - 304 3 912 3 15 46 

Total 1321 68 15069 6805 302 91577 81 173 590 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.20. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.2b (40%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 9 57 496 

Campinas2 - - - 3824 13 49712 76 0 0 

Cosmópolis1,3 - - - 87 0 0 2 0 0 

Hortolândia - - - 261 8 2088 5 28 146 

Indaiatuba2 182 6 1094 122 40 4876 6 0 0 

Jundiaí2 - - - 695 6 4170 14 0 0 

Limeira 516 12 6192 344 69 23633 17 10 172 

Nova Odessa 37 19 695 24 4 105 1 21 26 

Piracicaba - - - 869 18 15642 17 10 174 

Rio Claro 146 18 2624 97 63 6162 5 10 49 

Salto2 73 6 439 49 59 2860 2 0 0 

Santa Bárbara 37 7 256 24 19 469 1 21 26 

Sumaré - - - 304 3 912 6 15 91 

Total 991 68 11302 7135 302 110629 163 173 1180 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 
Table A6.21. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.2b (60%).  

Municipalities 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 13 57 744 

Campinas2 - - - 3824 13 49712 115 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 8 28 219 

Indaiatuba2 122 6 730 182 40 7314 9 0 0 

Jundiaí2 - - - 695 6 4170 21 0 0 

Limeira 344 12 4128 516 69 35449 26 10 258 

Nova Odessa 24 19 464 37 4 157 2 21 39 

Piracicaba - - - 869 18 15642 26 10 261 

Rio Claro 97 18 1750 146 63 9244 7 10 73 

Salto2 49 6 293 73 59 4290 4 0 0 

Santa Bárbara 24 7 171 37 19 704 2 21 39 

Sumaré - - - 304 3 912 9 15 137 

Total 660 68 7534 7466 302 129682 244 173 1769 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 
landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 

facility. 
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Table A6.22. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.2b (80%).  

Municipality 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 17 57 992 

Campinas2 - - - 3824 13 49712 153 0 0 

Cosmópolis1,3 - - - 87 0 0 3 0 0 

Hortolândia - - - 261 8 2088 10 28 292 

Indaiatuba2 61 6 365 243 40 9752 12 0 0 

Jundiaí2 - - - 695 6 4170 28 0 0 

Limeira 172 12 2064 688 69 47266 34 10 344 

Nova Odessa 12 19 232 49 4 210 2 21 52 

Piracicaba - - - 869 18 15642 35 10 348 

Rio Claro 49 18 875 194 63 12325 10 10 97 

Salto2 24 6 146 98 59 5719 5 0 0 

Santa Bárbara 12 7 85 49 19 939 2 21 52 

Sumaré - - - 304 3 912 12 15 182 

Total 330 68 3767 7796 302 148735 325 173 2359 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 

 
Table A6.23. Data about the quantity of mineral fraction (t) and transport distances (km) from sorting area 

to recycling facility, and the quantity of process losses (t) and transport distances (km) from recycling facility 

to inert landfill in the alternative scenario 3.2b (100%).  

Municipality 

Sorting area to inert landfill Sorting area to recycling facility Recycling facility to inert landfill 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Mineral  

fraction (t) 

Distance  

(km) 
tkm 

Process  

losses (t) 

Distance  

(km) 
tkm 

Atibaia1 - - - 435 0 0 22 57 1240 

Campinas2 - - - 3824 13 49712 191 0 0 

Cosmópolis1,3 - - - 87 0 0 4 0 0 

Hortolândia - - - 261 8 2088 13 28 365 

Indaiatuba2 - - - 304 40 12190 15 0 0 

Jundiaí2 - - - 695 6 4170 35 0 0 

Limeira - - - 860 69 59082 43 10 430 

Nova Odessa - - - 61 4 262 3 21 65 

Piracicaba - - - 869 18 15642 43 10 435 

Rio Claro - - - 243 63 15406 12 10 122 

Salto2 - - - 122 59 7149 6 0 0 

Santa Bárbara - - - 61 19 1174 3 21 65 

Sumaré - - - 304 3 912 15 15 228 

Total 0 0 0 8126 302 167788 406 173 2949 

Note: 1The recycling facility is located in the same area of the sorting area. 2The recycling facility is located in the same area of the inert 

landfill. 3The municipality does not transport the process losses to the inert landfill, and the material remains in the same area of the recycling 
facility. 
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Table A6.24. Data about the quantities (in tons) of mineral fraction landfilled, recycled and stored in 

alternative scenarios 3.1 and 3.2. 
Scenarios and 

Recycling rate 

Inert  

landfilling  

Mineral 

fraction recycling 

Recycled  

aggregates  

Process  

Losses1  

Mineral  

fraction stored 

3.1a (20%) 0 1625 1544 81 6501 

3.1b (40%) 0 3250 3088 163 4876 

3.1b (60%) 0 4876 4632 244 3250 

3.1b (80%) 0 6501 6176 325 1625 

3.1b (100%) 0 8126 7720 406 0 

3.2a (20%) 1321 1625 1544 81 5180 

3.2b (40%) 991 3250 3088 163 3885 

3.2b (60%) 660 4876 4632 244 2590 

3.2b (80%) 330 6501 6176 325 1295 

3.2b (100%) 0 8126 7720 406 0 

Note: 1This material is disposed of in an inert lanfill. 

 

Table A6.25. Quantity (in tons) and types of recycled aggregates produced in alternative scenarios 3.1 

and 3.2. 
Scenarios and 

Recycling rate 

Excavated  

soil 

Fine recycled  

aggregate 

Coarse recycled  

aggregate - Type A 

Coarse recycled  

aggregate - Type B 
Total 

3.1a (20%) 474 117 229 723 1544 

3.1b (40%) 948 234 459 1446 3088 

3.1b (60%) 1423 352 688 2169 4632 

3.1b (80%) 1897 469 918 2892 6176 

3.1b (100%) 2371 586 1147 3615 7720 

3.2a (20%) 474 117 229 723 1544 

3.2b (40%) 948 234 459 1446 3088 

3.2b (60%) 1423 352 688 2169 4632 

3.2b (80%) 1897 469 918 2892 6176 

3.2b (100%) 2371 586 1147 3615 7720 
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Table A6.26. Total consumption of diesel (D) in liter and electricity (E) in kWh used in the production of the recycled aggregates in alternative scenarios 3.1 

and 3.2. 

Municipalities 
3.1a (20%) 3.1b (40%) 3.1b (60%) 3.1b (80%) 3.1b (100%) 3.2a (20%) 3.2b (40%) 3.2b (60%) 3.2b (80%) 3.2b (100%) 

D E D E D E D E D E D E D E D E D E D E 

Atibaia 30 77 61 153 91 230 122 306 152 383 30 77 61 153 91 230 122 306 152 383 

Campinas 467 2463 933 4925 1400 7388 1866 9851 2333 12313 467 2463 933 4925 1400 7388 1866 9851 2333 12313 

Cosmópolis 11 0 22 0 33 0 44 0 55 0 11 0 22 0 33 0 44 0 55 0 

Hortolândia 18 153 37 307 55 460 73 614 91 767 18 153 37 307 55 460 73 614 91 767 

Indaiatuba 37 196 74 392 111 587 148 783 185 979 37 196 74 392 111 587 148 783 185 979 

Jundiaí 49 353 97 706 146 1059 195 1412 243 1765 49 353 97 706 146 1059 195 1412 243 1765 

Limeira 58 482 117 963 175 1445 234 1926 292 2408 58 482 117 963 175 1445 234 1926 292 2408 

Nova Odessa 4 31 9 62 13 93 17 124 21 155 4 31 9 62 13 93 17 124 21 155 

Piracicaba 59 487 118 973 177 1460 236 1947 295 2433 59 487 118 973 177 1460 236 1947 295 2433 

Rio Claro 17 136 33 272 50 408 66 544 83 680 17 136 33 272 50 408 66 544 83 680 

Salto 9 62 17 124 26 186 34 248 43 310 9 62 17 124 26 186 34 248 43 310 

Santa Bárbara 4 31 9 62 13 93 17 124 21 155 4 31 9 62 13 93 17 124 21 155 

Sumaré 21 154 43 309 64 463 85 618 106 772 21 154 43 309 64 463 85 618 106 772 

Total 784 4624 1569 9248 2353 13873 3138 18497 3922 23121 784 4624 1569 9248 2353 13873 3138 18497 3922 23121 
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APPENDIX A7 – SENSITIVITY ANALYSIS: VARIATIONS OF THE C&DW COMPOSITION 

This appendix reports supplementary data of sensitivity analysis related to the variations in the 

C&DW composition.  

 

Table A7.1. Variations from +10% to +100% of wood in relation to its weight-percentage in the 

composition used in the base case scenario. 

C&DW composition 
Base case 

(%) 

Variation in the weight-percentage of wood 

+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% 

MixC&DW 68.80 68.43 68.06 67.69 67.32 66.95 66.58 66.21 65.84 65.47 65.10 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 4.07 4.44 4.81 5.18 5.55 5.92 6.29 6.66 7.03 7.40 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 

 

Table A7.2. Addition from +1% to +10% of gypsum in the composition used in the base case scenario. 

C&DW composition 
Base case 

(%) 

Variation in the weight-percentage of gypsum 

+1% +2% +3% +4% +5% +6% +7% +8% +9% +10% 

MixC&DW 68.80 67.80 66.80 65.80 64.80 63.80 62.80 61.80 60.80 59.80 58.80 

Excavated soil 18.10 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 
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Table A7.3. Variations from +10% to +1000% of mixed waste in relation to its weight-percentage in the composition used in the base case scenario. 

C&DW  

composition 

Base case 

(%) 

Variation in the weight-percentage of mixed waste 

+10% +20% +30% +40% +50% +60% +70% +80% +90% +100% +200% +300% +400% +500% 600% +700% +800% +900% +1000% 

MixC&DW 68.80 68.62 68.44 68.26 68.08 67.90 67.72 67.54 67.36 67.18 67.00 65.20 63.40 61.60 59.80 58.00 56.20 54.40 52.60 50.80 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.98 2.16 2.34 2.52 2.70 2.88 3.06 3.24 3.42 3.60 5.40 7.20 9.00 10.80 12.60 14.40 16.20 18.00 19.80 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 

Table A7.4. Variations from -10% to -100% of steel in relation to its weight-percentage in the composition used in the base case scenario. 

C&DW composition 
Base case 

(%) 

Variation in the weight-percentage of steel 

-10% -20% -30% -40% -50% -60% -70% -80% -90% -100% 

MixC&DW 68.80 69.12 69.44 69.76 70.08 70.40 70.72 71.04 71.36 71.68 72.00 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 2.88 2.56 2.24 1.92 1.60 1.28 0.96 0.64 0.32 0.00 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 



272 

 

 
 
 

Table A7.5. Variations from -100% to +100% of glass in relation to its weight-percentage in the composition used in the base case scenario. 

C&DW composition 
Base case 

(%) 

Glass 

-100% 

Glass 

-80% 

Glass 

-60% 

Glass 

-40% 

Glass 

-20% 

Glass 

+20% 

Glass 

+40% 

Glass 

+60% 

Glass 

+80% 

Glass 

+100% 

MixC&DW 68.80 70.50 70.16 69.82 69.48 69.14 68.46 68.12 67.78 67.44 67.10 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 0.00 0.34 0.68 1.02 1.36 2.04 2.38 2.72 3.06 3.40 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 

  

Table A7.6. Variations from -100% to +100% of plastics in relation to its weight-percentage in the reference composition. 

C&DW composition 
Base case 

(%) 

Plastics  

-100% 

Plastics  

-80% 

Plastics  

-60% 

Plastics 

-40% 

Plastics  

-20% 

Plastics  

+20% 

Plastics  

+40% 

Plastics  

+60% 

Plastics  

+80% 

Plastics 

+100% 

MixC&DW 68.80 70.30 70.00 69.70 69.40 69.10 68.50 68.20 67.90 67.60 67.30 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 0.00 0.30 0.60 0.90 1.20 1.80 2.10 2.40 2.70 3.00 

Paper/Cardboard 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 
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Table A7.7. Variations from -100% to +100% of paperboard in relation to its weight-percentage in the composition used in the base case scenario. 

C&DW composition 
Base case 

(%) 

Paper 

-100% 

Paper 

-80% 

Paper 

-60% 

Paper 

-40% 

Paper 

-20% 

Paper 

+20% 

Paper 

+40% 

Paper 

+60% 

Paper 

+80% 

Paper 

+100% 

MixC&DW 68.80 70.00 69.76 69.52 69.28 69.04 68.56 68.32 68.08 67.84 67.60 

Excavated soil 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 18.10 

Wood 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 

Gypsum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Iron and steel 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 

Glass 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

Plastics 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Paper/Cardboard 1.20 0.00 0.24 0.48 0.72 0.96 1.44 1.68 1.92 2.16 2.40 

Mixed waste 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

Total 100 100 100 100 100 100 100 100 100 100 100 
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Table A7.8. Data changed due to variantions in the weight-percentage of wood in the C&DW composition.  

C&DW management stages 
Base 

case 

Wood 

(+10%) 

Wood 

(+20%) 

Wood 

(+30%) 

Wood 

(+40%) 

Wood 

(+50%) 

Wood 

(+60%) 

Wood 

(+70%) 

Wood 

(+80%) 

Wood 

(+90%) 

Wood 

(+100%) 

Transport from sorting areas to landfill (tu5) 

- mineral fraction 
18836 18760 18679 18599 18519 18439 18359 18278 18198 18118 18038 

Transport from sorting areas to landfill (tu5) 

- wood 
517 567 618 670 721 773 824 876 927 979 1030 

Transport from sorting areas to landfill (tu5) 

- mixed waste 
11314 11459 11550 11640 11731 11822 11912 12003 12093 12184 12274 

C&DW from sorting areas landfilling - 

mineral fraction 
1651 1644 1637 1630 1623 1616 1609 1602 1595 1588 1581 

C&DW from sorting areas landfilling - 

wood 
32 35 39 42 45 48 52 55 58 61 64 

C&DW from sorting areas landfilling - 

mixed waste 
408,4 413 416 419 422 425 429 432 435 438 441 

Transport from sorting area to recycling 

(tu6) - mineral fraction 
72524 72209 71901 71592 71283 70974 70665 70357 70048 69739 69430 

Transport from sorting area to recycling 

(tu6) - wood 
21511 23662 25813 27964 30116 32267 34418 36569 38720 40871 43022 

Mineral fraction recycling  1295 1289 1284 1278 1273 1267 1262 1256 1251 1245 1240 

Wood recycling 283 311 339 367 395 424 452 480 508 537 565 
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Table A7.9. Data changed due to variantions in the weight-percentage of gypsum in the C&DW composition.  

C&DW management stages 
Base 

case 

Gypsum 

(+1%) 

Gypsum 

(+2%) 

Gypsum 

(+3%) 

Gypsum 

(+4%) 

Gypsum 

(+5%) 

Gypsum 

(+6%) 

Gypsum 

(+7%) 

Gypsum 

(+8%) 

Gypsum 

(+9%) 

Gypsum 

(+10%) 

Transport from sorting areas to landfill 

(tu5) - mineral fraction 
18836 18623 18406 18190 17973 17756 17539 17322 17106 16889 16672 

Transport from sorting areas to landfill 

(tu5) - gypsum 
0 2587 5174 7762 10349 12936 15523 18110 20698 23285 25872 

C&DW from sorting areas landfilling - 

mineral fraction 
1651 1632 1613 1594 1575 1556 1537 1518 1499 1480 1461 

C&DW from sorting areas landfilling - 

gypsum 
0 94 187 281 374 468 561 655 748 842 935 

Transport from sorting area to recycling 

(tu6) - mineral fraction 
72524 71684 70849 70015 69180 68346 67511 66677 65842 65008 64173 

Mineral fraction recycling 1295 1280 1265 1250 1246 1220 1205 1191 1176 1161 1146 

 

Table A7.10. Data changed due to variantions in the weight-percentage of mixed waste in the C&DW composition (Part I).  

C&DW management stages 
Base 

case 

Mixed 

(+10%) 

Mixed 

(+20%) 

Mixed 

(+30%) 

Mixed 

(+40%) 

Mixed 

(+50%) 

Mixed 

(+60%) 

Mixed 

(+70%) 

Mixed 

(+80%) 

Mixed 

(+90%) 

Mixed 

(+100%) 

Transport from sorting areas to landfill 

(tu5) - mineral fraction 
18836 18801 18762 18723 18684 18645 18606 18567 18528 18489 18450 

Transport from sorting areas to landfill 

(tu5) - mixed waste 
11314 11834 12300 12766 13231 13697 14163 14629 15094 15560 16026 

C&DW from sorting areas landfilling - 

mineral fraction 
1651 1648 1644 1641 1637 1634 1631 1627 1624 1620 1617 

C&DW from sorting areas landfilling - 

mixed waste 
408 427 443 460 477 494 511 527 544 561 578 

Transport from sorting area to recycling 

(tu6) - mineral fraction 
72524 72368 72218 72067 71917 71767 71617 71467 71316 71166 71016 

Mineral fraction recycling  1295 1292 1289 1287 1284 1281 1279 1276 1273 1271 1268 
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Table A7.11. Data changed due to variantions in the weight-percentage of mixed waste in the C&DW composition (Part II).  

C&DW management stages 
Mixed 

(+200%) 

Mixed 

(+300%) 

Mixed 

(+400%) 

Mixed 

(+500%) 

Mixed 

(+600%) 

Mixed 

(+700%) 

Mixed 

(+800%) 

Mixed 

(+900%) 

Mixed 

(+1000%) 

Mixed 

(+200%) 

Mixed 

(+300%) 

Transport from sorting areas to landfill 

(tu5) - mineral fraction 
18059 17669 17279 16889 16498 16108 15718 15328 14938 18059 17669 

Transport from sorting areas to landfill 

(tu5) - mixed waste 
20683 25340 29996 34653 39310 43967 48624 53281 57938 20683 25340 

C&DW from sorting areas landfilling - 

mineral fraction 
1583 1549 1514 1480 1446 1412 1378 1343 1309 1583 1549 

C&DW from sorting areas landfilling - 

mixed waste 
746 915 1083 1251 1419 1588 1756 1924 2093 746 915 

Transport from sorting area to 

recycling (tu6) - mineral fraction 
69514 68012 66510 65008 63505 62003 60501 58999 57497 69514 68012 

Mineral fraction recycling  1241 1214 1188 1161 1134 1107 1080 1053 1027 1241 1214 

 
Table A7.12. Data changed due to variantions in the weight-percentage of steel in the C&DW composition.  

C&DW management stages 
Base  

case 

Steel 

(-10%) 

Steel  

(-20%) 

Steel  

(-30%) 

Steel  

(-40%) 

Steel  

(-50%) 

Steel  

(-60%) 

Steel  

(-70%) 

Steel  

(-80%) 

Steel  

(-90%) 

Steel  

(-100%) 

Transport from sorting areas to landfill (tu5) - mineral fraction 18836 18909 18979 19048 19117 19187 19256 19326 19395 19464 19534 

Transport from sorting areas to landfill (tu5) - mixed waste 11314 11327 11286 11244 11203 11162 11120 11079 11037 10996 10955 

C&DW from sorting areas landfilling - mineral fraction 1651 1657 1663 1669 1675 1682 1688 1694 1700 1706 1712 

C&DW from sorting areas landfilling - mixed waste 408 408 407 405 404 402 401 399 398 396 395 

Transport from sorting area to recycling (tu6) - mineral fraction 72524 72785 73052 73319 73586 73853 74120 74387 74654 74921 75188 

Transport from sorting area to recycling (tu6) - steel 25484 22936 20387 17839 15291 12742 10194 7645 5097 2548 0 

Mineral fraction recycling 1295 1300 1304 1309 1314 1319 1323 1328 1333 1338 1342 

Steel recycling 284 256 227 199 171 142 114 85 57 28 0 
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Table A7.13. Data changed due to variantions in the weight-percentage of glass in the C&DW composition.  

C&DW management stages 
Base 

case 

Glass  

(-100%) 

Glass  

(-80%) 

Glass  

(-60%) 

Glass  

(-40%) 

Glass  

(-20%) 

Glass  

(+20%) 

Glass  

(+40%) 

Glass  

(+60%) 

Glass  

(+80%) 

Glass  

(+100%) 

Transport from sorting areas to landfill (tu5) - mineral fraction 18836 19208 19135 19061 18987 18914 18766 18692 18619 18545 18471 

Transport from sorting areas to landfill (tu5) - mixed waste 11314 9014 9480 9946 10412 10878 11811 12277 12743 13210 13676 

C&DW from sorting areas landfilling - mineral fraction 1651 1683 1677 1670 1664 1658 1645 1638 1632 1625 1619 

C&DW from sorting areas landfilling - mixed waste 408 324 341 358 375 392 425 442 459 476 493 

Transport from sorting area to recycling (tu6) - mineral fraction 72524 73937 73653 73369 73086 72802 72234 71951 71667 71383 71099 

Transport from sorting area to recycling (tu6) - glass 8214 0 1643 3286 4928 6571 9857 11499 13142 14785 16428 

Mineral fraction recycling 1295 1320 1315 1310 1305 1300 1290 1285 1280 1275 1269 

Glass recycling 284 0 15 30 45 60 90 105 120 134 149 

 

Table A7.14. Data changed due to variantions in the weight-percentage of plastics in the C&DW composition.  

C&DW management stages 
Base 

case 

Plastics  

(-100%) 

Plastics  

(-80%) 

Plastics  

(-60%) 

Plastics  

(-40%) 

Plastics  

(-20%) 

Plastics  

(+20%) 

Plastics  

(+40%) 

Plastics  

(+60%) 

Plastics  

(+80%) 

Plastics  

(+100%) 

Transport from sorting areas to landfill (tu5) - mineral fraction 18836 19165 19100 19035 18970 18905 18775 18710 18645 18580 18515 

Transport from sorting areas to landfill (tu5) - mixed waste 11314 8308 8913 9519 10124 10729 11940 12546 13151 13756 14362 

C&DW from sorting areas landfilling - mineral fraction 1651 1680 1674 1668 1663 1657 1645 1640 1634 1628 1623 

C&DW from sorting areas landfilling - mixed waste 408 299 321 343 365 386 430 452 474 496 518 

Transport from sorting area to recycling (tu6) - mineral fraction 72524 73770 73519 73269 73019 72768 72268 72017 71767 71517 71266 

Transport from sorting area to recycling (tu6) - plastics 1278 0 256 511 767 1023 1534 1790 2045 2301 2557 

Mineral fraction recycling 1295 1317 1313 1308 1304 1299 1290 1286 1281 1277 1272 

Plastics recycling 31 0 6 12 19 25 37 43 49 56 62 
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Table A7.15. Data changed due to variantions in the weight-percentage of paperboard in the C&DW composition.  

C&DW management stages 
Base 

case 

Paper  

(-100%) 

Paper  

(-80%) 

Paper  

(-60%) 

Paper  

(-40%) 

Paper  

(-20%) 

Paper  

(+20%) 

Paper  

(+40%) 

Paper  

(+60%) 

Paper  

(+80%) 

Paper  

(+100%) 

Transport from sorting areas to landfill (tu5) - mineral fraction 18836 19100 19048 18996 18944 18892 18788 18736 18684 18632 18580 

Transport from sorting areas to landfill (tu5) - paper 11314 0 621 1242 1863 2484 3726 4346 4967 5588 6209 

C&DW from sorting areas landfilling - mineral fraction 1651 1674 1669 1665 1660 1656 1647 1642 1637 1633 1628 

C&DW from sorting areas landfilling - paper 112 0 22 45 67 90 135 157 180 202 224 

Transport from sorting area to recycling (tu6) - mineral fraction 72524 73519 73319 73119 72919 72718 72318 72117 71917 71717 71517 

Mineral fraction recycling 1295 1313 1309 1306 1302 1298 1291 1288 1284 1281 1277 
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APPENDIX A8 – SENSITIVITY ANALYSIS: LANDFILL MODELLING 

This appendix reports supplementary data of life cycle impact assesment obtained by using the 

CML baseline v3.03 methodology, including long-term emission. 

 
Figure A8.1. Contribution analysis for the impact category “Human Toxicity” for the C&DW 

management system in the base case scenario (including long-term emission). 

 
 

Figure A8.2. Contribution analysis for the impact category “Abiotic Depletion (fossil fuels)” for the 

C&DW management system in the base case scenario (including long-term emission). 
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Figure A8.3. Contribution analysis for the impact category “Acidification” for the C&DW management 

system in the base case scenario (including long-term emission). 

 
 

Figure A8.4. Contribution analysis for the impact category “Eutrophication” for the C&DW 

management system in the base case scenario (including long-term emission). 

 

 
 

 

 

 

 

Transport
C&DW

collection
C&DW
sorting

C&DW
landfilling

Mineral
fraction
recycling

Wood
recycling

Steel
recycling

Plastics
recycling

Glass
recycling

Ammonia (air) 4.21E-01 2.90E-02 2.10E-02 5.09E-01 -1.05E+01 -1.05E-01 -9.32E+00 6.33E-01 -7.04E+00

Nitrogen oxides (air) 6.93E+01 1.67E+01 1.21E+01 5.27E+01 -1.56E+01 2.08E+00 -1.73E+02 -3.53E+01 -4.36E+01

Sulfur dioxide (air) 6.18E+01 4.48E+00 3.25E+00 3.66E+01 2.52E-01 -8.66E+00 -5.39E+02 -8.19E+01 -1.92E+02

-6.00E+02

-5.00E+02

-4.00E+02

-3.00E+02

-2.00E+02

-1.00E+02

0.00E+00

1.00E+02
kg

 S
O

2
e

q

Transport
C&DW

collection
C&DW
sorting

C&DW
landfilling

Mineral
fraction
recycling

Wood
recycling

Steel
recycling

Plastics
recycling

Glass
recycling

Chemical Oxygen Demand (water) 3.04E+00 1.97E-01 1.43E-01 6.34E+02 3.45E-02 -7.06E-02 -9.74E+00 2.64E+01 -4.28E-01

Ammonium, ion (water) 3.07E-02 1.88E-03 1.36E-03 1.35E+02 -6.42E-03 -9.89E-03 -1.33E-02 5.43E+00 2.57E-02

Nitrate (water) 6.83E-01 4.45E-02 3.22E-02 4.91E+01 -8.34E-01 -1.62E+01 -5.63E+00 -2.98E-01 -1.02E+01

Ammonia (air) 9.20E-02 6.34E-03 4.59E-03 1.11E-01 -2.30E+00 -2.31E-02 -2.04E+00 1.38E-01 -1.54E+00

Nitrogen oxides (air) 1.80E+01 4.35E+00 3.15E+00 1.37E+01 -4.06E+00 5.41E-01 -4.50E+01 -9.18E+00 -1.13E+01

Phosphate (water) 1.38E+00 8.20E-02 5.94E-02 5.63E+00 1.58E-01 -1.06E+00 -2.45E+02 -1.65E+00 -5.77E+00

-3.00E+02

-2.00E+02

-1.00E+02

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

kg
 P

O
4

3
-
e

q



281 

 

 
 

Figure A8.5. Contribution analysis for the impact category “Photochemical Oxidation” for the C&DW 

management system in the base case scenario (including long-term emission). 

 
 
Figure A8.6. Contribution analysis for the impact category “Global Warming” for the C&DW 

management system in the base case scenario (including long-term emission). 
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APPENDIX A9 – BRAZILIAN ENERGY MIX 

This appendix reports an analysis of the Brazilian energy mix available in the Ecoinvent v.3.1 

(2014) database.  

 

Update of the Brazilian energy mix in the Ecoinvent v3.1 database 

In order to update the Brazilian electric energy matrix available in the Ecoinvent v3.1 database, 

data from the National Electric Energy Agency (Aneel) were accessed in June 2018 (Table 

A9.1). Table A9.2 presents the comparison between data published by Aneel and those 

available in Ecoinvent v.3.1, according to the power supply. 

 

Table A9.1. Brazilian energy mix according to Aneel (2018) (Part I). 

Power Supply Installed capacity Total 

Source Source Level 1 Source Level 2 KW % KW % 

Biomass 

Agroindustrial 

Sugarcane bagasse 11,220,435 6.6825 

11,298,416 6.7289 
Biogas 948 0.0006 

Grass 31,700 0.0189 

Rice husk 45,333 0.0270 

Liquid biofuels 
Ethanol 320 0.0002 

4,670 0.0028 
Vegetable oils 4,350 0.0026 

Forest 

Charcoal 43,197 0.0257 

3,159,190 1.8815 

Blast Furnace Gas - 

Biomass 
124,265 0.0740 

Firewood 23,915 0.0142 

Black liquor 2,542,616 1.5143 

Forest residues 425,197 0.2532 

Animal waste Biogas 4,481 0.0027 4,481 0.0027 

Municipal solid 

waste 

Biogas 133,129 0.0793 
135,829 0.0809 

Coal 2,700 0.0016 

Wind Wind kinetic Wind kinetic 12,920,943 7.6952 12,920,943 7.6952 

Fossil 

Mineral coal 

Process Heat 28,400 0.0169 

3,717,830 2.2142 Mineral coal 3,323,740 1.9795 

Blast gas 365,690 0.2178 

Natural gas 
Process Heat 40,000 0.0238 

12,999,978 7.7423 
Natural gas 12,959,978 7.7185 

Other fossil Process Heat 147,300 0.0877 147,300 0.0877 

Oil 

Blast gas 1,200 0.0007 

9,898,657 5.8953 

Refinery Gas 315,560 0.1879 

Fuel oil 4,055,967 2.4156 

Diesel oil 4,497,602 2.6786 

Other from oil 1,028,328 0.6124 
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Table A9.1. Brazilian energy mix according to Aneel (2018) (Part II). 

Power Supply Installed capacity Total 

Source Source Level 1 Source Level 2 KW % KW % 

Hydro Hydraulic potential Hydraulic potential 102,154,771 60.8395 102,154,771 60.8395 

Nuclear Uranium Uranium 1,990,000 1.1852 1,990,000 1.1852 

Solar Solar radiation Solar radiation 1,306,506 0.7781 1,306,506 0.7781 

Undi-Elétric Water kinetics Water kinetics 50 0 50 0 

Import 

Paraguay 

  

5,650,000 3.3649 

8,170,000 4.8657 
Argentina 2,250,000 1.3400 

Venezuela 200,000 0.1191 

Uruguay 70,000 0.0416 

Total 167,908,621 100 167,908,621 100 

 

Table A9.2. Grouped data of the Brazilian energy mix. 

Power Supply 
Aneel 

(2018)  

Ecoinvent v3.1  
Electricity, high voltage 

{BR}| production mix | 

Alloc Def, U 

Ecoinvent v3.1 
Electricity, high voltage 

{BR}| market for | Alloc 

Def, U 

Hydro 60.84 78.63 70.79 

Fossil 15.94 12.20 11.56 

Biomass 8.70 6.20 5.96 

Wind 7.70 0.14 0.13 

Import 4.87 - 8.85 

Nuclear 1.19 2.82 2.71 

Solar 0.78 - - 

 

The update was performed on the process “Electricity, high voltage {BR}| production mix | 

Alloc Def, U” of Ecoinvent v3.1 (2014), according to the remarks presented in Table A9.3. 

Subsequently, the following datasets were also changed: “Electricity, high voltage {BR}| 

market for | Alloc Def, U”; “Electricity, medium voltage {BR}| market for | Alloc Def, U”; 

“Electricity, medium voltage {BR}| electricity voltage transformation from high to medium 

voltage | Alloc Def, U”; “Electricity, low voltage {BR}| market for | Alloc Def, U” and, 

“Electricity, low voltage {BR}| electricity voltage transformation from medium to low voltage 

| Alloc Def, U”. 
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Table A9.3. Details of the “Electricity, high voltage {BR}| production mix | Alloc Def, U” process of 

Ecoinvent v3.1 (2014) and values adopted in updating the data. 

 

Tables A9.4 and A9.5 show the variation factor between the impacts of the generation of 1 MJ 

of energy according to the current LCI data (Ecoinvent v3.1) and the updated LCI (Ecoinvent 

v3.1 with modifications according to data from Aneel), based on CML baseline and Impact 

2002+ methodologies, respectively. 

According to the results obtained from the CML baseline methodology, the updated LCI 

presents the greatest impacts for all categories, with emphasis on “Abiotic Depletion”, with a 

increase of 116% and, “Photochemical Oxidation” with a increase of 112%. In relation to the 

other selected impact categories for this study, significant increases were observed for “Human 

Toxicity” (84%), “Acidification” (47%) and “Abiotic Depletion (fossil fuels)” (43%). “Global 

Warming” showed an increase of 6%. 

 

 

 

   

Power 

Supply 

Electricity, high voltage {BR}| production 

mix | Alloc Def, U - Ecoinvent v3.1 (2014) 
% 

Total 

(%) 

Values adopted in updating the 

data 

% KW 
Total 

(%) 

Biomass 

cane sugar production with ethanol by-product 1.82 

6.20 

6.73 6.73E-02 

8.70 ethanol production from sugar cane 0.29 0.00 2.80E-05 

heat and power co-generation, wood chips, 

6667 kW, state-of-the-art 2014 
4.09 1.97 1.97E-02 

Fossil 

electricity production, hard coal  0.06 

12.20 

1.06 1.06E-02 

15.94 

electricity production, lignite  1.35 0.94 9.38E-03 

electricity production, natural gas, at 

conventional power plant  
5.99 7.83 7.83E-02 

electricity production, oil  3.62 5.89 5.89E-02 

treatment of blast furnace gas, in power plant 0.82 0.00 7.00E-06 

treatment of coal gas, in power plant  0.35 0.22 2.18E-03 

Hydro 
electricity production, hydro, reservoir, tropical 

region 
78.63 78.63 61.62 6.16E-01 61.62 

Nuclear 
electricity production, nuclear, pressure water 

reactor 
2.82 2.82 1.19 1.19E-02 1.19 

Wind 

electricity production, wind, <1MW turbine, 

onshore  
0.02 

0.14 

1.15 1.15E-02 

7.70 
electricity production, wind, >3MW turbine, 

onshore  
0.02 1.00 1.00E-02 

electricity production, wind, 1-3MW turbine, 

onshore  
0.10 5.54 5.54E-02 

Import 

import from PY 0.00 

0.00 

3.36 3.36E-02 

4.87 
import from AR 0.00 1.34 1.34E-02 

import from VE 0.00 0.12 1.19E-03 

import from UY  0.00 0.04 4.16E-04 

TOTAL 100 100 100 1 100 
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Table A9.4. Life cycle impact assessment of 1 MJ of energy based on the current LCI (Ecoinvent v3.1) 

and updated LCI (Aneel, 2018). Data obtained by CML baseline. 

Impact category Unit 

Electricity, high 

voltage {BR}| 

production mix | 

Alloc Def, U 

Electricity, high 

voltage {BR}| 

production mix | Alloc 

Def, U - modificado 

VF 

Abiotic depletion kg Sb eq 2.56E-09 5.52E-09 2.16 

Photochemical oxidation* kg C2H4 eq 2.59E-05 5.49E-05 2.12 

Fresh water aquatic ecotox. kg 1,4-DB eq 6.13E-04 1.12E-03 1.83 

Terrestrial ecotoxicity kg 1,4-DB eq 5.22E+00 8.37E+00 1.60 

Human toxicity* kg PO4
3- eq 2.13E-05 3.39E-05 1.59 

Marine aquatic ecotoxicity kg 1,4-DB eq 2.73E-05 4.27E-05 1.56 

Eutrophication kg SO2 eq 1.99E-04 2.92E-04 1.47 

Acidification* MJ 3.83E-01 5.47E-01 1.43 

Abiotic depletion (fossil fuels)* kg CFC-11 eq 2.91E-09 3.50E-09 1.20 

Ozone layer depletion  kg 1,4-DB eq 4.87E-03 5.80E-03 1.19 

Global warming* kg CO2 eq 5.96E-02 6.31E-02 1.06 
Note: *Impact categories selected in this study. 

 

According to the results obtained by Impact 2002+ methodology, the updated LCI has major 

impacts for all categories, except for “Respiratory Organics”, “Ionizing Radiation” and 

“Mineral Extraction”. The categories that presented the greatest increases were: “Non-

Carcinogens” (191%), “Terrestrial Ecotoxicity” (172%), “Aquatic Ecotoxicity” (143%) and 

“Carcinogens” (142%). Considering the other categories selected for this study, there is an 

increase of 23% for “Non-Renewable Energy”, 9% for “Global Warming” and 1% for 

“Respiratory Inorganics”. 

 
Table A9.5. Life cycle impact assessment of 1 MJ of energy based on the current LCI (Ecoinvent v3.1) 

and updated LCI (Aneel, 2018). Data obtained by Impact 2002+. 

Impact category Unit 

Electricity, high voltage 

{BR}| production mix | 

Alloc Def, U 

Electricity, high voltage 

{BR}| production mix | 

Alloc Def, U - modificado 

VF 

Non-carcinogens* kg C2H3Cl eq 2.06E-02 5.99E-02 2.91 

Terrestrial ecotoxicity kg TEG soil 1.06E+00 2.88E+00 2.72 

Aquatic ecotoxicity kg TEG water 2.72E+00 6.60E+00 2.43 

Carcinogens* kg C2H3Cl eq 4.52E-03 1.09E-02 2.42 

Land occupation m2org.arable 5.13E-03 8.64E-03 1.68 

Aquatic acidification kg SO2 eq 1.91E-04 2.80E-04 1.46 

Terrestrial acid/nutri kg SO2 eq 6.32E-04 9.16E-04 1.45 

Non-renewable energy* MJ primary 4.81E-01 5.91E-01 1.23 

Ozone layer depletion kg CFC-11 eq 2.91E-09 3.50E-09 1.20 

Aquatic eutrophication kg PO4 P-lim 5.39E-06 6.25E-06 1.16 

Global warming* kg CO2 eq 5.12E-02 5.58E-02 1.09 

Respiratory inorganics* kg PM2.5 eq 5.99E-05 6.05E-05 1.01 

Respiratory organics kg C2H4 eq 9.85E-06 9.80E-06 0.99 

Ionizing radiation Bq C-14 eq 2.43E-01 1.72E-01 0.71 

Mineral extraction MJ surplus 7.69E-05 2.02E-05 0.26 

Note: *Impact categories selected in this study. 
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The Figures A9.1 and A9.2 enable the comparison of the contribution of each energy source 

for the environmental impacts of 1 MJ energy, according to the current LCI (Ecoinvent v3.1) 

and updated LCI (Aneel, 2018), based on the CML baseline methodology. 

Figura A9.1. Enviroamental impact contribution of the energy sources related to 1 MJ of energy based 

on the current LCI (Ecoinvent v3.1). Data obtained by CML baseline. 

 
 

Figure A9.2. Enviroamental impact contribution of the energy sources related to 1 MJ of energy based 

on the updated LCI (Aneel, 2018). Data obtained by CML baseline. 
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It is possible to note that the largest amount of sugarcane bagasse reported in Aneel data is the 

factor responsible for the increase of the “Abiotic Depletion” impacts. The contribution analysis 

for this category indicated the emissions of iodine and bromine from the production of 

pesticides used in the cultivation of sugarcane as the main contributors. This energy source also 

justifies the increase of the “Photochemical Oxidation” impacts, due to the biogenic emissions 

from carbon monoxide. However, in this case there is still the participation of the emissions of 

sulfur dioxide and biogenic methane, the first one related to oil production and the second one 

with the generation of energy from hydroelectric plants.  

For the “Eutrophication” and “Acidification” categories, the main energy sources that 

contributed to the impacts were oil, due to emissions of nitrogen oxides and sulfur (the latter 

only for "Acidification") and, emissions of nitrate (for "Eutrophication") and ammonia (for 

"Acidification") from the sugarcane cultivation.  

For the categories “Abiotic Depletion (fossil fuels)” and “Human Toxicity”, the increase in 

impacts were justified by the greater share of natural gas and oil as energy sources. The latter 

also justifies the impact increase for “Global Warming”. 

According to the results obtained by Impact 2002+ methodology, the sugarcane bagasse is the 

main contributor to the increase of impacts of “Non-Carcinogens”, “Carcinogens” and 

“Terrestrial Ecotoxicity”, due to the emissions of arsenic to the soil, and the last category also 

has a contribution of zinc emissions to the soil. This energy source also contributes to the 

“Aquatic Ecotoxicity” category due to the soil emissions of anthrax. The increases in impacts 

for the “Global Warming” and “Non-Renewable Energy” had the same justifications presented 

in the results obtained from the CML baseline methodology. 
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Figure A9.3. Enviroamental impact contribution of the energy sources related to 1 MJ of energy based 

on the current LCI (Ecoinvent v3.1). Data obtained by Impact 2002+. 

 
 

Figure A9.4. Enviroamental impact contribution of the energy sources related to 1 MJ of energy based 

on the updated LCI (Aneel, 2018). Data obtained by Impact 2002+ v2.12. 
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Despite the small contribution of sugarcane biomass to the Brazilian energy mix (approximately 

7%), it was observed the important contribution of the impacts of sugarcane cultivation on the 

environmental profile of the Brazilian energy mix. In this sense, a careful evaluation of the 

inventory available in the Ecoinvent v3.1 database is required.  

Coelho (2009) also highlighted the relevance of the impacts of this energy source to the 

“Carcinogens” category of the Eco indicator 99 H/A methodology, due to the emissions of 

arsenic to the soil. According to the author, the arsenic comes from the use of the diammonium 

phosphate fertilizer, which contains arsenic in its composition. However, the author pointed out 

that the data on pesticides used in the crop are from 1988. For this reason, the presence of aldrin 

in the inventory has also been observed (this substance was banned in Brazil since 1985). In 

this context, could be recommended to consider the characterisation factor of this substance as 

zero. 

In addition, considering that it is an LCI based on not recent data, the harvest mechanization 

rate is low, therefore, there is a greater accounting of emissions from the burning of sugarcane 

due to the manual harvesting. On the other hand, if the mechanization rate were higher, there 

would be a higher diesel consumption. 

Picoli et al. (2006) carried out the update of the process “sugarcane, at farm /BR U” of 

Ecoinvent database, based on data from the literature and expert consultation. According to this 

study, the main causes of the differences between the old and the updated data refer to the 

different types and quantities of fertilizers and pesticides, the occurrence of the mechanized 

harvesting (without burning) and accounting for greenhouse gas emissions from land-use 

change.  

The comparison of the impacts of the cultivation of 1 tonne of sugarcane from the LCI available 

in the Ecoinvent v3.1 database and the updated LCI, using the ReCiPe Midpoint (H) 

v1.12/World ReCiPe H methodology, showed that “Terrestrial Ecotoxicity” is the main affected 

category, presenting 98% less impacts for the updated LCI. The main reason is the existence of 

the insecticide aldrin in the inventory available on Ecoinvent v3.1, and two other pesticides (the 

herbicides Atrazina and Linuron) were also included in much higher quantities.  

Another important result was the reduction of 79% in the impacts of the category 

“Photochemical Oxidation” due to biogenic carbon monoxide emissions, derived from the 
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burning of sugarcane in the manual harvesting, since the LCI of Ecoinvent v3.1 considers the 

practice of manual harvesting in 80% of the area, while the current average is 19%.  

This study considered the use of the single superphosphate fertilizer in substitution to the 

diammonium phosphate fertilizer (DAP). Moreover, it was not considered the application of 

potassium in vinasse application area, nor the application of phosphorus in the area of 

application of cake filter. 

Despite the variations highlighted above, the comparison between the environmental 

profile of the current base case scenario and the base case scenario with the modifications 

of the Brazilian energy mix and exclusion of the characterisation factor of “Aldrin” from 

the LCIA methodologies does not present significant differences in the characterised and 

normalised results. 

Table A9.6 presents the results obtained by the CML baseline methodology and the variation 

factor for each category in ascending order. There is an increase in impacts due to changes in 

the energy mix for the “Fresh Water Aquatic Ecotoxicity” (14%), “Eutrophication” (14%), 

“Ozone Layer Depletion” (13%) and “Photochemical Oxidation” (12%). 

 

Tables A9.7 and A9.8 present the normalised results and the contribution of each category to 

the total impacts, confirming that there are no significant changes in the results, since the 

hierarchy of importance of the impact categories is maintained. 

 

Tabela A9.6. Comparison between the environmental profile of the current base scenario and the base 

scenario containing the updated Brazilian energy mix. Characterised results obtained by the CML 

baseline methodology, considering all impact categories. 

Impact category Unit Base case scenario 
Base case scenario - 

updated 
VF 

Fresh water aquatic ecotox. kg 1,4-DB eq 2.65E+03 3.02E+03 1.14 

Eutrophication kg PO4
3- eq 4.47E+01 5.08E+01 1.14 

Ozone layer depletion kg CFC-11 eq 2.16E-03 2.45E-03 1.13 

Abiotic depletion kg Sb eq 3.03E-01 3.04E-01 1.00 

Terrestrial ecotoxicity kg 1,4-DB eq 1.13E+04 1.13E+04 1.00 

Marine aquatic ecotoxicity kg 1,4-DB eq -6.79E+07 -6.65E+07 0.98 

Global warming kg CO2 eq -9.71E+04 -9.49E+04 0.98 

Abiotic depletion (fossil fuels) MJ -2.00E+06 -1.93E+06 0.97 

Acidification kg SO2 eq -8.55E+02 -8.13E+02 0.95 

Human toxicity kg 1,4-DB eq -3.30E+04 -2.99E+04 0.91 

Photochemical oxidation kg C2H4 eq -1.14E+02 -1.00E+02 0.88 
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Tabela A9.7. Comparison between the environmental profile of the current base scenario and the base 

scenario containing the updated Brazilian energy mix. Normalised results obtained by the CML baseline 

methodology, considering all impact categories. 

Impact category 
Base case scenario - current Base case scenario - updated 

Normalisation Contribution Normalisation Contribution 

Marine aquatic ecotoxicity -3.50E-07 89.70% -3.43E-07 89.91% 

Human toxicity -1.28E-08 3.27% -1.16E-08 3.04% 

Terrestrial ecotoxicity 1.03E-08 2.64% 1.04E-08 2.71% 

Abiotic depletion (fossil fuels) -5.25E-09 1.34% -5.09E-09 1.33% 

Acidification -3.58E-09 0.92% -3.41E-09 0.89% 

Photochemical oxidation -3.10E-09 0.79% -2.72E-09 0.71% 

Global warming -2.32E-09 0.59% -2.27E-09 0.59% 

Abiotic depletion 1.45E-09 0.37% 1.45E-09 0.38% 

Fresh water aquatic ecotox. 1.12E-09 0.29% 1.28E-09 0.33% 

Eutrophication 2.83E-10 0.07% 3.21E-10 0.08% 

Ozone layer depletion 9.54E-12 0.00% 1.08E-11 0.00% 

 

Tabela A9.8. Comparison between the environmental profile of the current base scenario and the base 

scenario containing the updated Brazilian energy mix. Normalised results obtained by the CML baseline 

methodology, excluding “Marine Aquatic Ecotoxicity”, “Fresh Water Aquatic Ecotoxicity” and 

“Terrestrial Ecotoxicity” impact categories. 

Impact category 
Base case scenario - current Base case scenario - updated 

Normalisation Contribution Normalisation Contribution 

Human toxicity -1.28E-08 44.45% -1.16E-08 43.17% 

Abiotic depletion (fossil fuels) -5.25E-09 18.23% -5.09E-09 18.93% 

Acidification -3.58E-09 12.44% -3.41E-09 12.67% 

Photochemical oxidation -3.10E-09 10.76% -2.72E-09 10.13% 

Global warming -2.32E-09 8.06% -2.27E-09 8.44% 

Abiotic depletion 1.45E-09 5.03% 1.45E-09 5.41% 

Eutrophication 2.83E-10 0.98% 3.21E-10 1.20% 

Ozone layer depletion 9.54E-12 0.03% 1.08E-11 0.04% 

 

Table A9.9 presents the results obtained by the Impact 2002+ methodology and the variation 

factor for each category in ascending order. The main categories influenced by the modification 

of energy mix data were "Non-Carcinogens" and "Aquatic Ecotoxicity", with increases of 120% 

and 75%, respectively. Subsequently, the categories "Terrestrial Ecotoxicity", "Land 

Occupancy" and "Ozone Layer Depletion" showed a increase of 19%, 21% and 13%, 

respectively. Only, the category "Ionizing Radiation" showed a significant impact reduction 

(13%). 

In relation to normalised results (Table A9.10), the hierarchy of importance of impact categories 

remains, however, it is important to note that the category "Non-Carcinogens" showed a 

significant increase in the contribution for the impacts. 
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Tabela A9.9. Comparison between the environmental profile of the current base scenario and the base 

scenario containing the updated Brazilian energy mix. Characterised results obtained by Impact 2002+ 

methodology, considering all impact categories. 

Impact category Unit Base case scenario - current Base case scenario - updated VF 

Non-carcinogens kg C2H3Cl eq 1.57E+04 3.45E+04 2.20 

Terrestrial ecotoxicity kg TEG soil 4.49E+06 5.36E+06 1.19 

Ozone layer depletion kg CFC-11 eq 2.16E-03 2.45E-03 1.13 

Carcinogens kg C2H3Cl eq 4.02E+04 4.31E+04 1.07 

Respiratory organics kg C2H4 eq -2.33E+02 -2.33E+02 1.00 

Mineral extraction MJ surplus -5.81E+04 -5.82E+04 1.00 

Respiratory inorganics kg PM2.5 eq -2.36E+02 -2.35E+02 1.00 

Global warming kg CO2 eq -2.06E+05 -2.03E+05 0.99 

Non-renewable energy MJ primary -2.16E+06 -2.12E+06 0.98 

Aquatic acidification kg SO2 eq -7.96E+02 -7.56E+02 0.95 

Aquatic eutrophication kg PO4 P-lim -8.18E+00 -7.70E+00 0.94 

Terrestrial acid/nutri kg SO2 eq -2.09E+03 -1.96E+03 0.94 

Ionizing radiation Bq C-14 eq 2.34E+05 2.05E+05 0.87 

Land occupation m2org.arable -8.12E+03 -6.39E+03 0.79 

Aquatic ecotoxicity kg TEG water -2.79E+06 -9.83E+05 0.35 

 

Tabela A9.10. Comparison between the environmental profile of the current base scenario and the base 

scenario containing the updated Brazilian energy mix. Normalised results obtained by the Impact 2002+ 

methodology, considering all impact categories. 

Impact category 
Base case scenario - current Base case scenario - updated 

Normalisation Contribution Normalisation Contribution 

Respiratory inorganics -2.33E+01 27.65% -232E+01 25.08% 

Global warming -2.08E+01 24.70% -2.05E+01 22.19% 

Carcinogens 1.59E+01 18.84% 1.70E+01 18.39% 

Non-renewable energy -1.42E+01 16.87% -1.40E+01 15.10% 

Non-carcinogens 6.19E+00 7.35% 1.36E+01 14.70% 

Terrestrial ecotoxicity 2.60E+00 3.08% 3.10E+00 3.34% 

Land occupation -6.46E-01 0.77% -5.08E-01 0.55% 

Mineral extraction -3.83E-01 0.45% -3.83E-01 0.41% 

Terrestrial acid/nutri -1.59E-01 0.19% -1.48E-01 0.16% 

Respiratory organics -7.00E-02 0.08% -7.01E-02 0.08% 

Ionizing radiation 1.02E-02 0.01% 6.07E-03 0.01% 

Aquatic ecotoxicity -1.02E-02 0.01% -3.60E-03 0.00% 

Ozone layer depletion 3.20E-04 0.0004% 3.63E-04 0.00% 

Aquatic acidification 0.00E+00 - 0.00E+00 - 

Aquatic eutrophication 0.00E+00 - 0.00E+00 - 
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