UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FÍSICA "GLEB WATAGHIN"

Algumas Propriedades de Amplitudes de Espalhamento em Teorias de "Gauge".

Dissertação submetida à Universidade Estadual de Campinas como requisito parcial à obtenção do grau de

Mestre em Física

por

Marco André Ferreira Dias

Orientador: **Prof. Dr. Fernando Tadeu Caldeira Brandt -IF/USP** Co-orientador: **Prof. Dr. Carlos Ourivio Escobar -IFGW/UNICAMP** COMISSÃO EXAMINADORA Prof. Dr. Fernando Tadeu Caldeira Brandt-IF/USP Prof. Dr. Orlando Luis Goulart Peres-IFGW/UNICAMP Prof. Dr. Oscar José Pinto Éboli-IF/USP

Campinas, 07 de Junho de 2002

Dedicatória

aos meus pais, Antonio e Maslova, e a minha esposa Valéria, com amor . . .

Agradecimentos

- i Gostaria de agradecer em primeiro lugar ao meu orientador, o prof. Dr. Fernando Tadeu Caldeira Brandt, pela assistência e incentivo na elaboração deste trabalho e por auxiliar-me no início da minha vida como pesquisador;
- ii ao prof. Dr. Carlos O. Escobar pela co-orientação;
- iii ao IFGW-Unicamp, estendendo a todos os professores, em especial aos professores Marcelo Guzzo, Oscar J. P. Éboli, Orlando L. G. Peres, Carlos O. Escobar e Carola D. Chinellato, pelas correções; aos funcionários pelo apoio técnico e à CAPES pelo apoio financeiro;
- iv aos colegas do IFGW e IFUSP;
- v à minha esposa, pela paciência, e aos meus pais, sem o apoio destes este trabalho não estaria realizado.

Resumo

Investigamos algumas propriedades de amplitudes de espalhamento em teorias de "gauge" na aproximação de árvore. Uma breve introdução do caráter clássico da teoria e à descontinuidade de Dam-Veltman são apresentadas. Tratamos especificamente das amplitudes do espalhamento glúon-glúon e gráviton-gráviton e das propriedades de invariância de "gauge". Para a obtenção das regras de Feynman e cálculo das amplitudes foram elaborados algoritmos de computação simbólica.

Abstract

We investigate some properties of scattering amplitudes in gauge theories, in tree approximation. A brief introduction about classical aspects and the Dam-Veltman discontinuity are discussed. We treat specifically the gluon-gluon and gravitongraviton scattering amplitudes and its properties of gauge invariance. To obtain the Feynman rules and amplitude calculation, we make some algorithms in computer algebra.

Sumário

Introdução 1				
1	A ra	ıdiação gravitacional	4	
	1.1	Teoria clássica	4	
	1.2	Campos de "gauge" massivos e não massivos	8	
	1.3	Campos de Yang-Mills	9	
	1.4	Campos gravitacionais	13	
	1.5	Resultados fenomenológicos	15	
2	Qua	ntização na aproximação de campo fraco	18	
	2.1	A lagrangeana de Einstein-Hilbert	18	
	2.2	As regras de Feynman na teoria puramente gravitacional	24	
	2.3	A lagrangeana de interação eletromagnética	27	
3	A ar	nplitude de espalhamento e suas propriedades	30	
	3.1	O espalhamento glúon-glúon	30	
	3.2	O espalhamento gráviton-gráviton	32	
	3.3	A invariância de "gauge" em Yang-Mills	33	
	3.4	Invariância de "gauge" e identidades de Ward gravitacionais	34	
		3.4.1 Identidade de Ward no acoplamento gráviton-fóton	38	
	3.5	Fatorização da amplitude	40	
	3.6	Resultados obtidos	41	
		3.6.1 Espalhamento glúon-glúon	41	
		3.6.2 Espalhamento gráviton-gráviton	43	
4	Con	clusão Geral	45	
Bil	Bibliografia			

Α	Programa de espalhamento glúon-glúon	50	
	A.1 A amplitude de espalhamento	50	
	A.2 A invariância de "gauge"	52	
	A.3 A fatorização da amplitude	53	
В	Regras de Feynman na gravitação	55	
	B.1 A aproximação de campo fraco	59	
	B.2 O propagador do gráviton	60	
	B.3 Os vértices cúbicos e quárticos	62	
С	Programa de espalhamento gráviton-gráviton		
	C.1 Aplicando as identidades de Ward	64	
	C.2 A amplitude de espalhamento	66	
	C.3 Iniciando a fatorização	68	
D	Simetrização da amplitude gráviton-gráviton	72	
E	Regras de Feynman no acoplamento fóton-gráviton	94	

Introdução

Neste trabalho estamos interessados em estudar as propriedades das interações entre campos de "gauge", incluindo campos vetoriais (fótons) e tensoriais (grávitons). O ponto de vista que tomamos é da Teoria Quântica de Campos, utilizando uma aproximação semi-clássica. Nesse esquema iremos verificar principalmente as propriedades de invariância de "gauge" e fatorização de amplitudes de espalhamento gráviton-gráviton e glúon-glúon.

Classicamente os estados fundamentais de uma onda plana gravitacional são fornecidos pelas soluções da equação de Einstein, para a qual, após tomarmos a aproximação de campo fraco:

$$g^{\mu\nu} = \eta^{\mu\nu} + \kappa \phi^{\mu\nu}, \tag{1}$$

onde $\eta^{\mu\nu}$ é a métrica de Minkowski, $\kappa^2 = 32\pi G$, sendo G a constante de Newton, e $\phi_{\mu\nu}$ o campo do gráviton, obteremos estas soluções, impondo que o tensor de energia-momentum gravitacional seja nulo. Em nosso esquema de quantização utilizaremos esta aproximação, substituindo (1) na densidade lagrangeana de Einstein-Hilbert, para depois quantizarmos via integrais de trajetória (para tanto, devemos também introduzir um termo de fixação de "gauge"; a introdução dos fantasmas de Faddeev-Popov não serão necessária na aproximação de árvore).

Observamos que devido à expansão em potências, derivadas dessa aproximação, obteremos infinitos tipos de acoplamentos. Essa não-linearidade torna os cálculos bastante tediosos. Assim empregamos *computação simbólica* extensivamente.

Como as soluções para equação de onda dependem do tensor energia-momentum de qualquer partícula, podemos supor que o gráviton acopla com qualquer fonte desta, ou seja, qualquer campo de matéria ou radiação, inclusive o próprio gráviton. Nesse ponto a analogia com as teorias de "gauge" não-abelianas é inevitável. Os campos de Yang-Mills conservam corrente e carregam cor, apresentando também um caráter auto-interagente. Similarmente os campos gravitacionais carregam energia-momentum. Assim esta analogia será explorada ao longo de nosso trabalho.

O projeto de quantização da gravidade tem ainda sido perseguido por muitos pesquisadores nas últimas décadas, com a mais promissora das teorias, em nossa época, sendo a das *supercordas*. Entretanto mesmo nesta teoria verificamos a existência de partículas sem massa e de spin 2, identificadas prontamente como o gráviton. Seria interessante comparar os progressos da teoria em pesquisa com a *gravitação quântica*, desenvolvida neste trabalho, como explorado por Sannan [San86], por exemplo, o qual comparou o espalhamento gráviton-gráviton, de modo semelhante ao efetuado aqui, porém em um caso particularizado, e comparou com a amplitude fornecida pela teoria de cordas. Logo, vemos aplicações interessantes da gravidade quântica ainda atualmente.

Uma pergunta que surgiu no decurso do nosso trabalho foi sobre a identificação de partículas de spin 2, *massivas*, com o gráviton, motivados por publicações recentes ([Neu02],[CG01],[Gru01],[FS02], por exemplo). O trabalho de Veltman e van Dam [VD70] e Zakharov [Zak70], mostrado nesta dissertação, vai além da questão, mostrando a incompatibilidade de uma teoria com massa finita com os dados observados, mostrando ainda que o caso de massa finita tendendo a zero não se reduz ao caso não-massivo. Novamente a analogia entre a teoria da gravitação e a teoria de Yang-Mills será explorada, pois esta também apresenta esta "descontinuidade", porém em nível diferente, como veremos a seguir.

Podemos obter muitas informações estudando as propriedades do espalhamento, tanto quanto usando as amplitudes de espalhamento no cálculo sistemático de seções de choque diferenciais. Nesta última linha vale a pena citar o trabalho de Papini e Valluri [PV51]. Não será o nosso caso. Procuramos observar as propriedades da amplitude diretamente, em primeiro lugar verificando a invariância de "gauge", frente a transformações do tipo:

$$x^{\prime \mu} = x^{\mu} + \epsilon^{\mu}(x). \tag{2}$$

observando que a ação deve ser invariante. A partir desta invariância determinamos as *identidades de Ward gravitacionais*. Para as amplitudes, uma propriedade interessante é sua *fatorização*, ou seja, a possibilidade de separar a amplitude de espalhamento em termos que possuem invariância local ou global (carga, energiamomentum, cor, etc..). Ou seja, uma amplitude de espalhamento pode ser decomposta em termos do tipo

$$\mathcal{M} = \sum_{k=1}^{N} \frac{A_i \cdot B_i}{C_i} \tag{3}$$

onde os fatores $A_i, B_i \in C_i$ satisfazem :

$$\sum_{i=1}^{N} A_i = \sum_{i=1}^{N} B_i = \sum_{i=1}^{N} C_i = 0.$$
 (4)

No caso de Yang-Mills obtivemos facilmente esta fatorização, entretanto no caso gravitacional o uso de *computação algébrica* foi crucial, mas no entanto não obtivemos resultados como citado em [CSS95].

Podemos dizer que a síntese do nosso trabalho aqui é analisar os variados aspectos do espalhamento entre grávitons, na aproximação semi-clássica, fazendo sempre uma analogia com o caso não abeliano.

O trabalho é exposto como segue: no primeiro capítulo identificamos as propriedades da radiação gravitacional, e como convite ao capítulo a seguir, tratamos da "descontinuidade de Dam-Veltmann". Assim, no capítulo 2, apresentamos as regras de Feynman da gravitação, e sua interação com campos vetoriais abelianos, que serão utilizadas no capítulo 3, para determinação da amplitude de espalhamento gráviton-gráviton. Neste capítulo faremos uma revisão sobre o espalhamento de glúons. Neste capítulo apresentamos também as propriedades gerais desta amplitude, como invariância de "gauge", que se resume na verificação das identidades de Ward, simetria de permutação bosônica e fatorização da amplitude. Reservamos algumas conclusões ao final e no apêndice apresentamos alguns algoritmos empregados na construção destas amplitudes e determinação das regras de Feynman.

Neste trabalho utilizamos o sistema natural de unidades ($\hbar = c = 1$). Em nossa notação a assinatura é (+ - --), menos no capítulo 1, onde mantivemonos fiéis ao trabalho [VD70]. Adotaremos a notação para derivadas parciais tal que $\partial_b X^a = \frac{\partial X^a}{\partial x^b} = X^a_{,b}$. Como mencionado anteriormente $\kappa^2 = 32\pi G$, onde G é a constante de Newton.

Capítulo 1

A radiação gravitacional

Neste capítulo iremos fazer uma revisão sobre as soluções de ondas planas a partir da equação de Einstein. A questão da descontinuidade entre uma teoria não massiva e uma teoria com massa não nula, será discutida aqui, fazendo uma analogia entre o caso gravitacional e o caso não-abeliano.

1.1 Teoria clássica

A partir da lagrangeana de Einstein-Hilbert [Wei72]:

$$\mathcal{L} = \frac{2}{\kappa^2} \sqrt{-g} g^{\mu\nu} R_{\mu\nu}, \qquad (1.1)$$

onde $g \equiv det(g_{\mu\nu})$, podemos obter, utilizando as equações de Euler-Lagrange, a equação de campo de Einstein:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}, \qquad (1.2)$$

onde $T^{\mu\nu}$ é o tensor de energia-momento , e $R^{\mu\nu}$ o tensor de Ricci, como definido abaixo,

$$R_{\mu\nu} \equiv \Gamma^{\rho}_{\mu\rho,\nu} - \Gamma^{\rho}_{\mu\nu,\rho} - \Gamma^{\sigma}_{\mu\nu}\Gamma^{\rho}_{\sigma\rho} + \Gamma^{\rho}_{\sigma\nu}\Gamma^{\sigma}_{\mu\rho}, \qquad (1.3)$$

onde $\Gamma^{\alpha}_{\mu\nu}$ são os símbolos de Christoffel:

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{g^{\alpha\omega}}{2} \left(g_{\beta\omega,\gamma} + g_{\omega\gamma,\beta} - g_{\beta\gamma,\omega}, \right), \qquad (1.4)$$

com o escalar de Ricci definido como:

$$R = g^{\mu\nu} R_{\mu\nu}. \tag{1.5}$$

Faremos uma aproximação de campo fraco,

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa \phi_{\mu\nu}, \qquad (1.6)$$

onde $\eta_{\mu\nu}$ é a métrica de Minkowski, e $\phi_{\mu\nu}$ o campo do gráviton. Até a primeira ordem de κ , o valor do tensor de Ricci:

$$R_{\mu\nu} \approx \Gamma^{\rho}_{\mu\rho,\nu} - \Gamma^{\rho}_{\mu\nu,\rho}, \qquad (1.7)$$

de onde obtemos, substituindo (1.6) na equação acima,

$$R_{\mu\nu} \approx \frac{1}{2} \left(\eta_{\alpha\delta} \phi^{\alpha\delta}_{,\nu\mu} - \eta^{\beta\omega} \phi_{\mu\nu,\beta\omega} - \phi^{\alpha}_{\nu,\mu\alpha} - \phi^{\alpha}_{\mu,\nu\alpha} \right); \qquad (1.8)$$

dessa forma o escalar de Ricci torna-se:

$$R \equiv g^{\mu\nu} R_{\mu\nu} \approx \eta^{\mu\nu} R_{\mu\nu} = \phi^{\beta}_{\beta,\alpha\alpha} - \phi^{\alpha\beta}_{,\alpha\beta}.$$
 (1.9)

Utilizaremos a expressão (1.2) para determinar o valor da equação de campo com a definição $\eta^{\mu\nu}\partial_{\mu}\partial_{\nu} = \Box$ e teremos

$$\frac{1}{2}\left[-\phi^{\beta}_{\mu,\nu\beta}-\phi^{\beta}_{\nu,\mu\beta}+\Box\phi_{\mu\nu}+\eta^{\mu\nu}\phi^{\beta,\alpha}_{\alpha,\beta}-\eta^{\mu\nu}\Box\phi^{\alpha}_{\alpha}+\phi^{\alpha}_{\alpha,\mu\nu}\right]=\kappa T^{\mu\nu},\qquad(1.10)$$

que coincide com a expressão obtida por [Wei72]. É conveniente especializarmonos em um tipo específico de "gauge". Analogamente ao "gauge" de Lorentz, usaremos

$$\phi_{\mu\nu,\mu} = \frac{1}{2} \phi^{\mu}_{\mu,\nu}, \qquad (1.11)$$

e será conveniente ainda definir uma operação "barra", tal que

$$\overline{\phi_{\mu\nu}} \equiv \phi_{\mu\nu} - \frac{1}{2} \phi^{\alpha}_{\alpha} \eta_{\mu\nu}, \qquad (1.12)$$

notando ainda que esta operação é sua própria inversa pois

$$\overline{\phi}_{\mu\nu} - \frac{1}{2}\overline{\phi}^{\alpha}_{\alpha}\eta_{\mu\nu} = \phi_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}\left(\phi^{\alpha}_{\alpha} + \overline{\phi}^{\alpha}_{\alpha}\right) = \phi_{\mu\nu}, \qquad (1.13)$$

1.1. TEORIA CLÁSSICA

pois $\overline{\phi}^{\alpha}_{\alpha} = -\phi^{\alpha}_{\alpha}$. Assim poderemos escrever a equação (1.10) de uma forma mais compacta, substituindo (1.12) nela, tal que,

$$\overline{\phi}_{\mu\nu,\alpha}{}^{\alpha} + \left(\eta_{\mu\nu}\overline{\phi}_{\alpha\beta,\alpha\beta} - \overline{\phi}_{\alpha\nu,\mu\alpha} - \overline{\phi}_{\alpha\mu,\nu\alpha}\right) = 2\kappa T_{\mu\nu}.$$
(1.14)

Observemos que:

$$\overline{\phi}_{\mu\nu,\mu} = \phi_{\mu\nu,\mu} - \frac{1}{2} \phi^{\alpha}_{\alpha,\mu} \eta^{\mu\nu} = \phi_{\mu\nu,\mu} - \frac{1}{2} \phi^{\alpha,\nu}_{\alpha} = = \frac{1}{2} \phi^{\mu}_{\mu,\nu} - \frac{1}{2} \phi^{\mu}_{\mu,\nu} = 0, \qquad (1.15)$$

logo podemos eliminar derivadas semelhantes às do termo acima, eliminando os três últimos termos à esquerda, restando somente

$$\overline{\phi}_{\mu\nu,\alpha}^{\ \alpha} = 2\kappa T_{\mu\nu},\tag{1.16}$$

aplicando a operação "barra"nos dois lados da equação:

$$\phi^{\alpha}_{\mu\nu,\alpha} = 2\kappa \left(T_{\mu\nu} - \frac{1}{2} T^{\alpha}_{\alpha} \eta_{\mu\nu} \right).$$
(1.17)

Na ausência de fontes gravitacionais teremos

$$\phi_{\mu\nu,\alpha}{}^{\alpha} = 0. \tag{1.18}$$

As soluções para esta equação são ondas gravitacionais, do tipo

$$\phi_{\mu\nu}(x) = \epsilon_{\mu\nu}(k)e^{\pm ik.x},\tag{1.19}$$

onde $\epsilon_{\mu\nu}$ é o tensor de polarização, uma matriz 4 × 4, a princípio com 16 componentes independentes para serem determinadas . Este tensor deve satisfazer ainda a condição de transversalidade,

$$k_{\nu}\epsilon^{\mu\nu} = \epsilon^{\mu\nu}k_{\mu} = 0. \tag{1.20}$$

Como este tensor é simétrico, teremos $\epsilon^{\mu\nu} = \epsilon^{\nu\mu}$. Assim ele seria composta por dez componentes independentes, mas a condição de transversalidade (1.20) elimina 4 graus de liberdade, reduzindo esse número a seis componentes. Entretanto as condições (1.20), não fixam totalmente o "gauge". Existe uma liberdade residual,

devido à invariância sob uma mudança de coordenadas do tipo $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$. Impondo a condição de traço nulo

$$\epsilon^{\mu}_{\mu} = 0, \qquad (1.21)$$

obtemos mais uma condição, o que significa 6 - 1 = 5 graus de liberdade independentes. Estes correspondem aos $2 \times s + 1$ graus de liberdade independentes de uma partícula de spin s = 2. Quando a massa é nula, há uma liberdade de "gauge" residual que permite fazer uma transformação que elimina mais 3 graus de liberdade [Wei72]. Assim emergem dois estados de polarização. Logo a helicidade é ± 2 . No caso massivo, podemos ter estados de polarização com helicidades $\pm 2, \pm 1$ ou zero.

É comum associar, no contexto da Teoria Quântica de Campos, à exemplo do caso eletromagnético, em que o mediador da força eletromagnética são os *fótons*, às ondas gravitacionais associa-se uma partícula mediadora da força gravitacional, o *gráviton*.

Do ponto de vista fenomenológico, podemos tentar entender as propriedades do gráviton da seguinte maneira. Como a lei da gravidade de Newton tem longo alcance, como a lei de Coulomb, deve-se presumir que a força seja mediada por partículas sem massa, como o *gráviton*. Sabemos que partículas com spin par (como o píon) produzem forças atrativas, o que requer que o spin do gráviton seja $0, 2, \ldots$ Feynman [FMW95] sugeriu que a distinção entre o caso de spin 0 e 2 pudesse ser feita com base na atração gravitacional entre massas de um gás quente fosse maior que para um gás frio, isto é, que a energia pudesse ser interpretada como uma forma de massa gravitacional. Se tivéssemos partículas de spin 0, a energia de interação seria proporcional a $\gamma^{-1} = (1 - v^2)^{\frac{1}{2}}$, que incorretamente prediz que uma interação entre massas quentes $(v \uparrow)$ é menor que frias $(v \downarrow)$, com o oposto acontecendo com o spin 2.

Entretanto poderia ser considerada aqui uma teoria na qual a massa $m \rightarrow 0$, mas não nula como sugerida por Veltman [VD70]. Veremos a seguir que é encontrada uma diferença entre uma teoria de massa nula, e uma teoria de massa pequena. Faremos uma analogia com os campos não-abelianos de Yang-Mills e no caso da gravitação, compararemos com resultados experimentais (o movimento do periélio de Mercúrio e a deflexão da luz), indicando que a gravitação seja uma teoria de massa rigorosamente nula.

1.2 Campos de "gauge" massivos e não massivos

Uma partícula de spin 1 massiva é caracterizada pelo seu momento quadridimensional p_{μ} e pelo seu vetor de polarização $\epsilon_{\mu}(p)$. Existem 2s + 1 vetores de polarização independentes tal que a soma sobre todas as polarizações nos fornece:

$$\Pi^{\mu\nu} \equiv \sum_{i=1}^{3} \epsilon^{i}_{\mu} \epsilon^{i}_{\nu} = \eta_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m^{2}}.$$
(1.22)

Podemos considerar, por exemplo, esta fórmula no sistema da partícula em movimento, em que $p_{\mu} = (0, 0, 0, im)^1$. Devido à condição de ortogonalidade, $p_{\mu}\epsilon^{\mu} = 0$, teremos ϵ_{μ} tomando valores (1, 0, 0, 0), (0, 1, 0, 0) e (0, 0, 1, 0). Assim explicitamente

$$\Pi^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
 (1.23)

Para partículas de massa zero existem duas polarizações independentes (devido à própria condição de ortogonalidade). No sistema de coordenadas onde somente existe a direção z, teremos $p_{\mu} = (0, 0, p, ip)$, com $p = |\vec{p}|$, e os vetores de polarização seriam somente (1, 0, 0, 0) e (0, 1, 0, 0), sendo assim:

Podemos aplicar uma reflexão espacial em p_{μ} , tal que seja construído um novo vetor $\bar{p}_{\mu} = (0, 0, -p, ip)$, e construir o tensor acima usando:

$$\Pi^{\mu\nu} \equiv \sum_{i=1}^{3} \epsilon^{i}_{\mu} \epsilon^{i}_{\nu} = \eta_{\mu\nu} - \frac{\bar{p}_{\mu} p_{\nu} + p_{\mu} \bar{p}_{\nu}}{p\bar{p}}.$$
(1.25)

Verifica-se ainda a condição de transversalidade, pois multiplicando (1.25) tanto por p_{μ} , quanto por \bar{p}_{μ} , o resultado é nulo.

¹adotamos aqui $p_{\mu}=(\vec{p},iE)$ e a métrica (+ + ++)

1.3 Campos de Yang-Mills

Queremos agora determinar as regras de Feynman para o caso com massa e não massivo. Os vértices de três e quatro pontos continuam sendo os mesmos tanto para a teoria com massa, quanto para a teoria sem massa.

$$-igf_{abc}F_{\alpha\beta\gamma}(k,p,q) = -igf_{abc}[\eta_{\alpha\gamma}(k-q)_{\beta} + \eta_{\beta\gamma}(q-p)_{\alpha} + \eta_{\alpha\beta}(p-k)_{\gamma}]$$
(1.26)

$$i\Gamma^{abcd}_{\mu\nu\lambda\rho} = ig^{2}[f^{abe}f^{cde}(\eta_{\mu\lambda}\eta_{\nu\rho} - \eta_{\nu\lambda}\eta_{\mu\rho}) + f^{ace}f^{bde}(\eta_{\mu\nu}\eta_{\lambda\rho} - \eta_{\nu\lambda}\eta_{\mu\rho}) + f^{ade}f^{cbe}(\eta_{\mu\lambda}\eta_{\rho\nu} - \eta_{\rho\lambda}\eta_{\mu\nu})],$$

$$p + k + q + r = 0.$$
(1.27)

Isto advém do fato de que, dada a ação de Yang-Mills:

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}, \qquad (1.28)$$

a contribuição de um termo com massa não interfere nos acoplamentos cúbicos e quárticos da teoria.

A forma dos propagadores no "gauge" de Feynman para o caso massivo é

$$\frac{\eta_{\mu\nu}}{p^2 + m^2 - i\epsilon},\tag{1.29}$$

1.3. CAMPOS DE YANG-MILLS

e para o caso sem massa

$$\frac{\eta_{\mu\nu}}{p^2 - i\epsilon}.\tag{1.30}$$

Consideremos o espalhamento de dois glúons, como esquematizado abaixo

O objetivo é agora verificar a unitariedade. A unitariedade da matriz S significa $S^{\dagger}S = 1$. Como S = 1 + iT isto significa para a matriz T:

$$i(T - T^{\dagger}) = -T^{\dagger}T \tag{1.31}$$

Nós devemos considerar o elemento de matriz desta equação entre todos estados possíveis, ou seja, entre $\langle b | e | a \rangle$. O produto da direita significa a somatória sobre todos os estados intermediários:

$$i(\langle b|T|a \rangle - \langle b|T^{\dagger}|a \rangle) = -\sum_{c} \langle b|T^{\dagger}|c \rangle \langle c|T|a \rangle,$$
 (1.32)

entendendo o lado esquerdo da equação como duas vezes a parte imaginária (verificado para qualquer número imaginário). Para verificar a unitariedade precisamos somente computar a parte imaginária deste conjunto de diagramas. Para isso, substituímos o valor do propagador por $i\pi\delta(k^2 + m^2)\delta_{\mu\nu}$, no caso massivo e $i\pi\delta(k^2)\delta_{\mu\nu}$ (aquí k é o quadrimomento transferido), para o caso sem massa [Ryd85]. Obviamente o último gráfico não apresenta contribuição.

1.3. CAMPOS DE YANG-MILLS

Antes, algumas propriedades seriam interessantes de serem demonstradas. Utilizando a forma de $F_{\alpha\beta\gamma}$ e que p + k + q = 0:

$$p_{\beta}F_{\alpha\beta\gamma}(k,p,q) = \eta_{\alpha\gamma}(q^2 - k^2) + k_{\alpha}k_{\gamma} - q_{\alpha}q_{\gamma}$$
(1.33)

Seja agora o vetor de polarização $\epsilon_{\alpha}(k)$, com $\epsilon_{\alpha}k_{\alpha} = 0$.

$$\epsilon_{\alpha} p_{\beta} F_{\alpha\beta\gamma}(k, p, q) = -\epsilon_{\alpha}(k) q_{\alpha} q_{\gamma} \tag{1.34}$$

no caso em que $k^2 = q^2$. Para o caso $k^2 = p^2$

$$\epsilon_{\alpha}q_{\gamma}F_{\alpha\beta\gamma}(k,p,q) = -\epsilon_{\alpha}(k)p_{\alpha}p_{\beta} \tag{1.35}$$

e finalmente se ϵ_{γ} é um vetor de polarização tal que $\epsilon_{\gamma}q_{\gamma}$ é nulo, obtemos

$$\epsilon_{\gamma}(q)\epsilon_{\alpha}q_{\gamma}F_{\alpha\beta\gamma}(k,p,q) = 0 \tag{1.36}$$

$$k^2 = q^2 \tag{1.37}$$

O requerimento de unitariedade é satisfeito se nós trocarmos $\eta_{\mu\nu}$ pela soma das polarizações, tanto (1.22), como (1.25). Como todas as partículas estão na camada de massa, obedecem a condição $k^2 = q^2 = k'^2 = q'^2$. Desta forma a equação (1.36) se aplica, de modo que o segundo termos da soma das polarizações, a parte que depende do momento e possuí o termo de massa embutido, se anula . Isso torna idênticos os casos de massa nula com o caso de massa pequena.

Consideremos agora o caso com um "loop" fechado. Incluímos neste caso "ghosts" de Fadeev-Popov, com as seguintes regras de Feynman inclusas:

$$\xrightarrow{\alpha \ a,}_{k} \xrightarrow{p,}_{q \ c,} \qquad \leftrightarrow \quad -\frac{1}{2} ig f_{abc} (p-q)_{\alpha}$$

$$(1.38)$$

e o propagador será:

$$\underbrace{\begin{array}{ccc} a & b \\ \hline p \end{array}}_{p} & \leftrightarrow & \frac{\delta_{ab}}{p^2 + m^2 - i\epsilon} & \text{caso com massa} \\ \frac{\delta_{ab}}{p^2 - i\epsilon} & \text{caso sem massa} \end{array}$$
(1.40)

1.3. CAMPOS DE YANG-MILLS

Com esses dados em mãos iremos computar o gráfico com um "loop" incluso, somando a contribuição do gráfico com "ghosts", este provido de um fator λ , que será ajustado de forma a obtermos unitariedade. Os gráficos são esquematizados na figura à seguir:

Computando a parte imaginária do diagrama à esquerda

$$-2\lambda\pi^2 g^2 \epsilon_{\alpha}(k) \epsilon_{\alpha'}' f_{abc} f_{a'bc} F_{\alpha\beta\gamma}(k, p, q) F_{\alpha'\beta'\gamma}(-k, -p, -q) D_{\beta\beta'\gamma\gamma'}$$
(1.41)

$$D_{\beta\beta'\gamma\gamma'} = \begin{cases} \delta(p^2 + m^2)\delta(q^2 + m^2)\eta_{\beta\beta'}\eta_{\gamma\gamma'} & \text{caso com massa} \\ \delta(p^2)\delta(q^2)\eta_{\beta\beta'}\eta_{\gamma\gamma'} & \text{caso sem massa} \end{cases}$$
(1.42)

Computando a parte imaginária do diagrama à direita ("ghosts"), teremos

$$2\lambda\pi^2 g^2 \epsilon_{\alpha}(k) f_{abc} f_{a'bc} p_{\alpha} p_{\alpha'} \begin{cases} \delta(p^2 + m^2) \delta(q^2 + m^2) & \text{caso com massa} \\ \delta(p^2) \delta(q^2) & \text{caso sem massa} \end{cases}$$
(1.43)

Agora calculemos o valor do lado direito da (1.32), utilizando a soma sobre as polarizações (1.22) e (1.25). Isto é feito alterando o valor de $D_{\beta\beta'\gamma\gamma'}$

$$\delta(p^{2} + m^{2})\delta(q^{2} + m^{2})\left(\eta_{\beta\beta'} + \frac{p_{\beta}p_{\beta'}}{m^{2}}\right)\left(\eta_{\gamma\gamma'} + \frac{p_{\gamma}p_{\gamma'}}{m^{2}}\right) \quad \text{caso com massa}$$

$$\delta(p^{2})\delta(q^{2})\left(\eta_{\beta\beta'} - \frac{\bar{p_{\beta}}p_{\beta'} + p_{\beta}p_{\bar{\beta}'}}{p\bar{p}}\right)\left(\eta_{\gamma\gamma'} - \frac{\bar{p_{\gamma}}p_{\gamma'} + p_{\gamma}p_{\bar{\gamma}'}}{p\bar{p}}\right) \quad \text{caso sem massa}$$

$$(1.44)$$

Seguindo [Vel76] iremos fazer a diferença entre as equações (1.41) e (1.44) a fim de podermos determinar o fator λ em (1.43), para ambos os casos. Usamos as equações (1.34) e (1.35), o fato que $p^2 = q^2 = k^2$, p + k + q = 0 em cada vértice, e ainda, $p^2 = q^2 = 0$ para o caso não massivo. O cálculo desta diferença nos fornece

$$2\pi^2 g^2 \epsilon_{\alpha}(k) f_{abc} f_{a'bc} p_{\alpha} p_{\alpha'} \begin{cases} -2\delta(p^2 + m^2)\delta(q^2 + m^2) & \text{caso com massa} \\ -\delta(p^2)\delta(q^2) & \text{caso sem massa} \end{cases}$$
(1.45)

1.4. CAMPOS GRAVITACIONAIS

Observamos então que para satisfazer unitariedade devemos fazer $\lambda = -1$ para o caso de massa nula e $\lambda = -2$ para o caso com massa, como demonstrado em [VD70]. Isso mostra que existe uma diferença entre a teoria com massa e a teoria de massa nula que não pode ser eliminada simplesmente tendendo a massa a zero. A origem desta diferença ocorre devido a soma de polarizações, e no caso de Yang-Mills só aparece quando calculamos os gráficos em segunda ordem. Veremos no caso gravitacional que esta diferença ocorrerá logo em primeira ordem da teoria.

1.4 Campos gravitacionais

A somatória sobre as polarizações, no caso de spin 2 é algebricamente mais complicada. No caso de uma teoria com massa teríamos 2j + 1 = 5 possíveis estados de polarização. Deveríamos encontrar um conjunto de tensores $\epsilon^i_{\mu\nu}$ tal que

$$\sum_{i=1}^{5} \epsilon_{\mu\nu}^{i}(k) \epsilon_{\alpha\beta}^{i}(k) = \Pi_{\mu\nu\alpha\beta}$$
(1.46)

satisfazendo ainda simetria na permuta de qualquer par de índice $\mu\nu \leftrightarrow \alpha\beta$ como também $\mu \leftrightarrow \nu$ e $\alpha \leftrightarrow \beta$, o que advém do fato de que $p_{\mu}\epsilon^{\mu\nu} = 0$. Ainda, se e^{μ}_{μ} devemos ter matrizes de traço nulo. Em um referencial onde $p_{\mu} = (0, 0, 0, im)$, podemos construir,

as quais são normalizadas à unidade, (ou seja $\epsilon^i_{\mu\nu}\epsilon^{\mu\nu}_i=1$). Podemos ainda verificar que nesta forma:

$$\sum_{i=1}^{5} \epsilon_{\mu\nu}^{i}(k) \epsilon_{\alpha\beta}^{i}(k) = \begin{cases} \frac{1}{2} \left(\eta_{\mu\alpha} \eta_{\nu\beta} + \eta_{\mu\beta} \eta_{\nu\alpha} - \frac{2}{3} \eta_{\mu\nu} \eta_{\alpha\beta} \right) & \text{se } \mu, \nu, \alpha, \beta \neq 4 \\ 0 & \text{de outro modo} \end{cases}$$

1.4. CAMPOS GRAVITACIONAIS

Utilizando tensores do tipo $A\eta^{\mu\nu} + Bk^{\mu}k^{\nu}$, construiremos tensores como estes, tal que a soma sobre polarizações torna-se

$$\sum_{i=1}^{5} \epsilon_{\mu\nu}^{i}(k) \epsilon_{\alpha\beta}^{i}(k) = \frac{1}{2} \left(\eta_{\mu\alpha} \eta_{\nu\beta} + \eta_{\mu\beta} \eta_{\nu\alpha} - \eta_{\mu\nu} \eta_{\alpha\beta} \right) + \frac{1}{2} \left(\eta_{\mu\alpha} \frac{p_{\nu} p_{\beta}}{m^{2}} + \eta_{\nu\beta} \frac{p_{\mu} p_{\alpha}}{m^{2}} + \eta_{\mu\beta} \frac{p_{\nu} p_{\alpha}}{m^{2}} + \eta_{\nu\alpha} \frac{p_{\mu} p_{\beta}}{m^{2}} \right) + \frac{2}{3} \left(\frac{1}{2} \eta_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{m^{2}} \right) \left(\frac{1}{2} \eta_{\alpha\beta} - \frac{p_{\alpha} p_{\beta}}{m^{2}} \right)$$
(1.47)

Evidentemente o limite de $m \to 0$ em (1.47) não faz sentido. Entretanto como visto classicamente no caso sem massa, as componentes de spin são apenas ± 2 . Logo trabalhando com p_{μ} alinhado ao eixo z, tal que $p_{\mu} = (0, 0, p, ip)$, teremos somente duas polarizações possíveis, representadas abaixo:

Note que

$$\sum_{i=1}^{2} \epsilon_{\mu\nu}^{i}(k) \epsilon_{\alpha\beta}^{i}(k) = \begin{cases} \frac{1}{2} \left(\eta_{\mu\alpha} \eta_{\nu\beta} + \eta_{\mu\beta} \eta_{\nu\alpha} - \eta_{\mu\nu} \eta_{\alpha\beta} \right) & \text{se } \mu, \nu, \alpha, \beta = 1, 2 \\ 0 & \text{de outro modo} \end{cases}$$

Podemos ainda do mesmo modo como procedemos com o campo de Yang-Mills, através de uma inversão espacial do vetor p_{μ} obter um vetor \overline{p}_{μ} fazendo a seguinte substituição em (1.47):

$$\eta_{\mu\nu} \to \eta_{\mu\nu} - \frac{\bar{p}_{\mu}p_{\nu} + p_{\mu}\bar{p}_{\nu}}{p\bar{p}}$$
(1.48)

O cálculo da soma sobre as polarizações se tornará importante na determinação dos propagadores de Feynman. De fato em analogia ao eletromagnetismo, o propagador pode ser escrito da forma

$$P_{\mu\nu\alpha\beta} = \frac{\Pi_{\mu\nu\alpha\beta}}{k^2 - i\epsilon} \tag{1.49}$$

1.5. RESULTADOS FENOMENOLÓGICOS

Desta forma o propagador para o gráviton torna-se:

$$P_{\mu\nu\alpha\beta} = \frac{1}{2} \frac{\left(\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\mu\beta}\eta_{\nu\alpha} - \frac{2}{3}\eta_{\mu\nu}\eta_{\alpha\beta}\right)}{k^2 + m^2 - i\epsilon} \qquad \text{com massa}$$

$$P_{\mu\nu\alpha\beta} = \frac{1}{2} \frac{(\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\mu\beta}\eta_{\nu\alpha} - \eta_{\mu\nu}\eta_{\alpha\beta})}{k^2 - i\epsilon} \qquad \text{sem massa} \qquad (1.50)$$

O propagador de Feynman relaciona duas correntes, em um processo de espalhamento. No contexto da equação (1.17), um processo de espalhamento de grávitons relacionará tensores de energia-momento, como será visto à seguir. Assumimos que estas quantidades são conservadas, ou seja

$$p_{\mu}T_{\mu\nu} = 0 \tag{1.51}$$

Na próxima seção iremos discutir as implicações de cada teoria nos resultados fenomenológicos.

1.5 Resultados fenomenológicos

Iremos calcular o espalhamento de dois objetos materiais com o intercâmbio de um gráviton. O diagrama de ordem mais baixa é mostrado na figura 1.1, onde os

Figura 1.1: Espalhamento de objetos materiais através da troca de um gráviton. A linha ondulada representa o fóton, e espiralada, o gráviton.

dois sistemas têm tensores de energia-momento (transformados de Fourier) $T^{\mu\nu}$ e $T^{'\alpha\beta}$. A interação de um gráviton torna-se

$$g_m^2 T^{\mu\nu}(p) P_{\mu\nu\alpha\beta} T^{\prime\alpha\beta}(-p) = g_m^2 \frac{T^{\mu\nu} T_{\mu\nu}' - \frac{1}{3} T_{\mu}^{\mu} T_{\nu}'}{p^2 + m^2 - i\epsilon}$$
(1.52)

1.5. RESULTADOS FENOMENOLÓGICOS

e para o caso sem massa

$$g^{2}T^{\mu\nu}(p)P_{\mu\nu\alpha\beta}T^{\prime\alpha\beta}(-p) = g^{2}\frac{T^{\mu\nu}T^{\prime}_{\mu\nu} - \frac{1}{2}T^{\mu}_{\mu}T^{\nu}_{\nu}}{p^{2} - i\epsilon}.$$
 (1.53)

Considerando um dos objetos como sendo não-relativístico, teremos que somente componentes 44 do tensor $T^{\mu\nu}$ sejam não nulas, obtemos assim $\frac{2}{3}g_m^2 T^{44}T'_{44}$ no caso massivo e $\frac{1}{2}g^2T^{44}T'_{44}$, para o caso de massa nula. Tomamos o limite de $m \to 0$ no caso massivo e obtemos, igualando os dois casos

$$g_m^2 = \frac{3}{4}g^2 \tag{1.54}$$

Se $T^{'\alpha\beta}$ representa a fonte fixa, como o Sol, e $T^{\mu\nu}$ é o tensor de energia momento de um feixe de luz, sabemos que $T^{\mu\nu}$ tem traço nulo, pois se trata do tensor de energia-momento eletromagnético. Logo em cada caso os elementos com traço não contribuem, restando

$$g_m^2 \frac{T^{44} T'_{44}}{p^2 + m^2 - i\epsilon} = \frac{3}{4} g^2 \frac{T^{44} T'_{44}}{p^2 + m^2 - i\epsilon} \quad \text{caso com massa}$$
$$g^2 \frac{T^{44} T'_{44}}{p^2 - i\epsilon} \quad \text{caso sem massa} \quad (1.55)$$

ou seja, examinando as equações acima observamos que o limite de $m \rightarrow 0$, para o caso massivo leva a uma deflexão 3/4 do caso sem massa. Experimentos são favoráveis à teoria sem massa.

Outro efeito importante na Relatividade Geral é a precessão do periélio de Mercúrio. De fato, as considerações acima foram tomadas para o caso de aproximação em primeira ordem de g, o que é suficiente, dadas as distâncias envolvidas. O cálculo é feito utilizando a ação de uma partícula livre puntiforme de massa m_0 , escolhendo um caminho λ , parametrizado de forma que

$$S + S_{int} = -m_0 \int d\lambda \sqrt{\eta_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda}} - \frac{\kappa}{2} \int d^4x \phi_{\mu\nu} T^{\mu\nu}, \qquad (1.56)$$

onde o tensor de energia-momento é, para a partícula puntiforme

$$T^{\mu\nu} = m_0 \int d\tau \delta(x - z(\tau)) \frac{dz^{\mu}}{d\tau} \frac{dz^{\nu}}{d\tau}.$$
(1.57)

1.5. RESULTADOS FENOMENOLÓGICOS

À lagrangeana de Einstein-Hilbert é somado um termo de massa de Pauli-Fierz

$$-m^2(\phi_{\mu\nu}\phi^{\mu\nu} - \phi^{\mu 2}_{\mu}) \tag{1.58}$$

que fornecerá uma equação de movimento diferente de (1), via equações de Euler-Lagrange. Esse fato será aproveitado juntamente com a aproximação

$$\eta_{\mu\nu} = g_{\mu\nu} + \kappa \phi_{\mu\nu}, \tag{1.59}$$

comparando esta equação de movimento com a equação de Newton para obter a solução da equação diferencial em z, que no limite de $m \rightarrow 0$, comparado ao caso de uma partícula sem massa fornece

$$g_m = \frac{2}{3}g.$$
 (1.60)

Isso exclui definitivamente o caso de massa finita pois o valor determinado na teoria sem massa coincide com 10 por cento de precisão com o valor medido.

Capítulo 2

Quantização na aproximação de campo fraco

Neste capítulo iremos deduzir as regras de Feynman na gravitação pura, utilizando agora a representação de Goldberg. Começaremos utilizando a lagrangeana clássica de Einstein-Hilbert, associada à aproximação de campo fraco, utilizando como esquema de quantização o formalismo de integrais de trajetória. Estenderemos ainda este procedimento para determinar as regras de Feynman na lagrangeana de interação entre grávitons e fótons.

2.1 A lagrangeana de Einstein-Hilbert

Introduzimos a representação de Goldberg

$$\tilde{g}^{\mu\nu} = \sqrt{-g} g^{\mu\nu}, \qquad (2.1)$$

somente como uma forma de simplificar os cálculos.g é definido como $detg_{\mu\nu}$, com $\kappa^2 = 32\pi G$. Fazemos uma aproximação de campo fraco:

$$\tilde{g}^{\mu\nu} = \eta^{\mu\nu} + \kappa \phi^{\mu\nu} \tag{2.2}$$

onde $\eta^{\mu\nu}$ é a métrica de Minkowski, $\phi^{\mu\nu}$ é o campo do gráviton. Para obter a lagrangeana nesta representação, substituiremos (2.1) na lagrangeana de Einstein-Hilbert, explicitada abaixo:

$$\mathcal{L} = \frac{2}{\kappa^2} \sqrt{-g} g^{\mu\nu} R_{\mu\nu} \tag{2.3}$$

Nosso objetivo é calcular o valor desta densidade lagrangeana em termos dos campos $\phi^{\mu\nu}$. Primeiramente calcularemos o valor de g, utilizando a notação em (2.1), e suas derivadas, que serão úteis no cálculo dos símbolos de Christoffel, onde n é o número de dimensões do espaço-tempo:

$$\det \tilde{g}^{\mu\nu} = \det \left(\sqrt{-g} g^{\mu\nu} \right) = (-g)^{\frac{n}{2}} \det g^{\mu\nu}, \tag{2.4}$$

Utilizando a propriedade

$$\det g^{\mu\nu} \det g_{\mu\nu} = 1, \qquad (2.5)$$

e comparando com (2.4),

$$g = \det g_{\mu\nu} = (\det g^{\mu\nu})^{-1} = (-g)^{\frac{n}{2}} (\det \tilde{g}^{\mu\nu})^{-1}.$$
 (2.6)

Observando as duas extremidades da igualdade acima, podemos concluir que:

$$\frac{-g}{(-g)^{\frac{n}{2}}} = (-\det \ \tilde{g}^{\mu\nu})^{-1}$$

$$(-g)^{\frac{2-n}{2}} = (-\det \ \tilde{g}^{\mu\nu})^{-1}$$

$$-g = (-\det \tilde{g}^{\mu\nu})^{\frac{-2}{2-n}}$$

$$g = -(-\det \tilde{g}^{\mu\nu})^{\frac{-2}{2-n}}.$$
(2.7)

Como dito anteriormente o cálculo das derivadas de g se mostrará útil no cálculo dos símbolos de Christoffel, utilizando esta representação, pois como sua forma depende das derivadas da métrica:

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{g^{\alpha\omega}}{2} \left(g_{\beta\omega,\gamma} + g_{\omega\gamma,\beta} - g_{\beta\gamma,\omega} \right), \qquad (2.8)$$

que na representação de Goldberg é $g^{\beta\omega} = \frac{\tilde{g}^{\beta\omega}}{\sqrt{-g}}$, na sua forma contravariante e

$$g_{\beta\omega} = \tilde{g}_{\beta\omega}\sqrt{-g},\tag{2.9}$$

na forma covariante. A derivada parcial do termo acima, nos obriga a calcular a seguinte quantidade:

$$\partial_{\alpha} (\det g)^{\lambda} = \lambda (\det g)^{\lambda - 1} \partial_{\alpha} (\det g),$$
(2.10)

e desde que

$$g_{\mu\nu}(x+dx) = g_{\mu\nu}(x) + dx^{\alpha}\partial_{\alpha}g_{\mu\nu} = g_{\mu\beta}(\delta^{\beta}_{\nu} + g^{\beta\gamma}\partial_{\alpha}g_{\gamma\nu}dx^{\alpha})$$

$$\det (g_{\mu\nu}(x+dx)) = \det g_{\mu\beta}(1+g^{\beta\gamma}\partial_{\alpha}g_{\gamma\beta}dx^{\alpha})$$

$$\partial_{\alpha}(\det g_{\mu\nu}) = g^{\beta\gamma}\partial_{\alpha}g_{\gamma\beta},$$
(2.11)

uma propriedade válida também à quantidade covariante. Teremos:

$$\partial_{\rho}g = -\partial_{\rho} \left(-\det \tilde{g}^{\mu\nu}\right)^{\frac{2}{n-2}} = \frac{2}{n-2} \left(-\det \tilde{g}^{\mu\nu}\right)^{\frac{2}{n-2}-1} \left[\partial_{\rho} \left(\det \tilde{g}^{\mu\nu}\right)\right]$$
$$= \frac{-2}{n-2} \left(-\det \tilde{g}^{\mu\nu}\right)^{\frac{2}{n-2}} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}_{\alpha\beta}$$
$$= \frac{2}{n-2} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}_{\alpha\beta} g.$$
(2.12)

onde no segundo passo utilizamos a equação (2.7) Usaremos

$$g_{\alpha'\beta',\rho} = -\tilde{g}_{\beta\beta'}\tilde{g}_{\alpha\alpha'}\tilde{g}^{\alpha\beta}_{,\rho}, \qquad (2.13)$$

para mantermos os índices de Lorentz sempre covariantes.

Logo as derivadas da métrica, usando (2.12) tornam-se:

$$g_{\beta\omega,\gamma} = \frac{-1}{2} (-g)^{\frac{-1}{2}} \tilde{g}_{\beta\omega} \partial_{\gamma} g + \sqrt{-g} \tilde{g}_{\beta\omega,\gamma}$$

$$= \sqrt{-g} \tilde{g}_{\beta\omega,\gamma} - \frac{1}{n-2} g (-g)^{\frac{-1}{2}} \tilde{g}_{\lambda\delta} \tilde{g}_{,\gamma}^{\lambda\delta} \tilde{g}_{\beta\omega}$$

$$= \sqrt{-g} \left(\tilde{g}_{\beta\omega,\gamma} + \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}_{,\gamma}^{\lambda\delta} \tilde{g}_{\beta\omega} \right). \qquad (2.14)$$

Utilizando as equações demonstradas acima iremos escrever as derivadas da métrica e determinar os símbolos de Christoffel.

Substituindo

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{-1}{2} \tilde{g}^{\alpha\omega} \left(-\tilde{g}_{\beta\omega,\gamma} - \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\gamma} \tilde{g}_{\beta\omega} - \tilde{g}_{\omega\gamma,\beta} + -\frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\beta} \tilde{g}_{\omega\gamma} + \tilde{g}_{\beta\gamma,\omega} + \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\omega} \tilde{g}_{\beta\gamma} \right).$$
(2.15)

Iremos "levantar" os índices dos termos com derivadas, no final dos cálculos (o que será útil futuramente), usando:

$$\tilde{g}^{\alpha\omega}\tilde{g}_{\beta\omega,\gamma} = -\tilde{g}^{\alpha\omega}\tilde{g}_{\mu\omega}\tilde{g}_{\nu\beta}\tilde{g}^{\mu\nu}_{,\gamma} = -\tilde{g}_{\nu\beta}\tilde{g}^{\alpha\nu}_{,\gamma}.$$
(2.16)

Outra propriedade utilizada será:

$$\tilde{g}^{\alpha\nu}\tilde{g}_{\beta\nu} = \delta^{\alpha}_{\beta}. \tag{2.17}$$

Conhecendo a forma dos símbolos de Chistoffel iremos determinar o tensor de Ricci:

$$R_{\mu\nu} = \Gamma^{\rho}_{\mu\rho,\nu} - \Gamma^{\rho}_{\mu\nu,\rho} - \Gamma^{\sigma}_{\mu\nu}\Gamma^{\rho}_{\sigma\rho} + \Gamma^{\rho}_{\sigma\nu}\Gamma^{\sigma}_{\mu\rho}.$$
 (2.18)

Iniciaremos o cálculo da primeira parcela acima

$$\Gamma^{\rho}_{\mu\rho} = \frac{1}{2} \left(-\tilde{g}_{\nu\mu} \tilde{g}^{\rho\nu}_{,\rho} - \tilde{g}_{\rho\nu} \tilde{g}^{\nu\rho}_{,\mu} + \delta^{\omega}_{\lambda} \tilde{g}_{\mu\nu} \tilde{g}^{\lambda\nu}_{,\omega} + \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu} + \frac{n}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu} - \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\omega} \delta^{\omega}_{\mu} \right), \qquad (2.19)$$

onde usamos $\tilde{g}_{\mu\nu}\tilde{g}^{\mu\nu} = n$, onde *n* é o número de dimensões do espaço-tempo. Observamos na expressão acima que o antepenúltimo e o último termo se cancelam, assim como o primeiro se cancela com o terceiro, restando:

$$\Gamma^{\rho}_{\mu\rho} = \frac{1}{2} \left(-\tilde{g}_{\rho\nu} \tilde{g}^{\nu\rho}_{,\mu} + \frac{n}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu} \right) = \frac{1}{n-2} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu}.$$
(2.20)

Logo, derivando em x_{ν} :

$$\Gamma^{\rho}_{\mu\rho,\nu} = \frac{1}{n-2} \left(\tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu\nu} - \tilde{g}_{\lambda\delta,\nu} \tilde{g}^{\lambda\delta}_{,\mu} \right).$$
(2.21)

Como queremos manter os índices nas derivadas "levantados",

$$\Gamma^{\rho}_{\mu\rho,\nu} = \frac{1}{n-2} \left(\tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu\nu} - \tilde{g}_{\beta\rho} \tilde{g}_{\alpha\lambda} \tilde{g}^{\alpha\beta}_{,\nu} \tilde{g}^{\lambda\rho}_{,\mu} \right) \,. \tag{2.22}$$

Calculando agora o segundo termo

$$\Gamma^{\rho}_{\mu\nu} = \frac{-1}{2} \left[\tilde{g}_{\lambda\mu} \tilde{g}^{\rho\lambda}_{,\nu} + \tilde{g}_{\lambda\nu} \tilde{g}^{\lambda\rho}_{,\mu} - \tilde{g}^{\rho\omega} \tilde{g}_{\lambda\nu} \tilde{g}_{\delta\mu} \tilde{g}^{\lambda\delta}_{,\omega} - \frac{1}{n-2} \left(\delta^{\rho}_{\mu} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\nu} - \delta^{\rho}_{\nu} \tilde{g}_{\lambda\delta} \tilde{g}^{\lambda\delta}_{,\mu} + \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\delta}_{,\omega} \tilde{g}_{\lambda\delta} \tilde{g}_{\mu\nu} \right) \right], \quad (2.23)$$

e a sua derivada em relação a x_ρ será:

$$\Gamma^{\rho}_{\mu\nu,\rho} = \frac{-1}{2} \left[-\tilde{g}_{\beta\mu}\tilde{g}_{\alpha\lambda}\tilde{g}^{\alpha\beta}_{,\rho}\tilde{g}^{\lambda\rho}_{,\nu} + \tilde{g}_{\lambda\mu}\tilde{g}^{\lambda\rho}_{,\nu\rho} - \tilde{g}_{\beta\nu}\tilde{g}_{\alpha\lambda}\tilde{g}^{\alpha\beta}_{,\rho}\tilde{g}^{\lambda\rho}_{,\mu} + \tilde{g}_{\nu\lambda}\tilde{g}^{\lambda\rho}_{,\mu\rho} - \tilde{g}^{\rho\delta}_{,\rho}\tilde{g}_{\lambda\nu}\tilde{g}_{\mu\sigma}\tilde{g}^{\lambda\sigma}_{,\lambda} + 2\tilde{g}^{\rho\omega}\tilde{g}_{\alpha\delta}\tilde{g}_{\beta\mu}\tilde{g}_{\lambda\nu}\tilde{g}^{\alpha\beta}_{,\rho}\tilde{g}^{\lambda\delta}_{,\omega} - \tilde{g}^{\rho\delta}\tilde{g}_{\lambda\nu}\tilde{g}_{\mu\sigma}\tilde{g}^{\lambda\sigma}_{,\rho\delta} + \frac{1}{n-2}(2\tilde{g}_{\beta\delta}\tilde{g}_{\alpha\lambda}\tilde{g}^{\alpha\beta}_{,\mu}\tilde{g}^{\lambda\delta}_{,\mu} - 2\tilde{g}_{\lambda\delta}\tilde{g}^{\lambda\delta}_{,\mu\nu} + \tilde{g}^{\rho\omega}\tilde{g}_{\mu\nu}\tilde{g}_{\lambda\delta}\tilde{g}^{\lambda\delta}_{,\omega} - \tilde{g}_{\alpha\lambda}\tilde{g}^{\rho\omega}\tilde{g}_{\beta\delta}\tilde{g}^{\alpha\beta}_{,\rho}\tilde{g}_{\mu\nu}\tilde{g}^{\lambda\delta}_{,\omega} - \tilde{g}^{\rho\omega}\tilde{g}_{\lambda\delta}\tilde{g}_{\beta\nu}\tilde{g}_{\alpha\mu}\tilde{g}^{\alpha\beta}_{,\rho}\tilde{g}^{\lambda\delta}_{,\omega} + \tilde{g}^{\rho\omega}\tilde{g}_{\lambda\delta}\tilde{g}_{\mu\nu}\tilde{g}^{\lambda\delta}_{,\mu\nu} \right],$$

$$(2.24)$$

O terceiro termo do tensor de Ricci é o produto entre

$$\Gamma^{\sigma}_{\mu\nu}\Gamma^{\rho}_{\sigma\rho} = \frac{1}{2}\frac{1}{2-n} \left[\tilde{g}_{\lambda\mu}\tilde{g}^{\lambda\sigma}_{,\nu}\tilde{g}_{\alpha\rho}\tilde{g}^{\alpha\rho}_{,\sigma} + \tilde{g}_{\lambda\nu}\tilde{g}^{\lambda\sigma}_{,\mu}\tilde{g}_{\alpha\rho}\tilde{g}^{\alpha\rho}_{,\sigma} - \tilde{g}^{\omega\sigma}\tilde{g}_{\lambda\nu}\tilde{g}_{\delta\mu}\tilde{g}^{\lambda\delta}_{,\omega}\tilde{g}_{\alpha\rho}\tilde{g}^{\alpha\rho}_{,\sigma} - \frac{2}{n-2}\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\rho}\tilde{g}^{\lambda\delta}_{,\nu}\tilde{g}^{\alpha\rho}_{,\mu} + \frac{1}{n-2}\tilde{g}_{\lambda\delta}\tilde{g}_{\mu\nu}\tilde{g}_{\alpha\rho}\tilde{g}^{\sigma\omega}\tilde{g}^{\lambda\delta}_{,\omega}\tilde{g}^{\alpha\rho}_{,\sigma} \right].$$
(2.25)

Calculamos agora a quarta parcela, obtendo

$$\Gamma^{\rho}_{\sigma\nu}\Gamma^{\sigma}_{\mu\rho} = \frac{1}{4} [\tilde{g}_{\lambda\sigma}\tilde{g}_{\alpha\rho}\tilde{g}^{\lambda\rho}_{,\nu}\tilde{g}^{\alpha\sigma}_{,\mu} + 2\tilde{g}_{\lambda\nu}\tilde{g}_{\alpha\mu}\tilde{g}^{\lambda\rho}_{,\sigma}\tilde{g}^{\sigma\alpha}_{,\rho} - \frac{1}{n-2}(2\tilde{g}_{\lambda\rho}\tilde{g}_{\alpha\beta}\tilde{g}^{\lambda\rho}_{,\nu}\tilde{g}^{\alpha\beta}_{,\mu} + 2\tilde{g}_{\lambda\nu}\tilde{g}_{\alpha\beta}\tilde{g}^{\lambda\rho}_{,\mu}\tilde{g}^{\alpha\beta}_{,\rho} - 2\tilde{g}_{\lambda\nu}\tilde{g}_{\alpha\beta}\tilde{g}^{\mu\rho}_{,\rho}\tilde{g}^{\alpha\beta}_{,\sigma} - 2\tilde{g}_{\lambda\rho}\tilde{g}^{\alpha\beta}_{,\sigma}\tilde{g}^{\alpha\beta}_{,\eta} - 2\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\nu}\tilde{g}_{\beta\mu}\tilde{g}^{\sigma\eta}\tilde{g}^{\alpha\beta}_{,\sigma}\tilde{g}^{\lambda\delta}_{,\sigma} + 2\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\mu}\tilde{g}^{\alpha\sigma}_{,\nu}\tilde{g}^{\lambda\delta}_{,\mu} - n\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\beta}\tilde{g}^{\lambda\delta}_{,\nu}\tilde{g}^{\alpha\beta}_{,\sigma} - \frac{2}{n-2}\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\beta}\tilde{g}^{\lambda\delta}_{,\mu}\tilde{g}^{\alpha\beta}_{,\nu} + \frac{2}{n-2}\tilde{g}_{\lambda\delta}\tilde{g}_{\alpha\beta}\tilde{g}^{\mu\nu}\tilde{g}^{\sigma\eta}\tilde{g}^{\lambda\delta}_{,\sigma}\tilde{g}^{\alpha\beta}_{,\eta}].$$
(2.26)

Assim, reunindo (2.22), (2.24), (2.25) e (2.26), veremos que o tensor de Ricci torna-se nesta representação:

$$R_{\mu\nu} = \frac{1}{4} [\tilde{g}_{\lambda\sigma} \tilde{g}_{\alpha\rho} \tilde{g}^{\lambda\rho}_{,\nu} \tilde{g}^{\alpha\sigma}_{,\mu} - 2\tilde{g}_{\mu\beta} \tilde{g}_{\alpha\lambda} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}^{\lambda\rho}_{,\nu} + 2\tilde{g}_{\lambda\mu} \tilde{g}^{\lambda\rho}_{,\nu\rho} - 2\tilde{g}_{\alpha\lambda} \tilde{g}_{\beta\nu} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}^{\lambda\rho}_{,\mu} + 2\tilde{g}_{\lambda\nu} \tilde{g}^{\lambda\rho}_{,\mu\rho} - 2\tilde{g}_{\sigma\mu} \tilde{g}_{\lambda\nu} \tilde{g}^{\rho\omega}_{,\rho} \tilde{g}^{\lambda\sigma}_{,\omega} + 2\tilde{g}_{\lambda\nu} \tilde{g}_{\mu\beta} \tilde{g}_{\alpha\sigma} \tilde{g}^{\omega\rho} \tilde{g}^{\lambda\sigma}_{,\omega} \tilde{g}^{\alpha\beta}_{,\rho} - 2\tilde{g}_{\lambda\nu} \tilde{g}_{\mu\sigma} \tilde{g}^{\lambda\sigma}_{,\omega\rho} \tilde{g}^{\lambda\sigma}_{,\omega\rho} + 2\tilde{g}_{\lambda\nu} \tilde{g}_{\mu\mu} \tilde{g}^{\lambda\rho}_{,\sigma} \tilde{g}^{\alpha\sigma}_{,\rho} + \frac{1}{n-2} (2\tilde{g}_{\lambda\delta} \tilde{g}_{\mu\nu} \tilde{g}^{\omega\rho}_{,\rho} \tilde{g}^{\lambda\delta}_{,\omega} + 2\tilde{g}_{\beta\delta} \tilde{g}_{\alpha\lambda} \tilde{g}_{\mu\nu} \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\delta}_{,\omega} + 2\tilde{g}_{\lambda\delta} \tilde{g}_{\mu\nu} \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\delta}_{,\omega\rho} - \tilde{g}_{\lambda\rho} \tilde{g}_{\alpha\beta} \tilde{g}^{\lambda\rho}_{,\nu} \tilde{g}^{\alpha\beta}_{,\mu})]. \quad (2.27)$$

Voltemos à densidade lagrangeana

$$\mathcal{L} = \frac{2}{\kappa^2} \sqrt{-g} g^{\mu\nu} R_{\mu\nu} = \frac{2}{\kappa^2} \tilde{g}^{\mu\nu} R_{\mu\nu}, \qquad (2.28)$$

tal que a lagrangeana será:

$$L = \frac{2}{\kappa^2} \int d^n x \tilde{g}^{\mu\nu} R_{\mu\nu}. \qquad (2.29)$$

Assim, usando (2.27) obteremos:

$$L = \frac{2}{\kappa^2} \int d^n x [\tilde{g}^{\mu\nu} \tilde{g}_{\lambda\sigma} \tilde{g}_{\alpha\rho} \tilde{g}^{\lambda\rho}_{,\nu} \tilde{g}^{\alpha\sigma}_{,\mu} + 2\delta^{\lambda}_{\nu} \tilde{g}^{\lambda\rho}_{,\nu\rho} - 4\tilde{g}_{\alpha\lambda} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}^{\lambda\rho}_{,\beta} + \tilde{g}^{\lambda\rho}_{,\lambda\rho} - 2\tilde{g}_{\lambda\sigma} \tilde{g}^{\lambda\sigma}_{,\omega} \tilde{g}^{\lambda\sigma}_{,\rho} + 2\tilde{g}_{\lambda\beta} \tilde{g}_{\alpha\rho} \tilde{g}^{\rho\omega}_{,\rho} \tilde{g}^{\alpha\beta}_{,\omega} - 2\tilde{g}_{\sigma\lambda} \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\sigma}_{,\rho\omega} + 2\tilde{g}_{\lambda\alpha} \tilde{g}^{\lambda\rho}_{,\sigma} \tilde{g}^{\alpha\sigma}_{,\rho} - \frac{1}{n-2} (2n\tilde{g}_{\lambda\delta} \tilde{g}^{\omega\rho}_{,\rho} \tilde{g}^{\lambda\delta}_{,\omega} + 2n\tilde{g}_{\beta\delta} \tilde{g}_{\alpha\lambda} \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\delta}_{,\omega} + 2n\tilde{g}_{\lambda\delta} \tilde{g}^{\rho\omega} \tilde{g}^{\lambda\delta}_{,\omega\rho} - \tilde{g}_{\lambda\rho} \tilde{g}_{\alpha\beta} \tilde{g}^{\mu\nu}_{,\nu} \tilde{g}^{\lambda\rho}_{,\mu}]].$$
(2.30)

O segundo e o quinto termos são nulos, pois são termos de superfície, ou seja, se anulam nos limites de integração. Podemos simplificar a expressão acima, integrando por partes termos como $\tilde{g}^{\rho\omega}\tilde{g}_{\sigma\lambda}\tilde{g}^{\sigma\lambda}_{,\rho\omega}$, utilizando também (2.13) :

$$-\int d^{n}x \tilde{g}^{\rho\omega} \tilde{g}_{\sigma\lambda} \tilde{g}^{\sigma\lambda}_{,\rho\omega} = \tilde{g}^{\rho\omega} \tilde{g}_{\lambda\sigma} \tilde{g}^{\lambda\sigma}_{,\rho} - \int d^{n}x [\tilde{g}_{\lambda\sigma} \tilde{g}^{\lambda\sigma}_{,\rho} \tilde{g}^{\rho\omega}_{,\omega} - \tilde{g}^{\rho\omega} \tilde{g}_{\alpha\sigma} \tilde{g}_{\beta\lambda} \tilde{g}^{\alpha\beta}_{,\omega} \tilde{g}^{\lambda\sigma}_{,\rho}],$$
(2.31)

onde o primeiro termo se anula nos limites de integração. Logo simplificaremos a expressão com substituições do tipo:

$$\tilde{g}^{\rho\omega}\tilde{g}_{\sigma\lambda}\tilde{g}^{\sigma\lambda}_{,\rho\omega} = -\tilde{g}_{\lambda\sigma}\tilde{g}^{\lambda\sigma}_{,\rho}\tilde{g}^{\rho\omega}_{,\omega} + \tilde{g}^{\rho\omega}\tilde{g}_{\alpha\sigma}\tilde{g}_{\beta\lambda}\tilde{g}^{\alpha\beta}_{,\omega}\tilde{g}^{\lambda\sigma}_{,\rho}.$$
(2.32)

Assim, a lagrangeana será:

$$L = \int \mathcal{L} d^{n} x$$

= $\frac{1}{2\kappa^{2}} \int d^{n} x [\tilde{g}_{\beta\rho} \tilde{g}_{\alpha\lambda} \tilde{g}^{\mu\nu} \tilde{g}^{\alpha\beta}_{,\nu} \tilde{g}^{\lambda\rho}_{,\mu} - 2\tilde{g}_{\alpha\lambda} \tilde{g}^{\alpha\beta}_{,\rho} \tilde{g}^{\lambda\rho}_{,\beta} - \frac{1}{n-2} \tilde{g}_{\lambda\rho} \tilde{g}^{\lambda\rho}_{,\nu} \tilde{g}_{\alpha\beta} \tilde{g}^{\alpha\beta}_{,\mu} \tilde{g}^{\mu\nu}],$ (2.33)

como obtida em [CLM73]. Com esta equação e a definição do campo do gráviton na aproximação de campo fraco, iremos determinar as regras de Feynman para a gravitação pura.

2.2 As regras de Feynman na teoria puramente gravitacional

Utilizando a aproximação de campo fraco:

$$\tilde{g}^{\mu\nu} = \eta^{\mu\nu} + \kappa \phi^{\mu\nu}, \qquad (2.34)$$

podemos escrever a lagrangeana em termos do campo $\phi^{\mu\nu}$ do gráviton. Obtemos a inversa do tensor métrico, como definido acima, fazendo uma expansão de Taylor da função $\tilde{g}_{\mu\nu} = (\tilde{g}^{\mu\nu})^{-1}$:

$$\tilde{g}_{\mu\nu} = \eta_{\mu\nu} - \kappa \phi_{\mu\nu} + \kappa^2 \phi_{\mu\alpha} \phi^{\alpha}_{\nu} + \mathcal{O}(\kappa^3).$$
(2.35)

Podemos então expandir a Lagrangeana de Einstein-Hilbert (2.33) em uma série de potências em κ

$$\mathcal{L} = \sum_{i=2}^{\infty} \kappa^{i-2} \mathcal{L}_{(i)}, \qquad (2.36)$$

substituindo as equações (2.34) e (2.35) em (2.33). Os termos de ordem κ , em (2.33) fornecerão o vértice de 3 grávitons, e assim por diante, como veremos quando quantizarmos a teoria.

Utilizando (2.34), (2.35) e (2.33), a parte quadrática da lagrangeana, torna-se:

$$\mathcal{L}_{(2)} = \phi_{\alpha\beta,\mu}\phi^{\alpha\beta,\mu} - 2\phi^{\alpha\beta}_{,\rho}\phi^{\alpha\rho}_{,\beta} - \frac{1}{2}\phi^{\lambda\lambda}_{,\nu}\phi^{\alpha\alpha}_{,\nu}.$$
(2.37)

A quantização da teoria será realizada no contexto das integrais de trajetória, ou seja, conhecendo a lagrangeana clássica podemos obter as regras de Feynman, utilizando o funcional gerador:

$$Z = \int d[\tilde{g}^{\mu\nu}] \exp[i \int (\mathcal{L} - \frac{1}{\kappa^2 \alpha} [\partial_\mu \tilde{g}^{\mu\nu}]^2) dx].$$
 (2.38)

Não nos preocupamos em determinar os "ghosts" de Faddeev-Popov, pois iremos trabalhar somente com diagramas de árvore. Note que acima incluímos o termo de fixação de "gauge", pois o termo quadrático da lagrangeana não admite inversa . No nosso caso iremos trabalhar com o "gauge" de Feynman-De Donder, em analogia à eletrodinâmica, onde o parâmetro $\alpha = -1$. Na aproximação de campo fraco este termo se reduz a:

$$\mathcal{L}_{fg} = -\frac{1}{\kappa^2 \alpha} (\partial_\mu \phi^{\mu\nu})^2.$$
(2.39)

$$\begin{aligned} \mathcal{T}^{1}_{\mu\nu\rho\sigma} &= \frac{1}{2}(\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho}) \\ \mathcal{T}^{2}_{\mu\nu\rho\sigma} &= \eta_{\mu\nu}\eta_{\rho\sigma} \\ \mathcal{T}^{3}_{\mu\nu\rho\sigma} &= \frac{1}{k^{2}}(\eta_{\mu\nu}k_{\rho}k_{\sigma} + \eta_{\rho\sigma}k_{\mu}k_{\nu}) \\ \mathcal{T}^{4}_{\mu\nu\rho\sigma} &= \frac{1}{k^{2}}(\eta_{\mu\rho}k_{\nu}k_{\sigma} + \eta_{\mu\sigma}k_{\nu}k_{\rho} + \eta_{\nu\rho}k_{\mu}k_{\sigma} + \eta_{\nu\sigma}k_{\mu}k_{\rho}) \\ \mathcal{T}^{5}_{\mu\nu\rho\sigma} &= \frac{1}{(k^{2})^{2}}k_{\mu}k_{\nu}k_{\rho}k_{\sigma} \end{aligned}$$

Tabela 2.1: A base tensorial utilizada

Vale citar que a abordagem de Feynman [FMW95] é mais simples e elegante, pois parte do princípio de que o gráviton interage com o tensor energia-momentum $T^{\mu\nu}$ de outros campos de matéria ou radiação. Em nossa abordagem iremos determinar os valores explícitos dos vértices e do propagador, utilizando computação simbólica extensivamente, como o objetivo de determinar as propriedades da amplitude de espalhamento mais claramente.

Seguindo este esquema, inverteremos a equação (2.37), somada com o termo de fixação de "gauge" para obter o propagador. Deste ponto em diante o trabalho computacional realizado foi , dada a equação(2.37), somada à (2.39), inverter esta soma, utilizando uma base tensorial covariante e obter o propagador \mathcal{P} ,

$$\mathcal{T}^n_{\mu\nu\rho\sigma} \times \mathcal{P}^n_{\rho\sigma\alpha\beta} = I_{\mu\nu\alpha\beta}, \qquad (2.40)$$

onde $I_{\mu\nu\alpha\beta}$ é a matriz unitária. Utilizamos uma base tensorial a mais geral possível, envolvendo os índices e momentos interagentes, mostrada na tabela 2.1.

Com isso obtemos o propagador da teoria, mostrado na equação à seguir, (veja a seção B.2) :

$$\mathcal{P}^{n}_{\mu\nu\alpha\beta} = \frac{1}{2} \frac{\eta_{\alpha\mu}\eta_{\beta\nu} + \eta_{\beta\mu}\eta_{\alpha\nu}}{k_{1}^{2}} - \frac{1}{2} \frac{\eta_{\alpha\beta}\eta_{\mu\nu}}{k_{1}^{2}}, \qquad (2.41)$$

onde k_1^2 é o quadrimomento do gráviton. Os termos de $\mathcal{L}_{(3)}$ e $\mathcal{L}_{(4)}$ produzem os vértices cúbico e quártico de grávitons. Note que, como nas teorias de "gauge" não abelianas, aqui devido ao caráter da lagrangeana como uma série infinita de

Figura 2.1: Acoplamentos entre grávitons.

potências em $\phi_{\mu\nu}$, teremos acoplamentos *entre* os grávitons, como mostra a figura 2.1.

Para obter as funções de três e quatro pontos foi necessário utilizar um programa em Maple, aliado a um pacote de manipulação tensorial *,HIP* [HY92], que calcula as regras de Feynman para grávitons a partir da lagrangeana de Einstein, utilizando a definições (1.26) e (2.34). Essas funções são mostradas à seguir, respectivamente, a função de três (2.42) e quatro pontos (2.43).

$$\begin{split} \mathcal{V}^{3}_{\mu_{1}\nu_{1} \ \mu_{2}\nu_{2} \ \mu_{3}\nu_{3}}(k_{1},k_{2},k_{3}) &= \\ \frac{\kappa}{4} \left[-4 \, k_{2 \ \mu_{3}} \, k_{3 \nu_{2}} \, \eta_{\mu_{1}\mu_{2}} \, \eta_{\nu_{1}\nu_{3}} - k_{2} \cdot k_{3} \, \eta_{\mu_{1}\mu_{3}} \, \eta_{\nu_{1}\nu_{3}} \, \eta_{\mu_{2}\nu_{2}} + 2 \, k_{2} \cdot k_{3} \, \eta_{\mu_{1}\nu_{2}} \, \eta_{\nu_{1}\nu_{3}} \, \eta_{\mu_{2}\mu_{3}} \\ + 2 \, k_{2} \cdot k_{3} \, \eta_{\mu_{1}\mu_{2}} \, \eta_{\nu_{1}\mu_{3}} \, \eta_{\nu_{2}\nu_{3}} - 2 \, k_{2 \mu_{1}} \, k_{3 \nu_{1}} \, \eta_{\mu_{2}\mu_{3}} \, \eta_{\nu_{2}\nu_{3}} \\ - k_{2} \cdot k_{3} \, \eta_{\mu_{1}\mu_{2}} \, \eta_{\nu_{1}\nu_{2}} \, \eta_{\mu_{3}\nu_{3}} + k_{2 \mu_{1}} \, k_{3 \nu_{1}} \, \eta_{\mu_{2}\nu_{2}} \, \eta_{\mu_{3}\nu_{3}} \\ + (simetriza \tilde{c} \tilde{c} es \ sobre \ (\mu_{1} \leftrightarrow \nu_{1}), \ (\mu_{2} \leftrightarrow \nu_{2}), \ (\mu_{3} \leftrightarrow \nu_{3})) \] \\ + permuta \tilde{c} \tilde{c} es \ de \ (k_{1}, \mu_{1}, \nu_{1}), \ (k_{2}, \mu_{2}, \nu_{2}), \ (k_{3}, \mu_{3}, \nu_{3}) \ , \end{split}$$

(2.42)

$$\begin{split} \mathcal{V}_{\mu_{1}\nu_{1}\mu_{2}\nu_{2}\mu_{3}\nu_{3}\mu_{4}\mu_{4}}^{4}(k_{1},k_{2},k_{3},k_{4}) = \\ \frac{\kappa^{2}}{4} \left[-2\,k_{3}\mu_{2}\,k_{4}\nu_{2}\,\eta_{\mu_{1}\nu_{3}}\,\eta_{\nu_{1}\mu_{4}}\,\eta_{\mu_{4}\mu_{3}} + k_{3}\mu_{2}\,k_{4}\nu_{2}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\nu_{3}}\,\eta_{\mu_{4}\mu_{4}} \\ -k_{3}\cdot k_{4}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\nu_{2}}\,\eta_{\mu_{4}\mu_{4}}\,\eta_{\mu_{2}\nu_{3}} - 4\,k_{3}\mu_{4}\,k_{4}\nu_{3}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\nu_{2}}\,\eta_{\mu_{2}\mu_{4}} \\ +2\,k_{3}\cdot k_{4}\,\eta_{\mu_{1}\nu_{3}}\,\eta_{\nu_{1}\nu_{2}}\,\eta_{\mu_{4}\mu_{3}}\,\eta_{\mu_{2}\mu_{4}} - k_{3}\cdot k_{4}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\nu_{3}}\,\eta_{\mu_{4}\mu_{2}}\,\eta_{\nu_{2}\mu_{4}} \\ +2\,k_{3}\cdot k_{4}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\mu_{2}}\,\eta_{\mu_{2}\nu_{3}}\,\eta_{\nu_{2}\mu_{4}} + k_{3}\mu_{2}\,k_{4}\nu_{2}\,\eta_{\mu_{1}\mu_{4}}\,\eta_{\nu_{1}\mu_{4}}\,\eta_{\mu_{3}\nu_{3}} \\ -k_{3}\cdot k_{4}\,\eta_{\mu_{1}\mu_{4}}\,\eta_{\nu_{1}\nu_{2}}\,\eta_{\mu_{2}\mu_{4}}\,\eta_{\mu_{3}\nu_{3}} - 2\,k_{3}\mu_{2}\,k_{4}\nu_{2}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\mu_{4}}\,\eta_{\nu_{3}\mu_{4}} \\ +2\,k_{3}\cdot k_{4}\,\eta_{\mu_{1}\mu_{3}}\,\eta_{\nu_{1}\nu_{2}}\,\eta_{\mu_{4}\mu_{2}}\,\eta_{\nu_{3}\mu_{4}} \\ +(simetrizações\ sobre\ (\mu_{1}\leftrightarrow\nu_{1}),\ (\mu_{2}\leftrightarrow\nu_{2}),\ (\mu_{3}\leftrightarrow\nu_{3}),\ (\mu_{4}\leftrightarrow\mu_{4}))\] \\ +permutações\ de\ (k_{1},\mu_{1},\nu_{1}),\ (k_{2},\mu_{2},\nu_{2}),\ (k_{3},\mu_{3},\nu_{3}),\ (k_{4},\mu_{4},\mu_{4})\ . \end{split}$$

2.3 A lagrangeana de interação eletromagnética

Seguindo os mesmos passos feitos anteriormente, iremos determinar as regras de Feynman a partir da lagrangeana de interação eletromagnética, na representação de Goldberg. Na ausência de férmions ¹ temos a seguinte lagrangeana de acoplamento com fótons:

$$\mathcal{L}_{em} = \sqrt{-g} \left(-\frac{1}{4} F_{\mu\nu} F_{\alpha\beta} g^{\mu\alpha} g^{\nu\beta} \right), \qquad (2.44)$$

com

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}. \tag{2.45}$$

Utilizando a representação (2.1), escrevemos a equação acima como:

$$\mathcal{L}'_{em} = \frac{1}{\sqrt{-g}} \left(-\frac{1}{4} F_{\mu\nu} F_{\alpha\beta} \tilde{g}^{\mu\alpha} \tilde{g}^{\nu\beta} \right).$$
(2.46)

Queremos escrever a equação (2.46) em termos do campo do gráviton explicitamente. Utilizando a propriedade (2.7), com n = 4, teremos

$$-g = (-\det \tilde{g}^{\mu\nu})^{\frac{2}{n-2}} = -\det \tilde{g}^{\mu\nu}; \qquad (2.47)$$

$$\begin{aligned} \eta^{ab} v^{\mu}_{a} v^{\nu}_{b} &= g^{\mu\nu} \\ \gamma^{a} v^{\mu}_{a} &= \gamma^{\mu}. \end{aligned}$$

¹incluindo férmions a lagrangeana de interação tem um termo do tipo $e \sqrt{-g\psi}\gamma^a v^{\mu}_a \psi A_{\mu}$, onde $v^{\mu}_a \epsilon$ o vierbein, que satisfaz as propriedades:

o próximo passo é utilizar a expansão devido à aproximação (2.34), associado ao fato de que $M = \exp[\text{Tr} \ln(M)]$

$$g = \exp\{\operatorname{Tr}[\ln(g^{\mu\nu} + \kappa \phi^{\mu\nu})]\}$$

= det $g^{\mu\alpha} \exp\{\operatorname{Tr}[\ln(\delta^{\alpha}_{\nu} + \kappa \phi^{\alpha}_{\nu})]\}.$ (2.48)

Fazendo expansões de Taylor das funções para valores de κ pequenos, já trabalhando na métrica de Minkowski, em que det $\eta_{\mu\nu} = -1$, teremos:

$$g^{-\frac{1}{2}} \approx \det \eta_{\mu\nu} \{ \exp[\operatorname{Tr}(\kappa\phi_{\nu}^{\alpha} - \kappa^{2}\phi_{\beta}^{\alpha}\phi_{\nu}^{\beta} + \frac{\kappa^{3}}{3}\phi_{\sigma}^{\alpha}\phi_{\lambda}^{\sigma}\phi_{\nu}^{\lambda} + \mathcal{O}(\kappa^{4})] \}^{-\frac{1}{2}} \\ \approx \det \eta_{\mu\nu} [\exp(\kappa\phi_{\alpha}^{\alpha} - \kappa^{2}\phi_{\beta}^{\alpha}\phi_{\alpha}^{\beta} + \frac{\kappa^{3}}{3}\phi_{\sigma}^{\alpha}\phi_{\lambda}^{\alpha}\phi_{\alpha}^{\lambda} + \mathcal{O}(\kappa^{4})]^{-\frac{1}{2}} \\ \approx -(1 + \kappa\phi_{\alpha}^{\alpha} - \frac{\kappa^{5}}{5}\phi_{\sigma}^{\alpha}\phi_{\lambda}^{\sigma}\phi_{\lambda}^{\gamma}\phi_{\delta}^{\gamma}\phi_{\alpha}^{\delta} + \mathcal{O}(\kappa^{6}))^{-\frac{1}{2}} \\ \approx 1 - \frac{\kappa}{2}\phi^{\alpha\alpha} + \frac{3\kappa^{2}}{8}\phi_{\lambda}^{\alpha}\phi_{\alpha}^{\lambda} + \mathcal{O}(\kappa^{3}).$$
(2.49)

Assim podemos substituir (2.49) na lagrangeana (2.46), obtendo novamente uma série de potências em κ :

$$\mathcal{L}'_{em} = \sum_{i=2}^{\infty} \kappa^{i-2} \mathcal{L}_{em(i)}.$$
(2.50)

Explicitando os dois primeiros termos da expansão, temos

$$\mathcal{L}_{em(2)} = \frac{-1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{L}_{em(3)} = \frac{-1}{4} (\eta_{\mu\nu} \phi_{\alpha\beta} + \eta_{\alpha\beta} \phi_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \eta_{\alpha\beta} \phi_{\sigma}^{\sigma}) F^{\mu\alpha} F^{\nu\beta} \qquad (2.51)$$

Agora, com a lagrangeana expressa em termos dos campos do gráviton, $\phi^{\mu\nu}$, e do fóton A^{α} , queremos verificar as regras de Feynman subseqüentes. As equações acima já serão suficientes para determinarmos o propagador e o vértice de ordem mais baixa. O propagador do fóton é o mesmo da QED, no "gauge de Feynman":

$$\stackrel{\mu}{\longrightarrow} \stackrel{k}{\longrightarrow} \stackrel{\nu}{\longrightarrow} \quad \leftrightarrow \quad \frac{-i\eta^{\mu\nu}}{k^2 - i\epsilon} \tag{2.52}$$

(2.53)

Do termos cúbico, surge agora um vértice gráviton-fóton-fóton, dado por

+
$$\eta_{\sigma(\beta}\eta_{\alpha)\lambda}k^1 \cdot k^2 - \frac{1}{2}\eta_{\alpha\beta}(\eta_{\lambda\sigma}k^1k^2 - k^1_{\sigma}k^2_{\lambda}),$$
 (2.54)

que coincide com a expressão em [CDH74], utilizando a notação para o produto tensorial simétrico $A_{(\alpha}B_{\beta)} = \frac{1}{2}(A_{\alpha}B_{\beta} + A_{\beta}B_{\alpha})$.

Recorremos aos recursos computacionais para escrever um algoritmo, mostrado no apêndice E, que automatize o procedimento acima, ou seja, dada a expansão (2.49) e a forma da representação utilizada, obtermos o valor dos vértices da teoria. Estes vértices são esquematizados na figura (2.2).

Figura 2.2: Acoplamentos possíveis entre grávitons e fótons.

Note que devido à forma da lagrangeana, sempre teremos dois fótons se acoplando com um número de 1 até N de grávitons.
Capítulo 3

A amplitude de espalhamento e suas propriedades

Neste capítulo iremos estudar algumas propriedades gerais de amplitudes de espalhamento, primeiramente do processo glúon-glúon, e depois do processo grávitongráviton. Deduziremos as identidades de Ward, com o intuito de verificar sua invariância de "gauge". Também iremos investigar a fatorização das amplitudes de ambos os processos.

3.1 O espalhamento glúon-glúon

Iremos calcular o espalhamento de dois glúons considerando a troca de um glúon virtual. A lagrangeana de Yang-Mills é:

$$\mathcal{L}_{YM} = -\frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi} (i\gamma^{\mu}D_{\mu} - m)\psi, \qquad (3.1)$$

onde *a* é um índice somado sobre todas as matrizes t^a geradores do grupo SU(3), obedecendo à álgebra de Lie:

$$[t^a, t^b] = i f^{abc} t^c, aga{3.2}$$

onde f^{abc} são constantes de estrutura, obedecendo a identidade de Jacobi:

$$f^{dae}f^{ebc} + f^{dbe}f^{eca} + f^{dce}f^{eab} = 0.$$
 (3.3)

Utilizando as regras de Feynman mostradas anteriormente, principalmente os vértices (1.26) e (1.27), podemos escrever cada uma das contribuições à amplitude de espalhamento, esquematizadas na figura 3.1.

Figura 3.1: espalhamento glúon-glúon.

Para o gráfico 1:

$$-i\mathcal{M}_{1} = -ig^{2}\epsilon_{1a}^{\mu}\epsilon_{3b}^{*\nu}[f^{abe}f^{cde}(\eta_{\mu\lambda}\eta_{\nu\rho}-\eta_{\mu\rho}\eta_{\nu\lambda})+f^{ade}f^{bce}(\eta_{\mu\nu}\eta_{\lambda\rho}-\eta_{\mu\lambda}\eta_{\nu\rho})+$$

+ $f^{ace}f^{dbe}(\eta_{\mu\rho}\eta_{\nu\lambda}-\eta_{\mu\nu}\eta_{\lambda\rho})]\epsilon_{2d}^{\rho}\epsilon_{4c}^{*\lambda},$ (3.4)

onde a contribuição provém somente de termos de contato. O gráfico 2 é, lembrando que o momento do glúon intermediário é q:

$$-i\mathcal{M}_{2} = \epsilon_{2d}^{\rho} \epsilon_{4c}^{*\lambda} \{ -gf^{dce} [\eta_{\rho\lambda}(k_{2}-k_{4})_{\sigma} + \eta_{\lambda\sigma}(k_{4}-q)_{\rho} + \eta_{\sigma\rho}(q-k_{2})_{\lambda}] \} \times \\ \times \frac{-i\eta_{\sigma\xi}\delta_{ef}}{q^{2}} \{ -gf^{abf} [\eta_{\mu\nu}(k_{1}-k_{3})_{\xi} + \eta_{\nu\xi}(k_{3}+q)_{\mu} + \eta_{\xi\mu}(-q-k_{1})_{\nu}] \} \times \\ \times \epsilon_{1a}^{\mu} \epsilon_{3b}^{*\nu}$$
(3.5)

o gráfico 3 será:

$$-i\mathcal{M}_{3} = \epsilon_{2d}^{\rho} \epsilon_{4c}^{*\lambda} \{ -gf^{dbe} [\eta_{\rho\nu}(k_{2}-k_{3})_{\sigma} + \eta_{\nu\sigma}(k_{3}-q)_{\rho} + \eta_{\sigma\rho}(q-k_{2})_{\nu}] \} \times \\ \times \frac{-i\eta_{\sigma\xi}\delta_{ef}}{q^{2}} \{ -gf^{acf} [\eta_{\mu\lambda}(k_{1}-k_{4})_{\xi} + \eta_{\lambda\xi}(k_{4}+q)_{\mu} + \eta_{\xi\mu}(-q-k_{1})_{\lambda}] \} \times \\ \times \epsilon_{1a}^{\mu} \epsilon_{3b}^{*\nu}$$
(3.6)

e finalmente o gráfico 4;

$$-i\mathcal{M}_{4} = \epsilon_{2d}^{\rho} \epsilon_{4c}^{*\lambda} \{-gf^{bce}[\eta_{\nu\lambda}(k_{4}-k_{3})_{\sigma}+\eta_{\nu\sigma}(k_{3}-q)_{\rho}+\eta_{\sigma\lambda}(q-k_{4})_{\nu}]\} \times \\ \times \frac{-i\eta_{\sigma\xi}\delta_{ef}}{q^{2}} \{-gf^{adf}[\eta_{\mu\rho}(k_{1}-k_{2})_{\xi}+\eta_{\rho\xi}(k_{2}+q)_{\mu}+\eta_{\xi\mu}(-q-k_{1})_{\rho}]\} \times \\ \times \epsilon_{1a}^{\mu} \epsilon_{3b}^{*\nu}$$
(3.7)

3.2 O espalhamento gráviton-gráviton

Também iremos estudar o espalhamento de dois grávitons, trocando um gráviton virtual. O procedimento é análogo ao caso dos bósons de "gauge", sem, é claro, as constantes de estrutura, entretanto com uma maior complexidade algébrica, devido aos vértices, como explicado no capítulo anterior. Realmente o cálculo simbólico tornou-se essencial para obtenção da amplitude.

Para os cálculos, utilizamos o fato de que a invariância de "gauge" gravitacional permite decompor [CSS95] o tensor de polarização do gráviton na multiplicação de dois vetores de polarização de spin 1,

$$\epsilon^{\mu\nu} = \epsilon^{\mu} \epsilon^{\nu}, \qquad (3.8)$$

Figura 3.2: espalhamento gráviton-gráviton

que satisfaçam a condição de transversalidade.

O gráfico acima é uma representação exata do esquema utilizado no programa para determinar a amplitude de espalhamento, mostrado no apêndice C.

3.3 A invariância de "gauge" em Yang-Mills

As amplitudes, *em uma dada ordem na constante de acoplamento*, são invariantes sob a transformação

$$A^a_\mu \longrightarrow A^a_\mu + \partial_\mu \Lambda^a, \tag{3.9}$$

onde Λ^a são funções da posição e do tempo. No espaço de momentos, podemos escrever:

$$\epsilon^a_\mu \longrightarrow \epsilon^a_\mu + \alpha^a k_\mu, \tag{3.10}$$

onde α^a são constantes arbitrárias. Logo, existe uma forma simples de testar a invariância de "gauge" de uma amplitude, em QCD (ou QED); trocando qualquer vetor de polarização do glúon (ou fóton) pelo seu correspondente momento (ou

Figura 3.3: Invariância de "gauge" da amplitude de *n* campos de "gauge"

seja $\epsilon_1 \rightarrow k_1$) o resultado deve se anular, ou seja

$$k_{\mu_1}\Gamma_{\mu_1\cdots\mu_n} = 0 \tag{3.11}$$

onde $\Gamma_{\mu_1\cdots\mu_n}$ é a amplitude de *n* glúons físicos, (condições de camada de massa e transversalidade) como ilustrado na figura 3.3.

É importante notar que a amplitude total $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 + \mathcal{M}_3 + \mathcal{M}_4$ é invariante sob transformações de gauge, mas devido ao fato de que as matrizes geradoras do grupo SU(3) não comutam, $\mathcal{M}_2 + \mathcal{M}_3 + \mathcal{M}_4$ não preservam sozinhos invariância de "gauge", somente preservada devido à adição de \mathcal{M}_1 , seguindo o esquema mostrado na figura 3.1.

3.4 Invariância de "gauge" e identidades de Ward gravitacionais

Queremos obter as identidades de Ward válidas para o caso gravitacional. Basicamente iremos partir da invariância da ação quanto a uma transformação de "gauge" do campo do gráviton, e deduzi-las a partir deste princípio. Para isso precisamos determinar a variação de $\tilde{g}^{\mu\nu}$ ao fazer uma transformação de "gauge" do tipo:

$$x'^{\mu} = x^{\mu} + \epsilon^{\mu}(x). \tag{3.12}$$

onde $\epsilon^{\mu}(x)$ é uma função da posição. Determinando a variação de $\tilde{g}^{\mu\nu}$ automaticamente já estaremos determinando a variação do campo do gráviton em nossa

3.4. INVARIÂNCIA DE "GAUGE" E IDENTIDADES DE WARD GRAVITACIONAIS35

representação, pois $\phi^{\mu\nu} = \frac{1}{\kappa} (\tilde{g}^{\mu\nu} - \eta^{\mu\nu})$. Por definição $\tilde{g}^{\mu\nu} = \frac{g^{\mu\nu}}{\sqrt{-g}}$, o que implica:

$$\delta \tilde{g}^{\mu\nu} = \sqrt{-g} \delta g^{\mu\nu} + (\delta \sqrt{-g}) g^{\mu\nu}$$

$$= \sqrt{-g} \delta g^{\mu\nu} - \frac{1}{2} (-g)^{\frac{1}{2}} \delta g g^{\mu\nu} =$$

$$= \sqrt{-g} \delta g^{\mu\nu} - \frac{1}{2} \sqrt{g} g_{\alpha\beta} \delta g^{\alpha\beta} g^{\mu\nu}. \qquad (3.13)$$

Utilizamos a propriedade geral dos determinantes, (2.12). Resta-nos então determinar a variação de $g^{\mu\nu}$ frente a transformação (3.12). Essa transformação é:

$$\delta g^{\mu\nu} = g'^{\mu\nu}(x^{\lambda}) - g^{\mu\nu}(x^{\lambda}).$$

Calculemos então a transformação de um tensor utilizando a lei de transformação de tensores:

$$g^{\prime\mu\nu}(x^{\prime\lambda}) = \frac{\partial x^{\prime\mu}}{\partial x^{\sigma}} \frac{\partial x^{\prime\nu}}{\partial x^{\rho}} g^{\sigma\rho}(x^{\lambda})$$

= $(\delta^{\mu}_{\sigma} + \partial_{\sigma}\epsilon^{\mu})(\delta^{\nu}_{\rho} + \partial_{\rho}\epsilon^{\nu})g^{\sigma\rho}$
= $g^{\mu\nu} + \partial_{\rho}\epsilon^{\nu}g^{\mu\rho} + \partial_{\sigma}\epsilon^{\mu}g^{\sigma\nu} + \mathcal{O}(\epsilon^{2}),$ (3.14)

onde ignoramos termos de potências quadráticas de ϵ . Podemos independentemente fazer uma expansão em torno de x^k :

$$g^{\prime\mu\nu}(x^{\prime\lambda}) = g^{\prime\mu\nu}(x^{\lambda} + \epsilon^{\lambda}(x))$$

= $g^{\prime\mu\nu}(x^{\lambda}) + \epsilon^{\lambda}(x)\partial_{\lambda}g^{\prime\mu\nu}(x^{\lambda}) + \mathcal{O}(\epsilon^{2}).$ (3.15)

Observando a equação (3.14), como estamos desprezando os termos quadráticos, podemos aproximar $g^{\mu\nu} \approx g^{\mu\nu}$ no segundo termo da direita de (3.15), em primeira ordem em ϵ , substituindo-o por:

$$\epsilon^{\lambda}(x)\partial_{\lambda}g^{\mu\nu}(x^{\lambda}).$$

o que, retornando a definição de $\delta g^{\mu\nu}$, utilizando (3.14) e (3.15), nos fornece:

$$\delta g^{\mu\nu} = \partial_{\rho} \epsilon^{\nu} g^{\mu\rho} + \partial_{\sigma} \epsilon^{\mu} g^{\sigma\nu} - \epsilon^{\lambda} \partial_{\lambda} g^{\mu\nu}.$$
(3.16)

Retornamos à (3.13), especificamente no segundo termo à direita da última igualdade, agora com a forma explícita de $\delta g^{\alpha\beta}$, permitindo escrevê-la como:

$$-\frac{1}{2}\delta\sqrt{-g}g_{\alpha\beta}g^{\alpha\beta}g^{\mu\nu} = -\frac{1}{2}\sqrt{-g}g_{\alpha\beta}(\partial_{\rho}\epsilon^{\beta}g^{\alpha\rho} + \partial_{\sigma}\epsilon^{\alpha}g^{\sigma\beta} - \epsilon^{\lambda}\partial_{\lambda}g^{\alpha\beta})g^{\mu\nu}$$
$$= -\sqrt{-g}g^{\mu\nu}\partial_{\rho}\epsilon^{\rho} + \frac{1}{2}\sqrt{-g}g^{\mu\nu}g_{\alpha\beta}\epsilon^{\lambda}\partial_{\lambda}g^{\alpha\beta}$$
$$= -\tilde{g}^{\mu\nu}\partial_{\rho}\epsilon^{\rho} - g^{\mu\nu}\epsilon^{\lambda}\partial_{\lambda}\sqrt{-g},$$
(3.17)

onde utilizamos na última linha a definição de Goldberg e novamente a propriedade (2.12). Logo a equação (3.13) torna-se finalmente:

$$\begin{split} \delta \tilde{g}^{\mu\nu} &= \tilde{g}^{\mu\rho} \partial_{\rho} \epsilon^{\nu} + \tilde{g}^{\sigma\nu} \partial_{\sigma} \epsilon^{\mu} - \tilde{g}^{\mu\nu} \partial_{\rho} \epsilon^{\rho} - \epsilon^{\lambda} [(\partial_{\lambda} g^{\mu\nu}) \sqrt{-g} + g^{\mu\nu} \partial_{\lambda} \sqrt{-g}] \\ &= \tilde{g}^{\mu\rho} \partial_{\rho} \epsilon^{\nu} + \tilde{g}^{\sigma\nu} \partial_{\sigma} \epsilon^{\mu} - \tilde{g}^{\mu\nu} \partial_{\rho} \epsilon^{\rho} - \epsilon^{\lambda} \partial_{\lambda} \tilde{g}^{\mu\nu}, \end{split}$$
(3.18)

No entanto estamos interessados em derivar a variação do campo do gráviton $\phi^{\mu\nu}$, que pode ser determinada através da aproximação de campo fraco:

$$\tilde{g}^{\mu\nu} \equiv \eta^{\mu\nu} + \kappa \phi^{\mu\nu}, \qquad (3.19)$$

onde $\eta^{\mu\nu}$ é o tensor métrico de Minkowski, cuja variação é nula, ou seja:

$$\phi^{\mu\nu} \to \phi^{\mu\nu} + \frac{1}{\kappa} \delta \tilde{g}^{\mu\nu}. \tag{3.20}$$

Assim introduzimos diretamente (3.19) em (3.18), obtendo, finalmente:

$$\delta\phi^{\mu\nu} = \eta^{\mu\rho}\partial_{\rho}\epsilon^{\nu} + \eta^{\sigma\nu}\partial_{\sigma}\epsilon^{\mu} - \eta^{\mu\nu}\partial_{\rho}\epsilon^{\rho} + \kappa\phi^{\mu\rho}\partial_{\rho}\epsilon^{\nu} + \kappa\phi^{\sigma\nu}\partial_{\sigma}\epsilon^{\mu} - \kappa\phi^{\mu\nu}\partial_{\rho}\epsilon^{\rho} - \kappa\epsilon^{\lambda}\phi^{\mu\nu}{}_{,\lambda}.$$
(3.21)

De posse de (3.21), podemos encontrar as identidades de Ward, a partir da invariância da ação clássica sob transformações gerais dos campos:

$$\int d^4x_1 \delta \phi_{\mu\nu}(x_1) \frac{\delta \Gamma}{\delta \phi_{\mu\nu}(x_1)} = 0.$$
(3.22)

Escrevemos a variação do campo do gráviton, de uma forma mais apropriada, como sendo

$$\delta\phi^{\mu\nu}(x_1) = \frac{1}{\kappa} (\eta^{\mu\alpha} \eta^{\nu\lambda} \partial_{\alpha} + \eta^{\beta\nu} \eta^{\mu\lambda} \partial_{\beta} - \eta^{\mu\nu} \partial_{\lambda} + \phi^{\mu\alpha} \eta^{\nu\lambda} \partial_{\alpha} + \phi^{\beta\nu} \eta^{\mu\lambda} \partial_{\beta} - \phi^{\mu\nu} \partial_{\lambda} - \phi^{\mu\nu} \partial_{\lambda} - \phi^{\mu\nu} \partial_{\lambda} (x_1).$$
(3.23)

O próximo passo é substituir a expressão acima em (3.22), lembrando que sempre podemos fazer integrações por partes de modo que simplificaremos termos como:

$$\int d^4x_1 \frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_1)} (\phi^{\mu\rho} \eta^{\lambda\nu} \partial_{\rho}) \epsilon_{\lambda} = -\int d^4x_1 \epsilon_{\lambda} \partial_{\rho} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_1)} \phi^{\mu\rho} \eta^{\lambda\nu} \right). \quad (3.24)$$

Desprezando os termos de superfícies, podemos escrever:

$$\frac{1}{\kappa} \int d^{4}x_{1} \left[\partial_{\alpha} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \eta^{\mu\alpha} \eta^{\nu\lambda} \right) + \partial_{\beta} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \eta^{\beta\nu} \eta^{\mu\lambda} \right) - \partial_{\lambda} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \eta^{\mu\nu} \right) + \\
+ \partial_{\alpha} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \phi^{\mu\alpha} \eta^{\nu\lambda} \right) + \partial_{\beta} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \phi^{\beta\nu} \eta^{\mu\lambda} \right) - \partial_{\lambda} \left(\frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \phi^{\mu\nu} \right) \\
- \frac{\delta\Gamma}{\delta\phi_{\mu\nu}(x_{1})} \phi^{\mu\nu}_{,\lambda} \right] \epsilon_{\lambda}(x_{1}) = 0$$
(3.25)

Como o parâmetro ϵ é arbitrário, podemos afirmar que a expressão dentro do colchete acima é nula, para que a variação da ação seja zero. Como fizemos no caso do eletromagnetismo, as identidades de Ward serão determinadas tomando derivadas funcionais, em $\phi = 0$ e $\partial \phi = 0$. Derivando em relação a $\phi^{\alpha\beta}(x_2)$, e impondo que $\phi = 0$, toda a dependência em ϕ desaparece, obtendo:

$$\frac{i}{\kappa} \left(\eta_{\nu\lambda} \partial_{\mu} + \eta_{\mu\lambda} \partial_{\nu} - \eta_{\mu\nu} \partial_{\lambda} \right) \frac{\delta^2 \Gamma}{\delta \phi_{\mu\nu}(x_1) \delta \phi_{\alpha\beta}(x_2)} = 0,$$
(3.26)

ou, alternativamente, no espaço de momentos:

$$\frac{i}{\kappa} \left(\eta_{\mu\lambda} k_{\nu}^{1} + \eta_{\nu\lambda} k_{\mu}^{1} - \eta_{\mu\nu} k_{\lambda}^{1} \right) \Gamma^{\mu\nu}_{\alpha\beta}(k_{1}, k_{2}) = \frac{i}{\kappa} X_{\mu\nu;\lambda}(k_{1}) \Gamma^{\mu\nu}_{\alpha\beta}(k_{1}, k_{2}) = 0, \quad (3.27)$$

onde $\Gamma_{\mu\nu;\alpha\beta}$ é a função de dois pontos em ordem árvore.

Ou seja, aplicando o operador acima na função de Green de dois pontos do gráviton, o resultado será nulo. Esta é a primeira identidade de Ward para o caso gravitacional. Iremos derivar (3.26) com respeito a $\phi_{\sigma\rho}$, para obter a identidade para a função de três pontos, no espaço de momentos, como

$$\frac{1}{\kappa} X_{\mu\nu;\lambda}(k_1) \mathcal{V}^{\mu\nu\alpha\beta\sigma\rho}(k_1, k_2, k_3) = R^{\alpha\beta}_{\mu\nu;\lambda}(k_1, -k_1 - k_2) \Gamma^{\mu\nu\sigma\rho}(k_1 + k_2, k_3) + R^{\sigma\rho}_{\mu\nu;\lambda}(k_1, -k_1 - k_3) \Gamma^{\mu\nu\alpha\beta}(k_1 + k_3, k_2),$$
(3.28)

onde o operador $R^{\alpha\beta}_{\mu
u;\lambda}$, é descrito abaixo:

$$R^{\alpha\beta}_{\mu\nu;\lambda}(k,p) = \eta_{\nu\lambda}\delta^{\alpha}_{\mu}k^{\beta} + \eta_{\nu\lambda}\delta^{\beta}_{\mu}k^{\alpha} + \delta^{\alpha}_{\mu}\delta^{\beta}_{\nu}p_{\lambda}.$$
(3.29)

e já inserimos conservação de momento nos vértices, $k_1 + k_2 + k_3 = 0$. Podemos generalizar a expressão (3.28) sempre relacionando uma função de *n* pontos com

a função de *n*-1 pontos:

$$\frac{1}{\kappa} X_{\mu_{1}\nu_{1}}(k_{1}) \mathcal{V}^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}...\mu_{n}\nu_{n}}{}_{n}(k_{1},k_{2},\cdots,k_{n}) =
R^{\mu_{2}\nu_{2}}_{\mu_{1}\nu_{1}}(k_{1},-k_{1}-k_{2}) \mathcal{V}^{\mu_{1}\nu_{1}\mu_{3}\nu_{3}...\mu_{n}\nu_{n}}{}_{n-1}(k_{1}+k_{2},k_{3},\cdots,k_{n}) +
R^{\mu_{3}\nu_{3}}_{\mu_{1}\nu_{1}}(k_{1},-k_{1}-k_{3}) \mathcal{V}^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}...\mu_{n}\nu_{n}}{}_{n-1}(k_{1}+k_{3},k_{2},k_{4},\cdots,k_{n}) +
\cdots
R^{\mu_{n}\nu_{n}}_{\mu_{1}\nu_{1}}(k_{1},-k_{1}-k_{n}) \mathcal{V}^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}...\mu_{n-1}\nu_{n-1}}{}_{n-1}(k_{1}+k_{n},k_{2},k_{3},\cdots,k_{n-1})$$
(3.30)

onde já utilizamos conservação de momento em cada vértice. Temos então finalmente uma expressão geral para as identidades de Ward. Os operadores definidos em (3.27) e (3.29) serão utilizados no programa do apêndice C para verificar a invariância dos vértices. Eles são respectivamente chamados de LeftWard e RightWard.

Analogamente à teoria de Yang-Mills, uma amplitude de espalhamento de n grávitons, satisfazendo as condições de camada de massa e transversalidade, será invariante sob uma transformação de "gauge" como indicada na equação (3.23). Isso implica que

$$X_{\mu_1\nu_1;\lambda}\Gamma_{\mu_1\nu_1\cdots\mu_n\nu_n} = 0, (3.31)$$

onde $\Gamma_{\mu_1\nu_1\cdots\mu_n\nu_n}$ é a amplitude física de *n* grávitons.

3.4.1 Identidade de Ward no acoplamento gráviton-fóton

A transformação de coordenadas (3.12) induz uma mudança no campo do fóton, $A^{\alpha}(x)$, apesar que as variáveis do campo não são mudadas. Iremos determinar nesta seção a identidade de Ward válida para o vértice de ordem mais baixa no acoplamento de fótons e gráviton.

Em um mesmo ponto físico as quantidades de campo nos dois sistemas de coordenadas serão chamadas $A^{\alpha}(x)$ e $A^{\prime \alpha}(x')$, respectivamente. $A^{\prime \alpha}(x')$ é dado de acordo com sua natureza vetorial, geralmente:

$$A^{\prime \alpha}(x^{\prime}) = \frac{\partial x^{\prime \alpha}}{\partial x^{\beta}} A^{\beta}(x) = (\delta^{\alpha}_{\beta} + \partial_{\beta} \epsilon^{\alpha}) A^{\beta}(x).$$
(3.32)

Por outro lado,

$$A^{\prime \alpha}(x^{\prime}) = A^{\prime \alpha}(x+\epsilon) = A^{\prime \alpha}(x) + \frac{\partial A^{\prime \alpha}}{\partial x^{\lambda}} \epsilon^{\lambda}.$$
(3.33)

3.4. INVARIÂNCIA DE "GAUGE" E IDENTIDADES DE WARD GRAVITACIONAIS39

Combinando (3.32) e (3.33), nós temos a variação induzida em A^{α} :

$$\delta A^{\alpha} = A^{\prime \alpha}(x) - A^{\alpha}(x) = \partial_{\beta} \epsilon^{\alpha} A^{\beta}(x) - A^{\alpha}_{,\lambda} \epsilon^{\lambda}.$$
(3.34)

A variação da ação (2.44), com relação aos campos do gráviton e os campos eletromagnéticos A^{α} , é descrita por:

$$\int \left(\frac{\delta\Gamma}{\delta\phi^{\mu\nu}}\delta\phi^{\mu\nu} + \frac{\delta\Gamma}{\delta A^{\alpha}}\delta A^{\alpha}\right) d^{n}x.$$
(3.35)

Derivando funcionalmente (3.35) com relação à $A^{\sigma}(x_1) \in A^{\rho}(x_2)$,

$$\frac{\delta^{3}\Gamma}{\delta\phi^{\mu\nu}\delta A^{\sigma}(x_{1})\delta A^{\rho}(x_{2})}\delta\phi^{\mu\nu} = -\frac{\delta^{2}\Gamma}{\delta A^{\sigma}(x_{1})\delta A^{\alpha}(x)}\frac{\delta A^{\alpha}(x)}{\delta A^{\rho}(x_{2})} - \frac{\delta^{2}\Gamma}{\delta A^{\rho}(x_{2})\delta A^{\alpha}(x)}\frac{\delta A^{\alpha}(x)}{\delta A^{\sigma}(x_{1})}$$
(3.36)

Colocando o valor dos campos envolvidos como nulos, obtemos finalmente a identidade de Ward escrita no espaço de momentos como:

$$X_{\mu\nu;\lambda}\mathcal{V}^{\mu\nu,\alpha,\beta}(k_1,k_2) = \Delta^{\alpha}_{\sigma;\lambda}\Gamma^{\beta\sigma}(k_2) + \Delta^{\beta}_{\sigma;\lambda}\Gamma^{\sigma\alpha}(k_1), \qquad (3.37)$$

onde $\Gamma^{\sigma\alpha}$ é a função de dois pontos do fóton. O operador $X_{\mu\nu;\lambda}$ é o mesmo definido em (3.27). Δ é obtido derivando (3.34) funcionalmente com relação ao campo $A^{\sigma}(x_2)$:

$$\Delta_{\alpha\sigma;\lambda}\epsilon^{\lambda} = \frac{\delta A^{\alpha}}{\delta A^{\sigma}} = (\delta^{\lambda}_{\alpha}\partial_{\sigma} - \eta_{\alpha\sigma}\partial_{\lambda})\epsilon^{\lambda}, \qquad (3.38)$$

onde o último termo foi obtido após integração por partes. No espaço de momentos, temos

$$\Delta_{\alpha\sigma;\lambda} = \delta^{\lambda}_{\alpha} k_{\sigma} - \eta_{\alpha\sigma} k_{\lambda} \tag{3.39}$$

Similarmente poderíamos derivar (3.35) com respeito a $\phi^{\sigma\rho}$ e A^{κ} , por exemplo, para obter a identidade de Ward da função de três pontos. Entretanto todas as parcelas se anulam quando impomos que os valores dos campos sejam nulos.

A identidade (3.37) foi verificada para o vértice obtido no algoritmo do apêndice E.

3.5 Fatorização da amplitude

Em um processo envolvendo o espalhamento de quatro (ou N) partículas testes vale uma propriedade conhecida na literatura como "lema de Mikaelian" [GHL81]. Partindo do princípio de que a amplitude pode ser decomposta em três fatores distintos, A_i dependendo da carga (no caso não abeliano, a cor), uma parte dependente somente da polarização, B_i , e outra dos propagadores C_i , podemos escrever a amplitude de espalhamento na forma abaixo:

$$\mathcal{M} = \sum_{i=1}^{N} \frac{A_i \cdot B_i}{C_i},\tag{3.40}$$

com a propriedade de que

$$\sum_{i=1}^{N} A_i = \sum_{i=1}^{N} B_i = \sum_{i=1}^{N} C_i = 0.$$
 (3.41)

A primeira soma na equação acima envolve as constantes de estrutura e anula-se devido à conservação de carga. Matematicamente isso é uma conseqüência das identidades de Jacobi para as constantes de estrutura. A segunda soma anula-se devido à conservação de energia-momentum, $\sum_{i=1}^{N} p_i = 0$ e condição de transversalidade, $k_{\mu} \cdot \epsilon^{\mu} = 0$. A somatória em C_i se anula devido à condição de camada de massa e conservação de momento.

Um exemplo do que falamos acima é melhor esclarecido observando o processo mostrado na figura 3.4, do espalhamento de três escalares carregados e um fóton. Explicitamos na tabela 3.1 os fatores obtidos na fatorização nete caso.

Diagrama	A_i	${B}_i$	C_i
a	Q_1	$p_1 \cdot \varepsilon$	$p_1 \cdot p$
b	Q_2	$p_2 \cdot \varepsilon$	$p_2 \cdot p$
с	Q_3	$p_3 \cdot \varepsilon$	$p_3 \cdot p$

Tabela 3.1: elementos da fatorização

Observe que:

$$\sum_{i=1}^{N} A_i = \sum_{i=1}^{N} Q_i = 0 \quad \text{conservação de carga}$$
$$\sum_{i=1}^{N} B_i = -p \cdot \varepsilon = 0 \quad \text{tranversalidade do fóton}$$
$$\sum_{i=1}^{N} C_i = -p \cdot p = 0 \quad \text{camada de massa.}$$

Figura 3.4: Espalhamento de três escalares carregados e um fóton.

No caso não abeliano o análogo da carga é a cor; logo as constantes de estrutura permitem de início determinar os termos A_i . Os termos C_i são identificados pelos propagadores. Assim facilmente podemos identificar os termos B_i .

O caso gravitacional torna-se mais complicado: não obtemos igualdades correspondentes à conservação de carga de cor. De fato os únicos termos que são visivelmente aparentes são os termos cinemáticos provindos dos propagadores C_i .

3.6 Resultados obtidos

3.6.1 Espalhamento glúon-glúon

O cálculo da amplitude de espalhamento glúon-glúon foi realizado utilizando o algoritmo mostrado no apêndice A, utilizando computação simbólica, com as definições mostradas na figura 3.5.

Utilizamos a convenção nos algoritmos para cálculos de amplitudes em que, para determinar as contribuições relativas aos canais de espalhamento s, t e u, mantivéssemos a "perna" externa correspondente ao índice 4 fixa, enquanto permutamos ciclicamente as "pernas" 1, 2 e 3. Ainda todos os cálculos realizados são feitos na camada de massa.

No espalhamento de glúons, a simetria bosônica de permuta é automaticamente satisfeita. A invariância de "gauge" é satisfeita trocando-se um dos vetores de

Figura 3.5: Convenções utilizadas no programa do apêndice A

polarização por seu momento correspondente. O resultado obtido é proporcional a uma combinação de produtos de constantes de estrutura que se anula pela identidade de Jacobi [veja a Eq. (3.3)].

A fatorização da amplitude foi obtida com sucesso, utilizando este mesmo

algoritmo, com os seguintes elementos, a saber:

$$\begin{split} A_{1} &= f^{bce} f^{dce}, A_{2} = f^{dbe} f^{ace}, A_{3} = f^{bce} f^{dae}, \\ B_{1} &= (k^{1} \cdot k^{2}) \eta_{\mu\nu} \eta_{\alpha\beta} + 2k_{\nu}^{3} k^{2} \mu \eta_{\alpha\beta} - 2k_{\nu}^{3} \eta_{\alpha\mu} k_{\beta}^{2} - 2k_{\beta}^{2} \eta_{\alpha\mu} k_{\nu}^{2} - \eta_{\beta\nu} \eta_{\alpha\mu} (k^{1} \cdot k^{2}) \\ &- 2\eta_{\beta\nu} \eta_{\alpha\mu} (k^{1} \cdot k^{3}) + 2k_{\beta}^{2} k_{\mu}^{2} \eta_{\alpha\nu} - 2k_{\nu}^{3} k_{\alpha}^{1} \eta_{\beta\mu} - + 2\eta_{\beta\nu} k_{\alpha}^{1} k_{\mu}^{3} + 2k_{\beta}^{1} k_{\mu}^{2} \eta_{\alpha\nu} \\ &- (k^{1} \cdot k^{2}) \eta_{\beta\mu} \eta_{\alpha\nu} - 2k_{\beta}^{1} \eta_{\alpha\mu} k_{\nu}^{2} - 2k_{\beta}^{1} k_{\alpha}^{1} \eta_{\mu\nu} - 2k_{\beta}^{2} k_{\alpha}^{1} \eta_{\mu\nu} - 2\eta_{\beta\nu} k_{\mu}^{2} k_{\alpha}^{3} \\ B_{2} &= (2k^{1} \cdot k^{2}) \eta_{\beta\mu} \eta_{\alpha\nu} + \eta_{\alpha\nu} \eta_{\beta\mu} k^{1} \cdot k^{3} + 2k_{\nu}^{3} k_{\alpha}^{1} \eta_{\beta\mu} - 2k_{\beta}^{1} k^{2} \mu \eta_{\alpha\nu} - 2k_{\mu}^{3} \eta_{\alpha\beta} k_{\nu}^{2} \\ &+ 2k_{\beta}^{1} \eta_{\alpha\mu} k_{\nu}^{2} - 2k_{\mu}^{3} k_{\alpha}^{3} \eta_{\beta\nu} + 2k_{\mu}^{3} k_{\beta}^{2} \eta_{\alpha\nu} + 2k_{\alpha}^{3} \eta_{\beta\mu} k_{\nu}^{3} + 2k_{\nu}^{2} k_{\alpha}^{3} \eta_{\beta\mu} + 2\eta_{\mu\nu} k_{\alpha}^{3} k_{\beta}^{1} \\ &- 2\eta_{\beta\nu} k_{\alpha}^{1} k_{\mu}^{3} + 2k_{\beta}^{1} k_{\alpha}^{1} \eta_{\mu\nu} - \eta_{\mu\nu} \eta_{\alpha\beta} k^{1} \cdot k^{3} + \eta_{\beta\nu} \eta_{\alpha\mu} k^{1} \cdot k^{3} \\ B_{3} &= -(2k^{1} \cdot k^{2}) \eta_{\mu\nu} \eta_{\alpha\beta} - \eta_{\beta\nu} \eta_{\alpha\mu} k^{2} \cdot k^{3} + 2k_{\rho}^{2} \eta_{\alpha\mu} k_{\nu}^{2} + \eta_{\alpha\nu} \eta_{\beta\mu} k^{2} \cdot k^{3} - 2k_{\nu}^{2} k_{\alpha}^{3} \eta_{\beta\mu} \\ &- 2\eta_{\mu\nu} k_{\alpha}^{3} k_{\beta}^{1} - 2k_{\alpha}^{3} \eta_{\beta\mu} k_{\nu}^{3} + 2k_{\mu}^{3} k_{\alpha}^{3} \eta_{\beta\nu} - 2k_{\nu}^{3} k_{\mu}^{2} \eta_{\alpha\beta} k_{\nu}^{2} \\ &+ 2\eta_{\beta\nu} k_{\mu}^{2} k_{\alpha}^{3} - 2k_{\rho}^{2} k_{\mu}^{2} \eta_{\alpha\nu} + 2k_{\nu}^{3} \eta_{\alpha\mu} k_{\rho}^{2} + 2k_{\rho}^{2} k_{\alpha}^{1} \eta_{\mu\nu} - \eta_{\mu\nu} \eta_{\alpha\beta} k_{\nu}^{2} \\ &+ 2\eta_{\beta\nu} k_{\mu}^{2} k_{\alpha}^{3} - 2k_{\rho}^{2} k_{\mu}^{2} \eta_{\alpha\nu} + 2k_{\nu}^{3} \eta_{\alpha\mu} k_{\rho}^{2} + 2k_{\rho}^{2} k_{\alpha}^{1} \eta_{\mu\nu} - \eta_{\mu\nu} \eta_{\alpha\beta} k^{2} \cdot k^{3} \\ &- 2k_{\mu}^{3} k_{\rho}^{2} \eta_{\alpha\nu} \\ C_{1} &= k^{1} \cdot k^{2}, C_{2} = k^{1} \cdot k^{3}, C_{3} = k^{2} \cdot k^{3} \end{split}$$

onde fizemos a troca de índices para mantermos iguais a [CSS95], tal que $\mu_1, \mu_2, \mu_3, \mu_4 \rightarrow \mu, \alpha, \beta, \nu$. Observamos que a soma de A_i fornece a identidade de Jacobi (3.3). Como mencionamos anteriormente, a anulação da soma dos B_i é uma conseqüência da conservação de momento e da transversalidade (por exemplo, um termo como $k_{1\nu}$ foi substituido por $-k_{2\nu} - k_{3\nu}$). Finalmente, a anulação da soma dos C_i decorre da condição de camada de massa e conservação de momento. Por exemplo,

$$k_4^2 = (-k_1 - k_2 - k_3)^2 \quad \rightarrow \quad -(k_1 \cdot k_2) - (k_1 \cdot k_3) - (k_2 \cdot k_3) = 0 \quad (3.43)$$

pois na camada de massa, $k_i^2 = 0$.

3.6.2 Espalhamento gráviton-gráviton

No caso gravitacional, utilizamos um algoritmo semelhante, mostrado no apêndice C. Com a amplitude de espalhamento, verificamos a simetria de permuta, trocando a posição das partículas.

A invariância de "gauge" pode ser verificada tanto nos vértices cúbicos e quárticos, como no propagador utilizando a identidade de Ward. Observada esta identidade em cada vértice, pretendíamos agora verificar a invariância da amplitude de espalhamento em si, e aplicamos o mesmo método de troca de um vetor de polarização pelo seu correspondente quadrimomento. Entretanto, nesta representação deveríamos trocar o tensor de polarização pelo operador $X_{\mu\nu}$, mostrado na equação (3.27). Implementando a condição de traço nulo, $\epsilon^{\mu}_{\nu} = 0$, os fatores que provêm do terceiro termo à esquerda de (3.27) se anulam, do mesmo modo, impondo $\epsilon_{\mu\nu} = \epsilon_{\nu\mu}$, verificamos que os dois primeiros termos tornam-se idênticos, o que possibilita trocar simplesmente o tensor de polarização por k^{μ} , que o resultado será nulo, como foi verificado.

Quanto a fatorização, identificamos os termos C_i , e são os mesmos que o caso não abeliano. Depois separamos a amplitude em uma soma de termos obtidos um do outro através de permutações cíclicas dos índices 1, 2 e 3, cada um com 1382 termos, identificando estes termos como $TotAB_i(1, 2, 3)$, onde 1,2,3 são os índices aos quais aplicaremos a permutação:

$$\mathcal{M}_{Total} = \frac{TotAB_1(1,2,3)}{k_1 \cdot k_2} + \frac{TotAB_2(3,1,2)}{k_1 \cdot k_3} + \frac{TotAB_3(2,3,1)}{k_2 \cdot k_3}.$$
 (3.44)

Seria possível separar os termos A_i e B_i de $TotAB_i$, como afirmado em [CSS95]? O número de termos ainda tornava o procedimento de separação do produto proibitivo, então tentamos reduzi-los usando o procedimento do Apêndice D, que verifica quais os termos podem ser reduzidos ao seu correspondente através de uma troca de índices, pois o tensor de polarização é simétrico:

$$\epsilon_{\mu\nu} = \epsilon_{\nu\mu}, \tag{3.45}$$

reduzindo a finalmente 625 termos, ainda não separáveis na forma de um produto, em primeira análise.

Uma nota deve ser feita: quando utilizamos o procedimento descrito, verificamos que uma parte, constituída de 288 termos, que aparentemente não era simétrica. Entretanto a amplitude em si é simétrica, o que parecia uma inconsistência. A razão para a existências destes termos é o fato de que para determinar $TotAB_i$, mantivemos o índice 4 intacto, explorando simetrias em 1, 2 e 3, tal que esta simetria neste índice foi individualmente quebrada nos três termos TotABi. De fato a soma destes termos permutando os índices ciclicamente é nula, como demonstrado no último passo do apêndice D.

Capítulo 4

Conclusão Geral

Ao final deste trabalho, verificamos que estudando a amplitude de espalhamento, não apenas no sentido de obter uma seção de choque diferencial, e sim explorando suas propriedades básicas, podemos obter tantas informações sobre este sistema, quanto no cálculo sistemático destas seções de choque, como explorado em trabalhos como [BF96].

No capítulo 1, estudando a questão do limite de massa finita ou nula do gráviton e interpretando esta no contexto de espalhamento entre partículas, verificamos que a interação da matéria com a luz seria menor por um fator 3/4 daquela em uma teoria com massa finita. Os resultados são bastante favoráveis à teoria nãomassiva. Esse fato provém da diferença numérica na estrutura dos propagadores (1/2 contra 1/3), o qual leva a uma descontinuidade, usualmente conhecida como "descontinuidade Dam-Veltman". No caso de Yang-Mills, a diferença aparece quanto aos requerimentos de unitariedade; no caso gravitacional, quando comparamos a teoria com os dados experimentais.

Podemos dizer que, na teoria de Yang-Mills, a descontinuidade aparece em segunda ordem (ou seja, com gráficos incluindo "loops"), enquanto no caso da gravitação este fato já aparece na primeira ordem da teoria, não importando o limite de massa tendendo a zero: as teorias tanto massivas quanto não massivas se tornam distintas.

Vimos ainda que resultados fenomenológicos nos levam a rejeitar no caso da gravitação, uma teoria de massa finita, mas não nula, apresentando uma precisão de 10%. Alguns artigos recentemente publicados (por exemplo, [DDLS01]) vêm explorando mais este assunto.

As regras de Feynman deduzidas no Capítulo 2 serviram de base para verificarmos a invariância de "gauge" utilizando a identidade de Ward, tanto no caso não abeliano, quanto no caso gravitacional, ou a troca do quadrimomento pelo seu respectivo vetor de polarização, diretamente na amplitude de espalhamento. Esta última, no caso não abeliano, forneceu 132 termos distintos; no caso gravitacional, a amplitude gráviton-gráviton forneceu 3660 termos.

A fim de verificar tanto a veracidade dos resultados, como também propriedades da amplitude, tratamos de, em cada passo, verificar a invariância de "gauge", utilizando ou as identidades de Ward nos vértices, ou a troca de $\epsilon_{\mu} \rightarrow k_{\mu}$, na amplitude total, realmente nos fornecendo um resultado nulo, o que verifica a invariância. A propriedade da fatorização, como explicada em [CSS95], foi determinada para o espalhamento glúon-glúon, entretanto para o espalhamento gráviton-gráviton não foi possível separar os termos A_i e B_i , explicitamente, utilizando os procedimentos abordados aqui. Em [CSS95], os autores citam que os termos referentes à fatorização da amplitude gráviton-gráviton, ($gg \rightarrow gg$), obedecem a relação:

$$A_i^{gg} = -\kappa^2 B_i,$$

$$B_i^{gg} = \frac{B_i}{16},$$
(4.1)

onde os termos B_i são provenientes da fatorização da amplitude glúon-glúon. Obtivemos os termos B_i , como mostrado em (3.42). Na gravitação conseguimos determinar as parcelas da soma (3.44), entretanto não obtivemos um termo que pudesse à primeira vista ser fatorado em um produto, muito menos que seja proveniente da fatorização da amplitude glúon-glúon.

No apêndice E apresentamos um algoritmo que determina as regras de Feynman a partir da lagrangeana envolvendo fótons e grávitons. O vértice obtido obedece à identidade de Ward eletromagnética e gravitacional.

Os rumos tomados a partir deste trabalho, poderiam ser vários: poderíamos trabalhar com amplitudes de espalhamento com outras partículas-teste, como fótons, férmions e escalares ou expressar os vértices da teoria , partindo de um número finito de parâmetros, usando a invariância de "gauge", como no caso não abeliano [YM54], utilizando como base o trabalho [BF96]. Entretanto ainda esperamos que o trabalho venha a contribuir para um maior entendimento das amplitudes de espalhamento na abordagem semi-clássica da gravitação, e de suas propriedades, ou no mínimo, das propriedades discutidas neste trabalho.

Referências Bibliográficas

- [BF96] F. T. Brandt and J. Frenkel, "Nonlinear couplings and tree amplitutes in gauge theories," Phys. Rev. D 53, 911 (1996) [arXiv:hep-th/9901132].
- [BF98] F. T. Brandt and J. Frenkel, "The structure of the graviton self-energy at finite temperature," Phys. Rev. D 58, 085012 (1998) [arXiv:hep-th/9803155],
- [BF99] F. T. Brandt and J. Frenkel, "General structure of the graviton self-energy, "Phys. Rev. D 59, 127701 (1999) [arXiv:hep-th/9901132].
- [BDF00] F. T. Brandt, A. K. Das and J. Frenkel, "Behavior of the thermal gluon self-energy in the Coulomb gauge," Phys. Rev. D 62, 127702 (2000) [arXiv:hep-th/0009093].
- [CG01] M. Carrera and D. Giulini, "Classical analysis of the van Dam Veltman discontinuity," arXiv:gr-qc/0107058.
- [CDH74] D. M. Capper, M. J. Duff and L. Halpern, "Photon Corrections To The Graviton Propagator," Phys. Rev. D 10, 461 (1974).
- [CLM73] D. M. Capper, G. Leibbrandt and M. Ramon Medrano, "Calculation Of The Graviton Selfenergy Using Dimensional Regularization," Phys. Rev. D 8, 4320 (1973).
- [CSS95] S. Y. Choi, J. S. Shim and H. S. Song, "Factorization and polarization in linearized gravity," Phys. Rev. D 51 (1995) 2751 [arXiv:hep-th/9411092].
- [DDLS01] F. A. Dilkes, M. J. Duff, J. T. Liu and H. Sati, "Quantum discontinuity between zero and infinitesimal graviton mass with a Lambda term," Phys. Rev. Lett. 87, 041301 (2001) [arXiv:hep-th/0102093].
- [Dir75] P. A. M. Dirac, "General Theory of Relativity," Wiley Publishin, NY, (1975).

- [Duf74] M. J. Duff, "Covariant Quantization," In *Chilton 1974, Proceedings, Oxford Symposium On Quantum Gravity*, Oxford 1975, 78-135.
- [Feyn63] R. P. Feynman, "Quantum theory of Gravitation," Acta Phys. Polon, 24, 697, (1963).
- [FMW95] R. P. Feynman, F. B. Moriningo and W. G. Wagner, "Feynman Lectures on Gravitation," Addison-Wesley Publishing Company, London, (1995).
- [FS02] L. S. Finn and P. J. Sutton, "Bounding the mass of the graviton using binary pulsar observations," Phys. Rev. D 65 (2002) 044022 [arXiv:grqc/0109049].
- [Gru01] A. Gruzinov, "On the graviton mass," arXiv:astro-ph/0112246.
- [GHL81] C. J. Goebel, F. Halzen and J. P. Leveille, "Angular Zeros Of Brown, Mikaelian, Sahdev, And Samuel And The Factorization Of Tree Amplitudes In Gauge Theories," Phys. Rev. D 23, 2682 (1981).
- [Gou95] R. J. Gould, "Elementary Theory Of Graviton Production Processes," Annals Phys. 238 (1995) 83.
- [Hoo74] G. 't Hooft, "Quantum Gravity," In *t'Hooft, G. (ed.): Under the spell of the gauge principle* 584-605, and in *Bonn 1974, Proceedings, Trends in elementary particle theory* 92-113.
- [HY92] Alexander Hsieh and Eran Yehudai, "HIP: Symbolic hig-energy physics calculations," Comp. Phys, **6**, 253, (1992)
- [Neu02] I. P. Neupane, "Effective Lagrangian from higher curvature terms: Absence of vDVZ discontinuity in AdS space," Class. Quant. Grav. 19 (2002) 1167 [arXiv:hep-th/0108194].
- [NP98] J. F. Nieves and P. B. Pal, "Photogravitational processes," arXiv:hepph/9812268.
- [PV51] G. Papini and S. R. Valluri, "Gravitons In Minkowski Space-Time. Interactions And Results Of Astrophysical Interest," Phys. Rept. 33 (1977) 51.
- [Ryd85] L. H. Ryder, "Quantum Field Theory," *Cambridge, Uk: Univ. Pr.* (1985) 443p.

- [San86] S. Sannan, "Gravity As The Limit Of The Type I Superstring Theory," Phys. Rev. D 34, 1749 (1986).
- [Vel76] M. J. Veltman, "Quantum Theory Of Gravitation," In *Les Houches 1975, Proceedings, Methods In Field Theory*, Amsterdam 1976, 265-327
- [VD70] H. van Dam and M. J. Veltman, "Massive And Massless Yang-Mills And Gravitational Fields," Nucl. Phys. B 22, 397 (1970).
- [Zak70] V. I. Zakharov JETP Lett., 12, 312 (1970).
- [Wei72] S. Weinberg, "Gravitation and Cosmology: Principles and aplications of the General Theory of Relativity," John Wiley & Sons, NY, (1972).
- [YM54] C. N. Yang and R. L. Mills, "Conservation Of Isotopic Spin And Isotopic Gauge Invariance," Phys. Rev. 96 (1954) 191.

Apêndice A

Programa de espalhamento glúon-glúon

O programa escrito em *Maple*, mostrado neste apêndice, calcula simbolicamente a amplitude de espalhamento do processo glúon-glúon, com a transferência de um glúon virtual.

A.1 A amplitude de espalhamento

Necessitamos do pacote de manipulação tensorial HIP, carregado ao iniciar:

```
> restart; read `HIP.m`;setaliases();
> setfv(a,b,c,d,x1,x2,x3,x4,x5,x6,k1,k2,k3,k4);
> setindex(m1,m2,m3,m4,alpha,beta,gamma,sigma,delta,rho,
> kappa,mu, nu,lambda);
> with (combinat,permute):
```

Acima iniciamos lendo o pacote de manipulação tensorial HIP, definimos os quadrivetores (que nos passos seguintes serão utilizados como índices), e também definimos índices para as contrações necessárias. O procedimento abaixo irá fornecer uma função antissimétrica nos argumentos a, b, c, que servirá para definir as constantes de estrutura da cromodinâmica:

```
> fabc := proc(a,b,c)
> table(antisymmetric); "[args]; if" =0 then RETURN(0)
> elif op(1,")=-1
> then RETURN(-'procn
> ame'(op(op(2,")))) else RETURN('procname'(op("))) fi
> end:
```

Definimos o propagador do glúon e o vértice cúbico (I é o fator imaginário) :

```
> propag :=(k1,x1,x2)-> (x1\&.x2)/(k1\&.k1);
> vert := (x1, x2, x3, k1, k2, k3) ->
- I*x1\&. x2*(k1-k2)\&. x3;
> vert\_3:=unapply(f(a,b,c)*( vert(x1,x2,x3,k2,k1,k3)+
> vert(x2,x3,x1,k3,k2,k1)+
> vert(x3,x1,x2,k1,k3,k2)),a,b,c,x1,x2,x3,k1,k2,k3);
A função abaixo simplificará a notação do produto das constantes de estrutu-
ra:
```

> f4:=unapply(f(a,b,e)*f(c,d,e),a,b,c,d);
$$f_4 := (a,b,c,d) \rightarrow f(a,b,e) f(c,d,e)$$

O vertice quártico é definido à seguir:

> vert_4:=unapply(-(f4(a,c,b,d)-f4(a,d,c,b))*(x1\&.x2)* > (x3\&.x4) -(f4(a,b,c,d)-f4(a,d,b,c))*(x1\&.x3)*(x2\&.x4) > - (f4(a,c,d,b)-f4(a,b,c,d))*(x1\&.x4)*(x3\&.x2), a,b,c, > d,x1,x2,x3,x4); vert_4 := (a,b,c,d,x1,x2,x3,x4) → -(f(a,c,e)f(b,d,e) - f(a,d,e)f(c,b,e))(x1 &.x2)(x3 &.x4) -(f(a,b,e)f(c,d,e) - f(a,d,e)f(b,c,e))(x1 &.x3)(x2 &.x4) -(f(a,c,e)f(d,b,e) - f(a,b,e)f(c,d,e))(x1 &.x4)(x2 &.x4)

Verificando a antissimetria das constantes de estrutura:

```
> expand(simplify(subs(f=fabc,vert\_4(a,b,c,d,x1,x2,x3,x4)-
> vert\_4(a,c,b,d,x1,x3,x2,x4))));
```

0

A função Al definida abaixo consiste dos canais de espalhamento $s, t \in u$ utilizados. Sua contribuição para a amplitude total será, mantendo o índice 4 fixo, permutar ciclicamente os índices de Lorentz 1,2 e 3, o que permite reproduzir a topologia de todos os diagramas de troca.

```
> A1:=unapply(contract(vert_3(a,b,e,x1,x2,m1,k1,k2,-k2-k1))
```

```
> *propag(k2+k1,m1,m2)*vert\_3(c,d,e,x3,x4)
```

```
> m2, k3, k4, k2+k1)), a, b, c, d, x1, x2, x3, x4, k1, k2, k3, k4):
```

A contribuição devido ao acoplamento quártico é:

```
> A4:=unapply(vert \ 4(a,b,c,d,x1,x2,x3,x4),a,b,c,d,x1,x2,
```

> $\mathbf{x3},\mathbf{x4}$);

Implementamos aqui algumas condições físicas, como camada de massa e transversalidade do glúon (lembre-se que estamos trabalhando com x_i represen-

tando o vetor de polarização):

```
> ConFis:={seq(k.i\&.k.i=0,i=1..4),seq(k.i\&.x.i=0,i=1..4)};
```

E finalmente a amplitude total é calculada, somando a contribuição do vértice quártico e as permutações cíclicas dos índices de A1, obtendo os canais de espalhamento $s, t \in u$:

```
> ampl\_gluon:=unapply(subs(ConFis,(A1(a1,a2,a3,a4,x1,x2,
> x3,x4,k1,k2,k3,k4)+A1(a2,a3,a1,a4,x2,x3,x1,x4,k2,k3,k1
> ,k4)+A1(a3,a1,a2,a4,x3,x1,x2,x4,k3,k1,k2,k4))
> +A4(a1,a2,a3,a4,x1,x2,x3,x4)),a1,x1,k1,a2,x2,k2,a3,x3,
```

```
> k3,a4,x4,k4):
```

A.2 A invariância de "gauge"

O que faremos a seguir é verificar a simetria bosônica devido à troca de $(x1, y1) \leftrightarrow (x2, y2)$, permutando suas posições; construímos para isso uma lista de argumentos:

```
> with(combinat,permute):
```

```
> permute([[a1,x1,k1],[a2,x2,k2],[a3,x3,k3],[a4,x4,k4]]):
```

ListArgs:=[seq([seq(op(op(i,op(j,"))),i=1..4)],j=1..24)]: que será empregada na diferença abaixo para verificar se obtemos uma amplitude

simétrica

```
> seq(seq(simplify(expand(simplify(subs(k4=-k1-k2-k3,
```

```
> subs(f=fabc,ampl\_gluon(op(op(i,ListArgs))))-
```

```
> ampl\_gluon(op(op(j,ListArgs))))))),i=j+1..5),j=1..3);
```

0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Implementamos mais uma condição física, neste caso a conservação de momento associado à condição de camada de massa e transversalidade do glúon:

> ConFis1:={op(ConFis), k1&.k2=-(k1&.k3)-(k2&.k3),

```
> k1\&.x4=-(k2\&.x4)-(k3\&.x4)}:
```

Agora iremos verificar a invariância de "gauge", substituindo um dos vetores de polarização pelo seu correspondente quadrimomento:

```
> D3:=factor(simplify(subs(f=fabc,subs(ConFis1,expand
```

```
> (ampl\_gluon(a,k1,k1,b,x2,k2,c,x3,k3,d,x4,-k1-k2
```

> -k3)))));

```
\begin{array}{l} D3 := -\big(\operatorname{fabc}(\,a,b,e\,)\operatorname{fabc}(\,d,c,e\,) - \operatorname{fabc}(\,a,c,e\,)\operatorname{fabc}(\,d,b,e\,) + \operatorname{fabc}(\,d,a,e\,)\operatorname{fabc}(\,b,c,e\,)\,\big) \\ & \quad ((\,x2\,\&.\,x4\,)\,(\,k1\,\&.\,x3\,) + (\,x2\,\&.\,x3\,)\,(\,k3\,\&.\,x4\,) - 2\,(\,k3\,\&.\,x2\,)\,(\,x3\,\&.\,x4\,) \\ & \quad + 2\,(\,k2\,\&.\,x3\,)\,(\,x2\,\&.\,x4\,) - (\,x3\,\&.\,x4\,)\,(\,k1\,\&.\,x2\,) - (\,x2\,\&.\,x3\,)\,(\,k2\,\&.\,x4\,)) \end{array}
```

E o resultado obtido é a identidade de Jacobi, ou seja a amplitude neste caso é nula, e portanto invariante sob transformações de "gauge".

A.3 A fatorização da amplitude

Os procedimentos feitos à seguir pretendem determinar os elementos que fatorizam a amplitude de espalhamento. De início sabemos que as constantes de estrutura representam os elemento A_i , devido à conservação de cor no processo, logo a identidade de Jacobi será definida:

```
> simplify(op(2,D3));
 fabc(a,b,e) fabc(d,c,e) - fabc(a,c,e) fabc(d,b,e) + fabc(d,a,e) fabc(b,c,e)
```

```
> Jacobi:=":
Jacobi:= fabc(a, b, e) fabc(d, c, e) - fabc(a, c, e) fabc(d, b, e) + fabc(d, a, e) fabc(b, c, e)
```

```
> seq1:=a,x1,k1,b,x2,k2,c,x3,k3,d,x4,k4:
```

```
> ampTot:=unapply(expand(subs(f=fabc,expand(subs(ConFis1,
```

> expand(ampl_gluon(a,x1,k1,b,x2,k2,c,x3,k3,d,x4,k4))))

>)),seq1):

Iremos empregar a identidade de Jacobi nos fatores de cor. Entretanto será necessário utilizar à condição de conservação de movimento associada a condição de que todas as partículas estão na camada de massa:

$$\begin{array}{l} & \operatorname{mom}:=(\operatorname{i},\operatorname{j},\operatorname{l}) \operatorname{->k.i}\ \&.\, k.\, \operatorname{j=-k.i}\ \&.\, k.\, \operatorname{l-k.j}\ \&.\, k.\, l;\\ & \operatorname{mom}:=(\,i,j,l\,) \to k.i\,\&.\, k.j=-(\,k.i\,\&.\, k.l\,)-(\,k.j\,\&.\, k.l\,) \end{array}$$

Por exemplo:

> mom(2,3,1);

k2 &. k3 = -(k1 &. k2) - (k1 &. k3)

> ConFis2:={op(ConFis),k1&.k3=-(k1&.k2)-(k2&.k3),k1&.x4= > -(k2&.x4)-(k3&.x4)}:

Utilizando a condição acima, podemos facilmente identificar os fatores B_i que fatorizam a amplitude. De fato, os fatores A_i são simplesmente as constantes de cor, e os C_i provêm dos fatores cinemáticos dos propagadores; o que temos a fazer é extrair seus coeficientes:

```
B1:=-expand(subs(mom(2,3,1),coeff(coeff(expand(subs
>
>
   (ConFis2, expand(kl\&.k2*ampTot(a, xl, kl, b, x2, k2, c, x3))
>
   k3,d,x4,-k2-k1-k3)))),fabc(a,b,e)),fabc(d,c,e)))):
>
   B2:=expand(subs(mom(2,3,1),coeff(coeff(expand(subs
   (ConFis2, expand(k1&.k3*ampTot(a,x1,k1,b,x2,k2,c,x3,
\geq
   k3,d,x4,-k1-k2-k3)))),fabc(d,b,e)),fabc(a,c,e)))):
>
   B3:=-coeff(coeff(expand(subs(ConFis2,expand(k2&.k3*
>
>
   ampTot(a,x1,k1,b,x2,k2,c,x3,k3,d,x4,-k1-k2-k3)))),
   fabc(b,c,e)), fabc(d,a,e)):
>
```

Como visto a soma de A_i nos fornece a identidade de Jacobi: somando sobre C_i obtemos a identidade cinemática implementada acima. A soma sobre B_i resulta em:

- > expand(B1+B2+B3):
- > factor(");

é novamente a identidade cinemática, ou seja, o resultado é nulo. Salvamos este resultado:

```
> save B1,B2,B3,`gluons.m`;
```

Apêndice B

Regras de Feynman na gravitação

• Utilizando o procedimento abaixo iremos determinar as regras de Feynman na representação $\kappa \phi^{\mu\nu} = \tilde{g}^{\mu\nu} - \eta^{\mu\nu}$; primeiramente iremos reiniciar o *Maple* e invocar o pacote de manipulação tensorial:

```
> restart;
```

```
> read `HIP.m`;
```

• Definimos todos os vetores e índices:

```
> setindex(m1,n1,m2,n2,m3,n3,m4,n4,m5,n5,m6,n6,m7,n7)
```

```
> ,m8,n8,m9,n9,ii1,ii2,alpha,beta,mu,nu,rho,sigma
```

```
> ,lambda,delta,gamma,tau);
```

```
> setfv(k1,k2,k3,k4,k5,k6,k7,k8,k9,x1,y1,x2,y2,x3,y3,x4
> ,y4,x5,y5,z1,z2,z3,z4,z5,p,q,p1,p2,p3,p4,q1,q2,Q,uu);
```

• Neste programa o campo do gráviton será definido como F(mu, nu). O procedimento abaixo apenas irá defini-lo como um tensor simétrico nos seus índices de Lorentz

```
> F :=
>
proc(mu,nu)
> if [mu,nu] = sort([mu,nu]) then RETURN('procname(args)')
> else RETURN(F(nu,mu))
> fi
> end:
```

• A fim de utilizar um procedimento que automatize a determinação das regras de Feynman, será conveniente antes definirmos as derivadas parciais, através de um procedimento, como descrito abaixo:

```
>
   dp :=
>
>
       proc(a,x)
       local u,v,w;
\geq
            if has(a,F) or has(a,F1) or has(a,F2)
>
>
    or has(a,F3) or has(a,F4)
>
    or has(a,F5) or has(a,F6)
>
   or has(a,F7) then
>
                if type(a,`+`) then map(dp,a,x)
>
             elif type(a,`*`) then
>
             u := op(1,a); v := a/u; dp(u,x)*v+dp(v,x)*u
>
             elif type(a,`^`) then
>
                    u := op(1,a);
>
                    v := op(2,a);
                    a^{*}(dp(v,x)^{*}ln(u)+v/u^{*}dp(u,x))
>
>
            elif op(0,a) = F then RETURN('procname(args)')
>
            elif op(0,a) = dp then
>
               if [op(2,a),x] = sort([op(2,a),x]) then
>
                        RETURN('procname(args)')
>
                    else dp(dp(op(1,a),x),op(2,a))
>
                    fi
>
                else RETURN('procname(args)')
>
                fi
            else O
>
            fi
>
       end:
>
```

 O procedimento abaixo permite determinar as regras de Feynman de uma lagrangeana puramente gravitacional, escrevendo estas já no espaço de momentos; esse procedimento básico consiste em derivar funcionalmente a lagrangeana, e transformar as derivadas parciais em seus respectivos momentos;

```
feyn pure :=
>
>
>
   proc(a)
>
   local fdp,fF,i,lfaux,lf1,lf2,lf3,ldpaux
   ,ldp1,ldp2,factor,newfat,new,newl;
>
>
       if type(a, '+') then map(feyn_pure,a)
       elif type(a, `^`) then
>
>
           if op(0, op(1, a)) = dp then
>
                ldp1 := op(1,op(1,op(1,a)))
>
                op(2,op(1,op(1,a))),op(2,op(1,a));
                factor := simplify(a/dp(F(ldp1[1],
>
>
                 ldp1[2]),ldp1[3])^2);
>
                new := (ldp1[1] &. x1)*(ldp1[2] &. y1)*
```

```
(ldp1[3] &. z1)*(ldp1[1] &. x2)*(ldp1[2] &. y2)*
>
>
                    (ldp1[3] &. z2)*factor;
>
                RETURN(new)
           elif op(0, op(1, a)) = F then
>
>
              lf1 = op(1, op(1, a)), op(2, op(1, a));
              factor := simplify(a/F(lf1[1],lf1[2])^2);
>
              new := (lf1[1] &. x1)*(lf1[2] &. y1)*(lf1[1] &. y1)
>
>
              *(lf1[2] &. y2)*factor;
>
              RETURN(new)
           fi
>
>
       elif type(a,`*`) then
           fdp := 0;
>
>
           fF := 0;
>
           for i to nops(a) do
>
                if type(op(i,a),integer)
>
            or type(op(i,a),fraction)
>
            or type(op(i,a), string) then
>
                    fF := fF; fdp := fdp
>
                elif op(0, op(i, a)) = F then
>
                    lfaux := op(1,op(i,a)),op(2,op(i,a));
>
                    if fF = 0 then lf1 := lfaux; fF := 1
>
                    elif fF = 1 then lf2 := lfaux; fF := 2
>
                    elif fF = 2 then lf3 := lfaux; fF := 3
                    fi
>
       elif op(0, op(i, a)) = dp then
>
>
         ldpaux := op(1,op(1,op(i,a))),op(2,op(1,op(i,a))),
         op(2,op(i,a));
>
         if fdp = 0 then ldp1 := ldpaux;
>
>
         fdp := 1 elif fdp = 1 then
>
         ldp2 := ldpaux; fdp := 2 fi
>
       elif op(0, op(i, a)) =  `^` then
>
          if op(0, op(1, op(i, a))) = F then
>
              fF := op(2,op(i,a));
              lf1 := op(1,op(1,op(i,a))),op(2,op(1,op(i,a)));
>
              lf2 := lf1;
>
>
              lf3 := lf1
>
        elif op(0, op(1, op(i, a))) = dp then
>
              fdp := 2;
>
              ldp1 := op(1,op(1,op(1,op(i,a)))),
>
              op(2,op(1,op(1,op(i,a)))),op(2,op(1,op(i,a)));
>
              ldp2 := ldp1
>
            fi
         fi
>
     od;
>
>
   if fdp = 2 then
     if fF = 3 then
>
     factor := simplify(
>
```

```
a/F(lf1)/F(lf2)/F(lf3)/dp(F(ldp1[1],
>
     ldp1[2]),ldp1[3])/dp(F(ldp2[1],ldp2[2]),ldp2[3]));
>
>
     new := -(lf1[1] &. x1)*(lf1[2] &. y1)*
     (lf2[1] &. x2)*(lf2[2] &. y2)*(lf3[1] &. x3)*
\geq
\geq
     (lf3[2] &. y3)*(ldp1[1] &. x4)*(ldp1[2] &. y4)*
>
     (ldp1[3] &. z1)*(ldp2[1] &. x5)*
     (ldp2[2] &. y5)*(ldp2[3] &. z2)*factor;
>
>
     RETURN(new)
>
   elif fF = 2 then
      factor :=
>
>
      simplify(a/F(lf1)/F(lf2)/dp(F(ldp1[1],ldp1[2]))
>
      ldp1[3])/dp(F(ldp2[1],ldp2[2]),ldp2[3]));
>
      new := -(lf1[1] &. x1)*(lf1[2] &. y1)*(lf2[1] &. x2)
      *(lf2[2] &. y2)*(ldp1[1] &. x3)*
>
      (ldp1[2] &. y3)*(ldp1[3] &. z1)*(ldp2[1] &. x4)
>
>
      *(ldp2[2] &. y4)*(ldp2[3] &. z2)*
>
       factor;
>
      RETURN(new)
>
   elif fF = 1 then
>
       factor :=
>
       simplify(a/F(lf1)/dp(F(ldp1[1],
>
       ldp1[2]),ldp1[3])/dp(F(ldp2[1],ldp2[2]),ldp2[3]));
       new := -(lf1[1] &. x1)*(lf1[2] &. y1)*(ldp1[1] &. x2)
>
       *(ldp1[2] &. y2)*(ldp1[3] &. z1)*
>
       (ldp2[1] &. x3)*(ldp2[2] &. y3)*(ldp2[3] &. z2)*factor;
>
>
       RETURN(new)
>
   elif fF = 0 then
>
      factor := simplify(a/dp(F(ldp1[1],
>
      ldp1[2]),ldp1[3])/dp(F(ldp2[1],ldp2[2]),ldp2[3]));
>
      new := -(ldp1[1] &. x1)*(ldp1[2] &. y1)*(ldp1[3] &. z1)
>
      *(ldp2[1] &. x2)*(ldp2[2] &. y2)*
>
      (ldp2[3] &. z2)*factor;
>
      RETURN(new)
>
   fi
   elif fdp = 0 then
>
>
      factor := simplify(a/F(lf1)/F(lf2));
      new := (lf1[1] &. x1)*(lf1[2] &. y1)*
>
>
      (lf2[1] &. x2)*(lf2[2] &. y2)*factor;
>
       RETURN(new)
>
           fi
       fi
>
>
   end
>
```

B.1 A aproximação de campo fraco

 Definimos a métrica contravariante, já fazendo a aproximação de campo fraco

$$\tilde{g}^{\mu\nu} = \eta^{\mu\nu} + \kappa \phi^{\mu\nu}, \qquad (B.1)$$

> gtup:= (ml,nl) -> ml &. nl + KA*F(ml,nl); $gtup := (m1, n1) \rightarrow (m1 \&. n1) + KA F(m1, n1)$

e a métrica covariante, também já expandida em série de potências

$$\begin{array}{ll} &> & \texttt{gtdw} \text{:=} & (\texttt{m1},\texttt{n1},\texttt{m2},\texttt{m3}) \ \text{->} \ \texttt{m1} \ \&. \ \texttt{n1} \ - \ \texttt{KA}^{\texttt{F}}(\texttt{m1},\texttt{n1}) + \texttt{KA}^{\texttt{2}}^{\texttt{F}}(\texttt{m1},\texttt{m2}) \\ &> & \texttt{*F}(\texttt{m2},\texttt{n1}) - \texttt{KA}^{\texttt{3}}^{\texttt{F}}(\texttt{m1},\texttt{m2}) \, \texttt{*F}(\texttt{m2},\texttt{m3}) \, \texttt{*F}(\texttt{m3},\texttt{n1}) ; \\ & & \texttt{gtdw} := (\ \texttt{m1},\texttt{n1},\texttt{m2},\texttt{m3}) \rightarrow (\ \texttt{m1} \ \&. \ \texttt{n1} \) - \ \texttt{KA} \, \texttt{F}(\ \texttt{m1},\texttt{n1} \) \\ & & + \ \texttt{KA}^{\texttt{2}} \, \texttt{F}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m2},\texttt{n1} \) - \ \texttt{KA}^{\texttt{3}} \, \texttt{F}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{n1} \) \\ & & + \ \texttt{KA}^{\texttt{2}} \, \texttt{F}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m2},\texttt{n1} \) - \ \texttt{KA}^{\texttt{3}} \, \texttt{F}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{n1} \) \\ & & \quad \texttt{H}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{m1} \) - \ \texttt{KA}^{\texttt{3}} \, \texttt{F}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{m1} \) \\ & \quad \texttt{M}(\ \texttt{m3},\texttt{m1} \) - \ \texttt{M}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{m1} \) \\ & \quad \texttt{M}(\ \texttt{m3},\texttt{m1} \) - \ \texttt{M}(\ \texttt{m1},\texttt{m2} \) \, \texttt{F}(\ \texttt{m3},\texttt{m3} \) \, \texttt{F}(\ \texttt{m3},\texttt{m1} \) \\ & \quad \texttt{M}(\ \texttt{m3},\texttt{m3} \) \, \texttt{M}(\ \texttt{m3},\texttt{m1} \) \\ & \quad \texttt{M}(\ \texttt{m3},\texttt{m1} \) = \ \texttt{M}(\ \texttt{m3},\texttt{m3} \) \, \texttt{M}(\ \texttt{m3},\texttt{m3} \) \, \texttt{M}(\ \texttt{m3},\texttt{m1} \) \\ & \quad \texttt{M}(\ \texttt{m3},\texttt{m3} \) \, \texttt{M}(\ \texttt{m3} \) \, \texttt{M}(\$$

• A lagrangeana abaixo é aquela determinada em (2.33)

- > *(gtup(r,s)*gtdw(l,m,m2,m4)*gtdw(k,n,m3,m5)-1/2*gtup(r,s)*
- > gtdw(m,k,m3,m4)*gtdw(l,n,m2,m5)-2*s &. k * r &. l * gtdw(m,
- > n,m2,m3))),m,n,r,s,l,k,m2,m3,m4,m5) :

à qual adicionamos um termo de fixação de gauge do tipo $(\partial_{\mu}\phi_{\mu\nu})^2$,

$$- dp(F(m1, n3), m2) dp(F(m3, n1), n2) g(n2, n3) g(m2, m3) g(m1, n1) + \frac{1}{2} dp(F(m1, n3), m2) dp(F(m3, n1), n2) g(m2, n2) g(m1, m3) g(n1, n3)$$

$$\frac{\mathrm{dp}(\,\mathrm{F}(\,m1\,,n1\,\,),n1\,\,)\,\mathrm{dp}(\,\mathrm{F}(\,m1\,,n2\,\,),n2\,\,)}{gauge}$$

• onde *gauge* é um parâmetro da teoria.

B.2 O propagador do gráviton

A função de dois pontos do gráviton é determinada utilizando o procedimento feyn_pure, e extraindo a parte quadrática em κ ,

É necessário neste ponto simetrizarmos em permutas do tipo x₁ ↔ y₁, x₂ ↔ y₂ e permutas de índices x₁ ↔ x₂:

```
> two1:= (x1,y1,x2,y2,z1,z2) -> two0(x1,y1,x2,y2,z1,z2)+
> two0(y1,x1,x2,y2,z1,z2):
> two2:= (x1,y1,x2,y2,z1,z2) -> (two1(x1,y1,x2,y2,z1,z2)+
> two1(x1,y1,y2,x2,z1,z2))/4:
```

```
> TwoGraviton:= (x1,y1,x2,y2,z1,z2) ->two2(x1,y1,x2,y2,z1,z2)
> +two2(x2,y2,x1,y1,z2,z1):
```

 como queremos determinar o propagador devemos inverter a função de dois pontos do gráviton. Para isso utilizamos uma base de tensores, simétrica na troca de (x1,y1) ↔ (x2,y2) e x1 ↔ y1, x2 ↔ y2, descritos na tabela (2.1).

```
> CovariantTensors:=(x1,y1,x2,y2,p)->[x1&.x2*y1&.y2+y1&.x2*x1&.y2,
> x1&.y1*x2&.y2,
> p&.x1*p&.x2*y1&.y2 + p&.y1*p&.x2*x1&.y2 +p&.x1*p&.y2*y1&.x2 +
    p&.y1*p&.y2*x1&.x2,
> p&.x1*p&.y1*p&.x2*p&.y2,
> p&.x1*p&.y1*x2&.y2+p&.x2*p&.y2*x1&.y1];
```

• Com esse tensores construiremos uma combinação linear na forma $\sum_{i=1}^{5} c_i \mathcal{T}_i$

```
> GenProp:=unapply(sum(op(jj,[seq(c.i*op(i,CovariantTensors(x1
> ,y1,x2,y2,p)), i=1..5)]), jj =1..5),x1,y1,x2,y2,p,c1,c2,c3,
> c4,c5);
GenProp := (x1,y1,x2,y2,p,c1,c2,c3,c4,c5) →
 c1 ((x1 & x2)(y1 & y2) + (x2 & y1)(x1 & y2))
+c2 (x1 & y1)(x2 & y2)
+c3((p & x1)(p & x2)(y1 & y2) + (p & y1)(p & x2)(x1 & y2))
+ (p & x1)(p & y2)(x2 & y1) + (p & y1)(p & y2)(x1 & x2))
+ c4 (p & x1)(p & y1)(p & x2)(p & y2)
+ c5 ((p & x1)(p & y1)(x2 & y2) + (p & x2)(p & y2)(x1 & y1)))
```

• Assim resta-nos determinar o valor destas constantes c_i . Para isso devemos solucionar a equação:

$$GenProp \cdot TwoGraviton = 1 \tag{B.2}$$

o que significa dizer que GenProp é a inversa de TwoGraviton. O tensor unitário é nada mais, nada menos que duas vezes o primeiro elemento dos tensores covariantes.O sistema de equações a ser resolvido é formado pela contração desta diferença com cada um dos cinco tensores, para assim obter o valor do propagador:

```
> solve({seq(contract(subs({x1=m1,x2=m2,y1=n1,y2=n2},
        (contract(GenProp(x1,y1,m2,n2,p,c1,c2,c3,c4,c5)*
        TwoGraviton(m2,n2,x2,y2,p,-p))
        - 1/2*op(1,CovariantTensors(x1,y1,x2,y2,p)))
        * op(ii, CovariantTensors(x1,y1,x2,y2,p))), ii=1..5)}
        , {c1,c2,c3,c4,c5});
        GravitonPropagator:=unapply(subs(",GenProp(x1,y1,x2,y2,p,c1,c2,
        c3,c4,c5)),x1,y1,x2,y2,p,gauge);
        \left\{ c_4 = 0, c_1 = \frac{1}{2} \frac{1}{p\&.p}, c_2 = -\frac{1}{2} \frac{2 + gauge}{p\&.p}, c_5 = \frac{gauge + 1}{(p\&.p)^2}, c_3 = -\frac{1}{2} \frac{gauge + 1}{(p\&.p)^2} \right\}
```

$$\begin{array}{l} GravitonPropagator := (x1, y1, x2, y2, p, gauge) \rightarrow \\ \frac{1}{2} \frac{(x1 \&. x2) (y1 \&. y2) + (x2 \&. y1) (x1 \&. y2)}{p \&. p} \\ - \frac{1}{2} \frac{(2 + gauge) (x1 \&. y1) (x2 \&. y2)}{p \&. p} \\ - \frac{1}{2} (gauge + 1) ((p \&. x1) (p \&. x2) (y1 \&. y2) \\ + (p \&. y1) (p \&. x2) (x1 \&. y2) + (p \&. x1) (p \&. y2) (x2 \&. y1) \\ + (p \&. y1) (p \&. y2) (x1 \&. x2)) / (p \&. p)^2 \\ + \frac{(gauge + 1) ((p \&. x1) (p \&. y1) (x2 \&. y2) + (p \&. x2) (p \&. y2) (x1 \&. y1))}{(p \&. p)^2} \end{array}$$

observamos aqui que o propagador é definido com um sinal negativo, o que será compensado no cálculo da amplitude de espalhamento.

B.3 Os vértices cúbicos e quárticos

A determinação dos vértices é mais simples: é necessário apenas coletar os coeficientes κ³, no caso do vertice cúbico:

```
> three0:= unapply(contract(feyn_pure(contract(coeff(expand(

> lagraT(m1,n1,m2,n2,m3,n3,m4,n4,m5,n5)),KA^3)))),x1,y1,x2,

> y2,x3,y3,z1,z2);

three0 := (x1,y1,x2,y2,x3,y3,z1,z2) \rightarrow \frac{1}{4}(x1\&.z2)(y1\&.z1)(x3\&.y3)(x2\&.y2) - \frac{1}{2}(z1\&.z2)(y1\&.z1)(x3\&.y3)(x2\&.y2)(x1\&.x2)(x3\&.y3) - \frac{1}{2}(x1\&.z2)(y1\&.z1)(y2\&.y3)(x2\&.x3) - (y1\&.y3)(y2\&.z2)(x1\&.x2)(x3\&.z1) + \frac{1}{2}(x1\&.y2)(z1\&.z2)(y1\&.y3)(x2\&.x3) + \frac{1}{2}(z1\&.z2)(y2\&.y3)(x1\&.x2)(x3\&.y1)
```

• O vértice quártico é obtido analogamente, através do coeficiente κ^4 :

```
> four0:= unapply(contract(feyn_pure(contract(coeff(
```

```
> expand(lagraT(m1,n1,m2,n2,m3,n3,m4,n4,m5,n5)),KA<sup>4</sup>)
```

```
> ))),x1,y1,x2,y2,x3,y3,x4,y4,z1,z2):
```

 Simetrizamos estes vértices, como fizemos com o propagador, afim de obter as expressões finais:

```
with(combinat, permute);
>
                              [permute]
  three1:=(x1,y1,x2,y2,x3,y3,z2,z3)->
>
  three0(x1,y1,x2,y2,x3,y3,z2,z3)
>
  +three0(y1,x1,x2,y2,x3,y3,z2,z3):
>
>
  three2:=(x1,y1,x2,y2,x3,y3,z2,z3)->
  three1(x1,y1,x2,y2,x3,y3,z2,z3)+
>
>
  three1(x1,y1,y2,x2,x3,y3,z2,z3):
  three3:=(x1,y1,z1,x2,y2,z2,x3,y3,z3)->
>
  (three2(x1,y1,x2,y2,x3,y3,z2,z3)+
>
>
  three2(x1,y1,x2,y2,y3,x3,z2,z3))/8:
>
  [seq(three3(seq(op(op(i,op(j,permute([[x1,y1,z1],
   [x2,y2,z2], [x3,y3,z3]])))),i=1..3)),j=1..6)]:
>
  ThreeGraviton:=unapply(expand(sum(op(jjjj,"),jjjj=1..6))
>
>
  ,x1,y1,x2,y2,x3,y3, z1,z2,z3):
>
  nops(ThreeGraviton(x1,y1,x2,y2,x3,y3,z1,z2,z3));
                                 78
>
   four1:= (x1,y1,x2,y2,x3,y3,x4,y4,z3,z4)->
   four0(x1,y1,x2,y2,x3,y3,x4,y4,z3,z4)+
>
>
   four0(y1,x1,x2,y2,x3,y3,x4,y4,z3,z4):
\geq
   four2:= (x1,y1,x2,y2,x3,y3,x4,y4,z3,z4)->
   four1(x1,y1,x2,y2,x3,y3,x4,y4,z3,z4)+
>
   four1(x1,y1,y2,x2,x3,y3,x4,y4,z3,z4):
>
   four3:= (x1,y1,x2,y2,x3,y3,x4,y4,z3,z4) ->
>
   four2(x1,y1,x2,y2,x3,y3,x4,y4,z3,z4)+
\geq
  four2(x1,y1,x2,y2,y3,x3,x4,y4,z3,z4):
>
  four4:= (x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4) ->
>
  (four3(x1,y1,x2,y2,x3,y3,x4,y4,z3,z4) +
>
   four3(x1,y1,x2,y2,x3,y3,y4,x4,z3,z4))/16:
>
  [seq(four4(seq(op(op(i,op(j,permute([[x1,y1,z1],
>
>
   [x2,y2,z2],[x3,y3,z3], [x4,y4,z4]])))),
>
  i=1..4)),j=1..24)]:
>
   FourGraviton:=unapply(expand(sum(op(jjjj,"),jjjj=1..24)),x1,y1,
>
   x2,y2,x3,y3,x4,y4,z1,z2,z3,z4):
```

Apêndice C

Programa de espalhamento gráviton-gráviton

O programa aqui calcula a amplitude de espalhamento gráviton-gráviton, e inicia também a tentativa de fatorização desta amplitude; os procedimentos no início são análogos àqueles utilizados para o cálculo do espalhamento glúon-glúon, entretanto a tentativa de fatorizar esta amplitude não foi conseguida e será tentada ainda no algoritmo mostrado no apêndice C. FeynmanRules.m é o programa mostrado no apêndice B, cujas funções, principalmente propagador e vértices são necessários de início.

C.1 Aplicando as identidades de Ward

Reiniciamos, lendo o pacote de manipulação tensorial e definindo quadrivetores e índices:

```
> restart; t0:=time(): read `HIP.m`;
> read `FeynmanRules.m`; setaliases();
> setfv(x1,x2,x3,x4,y1,y2,y3,y4, k1,k2,k3,k4,K4,z3);
> setindex(m1,n1,n2,m2,m3,n3,m4,n4,alpha,mu,nu,beta,
> rho,sigma,delta,lambda,tau,eta);
> with (combinat,permute):
```

Primeiramente iremos construir os operadores que irão servir para verificarmos as identidades de Ward de cada um dos vértices, com um atuando do lado esquerdo e outro atuando do lado direito da equação:

```
> LeftWard:= unapply(x1 &. alpha*alpha&.z3 * k1 &. y1

> +y1 &.alpha*alpha&. z3 * k1 &. x1 - x1 &. y1

> * k1 &. z3, x1,y1,z3,k1);

LeftWard := (x1,y1,z3,k1) → x1<sub>α</sub> z3<sub>α</sub>(k1 &. y1)

+ y1<sub>α</sub> z3<sub>α</sub>(k1 &. x1) - (x1 &. y1)(k1 &. z3)

> RightWard:=unapply(expand(y1 &. z3 * (x2 &. x1 * k1 &. y2

+ x1 &. y2 * k1 &. x2)+ x2 &. x1 * y1 &. y2 * k3 &. z3)

> ,x1,y1,x2,y2,z3,k1,k3);

RightWard := (x1,y1,x2,y2,z3,k1,k3) → (y1 &. z3)(x1 &. x2)(k1 &. y2)

+ (y1 &. z3)(x1 &. y2)(k1 &. x2) + (x1 &. x2)(y1 &. y2)(k3 &. z3)
```

A função de dois pontos do gráviton é representada abaixo. O parâmetro gauge representa a constante de "gauge". Este termo, para verificar as identidades de Ward, será desnecessário, e eliminaremos este colocando $gauge=\infty$.

$$\begin{aligned} &-\frac{1}{2}\operatorname{g}(\,m1\,,n1\,)\,(\,x1\,\&.\,y1\,)\,(\,k1\,\&.\,k1\,)\,+\frac{1}{2}\,x1_{\,m1}\,y1_{\,n1}\,(\,k1\,\&.\,k1\,)\,-\frac{1}{2}\,k1_{\,m1}\,x1_{\,n1}\,(\,k1\,\&.\,y1\,)\\ &-\frac{1}{2}\,\frac{x1_{\,m1}\,k1_{\,n1}\,(\,k1\,\&.\,y1\,)}{gauge}\,+\frac{1}{2}\,x1_{\,n1}\,y1_{\,m1}\,(\,k1\,\&.\,k1\,)\,-\frac{1}{2}\,k1_{\,n1}\,x1_{\,m1}\,(\,k1\,\&.\,y1\,)\\ &-\frac{1}{2}\,\frac{x1_{\,n1}\,k1_{\,m1}\,(\,k1\,\&.\,y1\,)}{gauge}\,-\frac{1}{2}\,k1_{\,m1}\,y1_{\,n1}\,(\,k1\,\&.\,x1\,)\,-\frac{1}{2}\,\frac{y1_{\,m1}\,k1_{\,n1}\,(\,k1\,\&.\,x1\,)}{gauge}\\ &-\frac{1}{2}\,k1_{\,n1}\,y1_{\,m1}\,(\,k1\,\&.\,x1\,)\,-\frac{1}{2}\,\frac{y1_{\,n1}\,k1_{\,m1}\,(\,k1\,\&.\,x1\,)}{gauge} \end{aligned}$$

Veremos se a função de dois pontos verifica a identidade de Ward

```
> limit(expand(contract(LeftWard(m1,n1,z3,k1)
> *TwoGraviton(m1,n1,x1,y1,k1,-k1))),gauge=
> infinity);
```

0

O mesmo é feito para o vértice cúbico, mas agora operamos na função de três pontos do lado esquerdo e na função de dois pontos do lado direito:

```
> simplify(limit(expand(subs(kl=-k2-k3,(contract(expand(contra
> ct(LeftWard(m1,n1,z3,k1)*ThreeGraviton(m1,n1,x2,y2,x3,y3,k1
> ,k2,k3))+expand(contract(expand(RightWard(m1,n1,x2,y2,z3,k1
> ,k3)*TwoGraviton(m1,n1,x3,y3,k1+k2,k3)))+(contract(expand(
> RightWard(m1,n1,x3,y3,z3,k1,k2)*TwoGraviton(m1,n1,x2,y2,k1+k3
> ,k2))))))),gauge=infinity));
```

65
0

Agora iremos verificar a identidade de Ward que relaciona a função de quatro pontos do gráviton com a função de três pontos:

```
expand(contract(expand(LeftWard(m1,n1, z3,k1)*FourGraviton(m1,
>
   n1,x2,y2,x3,y3,x4,y4,k1,k2,k3,k4)) )):
>
   FourLeft:=expand(subs(k1= -k2-k3-k4,")):
>
>
   expand(contract(expand(RightWard(m1,n1,x2,y2,z3,k1,k3+k4))
  *ThreeGraviton(m1,n1,x3,y3,x4,y4,k1+k2,k3,k4)+
>
  RightWard(m1,n1,x3,y3, z3,k1, k2+k4)*ThreeGraviton(m1,n1
>
  ,x2,y2,x4,y4,k1+k3,k2,k4)+
>
>
   RightWard(m1,n1,x4,y4, z3,k1, k2+k3)*
   ThreeGraviton(m1,n1,x2,y2,x3,y3,k1+k4,k2,k3)
>
\geq
   ))):FourRight:=expand(subs(k1= -k2-k3-k4,")):
      Fazendo a comparação dos dois lados da identidade:
   expand(FourLeft+FourRight);
>
```

```
0
```

C.2 A amplitude de espalhamento

Construiremos agora a amplitude de espalhamento em sí, no "gauge" de Feynman =-1. Impondo conservação de momento nos vértices

```
> k4:=-k1-k2-k3:
```

Como feito no espalhamento de glúons, contruímos a seguir uma função para representar os canais de espalhamento $s, t \in u$, simplesmente atuando com permutações cíclicas entre os índices e momentos

```
> Al:=unapply(expand(-contract(ThreeGraviton(x1,y1,x2,y2,
```

```
> m1,n1,k1,k2,-k2-k1)*GravitonPropagator(m1,n1,m2,n2,
```

```
> -k2-k1, -1) * \texttt{ThreeGraviton}(x4, y4, \texttt{m2}, \texttt{n2}, x3, y3, \texttt{K4}, \texttt{k2+k1},
```

```
> k3))), x1, y1, x2, y2, x3, y3, x4, y4, k1, k2, k3, K4):
```

A4 é simplesmente o vértice quártico do acoplamento:

```
> A4:=unapply(FourGraviton(x1,y1,x2,y2,x3,y3,x4,y4,k1,k2,
```

> k3,K4),x1,y1,x2,y2,x3,y3,x4,y4,k1,k2,k3,K4):

As condições físicas implementadas agora são de transversalidade do momento e que as partículas estão localizados na camada de massa. Observe que até agora tem sido utilizada a variável K4 no lugar de k4 por motivos computacionais: > ConFis:={K4&.K4=0,seq(k.i&.k.i=0,i=1..4),seq(k.i&.x.i=0,i=1..4), > seq(k.i&.y.i=0,i=1..4)}:

Agora a amplitude é construída somando as contribuições acima e substituindo as condições físicas

```
> Ampl_Graviton:=unapply(subs(ConFis,(expand(A1(x1,y1,x2,y2,
```

```
> x3,y3,x4,y4,k1,k2,k3,K4)+A1(x2,y2,x3,y3,x1,y1,x4,
```

```
> y4, k2, k3, k1, K4) + A1(x3, y3, x1, y1, x2, y2, x4, y4, k3, k1,
```

> x1,y1,k1,x2,y2,k2,x3,y3,k3,x4,y4,K4):

Verificamos se a amplitude tem simetria de troca bosônica, permutando índices:

```
> with(combinat,permute):
```

```
> permute([[x1,y1,k1],[x2,y2,k2],[x3,y3,k3],[x4,y4,k4]]):
```

> ListArgs:=[seq([seq(op(op(i,op(j,"))),i=1..4)],j=1..4)];

```
> seq(seq(simplify(subs(k1\&.x4=-(k2\&.x4)-(k3\&.x4)),
```

```
> subs(k1\&.y4=-(k2\&.y4)-(k3\&.y4), subs(ConFis,subs(k1\&.k2=))
```

```
> -(k1&.k3)-(k2&.k3), expand(Ampl_Graviton(op(op(i,ListArgs))))
```

```
> ))- Ampl_Graviton(op(op(j,ListArgs)))))))),i=j+1..3),j=1..5);
```

```
0, 0, 0
```

Incluímos uma nova condição física de que o tensor de polarização do gráviton tem traço nulo:

- > ConFis2:={seq(k.i&.k.i=0,i=1..4),seq(k.i&.x.i=0,i=1..4)
- > ,seq(k.i&.y.i=0,i=1..4),seq(x.i&.y.i=0,i=1..4)}:

test é simplesmente a amplitude mais geral possível usando estas condições físicas

- > test:=unapply(expand(subs(ConFis2,expand(Ampl_Graviton(x1,
- > y1,k1,x2,y2,k2,x3,y3,k3,x4,y4,-k1-k2-k3))))
- > ,x1,y1,x2,y2,x3,y3,x4,y4):

Iremos verificar agora se conseguimos construir uma amplitude invariante de "gauge", contraindo esta por um momento, que é análogo a substituir um dos índices por seu respectivo momento

```
> factor(expand(subs(k1&.y4=-k2&.y4-k3&.y4,k1&.x4=-k2&.x4
```

- > -k3&.x4, k1&.k3 = -k2&.k3 k1&.k2, expand(subs(ConFis2, k1)) = -k3&.x4, k1&.k3 = -k2&.k3 k1&.k2
- > expand(test(k1,y1,x2,y2,x3,y3,x4,y4))))));

A amplitude de espalhamento possui ao todo uma quantidade de termos dada por:

C.3 Iniciando a fatorização

O próximo passo é tentar fatorizar a amplitude obtida. Primeiro iremos localizar os termos dependentes de momento no denominador e que já podem ser fatorizados facilmente:

```
> res1:=expand(subs({kl&.y4=-k2&.y4-k3&.y4,kl&.x4=
> -k2&.x4-k3&.x4},test(x1,y1,x2,y2,x3,y3,x4,y4))):
```

```
> res2:=expand(subs({k2&.y4=-k1&.y4-k3&.y4,k2&.x4=
```

```
-k1&.x4-k3&.x4 },test(x1,y1,x2,y2,x3,y3,x4,y4))):
```

Conseguimos então construir três termos com números iguais de operadores, utilizando as condições de transversalidade e conservação de momento adequadas:

```
> AB2:=coeff(res1,1/k1&.k3): nops(");
970
```

```
> AB3:=coeff(res2,1/k2&.k3): nops(");
970
```

Logo poderemos construir a amplitude usando permutações do operadorAB1. Mas ainda restam mais termos, extra, que são os termos sem denominadores (termos de contato):

```
> extra:=expand(res1-(AB1/k1&.k2+AB2/k1&.k3+AB3/k2&.k3)):
> nops(");
```

```
> extra3:=expand(subs({k3&.y4=-k2&.y4-k1&.y4,k3&.x4=
> -k2&.x4-k1&.x4},extra))
> : nops(");
```

```
836
```

```
> extral23:=expand(extral/3+extra2/3+extra3/3):
> nops(")=ifactor(nops("));
```

```
1236 = (\ 2\ )^2 (\ 3\ ) (\ 103\ )
```

Podemos extrair de extral23, um termo primitivo que através de suas permutações cíclicas de momentos e índices, retorna ao original. Estes termos iremos denominar de part1. Eles são obtidos separando os termos de contato em três partes obtidas uma da outra por permutações cíclicas de (1,2,3)

```
part1:=unapply(expand(coeff(extra123,k1&.x4)*k1&.x4)
>
  +coeff(extra123,k1&.y4)*k1&.y4),x1,y1,k1,x2,y2,k2,
>
> x3,y3,k3):
> part2:=unapply(expand(coeff(extral23,k2&.x4)*k2&.x4)
>
  +coeff(extra123,k2&.y4)*k2&.y4),x1,y1,k1,x2,y2,k2,
>
  x3,y3,k3):
   part3:=unapply(expand(coeff(extra123,k3&.x4)*k3&.x4)
>
  +coeff(extra123,k3&.y4)*k3&.y4),x1,y1,k1,x2,y2,k2,
>
>
   x3,y3,k3):
       verificando a simetria destes termos
> expand(part1(x2,y2,k2,x3,y3,k3,x1,y1,k1))
  -part2(x1,y1,k1,x2,y2,k2,x3,y3,k3));
>
                                  0
```

> expand(part1(x3,y3,k3,x1,y1,k1,x2,y2,k2)

```
> -part3(x1,y1,k1,x2,y2,k2,x3,y3,k3));
```

```
> \quad \texttt{nops(part1(x1,y1,k1,x2,y2,k2,x3,y3,k3));}
```

240

Agora iremos procurar, ainda em extral23, que não seja iguais a partn, e analisar sua simetria:

```
restPart:=expand(extra123-part1(x1,y1,k1,x2,y2,k2,x3,y3,k3)
>
   -part2(x1,y1,k1,x2,y2,k2,x3,y3,k3)-part3(x1,y1,k1,x2,y2,k2,
>
   x3,y3,k3)):
>
   part1a:=unapply(expand(coeff(restPart,x1&.x4)*x1&.x4)
>
>
   +coeff(restPart,y1&.x4)*y1&.x4),x1,y1,k1,x2,y2,k2,
>
   x3,y3,k3):
   part2a:=unapply(expand(coeff(restPart,x2&.x4)*x2&.x4)
>
>
   +coeff(restPart,y2&.x4)*y2&.x4),x1,y1,k1,x2,y2,k2,
>
   x3,y3,k3):
>
  part3a:=unapply(expand(coeff(restPart,x3&.x4)*x3&.x4)
   +coeff(restPart,y3&.x4)*y3&.x4),x1,y1,k1,x2,y2,k2,
>
   x3,y3,k3):
>
       Verificamos que através de permutações cíclicas podemos mudar de uma para
    outra função
   expand(part1a(x2,y2,k2,x3,y3,k3,x1,y1,k1))
>
   -part2a(x1,y1,k1,x2,y2,k2,x3,y3,k3));
>
                                   0
   expand(part1a(x3, y3, k3, x1, y1, k1, x2, y2, k2))
>
>
   -part3a(x1,y1,k1,x2,y2,k2,x3,y3,k3));
                                   0
```

Nossa hipótese é de que podemos construir os termos restantes usando somente as funções partla, dependentes somente dos índices:

```
> expand(restPart-part1a(x1,y1,k1,x2,y2,k2,x3,y3,k3)
> -part2a(x1,y1,k1,x2,y2,k2,x3,y3,k3)
> -part3a(x1,y1,k1,x2,y2,k2,x3,y3,k3));
```

```
0
```

E finalmente chegamos à forma que representa os numeradores da fatorização, somando todos os termos fatorizados e permutando-os:

```
TotAB1:=unapply(expand(AB1+k1&.k2*expand(part1(x1,y1,k1,x2,
>
```

 $y_{2}, k_{2}, x_{3}, y_{3}, k_{3}) + partla(x_{1}, y_{1}, k_{1}, x_{2}, y_{2}, k_{2}, x_{3}, y_{3}, k_{3}))),$ >

```
x1,y1,k1,x2,y2,k2,x3,y3,k3):
>
```

Verificamos agora que TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)+(permutações) reproduz exatamente a amplitude original, test:

```
expand(subs(\{k2\&.y4=-k1\&.y4-k3\&.y4, k2\&.x4=-k1\&.x4-k3\&.x4\},
>
```

```
expand(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)/k1&.k2
>
```

```
+TotAB1(x2,y2,k2,x3,y3,k3,x1,y1,k1)/k2&.k3+
>
```

```
>
  TotAB1(x3,y3,k3,x1,y1,k1,x2,y2,k2)/k1&.k3
```

```
-test(x1,y1,x2,y2,x3,y3,x4,y4))));
>
```

Ω

Verificando a simetria de troca de índices deste termo fatorizado:

```
expand(TotAB1(x1, y1, k1, x2, y2, k2, x3, y3, k3))
>
```

-TotAB1(y1,x1,k1,x2,y2,k2,x3,y3,k3)); >

0

- >expand(TotAB1(x1, y1, k1, x2, y2, k2, x3, y3, k3))
- -TotAB1(x1,y1,k1,y2,x2,k2,x3,y3,k3)); >

0

- expand(TotAB1(x1, y1, k1, x2, y2, k2, x3, y3, k3))>>
 - -TotAB1(x1,y1,k1,x2,y2,k2,y3,x3,k3));

0.

o número de termos obtidos é

```
nops(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3));
\geq
                                   1382
```

save(TotAB1,TotAB1TXT): >

> O que faremos a seguir é explorar a simetria interna de permuta de índices $x_i \leftrightarrow y_i$, como veremos no apêndice seguinte.

Apêndice D

Simetrização da amplitude gráviton-gráviton

Abaixo listamos um algoritmo que procura na amplitude fatores que são simétricos em $x_i \leftrightarrow y_i$. O objetivo deste algoritmo é reduzir a amplitude a um número cada vez menor de termos para que assim possamos manipulá-la mais facilmente e determinar os termos do produto da fatorização. Iniciamos lendo o pacote HIP e uma parte da amplitude, como mostrada no apêndice C, TotAB1, além dos índices e quadrivetores necessários:

```
> restart;t0:=time():read `HIP.m`;setaliases();
> setfv(x1,x2,x3,x4,y1,y2,y3,y4, k1,k2,k3);
> read(`TotAB1TXT`):
> expla:=unapply([op(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3))]
> , x1,y1) :
> exp2a:=[op(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3))]:
> nt:=nops(exp2):
```

O procedimento abaixo localiza e separa os termos que são iguais na troca de x1,y1:

```
>
   simetriza := proc(exp1,exp2,nt)
                 local xxx,i,j,Alpha; Alpha:=0;
>
>
                    for j to nt do
                         for i from j+1 to nt do
>
>
                  if op(i,exp1(y1,x1)) = op(j,exp2) then
>
                        Alpha := Alpha+op(i,exp2); break;
>
                             else xxx := xxx ;
>
                             fi
>
                         od
>
                     od;
```

```
RETURN(expand(Alpha))
>
>
                   end
    Aplicando o procedimento em TotAB1:
   res1:=simetriza(expla,exp2a,nt):
\geq
   nops(res1);
\geq
   res2:=unapply(res1,x1,y1,k1,x2,y2,k2,x3,y3,k3):
>
        Este passo visa escrever os termos que são iguais na troca de x1 \leftrightarrow y1, e
    somar os termos que são simétricos em sí, ou seja mantêm a sua forma quando da
    troca de x1 por y1. Estes termos precisam ser divididos então pelo fator \frac{1}{2}:
   res3:=unapply(expand(res2(x1,y1,k1,x2,y2,k2,x3,y3,k3)+
\geq
   (TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)-
>
   (res2(x1,y1,k1,x2,y2,k2,x3,y3,k3)+
\geq
  res2(y1,x1,k1,x2,y2,k2,x3,y3,k3)))/2),x1,y1,k1,x2,y2,
>
> k2,x3,y3,k3):
   nops(res3(x1,y1,k1,x2,y2,k2,x3,y3,k3));
>
                                      726
```

Iremos verificar se o resultado está correto observando se ele representa TotAB1 fazendo a troca entre $x1 \leftrightarrow y1$

```
test:=expand(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)-
>
   (res3(x1,y1,k1,x2,y2,k2,x3,y3,k3)+
>
   res3(y1,x1,k1,x2,y2,k2,x3,y3,k3)));
>
                               test := 0
```

Recorremos a um procedimento parecido, porém para determinar no resultado já obtido os termos que são obtidos pela troca de $x2 \leftrightarrow y2$.

```
simetriza1 := proc(exp1,exp2,nt)
>
                 local xxx,i,j,Alpha; Alpha:=0;
>
>
                     for j to nt do
>
                         for i from j+1 to nt do
>
   if op(i,exp1(x1,y1,k1,y2,x2,k2,x3,y3,k3)) = op(j,exp2) or
>
   op(i,exp1(y1,x1,k1,y2,x2,k2,x3,y3,k3)) = op(j,exp2) then
>
                                 Alpha := Alpha+op(i,exp2); break;
>
                             else xxx := xxx ;
>
                             fi
>
                         od
>
                     od;
>
                     RETURN(expand(Alpha))
>
```

Aplicamos o procedimento:

> expla:=unapply([op(res3(x1,y1,k1,x2,y2,k2,x3,y3,k3))],

```
> x1,y1,k1,x2,y2,k2,x3,y3,k3) :
```

```
> exp2a:=[op(res3(x1,y1,k1,x2,y2,k2,x3,y3,k3))]:
```

```
> nt:=nops(exp2a);
```

```
> resla:=simetrizal(expla,exp2a,nt):
```

E novamente iremos somar aos termos simétricos em sí mesmo:

```
> res2a:=unapply(res1a,x1,y1,x2,y2,x3,y3):
```

```
> res3a:=unapply(expand(res2a(x1,y1,x2,y2,x3,y3)+
```

```
> (res3(x1,y1,k1,x2,y2,k2,x3,y3,k3)-(res2a(x1,y1,x2,y2,x3,y3))
```

```
> +res2a(x1,y1,y2,x2,x3,y3)))/2),x1,y1,x2,y2,x3,y3):
```

```
> nops(res3a(x1,y1,x2,y2,x3,y3));
```

696

Iremos verificar se conseguimos o resultado anterior fazendo trocas entre os índices x1,y1 e x2,y2:

```
> expand(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)
> -(res3a(x1,y1,x2,y2,x3,y3)+
> res3a(x1,y1,y2,x2,x3,y3)+
> res3a(y1,x1,x2,y2,x3,y3)+res3a(y1,x1,y2,x2,x3,y3)));
```

0

Agora iremos verificar quais termos podem ser separados através da troca de $x3 \leftrightarrow y3$:

```
simetriza2 := proc(exp1,exp2,nt)
>
                 local xxx,i,j,Alpha; Alpha:=0;
>
>
                     for j to nt do
                          for i from j+1 to nt do
>
    if op(i,exp1(x1,y1,x2,y2,y3,x3,x4,y4)) = op(j,exp2)
>
    or op(i, exp1(x1, y1, y2, x2, y3, x3, x4, y4)) = op(j, exp2)
>
\geq
    or op(i,exp1(y1,x1,x2,y2,y3,x3,x4,y4)) = op(j,exp2)
    or op(i,exp1(y1,x1,y2,x2,y3,x3,x4,y4)) = op(j,exp2)
>
>
            then
>
                  Alpha := Alpha+op(i,exp2); break;
>
                   else xxx := xxx i
>
                   fi
>
                          od
>
                     od;
>
                     RETURN(expand(Alpha))
                 end:
>
```

Faremos toda a rotina anterior:

```
> explb:=unapply([op(res3a(x1,y1,x2,y2,x3,y3))],
```

```
> x1, y1, x2, y2, x3, y3, x4, y4):
```

```
> exp2b:=[op(res3a(x1,y1,x2,y2,x3,y3))]:
```

```
> nt:=nops(exp2b):
> res1b:=simetriza2(exp1b,exp2b,nt):
> res2b:=unapply(res1b,x1,y1,x2,y2,x3,y3,x4,y4):
> res3b:=unapply(expand(res2b(x1,y1,x2,y2,x3,y3,x4,y4)+
> (res3a(x1,y1,x2,y2,x3,y3)-
> (res2b(x1,y1,x2,y2,x3,y3,x4,y4))
> +res2b(x1,y1,x2,y2,y3,x3,x4,y4)))/2),x1,y1,x2,y2,x3
> ,y3,x4,y4):
> nops(res3b(x1,y1,x2,y2,x3,y3,x4,y4));
696
```

Verificaremos se podemos escrever a amplitude original utilizando as simetrias utilizadas

```
res3b1:=(x1,y1,x2,y2,x3,y3,x4,y4) ->
>
  res3b(x1,y1,x2,y2,x3,y3,x4,y4)+
>
  res3b(y1,x1,x2,y2,x3,y3,x4,y4):
>
> res3b2:=(x1,y1,x2,y2,x3,y3,x4,y4) ->
>
  res3b1(x1,y1,x2,y2,x3,y3,x4,y4)+
  res3b1(x1,y1,y2,x2,x3,y3,x4,y4):
>
> res3b3:=(x1,y1,x2,y2,x3,y3,x4,y4) ->
> res3b2(x1,y1,x2,y2,x3,y3,x4,y4)+
>
  res3b2(x1,y1,x2,y2,y3,x3,x4,y4):
> expand(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3)
  -res3b3(x1,y1,x2,y2,x3,y3,x4,y4));
>
```

0

Finalmente, a última simetria é a troca de $x4 \leftrightarrow y4$, onde novamente recorremos ao procedimento já utilizado nas outras etapas

```
>
   simetriza3 := proc(exp1,exp2,nt)
                 local xxx,i,j,Alpha; Alpha:=0;
>
>
                     for j to nt do
                         for i from j+1 to nt do
>
       if op(i,exp1(x1,y1,x2,y2,x3,y3,y4,x4)) = op(j,exp2)
>
>
       then
                   Alpha := Alpha+op(i,exp2); break;
\geq
>
                              else xxx:=xxx;
                              fi
>
                          od
>
                     od;
>
>
                     RETURN(expand(Alpha))
>
                 end:
```

```
> explc:=unapply([op(res3b(x1,y1,x2,y2,x3,y3,x4,y4))],
```

```
> x1, y1, x2, y2, x3, y3, x4, y4):
```

```
> exp2c:=[op(res3b(x1,y1,x2,y2,x3,y3,x4,y4))]:
```

```
> nt:=nops(exp2c);
```

```
> res1c:=simetriza3(exp1c,exp2c,nt):
```

```
> res2c:=unapply(res1c,x1,y1,x2,y2,x3,y3,x4,y4):
```

```
> res3c:=unapply(expand(res2c(x1,y1,x2,y2,x3,y3,x4,y4))
```

```
> +(res3b(x1,y1,x2,y2,x3,y3,x4,y4)
```

```
> -(res2c(x1,y1,x2,y2,x3,y3,y4,x4))
```

```
> +res2c(x1,y1,x2,y2,x3,y3,x4,y4)))/2),
```

```
x1, y1, x2, y2, x3, y3, x4, y4):
```

Vamos investigar se obtivemos uma forma mais simétrica, como anteriormen-

te:

```
> res3c1:= (x1,y1,x2,y2,x3,y3,x4,y4) ->
```

```
> res3c(x1,y1,x2,y2,x3,y3,x4,y4)+
```

```
> res3c(y1,x1,x2,y2,x3,y3,x4,y4):
```

```
> res3c2:= (x1,y1,x2,y2,x3,y3,x4,y4) ->
```

```
> res3c1(x1,y1,x2,y2,x3,y3,x4,y4)+
```

```
> res3c1(x1,y1,y2,x2,x3,y3,x4,y4):
```

```
> res3c3:= (x1,y1,x2,y2,x3,y3,x4,y4) ->
```

```
> res3c2(x1,y1,x2,y2,x3,y3,x4,y4)+
```

```
> res3c2(x1,y1,x2,y2,y3,x3,x4,y4):
```

```
> res3c4:= (x1,y1,x2,y2,x3,y3,x4,y4) ->
```

```
> res3c3(x1,y1,x2,y2,x3,y3,x4,y4)+
```

```
> res3c3(x1,y1,x2,y2,x3,y3,y4,x4):
```

```
> Resto:=unapply(expand(TotAB1(x1, y1, k1, x2, y2, k2, x3, y3, k3)
```

```
> -res3c4 (x1,y1,x2,y2,x3,y3,x4,y4)),x4,y4):
```

No entanto agora o procedimento não representa o resultado anterior exatamente:

```
> nops(");
```

288

Entretanto esses termos podem ser ignorados pois são termos espúrios, que sobram do fato de simetrizarmos os índices 1,2 e 3, deixando o índice de Lorentz 4 fixo. Para provar isto, reescrevemos a expressão verb+TotAB1+ dependendo do indíce 4,

```
> TotAB2:=unapply(TotAB1(x1,y1,k1,x2,y2,k2,x3,y3,k3))
```

```
> ,x1,y1,k1,x2,y2,k2,x3,y3,k3,x4,y4):
```

Os termos ditos espúrios são originados na troca de $x_4 \leftrightarrow y_4$:

```
> nops(TotAB2(x1,y1,k1,x2,y2,k2,x3,y3,k3,x4,y4)-
```

```
> TotAB2(x1,y1,k1,x2,y2,k2,x3,y3,k3,y4,x4));
```

Mas no entanto estes termos são nulos,quando queremos reproduzir a amplitude de espalhamento,utilizando permutações cíclicas dos índices restantes,estes termos anulam-se:

```
> expand(subs({k2&.y4=-k1&.y4-k3&.y4,k2&.x4=-k1&.x4-k3&.x4},
> expand((TotAB2(x1,y1,k1,x2,y2,k2,x3,y3,k3,x4,y4)-TotAB2(x1,
> y1,k1,x2,y2,k2,x3,y3,k3,y4,x4))/k1&.k2+(TotAB2(x2,y2,k2,x3,
> y3,k3,x1,y1,k1,x4,y4)-TotAB2(x2,y2,k2,x3,y3,k3,x1,y1,k1,y4,
> x4))/k2&.k3+(TotAB2(x3,y3,k3,x1,y1,k1,x2,y2,k2,x4,y4)-
> TotAB2(x3,y3,k3,x1,y1,k1,x2,y2,k2,y4,x4))/k1&.k3)));
```

O que permite despreza-los. A expressão restante ainda apresenta um número grande de termos:

```
> nops(res3c(x1,y1,x2,y2,x3,y3,x4,y4));
```

```
625
```

onde o resultado é mostrado abaixo, fazendo a substituição de '&.'para '.':

```
res3c:=-1/16(x4.y3)(x3.y4)(x1.y2)(k1.x2)(k2.k3)(k3.y1)+1/16
(x4.y3)(x3.y4)(k2.x1)(k1.y2)(k3.x2)(k3.y1)-1/16
(x3.x4)(k2.y3)(k2.x1)(k1.y2)(k3.x2)(y1.y4)-1/32
(k3.y4)(x1.x2)(k1.y2)(k2.x4)(x3.y1)(k1.y3)-1/32
(x3.x4)(k2.y4)(x2.y1)(k2.x1)(y2.y3)(k1.k3)-1/32
(k3.y4)(k2.y1)(k2.x1)(x2.x4)(y2.y3)(k1.x3)-1/32
(x4.y3)(k1.x3)(k2.x1)(k1.y2)(y1.y4)(k3.x2)-1/96
(k1.k2)(x2.y4)(x3.y1)(y2.y3)(k2.x1)(k1.x4)-1/32
(x3.x4)(k2.k3)(k2.x1)(k1.x2)(y2.y3)(y1.y4)-1/32
(x3.y4)(k2.x4)(x2.y1)(k2.x1)(k1.y3)(k3.y2)+1/32
(k3.y4)(k2.y1)(k1.x2)(x4.y2)(x1.y3)(k1.x3)-1/32
(k3.y4)(x2.y1)(k1.y2)(k2.y3)(x1.x4)(k1.x3)-1/32
(x4.y3)(k1.x3)(k2.x1)(k1.x2)(y2.y4)(k3.y1)+1/32
(y3.y4)(k2.x3)(y1.y2)(k2.x1)(x2.x4)(k1.k3)-1/32
(x3.y4)(k2.y1)(k1.y2)(x1.y3)(k3.x2)(k3.x4)-1/64
(x4.y1)(k1.k2)(k3.x2)(k2.y3)(y2.y4)(x1.x3)+1/64
(k3.y4)(x1.y2)(k1.x2)(k2.x4)(x3.y1)(k1.y3)+1/32
(x4.y3)(k2.x3)(k1.x2)(k1.y2)(x1.y4)(k3.y1)+1/64
(x3.y4)(k2.x4)(y1.y2)(k2.x1)(k1.y3)(k3.x2)+1/32
(x3.y4)(k1.y3)(k1.y2)(k1.x2)(k3.x1)(x4.y1)-1/16
(k2.x3)(x1.x2)(y1.y2)(k2.x4)(k1.y3)(k2.y4)+1/32
```

(k3.x4)(k2.x1)(k1.x2)(y2.y3)(x3.y1)(k3.y4)-1/64(y3.y4)(y1.y2)(k1.x2)(k2.x3)(k3.x1)(k3.x4)+1/64(x4.y3)(k1.x3)(k2.x1)(k1.x2)(y1.y4)(k3.y2)+1/32(x3.y4)(x1.x2)(y1.y2)(k2.y3)(k2.k3)(k2.x4)-1/32(k2.y3)(y1.y2)(k2.x1)(x2.x4)(k1.x3)(k2.y4)+1/32(x4.y3)(k2.k3)(k1.y2)(k1.x2)(x1.y4)(x3.y1)-1/64(x4.y3)(k1.x3)(k2.y1)(k1.x2)(k3.y2)(x1.y4)-1/32(x3.x4)(y3.y4)(k1.y2)(k1.x2)(k3.x1)(k3.y1)+1/64(x1.x4)(k1.k2)(k3.x2)(k2.y3)(y2.y4)(x3.y1)-1/32(x4.y3)(x3.y4)(k2.y1)(k2.x1)(k3.y2)(k3.x2)+1/32(k2.x3)(x1.y2)(k2.y1)(x2.x4)(k1.y3)(k2.y4)-1/16(k2.y3)(k1.x2)(k1.y2)(y1.y4)(x1.x4)(k1.x3)+1/64(x4.y1)(k1.k2)(k3.y2)(k2.x3)(x1.x2)(y3.y4)+1/16(k1.y3)(x2.y1)(k2.x1)(x4.y2)(k2.x3)(k2.y4)+1/16(x4.y1)(k1.k2)(x2.x3)(k2.y3)(y2.y4)(k3.x1)-1/96 (k1.k2)(x2.y1)(x1.y3)(x3.x4)(k1.y2)(k1.y4)-1/32(x4.y1)(k1.k2)(k3.x2)(k2.y3)(x3.y4)(x1.y2)-1/16(x1.y4)(x4.y1)(k1.k2)(y2.y3)(k2.x3)(k3.x2)-1/32(x1.x4)(k1.k2)(k3.y2)(k2.y3)(x2.y4)(x3.y1)-1/96(k1.k2)(x1.y4)(x2.x3)(y1.y2)(k1.y3)(k1.x4)+1/32(k3.y4)(k2.y1)(k1.x2)(x4.y2)(x1.y3)(k2.x3)+1/32(x3.y4)(x2.y1)(k1.y2)(k2.y3)(k3.x1)(k3.x4)+1/16(x1.x4)(y2.y3)(k3.x2)(k2.y1)(x3.y4)(k1.k2)+1/48(k1.k2)(y3.y4)(k1.x4)(x1.y2)(x3.y1)(k3.x2)-1/32(k1.k2)(x3.y1)(y2.y3)(x2.y4)(x1.x4)(k1.k3)+1/32(y3.y4)(k2.x3)(k2.y1)(k2.x1)(k3.x2)(x4.y2)+1/16(k3.x4)(k2.y1)(k1.y2)(x2.x3)(x1.y3)(k3.y4)-1/32(x4.y3)(k2.x3)(k2.x1)(k1.y2)(x2.y4)(k3.y1)+1/32(y3.y4)(k1.k3)(y1.y2)(k1.x2)(k2.x4)(x1.x3)-1/32(x4.y3)(k2.x3)(x1.y2)(k2.y1)(k3.x2)(k3.y4)-1/32(y3.y4)(k2.k3)(x1.y2)(k2.y1)(x2.x3)(k3.x4)-1/32(k3.x4)(k2.y1)(k2.x1)(y2.y4)(x2.y3)(k2.x3)-1/32(k3.x4)(k2.y1)(k2.x1)(y2.y4)(x2.y3)(k1.x3)+1/96(k1.k2)(x4.y3)(x2.y1)(x1.y2)(k1.x3)(k1.y4)+1/32(x2.y4)(k1.k2)(x3.y1)(k1.y3)(x1.x4)(k3.y2)-1/32(x2.y4)(k1.k2)(x1.x3)(k1.y3)(x4.y1)(k3.y2)-1/64(x3.y4)(k2.x4)(x1.y2)(k2.y1)(k1.y3)(k3.x2)-1/64(k3.y4)(y1.y2)(k1.x2)(k2.x4)(x1.y3)(k1.x3)-1/32

(k3.x4)(k2.y1)(k1.x2)(x3.y2)(x1.y3)(k3.y4)+1/32(x4.y3)(x1.x2)(y1.y2)(k2.x3)(k2.k3)(k3.y4)+1/64(x3.y4)(x1.y2)(k1.x2)(k2.y3)(k3.y1)(k3.x4)+1/32(x1.x4)(k1.k2)(k3.y2)(k3.x2)(x3.y1)(y3.y4)-1/64(x1.x4)(k1.k2)(k3.y2)(k2.y3)(x2.y1)(x3.y4)+1/32(x3.x4)(x1.x2)(y1.y2)(k2.y3)(k2.k3)(k2.y4)-1/32(y3.y4)(x1.x2)(y1.y2)(k2.x4)(k1.x3)(k1.k3)-1/32(k1.y3)(x2.y1)(x1.y2)(k2.y4)(k2.x3)(k3.x4)-1/32(k2.x3)(x1.x2)(y1.y2)(k2.x4)(k1.y3)(k3.y4)+1/16(y2.y4)(k1.k2)(x1.x3)(k1.y3)(x4.y1)(k3.x2)-1/64(k1.k2)(x2.y3)(k2.k3)(y1.y4)(x1.x4)(x3.y2)-1/32(k3.x4)(x2.y1)(k1.y2)(x1.y3)(k2.x3)(k2.y4)-1/96(k1.k2)(x3.x4)(y1.y2)(x2.y3)(k3.x1)(k1.y4)-1/32(k3.y4)(y1.y2)(k1.x2)(x1.y3)(k2.x3)(k2.x4)-1/32(y3.y4)(k1.k3)(k2.y1)(k1.x2)(x1.x3)(x4.y2)+1/32(x3.x4)(y1.y2)(k1.x2)(x1.y3)(k2.k3)(k3.y4)+1/32(x3.y4)(k1.y3)(y1.y2)(k1.x2)(k3.x1)(k2.x4)+1/16(k2.x3)(x1.x2)(k2.y1)(y2.y4)(k1.y3)(k2.x4)-1/96(k1.k2)(x4.y2)(x1.y3)(x2.x3)(k2.y1)(k1.y4)+1/64(k1.k2)(x4.y1)(x3.y4)(x1.y3)(k1.x2)(k1.y2)+1/32(x3.y4)(x1.x2)(y1.y2)(k1.y3)(k2.x4)(k1.k3)-1/192(k1.k2)(x1.x4)(x3.y2)(k3.x2)(y1.y3)(k1.y4)+1/64(x3.y4)(k1.k3)(x1.y2)(k1.x2)(k2.y3)(x4.y1)-1/64(k1.k2)(x1.y4)(x4.y1)(x3.y2)(k1.x2)(k1.y3)+1/192(k1.k2)(x2.y4)(k1.x4)(x3.y1)(x1.y2)(k2.y3)-1/128(x3.y4)(k2.y3)(k2.x1)(k1.x2)(x4.y2)(k3.y1)+1/32(x4.y3)(x1.x2)(k1.y2)(k2.x3)(y1.y4)(k2.k3)-1/32(x4.y3)(x1.x2)(y1.y2)(k2.x3)(k2.k3)(k2.y4)+1/64(y3.y4)(k2.y1)(k2.x1)(x2.x3)(k3.y2)(k3.x4)+1/64(x4.y3)(k2.k3)(k2.y1)(k2.x1)(x3.y2)(x2.y4)+1/64(x4.y3)(k1.x3)(x1.y2)(k1.x2)(y1.y4)(k2.k3)-1/32(x3.x4)(k2.k3)(k1.y2)(k1.x2)(y1.y3)(x1.y4)-1/128(x4.y3)(k1.k3)(k2.x1)(k1.y2)(x2.x3)(y1.y4)-1/128(k3.x4)(x1.x2)(k1.y2)(y1.y4)(k2.x3)(k1.y3)-1/384(k1.k2)(y1.y4)(x3.y2)(x1.x2)(k1.y3)(k1.x4)-1/128(x3.y4)(k1.k3)(k2.x1)(k1.y2)(x2.x4)(y1.y3)-1/64(k3.y4)(k1.y2)(k1.x2)(x1.x3)(x4.y1)(k1.y3)-1/64(k3.y4)(k1.y2)(k1.x2)(x1.x3)(x4.y1)(k2.y3)+1/64

(x3.x4)(k1.y3)(k1.y2)(k1.x2)(x1.y4)(k3.y1)-1/128(y3.y4)(k2.x3)(k2.x1)(k1.x2)(k3.y1)(x4.y2)+1/64(x4.y3)(k1.k3)(k1.x2)(k1.y2)(x3.y1)(x1.y4)+1/128(x3.y4)(k1.y3)(x2.y1)(k1.y2)(x1.x4)(k2.k3)+1/128(x3.x4)(k1.k3)(x1.x2)(k1.y2)(y1.y3)(k2.y4)+1/64(x3.y4)(k1.k3)(k1.x2)(k1.y2)(x1.x4)(y1.y3)+1/128(k3.y4)(k2.x4)(x2.y1)(k2.x1)(k1.y3)(x3.y2)+3/64(y3.y4)(x2.y1)(k1.y2)(x1.x4)(k2.x3)(k2.k3)-1/64(x4.y3)(x2.y1)(x1.y2)(k1.x3)(k2.y4)(k1.k3)-1/128(k3.y4)(x1.y2)(k1.x2)(k2.y3)(x4.y1)(k1.x3)-1/64(x3.x4)(y3.y4)(k2.k3)(k2.x1)(k1.y2)(x2.y1)-1/128(x3.y4)(k2.x4)(x1.y2)(k2.y1)(x2.y3)(k1.k3)+1/64(x3.x4)(k1.k3)(k1.x2)(k1.y2)(y1.y4)(x1.y3)+1/64(x3.x4)(y3.y4)(x1.x2)(y1.y2)(k2.k3)(k1.k3)+1/64(x4.y3)(x3.y4)(x2.y1)(x1.y2)(k2.k3)(k1.k3)-1/64(k2.y3)(x1.y2)(k1.x2)(k2.x4)(y1.y4)(k1.x3)-1/128(k3.x4)(y1.y2)(k1.x2)(k2.y4)(x1.x3)(k1.y3)-1/64(k3.x4)(k1.y2)(k1.x2)(x3.y1)(x1.y4)(k1.y3)-1/64(k3.x4)(k1.y2)(k1.x2)(x3.y1)(x1.y4)(k2.y3)-1/64(k2.x3)(x1.y2)(k1.x2)(k2.y4)(x4.y1)(k1.y3)+1/128(x4.y3)(k2.k3)(x1.y2)(k2.y1)(x2.y4)(k1.x3)-1/64(k3.x4)(k1.x2)(k1.y2)(x1.y3)(y1.y4)(k1.x3)+1/128(k3.y4)(k2.x1)(k1.x2)(x4.y1)(y2.y3)(k2.x3)+1/128(k3.x4)(k2.y1)(k1.x2)(x1.y4)(y2.y3)(k1.x3)+1/128(k3.x4)(k2.y1)(k1.x2)(x1.y4)(y2.y3)(k2.x3)+1/128(k3.y4)(k2.y1)(k1.x2)(x3.y2)(x1.x4)(k1.y3)+1/128(k3.y4)(k2.y1)(k1.x2)(x3.y2)(x1.x4)(k2.y3)+1/192(k1.k2)(x1.x2)(x3.y2)(k1.y4)(x4.y3)(k2.y1)+1/192(k1.k2)(x3.y4)(x1.x2)(y1.y2)(k1.y3)(k1.x4)+1/64(k2.y3)(k2.y1)(k1.x2)(x1.y4)(x4.y2)(k2.x3)-1/64(k2.x3)(x1.y2)(k1.x2)(k2.y4)(x4.y1)(k2.y3)-1/128(x3.x4)(k2.y3)(k2.y1)(k1.x2)(y2.y4)(k3.x1)-1/128(x3.y4)(k2.k3)(x1.y2)(k2.y1)(x2.y3)(k2.x4)-1/128(x4.y3)(k2.k3)(x1.x2)(k2.y1)(x3.y2)(k3.y4)-1/128(k3.y4)(x1.x2)(k1.y2)(k2.y3)(x3.y1)(k2.x4)-1/32(k3.y4)(k1.x2)(k1.y2)(y1.y3)(x1.x3)(k3.x4)-1/128(x3.y4)(k2.k3)(x2.y1)(k2.x1)(y2.y3)(k3.x4)+1/64(x1.x4)(k1.k2)(x3.y2)(k2.y3)(x2.y4)(k3.y1)-1/384

(k1.k2)(x1.x4)(x2.y3)(y1.y2)(k1.x3)(k1.y4)-1/128(k1.k2)(x3.y4)(x1.x4)(y1.y2)(x2.y3)(k2.k3)+1/192(k1.k2)(x2.x4)(k1.y4)(x1.x3)(y1.y2)(k2.y3)-1/384(k1.k2)(x1.x4)(x3.y2)(x2.y1)(k1.y3)(k1.y4)+1/192 (k1.k2)(x4.y3)(k1.y4)(x1.y2)(x3.y1)(k3.x2)-1/384(k1.k2)(y1.y4)(x3.y2)(k3.x2)(x1.y3)(k1.x4)+1/192 (k1.k2)(y2.y4)(k1.x4)(x3.y1)(x1.x2)(k2.y3)+1/192 (k1.k2)(x2.y4)(x1.y3)(k3.y1)(k1.x4)(x3.y2)+1/192(k1.k2)(x4.y2)(y1.y3)(k3.x1)(x2.x3)(k1.y4)+1/192(k1.k2)(x2.y1)(y2.y3)(k1.x4)(x3.y4)(k2.x1)-1/128(y2.y4)(k1.k2)(k1.x3)(k3.x1)(x2.y3)(x4.y1)+1/64(x2.y4)(k1.k2)(k1.y3)(k1.x3)(y1.y2)(x1.x4)+1/192(k1.k2)(y2.y4)(x3.y1)(k3.x1)(k1.x4)(x2.y3)-1/32(k3.y4)(y1.y2)(k1.x2)(x1.x4)(k2.x3)(k2.y3)+1/64(x3.x4)(y3.y4)(k2.y1)(k1.x2)(k3.y2)(k3.x1)-1/64(k1.y3)(y1.y2)(k1.x2)(k2.y4)(x1.x4)(k1.x3)-1/64(k1.y3)(y1.y2)(k1.x2)(x1.y4)(k2.x4)(k2.x3)+1/128(k3.y4)(x1.x2)(k2.y1)(x4.y2)(k1.x3)(k2.y3)-1/128(x3.x4)(k2.y4)(x1.y2)(k2.y1)(k1.y3)(k3.x2)+1/64(k1.y3)(k2.y1)(k1.x2)(y2.y4)(x1.x4)(k1.x3)-1/32(k1.x3)(k1.x2)(k1.y2)(x4.y1)(x1.y4)(k1.y3)-3/64(x3.x4)(x1.x2)(y1.y2)(k1.y3)(k2.y4)(k1.k3)-1/128(y3.y4)(k2.x4)(y1.y2)(k2.x1)(x2.x3)(k1.k3)-1/64(x4.y3)(x3.y4)(x1.y2)(k2.y1)(k1.k3)(k3.x2)-1/32(k2.y3)(k1.x2)(k1.y2)(x1.y4)(x4.y1)(k2.x3)+1/128(k3.x4)(k2.x1)(k1.y2)(y1.y4)(x2.x3)(k1.y3)+1/128(k3.x4)(k2.x1)(k1.y2)(y1.y4)(x2.x3)(k2.y3)+1/64(k2.x3)(k2.x1)(k1.y2)(x2.y4)(x4.y1)(k2.y3)+1/128(k1.k2)(x1.x4)(k3.y1)(x3.y2)(y3.y4)(k1.x2)-1/128(x4.y3)(x1.x2)(k1.y2)(k2.x3)(k3.y1)(k2.y4)+1/128(k1.k2)(x4.y1)(k2.x1)(x2.y3)(k1.x3)(y2.y4)-1/64(k1.x3)(x1.y2)(k2.y1)(x2.y4)(k2.y3)(k2.x4)+1/128(k1.k2)(x2.y3)(x1.x3)(x4.y1)(y2.y4)(k2.k3)-1/64(k2.y3)(k2.y1)(k1.y2)(x1.x4)(x2.y4)(k2.x3)+1/384(k1.k2)(y1.y4)(y2.y3)(k3.x2)(x1.x3)(k1.x4)+1/384(k1.k2)(x1.y4)(x3.y2)(x2.y1)(k1.y3)(k1.x4)-1/128(k3.x4)(x1.y2)(k2.y1)(x2.x3)(k2.y3)(k2.y4)-1/32(k1.k2)(x1.x4)(y1.y4)(x2.x3)(k1.y2)(k1.y3)-1/128

(k3.x4)(k2.y1)(k1.y2)(x1.y4)(x2.x3)(k2.y3)-1/192(k1.k2)(x4.y3)(k1.y4)(y1.y2)(x1.x3)(k3.x2)-1/96 (k1.k2)(x3.y4)(k1.x4)(x1.x2)(y1.y3)(k3.y2)-1/96(k1.k2)(x2.x4)(k1.y4)(x3.y1)(x1.y2)(k2.y3)-1/192(k1.k2)(y2.y4)(x1.x3)(k3.y1)(k1.x4)(x2.y3)-1/192(k1.k2)(x2.y4)(k1.x4)(x1.y3)(y1.y2)(k2.x3)-1/64(k1.k2)(x1.y4)(x4.y1)(y2.y3)(k1.x2)(k1.x3)+1/128 $(x1.x2)(x3.y2)(y3.y4)(x4.y1)(k1.k2)^{2+1/128}(x2.y1)$ $(y2.y3)(x3.y4)(x1.x4)(k1.k2)^{2-1}/128(y3.y4)(k1.x3)$ (x2.y1)(k1.y2)(x1.x4)(k2.k3)-1/64(x4.y1)(k1.k2)(x3.y2)(k2.y3)(x2.y4)(k3.x1)+1/128(k1.k2)(x3.y4)(x4.y1)(x1.y2)(x2.y3)(k2.k3)+1/128(k1.k2)(x3.y2)(y1.y3)(x1.x4)(x2.y4)(k2.k3)-1/192(k1.k2)(y2.y3)(x2.x3)(x1.x4)(k3.y1)(k1.y4)+1/192(k1.k2)(x2.y4)(k1.x4)(y1.y3)(x1.y2)(k2.x3)-1/96(k1.k2)(x4.y3)(k1.y4)(x1.x2)(y1.y2)(k2.x3)-1/128(k1.k2)(x2.x3)(y3.y4)(k2.x1)(x4.y1)(k1.y2)-1/96(k1.k2)(x3.y4)(x2.y1)(x1.y2)(k1.x4)(k2.y3)-1/128(x2.y1)(x3.y2) $(y3.y4)(x1.x4)(k1.k2)^{2+1}/64(x1.x4)(x3.y2)(y1.y4)$ $(x2.y3)(k1.k2)^{2-1}/128(x1.x2)(y2.y3)(x3.y4)(x4.y1)$ $(k1.k2)^{2+1}/64(x3.y4)(k1.x2)(k1.y2)(x1.y3)(k3.y1)$ (k3.x4)+1/64(k3.x4)(x1.x2)(k2.y1)(x3.y2)(k2.y3)(k3.y4)+1/128(x4.y3)(x1.x2)(k1.y2)(x3.y1)(k2.k3)(k3.y4)-1/128(x3.x4)(k2.k3)(x2.y1)(k2.x1)(y2.y3)(k2.y4)-1/128(x3.x4)(k2.y3)(x2.y1)(k2.x1)(k3.y2)(k3.y4) - 1/128(x3.x4)(k2.k3)(x2.y1)(k2.x1)(y2.y3)(k3.y4)+1/128(x4.y3)(x2.y1)(k1.y2)(k2.x3)(k3.x1)(k3.y4)+1/128(x4.y3)(x2.y1)(k1.y2)(k2.x3)(k3.x1)(k2.y4) - 1/64(k3.x4)(y1.y2)(k1.x2)(x1.y3)(k2.x3)(k3.y4)-1/128(x3.x4)(y1.y2)(k1.x2)(k2.y3)(k3.x1)(k3.y4)+1/384(k1.k2)(x3.y4)(x2.y1)(y2.y3)(k3.x1)(k1.x4) - 1/64(x1.x4)(x2.x3)(k3.y2)(k2.y1)(y3.y4)(k1.k2)+1/32(k2.y3)(x1.x2)(k2.y1)(y2.y4)(k2.x3)(k3.x4)+1/64(y3.y4)(k2.x3)(k1.x2)(k1.y2)(k3.x1)(x4.y1)+1/128(k3.x4)(x1.x2)(k2.y1)(k1.x3)(y2.y4)(k2.y3)+1/64(x4.y3)(y1.y2)(k2.x1)(x2.y4)(k1.x3)(k1.k3)+1/64(x3.y4)(x1.x2)(k1.y2)(x4.y1)(k2.y3)(k2.k3) - 1/128(k1.k2)(y2.y4)(k1.x2)(x3.y1)(k2.y3)

(x1.x4)-1/384(k1.k2)(x1.y4)(y2.y3)(k3.x2)(x3.y1)(k1.x4)+1/192(k1.k2)(x2.x3)(y2.y3)(x4.y1)(k3.x1)(k1.y4) - 1/384(k1.k2)(x4.y3)(x1.x2)(x3.y2)(k3.y1)(k1.y4) - 1/128(k1.k2)(x3.y2)(x1.y3)(x4.y1)(x2.y4)(k2.k3)+1/64(k1.k2)(x1.x4)(y1.y4)(y2.y3)(k1.x2)(k1.x3)+1/64(k1.k2)(x3.y2)(k2.k3)(x1.y4)(x4.y1)(x2.y3)+1/192(k1.k2)(x3.x4)(k1.y4)(x2.y1)(x1.y3)(k3.y2)+1/64(x4.y1)(x2.x3)(k3.y2)(k2.x1)(y3.y4)(k1.k2)-1/96(k1.k2)(x3.x4)(x2.y1)(x1.y2)(k1.y4)(k2.y3) - 1/96(k1.k2)(y3.y4)(x1.x2)(y1.y2)(k1.x4)(k2.x3)+1/192(k1.k2)(x3.y4)(k1.x4)(x2.y1)(x1.y3)(k3.y2)+1/64(k1.k2)(x1.x4)(y3.y4)(x3.y1)(k1.y2)(k1.x2)+1/128(x4.y3)(k1.k3)(k2.y1)(k1.x2)(x3.y2)(x1.y4)+1/64(k2.x3)(x1.y2)(k1.x2)(y1.y4)(k2.x4)(k1.y3)+1/128(x3.x4)(k1.k3)(k2.y1)(k1.y2)(x1.y4)(x2.y3)-1/128(k3.y4)(k2.x4)(x1.x2)(k2.y1)(k1.y3)(x3.y2)+1/128(y3.y4)(k2.k3)(k2.y1)(k1.x2)(x1.x3)(x4.y2)-1/64(x3.y4)(k1.k3)(x2.y1)(k1.y2)(x1.y3)(k2.x4)+1/128(x3.y4)(k2.y3)(k2.x1)(k1.x2)(x4.y1)(k3.y2)-1/128(x3.y4)(k1.k3)(x2.y1)(k1.y2)(k2.y3)(x1.x4)+1/64(x3.x4)(k2.y3)(k2.x1)(k1.x2)(y2.y4)(k3.y1) - 1/128(k3.x4)(k2.x1)(k1.y2)(x2.y4)(x3.y1)(k1.y3)-1/128(k3.y4)(k2.x4)(x2.y1)(k2.x1)(y2.y3)(k1.x3)-3/64(y3.y4)(x1.x2)(k1.y2)(k2.x3)(x4.y1)(k2.k3)-1/64(x4.y3)(x1.y2)(k2.y1)(k1.x3)(x2.y4)(k1.k3)+1/128(k3.y4)(y1.y2)(k1.x2)(k2.y3)(x1.x4)(k1.x3)+1/128(k3.x4)(x1.y2)(k1.x2)(x3.y1)(k2.y4)(k1.y3)-1/128(x4.y3)(k1.k3)(k2.x1)(k1.x2)(y1.y4)(x3.y2) - 1/128(y3.y4)(k1.x3)(k2.x1)(k1.y2)(x2.x4)(k3.y1)+1/128(x4.y3)(k2.x3)(y1.y2)(k2.x1)(k1.k3)(x2.y4)+1/128(k3.x4)(k2.y1)(k1.y2)(x2.y4)(x1.x3)(k1.y3) - 1/64(k3.y4)(k1.y2)(k1.x2)(x1.x4)(y1.y3)(k1.x3) - 1/64(k3.y4)(k1.y2)(k1.x2)(x1.x4)(y1.y3)(k2.x3)-1/64(x3.y4)(k2.y3)(k1.y2)(k1.x2)(k3.y1)(x1.x4)+1/128(x4.y3)(k1.k3)(x1.x2)(k1.y2)(y1.y4)(k2.x3)+1/64(x4.y3)(k1.x3)(k1.x2)(k1.y2)(k3.x1)(y1.y4)+1/64(k2.y3)(y1.y2)(k1.x2)(k2.y4)(x1.x4)(k2.x3) - 1/128(x4.y3)(x1.x2)(k1.y2)(k2.x3)(k3.y1)

(k3.y4)+1/128(k1.k2)(y3.y4)(x4.y1)(x1.x2)(x3.y2)(k2.k3)+1/128(x4.y3)(k2.y1)(k1.x2)(x1.x3)(k3.y2)(k3.y4) - 1/128(x4.y3)(x2.y1)(k1.y2)(x1.x3)(k2.k3)(k3.y4) - 1/128(k3.x4)(x1.y2)(k2.y1)(k1.y3)(x2.y4)(k2.x3)+1/128(x4.y3)(k2.k3)(x2.y1)(k2.x1)(x3.y2)(k3.y4) - 1/128(k3.y4)(k2.x1)(k1.x2)(x4.y1)(x3.y2)(k1.y3)-1/384(k1.k2)(x4.y1)(x2.y3)(x1.x3)(k1.y2)(k1.y4)+1/64(k1.x3)(x1.y2)(k2.y1)(x2.y4)(k1.y3)(k2.x4)+1/32(k1.k2)(x1.y4)(x4.y1)(x2.x3)(k1.y3)(k1.y2)+1/64(k1.x3)(y1.y2)(k2.x1)(x2.y4)(k2.y3)(k2.x4)-1/128(x4.y3)(k2.x1)(k1.x2)(x3.y1)(k3.y2)(k3.y4)+1/128(k3.x4)(x1.x2)(k2.y1)(y2.y3)(k2.x3)(k2.y4)+1/128(x3.x4)(x1.y2)(k1.x2)(k2.y3)(k3.y1)(k3.y4)+1/128(x3.x4)(x1.y2)(k1.x2)(k2.y3)(k3.y1)(k2.y4)+1/64(k2.x3)(x1.y2)(k2.y1)(x2.x4)(k2.y3)(k2.y4)+1/64(k2.y3)(x1.x2)(k2.y1)(y2.y4)(k2.x3)(k2.x4)+1/128(k3.x4)(x2.y1)(k1.y2)(x1.y4)(k2.x3)(k1.y3)+1/128(k1.k2)(y2.y4)(k1.x2)(x1.x3)(k2.y3)(x4.y1) - 1/32(k1.x3)(x1.x2)(y1.y2)(k2.y4)(k1.y3)(k2.x4)+1/64(x3.y4)(x1.x2)(y1.y2)(k2.y3)(k2.k3)(k3.x4)+1/128(k3.x4)(y1.y2)(k2.x1)(x2.x3)(k2.y3)(k2.y4)+1/64(x4.y3)(k1.y2)(k1.x2)(x1.x3)(k3.y1)(k3.y4)-1/384(k1.k2)(x1.y4)(x3.y2)(k2.y3)(x2.y1)(k1.x4)-1/384(k1.k2)(x1.y4)(x2.y3)(x3.y1)(k1.y2)(k1.x4)-1/384(k1.k2)(y1.y4)(x3.y2)(x1.y3)(k1.x2)(k1.x4)-1/128(k1.k2)(y3.y4)(x1.x4)(x2.y1)(x3.y2)(k2.k3)-1/128(k1.k2)(x2.y3)(x3.y1)(x1.x4)(y2.y4)(k2.k3)-1/16(k3.y4)(x2.y1)(x1.y2)(k2.y3)(k2.x3)(k2.x4) - 1/128(k1.k2)(x1.y3)(x2.x3)(y2.y4)(x4.y1)(k1.k3)-1/128(k1.k2)(x1.x4)(k2.y1)(x2.y3)(k1.x3)(y2.y4)-1/384(k1.k2)(x4.y2)(x1.y3)(k1.x3)(x2.y1)(k1.y4) - 1/384(k1.k2)(y2.y4)(x1.y3)(x2.x3)(k2.y1)(k1.x4)+1/192(k1.k2)(y3.y4)(x2.y1)(x1.y2)(k1.x3)(k1.x4)-1/384(k1.k2)(y1.y4)(x2.y3)(k2.x3)(x1.y2)(k1.x4)-1/128(x4.y3)(k1.x3)(k2.y1)(k1.y2)(x2.y4)(k3.x1)-1/64(x3.x4)(y3.y4)(k1.k3)(x1.x2)(k1.y2)(k2.y1)+1/128(x3.x4)(k1.k3)(y1.y2)(k1.x2)(k2.y3)(x1.y4) - 1/384(k1.k2)(x3.y4)(x1.x2)(y2.y3)(k3.y1)

(k1.x4)-1/128(k3.x4)(x1.y2)(k1.x2)(k2.y3)(x3.y1)(k2.y4)+1/128(k3.y4)(k2.x4)(x1.x2)(k2.y1)(y2.y3)(k1.x3) - 1/128(x3.y4)(k2.y3)(k2.y1)(k1.x2)(x1.x4)(k3.y2)+1/64(y3.y4)(k1.k3)(k1.x2)(k1.y2)(x4.y1)(x1.x3) - 1/128(x3.y4)(k2.y3)(k2.x1)(k1.y2)(x2.x4)(k3.y1)-1/32(k2.x3)(x2.y1)(x1.y2)(k2.y4)(k2.y3)(k2.x4)+1/64(k1.x3)(x1.x2)(k2.y1)(x4.y2)(k1.y3)(k2.y4)-1/32(k3.x4)(x2.y1)(x1.y2)(k2.x3)(k2.y3)(k3.y4)-1/128(y3.y4)(k2.y1)(k1.x2)(x3.y2)(k3.x1)(k3.x4)+1/64(y3.y4)(x2.y1)(x1.y2)(k2.x3)(k2.k3)(k3.x4)+1/64(x3.x4)(k1.x2)(k1.y2)(y1.y3)(k3.x1)(k3.y4)+1/64(y3.y4)(k1.x2)(k1.y2)(x3.y1)(k3.x1)(k3.x4)+1/128(x3.y4)(k1.k3)(x1.x2)(k1.y2)(x4.y1)(k2.y3)+1/128(x3.y4)(k1.k3)(x1.x2)(k1.y2)(y1.y3)(k2.x4)-1/128(y3.y4)(k2.k3)(k2.x1)(k1.x2)(x3.y1)(x4.y2)+1/128(y3.y4)(k1.x3)(x1.x2)(k1.y2)(x4.y1)(k2.k3)-1/128(y3.y4)(k1.k3)(k2.y1)(k1.y2)(x1.x4)(x2.x3)+1/128(k1.k2)(x2.x3)(y3.y4)(k2.y1)(x1.x4)(k1.y2) - 1/64(k2.y3)(y1.y2)(k2.x1)(x2.x4)(k2.x3)(k2.y4)+1/128(x3.x4)(k2.y3)(x1.x2)(k2.y1)(k3.y2)(k3.y4)+1/64(k1.y3)(y1.y2)(k1.x2)(k2.y4)(x1.x4)(k2.x3)+1/64(x3.x4)(k1.k3)(x2.y1)(k1.y2)(k2.x1)(y3.y4)+1/384(k1.k2)(x1.x4)(x2.y3)(x3.y1)(k1.y2)(k1.y4)+1/384(k1.k2)(x4.y3)(x2.y1)(x3.y2)(k3.x1)(k1.y4)+1/128(k3.y4)(k2.x1)(k1.x2)(x4.y1)(y2.y3)(k1.x3)+1/128(k3.x4)(y1.y2)(k2.x1)(x2.y4)(k1.y3)(k2.x3) - 1/64(k3.x4)(k1.x2)(k1.y2)(x1.y3)(y1.y4)(k2.x3)-1/128(x3.x4)(k1.k3)(k2.x1)(k1.y2)(y1.y4)(x2.y3)+3/64(x3.y4)(k2.k3)(k1.y2)(k1.x2)(y1.y3)(x1.x4)+1/64(y3.y4)(k2.k3)(k1.x2)(k1.y2)(x4.y1)(x1.x3)-1/384(k1.k2)(x2.x4)(x3.y1)(y2.y3)(k2.x1)(k1.y4) - 1/128(k1.k2)(x4.y1)(k3.x1)(x3.y2)(k1.x2)(y3.y4) - 1/128(x3.x4)(k2.x1)(k1.y2)(x2.y3)(k3.y1) $(k3.y4)-1/64(x4.y1)(x3.y2)(x1.y4)(x2.y3)(k1.k2)^{2+}$ 1/128(k1.k2)(y1.y3)(x2.x3)(y2.y4)(x1.x4)(k1.k3)+1/128(x3.x4)(k2.y4)(y1.y2)(k2.x1)(k1.y3)(k3.x2)+1/ 64(x3.x4)(k2.k3)(x1.x2)(k2.y1)(k1.y3)(y2.y4)-1/64 (x4.y3)(k2.x3)(x1.y2)(k2.y1)(k3.x2)(k2.y4)+1/64

(x4.y3)(k1.k3)(y1.y2)(k1.x2)(k2.x3)(x1.y4)+1/64(x4.y3)(k2.x3)(k2.y1)(k2.x1)(k3.y2)(x2.y4)-1/32(k3.y4)(x1.x2)(k1.y2)(y1.y3)(k2.x3)(k3.x4)-1/64(x3.y4)(k2.k3)(x2.y1)(k2.x1)(y2.y3)(k2.x4)+1/64(x4.y3)(k2.k3)(x2.y1)(k2.x1)(k1.x3)(y2.y4)-1/64(x3.x4)(k1.y3)(x1.y2)(k1.x2)(y1.y4)(k2.k3)-1/64(x3.y4)(k2.y3)(x1.y2)(k2.y1)(k3.x2)(k2.x4)-1/64(x3.y4)(k2.y3)(x1.y2)(k2.y1)(k3.x2)(k3.x4)+3/64(x3.y4)(k1.y3)(x1.y2)(k1.x2)(x4.y1)(k2.k3)-1/64(y3.y4)(k2.x3)(x1.x2)(k2.y1)(k3.y2)(k3.x4)-1/64(y3.y4)(k2.x3)(x1.x2)(k2.y1)(k3.y2)(k2.x4)-1/64(x3.y4)(k1.y3)(k2.y1)(k1.y2)(x2.x4)(k3.x1)+1/64(y3.y4)(k1.x3)(k2.y1)(k2.x1)(k3.y2)(x2.x4)-1/32(k3.x4)(k2.y1)(k2.x1)(x2.y3)(x3.y2)(k3.y4)+1/64(k3.x4)(k2.x1)(k1.x2)(y2.y4)(x3.y1)(k1.y3)+1/64(k3.y4)(k2.x4)(y1.y2)(k2.x1)(x2.y3)(k1.x3)+1/32(x3.x4)(x1.y2)(k2.y1)(x2.y4)(k1.y3)(k1.k3)+1/64(x4.y3)(k1.k3)(k2.y1)(k2.x1)(x2.x3)(y2.y4)-1/64(x4.y3)(k1.k3)(k2.y1)(k1.y2)(x1.x3)(x2.y4)-1/64(y3.y4)(k1.x3)(k2.y1)(k1.x2)(x1.x4)(k3.y2)-1/32(k3.y4)(x2.y1)(k1.y2)(k2.y3)(x1.x3)(k3.x4)+1/32(y3.y4)(x1.y2)(k1.x2)(k2.x3)(x4.y1)(k2.k3)-1/64(k3.y4)(k2.y1)(k2.x1)(x2.x4)(x3.y2)(k2.y3)+1/32(x4.y3)(x1.x2)(k2.y1)(k1.x3)(y2.y4)(k1.k3)+1/32(k1.y3)(k2.y1)(k1.x2)(x1.y4)(x4.y2)(k2.x3)+1/64(k3.x4)(k2.x1)(k1.y2)(x3.y1)(x2.y4)(k2.y3)+1/64(k2.y3)(y1.y2)(k1.x2)(x1.y4)(k2.x4)(k1.x3)+1/128(y3.y4)(k2.x1)(k1.x2)(x3.y2)(k3.y1)(k3.x4)+1/128(x3.y4)(k1.k3)(k2.y1)(k1.y2)(x2.x4)(x1.y3)-1/128(k3.y4)(k2.x1)(k1.x2)(x4.y1)(x3.y2)(k2.y3)-1/64(k1.y3)(y1.y2)(k2.x1)(x2.y4)(k1.x3)(k2.x4)+1/64(y3.y4)(k1.k3)(k2.x1)(k1.y2)(x2.x3)(x4.y1)-1/128(x4.y3)(k2.x3)(x1.y2)(k2.y1)(k1.k3)(x2.y4)-1/128(k3.y4)(k2.y1)(k1.x2)(x1.x4)(y2.y3)(k1.x3)+1/128(y3.y4)(k1.x3)(k2.y1)(k1.y2)(x2.x4)(k3.x1)+1/128(y3.y4)(k2.x3)(k2.y1)(k1.x2)(k3.x1)(x4.y2)+1/128(x3.x4)(k2.k3)(x1.x2)(k2.y1)(y2.y3)(k2.y4)-1/128(k3.y4)(k2.y1)(k1.x2)(x1.x4)(y2.y3)(k2.x3)-1/128

(k3.x4)(k2.y1)(k1.y2)(x1.y4)(x2.x3)(k1.y3)+1/128(x3.y4)(k2.y3)(k2.y1)(k1.y2)(k3.x1)(x2.x4)+1/128(x3.x4)(k2.k3)(x1.x2)(k2.y1)(y2.y3)(k3.y4)+1/128(k3.x4)(y1.y2)(k1.x2)(k2.y3)(x1.x3)(k2.y4)+1/128(k3.y4)(x2.y1)(k1.y2)(k2.y3)(x1.x3)(k2.x4)-1/64(k3.y4)(x2.y1)(k2.x1)(x3.y2)(k2.y3)(k3.x4)-1/64(x3.x4)(y3.y4)(k2.x1)(k1.x2)(k3.y1)(k3.y2)-1/128(x4.y3)(k1.k3)(x2.y1)(k1.y2)(k2.x3)(x1.y4)+1/64(k3.y4)(x1.y2)(k1.x2)(y1.y3)(k2.x3)(k3.x4)+1/128(x3.y4)(k2.k3)(y1.y2)(k2.x1)(x2.y3)(k2.x4)-1/128(x4.y3)(k2.k3)(y1.y2)(k2.x1)(k1.x3)(x2.y4)-1/128(x3.y4)(k1.y3)(x1.x2)(k1.y2)(x4.y1)(k2.k3)+1/128(x3.y4)(k2.k3)(x1.x2)(k2.y1)(y2.y3)(k3.x4)-1/192(k1.k2)(x4.y2)(x1.y3)(k3.y1)(k1.y4)(x2.x3)+1/128(k1.k2)(x1.y4)(x3.y2)(k3.x2)(y1.y3)(k1.x4)+1/384(k1.k2)(x4.y1)(x2.y3)(x1.y2)(k1.x3)(k1.y4)+1/128(y2.y4)(k1.k2)(k1.x3)(k3.y1)(x2.y3)(x1.x4)-1/64(x2.y4)(k1.k2)(k1.y3)(k1.x3)(x1.y2)(x4.y1)-1/64(k3.y4)(x2.y1)(k2.x1)(k1.x3)(x4.y2)(k2.y3)+1/384(k1.k2)(y2.y4)(y1.y3)(x2.x3)(k2.x1)(k1.x4)-1/32(k2.x3)(x2.y1)(k2.x1)(y2.y4)(k2.y3)(k3.x4)-1/192(k1.k2)(x2.y4)(y1.y3)(k3.x1)(x3.y2)(k1.x4)-1/192(k1.k2)(y2.y4)(k1.x4)(x1.x3)(x2.y1)(k2.y3)+1/384(k1.k2)(x1.y4)(x2.y3)(k2.x3)(y1.y2)(k1.x4)-1/64(k1.x3)(k2.x1)(k1.x2)(x4.y1)(y2.y4)(k1.y3)+1/32(k3.x4)(x1.y2)(k1.x2)(y1.y4)(k2.y3)(k2.x3)+1/64(x4.y3)(x3.y4)(y1.y2)(k2.x1)(k3.x2)(k1.k3)-1/64(x3.y4)(x2.y1)(k1.y2)(k2.y3)(x1.x4)(k2.k3)-1/128(k3.x4)(k2.x1)(k1.x2)(y2.y3)(y1.y4)(k2.x3)-1/192(k1.k2)(x1.x2)(y2.y3)(k1.x4)(x3.y4)(k2.y1)-1/128(x3.x4)(y1.y2)(k1.x2)(k2.y3)(k3.x1)(k2.y4)+1/128(x3.x4)(k2.y1)(k1.y2)(x2.y3)(k3.x1)(k3.y4)+1/64(x3.x4)(k2.k3)(x1.x2)(k1.y2)(k2.y1)(y3.y4)-1/192(k1.k2)(x2.y1)(x3.y2)(k1.y4)(x4.y3)(k2.x1)-1/128(k3.x4)(x2.y1)(k2.x1)(y2.y3)(k2.x3)(k2.y4)+1/384(k1.k2)(x1.y4)(x3.y2)(y1.y3)(k1.x2)(k1.x4)+1/384(k1.k2)(x2.x4)(x1.x3)(y2.y3)(k2.y1)(k1.y4)+1/384(k1.k2)(y1.y4)(x3.y2)(k2.y3)(x1.x2)(k1.x4)+1/384

(k1.k2)(x4.y2)(y1.y3)(k1.x3)(x1.x2)(k1.y4)+1/384(k1.k2)(y1.y4)(x2.y3)(x1.x3)(k1.y2)(k1.x4)-1/64(k2.x3)(x2.y1)(k2.x1)(y2.y4)(k2.y3)(k2.x4)-1/64(k1.x3)(x2.y1)(k2.x1)(x4.y2)(k1.y3)(k2.y4)-1/128(k3.x4)(k2.x1)(k1.x2)(y2.y3)(y1.y4)(k1.x3)+1/128(x3.y4)(k2.x4)(y1.y2)(k2.x1)(x2.y3)(k1.k3)+1/128(x4.y3)(k1.x3)(k2.x1)(k1.y2)(x2.y4)(k3.y1)-1/64(k2.x3)(k2.x1)(k1.x2)(x4.y2)(y1.y4)(k2.y3)+1/128(y3.y4)(k2.x4)(x1.y2)(k2.y1)(x2.x3)(k1.k3)-3/128(x3.x4)(k1.k3)(x1.y2)(k1.x2)(k2.y3)(y1.y4)+1/64(k1.y3)(x1.y2)(k1.x2)(k2.y4)(x4.y1)(k1.x3)-1/192(k1.k2)(x4.y1)(x2.x3)(k3.y2)(x1.y3)(k1.y4)+1/96 (k1.k2)(x2.x3)(y2.y3)(x1.y4)(k3.y1)(k1.x4)+1/96(k1.k2)(x2.x4)(k1.y4)(x1.y3)(y1.y2)(k2.x3)+1/64(x3.x4)(x2.y1)(k1.y2)(k2.y3)(k3.x1)(k3.y4)-1/192(k1.k2)(x3.y4)(y1.y2)(x2.y3)(k3.x1)(k1.x4)-1/48(k1.k2)(x1.y3)(x3.y1)(y2.y4)(k3.x2)(k1.x4)-1/48(k1.k2)(x1.y3)(x3.y1)(x2.x4)(k3.y2)(k1.y4)-1/64(x3.y4)(k2.k3)(k2.x1)(k1.y2)(y1.y3)(x2.x4)+1/32(k1.k2)(y2.y3)(k2.k3)(y1.y4)(x1.x4)(x2.x3)-1/32(x3.y4)(k2.k3)(k2.x1)(k1.x2)(y1.y2)(x4.y3)+1/64(x3.x4)(k1.k3)(k2.y1)(k2.x1)(y2.y3)(x2.y4)+1/64(y3.y4)(k1.x3)(y1.y2)(k1.x2)(x1.x4)(k2.k3)-1/64 (k1.k2)(x3.y4)(x4.y1)(x1.x2)(y2.y3)(k2.k3)-1/64(k1.k2)(x2.x3)(y1.y3)(x1.x4)(y2.y4)(k2.k3)-1/64(x3.y4)(k2.k3)(k2.x1)(k1.x2)(y2.y3)(x4.y1)+1/96(k1.k2)(x3.x4)(k1.y4)(x1.y2)(y1.y3)(k3.x2)+1/96(k1.k2)(x2.y3)(x3.y2)(x1.x4)(k3.y1)(k1.y4)-1/192(k1.k2)(x4.y1)(x2.x3)(x1.y2)(k1.y3)(k1.y4)-1/192(k1.k2)(y1.y4)(x2.y3)(k3.y2)(x1.x3)(k1.x4)+1/32(x1.x4)(k1.k2)(k2.x3)(k2.y3)(x2.y4)(y1.y2)-1/64(y2.y4)(k1.k2)(k1.y3)(k3.x1)(x2.x3)(x4.y1)+1/64(k3.x4)(x1.x2)(k2.y1)(x3.y2)(k2.y3)(k2.y4)+1/64(x3.y4)(x2.y1)(k1.y2)(k2.y3)(k3.x1)(k2.x4)+1/64(x4.y3)(x1.x2)(k1.y2)(x3.y1)(k2.k3)(k2.y4)-1/64(k1.k2)(y2.y4)(k1.x2)(x1.y3)(k2.x3)(x4.y1)-1/192(k1.k2)(x1.x4)(y2.y3)(k3.x2)(x3.y1)(k1.y4)-1/192(k1.k2)(y3.y4)(x1.x2)(x3.y2)(k3.y1)(k1.x4)-1/64

(k1.k2)(y3.y4)(k1.x3)(x2.y1)(k3.y2)(x1.x4)+3/64(k1.k2)(x1.x4)(y1.y4)(x3.y2)(k1.x2)(k1.y3)+1/64(k3.x4)(k2.y1)(k1.x2)(x1.y4)(x3.y2)(k2.y3)+1/32(x1.x4)(y1.y4)(x2.x3)(y2.y3)(k1.k3)(k1.k2)+1/32(k1.k2)(y3.y4)(x1.y2)(k1.x2)(k2.x3)(x4.y1)+1/96 (k1.k2)(x4.y3)(k1.y4)(x2.y1)(x1.x3)(k3.y2)+1/96 (k1.k2)(x4.y2)(k1.y4)(x3.y1)(x1.x2)(k2.y3)+1/96 (k1.k2)(x2.y4)(x1.x3)(k3.y1)(k1.x4)(y2.y3)+1/96 (k1.k2)(y2.y4)(k1.x4)(x1.y3)(x2.y1)(k2.x3)+1/32(k1.k2)(x1.y4)(x4.y1)(x2.y3)(k1.y2)(k1.x3)+1/32(k1.k2)(x3.y4)(y1.y2)(k1.x2)(k2.y3)(x1.x4)-1/64 $(x1.y2)(x2.x3)(y3.y4)(x4.y1)(k1.k2)^{2-1/64}(y1.y2)$ $(x2.y3)(x3.y4)(x1.x4)(k1.k2)^{2+1}/32(x4.y1)(x2.x3)$ $(x1.y4)(y2.y3)(k1.k2)^{2-1/64}(x3.y4)(k2.y1)(k1.y2)$ (x2.y3)(k3.x1)(k3.x4)+1/64(k3.x4)(k2.y1)(k1.x2)(y2.y4)(x1.y3)(k2.x3)-1/64(k1.k2)(x1.x4)(k3.y1)(x2.x3)(y3.y4)(k1.y2)+1/64(k3.x4)(k2.y1)(k1.x2)(y2.y4)(x1.y3)(k1.x3)+1/64(x4.y3)(x1.y2)(k1.x2)(k2.x3)(k3.y1)(k2.y4)-1/64(k1.k2)(x4.y1)(k2.x1)(y2.y3)(k1.x3)(x2.y4)-1/64(k1.k2)(x4.y1)(k3.x1)(y2.y3)(k1.x2)(x3.y4)-1/64(k1.k2)(y2.y3)(x1.x3)(x4.y1)(x2.y4)(k2.k3)+1/32(k2.y3)(k2.y1)(k1.x2)(x1.x4)(y2.y4)(k2.x3)-1/64(k1.k2)(x1.x4)(k2.y1)(x2.x3)(y2.y4)(k1.y3)-1/32(k1.y3)(x1.y2)(k1.x2)(y1.y4)(k2.x4)(k1.x3)+1/32(k2.y3)(x2.y1)(k2.x1)(x4.y2)(k2.x3)(k2.y4)+1/32(k2.x3)(k2.x1)(k1.x2)(x4.y1)(y2.y4)(k1.y3)-1/192(k1.k2)(y2.y4)(x1.y3)(k1.x3)(x2.y1)(k1.x4)+1/64(k3.x4)(y1.y2)(k2.x1)(x2.y4)(k1.x3)(k2.y3)-1/64(x4.y3)(k2.x1)(k1.y2)(x2.x3)(k3.y1)(k3.y4)-1/64(k3.x4)(x2.y1)(k1.y2)(k2.y3)(x1.y4)(k1.x3)-1/64(k3.x4)(y1.y2)(k1.x2)(x1.y4)(k2.x3)(k1.y3)-1/64(k1.k2)(x2.y4)(k1.y2)(x1.x3)(k2.y3)(x4.y1)-1/64(k1.k2)(y2.y3)(x3.y4)(k2.x1)(x4.y1)(k1.x2)-1/64(k1.k2)(x3.y2)(y3.y4)(k2.y1)(x1.x4)(k1.x2)-1/32(k2.y3)(x2.y1)(k1.y2)(k2.y4)(x1.x4)(k2.x3)-1/32(k2.x3)(k2.y1)(k2.x1)(x2.x4)(y2.y4)(k2.y3)+1/64(x4.y3)(x1.y2)(k1.x2)(k2.x3)(k3.y1)(k3.y4)-1/64(k1.k2)(y3.y4)(x4.y1)

(x1.y2)(x2.x3)(k2.k3)-1/32(k2.y3)(k2.y1)(k2.x1)(x2.x4)(y2.y4)(k1.x3)-1/64(x4.y3)(k2.y1)(k1.y2)(x1.x3)(k3.x2)(k3.y4)+1/96(k1.k2)(x2.x4)(x3.y1)(k3.x1)(k1.y4)(y2.y3)+1/32(k1.x3)(k2.y1)(k1.x2)(x4.y2)(x1.y4)(k1.y3)+1/64(k3.x4)(x1.x2)(k2.y1)(k1.y3)(y2.y4)(k2.x3)+1/64(x3.y4)(x1.x2)(k1.y2)(y1.y3)(k2.k3)(k2.x4)+1/64(x3.y4)(x1.x2)(k1.y2)(y1.y3)(k2.k3)(k3.x4)-1/64(x4.y3)(k2.k3)(y1.y2)(k2.x1)(x2.x3)(k2.y4)-1/64(x4.y3)(k2.k3)(y1.y2)(k2.x1)(x2.x3)(k3.y4)+1/64(k3.y4)(k2.x1)(k1.y2)(x4.y1)(x2.x3)(k1.y3)+1/64(k3.y4)(k2.x1)(k1.y2)(x4.y1)(x2.x3)(k2.y3)+1/32(k1.y3)(x2.y1)(k2.x1)(y2.y4)(k1.x3)(k2.x4)+1/64(y3.y4)(y1.y2)(k1.x2)(x1.x3)(k2.k3)(k2.x4)+1/64(y3.y4)(x2.y1)(k1.y2)(x1.x3)(k2.k3)(k3.x4)-1/64(y3.y4)(k1.k3)(k2.x1)(k1.x2)(x3.y2)(x4.y1)-1/32(x3.y4)(k2.y3)(y1.y2)(k2.x1)(x2.x4)(k1.k3)-1/64(y3.y4)(k2.x3)(k2.y1)(k1.y2)(k3.x2)(x1.x4)-1/64(x3.y4)(k1.y3)(k2.y1)(k1.y2)(k3.x2)(x1.x4)+1/64(x4.y3)(k2.x3)(x1.x2)(k2.y1)(k1.k3)(y2.y4)+1/64(k3.y4)(k2.y1)(k1.y2)(x1.x4)(x2.y3)(k1.x3)-1/64(y3.y4)(k1.x3)(k2.y1)(k1.x2)(x4.y2)(k3.x1)+1/64(x3.x4)(k1.y3)(k2.y1)(k2.x1)(x2.y4)(k3.y2)-1/64(y3.y4)(k2.x3)(k2.y1)(k1.y2)(k3.x1)(x2.x4)-1/64(x3.x4)(k2.k3)(x1.y2)(k2.y1)(x2.y3)(k2.y4)+1/64(k3.y4)(k2.y1)(k1.y2)(x1.x4)(x2.y3)(k2.x3)+1/64(x4.y3)(k1.x3)(y1.y2)(k1.x2)(k3.x1)(k2.y4)+1/64(k3.x4)(k2.y1)(k1.x2)(x1.y4)(x3.y2)(k1.y3)-1/64(x3.y4)(k2.y3)(k2.y1)(k1.x2)(k3.x1)(x4.y2)-1/64(x3.x4)(k2.k3)(x1.y2)(k2.y1)(x2.y3)(k3.y4)+1/64(x4.y3)(k1.x3)(x2.y1)(k1.y2)(x1.y4)(k2.k3)+1/64(x3.x4)(k2.y3)(k2.y1)(k2.x1)(y2.y4)(k3.x2)+1/96(k1.k2)(x2.y1)(x1.x3)(x4.y3)(k1.y2)(k1.y4)+1/32(k3.y4)(y1.y2)(k2.x1)(x2.x3)(k2.y3)(k3.x4)-1/64(k3.y4)(k2.y1)(k2.x1)(x2.y3)(x4.y2)(k2.x3)+1/64(x4.y3)(k1.x3)(k2.y1)(k2.x1)(y2.y4)(k3.x2)+1/64(y3.y4)(k1.k3)(k2.y1)(k2.x1)(x3.y2)(x2.x4)+1/32(y3.y4)(y1.y2)(k2.x1)(k1.x3)(x2.x4)(k1.k3)-1/64(k3.x4)(x1.x2)(k1.y2)

(x3.y1)(k2.y4)(k1.y3)-1/64(x3.x4)(k2.y4)(x2.y1)(k2.x1)(k1.y3)(k3.y2)+1/64(x3.y4)(k1.k3)(k2.y1)(k2.x1)(x4.y2)(x2.y3)-1/32(k2.y3)(x2.y1)(k1.y2)(x1.y4)(k2.x4)(k1.x3)-1/64(y3.y4)(k2.x1)(k1.y2)(x2.x3)(k3.y1)(k3.x4)-1/64(x4.y3)(k1.k3)(k2.y1)(k1.y2)(x2.x3)(x1.y4)+1/64(x3.x4)(k1.k3)(y1.y2)(k1.x2)(x1.y3)(k2.y4)-1/32(k2.x3)(x1.x2)(k1.y2)(y1.y4)(k2.x4)(k1.y3)-1/64(x3.x4)(k1.k3)(k2.y1)(k1.x2)(x1.y4)(y2.y3)-1/64(x4.y3)(k2.k3)(k2.y1)(k1.y2)(x2.y4)(x1.x3)+1/64(y3.y4)(k2.k3)(x1.x2)(k2.y1)(x4.y2)(k1.x3)+1/32(y3.y4)(k2.k3)(k2.y1)(k2.x1)(x2.x3)(x4.y2)+1/64(x3.y4)(k1.y3)(k2.y1)(k2.x1)(x4.y2)(k3.x2)+1/64(k3.y4)(k2.x4)(x1.y2)(k2.y1)(k1.y3)(x2.x3)-1/64(y3.y4)(k2.k3)(k2.y1)(k1.y2)(x1.x3)(x2.x4)-1/64(x3.y4)(k2.k3)(k2.y1)(k2.x1)(y2.y3)(x2.x4)-1/64(x3.y4)(k1.k3)(k2.y1)(k1.y2)(x1.x4)(x2.y3)+1/64(x3.y4)(k2.y3)(k2.x1)(k1.y2)(x4.y1)(k3.x2)+1/64(x3.y4)(k1.k3)(y1.y2)(k1.x2)(k2.y3)(x1.x4)-1/64(y3.y4)(k2.k3)(x1.x2)(k2.y1)(x3.y2)(k2.x4)-1/64(x3.x4)(k1.k3)(k2.y1)(k1.x2)(x1.y3)(y2.y4)+1/32(k2.y3)(k2.x1)(k1.x2)(x4.y2)(y1.y4)(k1.x3)-1/64(x3.x4)(k2.k3)(k2.x1)(k1.x2)(y1.y3)(y2.y4)-1/32(k1.y3)(x2.y1)(k1.y2)(k2.y4)(x1.x4)(k2.x3)+1/32(x3.x4)(x1.x2)(k1.y2)(k2.y3)(y1.y4)(k2.k3)+1/64(k3.y4)(x1.x2)(k2.y1)(x4.y2)(k1.y3)(k2.x3)+1/64(k3.x4)(k2.x1)(k1.y2)(x2.y3)(y1.y4)(k1.x3)-1/64(x3.y4)(k2.x4)(x2.y1)(k2.x1)(y2.y3)(k1.k3)-1/64(x4.y3)(k2.y4)(y1.y2)(k2.x1)(k1.x3)(k3.x2)+1/64(k3.x4)(k2.y4)(x2.y1)(k2.x1)(y2.y3)(k1.x3)-1/32(k2.y3)(y1.y2)(k1.x2)(x1.y4)(k2.x4)(k2.x3)-1/32(k1.x3)(x1.y2)(k1.x2)(k2.y4)(x4.y1)(k2.y3)+1/32(x3.y4)(x1.x2)(k2.y1)(x4.y2)(k1.y3)(k1.k3)+1/64(x3.y4)(k2.k3)(x1.y2)(k2.y1)(x2.x4)(k1.y3)+1/32(k2.x3)(k2.x1)(k1.y2)(x2.x4)(y1.y4)(k2.y3)-1/64(y3.y4)(k2.x4)(x1.x2)(k2.y1)(x3.y2)(k1.k3)-1/32(x3.x4)(y3.y4)(x1.x2)(k2.y1)(k1.k3)(k3.y2)-1/64(y3.y4)(k2.k3)(k2.y1)(k1.x2)(x3.y2)(x1.x4)+1/64(x3.x4)(k1.k3)(x1.x2)

(k1.y2)(k2.y3)(y1.y4)-1/32(k1.y3)(x1.x2)(k1.y2)(k2.y4)(x4.y1)(k1.x3)-1/32(x4.y3)(k1.k3)(x1.x2)(k2.y1)(k1.y2)(x3.y4)+1/32(k1.x3)(k2.x1)(k1.y2)(x4.y1)(x2.y4)(k2.y3)+1/64(y3.y4)(k1.k3)(x1.y2)(k1.x2)(x4.y1)(k2.x3)-1/32(x3.x4)(k1.k3)(y1.y2)(k1.x2)(k2.x1)(y3.y4)+1/32(k1.x3)(k2.x1)(k1.y2)(x4.y1)(x2.y4)(k1.y3)+1/64(k3.x4)(k2.y4)(y1.y2)(k2.x1)(k1.y3)(x2.x3)-1/32(k1.y3)(k2.y1)(k2.x1)(x2.y4)(x4.y2)(k1.x3)-1/32(k1.y3)(k2.y1)(k2.x1)(x2.y4)(x4.y2)(k2.x3)+1/64(x3.x4)(k1.y3)(x1.x2)(k1.y2)(k2.y4)(k3.y1)+3/64(x3.x4)(k2.k3)(k2.y1)(k2.x1)(y2.y3)(x2.y4)-1/16(k3.x4)(x1.x2)(k1.y2)(y1.y4)(k2.y3)(k2.x3)-1/64(k3.x4)(x2.y1)(k1.y2)(k2.y4)(x1.y3)(k1.x3)-1/64(x3.x4)(k2.y3)(y1.y2)(k2.x1)(k3.x2)(k2.y4)-1/32(x4.y3)(x3.y4)(x2.y1)(k2.x1)(k3.y2)(k1.k3)+1/96(k1.k2)(x1.x3)(y1.y3)(x2.x4)(k1.y2)(k1.y4)+1/96(k1.k2)(x1.x3)(y1.y3)(y2.y4)(k1.x2)(k1.x4)+1/32(x3.y4)(y1.y2)(k1.x2)(k2.y3)(x1.x4)(k2.k3)+1/32(x4.y3)(k2.y1)(k2.x1)(x3.y2)(k3.x2)(k3.y4)+1/64(k3.x4)(k2.x1)(k1.y2)(x2.y3)(y1.y4)(k2.x3)+1/96(k1.k2)(x2.x3)(y2.y3)(y1.y4)(k2.x1)(k1.x4)+1/96(k1.k2)(x1.y2)(x2.y3)(k1.x4)(x3.y4)(k2.y1)+1/96(k1.k2)(x1.x2)(y2.y3)(k1.y4)(x3.x4)(k2.y1)-1/192(k1.k2)(x1.y2)(y1.y3)(x3.y4)(k1.x2)(k1.x4)+1/64(y3.y4)(x1.x2)(k1.y2)(k2.x3)(k3.y1)(k2.x4)+1/64(x3.x4)(x2.y1)(k1.y2)(k2.y3)(k3.x1)(k2.y4)+1/96(k1.k2)(x2.y3)(x3.y2)(x4.y1)(k2.x1)(k1.y4)-1/64(x3.x4)(k2.y1)(k2.x1)(x2.y3)(k3.y2)(k3.y4) - 1/192(k1.k2)(x4.y1)(x2.x3)(k2.y3)(x1.y2)(k1.y4)-1/64(x3.x4)(k2.x1)(k1.y2)(y1.y3)(k3.x2)(k3.y4)-1/64(x3.x4)(k2.y1)(k1.x2)(y2.y3)(k3.x1)(k3.y4)+1/64(x3.x4)(y1.y2)(k1.x2)(x1.y3)(k2.k3)(k2.y4)-1/64(k1.k2)(x2.y1)(x1.x3)(y3.y4)(k1.y2)(k1.x4)-1/32(x3.x4)(k2.k3)(x1.y2)(k1.x2)(k2.y1)(y3.y4)+1/96(k1.k2)(x1.x2)(x3.y2)(k1.x4)(y3.y4)(k2.y1)+1/96(k1.k2)(y1.y2)(x2.x3)(k1.y4)(x4.y3)(k2.x1)+1/64(k3.y4)(x2.y1)(k2.x1)(x3.y2)(k2.y3)(k2.x4)+1/64(k3.y4)(x1.x2)(k2.y1)

(y2.y3)(k2.x3)(k2.x4)+3/64(x3.x4)(k2.y3)(y1.y2)(k2.x1)(x2.y4)(k1.k3)+1/32(k3.y4)(x1.x2)(k2.y1)(y2.y3)(k2.x3)(k3.x4)+1/64(k3.x4)(y1.y2)(k2.x1)(x2.y3)(k2.x3)(k2.y4)-1/96(k1.k2)(x1.y4)(x2.x3)(y1.y3)(k1.y2)(k1.x4)+1/64(x4.y3)(k1.k3)(x1.x2)(k1.y2)(x3.y1)(k2.y4)-1/192(k1.k2)(x4.y2)(x1.x3)(k1.y3)(x2.y1)(k1.y4)-1/192(k1.k2)(x1.x4)(x2.y3)(k2.x3)(y1.y2)(k1.y4)-1/192(k1.k2)(x2.y4)(x1.x3)(k1.y3)(y1.y2)(k1.x4)-1/192(k1.k2)(y1.y4)(x2.x3)(k2.y3)(x1.y2)(k1.x4)-1/192(k1.k2)(x2.x4)(y1.y3)(k1.x3)(x1.y2)(k1.y4)-1/192(k1.k2)(y1.y4)(y2.y3)(x1.x3)(k1.x2)(k1.x4)+1/32(k2.x3)(y1.y2)(k2.x1)(x2.y4)(k2.y3)(k2.x4)+1/32(k1.x3)(y1.y2)(k2.x1)(x2.x4)(k1.y3)(k2.y4)-1/192(k1.k2)(x1.x4)(y2.y3)(x3.y1)(k1.x2)(k1.y4)+1/96(k1.k2)(x2.x4)(x1.y3)(k3.y1)(k1.y4)(x3.y2)-1/64(k1.k2)(x3.y4)(k1.y3)(x1.y2)(k3.x2)(x4.y1)-1/192(k1.k2)(x1.y4)(x2.x3)(k3.y2)(y1.y3)(k1.x4)-1/192(k1.k2)(x4.y1)(y2.y3)(x1.x2)(k1.x3)(k1.y4)-1/64(x2.y4)(k1.k2)(k1.x3)(k3.y1)(y2.y3)(x1.x4)+1/32(y2.y4)(k1.k2)(k1.y3)(k1.x3)(x1.x2)(x4.y1)+1/64(k3.y4)(y1.y2)(k2.x1)(k1.x3)(x2.x4)(k2.y3)+1/16(k2.x3)(y1.y2)(k2.x1)(x2.y4)(k2.y3)(k3.x4)+1/96(k1.k2)(y2.y4)(y1.y3)(k3.x1)(x2.x3)(k1.x4)+1/96(k1.k2)(x2.y4)(k1.x4)(x1.x3)(y1.y2)(k2.y3)-1/192(k1.k2)(x1.y4)(y2.y3)(k2.x3)(x2.y1)(k1.x4)+3/64(x3.y4)(k2.y1)(k2.x1)(x2.y3)(k3.y2)(k3.x4)+1/384(k1.k2)(x4.y1)(x3.y2)(x1.x2)(k1.y3)(k1.y4)+1/32(y3.y4)(x1.x2)(y1.y2)(k2.x3)(k2.k3)(k2.x4)+1/32(x3.x4)(k2.y3)(k1.y2)(k1.x2)(x1.y4)(k3.y1)-1/64(x4.y3)(k2.y1)(k2.x1)(x2.x3)(k3.y2)(k3.y4)-1/64(y3.y4)(k2.k3)(k2.y1)(k2.x1)(x3.y2)(x2.x4)-1/64(y3.y4)(k1.x3)(x1.y2)(k1.x2)(x4.y1)(k2.k3);

Apêndice E

Regras de Feynman no acoplamento fóton-gráviton

O programa abaixo pretende extrair as regras de Feynman, pelo menos até o vértice cúbico, na teoria com interação eletromagnética, na ausência de férmions. Reiniciamos lendo os pacotes necessários e fazendo as definições:

```
> restart; t0:=time(): read `HIP.m`;setaliases();
> setfv(x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,r1,r2,
> s1,s2,k1,k2, k3,k4,K4,z3,p1,p2);
> setindex(m1,n1,n2,m2,mu,nu,alpha,beta,gamma,eta,sigma,rho);
> with (combinat,permute):
```

Definimos um tensor simétrico gravitacional, como feito no apêndice B:

```
> F:=
> 
proc(mu,nu)
> if [mu,nu] = sort([mu,nu]) then RETURN('procname(args)')
> else RETURN(F(nu,mu))
> fi
> end:
```

Agora iremos utilizar a aproximação de campo fraco, utilizando a representação de Golberg (observe que o campo do gráviton é $F_{\mu\nu}$):

```
    > gtup:=(m1,n1)->m1&. n1+k*F(m1,n1):

        Introduzimos o valor calculado de -g<sup>-1/2</sup>, numa aproximação até κ<sup>3</sup>
    > sqrtg:=1-k/2*F(m1,m1)-3*k^3/8*F(m1,n1)*F(n1,m1):

        O tensor antissimétrico R<sup>μν</sup> = ∂<sup>μ</sup>A<sup>ν</sup> - ∂<sup>ν</sup>A<sup>μ</sup> é definido a seguir:
    > R:=proc(mu,nu) if [mu,nu]=sort([mu,nu])
```

```
> then RETURN(dp(B[mu],nu)-dp(B[nu],mu))
```

- > elif mu=nu then
- > RETURN(0)
- > else RETURN(-dp(B[mu],nu)+dp(B[nu],mu))
- > fi end:

A lagrangeana de interação entre fótons e grávitons, explicitada no capítulo 2, é escrita aqui:

```
> lagran:=unapply(expand(contract(expand(-1/4*sqrtg*R(mu,alpha)
```

 $> \frac{R(nu, beta) * (gtup(mu, nu) * gtup(alpha, beta))))):}{O \text{ procedimento abaixo irá extrair as regras de Feynman no espaço de momentos para acoplamentos entre grávitons e fótons; neste caso os fótons têm momentos <math>r_i$ e índices de Lorentz s_i

```
feyn_fot:= proc(a) local ldpA, lp,fdpA,fp,ldpaux,lfaux,
>
   ldpA1,ldpA2,lf1,lf2,lf3,lf4,lf5,i,new,factor ;
   if type(a, '+') then RETURN(map(feyn_fot,a))
>
   elif type(a, `*` ) then
>
  fdpA:=0;
>
  fp:=0;
>
   for i to nops(a) do
>
>
   if type(op(i,a),integer) or type(op(i,a),fraction)
   or type(op(i,a),string) then fp:=f
>
   p; fdpA:=fdpA;
>
  elif op(0,op(i,a))=F then lfaux:=op(1,op(i,a)),
>
>
  op(2,op(i,a));
   if fp=0 then lf1:=lfaux;
>
  fp:=1
>
  elif fp=1 then lf2:=lfaux;
>
>
   fp:=2
   elif fp=2 then lf3:=lfaux;
>
> fp:=3
>
  elif fp=3 then lf4:=lfaux;
>
   fp:=4
  elif fp=4 then lf5:=lfaux;
>
  fp:=5
>
>
  fi;fi;
  if op(0,op(i,a))=dp then ldpaux:=op(1,op(1,op(i,a))),
>
> op(1,op(2,op(i,a)));
  if fdpA=0 then ldpA1:=ldpaux;
>
  fdpA:=1
>
  elif fdpA=1 then ldpA2:=ldpaux;
>
>
  fdpA:=2
>
   fi
>
      elif op(0, op(i, a)) = `^` then
>
      if op(0,op(1,op(i,a)))=F then
>
     lf1:=op(1,op(1,op(i,a))),op(2,op(1,
```

```
>
   op(i,a)));
>
      lf2:=lf1;
>
      fp:=2
      fi;
>
\geq
      if op(0, op(1, op(i, a))) = dp then
     ldpA1:=op(1,op(1,op(1,op(i,a))),op(1,op(2,op(1,op(i,a))));
>
>
     ldpA2:=ldpA1;
>
     fdpA:=2
>
   fi
   fi;od
>
   fi;
>
   if fdpA=0 then
>
>
   elif fp=5 then
   factor:=simplify(a/F(lf1)/F(lf2)/F(lf3)/F(lf4)/F(lf5)
>
>
   /dp(B[ldpA1[1]],ldpA1[2])/dp(B[ldpA2[1]],ldpA2[2]));
>
   new:=-lf1[1] &. x1 * lf1[2] &. y1 * lf2[1] &. x2 *
   lf2[2] &. y2 * lf3[1] &. x3 * lf3[2] &. y3 *
>
   lf4[1]&.x4*lf4[2]&.y4*lf5[1]&.x5*lf5[2]&.y5*
>
  ldpA1[1] &. s1*ldpA1[2] &. r1*
>
   ldpA2[1] &. s2 * ldpA2[2] &. r2 * factor;
>
> RETURN(new);
               elif fp=4 then
>
  factor:=simplify(a/F(lf1)/F(lf2)/F(lf3)/F(lf4)/dp(
>
>
   B[ldpA1[1]],ldpA1[2])/dp(B[ldpA2[1]],ldpA2[2]));
   new:=-lf1[1] &. x1 * lf1[2] &. y1 * lf2[1] &. x2 *
>
    lf2[2] &. y2 * lf3[1] &. x3 * lf3[2] &. y3 *
>
    lf4[1]&.x4*lf4[2]&.y4* ldpA1[1] &. s1*ldpA1[2]&.r1*
\geq
>
   ldpA2[1] &. s2 * ldpA2[2] &. r2 * factor;
>
   RETURN(new);
>
               elif fp=3 then
>
   factor:=simplify(a/F(lf1)/F(lf2)/F(lf3)/dp(B
   [ldpA1[1]],ldpA1[2])/dp(B[ldpA2[1]],ldpA2[2]));
>
   new:=-lf1[1] &. x1 * lf1[2] &. y1 * lf2[1] &. x2 * lf2[2] &. y2
>
   * lf3[1] &. x3 * lf3[2] &. y3 *ldpA1[1] &. s1*ldp
>
  A1[2] &. r1*ldpA2[1] &. s2 * ldpA2[2] &. r2 * factor;
>
  RETURN(new);
>
              elif fp=2 then
>
>
   factor:=simplify(a/F(lf1)/F(lf2)/dp(B[ldpA1[1]]
>
   ,ldpA1[2])/dp(B[ldpA2[1]],ldpA2[2]));
>
   new:=-lf1[1] &. x1 * lf1[2] &. y1 * lf2[1] &. x2 *
>
   lf2[2] &. y2*ldpA1[1] &. s1*ldpA1[2] &. r1*ldpA2[1] &. s2
>
     * ldpA2[2] &. r2 * factor;
> RETURN(new);
>
              elif fp=1 then
  factor:=simplify(a/F(lf1)/dp(B[ldpA1[1]],ldpA1[2])/
>
>
   dp(B[ldpA2[1]],ldpA2[2]));
   new:=-lf1[1] &. x1 * lf1[2] &. y1 *ldpA1[1] &.
>
```

APÊNDICE E. REGRAS DE FEYNMAN NO ACOPLAMENTO FÓTON-GRÁVITON97

```
s1*ldpA1[2] &. r1*ldpA2[1] &. s2 * ldpA2[2] &.
>
>
    r2* factor;
>
   RETURN(new);
             elif fp= 0 then
>
   factor:=simplify(a/dp(B[ldpA1[1]],ldpA1[2])/
>
   dp(B[ldpA2[1]],ldpA2[2]));
>
   new:=-ldpA1[1] &. s1*ldpA1[2] &. r1*ldpA2[1] &. s2
>
   * ldpA2[2] &. r2 * factor;
>
>
  RETURN(new);
>
   fi;
```

> e<u>nd</u>:

Iremos agora verificar o vértice fóton-fóton-gráviton. Os fótons entram com quadrimomentos r1 e r2; seus índices de Lorentz são, respectivamente, s1 e s2:

> one0:=unapply(contract(expand(feyn_fot((coeff(> expand(lagran(alpha,beta,mu,nu)),k)))),x1,y1,

```
> r1,s1,r2,s2):
```

Fazendo as simetrizações necessárias na troca de índices, tanto dos fótons, quanto na permuta dos índices de Lorentz do gráviton:

```
> one1:=(x1,y1,r1,s1,r2,s2)->one0(x1,y1,r1,s1,r2,s2)
> +one0(y1,x1,r1,s1,r2,s2):
> one2:=(x1,y1,r1,s1,r2,s2)->one1(x1,y1,r1,s1,r2,s2)/2
> +one1(x1,y1,r2,s2,r1,s1)/2:
É necessário que o vértice obtido obedeça à identidade de Ward eletromagné-
```

```
tica: k^{\mu}\Gamma_{\mu\nu,\alpha\beta} = 0:
```

```
> expand(contract(r1&.alpha*two_one(x1,y1,r1,alpha,
> r2,s2)));
```

```
.,,,,,
```

0

Agora iremos verificar a identidade de Ward gravitacional do vértice. Construímos primeiramente o operador que será aplicado ao vértice de três pontos:

Aplicando este operador ao vértice obtemos:

```
> Ward1:=contract(expand(contract(expand(
> left_Ward(alpha,beta,z3,-k1-k2)*two_one(alpha,beta,
> k1,x1,k2,x2)),alpha,beta)),beta):
A função de dois pontos do fóton é
```

APÊNDICE E. REGRAS DE FEYNMAN NO ACOPLAMENTO FÓTON-GRÁVITON98

 $\begin{array}{ll} & \text{Gamma:=unapply(-xl&.yl*kl&.kl+kl&.xl*kl&.yl,xl,yl,kl);} \\ & \Gamma := (x1,y1,k1) \to -(x1\&.y1)(k1\&.k1) + (k1\&.x1)(k1\&.y1) \end{array}$

O operador aplicado do lado direito será

> right_Ward:=unapply(x2&.x1*k1&.z3-z3&.x1*k1&.x2,

$$\begin{array}{l} right_Ward := (\ x2 \,, x1 \,, k1 \,, z3 \) \rightarrow \\ (\ x1 \,\&. \, x2 \) \,(\ k1 \,\&. \, z3 \) - (\ k1 \,\&. \, x2 \) \,(\ x1 \,\&. \, z3 \) \end{array}$$

Aplicando o operador nas funções de dois pontos do fóton :

```
> Ward2:=contract(right_Ward(m1,x1,k1,z3)*Gamma(m1,x2,k2)
```

```
> +right_Ward(m1,x2,k2,z3)*Gamma(m1,x1,k1),m1):
```

Comparando os dois lados da igualdade, para que a identidade de Ward se verifique é necessário que o resultado seja nulo:

> Ward2-Ward1;

0

Ainda o vértice obtido coincide com o do trabalho[CDH74], mostrado a seguir:

$$\begin{array}{l} > & \mbox{expand(two_one(nu,mu,pl,sigma,p2,rho));} \\ & (p1 \&. p2) g(\mu,\sigma) g(\nu,\rho) + g(\rho,\sigma) p1_{\mu} p2_{\nu} - p1_{\rho} g(\mu,\sigma) p2_{\nu} - p2_{\sigma} p1_{\mu} g(\nu,\rho) \\ & - (p1 \&. p2) g(\mu,\nu) g(\rho,\sigma) + p2_{\sigma} g(\mu,\nu) p1_{\rho} + p1_{\nu} p2_{\mu} g(\rho,\sigma) - p1_{\nu} g(\mu,\rho) p2_{\sigma} \\ & - g(\nu,\sigma) p2_{\mu} p1_{\rho} + g(\nu,\sigma) g(\mu,\rho) (p1 \&. p2) \end{array}$$