
UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Física Gleb Wataghin

Dissertação de Mestrado

The representations of HOM(2) and
SIM(2) in the context of Very Special

Relativity

(As representações de HOM(2) e SIM(2) no contexto da Very
Special Relativity)

Gustavo Salinas de Souza

Orientador: Dharam Vir Ahluwalia

Campinas

2015

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296901842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii





Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Física Gleb Wataghin
Valkíria Succi Vicente - CRB 8/5398

    
  Souza, Gustavo Salinas de, 1989-  
 So89r SouThe representations of HOM(2) and SIM(2) in the context of Very Special

Relativity / Gustavo Salinas de Souza. – Campinas, SP : [s.n.], 2015.
 

   
  SouOrientador: Dharam Vir Ahluwalia.
  SouCoorientador: Pedro Cunha de Holanda.
  SouDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Física Gleb Wataghin.
 

    
  Sou1. Teoria de campos (Física). 2. Representações de álgebras. 3.

Representações de grupos. I. Ahluwalia, Dharam Vir. II. Holanda, Pedro Cunha
de,1973-. III. Universidade Estadual de Campinas. Instituto de Física Gleb
Wataghin. IV. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: As representações de HOM(2) e SIM(2) no contexto da Very Special
Relativity
Palavras-chave em inglês:
Field theory (Physics)
Representations of algebras
Representations of groups
Área de concentração: Física
Titulação: Mestre em Física
Banca examinadora:
Pedro Cunha de Holanda [Coorientador]
Roldão da Rocha Junior
Donato Giorgio Torrieri
Data de defesa: 01-06-2015
Programa de Pós-Graduação: Física

Powered by TCPDF (www.tcpdf.org)

iv



Salinas
Texto digitado

Salinas
Texto digitado

Salinas
Texto digitado

Salinas
Texto digitado

Salinas
Texto digitado

Salinas
Texto digitado

Salinas
Texto digitado
v



Abstract

The present work is devoted to a systematic study of the representations of the groups
HOM(2) and SIM(2), which are subgroups of the Lorentz group. Theories with sym-
metries given by these subgroups are known to preserve the constancy of the speed of
light, this fact being referred as Very Special Relativity. It is shown that there are �nite-
dimensional reducible representations of HOM(2) and SIM(2) that are not completely
reducible, and thus cannot be obtained entirely from irreducible representations. These
are obtained directly from the representations of the Lie algebras hom(2) and sim(2),
using the knowledge of the universal covering groups of HOM(2) and SIM(2), which are
also presented in the text.

Resumo

O presente trabalho é dedicado a um estudo sistemático das representações dos grupos
HOM(2) e SIM(2), que são subgrupos do grupo de Lorentz. É sabido que teorias cujas
simetrias são descritas por tais subgrupos preservam a constância da velocidade da luz,
esse fato sendo referido como Very Special Relativity. É mostrado que existem represen-
tações de HOM(2) e SIM(2) redutíveis e de dimensão �nita, que portanto não podem ser
obtidas inteiramente de representações irredutíveis. Estas são obtidas diretamente das
representações das álgebras de Lie hom(2) e sim(2), usando o conhecimento dos grupos
de cobertura universal de HOM(2) e SIM(2), que também são apresentados no texto.
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Chapter 1

Introduction

The theory of Special Relativity describes the inhomogeneous group of Lorentz trans-
formations, i.e, the Poincaré group, as the fundamental symmetry group of physical the-
ories. This comes directly from the causal structure of Minkowski spacetime M, in the
sense that any transformation which is not in the Poincaré group will change the causal
relations between a subspace of M. In this scenario, a set of admissible observers are
the ones that can be connected by the transformations in the Poincaré group. For such
observers, the principle of relativity is then stated as

The laws of physical systems are the same in every admissible frame of reference.

This implies the less-restrictive a�rmation

The speed of light is the same in every admissible frame of reference,

this being what most experiments search in order to con�rm the predictions of Special
Relativity (e.g., the well-known Michelson-Morley interferometer experiment).

The possibility that the fundamental symmetry group of nature is just a subgroup of
the Poincaré group is not excluded by the consideration of causality withinM. Further-
more, only invariance under a subgroup denoted as HOM(2) is necessary to guarantee
the constancy of the speed of light, thus promoting this subgroup to a candidate for de-
scribing the symmetries of physical theories. That is the idea of Very Special Relativity
(VSR). In this context, the principle of relativity can still be considered to be valid, if
the concept of admissible frames of reference is allowed to be changed. For example, in a
HOM(2)-invariant context, the admissible observers can be de�ned as the ones connected
by transformations within the HOM(2) subgroup. As a result, every admissible observer
should construct the same physical laws and the principle of relativity is preserved.
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Theories based on VSR break spatial isotropy and, because of this, are generally not
considered in the context of Standard Model (SM) physics. In this context, the Lorentz-
violating terms need to be regarded as only perturbations, to take into consideration
the e�ects of spatial anisotropy on modern-day particle physics experiments. There is,
however, the possibility that VSR is naturally placed outside the Standard Model, where
experiments testing spatial isotropy are not available. For example, in it is proposed
that VSR provides the correct symmetry group for dark matter. This creates a strong
link between SM and non-SM physics in the sense that the fundamental principles of
Special Relativity are basically preserved in both, the only di�erence being the group of
fundamental symmetries.

In his well-known work on the unitary irreducible representations of the inhomogeneous
Lorentz group, Wigner defended the idea that every physical object (in the form of one-
particle states in a Hilbert space) can be described by these representations. In addition,
when one considers the quantum theory of �elds, also the non-unitary �nite-dimensional
representations are used to construct the Lagrangian densities of the quantum �elds that
describe particles. These facts conjure to give a central role to the representations of
symmetry groups when constructing physical models from a fundamental perspective.
That is the philosophy of the present work. In order to construct VSR-invariant theories
from the start, the need is to consider the representations of the VSR subgroups. The
intention here is to systematically construct the �nite-dimensional representations of the
VSR subgroups HOM(2) and SIM(2).

The work is divided as follows. In chapter 2, the basic structure and properties of the
Lorentz group are discussed and its Lie algebra is obtained. In chapter 3, the necessary
concepts of representation theory are considered, with special attention to the concept
of universal covering groups. Chapter 4 presents the construction of some of the rep-
resentations of the Lorentz group, using the same method of chapter 5, in which the
representations of HOM(2) and SIM(2) are treated.
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Chapter 2

Lorentz group and Very Special

Relativity

2.1 Causality in Minkowski spacetime

A physical phenomenon can be pictured as a sequence of events, each of which is
characterized by a position in space x = (x1, x2, x3) and an instant of time t = x0.
An appropriate setting to study spatiotemporal properties of these events is composed
of geometrical objects of the form xµ = (t,x) = (x0, x1, x2, x3), which are called position
four-vectors. This setting receives the name ofMinkowski spacetime (M) and is equivalent
to a four-dimensional real vector space with inner product de�ned as

xµyµ = ηµνx
µyν = ηµνxµyν = −x0y0 + x1y1 + x2y2 + x3y3, (2.1)

where yµ = (y0, y1, y2, y3) ∈ M and ηµν = ηµν = diag(−1,+1,+1,+1) is called the
Minkowski metric, as it captures the geometric and causal structure of Minkowski space-
time. This choice of signs in the metric is denoted the (−,+,+,+) signature. It is clear
from the de�nition given in equation 2.1 that the inner product de�ned in Minkowski
spacetime is not positive de�nite, i.e., that xµxµ is not in general positive. In fact, a
four-vector xµ is classi�ed as a time-like vector if xµxµ < 0, a null (or light-like) vector if
xµxµ = 0 or a space-like vector if xµxµ > 0.

The classi�cation of four-vectors with respect to the sign of xµxµ has immediate con-
sequences for the physical interpretation of displacement four-vectors (the subtraction of
position four-vectors). For a displacement ∆xµ = (∆t,∆x) that belongs to the trajectory
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of a particle moving with constant velocity in Minkowski spacetime, the relation

∆xµ∆xµ = −(∆t)2 + (∆x)2

{
< 0, if the particle moves slower than light

= 0, if the particle moves at light speed
(2.2)

is valid. Thus, the region in Minkowski spacetime that can be causally connected to an
event x̄µ = (x̄0, x̄1, x̄2, x̄3) by signals that move slower than light comprises all four-vectors
xµ that obey

ηµν(x− x̄)µ(x− x̄)ν < 0. (2.3)

The boundary of this region, given by

ηµν(x− x̄)µ(x− x̄)ν = 0, (2.4)

de�nes a four-dimensional cone called a light (or null) cone as it is composed of events
that can only be reached from the event at x̄µ by light-speed signals.

x
0

x
2

x
1

x

Figure 2.1: Light cone (the third spatial dimension x3 is omitted)

The same physical system can be described using distinct sets of coordinates S(x0, x1, x2, x3),
S ′(x′0, x′1, x′2, x′3),... and these can be taken to represent di�erent observers equipped
with di�erent frames of reference. The connection between di�erent frames of reference
is made by a one-to-one map F : M → M that preserves the causal relations 2.3 and
2.4 between events as well as the time ordering of events that are causally connected.
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This kind of transformation is denoted a causal automorphism of the four-dimensional
Minkowski spacetime. It is evident from equation 2.4 that a causal automorphism also
preserves the value of the speed of light.

A spacetime translation, de�ned as

xµ → x′
µ

= xµ + αµ (2.5)

(αµ ∈ M), is an example of causal automorphism. As displacement four-vectors do not
change under translations, the quadratic form ηµν(x− x̄)µ(x− x̄)ν is clearly preserved. In
addition, there exist linear transformations,

xµ → x′
µ

= Λµ
νx

ν (2.6)

(Λµ
ν are real numbers independent of xν), that keep the same quadratic form intact, the

only condition being
ησρΛ

σ
µΛρ

ν = ηµν (2.7)

for the matrix coe�cients Λµ
ν . This de�nes a Lorentz transformation. Also, the relation

Λ0
0 > 0 is needed if the time ordering of events inside a light cone is to be preserved. In

fact, two successive events that occur at times x0 and x̄0 and at the same spatial position
as seen by an observer in the frame S would be seen to have a temporal di�erence in the
frame S ′ given by

x̄′0 − x′0 = Λ0
0(x̄

0 − x0). (2.8)

Thus, the sign of the coe�cient Λ0
0 de�nes either the maintenance (positive values) or

the inversion (negative values) of the time ordering of causally connected events.
Other causal automorphisms can maintain the form of relations 2.3 and 2.4 without

preserving the quadratic form ηµν(x− x̄)µ(x− x̄)ν . A dilatation, having the form

xµ → x′
µ

= κxµ (2.9)

(κ ∈ R∗+), is easily seen to possess this feature, as it just multiplies the displacement four-
vectors by a positive factor. A theorem known as Zeeman's theorem states that every
causal automorphism falls in one of the three cases discussed above, i.e., the only trans-
formations that keep the causal structure of Minkowski spacetime intact are translations,
Lorentz transformations (with Λ0

0 > 0) and dilatations.

2.2 Lorentz group

Lorentz transformations form a group under composition that is known as the Lorentz
group L. The de�nition 2.7 of a Lorentz transformation can be expressed in matrix form
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as
ΛTηΛ = η, (2.10)

where the symbol T denotes matrix transposition. The composition Λ̄Λ of two Lorentz
transformations Λ and Λ̄ is also a Lorentz transformation, as can be seen from the relation

(Λ̄Λ)Tη(Λ̄Λ) = ΛT (Λ̄TηΛ̄)Λ = ΛTηΛ = η. (2.11)

In addition, taking the determinant of both sides of equation 2.10, the result

− det (ΛT ) det Λ = −1 ⇒ (det Λ)2 = 1 (2.12)

is obtained. Consequently, the inverse matrix Λ−1 exists and it represents the inverse of
the Lorentz transformation Λ. As 2.10 implies

η = (Λ−1)T (ΛTηΛ)Λ−1 = (Λ−1)TηΛ−1, (2.13)

the inverse of a Lorentz transformation is also a Lorentz transformation.
Closure under composition and inversion is a necessary and su�cient condition to

demonstrate the group structure of Lorentz transformations. More speci�cally, as the
Lorentz group has an in�nite number of elements that can be mapped one-to-one into
�nite-dimensional matrices and form a di�erentiable manifold (a geometric object that
allows calculus to be applied), it is classi�ed as a linear Lie group.

The coe�cients of the matrices Λ are real, so that equation 2.12 gives only two alter-
natives: det Λ = 1, de�ning the proper Lorentz transformations, or det Λ = −1, for the
improper Lorentz transformations. In particular, the transformation of parity, de�ned as

P : x0 → x0 , x→ −x, (2.14)

is an improper Lorentz transformation. The proper transformations form a subgroup of
the Lorentz group, as det Λ = det Λ̄ = 1 implies

det(Λ̄Λ) = det Λ̄ det Λ = 1 (2.15)

and
det(Λ−1) = (det Λ)−1 = 1. (2.16)

This subgroup receives the name of proper Lorentz group L+. On the other hand, the
improper transformations do not form a subgroup, as their composition is clearly proper.

The restriction 2.7 gives

− (Λ0
0)

2 + (Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2 = −1 ⇒ |Λ0
0| ≥ 1. (2.17)
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For positive values of Λ0
0, this relation leads to Λ0

0 ≥ 1, thus de�ning the orthochronous
Lorentz transformations, which preserve the direction of time. Instead, for negative values
of Λ0

0, the restriction is Λ0
0 ≤ −1, representing the non-orthochronous Lorentz transfor-

mations. Every non-orthochronous transformation inverts the time ordering of causally
connected events, an important example being the transformation of time-reversal T ,
de�ned as

T : x0 → −x0 , x→ x. (2.18)

The orthochronous Lorentz transformations form a subgroup of the Lorentz group called
the orthochronous Lorentz group L↑. The consecutive action of two orthochronous trans-
formations Λ and Λ̄ gives a coe�cient

(Λ̄Λ)00 = Λ̄0
σΛσ

0 = Λ̄0
0Λ

0
0 + Λ̄0

iΛ
i
0 (2.19)

that can be shown to be greater than or equal to one, so that the composed transformation
is also orthochronous. As the transpose of a Lorentz transformation is also a Lorentz
transformation, relation 2.17 implies

− (Λ̄0
0)

2 + (Λ̄0
1)

2 + (Λ̄0
2)

2 + (Λ̄0
3)

2 = −1 (2.20)

for the transformation Λ̄. As a consequence, the three-vectors (Λ1
0,Λ

2
0,Λ

3
0) and (Λ̄0

1, Λ̄
0
2, Λ̄

0
3)

have norms
√

(Λ0
0)2 − 1 and

√
(Λ̄0

0)2 − 1, respectively, and the Cauchy-Schwarz inequal-
ity gives

|Λ̄0
iΛ

i
0| ≤

√
(Λ̄0

0)2 − 1
√

(Λ0
0)2 − 1. (2.21)

Then, from equation 2.19,

(Λ̄Λ)00 ≥ Λ̄0
0Λ

0
0 −

√
(Λ̄0

0)2 − 1
√

(Λ0
0)2 − 1 =

(Λ̄0
0)

2 + (Λ0
0)

2 − 1

Λ̄0
0Λ0

0 +
√

(Λ̄0
0)2 − 1

√
(Λ0

0)2 − 1
,

(2.22)
which is easily seen to be positive. So, the only possibility is (Λ̄Λ)00 ≥ 1. Furthermore,
since η−1 = η, equation 2.10 gives

Λ−1 = ηΛTη ⇒ (Λ−1)00 = (−1)Λ0
0(−1) = Λ0

0, (2.23)

which demonstrates that the inverse of an orthochronous Lorentz transformation is also
orthochronous.

Not every Lorentz transformation can be continuously obtained from the identity ele-
ment of the group, represented by the 4×4 identity matrix 1. In fact, the transformations
that can be connected to the identity form a subgroup of the Lorentz group, denoted the
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connected Lorentz group, as inverses and products of these transformations can also be
connected to the identity. Since a continuous variation of group elements cannot produce
discontinuities neither in the determinant of Λ nor in the value of Λ0

0, this subgroup do
not contain improper and non-orthochronous transformations (the identity is proper and
orthochronous). In the next chapter, it will be shown that every proper orthochronous
Lorentz transformation is an element of this subgroup, i.e., that the connected Lorentz
group is identical to the proper orthochronous Lorentz group L↑+.

The transformations of the connected subgroup can be obtained from in�nitesimal
Lorentz transformations,

λµν = δµν + ωµν , (2.24)

where the real coe�cients ωµν are in�nitesimal. Inserting equation 2.24 in 2.7 and ignoring
terms that are quadratic in ω, the result is

ησρ(δ
σ
µ + ωσµ)(δρν + ωρν) = ηµν ⇒ ωµν = −ωνµ, (2.25)

with ωµν = ησµω
σ
ν . These coe�cients form an antisymmetric matrix that completely

determines the in�nitesimal Lorentz transformation, so that the number of independent
real parameters of this transformation can be obtained from the matrix ω. As this is an
antisymmetric 4 × 4 real matrix, this number is (42 − 4)/2 = 6 and these parameters
can be chosen to be θ1 = ω23, θ2 = ω31 = −ω13, θ3 = ω12 and ϕi = −ω0i for i = 1, 2, 3.
Consequently, every in�nitesimal Lorentz transformation is written in the form

ω = J1θ1 + J2θ2 + J3θ3 +K1ϕ1 +K2ϕ2 +K3ϕ3 = J · θ +K ·ϕ, (2.26)

where

J1 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 , J2 =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , J3 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 ,

K1 =


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 −1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , K3 =


0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

(2.27)
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are called the generators of these transformations. These generators form a basis for a
six-dimensional real vector space equipped with the operation of matrix commutation (for
two square matrices A and B, the commutator is de�ned as [A,B] = AB − BA). This
structure is denoted a real Lie algebra, and is characterized by the commutation relations
between the basis elements 2.27,

[Ji, Jj] = −εijkJk,
[Ji, Kj] = −εijkKk,

[Ki, Kj] = εijkJk,

(2.28)

with εijk denoting the Levi-Civita symbol, de�ned as

εijk =


1, if i, j, k is an even permutation of 1, 2, 3

−1, if i, j, k is an odd permutation of 1, 2, 3

0, otherwise

. (2.29)

Every element of the connected subgroup of the Lorentz group can now be obtained by
successive applications of in�nitesimal transformations. In particular, a transformation
with a �nite parameter θ1 can be constructed as

lim
N→+∞

(
1 + J1

θ1
N

)N
= eJ1θ1 =


1 0 0 0

0 1 0 0

0 0 cos θ1 sin θ1

0 0 − sin θ1 cos θ1

 = Rx(θ1), (2.30)

and represents a rotation by an angle of 0 ≤ θ1 ≤ 2π around the x-axis. Similarly,
the transformations generated by J2 and J3 correspond, respectively, to rotations around
the y- and the z-axis. Also, the generators K1, K2 and K3 provide the transformations
denoted as Lorentz boosts along the x, y and z directions, respectively. Speci�cally, a
boost along the x direction has the form

Bx(ϕ1) = eK1ϕ1 =


coshϕ1 − sinhϕ1 0 0

− sinhϕ1 coshϕ1 0 0

0 0 1 0

0 0 0 1

 (2.31)

and every real value of the parameter ϕ1, which receives the name of rapidity, represents
a di�erent transformation. Thus, the parameter space associated with the Lorentz group
is not bounded.
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2.3 Translations and conservation of energy-momentum

Spacetime time translations can be joined into the connected Lorentz group to form a
larger group known as the Poincaré group. For example, if Tx(a1) denotes the operation
of translation along the x-axis, Tx(a1)(x0, x1, x2, x3) = (x0, x1 + a1, x2, x3), it is clear that

Tx(ā
1)Tx(a

1) = Tx(a
1 + ā1), (2.32)

and, as Tx(0) = 1, this operator can be represented by a matrix of the form

Tx(a
1) = eP1a1 , (2.33)

where P1 is the generator of translations along the x-axis. Similarly, an arbitrary space-
time translation can be written as

T (aµ) = ePµa
µ

, (2.34)

where Pµ (µ = 1, 2, 3, 4) are the generators of spacetime translations, since translations
along di�erent spacetime directions commute (i.e., [Pµ, Pν ] = 0).

The composition of translations and Lorentz transformations has the property

ΛT (a)x = Λ(x+ a) = T (Λa)Λx ⇒ T (Λa) = ΛT (a)Λ−1. (2.35)

In particular, if both transformations are in�nitesimal and the Lorentz transformation is
a rotation around the x-axis, equation 2.35 gives, up to second order in the in�nitesimal
parameters,

1+Pµ(1+θ1J1)
µ
νa
ν+

1

2
(Pµa

µ)2 =

(
1 + θ1J1 +

1

2
(θ1J1)

2

)(
1 + Pµa

µ +
1

2
(Pµa

µ)2
)(

1− θ1J1 +
1

2
(θ1J1)

2

)
.

(2.36)

The terms of order 1, θ1, aµ, θ21 and (aµ)2 cancel out and, using 2.27, those of order θ1aµ

give

[J1, Pµ] = Pν(J1)
ν
µ ⇒

[J1, P0] = 0,

[J1, P1] = 0,

[J1, P2] = −P3,

[J1, P3] = P2.

(2.37)

Similarly, 2.35 can be used to �nd all the commutation relations between the generators of
translations Pµ and the generators of Lorentz transformations Ji and Ki. These relations
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are given by

[Ji, P0] = 0,

[Ji, Pj] = −εijkPk,
[Ki, P0] = Pi,

[Ki, Pj] = −ηijP0,

(2.38)

and, together with the commutators in 2.28, they constitute the real Poincaré algebra.
Translations of spacetime coordinates are considered as fundamental symmetries of

any physical theory that assumes spacetime to be homogeneous. This means that the
equations of motion of such a theory preserve their dependence on spacetime variables
after a translation is performed and are said to be covariant under spacetime translations
(the theory is said to be invariant under translations). In most cases of interest, the
equations of motion can be obtained from a functional denoted the action functional,
de�ned as

S =

∫
d4x L(φ(x), ∂µφ) (2.39)

(d4x = dx0dx1dx2dx3). The function L is called the Lagrangian density of the system and
depends explicitly on a collection of di�erentiable �elds represented by φ(x) and their
derivatives, ∂µφ. The so-called principle of stationary action states that the classical
evolution of a system follows the path of stationary action, δS = 0. A translation (or
a general symmetry transformation) needs to preserve the result of this extremization
process, i.e., the action should be an invariant under such transformation.

The requirement δS = 0 gives

0 = δS =

∫
d4x

{
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

}
=

∫
d4x

{
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)}
=

∫
d4x

{[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)}
.

(2.40)

The last term can be disregarded as it gives just a boundary term (taking the the inte-
gration over the entire Minkowski spacetime, δφ is assumed to vanish when xµxµ goes
to in�nity). Since 2.40 is true for and arbitrary variation δφ, it gives the Euler-Lagrange
equations,

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0. (2.41)
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With the knowledge of the Lagrangian of a physical system, these equations can be used
to obtain its classical equations of motion.

Considering a translation of the form

xµ → x′
µ

= xµ + εµ(x), (2.42)

where the displacement vector εµ(x) is a function of xµ, the �elds can be expressed in
terms of the translated variables x′µ as

φ(x)→ φ′(x′) = φ(x′ − ε(x)) = φ(x′)− εν(x)∂νφ, (2.43)

(the last equality is valid up to �rst order in εµ). The Lagrangian density L, then,
transforms as

L → L′ = L+
∂L
∂φ

(−εν(x)∂νφ) +
∂L

∂(∂µφ)
∂µ(−εν(x)∂νφ)

= L − εν(x)

(
∂L
∂φ

∂νφ+
∂L

∂(∂µφ)
∂ν(∂µφ)

)
− ∂L
∂(∂µφ)

∂µε
ν∂νφ

= L − εν(x)∂νL −
∂L

∂(∂µφ)
∂µε

ν∂νφ ,

(2.44)

so that the variation of the action S is given by

δS =

∫
d4x

(
−εν(x)∂νL −

∂L
∂(∂µφ)

∂µε
ν∂νφ

)
. (2.45)

Integrating by parts and disregarding boundary terms,

δS = −
∫
d4x T µν∂µεν = −

∫
d4x ∂µT µνεν , (2.46)

with

T µν = δµνL+
∂L

∂(∂µφ)
∂νφ (2.47)

(δµν is a Kronecker delta).
Now, taking the parameters εν to be constants, the variation in the action should

vanish, as it is assumed to be invariant under translations. Since equation 2.46 is valid
for an arbitrary displacement εν , it gives

∂µT µν = 0. (2.48)
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Then, each of the T µν (for ν = 1, 2, 3, 4) de�nes what is called a conserved current. Also,
the quantities

H =

∫
d3x T 0

0 and Pi =

∫
d3x T 0

i (2.49)

are known as conserved charges as their time derivatives vanish. In fact,

dH
dt

=

∫
d3x ∂0T 0

0 = −
∫
d3x ∂jT j0 = 0 (2.50)

and
dPi
dt

=

∫
d3x ∂0T 0

i = −
∫
d3x ∂jT j i = 0, (2.51)

as these expressions give just boundary terms. The quantities H and Pi represent, respec-
tively, the energy and the three-momentum of the physical system described by the �elds
φ(x). For this reason, T µν receives the name of energy-momentum tensor and relation
2.48 depicts the conservation of energy and momentum. It is the invariance of the action
under spacetime translations that guarantees this conservation.

2.4 The subgroups HOM(2) and SIM(2)

The theory of Special Relativity is based on the principle of relativity, which states that
the equations of a physical theory should be covariant under transformations connecting
admissible frames of reference. In this scenario, these frames are de�ned as being related
to each other by the transformations of the Poincaré group. In this context, the principle
of relativity implies that the spacetime of Minkowski is homogeneous and isotropic, since
the result of every experiment is the same in translated or rotated frames. In addition,
the non-existence of an absolute rest frame is a consequence of covariance under Lorentz
boosts.

Since condition 2.4 is preserved under the Poincaré group, it is clear that all observers in
admissible frames of reference should agree on the value of the speed of light. In this sense,
the de�nition of admissible frames of reference as being connected by the transformations
of the Poincaré group implies the constancy of the speed of light, usually taken as a
postulate. However, the converse is not necessarily true. In fact, a universal and isotropic
speed of light only implies covariance under a subgroup of the Poincaré group.

It is convenient to express the algebra de�ned in 2.28 in a di�erent basis, with the
generators taken to be T1 = K1 + J2, T2 = K2 − J1, T̄1 = −K1 + J2, T̄2 = −K2 − J1, J3
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and K3. After this change of basis, the commutators in 2.28 become

[T1, J3] = T2, [T̄1, J3] = T̄2,

[T2, J3] = −T1, [T̄2, J3] = −T̄1,
[T1, K3] = −T1, [T̄1, K3] = T̄1,

[T2, K3] = −T2, [T̄2, K3] = T̄2,

[T1, T2] = [T̄1, T̄2] = [J3, K3] = 0,

[T1, T̄1] = [T2, T̄2] = −2K3,

[T1, T̄2] = −[T2, T̄1] = −2J3.

(2.52)

This algebra is equivalent to the algebra in 2.28, as its elements generate the same group
of transformations (the connected Lorentz group).

Under the transformation of parity P, the generators of rotations Ji are preserved but
the generators of boosts Ki change sign, as can be seen, for example, from the relations

PRx(θ1)P
−1 =


1 0 0 0

0 1 0 0

0 0 cos θ1 sin θ1

0 0 − sin θ1 cos θ1

 = eJ1ϕ1 (2.53)

and

PBx(ϕ1)P
−1 =


coshϕ1 sinhϕ1 0 0

sinhϕ1 coshϕ1 0 0

0 0 1 0

0 0 0 1

 = e(−K1)ϕ1 , (2.54)

obtained from 2.14, 2.30 and 2.31. In a similar manner, this can also be shown to hold for
the transformation of time-reversal T , de�ned in 2.18. As a consequence, either parity
or time-reversal transforms the generator T1 into T̄1 and T2 into T̄2.

The subgroup of the connected Lorentz group composed of transformations generated
by T1 and T2 is denoted by T(2), as it is identical to the group of translations in two
dimensions. If a theory is invariant under this subgroup and also under the transformation
of parity (or time-reversal), it is also invariant under the transformations generated by
T̄1 and T̄2. In addition, the last two rows in 2.52 show that this also implies invariance
under the transformations generated by J3 and K3. Consequently, a physical theory
that is invariant under T(2) and parity is invariant under all the transformations in the
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connected Lorentz group. Furthermore, this is also true for every subgroup that contains
T(2), and these are called Very Special Relativity (VSR) subgroups. The VSR subgroups
are T(2) itself; E(2), generated by T1, T2 and J3; HOM(2), generated by T1, T2 and K3;
SIM(2), generated by T1, T2, J3 and K3. 1 VSR is equivalent to Special Relativity in the
context of parity or time-reversal invariance.

The subgroup HOM(2) contains the transformation

BV SR(α, β, ϕ) = eT1αeT2βeK3ϕ, (2.55)

which can connect observers moving with arbitrary velocity within the Minkowski space-
time and is sometimes referred as a VSR boost. In relation to its own frame of reference,
the displacement vector of an observer is given by ∆xµ = (∆t,0). Under the transforma-
tion de�ned in 2.55, this vector transforms into

BV SR(α, β, ϕ)∆xµ = γ∆t(1,v), (2.56)

where

v =

(
−e−ϕ

γ
α,−e−ϕ

γ
β,

e−ϕ

γ
− 1

)
(2.57)

is the velocity of the observer after the transformation and

γ =
1

2
e−ϕ(α2 + β2) + coshϕ =

1√
1− |v|2

≥ 1 (2.58)

is called the Lorentz factor of the transformation BV SR. The expression 2.57 gives an
arbitrary velocity, since every triple of components (v1, v2, v3) can be obtained by the
choice of parameters

α = − v1
1 + v3

,

β = − v2
1 + v3

,

ϕ = − log [γ(1 + v3)] .

(2.59)

Both the groups HOM(2) and SIM(2) contain the VSR boost. Since any frames of
reference can be connected by a VSR boost followed by a rotation, the assumption of
invariance under either one of these subgroups is su�cient to guarantee a universal value

1To see that these are indeed subgroups of the connected Lorentz group, it is enough to note that the
each corresponding set of generators de�nes a subalgebra of the algebra 2.52.
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for the speed of light in every frame of reference. In other words, even that VSR does
not imply covariance under all Lorentz transformations, invariance under HOM(2) and
SIM(2) implies the constancy of the speed of light for observers connected by arbitrary
Lorentz transformations.

As demonstrated in the last section, invariance under spacetime translations is neces-
sary for energy-momentum conservation. Consequently, it is necessary to include trans-
lations in the groups HOM(2) and SIM(2), i.e., to consider the inhomogeneous groups
IHOM(2) and ISIM(2), which are subgroups of the Poincaré group. Theories whose
symmetry groups are given by these variants of VSR present a preferred direction in
Minskowski spacetime, given by the four-vector nµ = (1, 0, 0, 1). In fact, from 2.27,

(T1)
µ
νn

ν = (T2)
µ
νn

ν = (J3)
µ
νn

ν = 0 (2.60)

and
(K3)

µ
νn

ν = −nµ, (2.61)

so that nµ is invariant under the transformations generated by T1, T2 and J3 and the di-
rection of nµ is maintained under the transformations generated by K3. As a consequence,
the requirement of spatial isotropy excludes these subgroups as fundamental symmetry
groups and invariance under the full Poincaré group is implied.
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Chapter 3

Group theory and representations

3.1 Basic ideas

As brie�y mentioned in last chapter, a group G is a set of objects in which an operation,
called multiplication, is de�ned. In other words, if g and g′ are elements of a group G,
gg′ is also an element of this group and is referred as the product of g with g′. The
multiplication rule needs to be associative, i.e.,

g(g′g′′) = (gg′)g′′, (3.1)

and there needs to exist a unique identity element e, with the property

ge = eg = g, (3.2)

and an inverse element g−1, which obeys

g−1g = gg−1 = e, (3.3)

for every g ∈ G. In general, the operation of multiplication is not commutative, in the
sense that gg′ is not necessarily equal to g′g. If all the elements of a group happen to
commute under multiplication, this group is called an abelian group.

The group structure is usually taken to represent the behavior of mathematical or
physical objects under a given set of transformations. An interesting example comes from
the symmetry transformations of an equilateral triangle. It is known as the dihedral group
D3, and consists of the identity transformation e, two rotations a and b, of 120◦ and 240◦,
respectively, around the center of the triangle and three re�ections c, d and f with respect
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to each height of the triangle. The action of these transformations can be represented by
matrices, of the form

D(a) =

(
−1/2

√
3/2

−
√

3/2 −1/2

)
, D(b) =

(
−1/2 −

√
3/2

√
3/2 −1/2

)
, D(c) =

(
−1 0

0 1

)
,

D(d) =

(
1/2 −

√
3/2

−
√

3/2 −1/2

)
, D(e) =

(
1 0

0 1

)
, D(f) =

(
1/2

√
3/2

√
3/2 −1/2

)
,

(3.4)

with composition of transformations being equivalent to matrix multiplication. In par-
ticular, the composition of the rotation a with the re�ection d gives the re�ection f , as
can be seen from the relation D(d)D(a) = D(f). The set of matrices in 3.4 is denoted
as a (two-dimensional) representation of the group D3 (the dimension of the matrices is
referred as the dimension of the representation itself).

For a group G of general transformations, a representation consists of a map

g → D(g) (3.5)

that takes group elements g into �nite-dimensional matrices1 D(g) with the requirement
that the multiplication of the group is preserved, i.e., that

D(g)D(g′) = D(gg′). (3.6)

This map is not required to be one-to-one, but when it does, the representation is called
faithful. Otherwise, if more than one transformation is represented by the same matrix,
the representation is unfaithful, the simplest example being the trivial representation
D(g) = 1,∀g ∈ G, which clearly preserves the multiplication of any group G.

The dihedral group D3 has a �nite number of elements, being usually referred as a
�nite group. However, the study of transformations in physical objects more than often
asks for a certain kind of group with an in�nite number of elements, the so-called Lie
groups. These groups are characterized by the fact that their elements can be obtained
continuously from a set of real parameters, so that a di�erential topology can be associated
with these objects. The number of necessary parameters is denoted as the dimension of
the Lie group. For example, the elements of a n-dimensional Lie group can be written as
a function of the parameters n real parameters g(x1, x2, ..., xn). In addition, the structure

1In fact, a representation consists of a map into a general linear space, but in this work �nite-
dimensional ones are emphasized.
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of these groups is strongly dependent on the transformations that lie in�nitesimally close
to the identity, in the sense that they can be obtained from the identity transformation
by an in�nitesimal change in the parameters. This was already shown in last chapter,
in the study of the Lorentz group. The explicit forms of the transformations within this
group were determined from the structure of the in�nitesimal transformations, exhibited
in the Lie algebra 2.28. In particular, if a Lie group presents a faithful representation,
it is denoted a linear Lie group, since the its transformations are equivalent to linear
transformations.

A simpler example of a linear Lie group is the group of rotations on a plane around
the origin. This is an abelian group of dimension one with transformations R that can be
parametrized by an angle of rotation θ and have the property

R(θ)R(θ′) = R(θ + θ′). (3.7)

Consequently, these rotations can be represented by

D[R(θ)] = epθ, (3.8)

if the condition e2pπ = 1 is satis�ed, i.e., if p is an integer. This condition is necessary
since a rotation of 2π produce exactly the same result as the identity transformation2.
Thus, every integer p gives an additional representation of the group of two-dimensional
rotations. It is also possible to construct representations that use matrices of higher
dimensions, e.g., the two dimensional representation given by

D[R(θ)] =

(
cos θ sin θ

− sin θ cos θ

)
. (3.9)

A matrix of the form 3.9 has determinant equal to unity and inverse identical to its
transpose (since both are obtained by making θ → −θ). Thus, these matrices are known as
two-dimensional special orthogonal matrices and form a group under matrix multiplication
known as the special orthogonal group SO(2). As these matrices can be one-to-one mapped
into rotations on the plane (since the representation 3.9 is faithful), the group of two-
dimensional special orthogonal matrices is said to be isomorphic to the group of rotations
on the plane and both groups are denoted by SO(2).

The group SO(2) is a subgroup (a subset of a group that is a group by itself) of
the orthogonal group O(2) consisting of all rotations and re�ections on the plane or,

2The elements of a group describe the relation between the conditions before and after a transfor-
mation, with no distinction of how this result was obtained. Instead, if one wants to describe the path

followed by a transformation, it is necessary to de�ne a curve in the parameter space of the Lie group.
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alternatively, the group of two-dimensional orthogonal matrices A, which have real entries
and obey the condition

AT = A−1. (3.10)

This condition implies

det(AA−1) = (detA)2 = 1 ⇒ detA = ±1. (3.11)

Thus, every element of O(2) is either an element R(θ) of SO(2) (if it has determinant
+1) or can be written in the form IR(θ) (if its determinant is −1), with I denoting the
re�ection represented by the matrix (

−1 0

0 1

)
. (3.12)

The special orthogonal group consists of the transformations in the orthogonal group that
are continuously connected to the identity transformation and, in this sense, SO(2) is said
to be the connected subgroup of O(2). Also, the group O(2) is said to be composed of two
connected components, i.e., continuously connected subsets of elements that can only be
mapped into one another by a �nite (non-in�nitesimal) transformation of the group.

For rotations in three-dimensional space, given by the special orthogonal group SO(3),
a similar structure appears. Since results 3.10 and 3.11 also apply in this case, SO(3) is
the connected part of the orthogonal group O(3), which consists of all orthogonal matrices
A of dimension three. A general transformation of this group depends on three real inde-
pendent parameters, which will be denoted θ1, θ2, θ3, and is either an element R(θ1, θ2, θ3)
of SO(3) or can be written as a product of the form PR(θ1, θ2, θ3), with P representing
the transformation of parity in three dimensions,

P =


−1 0 0

0 −1 0

0 0 −1

 . (3.13)

The real Lie algebra of SO(3), denoted as so(3), can be obtained from the restriction of
the generators of rotations in 2.27 to just spatial dimension, given by

a1 =


0 0 0

0 0 1

0 −1 0

 , a2 =


0 0 −1

0 0 0

1 0 0

 , a3 =


0 1 0

−1 0 0

0 0 0

 , (3.14)
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as
[ai, aj] = −εijkak, (3.15)

which is of course identical to the �rst commutator in 2.28.

3.2 Cosets and discrete Lorentz transformations

The results obtained at the end of last section can be expressed more formally in terms
of objects known as cosets. These objects provide a way of classifying transformations of
a group G using the structure of one of its subgroup H. Speci�cally, the left coset of H
with respect to a �xed element g ∈ G is de�ned to be3

gH = {gh | h ∈ H}, (3.17)

where h varies over all the elements of the subgroup H. It is easy to see that every element
of the group G can only be in one and only one coset. For example, if ḡ was an element
of two distinct cosets gH and g′H,

ḡ = gh = g′h′ ⇒ g′
−1
g = h′h−1 ∈ H, (3.18)

with h, h′ ∈ H. As a consequence, this would imply that the coset (g′−1g)H is identical to
H, as H is closed under multiplication, and that g′[(g′−1g)H] = gH = g′H, contradicting
the initial assumption that the cosets are di�erent.

Cosets are even more signi�cant when the subgroup H presents the additional require-
ment of being an invariant subgroup, which is de�ned by the condition

ghg−1 ∈ H, (3.19)

for every g ∈ G and every h ∈ H. In this case, the operation of coset multiplication can
be de�ned as

(gH)(g′H) = (gg′)H, (3.20)

the condition 3.19 being necessary to guarantee the consistency of the de�nition 3.20,
since an element of (gH)(g′H), of the form

ghg′h′ = gg′[(g′
−1
hg′)h′], (3.21)

3In a similar way, the right coset of H with respect to g is de�ned as

Hg = {hg | h ∈ H}. (3.16)
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is also an element of (gg′)H if and only if g′−1hg′ ∈ H. The product of cosets provides a
group structure for these objects, the group of cosets of H being called the factor group
G/H.

The special subgroup SO(2), discussed in last section, is an invariant subgroup of the
orthogonal group O(2). In fact, for arbitrary rotation R(θ) and orthogonal matrix A, the
matrix AD[R(θ)]A−1 is also orthogonal, since (from 3.9 and 3.10)

{AD[R(θ)]A−1}T = (A−1)T{D[R(θ)]}TAT = AD[R(θ)]A−1, (3.22)

and its determinant is also +1, as can be seen from

det{AD[R(θ)]A−1} = detA detD[R(θ)] detA−1 = (detA)2 = 1, (3.23)

where the last equality comes from 3.11. Then, the factor group O(2)/SO(2) has only
two elements, SO(2) and I SO(2), which represent the connected components of the
orthogonal group O(2). The possible coset products are given by

(SO(2)) (SO(2)) = SO(2),

(SO(2)) (I SO(2)) = I SO(2),

(I SO(2)) (SO(2)) = I SO(2),

(I SO(2)) (I SO(2)) = SO(2),

(3.24)

so that, under the transformation I , the connected components of O(2) are taken into
each other, as represented in �gure 3.1.

R( )q

SO(2)

I R( )q

I SO(2)

I

Figure 3.1: Connected components of O(2)

For the three-dimensional case of O(3), the factor group O(3)/SO(3) posses a struc-
ture identical to 3.24, the only di�erence being the replacement of the two-dimensional
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re�ection I with the three-dimensional transformation of parity P. As a consequence,
the connected components of O(3) compose a picture similar to �gure 3.1, as depicted in
�gure 3.2

SO(3)

P R( )q�,q�,q�

P SO(3)

P

1 2 3R( )q�,q�,q�1 2 3

Figure 3.2: Connected components of O(3)

The group of three-dimensional rotations can be considered as a subgroup of the Lorentz
group, since the Lorentz transformations of the form

1 0 0 0

0

0 A
0

 (3.25)

form a subgroup isomorphic to O(3) (the condition 2.7 implies that A is an orthogonal
matrix). Every transformation of this type, can therefore be written either as an element
R(θ1, θ2, θ3) = eJ ·θ (according to equations 2.26 and 2.27) or as a product PR(θ1, θ2, θ3),
where P represents the transformation of parity in Minkowski spacetime, de�ned in
2.14. This subgroup, of spatial rotations and re�ections, preserves the time-like four-
vector (1, 0, 0, 0). As a consequence, a general transformation of the Lorentz group can
be determined up to a rotation or re�ection from its action on this four-vector.

A general Lorentz transformation maps the four-vector (1, 0, 0, 0) into another four-
vector x̄µ, while preserving the quadratic form

− (x̄0)2 + (x̄1)2 + (x̄2)2 + (x̄3)2 = −1 ⇒ (x̄0)2 = 1 + (x̄1)2 + (x̄2)2 + (x̄3)2, (3.26)

which de�nes an hyperboloid of two sheets, sketched in �gure 3.3. Every point of this
three-dimensional surface determines a Lorentz transformation up to a spatial rotation or
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re�ection. Therefore, each connected component of O(3) de�nes two connected compo-
nents of the Lorentz group that can be mapped into one another by the transformation
of time reversal T , de�ned in 2.18. From this, it is easy to see that the connected sub-
group of the Lorentz group is identical to the proper orthochronous subgroup, as stated
in last chapter. The connected components of the Lorentz group L are, then, the proper
orthochronous L↑+, the proper non-orthochronous L↓+, the improper orthochronous L↑−
and the improper non-orthochronous L↓−. The transformations in each component can be
mapped into each other by the discrete transformations P, T and PT as exhibited in
�gure 3.4.

x
0

x
2

x
1

x

T x

Figure 3.3: Hyperboloid of two sheets

Using the language of cosets, the connected components of the Lorentz group are
equivalent to the cosets of the proper orthochronous subgroup L↑+, which is of course an
invariant subgroup. In this context, the equivalences

L↑− = PL↑+,
L↓+ = T L↑+,
L↓− = PT L↑+

(3.27)
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Figure 3.4: Connected components of the Lorentz group

are satis�ed.

3.3 Universal covering groups

Every transformation in the connected subgroup of a linear Lie group can be written as
a �nite product of matrix exponentials of its Lie algebra elements. Hence, it is expected
that the representations of any connected linear Lie group can be constructed from the
representations of its algebra (the set of matrices that represent the commutation relations,
as in 2.27). Unfortunately, this is not as direct as it seems. That is because di�erent (non-
isomorphic) Lie groups can be associated to the same Lie algebra. As an example, the
one-dimensional Lie algebra, composed of only one generator, can be exponentiated to
give either the group of rotations on the plane SO(2) or the group of positive real numbers
under multiplication, denoted by (R>0,×). These groups are not isotropic but do present
identical Lie algebras. In fact, considering the unique generator to be represented by a
real number p, its exponentiation gives 3.8, which is a representation of the multiplicative
group of positive real numbers for every p but is only a representation of SO(2) when p

25



is an integer. It is clear then that not all representations of a Lie algebra provide, under
matrix exponentiation, representations of an associated linear Lie group.

At this point, it is necessary to introduce the concept of simply connectedness for
a general connected Lie group. If the dimension of a Lie group is n, the curve given
by x1 = x1(t), x2 = x2(t), ..., xn = xn(t) as a function of real parameter 0 ≤ t ≤ 1
is said to describe a continuous path within the Lie group composed of the elements
g(x1(t), x2(t), ..., xn(t)). When the group elements on the extreme points of this path co-
incide, i.e., if g(x1(0), x2(0), ..., xn(0)) = g(x1(1), x2(1), ..., xn(1)) = g0, this path is called
a loop. A Lie group is then said to be simply connected if any loop can be continuously
transformed into a point while keeping the extreme points �xed (�gure 3.5). For this to
be true, there need to exist n functions fi(t, s), i = 1, 2, ..., n, continuous in both variables
t and s on the region determined by 0 ≤ t, s ≤ 1, and with the properties

fi(t, 0) = xi(t) (3.28)

and
g(f1(t, 1), f2(t, 1), ..., fn(t, 1)) = g0. (3.29)

g(t)
continuous

loop, 0<t<1

g(0)=g(1)

g(0)=g(1)

g(0)=g(1)

Figure 3.5: A loop being contracted to a point

For the particular case of the group SO(2), a loop is obtained by setting θ = 2πt, since
t = 0 and t = 1 both give the identity transformation. Supposing that this loop can be
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continuously contracted into a point, there should exist a continuous function f(t, s) such
that

f(t, 0) = 2πt (3.30)

and
g(f(t, 1)) = g(0) = e ⇒ f(t, 1) = 2πm, (3.31)

where m is an integer and e is the identity transformation of the group SO(2). Continuity
implies f(0, 1) = f(0, s) = 0 ⇒ m = 0 and f(1, 1) = f(1, s) = 2π ⇒ m = 1, which are
contradictory statements. Thus, the loop considered cannot be transformed into a point
and the group SO(2) is not simply connected. On the other hand, the group (R>0,×) is
simply connected, even that its algebra is identical to the one of SO(2). A general element
of this group can be written, in terms of the real parameter x, as ex. Consequently, every
loop is described by a general continuous function x(t) such that x(0) = x(1) = x0. Every
loop of this form is contractible to a point, since the function

f(t, s) = (1− s)x(t) + sx0 (3.32)

clearly has the properties 3.28 and 3.29.
For a Lie group, simply connectedness is necessary to guarantee that its representations

are furnished by the representations of the associated Lie algebra. It is possible to show
that there is only one simply connected group associated to every Lie algebra, this group
being called the universal covering group of the corresponding algebra. In particular, the
universal covering group of the one-dimensional Lie algebra is the multiplicative group
(R>0,×). This group is also known as the universal cover of SO(2), since it is possible to
de�ne a map,

φ : (R>0,×)→ SO(2)

eθ 7→ φ(eθ) = R(θ),
(3.33)

which clearly preserves products but is not one-to-one. These groups are then said to
be homomorphic and the map 3.33 is called a homomorphism. The kernel Kerφ of this
homomorphism, de�ned as the subset of elements of (R>0,×) that maps into the identity
of SO(2), is given by

Kerφ = {e2πm | m ∈ Z}. (3.34)

This is easily seen to de�ne an invariant subgroup, so that the factor group (R>0,×) /Kerφ
is composed of cosets of the form eθKerφ with 0 ≤ θ < 2π. The group SO(2) of rotations
on the plane is isomorphic to this factor group, this fact being expressed as

SO(2) = (R>0,×) /Kerφ. (3.35)
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In general, a universal covering group G̃ can be associated to an arbitrary linear Lie
group G. The group G̃ needs to be simply connected and have a Lie algebra identical
to the one associated with the group G. In addition, it should be possible to �nd an
homomorphic mapping φ from G̃ to G, the kernel (Kerφ) of which de�nes an invariant
subgroup of G̃ with the property that G = G̃/Kerφ. It is also possible to show that every
representation of the corresponding Lie algebra exponentiates to a representation of the
universal covering group G̃. As a consequence, if a given representation D̃(g̃) of G̃ (g̃ is a
general element of this group) associates the same matrix to elements lying in the same
coset of G̃/Kerφ, i.e., if

D̃(Kerφ) = 1, (3.36)

a representation of the group G is obtained by setting

D(φ(g̃)) = D̃(g̃Kerφ) (3.37)

(g̃Kerφ is the coset containing the element g̃). As an example, the one-dimensional rep-
resentations of SO(2) can be obtained from the representations 3.8 of the group (R>0,×)
if the condition 3.36 is imposed, giving

D̃(Kerφ) = e2πmp = 1 ⇒ p ∈ Z, (3.38)

which exactly reproduces the result obtained in section 3.1. Additionally, the setting

D(φ(eθ)) = D̃(eθKerφ) = epθ (3.39)

gives the one-dimensional representations of SO(2).
For the case of three-dimensional rotations, the universal cover of SO(3) is given by

the group SU(2) of two-dimensional unitary matrices U with unity determinant, which
have complex-valued entries and obey the relation

U † = (U∗)T = U−1 (3.40)

(the operation symbolized by † receives the name of Hermitian conjugation). Every trans-
formation obeying 3.40 can be put into the form

U =

(
α β

−β∗ α∗

)
(3.41)

where α = α1 + iα2 and β = β1 + iβ2 are complex numbers that obey the relation

|α|2 + |β|2 = α2
1 + α2

2 + β2
1 + β2

2 = 1. (3.42)
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Thus, every transformation U can be associated to a point in the three-dimensional spher-
ical surface determined by 3.42. As every spherical surface (with dimension greater than
one) is simply connected, the previous result implies that the group SU(2) itself is simply
connected. In addition, the Lie algebra of this group is identical to the one of SO(3),
depicted in 3.15. If b is a generator of the algebra of SU(2), i.e., if U = ebx ∈ SU(2) with
x being a real parameter, relation 3.40 implies

b† = −b. (3.43)

Then, a basis for this algebra is given by

b1 =
1

2

(
0 i

i 0

)
, b2 =

1

2

(
0 1

−1 0

)
, b3 =

1

2

(
i 0

0 −i

)
(3.44)

with the commutation relations having the form

[bi, bj] = −εijkbk, (3.45)

which is the same as 3.15.
An homomorphic mapping from SU(2) into SO(3) can be obtained assuming that

the spatial coordinates xi(i = 1, 2, 3) are transformed under an arbitrary transformation
U ∈ SU(2) into x′i following the relation(

x′3 x′1 − ix′2

x′1 + ix′2 −x′3

)
= U

(
x3 x1 − ix2

x1 + ix2 −x3

)
U−1. (3.46)

Taking the determinant of both sides, this relation implies

(x1)2 + (x2)2 + (x3)2 =
(
x′

1
)2

+
(
x′

2
)2

+
(
x′

3
)2
. (3.47)

Clearly, every transformation U ∈ SU(2) can be associated with a three-dimensional
rotation, x′ = Rx, since both preserve the same characteristic quadratic form. Equation
3.46 can be written as

x′
1
σ1 + x′

2
σ2 + x′

3
σ3 = x1Uσ1U

−1 + x2Uσ3U
−1 + x1Uσ3U

−1 (3.48)

in terms of the Pauli matrices σi, given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.49)
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By direct evaluation, the relation

Tr{σiσj} = δij (3.50)

is seen to be valid and can be used, together with equation 3.48, to give

x′
i

=
1

2
Tr{σiUσjU−1}xj. (3.51)

Consequently, the map

φ : SU(2)→ SO(3)

U 7→ φ(U) = R,
(3.52)

where

Ri
j =

1

2
Tr{σiUσjU−1}, (3.53)

is a two-to-one homomorphism with kernel given by Kerφ = {1,−1}, in such a way that

SO(3) = SU(2)/{1,−1}. (3.54)

Every representation of the Lie algebra of SO(3) (or, equivalently, SU(2)) provides
under matrix exponentiation a representation D̃(U) of the universal covering group SU(2).
If this representation has the property

D̃(1) = D̃(−1) = 1, (3.55)

it can be used to construct a representation for the group SO(3) as

D(R) = D̃(U) = D̃(−U). (3.56)

Instead, if D̃(1) 6= D̃(−1), it is still possible to obtain representations known as projective
for the group SO(3). These representations are double-valued, in the sense that it assigns
two matrices, D̃(U) and D̃(−U), to every transformation R ∈ SO(3).

3.4 Reducibility of �nite-dimensional representations

The matrices representing the transformations of a group can be associated to linear
operators acting on a �nite-dimensional complex vector space V , which is referred as the
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carrier space of the representation. Supposing that the group G posses a n-dimensional
representation D(g), g ∈ G, the action of the transformations g can be represented by

Φ(g)ψi = [D(g)]ijψ
j (3.57)

where the vectors ψi (i = 1, 2, ..., n) give a basis for the carrier space V and Φ(g) are
linear operators in this space.

The basis for the carrier space of a representation can be altered by performing a
change of basis

ψi → ψ′
i

= Sijψ
j, (3.58)

where the complex-valued matrix S needs to denote an invertible linear transformation,
i.e., detS 6= 0. The linear operators Φ(g) are then transformed into

Φ(g)ψ′
i

= SijΦ(g)ψj = Sij[D(g)]jk(S
−1)klψ

′l, (3.59)

so that the matrices of a representation D(g) are changed into SD(g)S−1 (this is called
a similarity transformation). In this sense, representations of a group that are related by
similarity transformations are said to be equivalent, since they di�er only by a change of
basis of the carrier space.

Even though a linear Lie group presents an in�nite number of representations, most
of the higher-dimensional representations can be constructed from the lower-dimensional
ones. Considering, for example, the representation of the group SO(2) exhibited in 3.9, a
similarity transformation can be applied to give

SD[R(θ)]S−1 =

(
eiθ 0

0 e−iθ

)
, (3.60)

with

S =

(
i 1

1 i

)
, (3.61)

clearly showing that this two-dimensional representation of SO(2) can be decomposed
into one-dimensional ones. For this reason, this is referred as a completely reducible
representation.

For a general group G, a completely reducible representation D(g) acts on its carrier
space as

D(g)ψ =


D1(g) 0 · · · 0

0 D2(g) 0
...

. . .

0 0 Dr(g)

ψ (3.62)
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(ψ represents the column matrix (ψ1, ψ2, ..., ψn)), where Ds(g) (s = 1, 2, ..., r) symbolize
representations of the group G that cannot be further decomposed into block-diagonal
matrices. Thus, the carrier space of D(g) is a direct sum of subspaces that cannot be
transformed into each other by elements of the group G, thus being called invariant sub-
spaces. If the dimension of Ds(g) is given by ns, the action of this representation is
restricted to the elements ψi with

∑s−1
s′=1 ns′ + 1 ≤ i ≤

∑s−1
s′=1 ns′ + ns. For the represen-

tations Ds(g) there are only two possibilities: either their carrier spaces do not posses
invariant subspaces, these being classi�ed as irreducible representations, or their carrier
spaces present one or more invariant subspaces but cannot be expressed as a direct sum
of them. In the latter case, the matrices Ds(g) can be put in the form

Ds(g) =


D

(1)
s (g) D12

s (g) · · · D1ns
s (g)

0 D
(2)
s (g) D2ns

s (g)
...

. . .

0 0 D
(ns)
s (g)

 , (3.63)

with the matrices D(p)
s (g) acting on irreducible representations of the group G. These are

referred as reducible (but not completely) representations. In fact, every representation
that has an invariant subspace is classi�ed as reducible, in such a way that completely
reducible representations are of course a subtype of those. It is important to emphasize
that the presence of an invariant subspace does not imply complete reducibility for a
representation in the most general case.
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Chapter 4

Representations of the Lorentz group

In this chapter, a method for obtaining �nite-dimensional representations of Lie groups
from the respective Lie algebras is presented by the speci�c treatment of the groups of
three-dimensional rotations and of Lorentz transformations.1 This method will be further
used in the next chapter to obtain representations of the VSR subgroups HOM(2) and
SIM(2).

4.1 Representations of SO(3)

In section 3.3, the universal covering group of SO(3) was shown to be the special
unitary group SU(2). Then, the representations of the algebra depicted in 3.15 should
exponentiate to representations of SU(2). To �nd representations of this algebra, it is
convenient to treat separately cases of �xed dimension. The �rst case to be considered
is the one-dimensional case, in which the generators ai (i = 1, 2, 3) are given by complex
numbers. As every pair of complex numbers commute with each other under multipli-
cation, the only one-dimensional representation of the algebra 3.15 is the trivial one,
ai = 0 (i = 1, 2, 3), which of course gives the trivial representation of SU(2) under matrix
exponentiation.

The case of dimension two is more interesting. As the intention here is to �nd non-
equivalent representations, the freedom of a similarity transformation can always be ex-
plored. For example, the generator a3 can be chosen, assuming that it is diagonizable, to

1Both these groups are classi�ed as semi-simple, since their Lie algebras do not posses any abelian
invariant subalgebra. This implies that every reducible representation is completely reducible.
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have the form

D(a3) =

(
γ1 0

0 γ2

)
, (4.1)

with the coe�cients γ1 and γ2 6= γ1 being the eigenvalues of a3. The commutator of every
matrix X (with coe�cients Xij, i, j = 1, 2) with a diagonal matrix of the form 4.1 is given
by

[X,D(a3)] =

(
0 −X12(γ1 − γ2)

X21(γ1 − γ2) 0

)
(4.2)

so that the generators a1 and a2 will be represented by matrices of the form

D(a1) =

(
0 α1

α2 0

)
, D(a2) =

(
0 β1

β2 0

)
. (4.3)

Then, the form of the algebra 3.15 and relation 4.2 imply∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 = β1(γ1 − γ2)
α2 = −β2(γ1 − γ2)
β1 = −α1(γ1 − γ2)
β2 = α2(γ1 − γ2)
γ1 = −γ2 = α2β1 − α1β2

. (4.4)

As a consequence, (γ1 − γ2)2 = −1 and, without lost of generality, γ1 − γ2 can be chosen
to be +i, since a similarity transformation can be performed to switch the positions of γ1
and γ2 in 4.1. Then, the equations in 5.29 give∣∣∣∣∣∣∣∣

α1 = iβ1

α2 = −iβ2

γ1 = −γ2 = α2β1 − α1β2 =
1

2
i

⇒

∣∣∣∣∣∣∣∣∣
α1 = iβ1

α1α2 = β1β2 = −1

4

γ1 = −γ2 =
1

2
i

(4.5)

Another similarity transformation, of the form D(ai)→ SD(ai)S
−1 (i = 1, 2, 3), with

S =

(
1 0

0 2β1

)
, (4.6)
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can be performed to set the scale of the coe�cients α1, α2, β1 and β2, so that the result
obtained is

D(a1) =
1

2

(
0 i

i 0

)
, D(a2) =

1

2

(
0 1

−1 0

)
, D(a3) =

1

2

(
i 0

0 −i

)
, (4.7)

which is identical to the representation shown in 3.44. The conclusion is that every
other representation of the algebra su(2) is equivalent to the one obtained in 4.7 (at least
when D(a3) is diagonizable). Under matrix exponentiation, this representation gives two-
dimensional unitary matrices with determinant one (as can be seen from the discussion
in section 3.3). This representation is used in the de�nition of the matrix group SU(2)
and, consequently, receives the name of fundamental representation.

In the language of section 3.3, the fundamental representation is given by D̃(U) = U ,
which clearly does not obey relation 3.55. Therefore, it does not give a representation (in
the sense de�ned in last chapter) of SO(3). However, the concept of representation can be
expanded to include the so-called projective representations, which have the property of
preserving group products up to an arbitrary complex phase eiϕ, i.e., ifD(g) is a projective
representation of a group,

D(gg′) = eiϕ(g,g
′)D(g)D(g′). (4.8)

Consequently, the settingD(R) = D̃(U), with R = φ(U) = φ(−U) and U being arbitrarily
chosen to represent every pair {U,−U}, gives a projective representation for the group of
three-dimensional rotations SO(3), since

D(R1R2) = D̃(±U1U2) = ±D̃(U1)D̃(U2) = ±D(R1)D(R2). (4.9)

It may also possible that the matrix representing the generator a3 is not diagonizable.
In such cases, a similarity transformation can be performed to take the matrix D(a3) into
the Jordan canonical form (

γ 1

0 γ

)
. (4.10)

The commutator of an arbitrary matrix X (with coe�cients Xij, i, j = 1, 2) with the
matrix above is then

[X,D(a3)] =

(
−X21 X11 −X22

0 X21

)
, (4.11)

so that the matrices representing the generators a1 and a2 should have the form

D(a1) =

(
α′1 α′2

0 −α′1

)
, D(a2) =

(
β′1 β′2

0 −β′1

)
. (4.12)
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Inserting these matrices in the commutation relations 3.15, D(ai) = 0 (i = 1, 2, 3), i.e.,
the trivial representation, is the only possible result.

In a similar way, a three-dimensional representation can be constructed for SO(3)
starting with

D(a3) =


γ1 0 0

0 γ2 0

0 0 γ3

 , (4.13)

where the eigenvalues γ1, γ2 and γ3 are all di�erent, so that a relation equivalent to
4.2 can be obtained for an arbitrary three-dimensional matrix X (with coe�cients Xij,
i, j = 1, 2, 3) as

[X,D(a3)] =


0 −X12(γ1 − γ2) −X13(γ1 − γ3)

X21(γ1 − γ2) 0 −X23(γ2 − γ3)
X31(γ1 − γ3) X32(γ2 − γ3) 0

 . (4.14)

in such a way that the matrices of the other generators should have the form

D(a1) =


0 α1 α2

α4 0 α3

α5 α6 0

 , D(a2) =


0 β1 β2

β4 0 β3

β5 β6 0

 . (4.15)

Inserting these in the commutators 3.15 and assuming that at least one variable in each
of the pairs {β1, β4} and {β3, β6} is not null2, it follows that∣∣∣∣∣ (γ1 − γ2)2 = (γ2 − γ3)2 = −1

γ1 + γ2 + γ3 = 0
, (4.16)

where the second equation comes from taking the trace of the commutation relations in
3.15. Without any loss of generality, it is possible to set

γ1 = +i , γ2 = 0 , γ3 = −i. (4.17)

In addition, just as in the two-dimensional case, the freedom of similarity transformations
can be explored to set the values of some of the other coe�cients; in this case, of two

2In the cases β1 = β4 = 0 and β3 = β6 = 0, the representations obtained are completely reducible and
can be written in terms of two-dimensional ones.
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of them. Therefore, β1 = β3 = 1/
√

2 can be conveniently chosen without excluding any
non-equivalent representations and this gives∣∣∣∣∣∣∣∣∣

α1 = α3 = i/
√

2

α2 = β2 = α5 = β5 = 0

α4 = α6 = −iβ4 = −iβ6 =
i√
2

, (4.18)

again using the commutators in 3.15. This provides the representation

D(a1) =
1√
2


0 i 0

i 0 i

0 i 0

 , D(a2) =
1√
2


0 1 0

−1 0 1

0 −1 0

 , D(a3) =


i 0 0

0 0 0

0 0 −i

 ,

(4.19)
which can be seen to be equivalent to the representation obtained in 3.14 by the application
of the similarity transformation D(ai)→ SD(ai)S

−1, with

S =


1 0 −1

i 0 i

0 −
√

2 0

 . (4.20)

In fact, every irreducible three-dimensional representation of the algebra su(2) is equiv-
alent to 4.19 (the non-diagonizable case also does not give representations here). Under
matrix exponentiation, this representations is clearly seen to give the fundamental repre-
sentation of the group SO(3), which was discussed in section 3.1.

4.2 SL(2,C)
The procedure explored in last section can be used to obtain �nite-dimensional repre-

sentations of the Lorentz group L. However, it is necessary to obtain �rst the universal
covering group for the group of Lorentz transformations. To achieve this, it is necessary to
extend the homomorphism described in 3.52 and 3.53. Considering a position four-vector
xµ to transform as(

x′3 + x′0 x′1 − ix′2

x′1 + ix′2 −x′3 + x′0

)
= M

(
x3 + x0 x1 − ix2

x1 + ix2 −x3 + x0

)
M−1 (4.21)
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under the transformation de�ned by the matrix M , the relation

− (x0)2 + (x1)2 + (x2)2 + (x3)2 = −
(
x′

0
)2

+
(
x′

1
)2

+
(
x′

2
)2

+
(
x′

3
)2

(4.22)

is valid for all matrices M such that detM = 1. Denoting σ0 = 1, equation 4.21 can be
written as

x′
0
σ0+x

′1σ1+x
′2σ2+x

′3σ3 = x0Mσ0M
−1+x1Mσ1M

−1+x2Mσ3M
−1+x1Mσ3M

−1 (4.23)

and, using Tr{σµσν} = δµν (µ, ν = 1, 2, 3, 4),

Λµ
ν =

1

2
Tr{σµMσνM

−1} (4.24)

is seen to de�ne a Lorentz transformation. As a consequence, it is possible to construct
the homomorphic mapping given by

φ : SL(2,C)→ L
M 7→ φ(M) = Λ,

(4.25)

with the coe�cients of the matrix Λ being de�ned as in 4.24 and SL(2,C) denoting
the group of two-dimensional matrices M with unity determinant. The kernel of the
homomorphism de�ned in 4.24and 4.25 is given by Kerφ = {1,−1}, so that 4.25 is seen
to be two-to-one and

L = SL(2,C)/{1,−1}. (4.26)

Every matrix M ∈ SL(2,C) can be written in the form

M = UH, (4.27)

where U ∈ SU(2) and H is an hermitian matrix (H† = H) with unity determinant, this
being referred as the polar decomposition of M . The matrix H can always be taken to
have a positive trace. In fact, if the trace of this matrix happens to be negative, one
can rede�ne U → −U and H → −H to get TrH > 0. Every two-dimensional hermitian
matrix can be written as

H =

(
y0 + y3 y1 + iy2

y1 − iy2 y0 + y3

)
. (4.28)

where y0, y1, y2, y3 denote real parameters. As detH = 1 and TrH > 0, these parameters
obey

(y0)2 − (y1)2 − (y2)2 − (y3)2 = 1 , y0 > 0, (4.29)
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which clearly de�ne a simply connected space. This implies that the group of two-
dimensional hermitian matrices with determinant one and positive trace is simply con-
nected. Furthermore, as every element of SL(2,C) can be written in the form 4.27 and
SU(2) is simply connected, the group SL(2,C) is seen to also be simply connected, thus
proving that it de�nes the universal covering group of the Lorentz group L.

4.3 Scalar representation

The �rst case to be treated for the Lorentz group is that of one-dimensional represen-
tations. Considering the algebra 2.28, its only one-dimensional representation is clearly
seen to be the trivial

Ji = Ki = 0 , i = 1, 2, 3, (4.30)

which exponentiates to
D(Λ) = 1, (4.31)

for every Λ ∈ L. This is usually called the scalar representation of the group of Lorentz
transformations.

4.4 Spinor representations

The algebra su(2) can be thought as a subalgebra of the algebra 2.28, in such a way
that a two-dimensional representation for the algebra of L necessarily needs to associate
the matrices in 4.7 (or equivalent ones) to the generators of rotations Ji, (i = 1, 2, 3). In
this context, it can be immediately set

D(J1) =
1

2

(
0 i

i 0

)
, D(J2) =

1

2

(
0 1

−1 0

)
, D(J3) =

1

2

(
i 0

0 −i

)
(4.32)

and these can be used to �nd the other matrices in the representation. As the generator
K3 commutes with J3, the matrix representing it can be diagonalized without changing
4.32. Denoting it by

D(K3) =

(
κ1 0

0 κ2

)
, (4.33)

the second line commutation relations in 2.28 can be used to give

D(K1) =
(κ1 − κ2)

2

(
0 1

1 0

)
, D(K2) =

i(κ1 − κ2)
2

(
0 −1

1 0

)
. (4.34)
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Inserting these into the third line commutators in 2.28, it follows

(κ1 − κ2)2 = 1. (4.35)

In addition, noting that every matrix in this representation is traceless3. it can be seen
that

κ1 + κ2 = 0, (4.36)

so that

κ1 =
1

2
= −κ2 or κ1 = −1

2
= −κ2. (4.37)

Since there is no freedom to exchange the order of κ1 and κ2 (as this was already
explored to set the form of D(J3)), both cases in 4.37 give non-equivalent representations
of the Lie algebra of L. The �rst one, which will be denoted as +, gives

D+(K1) =
1

2

(
0 1

1 0

)
, D+(K2) =

i

2

(
0 −1

1 0

)
, D+(K3) =

1

2

(
1 0

0 −1

)
(4.38)

This representation is characterized by the relation

D+(Ji) = +iD−(Ki), (4.39)

thus justifying the symbol +. In addition, the vectors ψL of the two-dimensional carrier
space associated with this representation are denoted as left-handed Weyl spinors. On the
other hand, the second case, denoted as −, implies

D−(K1) =
1

2

(
0 −1

−1 0

)
, D−(K2) =

i

2

(
0 1

−1 0

)
, D−(K3) =

1

2

(
−1 0

0 1

)
,

(4.40)
which in turn obeys the relation

D−(Ji) = −iD−(Ki), (4.41)

with the elements of its carrier space being called right-handed Weyl spinors ψR. These
representations di�er only in the form of the matrices representing the generators of boost,
with rotations being expressed as D+(Ji) = D−(Ji) = D(Ji) for i = 1, 2, 3.

All representations equivalent to D+ obey equation 4.39, as any similarity transfor-
mation preserves the form of this equation. This is also true for D−, if relation 4.41 is

3This is true because Tr(AB) = Tr(BA)⇒ Tr[A,B] = 0, for every square matrices A and B.
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considered. In this sense, the two-dimensional representations of the algebra 2.28 can be
divided in two sets, one in which every representation is equivalent to D+ and the other
with all elements equivalent to D−. It is possible to de�ne discrete transformations that
connect these non-equivalent representations, one example being the transformation of
complex conjugation K , which clearly interchanges equations 4.39 and 4.41.

In spinor representations, the transformations generated by J3 are given by

D̃(M) = eD(J3)θ3 =

(
eiθ3/2 0

0 e−iθ3/2

)
, (4.42)

in such a way that θ3 = 2π does not give the identity matrix and relation 3.36 is then
seen to be violated. That is because the spinor representation is in fact a projective
representation of the Lorentz group. This implies that a rotation by an angle of 4π is
necessary to map a Weyl spinor back into itself and that under a 2π-rotation it acquires
a minus sign. It can also be said that the spinor representation de�nes a double-valued
representation of the Lorentz group.

4.5 Three-dimensional representations

For the case of three-dimensional representations, calculations can be performed exactly
as in last section. Starting with the diagonal matrix form for the generator K3,

D(K3) =


κ1 0 0

0 κ2 0

0 0 κ3

 , (4.43)

and assuming the rotation generators to be represented by the matrices in 4.19, i.e.,

D(J1) =
1√
2


0 i 0

i 0 i

0 i 0

 , D(J2) =
1√
2


0 1 0

−1 0 1

0 −1 0

 , D(J3) =


i 0 0

0 0 0

0 0 −i

 ,

(4.44)
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the commutators in 2.28 give

D(K1) = −[D(J2), D(K3)] =
1√
2


0 κ1 − κ2 0

κ1 − κ2 0 κ2 − κ3
0 κ2 − κ3 0

 ,

D(K2) = [D(J1), D(K3)] =
i√
2


0 −(κ1 − κ2) 0

κ1 − κ2 0 −(κ2 − κ3)
0 κ2 − κ3 0

 ,

(4.45)

in such a way that the commutator [D(J1), D(K1)] = 0 implies

κ1 + κ3 = 2κ2 (4.46)

and, as all generators are traceless,

κ1 + κ2 + κ3 = 0. (4.47)

Thus, κ2 = 0 and κ3 = −κ1, and, �nally, the commutator [K1, K2] = J3 gives

κ21 = 1 ⇒ κ1 = 1 or κ1 = −1. (4.48)

Both these values provide non-equivalent representations for the algebra of the Lorentz
group obeying

D−(Ki) = +iD−(Ji) and D+(Ki) = −iD+(Ji), (4.49)

respectively, for κ1 = −1 and κ1 = +1.

4.6 Vector representation

From the two-dimensional representations obtained in section 4.4, it is possible to
construct a four-dimensional representation given by

D+−(Λ) = D+(Λ)⊗D−(Λ), (4.50)

where the symbol ⊗ denotes the operation known as direct product of matrices. Explicitly,
these matrices are de�ned to be

D+−(Λ) =


D+(Λ)11D−(Λ)11 D+(Λ)11D−(Λ)12 D+(Λ)12D−(Λ)11 D+(Λ)12D−(Λ)12

D+(Λ)11D−(Λ)21 D+(Λ)11D−(Λ)22 D+(Λ)12D−(Λ)21 D+(Λ)12D−(Λ)22

D+(Λ)21D−(Λ)11 D+(Λ)21D−(Λ)12 D+(Λ)22D−(Λ)11 D+(Λ)22D−(Λ)12

D+(Λ)21D−(Λ)21 D+(Λ)21D−(Λ)22 D+(Λ)22D−(Λ)21 D+(Λ)22D−(Λ)22

 .

(4.51)
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In the previous representation, the generators ai (i = 1, .., 6) of the algebra are given by

D+−(ai) = lim
xi→0

∂D+−(Λ)

∂xi
= D−(ai)⊗ 1 + 1⊗D+(ai) (4.52)

(xi stands for the parameter of the transformation). Thus, using equations 4.19, 4.38 and
4.40, the explicit form of the matrices representing the generators of rotations and boosts
is

D+−(J1) =
1

2


0 i i 0

i 0 0 i

i 0 0 i

0 i i 0

 , D+−(J2) =
1

2


0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0



D+−(J3) =


i 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −i

 , D+−(K1) =
1

2


0 −1 1 0

−1 0 0 1

1 0 0 −1

0 1 −1 0



D+−(K2) =
i

2


0 1 −1 0

−1 0 0 −1

1 0 0 1

0 1 −1 0

 , D+−(K3) =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 ,

(4.53)

and these can be transformed into the matrices 2.27 by a similarity transformation
D(ai)→ SD(ai)S

−1 with

S =


0 1 −1 0

1 0 0 −1

i 0 0 i

0 −1 −1 0

 . (4.54)

This means that the fundamental representation of the Lorentz group, i.e., the vector
representation, can be constructed as a direct product of two-dimensional spinor repre-
sentations.
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Chapter 5

HOM(2) and SIM(2)

As discussed in chapter 2, the subgroups HOM(2) and SIM(2) of the Lorentz group L
can be considered as fundamental symmetry groups in the context of Very Special Rel-
ativity. This chapter is devoted to the construction of �nite-dimensional representations
of these subgroups. The method for such construction is identical to the one used in last
chapter for the rotation group SO(3) and the Lorentz group L, i.e., the representations
of the groups are obtained from the representations of the associated Lie algebra. In
this scenario, the universal covering groups of HOM(2) and SIM(2) are of fundamental
importance. They are presented in the following section.

5.1 The universal covering groups ofHOM(2) and SIM(2)

In section 4.2, a homomorphism (4.25) from SL(2,C) onto L was utilized to demonstrate
that SL(2,C) is itself the universal covering group of the Lorentz group. This comes with
the additional requirement that the group SL(2,C) be simply connected, a fact that was
also shown in section 4.2. As HOM(2) and SIM(2) are subgroups of L, the subgroups of
SL(2,C) that map onto HOM(2) and SIM(2) under the homomorphism 4.25 are natural
candidates for their universal covers. Since a homomorphism is already established, the
only condition left is regarding the simply connectedness of such candidates.

Equation 4.24 can be transformed into a isomorphism between the Lie algebras of
SL(2,C) and L by taking the derivative of both sides with respect to an arbitrary pa-
rameter (of rotations, θi, or boosts, ϕi, i = 1, 2, 3). In fact, if the elements of the sl(2,C)
algebra are denoted by bi and the elements of the algebra of the Lorentz groups by ai
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(both with i = 1, ..., 6), it easy to see that

(ai)
µ
ν =

1

2
Tr{σµ(biσν + σνbi)}. (5.1)

Relation 5.1 maps elements of the two algebras into each other in a one-to-one way, thus
de�ning a isomorphism between them.

For the case of HOM(2), the elements of the sl(2,C) algebra that map into the gen-
erators T1 = K1 + J2, T2 = K2 − J1 and K3 (in the form depicted in 2.27) are given
by

τ1 =
−σ1 + iσ2

2
=

(
0 0

1 0

)
, τ2 =

−σ2 − iσ1
2

=

(
0 0

i 0

)

κ3 = −1

2

(
1 0

0 −1

) (5.2)

and these de�ne the commutations relations

[τ1, τ2] = 0 , [τ1, κ3] = −τ1 , [τ2, κ3] = −τ2. (5.3)

Furthermore, if matrix exponentiation is performed on the elements depicted in 5.2, the
transformations of the form

My1,y2,y3 =

(
ey3 0

y1 + iy2 e−y3

)
(5.4)

(y1, y2 and y3 are real parameters) are seen to de�ne the subgroup of SL(2,C) that maps
onto HOM(2) under the homomorphism de�ned in 4.25. This subgroup contains the iden-
tity 1 but not the element −1 of the kernel of this homomorphism. As a consequence, the
transformations depicted in 5.4 can be one-to-one mapped into HOM(2) transformations,
thus showing that the subgroup of matrices of the form 5.4 is isomorphic to HOM(2).

Every matrix such as 5.4 can be written as

My1,y2,y3 =

(
ey3 0

0 e−y3

)(
1 0

ey3(y1 + iy2) 1

)
, (5.5)

where the �rst term is an element of a subgroup isomorphic to the multiplicative group of
real numbers and the second one to the additive group of complex numbers. Both of these
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groups are known to be simply connected, thus implying that HOM(2) itself is simply
connected (as the considered matrix group was shown to be isomorphic to HOM(2)). As
a consequence, HOM(2) is seen to be the universal covering group of the Lie algebra
5.3. This directly implies that every representation of this algebra exponentiates to a
(single-valued) representation of HOM(2).

The same procedure can be applied to construct the basis of the sim(2) algebra given
by

τ1 =

(
0 0

1 0

)
, τ2 =

(
0 0

i 0

)
, κ3 = −1

2

(
1 0

0 −1

)
, ζ3 =

i

2

(
1 0

0 −1

)
, (5.6)

thus de�ning the extra commutators

[κ3, ζ3] = 0 , [τ1, ζ3] = τ2 , [τ2, ζ3] = −τ1. (5.7)

These exponentiate to transformations of the form

Mz,w =

(
ez 0

w e−z

)
, (5.8)

with z = y3 + iy4 and w = y1 + iy2 being arbitrary complex numbers (y1, y2, y3, y4 are real
parameters). This subgroup is two-to-one mapped onto SIM(2) under the homomorphism
4.25. Additionally, every element of the form 5.8 can be written as

Mz,w =

(
ez 0

0 e−z

)(
1 0

ezw 1

)
, (5.9)

the �rst factor de�nes a subgroup isomorphic to the multiplicative group com complex
numbers, which is not simply connected. This can be seen by considering the path de�ned
by y4(t) = 2πt, y1(t) = y2(t) = y3(t) = 0, as shown in �gure 5.1. The shaded region
represents the possible values of ez, and this excludes only the origin, which in the �gure
is represented by a hole. Clearly, the considered path cannot be continuously contracted
into a point, as it goes around the hole at the origin. The conclusion in, then, that the
subgroup of matrices of the form 5.8, which will be denoted as SLT2(C) (group of 2× 2
special lower triangular matrices with complex entries), is not simply connected.

The group of complex number under ordinary multiplication (C,×) has as universal
cover the additive group of complex numbers (C,+), as can be seen from the homomor-
phism

φ′ : (C,+)→ (C,×)

z 7→ ez,
(5.10)
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Re(e        )
y +iy

3           4

Figure 5.1: A loop that is not contractible into a point

and the fact that (C,+) is indeed simply connected. In this context, the mapping

φ1 : G̃ → SLT2(C)

M̃z,w =


1 0 0 0

−z∗/2 1 0 0

0 0 e−z
∗/2 0

0 0 w ez
∗/2

 7→Mz,w =

(
ez 0

w e−z

)
,

(5.11)

which is clearly an homomorphism, is analogous to the mapping de�ned in 5.10, as the
subgroup of elements M̃z,0 is isomorphic to (C,+) and maps onto the subgroup of SLT2(C)
that is isomorphic to (C,×). In addition, it is easy to check that the Lie algebras associated
with the groups G̃ and SLT2(C) are identical. In fact, the de�nition in 5.11 implies that
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the Lie algebra of G̃ is given by

T1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 , T2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 i 0



K3 = −1

2


0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

 , J3 =
1

2


0 0 0 0

i 0 0 0

0 0 i 0

0 0 0 −i

 .

(5.12)

Therefore, G̃ is the universal covering group of SLT2(C) and, as a direct consequence, of
SIM(2).

The composition of the homomorphism φ de�ned in 4.25 with φ1 depicted in 5.11 gives
a homomorphism Φ = φ1 ◦ φ from G̃ onto SIM(2). This mapping presents a kernel with
an in�nite number of elements, given by

KerΦ = {M̃πil,0 | l ∈ Z}, (5.13)

as can be con�rmed by checking that every element M̃πil,0 is mapped into an element of
Kerφ. Thus, the structure of KerΦ allows multi-valued (even in�nite-valued) representa-
tions for the group SIM(2).

5.2 From hom(2) to HOM(2)

5.2.1 One-dimensional case

In last chapter, it was showed that the Lorentz group only admits the trivial represen-
tation D(Λ) = 1 in the case of dimension one. This was because the only one-dimensional
solution to the algebra of L sets all the generators to zero. For HOM(2) (and also
SIM(2)), that is not the case. The algebra represented in the commutators 5.3 admits
the one-dimensional solution given by

D(T1) = D(T2) = 0 , D(K3) = k ∈ C (arbitrary). (5.14)

Under exponentiation, this gives a single-valued representation of HOM(2) of the form

D(eT1α) = D(eT2β) = 1 , D(eK3ϕ) = ekϕ. (5.15)
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If κ3 is taken to be purely imaginary, the representations de�ned in 5.15 is unitary, i.e.,
every matrix in the representation obeys relation 3.40.

5.2.2 Two-dimensional case

The �rst case to be explored is the one in which the matrix representing the generator
K3 is diagonal, i.e.,

D(K3) =

(
k 0

0 k′

)
, (5.16)

k and k′ being the eigenvalues of K3 in this representation. The commutator of an
arbitrary matrix M with coe�cients Mij (i, j = 1, 2) with D(K3) is then

[M,D(K3)] = (k − k′)

(
0 M12

−M21 0

)
, (5.17)

in such a way that the algebra 5.3 implies that the generators T1 and T2 are represented
by

D(T1) =

(
0 t1

0 0

)
, D(T2) =

(
0 t2

0 0

)
, with k − k′ = 1

or

D(T1) =

(
0 0

t1 0

)
, D(T2) =

(
0 0

t2 0

)
, with k − k′ = −1,

(5.18)

where t1 and t2 are arbitrary complex numbers. However, these can be mapped into each
other by a similarity transformation D → SDS−1, with

S =

(
0 1

1 0

)
, (5.19)

in such a way that both cases provide equivalent representations. So, it is possible to set

D(T1) =

(
0 t1

0 0

)
, D(T2) =

(
0 t2

0 0

)
, D(K3) =

(
k 0

0 k − 1

)
, (5.20)
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with no non-equivalent representation being lost. Furthermore, if t1 6= 0 the freedom of
similarity transformation can be explored to give

D(T1)→ S ′D(T1)S
′−1 =

(
0 1

0 0

)
, D(T2)→ S ′D(T2)S

′−1 =

(
0 t

0 0

)

D(K3)→ S ′D(K3)S
′−1 =

(
k 0

0 k − 1

)
,

(5.21)

where t = t2/t1 and

S ′ =

(
1 0

0 t1

)
. (5.22)

Instead, if t1 = 0, the commutations relations in 5.3 imply t2 6= 0 (otherwise, the rep-
resentation would be completely reducible) in such a way that every representation is
equivalent to

D(T1) = 0 , D(T2) =

(
0 1

0 0

)
, D(K3) =

(
k 0

0 k − 1

)
. (5.23)

In the case of non-diagonalizable D(K3), representations similar to the one-dimensional
ones of last subsection can be constructed. Setting D(T1) = D(T2) = 0, the generator K3

can be represented by an arbitrary matrix and, taking it to be non-diagonalizable, i.e.,
equivalent to the Jordan canonical form

D(K3) =

(
k 1

0 k

)
, (5.24)

the resulting representation is not completely reducible.
As HOM(2) is its own universal covering group, every representation of the algebra,

of the form 5.21, 5.23 or 5.24, produces a representation of this group under matrix
exponentiation. Consequently, it is seen that every two-dimensional representation of
HOM(2) is equivalent to one of the following representations:

• D(eT1α) =

(
1 α

0 1

)
, D(eT2β) =

(
1 tβ

0 1

)
and D(eK3ϕ) =

(
ekϕ 0

0 e(k−1)ϕ

)

• D(eT1α) = 1, D(eT2β) =

(
1 β

0 1

)
and D(eK3ϕ) =

(
ekϕ 0

0 e(k−1)ϕ

)
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• D(eT1α) = 1, D(eT2β) = 1 and D(eK3ϕ) =

(
ekϕ ϕ

0 ekϕ

)

5.3 From sim(2) to SIM(2)

5.3.1 One-dimensional case

The algebra sim(2) is composed of the commutators showed in 5.3 and 5.7. Similarly
to the case of hom(2), this algebra admits one-dimensional representations that are non-
trivial, of the form

D(T1) = D(T2) = 0 , D(K3) = k ∈ C and D(J3) = j ∈ C (both arbitrary). (5.25)

These matrices generate two-dimensional representations of the universal covering group
G̃, obtained in section 5.1, given by

D̃(eT1α′) = D̃(eT2β′) = 1 , D̃(eK3ϕ′) = ekϕ
′
, D̃(eJ3θ

′
) = ejθ

′
, (5.26)

where T1, T2, K3 and J3 are the generators de�ned in 5.12 and α′, β′, ϕ′ and θ′ are real
parameters.

To obtain representations of the VSR subgroup SIM(2) from the ones constructed
in the last paragraph, it is only necessary to impose condition 3.36, i.e., that all the
elements in the kernel 5.13 maps onto the identity. From relations 5.11 and 5.12, it is
easy to see that the kernel is composed of the elements with parameters θ′ = 2πl (l ∈ Z),
α′ = β′ = ϕ′ = 0, in such a way that condition 3.36 can be expressed as

e2πjl = 1 , ∀l ∈ Z ⇒ j = im , m ∈ Z. (5.27)

Thus, for integer values of m, the representation depicted in 5.26 gives also a single-valued
representation of SIM(2).

It is possible to construct projective representations of SIM(2) from G̃ that are double-
valued, triple-valued,..., even in�nite-valued. For example, if relation 5.27 is chosen to
be valid only for even values of the integer l, in such a way that half-integer values of m
are also allowed, the resulting representation is double-valued. On the other hand, taking
that relation to be valid for values of l that are multiple of 3, a triple-valued representation
is obtained. Also, if no restriction is imposed on the value of j, 5.27 provides an in�nite-
valued representation for SIM(2).
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5.3.2 Two-dimensional case

Once again, it is convenient to work on a basis in which the matrix representing the
generator J3 is in diagonal form,

D(J3) =

(
j 0

0 j′

)
. (5.28)

If the matrices in 5.28 belong to a representation of SIM(2), relation 5.27 implies j = im
and j′ = im′. In addition, as hom(2) is a subalgebra of sim(2), the matrices represent-
ing the other generators can be taken to have one of the three forms obtained in last
subsection. The �rst type, given in 5.21, implies, together with the commutators in 5.7,∣∣∣∣∣ j′ − j = t

(j′ − j)t = −1
⇒ j′ − j = t = ±i. (5.29)

In addition, it is necessary that

j = im , j′ = im′ with m,m′ ∈ Z (5.30)

in order to obtain representations of the group SIM(2), of the form

D±(eT1α) =

(
1 α

0 1

)
, D±(eT2β) =

(
1 ±iβ

0 1

)

D±(eK3ϕ) =

(
ekϕ 0

0 e(k−1)ϕ

)
, D±(eJ3θ) =

(
eimθ 0

0 ei(m±1)θ

)
.

(5.31)

These representations, D+ and D−, are nor equivalent and can be obtained from each
other by complex conjugation.

For the second type, given in equation 5.23, the commutators in 5.7 imply τ2 = [τ1, ζ3] =
0, which gives a contradiction. Thus, no additional representation of the algebra sim(2)
is obtained in this case. On the other hand, the third type, discussed in the paragraph of
relation 5.24, provides representations with

D(K3) =

(
k 1

0 k

)
, D(J3) =

(
im 0

0 im

)
, (5.32)

as condition 3.36 is clearly satis�ed.
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Chapter 6

Conclusion

Special Relativity is frequently taken to be the natural consequence of the causal struc-
ture of Minkowski spacetime. However, the further requirement of spatiotemporal isotropy
is necessary to promote the Lorentz group to the fundamental symmetry group of nature.
If this assumption is not imposed, HOM(2) and SIM(2) need also to be considered. In
this work, it was shown that the representation theory associated with these subgroups
brings new elements for the construction of physical models. In fact, most of the represen-
tations obtained cannot be extended to the Lorentz group, in the sense that they cannot
be expressed as restrictions of representations of the full Lorentz group to HOM(2) or
SIM(2). This creates the possibility that Very Special Relativity is the natural place for
objects that lie outside the Standard Model (in , it was presented as the symmetry group
of dark matter, for example).

It is easy to see that the two-dimensional representations of HOM(2) and SIM(2)
obtained at the end of last chapter are reducible. However, these cannot be obtained
from the one-dimensional representations (also obtained in last chapter), since the ma-
trices composing them are not equivalent to block diagonal ones (for example, 5.32). In
comparison with the case of the Lorentz group, this is a remarkable di�erence. Every
reducible representation of the Lorentz group can be constructed as a direct sum of lower-
dimensional irreducible representations (in the language of chapter 3, it can be said that
these are completely reducible representations). In this scenario, the irreducible repre-
sentations of the groups HOM(2) and SIM(2) (which are all one-dimensional) are not
enough to construct models of physical objects, it is also necessary to consider reducible
representations.

It is also important to notice that the structure of the universal covering groups of
HOM(2) and SIM(2) strongly determines the possible multi-valued representations. The
universal cover of HOM(2), being isomorphic to HOM(2) itself, only allows single-valued
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representations of this group. On the other hand, for the case of SIM(2), multi-valued
representations can be of any kind, even in�nite-to-one (with a continuous eigenvalue of
J3 in this case). This extends even more the possibilities for the construction of physical
theories in a VSR-invariant scenario.
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