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Resumo

RISC-V é uma ISA aberta que tem chamado a atenção ao redor do mundo por seu rápido
crescimento e adoção. Já é suportado pelo GCC, Clang e Kernel Linux. Além disso,
vários emuladores e simuladores para RISC-V surgiram recentemente, mas nenhum deles
com desempenho próximo ao nativo. Nesta dissertação, nós investigamos se emuladores
mais rápidos para RISC-V podem ser criados. Como a técnica mais comum e também
a mais rápida para implementar um emulador, Tradução Dinâmica de Binários (TDB),
depende diretamente de boa qualidade de tradução para alcançar bom desempenho, nós
investigamos se uma tradução de alta qualidade de binários RISC-V é plausível. Desta
forma, neste trabalho nós implementamos e avaliamos um motor de Tradução Estática de
Binários (TEB) baseado no LLVM, para investigar se é ou não possível produzir traduções
de alta qualidade de RISC-V para x86 e ARM. Nossos resultados experimentais indicam
que nosso motor de TEB consegue produzir código de alta qualidade quando traduz
binários RISC-V para x86 e ARM, com sobrecargas médias em torno de 1.2x/1.3x quando
comparado à código nativo x86/ARM, um resultado melhor do que motores de TDB de
RISC-V bem conhecidos, como RV8 e QEMU. Além disso, como motores de TDB tem
seu desempenho fortemente relacionado à qualidade de tradução, nosso motor de TEB
evidencia a oportunidade na direção da criação de emuladores RISC-V de TDB com
desempenho superior aos atuais.



Abstract

RISC-V is an open ISA which has been calling the attention worldwide by its fast growth
and adoption. It is already supported by GCC, Clang and the Linux Kernel. Moreover,
several emulators and simulators for RISC-V have arisen recently, but none of them with
near-native performance. In this work, we investigate if faster emulators for RISC-V
could be created. As the most common and also the fastest technique to implement
an emulator, Dynamic Binary Translation (DBT), depends directly on good translation
quality to achieve good performance, we investigate if a high-quality translation of RISC-
V binaries is feasible. Thus, in this work we implemented and evaluated a LLVM-based
Static Binary Translation (SBT) engine to investigate whether or not it is possible to
produce high-quality translations from RISC-V to x86 and ARM. Our experimental results
indicate that our SBT engine is able to produce high-quality code when translating RISC-
V binaries to x86 and ARM, with average overheads around 1.2x/1.3x when compared
to native x86/ARM code, a better result than well-known RISC-V DBT engines such as
RV8 and QEMU. Moreover, since DBT engines have its performance strongly related to
translation quality, our SBT engine evidences the opportunity towards the creation of
RISC-V DBT emulators with higher performance than the current ones.
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Chapter 1

Introduction

RISC-V is a new, open and free Instruction Set Architecture (ISA), initially developed

at the University of California [1] and now maintained by the RISC-V foundation [2],

with a handful of companies supporting its development. It is a small RISC-based archi-

tecture divided into multiple modules that support integer computation, �oating-point,

atomic operations, and compressed instructions, besides others that are being developed

for vector, bit manipulation, transactional memory and packed SIMD instructions [1],

each one focusing on di�erent future computing targets such as IoT embedded devices

and cloud servers. RISC-V is calling attention worldwide by its fast growth and adoption.

By now, it is supported by the Linux Kernel, GCC, Clang, not to mention several RISC-V

simulators [3, 4, 5] and emulators [6, 7].

In terms of ISA design, RISC-V is reaching a mature and stable state only by now

[1]. RISC-V was developed in 2010, but the user-level ISA base and extensions MAFDQ

(multiply/divide, atomic, single-precision �oating-point, double-precision �oating-point

and quadruple-precision �oating-point: the main standard extensions) were frozen only

in 2014 [1]. For the privileged ISA, at the time of this writing, the latest released speci�-

cation [8] was still a draft, albeit at an advanced stage. For the physical implementations,

there are several open-sourced RISC-V CPU designs available [9, 10, 11] and also some

o�-the-shelf RISC-V development boards [12, 13]. These open-sourced designs and de-

velopment boards are great steps towards making RISC-V CPU chips easily available, an

stage that was still not reached, as it usually takes some time until hardware implementing

a new ISA becomes widely available. Until then, emulation plays a crucial role, because

it enables the use of a new ISA while there are no (or few) physical CPUs available for it.

The main job of an ISA emulator is to emulate guest instructions using host instruc-

tions, with the goal of making the host perform an equivalent computation to what would

be achieved by the guest instructions being executed on the guest platform. However,

not only mimicking the computation is important, but normally performance also plays a

crucial role. For RISC-V, to the best of our knowledge, at the current time, no emulator

can achieve near-native performance � which in this work we consider to be around 1.20x

slower than native (s.t.n.) � as the best RISC-V emulators performances are more than

2 times s.t.n. This limits the scope of RISC-V emulators, by excluding them from use

cases where performance plays a major role.

Having a high-performance RISC-V emulator for common architectures, i.e. x86 and
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ARM, would not only facilitate RISC-V adoption and testing but also would show it as

an useful virtual architecture to ease software deployment. One approach to implement a

high-performance emulator is by using Dynamic Binary Translation (DBT) [14], a tech-

nique that selects and translates regions of code dynamically during the emulation. This

technique has been used to implement fast virtual machines (VMs), simulators, debuggers,

and high-level language VMs. For example, it has been used to facilitate the adoption

of new processors and architectures, such as Apple's PowerPC to x86 migration software

Rosetta [15], to enable changes in microarchitecture without changing the architecture

itself, as with the Transmeta Crusoe and E�ceon processors [16] that implement x86,

or in the deployment of high-level languages in several platforms such as with the Java

VM [17].

A DBT engine usually starts by interpreting the code and then, after warming-up

(translating all hot regions), it spends most of the time executing translated regions.

Thus, the quality and performance of these translated regions are responsible for most of

the DBT engine performance [18] and there are two DBT design choices which a�ect most

of the quality of translation: (1) the DBT's Region Formation Technique (RFT) which

de�nes the shape of the translation units [19] and (2) the characteristics of the guest and

host ISA which can hinder or facilitate the translation [20].

While RFT design choice is well explored in the literature, the translation quality of

each pair of guest and host ISA needs to be researched and retested for every new ISA.

One approach to understanding the quality and di�culty of code translation for a pair

of ISAs is by implementing a Static Binary Translation (SBT) engine [20]. SBTs are

limited in the sense that they are not capable of emulating self-modifying code and may

have di�culty di�erentiating between data and code, but its design and implementation

are usually much simpler than those of a DBT. Since the translation mechanisms in a

DBT and an SBT are very similar, if one is able to create an SBT engine which can emit

high-quality code for a pair of architectures, it implies that the same can be done for a

DBT engine. Thus, in this work we implemented and evaluated a LLVM-based SBT to

investigate whether or not it is possible to produce high-quality translations from RISC-

V to x86 and ARM. Our SBT was capable of producing high-quality translations, that

execute almost as fast as native code, with around 1.2x/1.3x slowdown in x86/ARM. In

this way, the main contributions of this work are the following:

• We present a novel Open Source RISC-V Static Binary Translator based on LLVM.1

• We show with our RISC-V SBT that it is possible to perform a high-quality trans-

lation of RISC-V binaries to x86 and ARM.

• We compare the performance of our SBT engine with the performance of state-of-

the-art RISC-V emulators and argue that there is still a lot of room for improvement

on dynamic RISC-V emulators.

• We show that it is not trivial to make LLVM be able to vectorize code when trans-

lating optimized code from an ISA that does not support vectorization to another

one that does.
1https://github.com/OpenISA/riscv-sbt
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• We show that the aggressive use of registers when performing loop unrolling in guest

code can have a signi�cant performance impact in translated code when the host

ISA has considerably less registers than the guest.

Furthermore, two other works were developed in the context of this dissertation. In

the �rst, Uma Análise da Facilidade de Emulação de Binários RISC-V [21], presented at

ERAD-SP 2018, we investigated in more depth the ease of emulation of RISC-V binaries,

comparing it with OpenISA [20], an ISA designed to allow high-performance emulation.

This revealed many similarities between RISC-V and OpenISA and indications that RISC-

V could also be emulated with low overhead. In the second, Towards a High-Performance

RISC-V Emulator [22], presented at WSCAD 2018, we have evaluated some of the fastest

RISC-V DBT engines available, comparing them with an initial version of our SBT engine,

that was able to translate RISC-V binaries with considerably less overhead, evidencing

the opportunity towards the creation of faster DBT engines.

The rest of this dissertation is organized as follows. Chapter 2 further describes ISA

emulation techniques, the challenges to implement them, discusses ISA characteristics

that are di�cult to translate and presents other emulators for RISC-V. Then, in Chapter

3 we discuss our SBT engine for RISC-V, in Chapter 4 we describe our experimental setup

and how the compiler settings that gave the best results were found, and in Chapter 5

we discuss the results we have obtained with our RISC-V SBT engine. Lastly, Chapter 6

presents our future work and conclusions.
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Chapter 2

ISA Emulation and Related Work

Interpretation and DBT are well-known methods used to implement ISA emulators. In

this section, we examine them in more details, along with SBT and works that achieved

good performance results with each method.

2.1 Interpretation

Interpretation is a technique that relies on a fetch-decode-execute loop that mimics the

behavior of a simple CPU, a straightforward approach. Nonetheless, it usually requires the

execution of tens (or hundreds) of native instructions to emulate each guest instruction.

For instance, Bochs [23] is a well-known and mature x86 interpreted emulator, able to

emulate the entire system and boot operating systems. But, by emulating x86 over x86, its

performance varies from 31 to 95 host cycles per instruction emulated (or about 31 to 95x

slower than native) on average, measured using the SPEC CPU2006(int) benchmark [24].

Therefore, we conclude that even high-performance interpreted emulators such as Bochs

are not good enough when compared to native execution performance.

2.1.1 RISC-V Interpreters:

The gem5 simulator [3, 25] is a modular platform for computer-system architecture re-

search, supporting multiple distinct CPU architectures, such as x86, ARM, SPARC, and

now also RISC-V (gem5 for RISC-V is a.k.a. RISC5). While a strong point of it is its abil-

ity to perform accurate CPU simulation and capture microarchitectural details, this ends

up resulting in a much slower emulation speed � around 175 KIPS (Thousand Instruc-

tions per Second) on RISC-V [3] � that while being well above other in-depth simulators,

such as the Chisel C++ RTL simulator, is well below other RISC-V emulators not trying

to capture microarchitectural details, such as Spike and QEMU.

TinyEMU [26] is a system emulator for RISC-V and x86 architectures. Its purpose is to

be small and simple while being complete. It even supports the 128-bit RISC-V variant

and quadruple-precision �oating-point (Q extension). While we found no performance

data available for it yet, it should be similar to that of purely interpreted emulators. On

x86 it makes use of KVM, which in general achieves a performance well above that of
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interpretation due to hardware acceleration, but that doesn't help on improving RISC-V

performance.

ANGEL [27] is a Javascript RISC-V ISA (RV64) Simulator that runs RISC-V Linux

with BusyBox. Our simple run achieved ≈ 10 MIPS in Chrome, on an Intel Core i7-

2630QM CPU running at 2.0GHz, or about 200 times slower than native.

Spike [28], a RISC-V ISA simulator, is considered by the RISC-V Foundation to be

their �golden standard� in terms of emulation correctness. As expected from an interpreted

simulator, its performance is not very high, although quite higher than other emulators

in some cases, varying from 15 to 75 times slower than native on SPECINT2006 bench-

marks [4]. This performance is due to several DBT-like optimizations, such as instruction

cache, software TLB, and unrolled PC-indexed interpreter loop to improve host branch

prediction.

As expected, RISC-V emulators that use mainly interpretation are far from near-native

performance.

2.2 Dynamic Binary Translation (DBT)

Dynamic Binary Translators translate (map) pieces of guest code into host code and

usually obtain greater performance with the cost of being more complex and harder to

implement. Because of this, translation is commonly used on high-performance emulators,

such as QEMU [29]. A DBT engine uses two mechanisms to emulate the execution of

a binary, one with a fast-start but slow-execution and another with a fast-execution but

a slow start. The former is used to emulate cold (seldom executed) parts of the binary,

normally implemented using an interpreter. The latter is used to emulate hot (frequently

executed) parts of the code by translating the region of code and executing it natively. A

translated region of code normally executes more than 10x faster than an interpreter [30].

It is important to notice that the costs associated with the translation process impact

directly on the �nal emulation time. As a consequence, DBTs usually employ region

formation techniques (RFTs) that try to form and translate only regions of code that the

execution speedup (compared to interpretation) pays o� the translation time cost.

In most programs, the majority of their execution is spent in small portions of code [19].

Thus, when emulating these programs, DBT engines also spend most of their time ex-

ecuting small portions of translated code. This implies that the translation quality of

these portions of code is crucial to the �nal performance of a DBT engine. In fact, this

is evidenced by the low overhead of same-ISA DBT engines [18], also known as binary

optimizers, as they always execute code with the same or better quality than the native

binary (this happens because same-ISA do not actually impose translations, but only op-

timizations). Designing and implementing high-performance cross-ISA DBT engines, on

the other hand, is more challenging as the quality of the translated code depends heavily

on the characteristics of the guest (source) and the host (target) ISA. For instance, ARM

has a conditional execution mechanism that enables instructions to be conditionally exe-

cuted depending on the state of the status register, however, since x86 does not have this

feature, it may require several instructions to mimic this behavior on x86 [31]. Experience



17

has shown that when emulating a guest-ISA which is simpler than the target-ISA it is

normally easier to obtain high quality translation [20]. Next, we examine some well-known

DBT engines with high-performance emulation.

Hong et al. created HQEMU [32] in an e�ort to enhance QEMU [29] with LLVM and

try to achieve near-native performance. It uses QEMU standard Tiny Code Generator

(TCG) for fast translation of cold regions, while LLVM runs on another core to aggres-

sively optimize traces of hot regions. The geometric mean of the overhead compared to

native execution is 2.5x for x86 emulation on x86-64 (almost same-ISA emulation) and

3.4x for ARM emulation on x86-64 (cross-ISA setup), with an i7 3.3 GHz as the host ma-

chine. This same work also evaluates the performance of QEMU as a baseline, reporting

5.9x on the same-ISA emulation setup and 8.2x on the cross-ISA setup.

In a more recent work, HERMES [33] proposes to drop the architecture of QEMU in

favor of a host-speci�c data dependency graph, which allows exploring optimizations at

a representation that is closer to the host instead of the generic IR of QEMU. HERMES

achieves the performance of, on average, 2.66x slower than native for SPEC CPU2000

programs, which is very competitive for a cross-ISA translation.

One of the best performances we see in literature is achieved by IA32-EL, by Baraz et

al. [34], an ISA translator that runs the x86 guest programs on the discontinued Itanium

architecture. They built a specialized DBT engine that runs x86 programs, on average,

1.35x slower than native Itanium programs, albeit their DBT is focused on only a speci�c

guest and host machine pair.

For same-ISA emulation, the best performance achieved is that of StarDBT by Borin

and Wu [18]: 1.1x slower than native (x86) emulation.

These works show that it is possible to achieve near-native performance by means of

DBT techniques, even with cross-ISA emulation, as shown by IA32-EL. In the cross-ISA

scenario, however, the performance of the DBT is highly dependant on guest and host

ISA characteristics, as we mentioned earlier.

2.2.1 RISC-V Dynamic Binary Translators:

Ilbeyi et al. [4] showed that the Pydgin Instruction Set Simulator can achieve better

performance than Spike, by means of more sophisticated techniques, mainly, DBT. Pydgin

with DBT is able to achieve between 4x to 33x slower than native performance. While

achieving a better result than Spike, Pydgin is slower than QEMU for RISC-V, that was

still unavailable at the time Pydgin work was published.

QEMU [29], a famous DBT with multiple sources and targets, also gained support for

RISC-V. QEMU is 4.57x slower than a native execution [6] and one of its main performance

disadvantages comes from �oating-point emulation, as its Intermediate Representation

(IR) does not have any instruction of that kind and it needs to simulate them by calling

auxiliary functions.

OVP Simulator for RISC-V [5] implements the full functionality of RISC-V User and

Privileged speci�cations. It is developed and maintained by Imperas Software [35], being

fully compliant to the OVP open standard APIs. As we show in Chapter 5, it is on

average 4.92x s.t.n., a result close to that of QEMU.
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Clark and Hoult [6] presented the RV8 emulator, a high-performance RISC-V DBT

for x86. Using optimizations such as macro-op fusion and trace formation and merge,

RV8 is able to achieve a performance 2.62x slower than native, on average, overcoming

QEMU and being the fastest known RISC-V DBT engine. Note, however, that RV8 is

currently more limited than QEMU, as it does not support running as many program

types as QEMU and it can run only on x86. Besides, although 2.62x s.t.n. is a good

performance result, it is still far from near-native performance.

2.3 Static Binary Translation (SBT)

Having a high-performance DBT for a pair of ISAs would prove that, for these ISAs, it is

possible to achieve good translation quality. However, implementing a DBT is a complex

project and a challenge by itself. Another possibility is to implement an SBT engine to

translate the binary. An SBT engine translates statically the whole binary at once. SBT

is not usually used to emulate binaries in industry, despite being easier to implement

than a DBT engine, because SBT cannot execute all kinds of applications. Self-modifying

code, code discovery problems and indirect branches are some of the emulation problems

that cannot be handled statically [36]. However, for the purpose of testing the di�culty

of translating code with high-quality, an SBT is enough.

A remarkable SBT engine we see in literature is LLBT [37], a static binary translator

based on LLVM that achieves cross-ISA translation (ARM to an Intel Atom) with 1.40x

of overhead, on average, for the EEMBC benchmark.

Going further, according to Auler and Borin [20], it is possible to achieve near-native

performance in cross-ISA emulation if the guest architecture is easy to be emulated.

They showed this to be possible with OpenISA, an ISA based on MIPS but modi�ed with

emulation performance in mind. Using SBT to emulate OpenISA on x86 and ARM, they

were able to achieve an overhead of less than 1.10x for the majority of programs.

In fact, among the main motivations for this work was the near-native performance

that Auler and Borin were able to achieve with their OpenISA emulator, and the similar-

ities between OpenISA and RISC-V, that suggested that RISC-V could also be emulated

very e�ciently. OpenISA's work [20] discusses several characteristics that may ease or

di�cult an ISA emulation. RISC-V has most of the characteristics pointed by the authors

to be easy to emulate: it is simple, it hardly uses status registers and it has a small number

of instructions � RISC-V has 107 and OpenISA 139, with 66% of them being equivalent

� all indicating that RISC-V is also an easy to emulate ISA. This is the reason why

we use the same approach as that used by Auler and Borin to test OpenISA emulation

performance and this is the methodology that we use to test if RISC-V translation can

achieve good performance.

Table 2.1 summarizes the ISA emulation results presented in this section.
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Name Guest Host Benchmark Performance (x s.t.n.) 1

Bochs [24] x86 x86 SPEC CPU2006 (int) 31 to 95 2

QEMU [32] x86 x86 SPEC CPU2006 (int) 5.9

QEMU [32] ARM x86 SPEC CPU2006 (int) 8.2

HQEMU [32] x86 x86 SPEC CPU2006 (int) 2.5

HQEMU [32] ARM x86 SPEC CPU2006 (int) 3.4

Hermes [33] x86 MIPS SPEC CPU2000 2.66

LLBT [37] ARM x86 EEMBC 1.40

IA32-EL [34] x86 Itanium SPEC CPU2000 (int) 1.35

StarDBT [18] x86 x86 SPEC CPU2000 1.10

OpenISA SBT [20] OpenISA x86 Mibench and SPEC CPU2006 1.10

OpenISA SBT [20] OpenISA ARM Mibench and SPEC CPU2006 1.10

RISC5 [3] RISC-V x86 Ligra 17142 3

ANGEL RISC-V x86 boot linux 200 4

Spike [4] RISC-V x86 SPEC CPU2006 (int) 15 to 75 5

Pydgin [4] RISC-V x86 SPEC CPU2006 (int) 4 to 33 6

OVP RISC-V x86 MiBench 4.92

QEMU [6] RISC-V x86 other 7 4.57

RV8 [6] RISC-V x86 other 7 2.62

1 s.t.n. = slower than native
2 host cycles per emulated instruction
3 175 KIPS, on a unspeci�ed x86 machine (estimating 3000 MIPS)
4 10 MIPS, on an Intel i7 2.0GHz (≈ 2000 MIPS)
5 40 to 200 MIPS, on a �contemporary server-class host� (estimating 3000 MIPS)
6 90 to 750 MIPS, on a �contemporary server-class host� (estimating 3000 MIPS)
7 AES cipher, dhrystone v1.1, miniz compression and decompression, the NORX cipher,

prime number generation, qsort and the SHA-512 digest algorithm

Table 2.1: Summary of ISA emulation related work and their performances.
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Chapter 3

A Static Binary Translator for RISC-V

Static translation of RISC-V binaries into native form for other architectures, such as

ARM and x86, involves several steps. Our Static Binary Translator starts by reading

a RISC-V object �le and disassembling each instruction in it, with the help of LLVM

libraries. Then, for each RISC-V instruction, our translator emits equivalent, target

independent, LLVM Intermediate Representation (IR) instructions (a.k.a. bitcode). In-

struction translation is covered in more details in later subsections. Note that this is

very similar to what Clang does when compiling a source �le to bitcode. After that, the

produced LLVM IR is written to a �le, concluding the �rst translation stage.

The remaining steps are performed with existing software. LLVM tools are used to

optimize the IR and to generate assembly code for x86 or ARM. After that, a standard

assembler and linker for the target platform, such as GNU as and ld, can be used to pro-

duce the native binary for the host architecture. All these steps for SBT are summarized

in the diagram from Figure 3.1. The code generation �ows used in our experiments are

further detailed in Chapter 4.

Figure 3.1: Our RISC-V SBT engine architecture.

In the following subsections, we �rst discuss our approach of using unlinked objects

as input, then we describe in details how register mapping is implemented in our SBT
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engine, and how the di�erent approaches to it impact in performance. Finally, we explain

in more depth how each RISC-V instruction is translated to LLVM IR.

3.1 Unlinked Objects as Input

Instead of translating �nal linked binaries, we chose to translate relocatable object �les

to avoid dealing with some issues inherent to SBT, such as di�erentiating code from data.

It also enables us to translate only the benchmark code, leaving the C runtime out, which

simpli�es the implementation and debugging of the SBT engine, saving a considerable

amount of work that would otherwise be required. With this approach, however, the

translator must be able to identify C library calls in guest code and forward these to the

corresponding ones on native code. This was done by listing all C functions needed by the

benchmarks we used, together with their types and arguments and then, at the call site,

copying RISC-V registers corresponding to arguments to the appropriate host arguments'

locations, as de�ned by their ABIs.

It is worth mentioning that, from the 19 benchmarks pro�led and evaluated by

us, 8 (Dijkstra, ADPCM-Encode, ADPCM-Decode, Susan-Smooth, Susan-Edges, Susan-

Corners, BitCount and LAME) spent more than 80% of the time in the main binary, 2

(Rijndael-Encode and Rijndael-Decode) spent more than 60%, 2 (BlowFish-Encode and

BlowFish-Decode) spent more than 40% on x86 and more than 25% on ARM, 1 (SHA)

spent around 25%, and only 6 (CRC32, StringSearch, Patricia, BasicMath, FFT-Standard

and FFT-Inverse) spent less than 20% of the time in the main binary. While most bench-

marks spent most time in the main binary, considerable time was spent in non-translated

libc code, that must not be considered when calculating the slowdown of the translated

binaries. To handle this and improve the accuracy of the results, we also measure and

factor out the time that the binaries spend in libc, as shall be explained in more details in

Chapter 4. With this measure, the results obtained by our SBT engine are not bene�ted

by the non-translated native libc code that is excuted.

3.2 Register Mapping

Regarding register mapping between architectures during the translation, our SBT engine

implements 3 techniques:

• Globals � RISC-V registers are translated to global variables. In this technique,

the translator emits load/store instructions to read/write from/into these global

variables whenever registers are used/modi�ed by guest instructions. The main

advantages of this approach are that it is simple and it does not need any kind of

inter-function synchronization. The main disadvantage of it, however, is that the

compiler is unable to optimize most accesses to global variables.

• Locals � RISC-V registers are translated to function's local variables. In this tech-

nique, the translator emits load/store instructions to read/write from/into these

local variables whenever registers are used/modi�ed by guest instructions. The
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main advantage of this approach is that the compiler is able to perform aggressive

optimizations on those. The main disadvantage is that the values of these local

variables need to be synchronized with those of other functions at function calls and

returns, what can impact performance signi�cantly on hot spots. We implement the

synchronization by copying local register variables from/to global variables, when

entering and leaving functions.

• ABI � this technique is very similar to Locals, with the main di�erence being that

only registers that are speci�ed as non-volatile in RISC-V ABI are preserved through

function calls. This reduces the synchronization overhead considerably, but limits

the translatable programs to those that conform to RISC-V ABI.

3.3 Code Translation

In general, most RISC-V instructions have a direct or close enough LLVM IR instruction,

that eases the task of implementing a binary translator for it. However, some classes of

instructions are di�cult to translate by nature, such as branches and jumps, but that is

the case for most architectures, not a RISC-V particularity. Next, we �rst go through

some general implementation decisions and then give an overview of how the main RISC-V

instruction classes were implemented in our SBT engine.

3.3.1 Shadow Image

Before translating the code present in the .text section, all other sections are processed

and a Shadow Image of the binary is built, that is, a copy of the sections of the original

binary. This copy is then modi�ed, by translating most of the guest addresses, during the

relocation process, adding some helper data, such as the global variables used to simulate

or synchronize RISC-V registers, and some other adjustments.

3.3.2 Handling Relocations

As we use unlinked object �les as input, our translator must be able to handle relocations

properly. Our approach to implement this is to process all relocation entries and make

the corresponding address point to the emulated guest memory area. This way, memory

accesses to data are performed by using the guest address as an o�set that is relative to

the base address of the binary Shadow Image. In the case of relocations that point to

the .text section, however, we need to defer the relocation, until the corresponding code

location is translated and its host address or label is known. This way, for addresses that

point to instructions inside a function, that are potential indirect branch targets, pending

relocations are created, and resolved during code translation.

3.3.3 Arithmetic Logic Operations

For the arithmetic and logic instructions, in the vast majority of cases the translation is

trivial � not considering the register mapping code � as there is a direct correspondent
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instruction in LLVM IR. Examples are add, sub, and xor. Some instruction forms were

optimized, such as xor a,b,-1, that is used in RISC-V to perform a logical not, that

does not have a distinct instruction for it, but is present in other ISAs, that usually

execute it faster than a xor. In such cases the translator emits the optimal LLVM IR

instruction, that would be a not in this case. In a few cases, however, there is no direct

equivalence in LLVM IR, such as in the mulh instruction, that returns the upper 32 bits

of a multiplication. In this case, this instruction is translated to a 64-bit multiplication,

an arithmetic shift right of 32 bits and a truncate instruction. Here it would be possible

to optimize the case where both mul and mulh instructions were performed with the same

inputs, but we left this optimization out, as we did not detect this to have a signi�cant

impact in our benchmarks.

3.3.4 Load/Store

The load and store instructions were also straightforward to implement, mainly because

the code that handles relocations, explained above, already performs the necessary guest

to host address translation. Then it was just a matter of calculating the resulting address,

by adding the base and o�set parts, performing the load or store of the correct amount

of bytes, and, for loads, performing the necessary zero or sign extension.

3.3.5 Direct Branches and Jumps

Branch and jump instructions, on the other hand, are considerably more complex to

translate. This, however, is not due to hard to translate RISC-V instructions, but due

to the inherent di�culty of translating branch and jump instructions in general. Exclud-

ing the instruction forms that are used to perform function calls, all branch and jump

instructions are translated in the same way. First, the correct condition test is emitted,

if the instruction is a branch. Next, a conditional or an unconditional jump is emitted.

To compute the target guest address, the displacement operand of the branch or jump

instruction is added to the current guest address, that in our case is equal to the address

of the instruction being translated. If the resulting address is greater than the current

one, a new basic block is created at the target address and added to the basic blocks'

map. Otherwise, a lookup by address is perfomed at the function's basic blocks, to check

if there is already one starting at the target guest address. If not, the basic block that

contains the instruction at the target address is located and split in two at that point.

The branch to the correct basic block can then be emitted.

3.3.6 Indirect Jumps

The translation of indirect jumps is performed in three steps: the binary relocation phase;

the processing of pending relocations during instruction translation; and the addition of all

possible targets of each indirect jump, after all function instructions have been translated.

During the binary relocation phase, explained in Subsection 3.3.2, pending relocations

against the .text section are produced. These relocations refer to host addresses that

are unknown before the translation of the functions they point to. Instead, they are
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resolved during the translation of guest instructions, where the guest address of each

instruction is checked against pending relocations' guest addresses. When a match occurs,

the corresponding pending relocation is resolved to the now available host address of the

translated code.

With this approach, each RISC-V indirect jump can be translated directly to an LLVM

indirect branch instruction. This is possible because of the use of relocation information,

that enables our SBT engine to replace guest code addresses on jump tables by host

addresses, so that indirect jump instructions can simply jump to already translated ad-

dresses. But note that our translation of indirect jumps handles only common cases:

indirect jumps emitted by compilers, with a limited number of targets, usually loaded

from jump tables. For the general case, it can be handled e�ciently with known DBT

techniques [38].

The last step is performed after all function's instructions have been translated. After

that, the SBT engine goes through each LLVM indirect branch instruction emitted, adding

all possible destinations � as they are known at this stage � to them. This is needed in

order to make LLVM correctly build the Control Flow Graph (CFG) of the function. A

�nal remark about indirect jumps is that they were not very common in our benchmarks,

and thus their translation quality contributed little to increase or decrease the measured

performance.

3.3.7 Function Calls

The translation of function calls can be divided in 3 parts: direct calls to functions

inside (internal) the benchmark binary (the main binary); direct calls to functions outside

(external) the main binary, (e.g. libc functions); and indirect function calls. There are

however some translation aspects that are common to all 3 types. One of them is that

at function calls and returns, mapped registers are synchronized between the involved

functions, if the Locals or ABI register mapping approach is used. Another one, is that,

as a simpli�cation, we take advantage of the regular/ABI RISC-V return form, that is

jalr zero, ra, and emit a LLVM return instruction in this case. Tail calls are identi�ed

and handled appropriately by our translator, but more rare types of function returns,

such as loading the return address to an arbitrary register and jumping to there would

fail. Note, however, that despite the fact that SBT is not always viable, such as in this

case, this does not invalidate our experiment � that shows that it is possible to generate

high-quality code for x86 and ARM � because our SBT engine was able to translate

several benchmark programs, indicating that it is able to translate the most used code

constructions, even though it would require a more sophisticate technique in some corner

cases.

3.3.8 Direct Internal Function Calls

For direct calls to internal functions, the implementation is similar to that of jumps. First,

the guest target address is calculated. Next, the target function is looked up by address,

at the functions map. If it is not found, then a new function is created, initially empty.
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Then, in order to mimic the behavior of RISC-V jump and link instruction, the address

of the next instruction is saved to the emulated RISC-V output register speci�ed in the

instruction (a.k.a. the link register) and, �nally, the call is made.

3.3.9 Direct External Function Calls

For external calls, that can be identi�ed by relocation entries pointing to unde�ned sym-

bols, our libc call forwarding mechanism is used. Our translator looks up the function by

name, from an LLVM IR �le that lists all libc functions used by our benchmarks. This

�le provides the SBT engine almost all information that is needed to perform a libc call,

including its parameters and types. The �almost� here is due to functions with variable

number of arguments, that, at compile time, make it di�cult to discover the correct num-

ber and types of the arguments that need to be passed on each call. For them, we pass up

to four extra integer arguments, for the variadic part. However, special handling must be

done for printf() and similar functions, in cases where there are more than 4 arguments or

that mix �oating-point and integer arguments. These special cases are not handled in our

current SBT engine implementation, instead, some complex calls with variable number

of arguments were broken into simpler ones in the benchmarks source code. Although in

most cases (those that use a literal format string) this could be done, by inspecting the

format string to �nd out the number of arguments and their types, this was left out due to

the amount of work that would be required, and the limited bene�ts of it in our research.

In any case, the arguments for the external function calls are loaded from the mapped

registers where RISC-V ABI expects to �nd them and then an LLVM IR call instruction is

emitted. Analogously, the return value is written to the return value register, as speci�ed

by RISC-V ABI. It is worth noting that this libc call forwarding mechanism is used by us

more as a mean of isolating and avoiding having to translate several complex libc function

calls in our experiments, and not as a suggested high-performance translation technique

for general cases. Besides, it is important to remember that, as discussed in Subsection

3.1, most of the benchmarks' execution time is spent in the main binary and not in libc

and also that the time spent on it is not considered by us when calculating the slowdown

of the translated binaries.

3.3.10 Indirect Function Calls

To handle indirect calls, we implemented two translation mechanisms. The more e�cient

one is able to handle only indirect calls to internal functions, that is, functions in the

main binary. It works almost the same way as the indirect jump implementation, where

the translation of guest to host address is performed in address relocation, but a call is

made instead of a jump, which involves saving the return address to the link register

and synchronizing mapped RISC-V registers. The more complex mechanism, that must

be able to handle indirect calls to external functions too, whose addresses are unknown

before the link phase, works as follows. References to each external function are replaced

by distinct, invalid, addresses in a given range. Then, when an indirect call is made, an

indirect caller function is invoked, that consists basically of a big switch with the target
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address as input, where each case makes the appropriate internal function call or external

libc function call forwarding. This extra indirection incurs some overhead, that may be

signi�cant when inside loops with a small body but many iterations, such as one present

in BitCount, in which the indirection overhead is about 0.1x, in Locals mode. In its case,

we took advantage of the fact that it does not make indirect calls to libc functions to use

only the �rst translation mechanism.

3.3.11 Floating-Point

In �oating-point emulation, there are also some RISC-V instructions that are straight-

forward to translate, such as additions and subtractions, and others that have no direct

equivalent in LLVM IR, such as the sign-injection instructions. Load and store imple-

mentation is very similar to the integer equivalents. For some of the more complex

instructions, such as fsqrt (square root) and fmadd (fused multiply-add), LLVM provides

intrinsic calls, that implement it in the most e�cient way for the target architecture.

Other fused operations, however, are not so common and have no direct LLVM corre-

spondent and so they must be decomposed in multiple instructions, such as in the fused

multiply-subtract case, but are otherwise straightforward to translate. Conversions and

casts from �oating-point to integer and vice-versa also do not present much problem to

translate, except for out-of-range and some special inputs, such as ∞ and NaN, that re-

quire a distinct conversion method, mostly by requiring a speci�c result value instead of

leaving it unde�ned. While the check and handling of these special cases is implemented

in our SBT engine, it sometimes introduces considerable overhead. As these never occur

in our benchmarks and would otherwise look more like compiler or hand-written assembly

issues, these checks are turned o� by default.

The sign-injection instructions, on the other hand, are more tricky to implement.

While fsgnj (sign-injection) can be mapped to LLVM copysign intrinsic, and fsgnjn

(negated sign-injection) can be translated to copysign with the second operand negated,

LLVM IR has nothing close to fsgnjx (xor sign-injection). In this last case, the result

must be the same value of the �rst operand, but with the sign bit replaced by the result

of an xor of the sign bits of the �rst and second input operands. This is implemented as

follows: cast the �oating-point input operands to integers, a and b; xor a and b, produc-

ing c, that has the correct sign bit; mask all but the sign bit from c with an and ; mask

none but the sign bit from a with an and ; perform an or of a and c; cast the result to

�oating-point. Thus, it can be noted that translating the general form of fsgnjx results

in many LLVM IR instructions. But, by analysing generated code, we discovered that

most uses of fsgnjx are made to perform the abs operation. This way, by identifying

and optimizing this common case, replacing the slower general implementation above by

LLVM IR abs intrinsic, the cost of excuting the translated fsgnjx instruction becomes low

on average.

Another point worth of mentioning about RISC-V �oating-point instructions is the

rounding mode operand, present in several of them, allowing the operation result to be

rounded in a few distinct ways. The �xed rounding modes did not present a considerable

translation challenge, as they may only introduce one or more extra instructions, in cases
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where they di�er from the standard LLVM IR or target host rounding mode. Also,

we veri�ed that most instructions translated by our SBT engine use either the default

rounding mode, that rounds to the nearest value, ties to even (RNE), or use the dynamic

rounding mode, that, while speci�ed in a separate register, defaults to RNE too, meaning

no extra overhead due to the rounding mode feature, in most cases. While all rounding

modes seen in our benchmarks are supported by our translator, we have ignored the

dynamic rounding mode feature, assuming that the register that speci�es it (fcsr) is

always equal to RNE. This approach worked well in all of our benchmarks, as none tried

to change the dynamic rounding mode during execution. Emulating this feature correctly,

however, can be costly and complex, because of the extra check to RISC-V fcsr register

that must be performed. On the other hand, the fact that none of our benchmarks relied

on this feature seems to indicate that its use is quite rare.

3.4 Translation Example

To illustrate several of the translation steps discussed above, consider the following C

code in Listing 3.1:

int dot_prod(int a[2], int b[2])

{

return a[0] * b[0] + a[1] * b[1];

}

Listing 3.1: Dot Product in C

Function dot_prod() performs the dot product of two vectors, a and b, with 2 elements

each, and returns the result. Listing 3.2 shows the RISC-V code generated by GCC 7.3.

.text

.align 2

.globl dot_prod

.type dot_prod , @function

dot_prod:

lw a5, 4(a0)

lw a4, 0(a0)

lw a2, 0(a1)

lw a3, 4(a1)

mul a0, a4, a2

mul a5, a5, a3

add a0, a0, a5

ret

Listing 3.2: Dot Product in RISC-V

As speci�ed by RISC-V ABI, the two arguments that this function take are passed in

registers a0 and a1. Therefore, the �rst four instructions in Listing 3.2 load all vector

elements from a and b into RISC-V registers. Next, two multiplications and one addition

compute the dot product, writing the result into a0 � the RISC-V ABI register used to

return word-sized integer values � and the function returns. Next, the RISC-V code for
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Dot Product is used as the input of our SBT engine, that translates it to (unoptimized)

LLVM IR, using the Locals register mapping mode, as shown in Listing 3.3.

define void @dot_prod ( ) {

bb0 :

; RISC−V r e g i s t e r s are t r a n s l a t e d to l o c a l v a r i a b l e s

%lrv_x1 = alloca i32

%lrv_x10 = alloca i32

%lrv_x11 = alloca i32

%lrv_x12 = alloca i32

%lrv_x13 = alloca i32

%lrv_x14 = alloca i32

%lrv_x15 = alloca i32

; At f unc t i on entry , the l o c a l v a r i a b l e s t h a t emulate RISC−V
; r e g i s t e r s are synchroni zed ( or i n i t i a l i z e d in t h i s case )

; wi th the va l u e s o f g l o b a l RISC−V r e g i s t e r v a r i a b l e s

%0 = load i32 , i32∗ @rv_x1

store i32 %0, i32∗ %lrv_x1

; . . .

%9 = load i32 , i32∗ @rv_x10

store i32 %9, i32∗ %lrv_x10

%10 = load i32 , i32∗ @rv_x11

store i32 %10, i32∗ %lrv_x11

%11 = load i32 , i32∗ @rv_x12

store i32 %11, i32∗ %lrv_x12

%12 = load i32 , i32∗ @rv_x13

store i32 %12, i32∗ %lrv_x13

%13 = load i32 , i32∗ @rv_x14

store i32 %13, i32∗ %lrv_x14

%14 = load i32 , i32∗ @rv_x15

store i32 %14, i32∗ %lrv_x15

%15 = load i32 , i32∗ @rv_x16

; . . .

%30 = load i32 , i32∗ @rv_x31

%31 = load double , double∗ @rv_f0

%32 = load double , double∗ @rv_f1

; . . .

%62 = load double , double∗ @rv_f31

; Next , each RISC−V in s t r u c t i o n i s t r a n s l a t e d to LLVM IR

; lw a5 , 4( a0 )

%a0_ = load i32 , i32∗ %lrv_x10

%63 = inttoptr i32 %a0_ to i8∗
%64 = getelementptr i8 , i8 ∗ %63, i32 4

%65 = bitcast i8∗ %64 to i32∗
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%66 = load i32 , i32∗ %65

store i32 %66, i32∗ %lrv_x15

; lw a4 , 0( a0 )

%a0_1 = load i32 , i32∗ %lrv_x10

%67 = inttoptr i32 %a0_1 to i8∗
%68 = getelementptr i8 , i8 ∗ %67, i32 0

%69 = bitcast i8∗ %68 to i32∗
%70 = load i32 , i32∗ %69

store i32 %70, i32∗ %lrv_x14

; lw a2 , 0( a1 )

%a1_ = load i32 , i32∗ %lrv_x11

%71 = inttoptr i32 %a1_ to i8∗
%72 = getelementptr i8 , i8 ∗ %71, i32 0

%73 = bitcast i8∗ %72 to i32∗
%74 = load i32 , i32∗ %73

store i32 %74, i32∗ %lrv_x12

; lw a3 , 4( a1 )

%a1_2 = load i32 , i32∗ %lrv_x11

%75 = inttoptr i32 %a1_2 to i8∗
%76 = getelementptr i8 , i8 ∗ %75, i32 4

%77 = bitcast i8∗ %76 to i32∗
%78 = load i32 , i32∗ %77

store i32 %78, i32∗ %lrv_x13

; mul a0 , a4 , a2

%a4_ = load i32 , i32∗ %lrv_x14

%a2_ = load i32 , i32∗ %lrv_x12

%79 = mul i32 %a4_ , %a2_

store i32 %79, i32∗ %lrv_x10

; mul a5 , a5 , a3

%a5_ = load i32 , i32∗ %lrv_x15

%a3_ = load i32 , i32∗ %lrv_x13

%80 = mul i32 %a5_ , %a3_

store i32 %80, i32∗ %lrv_x15

; add a0 , a0 , a5

%a0_3 = load i32 , i32∗ %lrv_x10

%a5_4 = load i32 , i32∗ %lrv_x15

%81 = add i32 %a0_3 , %a5_4

store i32 %81, i32∗ %lrv_x10

; j a l r zero , 0( ra ) ( a . k . a . r e t )

%ra_ = load i32 , i32∗ %lrv_x1
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; At f unc t i on e x i t , the l o c a l v a r i a b l e s t h a t emulate RISC−V
; r e g i s t e r s are synchroni zed wi th the g l o b a l RISC−V
; r e g i s t e r v a r i a b l e s

%82 = load i32 , i32∗ %lrv_x1

store i32 %82, i32∗ @rv_x1

%83 = load i32 , i32∗ %lrv_x10

store i32 %83, i32∗ @rv_x10

%84 = load i32 , i32∗ %lrv_x11

store i32 %84, i32∗ @rv_x11

%85 = load i32 , i32∗ %lrv_x12

store i32 %85, i32∗ @rv_x12

%86 = load i32 , i32∗ %lrv_x13

store i32 %86, i32∗ @rv_x13

%87 = load i32 , i32∗ %lrv_x14

store i32 %87, i32∗ @rv_x14

%88 = load i32 , i32∗ %lrv_x15

store i32 %88, i32∗ @rv_x15

; r e turn

ret void

}

Listing 3.3: Dot Product routine translated from RISC-V to LLVM IR (unoptimized)

The �rst LLVM IR instructions declare local variables, used to emulate local copies

of RISC-V registers inside the function, that may be allocated in the stack or promoted

to LLVM registers later. The load and store instructions that follow initialize these local

variables from the global variables that emulate RISC-V registers, that in the Locals

mode are used only to synchronize local variables of functions, whenever the execution is

switched from one to another. Note that, although the values of all registers are loaded

from global variables, the stores occur only to those local variables that are used in the

function. This is because the SBT engine removes all loads and stores to emulated registers

that are only used in synchronization points, except for the initial load that is left behind,

but that is easily removed by liveness analysis during the optimization step.

After the local variables have been initialized, the translation of the �rst function

instructions begin, that in this case is the load of the vector elements of arguments a

and b. In this paragraph we explain the translation of the �rst RISC-V instruction (lw

a5, 4(a0)), as the translation of the other 3 RISC-V lw instructions are nearly identical.

First, the value of the base address register, a0 (a.k.a. x10 ), is loaded from the local

variable that emulates it. Next, the loaded 32-bit integer value is casted to an 8-bit

integer pointer, to which the byte address o�set speci�ed in the RISC-V instruction is

added. The resulting address is then casted to a 32-bit integer pointer, that can then be

used to perform a 32-bit integer load from memory, that is then stored into the output

register a5 (a.k.a. x15 ), as speci�ed by the RISC-V instruction being translated. An

interesting thing to note is that the translation of these RISC-V lw instructions produces

some unecessary LLVM loads, as in the case of a0, that is loaded in the translations of
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the �rst and second lw instructions, even though it has already been loaded during a

previous register synchronization instruction. This happens because our SBT engine, in

most cases, limits its scope to only the instruction being translated. But these kinds of

redundant operations do not hurt performance, because they can be easily eliminated by

LLVM opt, used in the sequence to optimize the translated IR � as we shall see later �

before proceeding to actual target code generation.

The translation of the mul and add instructions are straightforward: the input register

operands are loaded, the arithmetic operation is performed and the result is stored into

the output register. The last RISC-V instruction translated is ret, that is actually a

pseudo-instruction, mapped to jalr zero, 0(ra). As this is the function exit point, all

registers that were modi�ed during its execution, using local variables, must be written

to their global counterparts before the function can actually return. This is done by the

loads from local variables and the stores to global ones, and then the function returns.

Note that, as speci�ed by RISC-V ABI, the caller expects the result to be returned in a0,

which is why the LLVM ret instruction returns no value.

Next, in Listing 3.4, we present the result of the LLVM optimization step, using LLVM

opt with the -O3 �ag, in the LLVM IR just shown.

; Function At t r s : norecurse nounwind

define void @dot_prod ( ) local_unnamed_addr #1 {

bb0 :

; r e g i s t e r s ynchron i za t i on ( func t i on entry )

%0 = load i32 , i32∗ @rv_x10 , a l i g n 4

%1 = load i32 , i32∗ @rv_x11 , a l i g n 4

; lw a5 , 4( a0 )

%2 = zext i32 %0 to i64

%3 = inttoptr i64 %2 to i8∗
%4 = getelementptr i8 , i8∗ %3, i64 4

%5 = bitcast i8∗ %4 to i32∗
%6 = load i32 , i32∗ %5, a l i g n 4

; lw a4 , 0( a0 )

%7 = inttoptr i64 %2 to i32∗
%8 = load i32 , i32∗ %7, a l i g n 4

; lw a2 , 0( a1 )

%9 = zext i32 %1 to i64

%10 = inttoptr i64 %9 to i8∗
%11 = inttoptr i64 %9 to i32∗
%12 = load i32 , i32∗ %11, a l i g n 4

; lw a3 , 4( a1 )

%13 = getelementptr i8 , i8 ∗ %10, i64 4

%14 = bitcast i8∗ %13 to i32∗
%15 = load i32 , i32∗ %14, a l i g n 4
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; dot product

%16 = mul i32 %12, %8

%17 = mul i32 %15, %6

%18 = add i32 %17, %16

; r e g i s t e r s ynchron i za t i on ( func t i on e x i t ) and r e t

store i32 %18, i32∗ @rv_x10 , a l i g n 4

store i32 %12, i32∗ @rv_x12 , a l i g n 4

store i32 %15, i32∗ @rv_x13 , a l i g n 4

store i32 %8, i32∗ @rv_x14 , a l i g n 4

store i32 %17, i32∗ @rv_x15 , a l i g n 4

ret void

}

Listing 3.4: Dot Product routine translated from RISC-V to LLVM IR (optimized)

We can observe that LLVM was able to optimize several parts of the initial IR and

reduce considerably the code size. Unnecessary loads from global variables were elim-

inated, all local variables used to emulate RISC-V registers were promoted to LLVM

virtual registers, redundant loads emitted by the SBT engine were removed and stores to

local variables overwritten before their use were removed.

The last block of code performs register synchronization, and since it involves writing

to global variables, that is a side e�ect visible outside the function, these writes cannot be

omitted. In ABI mode, however, we take advantage of RISC-V ABI information, followed

by current RISC-V compilers, to omit the synchronization of volatile registers not used

to transfer information between functions, such as a1 to a5 registers.

Finally, in Listing 3.5, we have the �nal x86 assembly code, produced from the opti-

mized LLVM IR above.

. g l o b l dot_prod # −− Begin func t i on dot_prod

. p 2 a l i g n 4 , 0x90

.type dot_prod , @function

dot_prod : # @dot_prod

# %bb.0 : # %bb0

pushl %es i

# reg sync

movl rv_x10 , %eax

movl rv_x11 , %ecx

# loads

movl (%eax ) , %edx

movl (%ecx ) , %es i

movl 4(%ecx ) , %ecx

movl 4(%eax ) , %eax

# reg sync

movl %esi , rv_x12

# dot product

imu l l %edx , %es i
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imu l l %ecx , %eax

addl %eax , %es i

# reg sync

movl %esi , rv_x10

movl %ecx , rv_x13

movl %edx , rv_x14

movl %eax , rv_x15

# ret

popl %es i

r e t l

Listing 3.5: Dot Product routine translated from RISC-V to x86

Besides the additional prologue and epilogue instructions, the remaining, non-omitted

instructions map almost directly to the LLVM IR instructions above. That is not always

the case, however, especially in more complex programs. In this example, three types

of instructions were omitted. The �rst were the LLVM cast instructions, that did not

generate extra x86 instructions, as x86, like most architectures, does not have multiple

pointer types and does not di�erentiate integers from pointers. The second were the zero

extensions, that are implicitly performed by several x86 instructions. The third were

the getelementptr instructions, that were performed using x86 base-plus-o�set addressing

mode, as part of the movl instructions.

It is worth to recall the need of the register synchronization instructions, present in

Listing 3.5. As the guest instructions operate on RISC-V registers and, in Locals mode,

they are mapped to local function variables, at function entry/exit points they must be

loaded/saved from/to somewhere. In our SBT engine implementation, we use a global

register �le for this purpose. In this way, the caller saves its local register �le to the

global one, from where the callee initializes its local register �le, and, before returning,

the callee writes all RISC-V registers that it modi�ed to the global register �le, in order for

them to become visible to other functions. Thus, the register synchronization instructions

represent an overhead inherent to the Locals register mapping technique employed by our

translator. In ABI mode, however, only non-volatile RISC-V registers are saved, which

in the case of Listing 3.5 would eliminate the need to write back registers x12 to x15.
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Chapter 4

Experimental Setup and Infrastructure

In order to quantify the performance overhead introduced by the SBT, we compared the

performance of benchmarks emulated with SBT against the performance of their native

execution. For the benchmarks, we have used MiBench [39], which provides a reasonable

set of programs with su�cient variation to cover most CPU emulation aspects. The

experiments were performed on two host ISAs: x86 and ARM.

The x86 machine used was an Intel Core i7-6700K, running at 4.0GHz, with 32GiB

of DDR4 memory, in two modules of 16GiB, one in each memory bank. The operating

system (OS) used was Debian 9, with Linux Kernel 4.9.0-8-amd64. Although a 64-bit OS

was used, it also supports running 32-bit binaries, through kernel and multilib support,

so that in our experiments only 32-bit binaries and libraries were used.

As for the ARM machine, we used a Raspberry Pi 3 Model B, that has a Quad Core

ARM 64-bit CPU running at 1.2GHz and with 1GiB of RAM. The operating system used

was Raspbian 9, with Linux raspberrypi 4.14.62-v7+ (armv7l) kernel. Note that although

the ARM CPU supported 64-bit, the OS and all programs and libraries used 32-bit only.

As the selected benchmarks are designed to stress mainly the CPU and memory,

the rest of the hardware should not interfere with the results. However, after noticing

considerable variation between each run in some benchmarks, we decided to move all input

and output �les to a RAM disk, in order to mitigate what seemed to be an interference

caused by disk bu�ers in the operating system. As we have con�rmed, this resulted in a

much smaller variation in the execution times of some benchmarks.

Also, we designed several experiments to investigate the performance overhead on

both x86 and ARM platforms, and the e�ect of di�erent compilers on the performance of

the SBT. As a consequence, we employed multiple compilation �ows in our experiments.

These compilation �ows are depicted on Figure 4.1.

The �rst compilation �ow, Native (GCC), was used to produce native x86 and ARM

binaries using the GCC 7.3 compiler. The second compilation �ow, Native (Clang), was

used to produce native x86 and ARM binaries using the Clang compiler. In this case,

the assembly code was generated by Clang 7.01 and the �nal binary was assembled and

linked by GCC 6.3.0. We used this combination because LLVM's assembler and linker

did not support RISC-V binaries during our experiments. However, as we discuss later,

di�erences in libc versions do not matter in our experiments because we factor out time

spent in it. Now, in order to measure the performance of our SBT engine, we combine
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Figure 4.1: Code generation �ows.

the following �ows: three to produce RISC-V binaries (RISC-V OBJ) from benchmarks'

source code (Clang soft-�oat and GCC soft and hard-�oat) with another to translate the

RISC-V binaries to native code, using our SBT engine based on LLVM 7.01.

To minimize performance di�erences that may be introduced by using di�erent com-

piler versions and �ags, we have used the same compilers and optimization �ags (-O3

was used in all cases) for �ows and experiments. Moreover, currently, Clang supports

generating only RISC-V assembly code, not the full linked binary. Thus, for all targets,

we used the same approach: use Clang (7.0) or GCC (7.3.0) to compile the source code

(C) to ASM and then GCC (6.3.0) to assemble and link. Furthermore, for x86, the AVX

extensions were enabled and, to avoid issues with legacy x86 extended precision (80-bit)

�oating-point instructions, we also used the -mfpmath=sse �ag, that instructs the com-

piler to use SSE or better (e.g. AVX) instructions when emitting �oating-point code,

but not legacy 387 instructions. As for ARM, we targeted the armv7-a processor fam-

ily, with vfpv3-d16 �oating-point instructions, as this is a perfect match for Raspbian 9

distribution for armhf.

4.1 Measurement Methodology

To perform the experiments, after compiling and translating all needed binaries, each one

was run 10 times. Their execution times were collected using Linux perf and summarized

by their arithmetic mean and standard deviation (SD). The execution times showed to

follow a normal distribution with a small SD.

Moreover, we also decided to factor out from the results the time spent on libc func-

tions. We followed the same methodology aforementioned, executing the benchmarks 10

times and calculating the arithmetic mean of the percentage of execution time spent in

the main binary, thus excluding the time spent in shared libraries, such as libc. The �nal

run time of each benchmark was then multiplied by this percentage.

Our experimental results are presented in terms of the slowdown that the translated

binary shows in relation to the native one. In other words, it is the number of times

that the translated binary is slower than the native one. It is calculated by dividing

1When the experiments were performed, LLVM/Clang 7.0 had not been released yet, so 7.0 here
actually refers to LLVM/Clang master Git branch as it was on July 09 of 2018, commit ae0f1dc9280. We
have used this version because LLVM 6 lacked many RISC-V back-end improvements.
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the execution time of the translated binary, as explained previously, by the execution

time of the native binary. In this way, the slowdown calculation can be summarized by

the following formula: x = tt/tn, where x is the slowdown, tt the execution time of the

translated binary and tn the execution time of the native binary. Thus, the higher the

slowdown the worse is the performance of the translated program. Also, note that a

slowdown of 1 means that the translated binary is as fast as the native one.

Beyond the execution time (our main metric), we also collected other performance

metrics, such as: task-clock, context-switches, cpu-migrations, page-faults, cycles, instruc-

tions retired, number of branches and branch-misses. These are the default performance

counters used by Linux perf, and, according to Bitzes and Nowak [40], the overhead of

using up to 8 perf events in counting mode, as in our case, is negligible for most pur-

poses, staying under 0.5% in their experiments. When more events were needed, such

as cache-misses in di�erent cache levels, these were collected in separate runs, that were

not considered when calculating the slowdowns. These performance metrics helped us

in our qualitative analysis of emulation performance and in understanding good and bad

results of individual benchmarks. Coupled with code generation and translation analysis,

it enabled us to identify code constructions and compiler optimizations that resulted in

low quality translated code, and thus presented slower execution times, when compared

to native.

4.2 GCC vs Clang and Soft-Float vs Hard-Float ABI

To compile the benchmarks, our initial plan was to use Clang for every target: ARM,

RISC-V and x86. However, during the experiments, we found out that Clang's support

for RISC-V is still incomplete and considerably behind GCC's. For instance, some of

LLVM optimizations need to be performed in collaboration with the target back-end or

they may otherwise be skipped. But the major ine�ciency we have noticed so far is

that LLVM does not support RISC-V hard-�oat ABI. Although it is able to generate

code that makes use of �oating-point instructions, function arguments are always passed

through integer registers and stack, instead of using �oating-point registers whenever

possible. This causes unnecessary copies from �oating-point registers to integer registers

and vice-versa. This is further aggravated by the fact that, on RISC-V 32-bit, there is no

instruction to convert a double-precision value to a pair of 32-bit integer registers or to do

the opposite conversion; this needs to be done in multiple steps, using the stack. Because

of this, for x86, we also performed the same experiments using GCC to compile the code,

so that we could have a higher quality RISC-V input code, especially on benchmarks that

make heavy use of �oating-point operations. For ARM, we used only GCC and hard-�oat

ABI in the experiments, as these gave the best results.

4.3 RISC-V Con�guration

We chose to use the RISC-V 32-bit IMFD variant, composed by the instruction sets of the

integer base I (mandatory), standard extensions M (integer multiplication and division),
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F and D (�oating-point operations with single and double precision). This choice was

made mainly because:

• Except for the A (atomic instructions) extension that we left out, these extensions

compose the general-purpose RISC-V instructions. The reason for leaving the A

extension out is that we have used only single-threaded benchmarks, in which case

atomic instructions are not needed.

• To make it easier to compare RISC-V with OpenISA � remembering that this work

uses the same approach and methodology used in OpenISA's work � that is also

32-bit, and ARM 32-bit.

In future works we intend to experiment with the 64-bit variant of RISC-V.

4.4 Impact of Compilers and ABIs on SBT Perfor-

mance

Before going deeper into the experimental results, �rst it is important to explain how we

arrived at the experimental setup that gave the best results. Although part of it was

already explained in the previous section, some other choices were guided by experimen-

tation, as we shall see now.

4.4.1 GCC vs Clang

After having observed a couple of issues with LLVM RISC-V back-end and, especially

after noticing that it did not support the use of a hard-�oat ABI, our interest in using

the more mature GCC for RISC-V compiler instead of Clang/LLVM for RISC-V grew.

In this setup, our translator still uses LLVM infra-structure and libraries to perform the

translation, but now taking a RISC-V input binary produced by RISC-V GCC instead.

It is important to highlight that, as discussed in Section 4.2, when we use the terms

hard-�oat ABI and soft-�oat ABI in the text, we are referring only to how �oating-point

arguments are passed/returned to/from called functions, as �oating-point instructions are

used in both ABIs. Also note that this applies only to RISC-V code, as native x86 and

ARM binaries always use a hard-�oat ABI.

Figure 4.2 shows the slowdown caused by our SBT, when compared to native execu-

tion, of the translation of input binaries produced by Clang and GCC soft-�oat ABI on

x86. In StringSearch case, most values were so high that they did not �t the graph's upper

limit. For Clang, StringSearch's measured slowdowns were 16.59/3.76/4.18x (Globals/Lo-

cals/ABI), while for GCC, they were: 15.23/2.75/2.78x. Note that, the higher the value,

the worse the emulation performance. It can be seem that in some cases our SBT engine

performs better when emulating code produced by Clang while in others it performs bet-

ter with GCC, although for benchmarks that do not use �oating-point operations (from

Dijkstra to Blow�sh-Decode), emulation performance stays close to native performance

in Locals and ABI modes, with a few exceptions (e.g. StringSearch) that we analyze later
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on Chapter 5. Among others, FFT performed poorly, but as we discuss next, this is due

to the lack of a hard-�oat ABI for RISC-V code in Clang, as this benchmark is one of the

heaviest users of �oating-point operations, having its performance greatly improved when

using the hard-�oat ABI. The high overhead of other benchmarks are explained further,

in Chapter 5.

 0

 0.5

 1

 1.5

 2

 2.5

 3

dijk
st

ra

cr
c3

2

rij
ndae

l-e
nc

rij
ndae

l-d
ec sh

a

ad
pcm

-e
nc

ad
pcm

-d
ec

st
rin

gse
ar

ch

blo
w
fis

h-e
nc

blo
w
fis

h-d
ec

bas
ic

m
at

h

bitc
ount

fft
-s

td

fft
-in

v

pat
ric

ia

su
sa

n-s
m

ooth

su
sa

n-e
dges

su
sa

n-c
orn

er
s

la
m

e

geo
m

ea
n

S
lo

w
d

o
w

n

Clang Globals GCC Globals Clang Locals GCC Locals Clang ABI GCC ABI

Figure 4.2: Slowdown of benchmarks compiled with Clang and GCC soft-�oat RISC-V

back-ends.

This GCC vs Clang experiment showed that although GCC has a more mature back-

end than Clang, our SBT engine performance when translating RISC-V binaries with soft-

�oat ABI produced by both compilers was close, although we can see a small improvement

in the average performance of the benchmarks, just by using GCC to produce RISC-V

code instead of Clang.

4.4.2 Soft-Float ABI vs Hard-Float ABI

After comparing Clang with GCC previously, both using soft-�oat ABI, it is interesting to

observe how much performance is gained by switching to the hard-�oat ABI. Remembering

that, as discussed in Section 4.2 and in previous subsection, the hard-�oat ABI di�ers

from the soft-�oat ABI only in how �oating-point arguments are passed to functions,

where hard-�oat ABI allows �oating-point registers to be used and soft-�oat do not.

Figure 4.3 shows the slowdown caused by our SBT, when compared to native execution,

of the translation of input RISC-V binaries produced by GCC soft-�oat ABI vs GCC

hard-�oat ABI.
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Figure 4.3: Slowdown of benchmarks compiled with GCC soft-�oat ABI vs hard-�oat

ABI.

We can see a major improvement in FFT and some smaller improvements in a few

other benchmarks, such as LAME and BitCount, when using RISC-V hard-�oat ABI,

remembering that native binaries always use a hard-�oat ABI. This experiment indicates

that RISC-V soft-�oat ABI is indeed less e�cient than the hard-�oat ABI, as our SBT

engine is able to produce higher quality code with the latter, and, even though in our

benchmarks only FFT is heavily a�ected by this, no benchmark is impaired by using

hard-�oat ABI instead of soft-�oat ABI. Furthermore, as the Clang RISC-V back-end

does not have, until the date, support to hard-�oat ABI, we are going to use solely GCC

in the next experiments.

4.4.3 GCC 6.3.0 vs GCC 7.3.0

In this chapter we mention the usage of GCC 6.3.0 to build native binaries, while GCC

7.3.0 was used for RISC-V, as there was practically no support for RISC-V in GCC 6.3.0.

This however leads to some uncertainty about di�erent compiler versions a�ecting the

performance results. To rule this out, we have compiled and translated all benchmarks

for x86 and ARM using GCC 7.3.0 and compared it with the results obtained with GCC

6.3.0. As in the time of this writing GCC 7.3.0 was not available for Debian 9 (stretch)

� the OS used in our hosts � but only for Debian 10 (buster) � that was not released

as stable yet � we choose to build and run the native benchmark binaries using Debian

10 toolchain and libraries, instead of building our own GCC 7.3.0 toolchains for x86 and

ARM from source. To simplify this task, we have used Docker to be able to run Debian

10 from our Debian 9 hosts. Also note that, at the time of this writing, Debian 10 used

Linux 4.18, which was then installed and used on our Debian 9 hosts when performing the

GCC 7.3.0 experiments in the containerized Debian 10 environment. Figure 4.4 shows the

results of this experiment. The slowdowns of BitCount on ARM, in Locals mode, that

were greater than the graph limit, were of 3.16x and 3.10x, for GCC 6.3.0 and GCC 7.3.0,

respectively.

It can be seen that the di�erences in performance due to using GCC 6.3.0 for compiling

native binaries instead of GCC 7.3.0 are minimal, as the di�erences in the geometric means
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Figure 4.4: Comparison of slowdowns obtained when compiling native binaries with GCC
6.3.0 vs GCC 7.3.0.

are, at most, 0.02x. For this reason, and to ease the experimentation, all other experiments

were performed solely on Debian 9 using GCC 6.3.0 as the native compiler.
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Chapter 5

Experimental Results

In this chapter we present the performance of our RISC-V SBT engine in terms of slow-

down when compared to native execution (GCC based RISC-V binaries translated by

our SBT engine compared to GCC based native binaries). Hence, the higher the value

the worse the emulation performance. A slowdown equal to 1 means that the translated

binary is as fast as the native. In all cases, the guest binaries were translated using the

Globals, Locals and ABI translation schemes.

In Figure 5.1 we can see the slowdowns obtained by translating MiBench benchmarks

from RISC-V code to x86 and ARM. When translating RISC-V to x86, we obtained an

average slowdown of 2.21x, 1.23x, and 1.08x, for Globals, Locals, and ABI, respectively.

On ARM, the average slowdowns were 2.51x, 1.34x, and 1.16x. Moreover, Locals and ABI

performance outstands the Globals performance in almost 2-fold, showing the importance

of the register mapping approach. The highest slowdown seen in Locals mode is that of

BitCount on ARM, of 3.16x. In the following paragraphs we analyze the results of each

benchmark.

ADPCM-Decode, FFT-Standard, and FFT-Inverse show near-native performance,

both on x86 as on ARM, in Locals and ABI modes. On ARM, ADPCM-Encode also

shows near-native performance.

ADPCM-Encode on x86 and Dijkstra had better performance than native. Our anal-

ysis indicates that this is due to a better optimization from the LLVM infrastructure used

by our translator when compared to GCC, for these speci�c benchmarks.

CRC32 performs very well on x86, while on ARM it reaches 1.23x in Locals mode.

What stands out in this case, however, is that ABI mode is considerably worse than Locals.

This was unexpected, as the ABI mode is basically an optimization of Locals, that takes

advantage of RISC-V ABI to reduce the number of registers copied in synchronization

points. Analyzing the generated code, we found out that, in CRC32 case, this mode

somehow made LLVM optimization phase produce IR with di�erent ordering, which made

the subsequent code generation phase produce more code in the main loop (the hottest

spot of this benchmark) for ABI mode, when compared to Locals.

StringSearch has a good result on ARM, but a very high overhead on x86. As we shall

see next, however, this is caused by the compiler not being able to vectorize the translated

code.

Rijndael-Encode, Rijndael-Decode, and SHA show a high slowdown on both x86 and
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Figure 5.1: MiBench slowdown of RISC-V translated binaries.

ARM. Blow�sh-Encode and Blow�sh-Decode present a good result on x86 but high over-

heads on ARM. We investigate the causes of these high overheads in the next sections.

Overall, BasicMath and Patricia benchmarks show good performance results in both

x86 and ARM, except for Patricia Locals on ARM, that reaches 1.32x. But their high

error range, especially on x86, calls the attention. The problem is that the percentage

of time these benchmarks spend in the main binary is very low: oscillating from 2% to

4% on x86 and ARM. Instead, most of the time is spent in libc calls. As our slowdown

calculation takes into account only time spent in the main binary, small variations in this

low percentage result in large variations in the execution time considered. This gets worse

on x86 because it is able to execute the benchmarks much faster than our ARM host.

Note, however, that BasicMath and Patricia are the two benchmarks who spend the most

time in libc, which is not the case for most benchmarks, as discussed in Section 3.1.

In BitCount we can see that Locals overhead is very high, even worse than Globals

mode. By comparing it with ABI mode however, it becomes clear that register synchro-

nization represents a large portion of its execution time. We investigate this case in more

details later.

Susan-Smooth and Susan-Edges show good performance on both x86 and ARM. Susan-

Corners has a very good result on ARM, while being a bit high on x86. As we shall
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see further, this is caused by missed vectorization optimizations by the compiler, as in

StringSearch case.

For LAME on x86, we observed a high overhead in Locals mode, but comparing it with

ABI indicates that most of it is caused by register synchronization. On ARM, however,

even the ABI result is bad, indicating that there are other overhead sources besides register

synchronization. We investigate this further in a later section.

5.1 Translated Code not Vectorized

While investigating the cause of some major overheads, like that seen in StringSearch,

generated code analysis revealed that several loops were not being vectorized from the

IR produced by our SBT engine, while they were when compiling the program from

source. Further investigation is needed to fully understand the causes of this issue, but by

comparing native IR with translated IR, it seems that LLVM is only capable of vectorizing

code if the corresponding IR is at a given format it supports/expects. In order to evaluate

the performance impact of code not being vectorized, we have performed a native run of

MiBench with vectorization disabled and compared it to previous results.

It turns out that completely disabling vectorization in LLVM and GCC can be tricky.

For this reason, we chose to limit the x86 instructions that code generation can use up to

MMX only, and compared it with our previous setup that used up to AVX extensions, as

shown in Figure 5.2.
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Figure 5.2: Comparison of slowdowns for x86 with AVX extensions enabled vs limited to

MMX.

We can see that, in StringSearch case, practically all overhead was caused by this

missed vectorization opportunity. This is due to its hottest spot being a loop that was

completely vectorized in native compilation while not vectorized at all when translated.

We can also note signi�cant di�erences in Rijndael-Encode, SHA, Susan-Smooth, Susan-

Edges, and Susan-Corners, while for the remaining benchmarks the performance stayed

almost the same.

We expect that, the planned RISC-V vectorization extension will help with this, when

it is ready, because then the SBT engine could just translate RISC-V vector instructions
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to LLVM IR vector instructions.

5.2 The Rijndael Case

The main overheads of Rijndael on x86 are:

• Register synchronization.

• Missed LLVM vectorization. There is an important loop in this benchmark that

performs the load, xor and store of a 16-byte bu�er. The code generated when

compiling it to RISC-V completely unrolls the loop, performing multiple loads, xors

and stores. On x86, instructions vload, vxor and vstore are used. The problem is

that LLVM opt and llc are unable to infer that the multiple loads, xors and stores,

emited by our SBT engine when translating RISC-V code, could be replaced by

vector instructions, when generating code for x86.

On ARM, the main overheads are:

• Register synchronization.

• At enc�le()/dec�le() functions, the loop to xor 16 positions of inbuf with outbuf

is unrolled, using a large number of registers. When translating from RISC-V to

ARM, the resulting code ends up performing a lot of spills, because it is unable to

promote all emulated registers on local variables to host registers, as ARM has a

smaller register set.

5.3 The SHA Case

On both x86 and ARM, SHA's main source of overhead is somewhat similar to that of

Rijndael: too many spills when a large number of registers is used. In SHA's case, it

happens at sha_�nal(), at the 2 calls to byte_reverse(). On RISC-V, byte_reverse()

code generation produces a series of loads followed by stores, from/to registers directly to

an o�set at SHA_INFO 's data array, using most of the 32 RISC-V registers. When the

code is translated to x86 or ARM, however, that have a much smaller register set, there is

a huge number of spills and reloads. It is worth to note that we did not explicitly specify

the register allocator to be used, but, according to LLVM documentation, the greedy

allocator is used for optimized code. Native x86/ARM code performs better because code

generation limits more the loop unrolling, to make better usage of the number of host

registers available.

To test this hypothesis, we have performed an experiment that consists of adding

some pragmas around byte_reverse() function, to disable loop unrolling in it, as shown

in Listing 5.1.

This change greatly improved performance results on x86, in which Locals slowdown

went from 1.61x to 1.19x and ABI went from 1.24x to 1.09x. All results were measured

with vectorization already disabled (using only up to MMX instructions). Note that the
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results presented in this section were measured from separate runs, and thus they are

slightly di�erent from those of the previous graphs. On ARM, the performance did not

improve much on Locals mode, going from 1.64x to 1.59x, because with loop unrolling

disabled the compiler did not inline byte_reverse() in sha_�nal(), which increased register

synchronizations. In ABI mode however, a substantial improvement can be seen, with

the slowdown going from 1.48x to 1.18x.

#pragma GCC push_options

#pragma GCC opt imize (

"no−unro l l−loops , no−pee l−loops , no−t ree−loop−opt imize " )

void byte_reverse ( . . . ) {

/∗ . . . ∗/
}

#pragma GCC pop_options

Listing 5.1: Disabling loop unrolling at byte_reverse()

Additionally, on x86, the missed vectorization optimization is also among the main

overhead causes. Another one is that translated code uses more instructions at

sha_transform(). On native compilation, x86 seems to move pointer values directly to

registers and makes memory accesses through them, taking full advantage of x86 more

complex addressing modes, while RISC-V code needs to break these accesses in more

parts, performing calculations that could be done directly in a single mov instruction

for x86. This way, when translating RISC-V to LLVM IR and then back to x86, LLVM

is unable to deduce that those broken up memory accesses address calculations could

be grouped into fewer instructions/accesses, by taking advantage of x86 more complex

addressing modes.

5.4 The BlowFish Case

Blow�sh performs well on x86, so we will focus our analysis on ARM. On it, the biggest

overhead is at BF_cfb64_encrypt(). There is a couple of optimizations that the compiler

performs when emitting code directly to ARM that are lost when translating from RISC-V

to ARM:

• Combine several loads and reloads (from spills) into a single ldmia (load multiple

registers) instruction.

• Preserve contents loaded before calling BF_encrypt(), used in n2l() calls, to reuse

them in l2n() calls later.

• Implement 4 calls to l2n(), shown in Listing 5.2, with 4 pairs of lsr (logical shift

right) plus b� (bit �eld insert) and a single 32-bit store of the result. RISC-V has

nothing similar to b� to manipulate bits, so it ends up using more instructions and

more memory accesses to arrange data correctly.
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/∗ char ∗a ; char b , c ; ∗/
#define l2n (a , b , c ) ∗( a++) = (b>>c ) & 0 x f f

Listing 5.2: BlowFish's l2n() macro.

Together, these optimizations are responsible for most of the slowdown measured in

the translated binary.

5.5 The BitCount Case

On ARM, register synchronization overhead of BitCount has a much higher impact than

on x86. Even on ABI mode, register synchronization is responsible for 42% of the time

spent running BitCount on ARM. On native mode, the compiler is smart enough to use

very few registers in the main loop and, above that, load/reload only the registers that it

will need inside the loop and are used to pass arguments to the indirect function called.

When translated, all registers that had any modi�cation and may transfer data to/from

the called function are synchronized. ABI mode reduces this number drastically, but still

syncs many more registers than native compilation, causing an overhead of more than

0.2x. This, however, is not due to hard to emulate aspects of RISC-V, as this overhead

could be eliminated by improvements in the SBT engine, by making it move register

syncs of unchanged registers inside the loop to the outside, an optimization similar to

loop invariant code motion, but that in this case need to be performed by the translator.

5.6 The LAME Case

On ARM, the biggest LAME overhead is at window_subband.constprop.28() function.

However, compared to the other benchmarks of MiBench, LAME is considerably larger,

and other parts of it also present signi�cant overhead. But, because we had not enough

time to perform a full analysis of LAME, we have analyzed only window_subband().

First, let's consider the experimental data collected from a typical run of LAME on

ARM, translated using the ABI mode:

time spent at LAME time spent at window_subband slowdown

ARM: 91.68% 13.71%

RV32-ARM: 93.70% 15.86% 1.46x

Perf samples: pre-loop loop1 loop2 total

ARM: 10 241 288 539

RV32-ARM: 17 421 863 1301

RV32-ARM means RISC-V 32-bit translated to ARM using our SBT engine, while

ARM is the native binary. Note that although the percentage of time spent at win-

dow_subband() on RV32-ARM is not much higher than that of ARM, this percentage

refers to a bigger total execution time. Linux perf samples show how the time spent on

window_subband() is distributed. Little time is spent before the �rst loop, both in native

and in translated mode. At the �rst function loop, the translated code is almost 2x slower
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than native, but at the second (nested) loop, it is more than 3x slower than native. It

is this part of the function that is going to be analyzed next, inspecting how code was

generated for it.

The hot spot source code has the following format:

for 15..0:

for 14..0:

s0 += *wp++ * *in++;

s1 += *wp++ * *in++;

Where, wp points to themm variable, that corresponds to uninitialized static data (but

that was already initialized by previous code at this point) and in is a function parameter

that here points to the win variable, that also corresponds to uninitialized static data.

s0 and s1 are local variables. The fact that the main data used in the analyzed code is

static global data helps us to exclude other potential sources of ine�ciency, such as local

variables, emulated stack, and spills.

Inspecting the generated code, we can see that, in all cases, the inner loop was com-

pletely unrolled, consisting of (roughly) the instructions presented in Listing 5.3, for each

iteration, on each architecture:

4x v ldr

2x vmla . f64

t o t a l : 6 i n s t r u c t i o n s
(a) ARM

4x f l d o f f s ( a4/a5 )

2x fmadd

t o t a l : 6 i n s t r u c t i o n s
(b) RV32

2x

1− movw r0 , %lo ( addr )

2− movt r0 , %hi ( addr )

3− add r0 , ip

4− v ld r dx , [ r0 ]

5− add .w rx , r2 , #imm

6− v ld r dy , [ rx ]

7− vmla . f64

t o t a l : 14 i n s t r u c t i o n s
(c) RV32-ARM

Listing 5.3: LAME hot spot loop body, for ARM, RV32 and RV32-ARM.

We can see that, for both ARM and RISC-V, the generated code is optimal. It performs

only the minimum required operations: 4 loads and 2 fused multiply adds of the loaded

values. When translating from RISC-V to ARM however, the number of instructions

more than double. We can divide the ine�ciencies in two parts:

1. On RV32-ARM, instructions 1 to 3 are used to load an immediate address, that is

then used by instruction 4 to load a value from there. On RV32, these addresses are

relative to the a4 register, that at the inner loop has a known value, which explains

why these are translated to immediate addresses on ARM. The main problem here

seems to be that, when translating the optimized/unrolled RV32 loop, the optimiz-

er/code generator fails to infer that all these addresses are relative to a common
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base, with an o�set added only. Add to that the fact that, when RISC-V is trans-

lated to ARM, an immediate address in Position Independent Code (PIC) requires

3 instructions to be loaded into a register: load the lower part (movw), higher part

(movt) and add the position independent base (ip). On native ARM codegen, loads

are performed using a base register plus an o�set. Going even further, the compiler

adds an o�set to the base register, to make it possible to use the limited immediate

o�set �eld of vldr instruction (-1020..1020), saving a register and an add instruction

on each load. Thus, for native ARM, the compiler is able to maintain the whole

view of the hottest nested loop and generate the most e�cient code for it. That is

not the case when translating the already unrolled and optimized RV32 loop code.

Performance could possibly be increased if the generated ARM code did not need

to be position independent or if we forced RISC-V code to be position independent

too, so both optimizers would match on this feature. Our ARM toolchain how-

ever requires PIC and substantial time and e�ort would be needed to change the

experiments to use RISC-V PIC. Besides, LAME was the only benchmark where

translating RISC-V non-PIC to ARM PIC had a signi�cant performance impact.

2. On RV32, the value of the a5 register inside the main basic block varies (it is assigned

from a phi node). That is why addresses derived from it cannot be converted into

immediate values, as in case 1. When generating ARM code, a5 based loads results

in 2 instructions: adding an o�set to r2, that corresponds to a5 and then loading the

value (instructions 5 and 6). In this case, the base register adjustment optimization

performed in ARM� to make the o�sets �t in vldr immediate �eld � was missed,

as in case 1.

5.7 RISC-V vs OpenISA

Now that we have discussed issues related to di�erent compilers, versions and ABIs, and

investigated the sources of the major overheads in our MiBench translation, we move

on to compare the results of our RISC-V SBT engine with that of OpenISA [20]. This

comparison is relevant because, as seen earlier, this work was based on that of OpenISA,

using the same approach to investigate the quality of translated code, and thus the results

of our RISC-V SBT engine were expected to be similar to those obtained by OpenISA's

SBT engine. In fact, Figure 5.4, that compares the performance of our SBT engine with

that obtained by OpenISA's, when translating RISC-V/OpenISA to x86 and ARM using

the hard-�oat ABI, shows that, when considering the geometric mean, the results obtained

by both are indeed similar. On the other hand, when each benchmark is considered

separately, considerable performance di�erences can be noticed in some cases, such as in

StringSearch, where the older LLVM version used by OpenISA SBT engine was apparently

unable to vectorize native code, and in BitCount for x86, where RISC-V SBT engine

performed better.

For x86, the result is practically the same as that of OpenISA, excluding Globals. On

ARM, the results were a little worse than OpenISA's. The slowdowns of BitCount in

Locals mode, that cannot be seen in the graph, were of 3.16x and 3.11x, for the RISC-
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V SBT engine and OpenISA SBT engine, respectively. Note however that in Figure

5.4(b) we compared RISC-V SBT engine's ABI mode with OpenISA SBT engine's Whole

mode � that translates the whole program at once, considering it a single, huge region

� because, currently, OpenISA's infrastructure does not support ABI mode on ARM,

while RISC-V SBT engine does not support the Whole mode. Also, it is important to

mention that OpenISA SBT engine's results for ARM were extracted from Auler's PhD

thesis [41] � and not reproduced as in the x86 case � because we had no easy access to

the infrastructure needed to reproduce his experiments. That is also the reason why the

performance results for Blow�sh-Encode and Blow�sh-Decode are missing for OpenISA's

results for ARM, as they were not available in Auler's thesis.
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Figure 5.4: Slowdown for our RISC-V SBT engine and for the OpenISA SBT engine. All
binaries were compiled using the hard-�oat ABI.

Because OpenISA's results [41] were obtained using LLVM 3.7 and ours used LLVM

7.0, we have compiled the benchmarks with both versions and compared the geometric

means of the slowdowns obtained by each LLVM version. The di�erences were small, less

than 2%, indicating that the results that we have obtained were not caused by improve-

ments in LLVM.
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5.8 Our SBT engine vs DBT engines available

Finally, we compared our best approach � translating binaries generated with hard-

�oat ABI from GCC to x86 � with the most known DBT engines for RISC-V avail-

able: QEMU (v2.7.50, from github.com/riscv/riscv-qemu, commit �36f2f77e), RV8

(github.com/rv8-io/rv8, commit 8342590) and Imperas OVP Simulator for RISC-V

(github.com/riscv/riscv-ovpsim, commit 0b8b51a). The QEMU version we used was the

same as the one in riscv-gnu-toolchain, that, although a bit older, was very stable and

could run all benchmarks without errors, unlike other recent QEMU versions. For RV8 and

OVP, however, we were not able to run any benchmark that makes use of �oating-point

instructions, as they either crash, hang or produce wrong results. Further investigation

is needed to understand the causes of these failures, and if they are due to limitations in

RV8 and OVP or due to some incompatibility between the toolchain and libraries used

to produce the binaries and what is supported/expected by these emulators. Another

di�erence between QEMU and RV8/OVP was that only the former was able to run the

dynamic binaries produced by our default RISC-V GCC Linux toolchain. For the latter,

we used a RISC-V GCC Newlib toolchain, that consists of the same compiler, but uses

Newlib instead of GNU libc and produces statically linked binaries only.

Note that, with QEMU, RV8, and OVP it was not viable for us to use the same

measurement approach as that of RISC-V SBT engine and OpenISA SBT engine, where

we could easily factor out time spent at libc. Because of this, in the following chart, the

slowdowns were all measured considering only the execution time, including those of our

SBT engine. That is why its slowdowns are a little di�erent than that of previous graphs.

We can clearly see in the chart from Figure 5.5 that our RISC-V SBT engine was

the one with the best performance for all tested programs. Our RISC-V SBT engine

achieved, on average, a 1.11x slowdown in Locals mode, while QEMU, RV8 and OVP

achieved 6.13x, 2.85x and 4.92x, respectively.
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Figure 5.5: Slowdown comparison between our RISC-V SBT, QEMU-RISCV DBT, RV8
DBT and Imperas OVP Simulator for RISC-V, on a x86 processor.

In general, the performance of the Locals translation scheme produced better code

than the Globals one, while ABI mode further improved Locals performance by reducing

the register synchronization overhead, at the cost of being unable to translate programs
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that do not follow RISC-V ABI.

5.9 SBT vs DBT code quality

Comparing only the execution times of binaries translated with SBT against those trans-

lated by DBT is not very fair, as DBT engines have many other overhead sources that

are absent in SBT engines, as we discussed previously. As this work's main concern is

code quality, in this section we take a brief look at code generated by QEMU, RV8 and

our SBT engine, when translating RISC-V code to x86, using the Dijkstra benchmark as

example.

This comparison, however, raises an issue: the binary translators being compared each

use di�erent Region Formation Techniques (RFT). In QEMU, the regions are dynamic

basic blocks, while in RV8 they are traces and in our RISC-V SBT each region corresponds

to a function. For Dijkstra benchmark's main function, dijkstra(), QEMU generates

793 instructions in 29 regions, RV8 generates 2230 instructions in 16 regions and our

SBT engine generates 325 instructions in 1 region. Figures 5.6 and 5.7 illustrate these

di�erences.

As can be seen, QEMU and RV8 end up fragmenting the translated function in several

regions. This fragmentation has two issues:

• It hinders the application of optimizations, as the optimizations do not see whole

loops or code cycles, but only parts of it.

• DBT engines add prologue and epilogue in the regions, that are instructions not

related to the translated RISC-V instructions but only to the DBT engine working.

These instructions result in overhead whenever there is a transition between regions.

The SBT engine has the advantages of not fragmenting the code and not necessarily

needing prologues and epilogues between distinct regions, although our SBT engine � in

Locals or ABI mode � inserts extra instructions to perform register synchronization when

switching between functions. In a sense, saving registers on function calls and restoring

them on returns is analogous to DBT engine's prologues and epilogues, by executing

some code needed by the translation engine internal working only, adding overhead when

switching between regions, that corresponds to functions in our SBT.

Now that the general structure of translated code has been discussed, let us take a

closer look at a speci�c part of the code and how each engine translates it. In order to

avoid having huge code listings, only a small, relevant, part of the code was selected. It

corresponds to the hottest loop in Dijkstra benchmark. Listing 5.3 shows the C code for

this region.

while ( qLast−>qNext )

qLast = qLast−>qNext ;

Listing 5.3: Dijkstra hot spot in C

It is important to note that the code fragment above is inside two loops. It walks

through a linked list, from head to tail, to �nd the last element in it, before adding a
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movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034617a17 
movl     0xc(%r14), %ebp 
leal     -0x7e0(%rbp), %ebx 
movl     %gs:(%ebx), %ebx 
..... 
MORE 20 INSTRUCTIONS 
..... 
jmp      0x55f034599018 
jmp      0x55f034617a00 
movl     $0x10864, 0x180(%r14) 
leaq     -0x112(%rip), %rax 
jmp      0x55f034599018 
leaq     -0x11b(%rip), %rax 
jmp      0x55f034599018

0x10444: lw    a5,0(s8) 
0x10448: sw    a5,-1944(gp)  
0x1044c: beq    a5,s9,104bc <dijkstra+0x1a4> 
0x10450: lw    a3,-1924(gp)  
0x10454: slli    a4,s1,0x3 
0x10458: lw    s0,-1948(gp)  
0x1045c: add    a4,a3,a4 
0x10460: lw    a3,0(a4) 
0x10464: add    s0,a5,s0 
0x10468: beq    a3,s9,10470 <dijkstra+0x158> 
0x1046c: ble    a3,s0,104bc <dijkstra+0x1a4> 
0x10470: sw    s0,0(a4) 
0x10474: sw    s5,4(a4) 
0x10478: li    a0,16 
0x1047c: jal    ra,10ca2 <malloc> 
0x10480: lw    a4,-1912(gp)  
0x10484: beqz    a0,1055c <dijkstra+0x244> 
0x10488: sw    s1,0(a0) 
0x1048c: sw    s0,4(a0) 
0x10490: sw    s5,8(a0) 
0x10494: sw    zero,12(a0) 
0x10498: bnez    a4,104a4 <dijkstra+0x18c> 
0x1049c: j    1053c <dijkstra+0x224> 
0x104a0: mv    a4,a5 
0x104a4: lw    a5,12(a4)

Original RV32 Region from Dijkstra

Prologue

Epilogue

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034617b17 
movl     0x20(%r14), %ebp 
..... 
MORE 10 INSTRUCTIONS 
..... 
leaq     -0xd2(%rip), %rax 
jmp      0x55f034599018 
leaq     -0xdb(%rip), %rax 
jmp      0x55f034599018

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034617e53 
movl     0x20(%r14), %ebp 
..... 
MORE 10 INSTRUCTIONS 
..... 
leaq     -0xce(%rip), %rax 
jmp      0x55f034599018 
leaq     -0xd7(%rip), %rax 
jmp      0x55f034599018 

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034618423 
..... 
MORE 13 INSTRUCTIONS 
..... 
movl     $0x10950, 0x180(%r14) 
jmp      0x55f034599018 
leaq     -0xe7(%rip), %rax 
jmp      0x55f034599018 

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034618543 
movl     0x24(%r14), %ebp 
movl     0x28(%r14), %ebx 
..... 
MORE 20 INSTRUCTIONS 
..... 
jmp      0x55f03461852c 
movl     $0x10898, 0x180(%r14) 
leaq     -0xfe(%rip), %rax 
jmp      0x55f034599018 
leaq     -0x107(%rip), %rax 
jmp      0x55f034599018

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f03461862b 
nop       
jmp      0x55f034618614 
movl     $0x10930, 0x180(%r14) 
leaq     -0xa6(%rip), %rax 
jmp      0x55f034599018 
leaq     -0xaf(%rip), %rax 
jmp      0x55f034599018 

movl     -0x14(%r14), %ebp 
testl    %ebp, %ebp 
jl       0x55f034618ba3 
movl     0x3c(%r14), %ebp 
..... 
MORE 13 INSTRUCTIONS 
..... 
leaq     -0xde(%rip), %rax 
jmp      0x55f034599018 
leaq     -0xe7(%rip), %rax 
jmp      0x55f034599018

QEMU x86 Translated Regions

Figure 5.6: Translated code regions produced by QEMU.

new one. Here in Dijkstra benchmark this list is actually used to implement a queue, and

this code fragment is part of the enqueue function. Listing 5.4 shows the corresponding
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0x10444: lw    a5,0(s8) 
0x10448: sw    a5,-1944(gp)  
0x1044c: beq    a5,s9,104bc <dijkstra+0x1a4> 
0x10450: lw    a3,-1924(gp)  
0x10454: slli    a4,s1,0x3 
0x10458: lw    s0,-1948(gp)  
0x1045c: add    a4,a3,a4 
0x10460: lw    a3,0(a4) 
0x10464: add    s0,a5,s0 
0x10468: beq    a3,s9,10470 <dijkstra+0x158> 
0x1046c: ble    a3,s0,104bc <dijkstra+0x1a4> 
0x10470: sw    s0,0(a4) 
0x10474: sw    s5,4(a4) 
0x10478: li    a0,16 
0x1047c: jal    ra,10ca2 <malloc> 
0x10480: lw    a4,-1912(gp)  
0x10484: beqz    a0,1055c <dijkstra+0x244> 
0x10488: sw    s1,0(a0) 
0x1048c: sw    s0,4(a0) 
0x10490: sw    s5,8(a0) 
0x10494: sw    zero,12(a0) 
0x10498: bnez    a4,104a4 <dijkstra+0x18c> 
0x1049c: j    1053c <dijkstra+0x224> 
0x104a0: mv    a4,a5 
0x104a4: lw    a5,12(a4)

Original RV32 Region from Dijkstra

push r12                                 
push r13                                 
push r14                                 
push r15                                 
push rbx                                 
push rbp                                 
mov rbp, rdi                             
mov edx, dword [rbp+8]                   
mov ebx, dword [rbp+0xC]                 
mov esi, dword [rbp+0x18]                
mov edi, dword [rbp+0x1C]                
mov r8d, dword [rbp+0x2C]                
mov r9d, dword [rbp+0x30]                
mov r10d, dword [rbp+0x34]               
mov r11d, dword [rbp+0x38]               
mov r12d, dword [rbp+0x3C]               
mov r13d, dword [rbp+0x40]               
mov r14d, dword [rbp+0x44]               
mov r15d, dword [rbp+0x48]  
 
mov eax, dword [rbp+0x64]                
movsxd r13d, dword [eax]                 
mov eax, dword [rbp+0x10]  
.... MORE 178 INSTRUCTIONS 
 
mov dword [rbp+8], edx                   
mov dword [rbp+0xC], ebx                 
mov dword [rbp+0x18], esi                
mov dword [rbp+0x1C], edi                
mov dword [rbp+0x2C], r8d                
mov dword [rbp+0x30], r9d                
mov dword [rbp+0x34], r10d               
mov dword [rbp+0x38], r11d               
mov dword [rbp+0x3C], r12d               
mov dword [rbp+0x40], r13d               
mov dword [rbp+0x44], r14d               
mov dword [rbp+0x48], r15d               
pop rbp                                  
pop rbx                                  
pop r15                                  
pop r14                                  
pop r13                                  
pop r12                                  
ret  

RV8  
Translation 

x86 Translated Region

Prologue

Epilogue

Figure 5.7: Translated code region produced by RV8.

RISC-V code, produced by GCC, and Listing 5.8 shows the translations of QEMU, RV8

and our RISC-V SBT, respectively.

107b8: mv a4, a5

107bc: lw a5, 12(a4)

107c0: bnez a5, 107b8

Listing 5.4: Dijkstra hot spot in RISC-V

Notice that, although the RISC-V addresses in translated code di�er, they correspond

to the same guest RISC-V instructions. There are two reasons for the address di�er-

ences. The �rst is that RV8 takes as input a statically linked binary from RISC-V Newlib

toolchain, while QEMU and RISC-V SBT take a dynamically linked binary from RISC-

V Linux toolchain, as discussed in the previous section. The second is that it seems

like QEMU is able to identify duplicated dynamic basic blocks and keep only a single

copy. Thus, in the sample above it holds only the region from the non-inlined enqueue()

function.

It can also be noted that QEMU's prologue and epilogue code are considerably shorter
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than that of RV8. The cause seems to be that QEMU maps RISC-V registers to memory

locations only, while RV8 statically maps the most used RISC-V registers to x86 registers,

but then needs to save/restore those when switching from/to the translator's code. This

is analogous to our RISC-V SBT Globals and Locals modes, where in Globals no register

synchronization is needed, but every register write means a memory write.

In the code generated by QEMU, each RISC-V register maps to a memory location.

But, as x86 does not support moving data between two memory locations in a single

instruction, the RISC-V move from a5 to a4 needs to be performed in two instructions,

using a temporary register. Next, QEMU is smart enough to avoid reloading a4, that is

already in ebp, but on the other hand it performs the address calculation and the load in

two instructions, which on x86 could be performed in a single instruction, using a di�erent

addressing mode. The translation of the last RISC-V instruction is straightforward.

In RV8 code, �rst the prologue loads all x86 registers used for direct mapping of

RISC-V registers. Note that all registers are loaded in the prologue � and later saved

in the epilogue � even those not used in the region. Here an optimization similar to

that performed on our SBT should be possible, to avoid restoring/saving unused RISC-V

registers. But, except for the prologue and epilogue, the translated RISC-V code in this

case presents very high-quality, the same as that of our RISC-V SBT. Note, however, that

this is not always the case, as the other, not so oftenly used RISC-V registers, are not

mapped to x86 registers � because x86 does not have as many registers as RISC-V�

and then end up resulting in extra memory accesses. Besides, RV8 takes advantage of

x86-64 extra registers, even when emulating RISC-V 32-bit code, that is not the case for

our SBT, that uses only those registers available in IA-32.

In both QEMU and RV8, while the code shown in Listing 5.8 invokes the translator

at the branch point, both seem to leave room for hot-patching, where QEMU can replace

the jump-to-next-instruction for a jump to beginning of the loop and RV8 can replace the

mov to rbp for a jump to L1.
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# pro logue

movl −0x14(%r14 ) , %ebp

t e s t l %ebp , %ebp

j l L4

# 0x10894 : mv a4 , a5

# a4 : 0x38(%r14 )

# a5 : 0x3c(%r14 )

movl 0x3c(%r14 ) , %ebp

movl %ebp , 0x38(%r14 )

# 0x10898 : lw a5 , 12( a4 )

addl $0xc , %ebp

movl %gs :(%ebp ) , %ebp

movl %ebp , 0x3c(%r14 )

# 0x1089c : bnez a5 , −8

# <0x10894>

t e s t l %ebp , %ebp

jne L2

# ep i l ogue1

nop

jmp L1

L1 :

movl $0x108a0 , 0x180(%r14 )

l eaq −0xc1(%r ip ) , %rax

jmp 0x55f034599018

# ep i l ogue2

L2 :

jmp L3

L3 :

movl $0x10894 , 0x180(%r14 )

l eaq −0xde(%r ip ) , %rax

jmp 0x55f034599018

# ep i l ogue3

L4 :

l eaq −0xe7(%r ip ) , %rax

jmp 0x55f034599018

−−−−−−−−−−
7 i n s t r u c t i o n s

4 memory a c c e s s e s

(a) QEMU

# pro logue

push r12

push r13

push r14

push r15

push rbx

push rbp

mov rbp , rd i

mov edx , dword [ rbp+8]

mov ebx , dword [ rbp+0xC ]

mov es i , dword [ rbp+0x18 ]

mov edi , dword [ rbp+0x1C ]

mov r8d , dword [ rbp+0x2C ]

mov r9d , dword [ rbp+0x30 ]

mov r10d , dword [ rbp+0x34 ]

mov r11d , dword [ rbp+0x38 ]

mov r12d , dword [ rbp+0x3C ]

mov r13d , dword [ rbp+0x40 ]

mov r14d , dword [ rbp+0x44 ]

mov r15d , dword [ rbp+0x48 ]

# 0x104a4 : lw a5 , 12( a4 )

# r12d : a4

# r13d : a5

L1 :

movsxd r13d , dword [ r12d+0xC ]

# 0x104a8 : bnez a5 , 104a0

cmp r13d , 0

j e L2

# 0x104a0 : mv a4 , a5

L3 :

mov r12d , r13d

# ep i l ogue

mov qword [ rbp ] , 104A4

L0 :

mov dword [ rbp+8] , edx

mov dword [ rbp+0xC ] , ebx

mov dword [ rbp+0x18 ] , e s i

mov dword [ rbp+0x1C ] , ed i

mov dword [ rbp+0x2C ] , r8d

mov dword [ rbp+0x30 ] , r9d

mov dword [ rbp+0x34 ] , r10d

mov dword [ rbp+0x38 ] , r11d

mov dword [ rbp+0x3C ] , r12d

mov dword [ rbp+0x40 ] , r13d

mov dword [ rbp+0x44 ] , r14d

mov dword [ rbp+0x48 ] , r15d

pop rbp

pop rbx

pop r15

pop r14

pop r13

pop r12

r e t

. a l i g n 16

L2 :

mov qword [ rbp ] , 104AC

jmp 7FFF00000000

−−−−−−−−−−
4 i n s t r u c t i o n s

1 memory acc e s s

(b) RV8

L1 :

# 0x107b8 : mv a4 , a5

# a4 : ecx

# a5 : ebp

mov %ebp , %ecx

# 0x107bc : lw a5 , 12( a4 )

mov 0xc(%ebp ) , %ebp

# 0x107c0 : bnez a5 , 107b8

t e s t %ebp , %ebp

jne L1

−−−−−−−−−−
4 i n s t r u c t i o n s

1 memory acc e s s

(c) SBT

Listing 5.8: Dijkstra hot spot translation, produced by QEMU, RV8 and RISC-V SBT.
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Chapter 6

Conclusions

RISC-V is having the attention globally from the industry and academia. Thus, it is

probable that RISC-V is going to have a signi�cant impact in the future of IoT and

cloud. However, by now, there is no RISC-V emulation with near-native performance

available. In this work, we demonstrated that RISC-V is an architecture that enables

its code to be translated into high-quality x86 and ARM code. A strong evidence that

DBT engines with high-performance can be built for RISC-V. We did this by building a

RISC-V static binary translator which is able to translate RISC-V to x86 and ARM with

an execution overhead lower than 1.23x in the former and 1.34x in the latter, being the

fastest RISC-V emulator presented so far in the literature.

During our experiments, we have seen that one of the major obstacles that prevented

us from achieving near-native performance in some benchmarks was vectorized code in

native binaries. Currently, RISC-V does not have vector instructions, so it uses more

instructions to perform operations that can be performed with vector instructions in

other ISAs. Thus, when RISC-V is translated to the LLVM IR, LLVM is not able to

deduce that some instructions can be grouped and replaced by a vector instruction. We

see two possible approaches to this issue. The �rst is to wait for (or create) RISC-V

vector extension to become ready and make use of it when generating code. The second

is to improve the SBT engine, possibly by means of more sophisticated data analysis

techniques, in order to make it emit or reorganize IR instructions in a way that enables

LLVM to generate vectorized code.

Besides the di�culties due to code vectorization, we have observed that, in some

cases, translating RISC-V code optimized to make use of most of its 32 general purpose

registers can result in considerable performance loss when the host ISA does not have as

many registers, as in x86 and ARM cases. We saw this high number of registers used

specially in RISC-V loops that were completely unrolled by the compiler. On x86 and

ARM, the compiler limits the unrolling depth, apparently using the number of available

host registers as a parameter, to avoid spills. In this case, a possible approach could be

to reorder loads, stores and operation on data, in an e�ort to try to reduce the number

of live registers.

One last source of translation di�culty that we highlight occurs when the compiler

performs optimizations that make use of some complex, ISA speci�c, instructions. When

translating from RISC-V to LLVM IR and then native ISA, these optimizations are usually
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lost. On ARM, this was seen in LAME and Blow�sh. In the latter, ARM makes use of

instructions to manipulate bits, saving some memory accesses, and loads multiple registers

at once. On x86, this was seen in SHA, where the native compiler was able to take

advantage of some complex x86 addressing modes. At least some of these cases could

be handled by improvements in the SBT engine, such as combining simple instruction

patterns and replacing them by more powerful LLVM IR instructions, that could map

to more complex instructions present in the host ISA. But this could involve reordering

instructions, which would complicate the implementation.

In this work, the performance of our RISC-V SBT was compared to that of OpenISA

SBT, the best cross-ISA SBT known, and to the best RISC-V DBTs available, as sum-

marized in Table 6.1. The low overheads achieved by our SBT engine suggest that it is

possible to design and implement high-performance DBTs to emulate RISC-V code on

x86 and ARM platforms.

Name Guest-ISA IR Target-ISA Technique Avg. Slowdown

OpenISA-SBT OpenISA LLVM 3.7 x86/ARM SBT 1.23x/1.16x

QEMU RISC-V QEMU IR x86 (and others) DBT 6.13x

OVP RISC-V Unknown x86 DBT 4.92x

RV8 RISC-V None x86 DBT 2.85x

Our SBT RISC-V LLVM 7.0 x86/ARM SBT 1.23x/1.34x

Table 6.1: Comparison between binary translator approaches.

In future works, we intend to experiment with the 64-bit variant of RISC-V, to check

if it can also be translated to high-quality code. We also intend to investigate further

the causes of missed vectorizations by LLVM and propose ways to handle it. Finally, in

a future work we plan to build a RISC-V DBT engine that makes use of the translation

techniques discussed in this work, or else modify an existing DBT engine, such as the

OpenISA DBT, to also support RISC-V.
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