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Resumo

Retinopatia Diabética (RD) é uma complicação a longo prazo do diabetes e a principal
causa de cegueira da população ativa. Consultas regulares são necessárias para diagnosti-
car a retinopatia em um estágio inicial, permitindo um tratamento com o melhor prognós-
tico capaz de retardar ou até mesmo impedir a cegueira. Alavancados pela evolução da
prevalência do diabetes e pelo maior risco que os diabéticos têm de desenvolver doenças
nos olhos, diversos trabalhos com abordagens bem estabelecidas e promissoras vêm sendo
desenvolvidos para triagem automática de retinopatia. Entretanto, a maior parte dos
trabalhos está focada na detecção de lesões utilizando características visuais particulares
de cada tipo de lesão. Além do mais, soluções artesanais para avaliação de necessidade
de consulta e de identificação de estágios da retinopatia ainda dependem bastante das le-
sões, cujo repetitivo procedimento de detecção é complexo e inconveniente, mesmo se um
esquema unificado for adotado. O estado da arte para avaliação automatizada de necessi-
dade de consulta é composto por abordagens que propõem uma representação altamente
abstrata obtida inteiramente por meio dos dados. Usualmente, estas abordagens recebem
uma imagem e produzem uma resposta — que pode ser resultante de um único modelo ou
de uma combinação — e não são facilmente explicáveis. Este trabalho objetivou melhorar
a detecção de lesões e reforçar decisões relacionadas à necessidade de consulta, fazendo
uso de avançadas representações de imagens em duas etapas. Nós também almejamos
compor um modelo sofisticado e direcionado pelos dados para triagem de retinopatia,
bem como incorporar aprendizado supervisionado de características com representação
orientada por mapa de calor, resultando em uma abordagem robusta e ainda responsável
para triagem automatizada. Finalmente, tivemos como objetivo a integração das soluções
em dispositivos portáteis de captura de imagens de retina. Para detecção de lesões, pro-
pusemos abordagens de caracterização de imagens que possibilitem uma detecção eficaz
de diferentes tipos de lesões. Nossos principais avanços estão centrados na modelagem
de uma nova técnica de codificação para imagens de retina, bem como na preservação de
informações no processo de pooling ou agregação das características obtidas. Decidir au-
tomaticamente pela necessidade de encaminhamento do paciente a um especialista é uma
investigação ainda mais difícil e muito debatida. Nós criamos um método mais simples
e robusto para decisões de necessidade de consulta, e que não depende da detecção de
lesões. Também propusemos um modelo direcionado pelos dados que melhora significa-
tivamente o desempenho na tarefa de triagem da RD. O modelo produz uma resposta
confiável com base em respostas (locais e globais), bem como um mapa de ativação que
permite uma compreensão de importância de cada pixel para a decisão. Exploramos a
metodologia de explicabilidade para criar um descritor local codificado em uma rica repre-
sentação em nível médio. Os modelos direcionados pelos dados são o estado da arte para
triagem de retinopatia diabética. Entretanto, mapas de ativação são essenciais para in-
terpretar o aprendizado em termos de importância de cada pixel e para reforçar pequenas
características discriminativas que têm potencial de melhorar o diagnóstico.



Abstract

Diabetic Retinopathy (DR) is a long-term complication of diabetes and the leading cause
of blindness among working-age adults. A regular eye examination is necessary to di-
agnose DR at an early stage, when it can be treated with the best prognosis and the
visual loss delayed or deferred. Leveraged by the continuous expansion of diabetics and
by the increased risk that those people have to develop eye diseases, several works with
well-established and promising approaches have been proposed for automatic screening.
Therefore, most existing art focuses on lesion detection using visual characteristics spe-
cific to each type of lesion. Additionally, handcrafted solutions for referable diabetic
retinopathy detection and DR stages identification still depend too much on the lesions,
whose repetitive detection is complex and cumbersome to implement, even when adopt-
ing a unified detection scheme. Current art for automated referral assessment resides on
highly abstract data-driven approaches. Usually, those approaches receive an image and
spit the response out — that might be resulting from only one model or ensembles —
and are not easily explainable. Hence, this work aims at enhancing the lesion detection
and reinforcing referral decisions with advanced handcrafted two-tiered image represen-
tations. We also intended to compose sophisticated data-driven models for referable DR
detection and incorporate supervised learning of features with saliency-oriented mid-level
image representations to come up with a robust yet accountable automated screening
approach. Ultimately, we aimed at integrating our software solutions with simple reti-
nal imaging devices. In the lesion detection task, we proposed advanced handcrafted
image characterization approaches to detecting effectively different lesions. Our leading
advances are centered on designing a novel coding technique for retinal images and pre-
serving information in the pooling process. Automatically deciding on whether or not
the patient should be referred to the ophthalmic specialist is a more difficult, and still
hotly debated research aim. We designed a simple and robust method for referral de-
cisions that does not rely upon lesion detection stages. We also proposed a novel and
effective data-driven model that significantly improves the performance for DR screening.
Our accountable data-driven model produces a reliable (local- and global-) response along
with a heatmap/saliency map that enables pixel-based importance comprehension. We
explored this methodology to create a local descriptor that is encoded into a rich mid-
level representation. Data-driven methods are the state of the art for diabetic retinopathy
screening. However, saliency maps are essential not only to interpret the learning in terms
of pixel importance but also to reinforce small discriminative characteristics that have the
potential to enhance the diagnostic.



List of Figures

1.1 Diabetic retinopathy lesions and stages . . . . . . . . . . . . . . . . . . . . 14

2.1 The BoVW model illustrated in a convenient matrix form . . . . . . . . . . 21
2.2 Representation of a typical Convolutional Neural Network . . . . . . . . . 24
2.3 Pipeline of the lesion-based methodology for referral decisions . . . . . . . 30

3.1 Regions of interest (dashed black regions) and the points of interest (blue
circles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Pipeline of the direct methodology for referral decisions . . . . . . . . . . . 42
3.3 Novel data-driven CNN architecture for referable diabetic retinopathy de-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Overview of the proposed method with global- and local-based image rep-

resentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Saliency-oriented squared patches from which we extract local descriptors . 52

5.1 Standardized AUCs per lesion, for six combinations of feature extraction
and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 ROC results using class-based sampling . . . . . . . . . . . . . . . . . . . . 66
5.3 ROC results using the global codebooks . . . . . . . . . . . . . . . . . . . 66
5.4 DR screening for isolated indigenous communities . . . . . . . . . . . . . . 67

6.1 ROC results for direct assessment for need of referral using BoVWmid-level
characterization approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 ROC results for direct assessment for need of referral using advanced mid-
level characterization approaches . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 ROC results for direct assessment for need of referral using the public
Messidor dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 ROC for referral assessment on the Kaggle/EyePACs dataset . . . . . . . . 74
6.5 ROC results for referral assessment in a cross-dataset protocol . . . . . . . 76
6.6 Comparison of our solution with the o_O’s method on a cross-dataset

validation protocol in terms of effectiveness (quality of referral assessments). 77
6.7 ROC results for referral assessment using transfer learning over DR2 dataset 79
6.8 ROC results for referral assessment using transfer learning over Messidor-2

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.9 ROC results for referral assessment using the global data-driven approach,

testing with DR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.10 ROC results for referral assessment using the global data-driven approach,

testing with Messidor-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.11 Retinal image; respective saliency map; and the superposition highlighting

regions important for the decision . . . . . . . . . . . . . . . . . . . . . . . 82



6.12 ROC results for referral assessment using the local saliency-oriented data-
driven approach, testing with DR2 and Messidor-2 . . . . . . . . . . . . . . 84

6.13 ROC results for referral assessment using both the global data-driven ap-
proach and local saliency-oriented approach, testing with DR2 and Messidor-
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 AUCs in % for quality assessment over Phelcom images . . . . . . . . . . . 89



List of Tables

2.1 State of the art for the detection of bright lesions . . . . . . . . . . . . . . 26
2.2 State of the art for the detection of red lesions . . . . . . . . . . . . . . . . 26
2.3 State of the art for referable diabetic retinopathy detection . . . . . . . . . 28

3.1 Retinopathy grade criterion used for MESSIDOR annotation. . . . . . . . . 43
3.2 Contrasting recent similar works with ours . . . . . . . . . . . . . . . . . . 54

4.1 Annotation occurrences regarding lesions for the datasets . . . . . . . . . . 59
4.2 Annotation occurrences regarding referral for the datasets . . . . . . . . . 60
4.3 Annotation occurrences regarding quality for the datasets . . . . . . . . . . 60

5.1 AUCs in %, for Training with DR1, Testing with DR2 . . . . . . . . . . . . 62
5.2 AUCs in %, for Training with DR1, Testing with Messidor . . . . . . . . . 62

6.1 Partial view of the ANOVA table . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Efficiency: Time and memory comparisons . . . . . . . . . . . . . . . . . . 77

7.1 Round #1: Validating Phelcom images without self-annotation training . . 88
7.2 Round #2: Validating Phelcom images with self-annotation training . . . . 88



Contents

1 Introduction 13
1.1 Questions and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Awards and Partnerships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 State of the Art and Related Concepts 20
2.1 Bag of Visual Words and Extensions . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 BossaNova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Fisher Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Diabetic Retinopathy Lesion Detection . . . . . . . . . . . . . . . . . . . . 25
2.4 Referable Diabetic Retinopathy Detection . . . . . . . . . . . . . . . . . . 27
2.5 Retinal Image Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Accountable Retinal Image Analysis . . . . . . . . . . . . . . . . . . . . . . 32

3 Methodology 35
3.1 Diabetic Retinopathy Lesion Detection . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Semi-soft Coding for Lesion Detection . . . . . . . . . . . . . . . . 36
3.1.2 Preserving Information for Lesion Detection . . . . . . . . . . . . . 38
3.1.3 Class-based Scheme vs. Global Dictionary . . . . . . . . . . . . . . 39
3.1.4 Diabetic Retinopathy Screening for Isolated Indigenous Communities 40

3.2 Referable Diabetic Retinopathy Detection . . . . . . . . . . . . . . . . . . 40
3.2.1 Beyond Lesion-based Diabetic Retinopathy: a Direct Approach for

Referral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Direct Referral with Sophisticated Mid-level Features . . . . . . . . 43
3.2.3 Direct Referral in a Public Dataset . . . . . . . . . . . . . . . . . . 43
3.2.4 A Data-Driven Approach to Referable Diabetic Retinopathy Detec-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Cross-Dataset Validation Protocol . . . . . . . . . . . . . . . . . . . 48
3.2.6 Knowledge transfer for Diabetic Retinopathy Screening . . . . . . . 49
3.2.7 Accountable Referable Diabetic Retinopathy Detection . . . . . . . 49
3.2.8 Saliency-Oriented Data-Driven Approach to Diabetic Retinopathy

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.9 Fusion of Global Data-driven and Local Saliency-Oriented Features

to Diabetic Retinopathy Detection . . . . . . . . . . . . . . . . . . 53
3.3 Validation with images from portable devices . . . . . . . . . . . . . . . . . 55



3.3.1 Quality Assessment of images from portable devices . . . . . . . . . 55

4 Experimental Protocol 57
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Validation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Results: DR Lesion Detection 62
5.1 Semi-soft Coding for Lesion Detection . . . . . . . . . . . . . . . . . . . . 62
5.2 Preserving Information for Lesion Detection . . . . . . . . . . . . . . . . . 65
5.3 Class-based Scheme vs. Global Dictionary . . . . . . . . . . . . . . . . . . 65
5.4 Diabetic Retinopathy Screening for Isolated Indigenous Communities . . . 67

6 Results: Referable DR Detection 69
6.1 Beyond Lesion-based Diabetic Retinopathy: a Direct Approach for Referral 69
6.2 Direct Referral with Sophisticated Mid-level Features . . . . . . . . . . . . 70
6.3 Direct Referral in a Public Dataset . . . . . . . . . . . . . . . . . . . . . . 71
6.4 A Data-Driven Approach to Referable Diabetic Retinopathy Detection . . 73
6.5 Cross-Dataset Validation Protocol . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Knowledge transfer for Diabetic Retinopathy Screening . . . . . . . . . . . 78
6.7 Accountable Referable Diabetic Retinopathy Detection . . . . . . . . . . . 80
6.8 Saliency-Oriented Data-Driven Approach to Diabetic Retinopathy Detection 83
6.9 Fusion of Global Data-driven and Local Saliency-Oriented Features to Di-

abetic Retinopathy Detection . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Results: Quality Assessment 87
7.1 Quality Assessment of images from portable devices . . . . . . . . . . . . . 87

8 Conclusions 90
8.1 Diabetic Retinopathy Lesion Detection . . . . . . . . . . . . . . . . . . . . 92
8.2 Referable Diabetic Retinopathy Detection . . . . . . . . . . . . . . . . . . 93
8.3 Validation with images from portable devices . . . . . . . . . . . . . . . . . 94
8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Copyright Permissions 107



13

Chapter 1

Introduction

Every eleventh person in the world suffers from diabetes mellitus, a disorder of sugar
metabolism, whose prevalence is expected to reach every tenth person by 2040 [43]. Di-
abetes sufferers are 25 times more likely to suffer from sight loss resulting from diabetic
retinopathy (DR), a major long-term microvascular complication, and the leading cause
of blindness in high-income countries [43]. In the U.S. alone, 7.7 million people aged
40+ years have diabetic retinopathy [113], and the prevalence is even larger in developing
countries with a shortage of ophthalmologists and optometrists [38].

Diabetes affects 415 million people worldwide, and this number is set to rise beyond
642 million in 22 years [43]. Yet, with 46.5% of cases currently undiagnosed, a vast amount
of people with diabetes are progressing towards complications unawares [43]. In addition,
three quarters of diabetics live in low and middle income countries that lack the luxury of
making the recommended annual examination. In particular, more than 13 million people
in Brazil have diabetes, and this number may increase to 19.2 million in 2035.

For progressive diseases, early diagnosis has a huge impact on prognosis, allowing cor-
rective or palliative measures before irreversible organ damage takes place. In the case
of DR, early detection is crucial to prevent vision loss. Therefore, screening patients for
early signs of DR pathology is important to prevent the disease or limit its progression.
The World Health Organization and professional organizations such as the American
Academy of Ophthalmology recommend eye examinations at least once a year for dia-
betic patients [69]. However, in disfavored, rural or isolated communities, the access to
healthcare professionals — particularly to ophthalmology specialists — is difficult or not
possible, therefore reducing opportunities for early detection and timely treatment of DR.
In practice, communities often lack screening opportunities to adopt frequent consulta-
tions and a continuous follow-up program [42].

Without early diagnosis and treatment, DR progresses from mild nonproliferative DR
to moderate and severe nonproliferative DR before the occurrence of proliferative DR, in
which there is growth of abnormal new retinal blood vessels [118]. In its distinct stages,
DR is characterized by the presence of red (microaneurysms and hemorrhages) and bright
(hard exudates, cotton wool spots) lesions as well as neovascularization. Figure 1.1 shows
some examples of retinas with signs of DR in the mild and moderate nonproliferative
stages, proliferative stage as well as with diabetic macular edema.

In this century, the research and development of a large and varied set of automated
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Figure 1.1: Diabetic retinopathy lesions and stages. a) Mild nonproliferative DR with mi-
croaneurysms and hemorrhages. b) Moderate nonproliferative DR with microaneurysms,
hemorrhages and cotton wool spots. c) Proliferative DR showing neovascularization (new
blood vessels) at the optic disc. d) Diabetic macular edema showing hard exudates at the
fovea centre. Extracted from [118] – license CC BY (see Appendix A).

systems for diabetic retinopathy detection is trying to improve that scenario [4, 28, 29,
32, 35, 66, 67, 100]. Those researches are based on handcrafted features, whose manual
extraction pipeline must ensure the extracted features are robust to the variances in the
objects. The existing handcrafted proposals focus on the detection of DR signs using
specific visual characteristics that vary among the different lesions [28, 29, 32, 35, 66,
67]. More recently, a few unified DR lesion detectors have been proposed, using novel
handcrafted approaches that can easily be adapted to many kinds of retinal lesions [46,
49, 80, 87]. Unified approaches have evolved into advanced data-driven methods, that
have pushed ahead the research advances in lesion detection and screening of diabetic
retinopathy [84]. In data-driven approaches, the learning procedure is compelled by data
distribution, rather than by intuition or prior knowledge regarding the data.

Computer-aided diagnosis may solve the dilemma of lacking screening opportunities
by automatically deciding who should be referred to an ophthalmologist for further inves-
tigation. However, in general, the automated system that adopts the handcrafted manner
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must identify a specific type of lesion that occurs both in isolation and in combination
with other types of lesions, and make accurate decisions on the need to refer the patient
to a specialist for further assessment.

Automatically deciding on whether or not the patient should be referred to the oph-
thalmic specialist is difficult, and a hotly debated research aim [1, 2, 12, 18, 25, 34, 41,
80, 84, 86, 101]. Automated or semi-automated detection of referable retinopathy is an
important tool for managing the dispensation of care, reducing the specialist’s workload
and identifying patients in more critical need of ophthalmic review and treatment. Refer-
ability must consider not only the presence/absence of individual lesions, but directly or
indirectly aggregate all signs and provide a succinct prediction for the need of further
assessment and referral for DR and follow-up by a retinal specialist. The indirect discrim-
inative pattern aggregation involves data-driven approaches, whose methodology aims at
gathering enough information directly from the available data in high-level abstractions
in order to design effective models capable of approximating very complex functions.

At the time we have started this work, most handcrafted methods for referral decisions
were based on detecting distinct DR lesions (in most cases, employing different ad hoc
models for each type of lesion) and then adding an additional decision layer for combining
the scores of the lesion detectors and making a final decision [1, 12, 25, 80, 82, 86].
Those models are complex and cumbersome to implement. In addition, referral prediction
accuracies were often limited.

Those hierarchical approaches (“lesion-first, referral-later”) assume that preliminary
lesion detection is necessary and sufficient for the later decision on referability. Those
assumptions are questionable: although conventional machine-learning techniques often
demand those staged decisions, current art based on data-driven methodology (deep learn-
ing) — so called image-based decisions — infer directly from the pixels [55]. Moreover, a
preliminary stage of lesion detection discards information that may prove useful for the
later stage of referability. Although such image-based systems raise legitimate concerns
about spurious associations with confounders in training data, and about their sensitivity
to adversarial images [2, 40, 65, 106], they have become the de facto gold standard for
visual recognition tasks.

However, as the capacity of decision methods progresses and becomes practically au-
tonomous, it also becomes hard to understand and interpret them. These concerns are
notably prevalent in medical imaging — it is important not only to provide robust and
accurate decision-making, but also intuitive explanations about how and why a particular
decision was taken. These concerns were heightened recently with efforts for ensuring
machine-learning accountability expressed as strategic notes by the European Political
Strategy Centre [16] and standards by the scientific community [22].

1.1 Questions and Goals

Our work is divided into three meaningful paths: Diabetic retinopathy lesion detection,
Referable diabetic retinopathy detection and Validation with images from portable devices.
For the two first paths, we proposed novel handcrafted mid-level (two-tier) image repre-
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sentations. Regarding automated examination of need of referral we go deeper and also
investigate and propose novel data-driven models. We finally showcase an accountable
and effective screening approach by using rich and comprehensive local- and global-based
representations. For the third path, we optimize a data-driven model to evaluate the
quality of images captured with low-cost devices.

For providing effective computer-aided diagnosis, effective image representations are
mandatory. We use a two-tiered image representation method that rests upon the extrac-
tion of low-level local features and their aggregation into mid-level Bag-of-Visual-Words
(BoVW) representation. The mid-level BoVW consists of two operations: the coding of
the low-level feature vectors using the codebook, and the pooling of the codes, which are
combined into a single aggregated feature vector [13].

Diabetic Retinopathy Lesion Detection

Given our interest in detecting individual DR lesions by using novel representation meth-
ods, we investigate the following questions keeping in mind our main purpose of unified
screening solutions:

Q1.1: Can we combine the advantages of both hard and soft codings and provide a good
balance for designing efficient and effective DR lesion detectors?

Q1.2: Can we preserve information in the pooling process and still obtain satisfactory
results?

Q1.3: Can we improve the results employing global codebooks?

Q1.4: Can we diagnose patients in an ethnic group (e.g., isolated indigenous communi-
ties), even using models trained with data from other different ethnic groups?

Referable Diabetic Retinopathy Detection

Given our interest in preserving relevant information and providing non-lesion-dependent
methods for referral decisions, we elaborate the following questions to guide and justify a
research to such direction:

Q2.1: Can we forgo the detection of individual DR lesions and still have an effective
referral decision?

Q2.2: Can sophisticated handcrafted mid-level features improve direct referral decision?

Q2.3: Can we confirm the suitability of handcrafted direct referral in a second, indepen-
dent, dataset?

Q2.4: Can we learn in the data-driven manner highly abstract features that leverage
referable DR detection without the need of manual feature engineering?

Q2.5: Can we diagnose retinal images collected under different acquisition conditions
with data-driven models?
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Q2.6: Can we transfer knowledge acquired with a different but similar task in the context
of diabetic retinopathy screening?

Q2.7: Can we provide an effective and accountable data-driven solution for referable
diabetic retinopathy detection?

Q2.8: Can we enhance the performance of the referral model by applying two-tiered
data-driven image representation?

Q2.9: Can we combine global data-driven and local saliency-oriented two-tier represen-
tations for more accurate decision-making?

Validation with images from portable devices

Given our interest in integrating our software solutions with simple retinal imaging de-
vices, we elaborate the following question to guide our research toward validation over a
new dataset captured with portable devices. This work involves only the validation in
terms of quality assessment since the dataset for presence/absence of referable diabetic
retinopathy is still under preparation at the time of writing — collection in hospitals and
annotation by experts.

Q3.1: Can we assess the quality of images from portable devices with data-driven models
trained with images from high-cost instruments?

The investigations we perform to answer the questions from Q1.1 to Q1.4 and from
Q2.1 to Q2.3 involve handcrafted methodologies, while from Q2.4 to Q2.8 and the
question Q3.1 we explore data-driven representation techniques. Finally, in the Q2.9
question we combine both approaches.

Concerning our goals expressed by the questions above, some of them devised in
the beginning of the work and others reformulated along the advances of the research,
our main purpose under the scientific viewpoint was providing experts with higher-level
retinal image representations that preserve valuable visual characteristics. We aimed
at extracting local features by using supervised learning with cutting-edge convolutional
neural networks, and incorporating them in advanced mid-level representations. By doing
so, we come up with an entire framework able to extract this abstract learned information
from retinal images, use it as a local description in a mid-level representation, and explore
different classification methods such as Neural Networks and Random Forest for producing
reliable computer-aided diagnoses.

The predominant aim was enhancing the results reported in the literature by design-
ing and reporting methods for handcrafted two-tiered image representation, composing
and delineating sophisticated data-driven models employing novel and also consolidated
techniques, and ultimately incorporating supervised learning of features with advanced
and saliency-oriented mid-level image representations.

Additionally, our secondary goals included, but were not limited to:



18

• Providing online and accessible retinal image classification software packages. Our
expectation was producing a system that empowers the user to upload a retinal
image and receive, in real time, the diagnostic about DR lesions and DR referral.

• Investigating simpler solutions suitable for the context of an embedded system, in
which the image acquisition process and the computational resources tend to be
limited.

• Integrating our software solutions with simple retinal imaging devices. The Brazilian
startup Phelcom Technologies1, for instance, is producing the Eyer, that aim at
transforming the smartphone in a portable and connected retinal camera. This
acquisition method, combined with our approaches, might result in a powerful and
low-cost apparatus for eye examination.

1.2 Awards and Partnerships

In the course of this work, we established relevant partnerships and gathered signifi-
cant awards. Our project received the Google Latin American Research Awards twice.
With that compelling award, we became a Google’s partner. Our proposal to partici-
pate in these prestigious awards concerns gathering enough information directly from the
available data in order to design a more effective, unified, and less human-centered classi-
fication system. We intended to design methods for image representation, incorporating
supervised learning of features with advanced mid-level image representations.

The project was awarded in 2016 and again in 2017. In 2017, there were 281 projects
submitted but only 27 awarded2.

During the last year of the doctoral program, we have also partnered with the afore-
mentioned startup Phelcom Technologies. The main purpose was combining the devel-
oped image analytics techniques for DR detection with the Phelcom’s hardware solutions
for portable and low-cost image acquisition. We set forth a partnership, in which we
mentored the startup by implementing solutions suitable for embedded systems, and vali-
dating with images from the devices. The scope of the partnership program with Phelcom
encompasses:

1. Investigate the assessment of images captured with Phelcom devices using the tech-
niques and methods developed in scope of the research on diabetic retinopathy in
the IC/Unicamp under the coordination of Prof. Anderson Rocha.

2. Investigate the adaptation of existing solutions from this thesis, and also ones re-
cently published in the literature, in the context of diabetic retinopathy for lesion
detection and need of referral for the images acquired by Phelcom.

1https://www.phelcom.com.br/en/home_page (accessed February 13, 2019)
2https://brasil.googleblog.com/2017/08/conheca-os-vencedores-do-programa-de.html (ac-

cessed February 13, 2019)

https://www.phelcom.com.br/en/home_page
https://brasil.googleblog.com/2017/08/conheca-os-vencedores-do-programa-de.html
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3. Investigate the feasibility of implementing techniques developed in this thesis and
published in the literature on the image acquisition equipment produced by the
company.

1.3 Scientific Contributions

We envision this research contributing to the areas of Computer Vision, Machine Learning,
Medicine, and Biomedical Engineering. Our expectations towards scientific contributions
embraced:

• Advance the state of the art by proposing new effective and robust image representa-
tion approaches, preserving relevant visual and structural information for improving
retina image analysis.

• Advance the approaches for retina image analysis by proposing efficient and effective
computer-aided methods for higher-level decisions (i.e., referable diabetic retinopa-
thy detection), discarding the heretofore indispensable lesion detection task.

• Advance the state of the art by designing a two-tiered image representation that
incorporates supervised learning of features with advanced mid-level image repre-
sentations for improving retina image analysis.

• Integrate our solutions regarding DR lesion detection and referral decision with
simple and portable retinal imaging solutions.

With these contributions, we expected to push the current retina research boundaries
forward, providing experts and practitioners cutting-edge technology for daily activities
in their work.

1.4 Text Organization

This thesis is organized as follows. Chapter 2 surveys the state of the art of the main topics
related to handcrafted and data-driven image characterization/classification (Sections 2.1
and 2.2) and retinal image analysis: DR Lesion Detection (Section 2.3) and Referable DR
Detection (Section 2.4), Retinal Image Quality Assessment (Section 2.5) and Accountable
Retinal Image Analysis (Section 2.6). Chapter 3 presents the proposed methodologies of
the work. Chapter 4, presents the adopted experimental protocol (datasets, validation
protocol and metrics). Chapters 5 and 6 present the results which respond the questions
regarding lesion DR detection and referable DR detection, respectively. Chapter 7 shows
initial advances into integrating the solution with a low-cost camera, with results for
quality assessment. Finally, Chapter 8 summarizes some advances and discoveries, and
concludes the work.
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Chapter 2

State of the Art and Related Concepts

We divide the state of the art and related concepts into six sections. Section 2.1 de-
scribes the Bag of Visual Words and its extensions for mid-level image representation,
while Section 2.2 introduces the concept of Convolutional Neural Networks. The next
three sections survey the state of the art for retinal image analysis: DR Lesion Detection,
Referable DR Detection, and Retinal Image Quality Assessment. Section 2.3 presents
some long-established methods as well as the new characterization concept used in recent
works regarding lesion detection. Section 2.4 discusses the traditional approach for re-
ferral assessment based upon the presence, location and number of lesions. Section 2.5
shows some handcrafted and data-driven proposals for evaluating the quality of fundus
images. Finally, Section 2.6 introduces the concepts related to accountable machine learn-
ing and presents some recent works concerning comprehensive methods towards diabetic
retinopathy detection.

2.1 Bag of Visual Words and Extensions

A two-tiered feature extraction scheme, based upon the creation of an aggregation of
encoded local features became a staple of the image classification literature. The technique
was popularized by the work of Sivic and Zisserman [97], who made explicit an analogy
with the traditional bag-of-words representation used in information retrieval [9]. That
formalism from information retrieval is reformulated for local image descriptors as “visual
words” by associating the low-level local features with the elements of a codebook, which
is aptly named a “visual dictionary”. The number of visual words for a given image is
represented as a histogram named bag of visual words (BoVW), and used as a mid-level
representation.

Learning the codebook is a challenge for BoVW representations. The traditional way
involves unsupervised learning over a set of low-level features from a training set of images.
K-means clustering [60], for example, can be used on a sample of these features and the
k centroids be employed as codewords. There is also considerable variation throughout
the literature on the size of the codebook, ranging from a few hundred codewords up to
hundreds of thousands.

The metaphor of “visual word” should not be taken too literally. While textual words
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are intrinsically semantic, visual words are usually appearance-based only. Moreover, the
BoVW model was considerably extended since the seminal work of Sivic and Zisserman.
New ways of encoding the local descriptors using the codebook were proposed, as well as
new ways of aggregating the obtained codes. This stretched the metaphor of “visual word”
too much, and a more formal model was proposed by Boureau et al. [13], making explicit
the operations of coding and pooling. Therefore, the BoVW formalism evolved into a
meta-model for which myriads of variations are possible, based upon the combinations of
low-level descriptors, codebook learning, coding and pooling.

The coding and pooling operations can be conveniently understood in the matrix form
proposed by Precioso and Cord (see Figure 2.1, adapted from [8, 83]). Their formalism
starts with the choice of the codebook (e.g., by sampling or learning on the low-level
feature space) as an indexed set of vectors, C = {ci}, i ∈ {1, . . . ,M}, where ci ∈ Rd.
Then, the low-level local features for each image, which are represented by the index set
X = {xj}, j ∈ {1, . . . , N}, where xj ∈ Rd is a local feature and N is the number of salient
regions, points of interest, or points in a dense sampling grid on the image are extracted.
The final BoVW vector representation encodes a relationship between X and C [8, 13].

Figure 2.1: The BoVW model illustrated in a convenient matrix form, highlighting the
relationships between the low-level features xj, the codewords cm of the visual dictionary,
the encoded features αm, the coding function f and the pooling function g.

The coding step transforms the low-level descriptors into a representation based upon
the codewords, which is better adapted to the specific task and preserves relevant infor-
mation, while discarding noise. Coding can be modeled by a function f : Rd → RM ,
f(xj) = αj that takes the individual local descriptors xj and maps them onto individ-
ual codes αj. The classical BoVW model employs the “hard assignment” of a low-level
descriptor to the closest codeword, and can be modeled by:

αm,j = 1 if m = argmin
k
‖ck − xj‖22 else 0 (2.1)

where αm,j is the mth component of the encoded descriptor.
Recent publications [13, 111], however, suggests that “soft” assignment schemes, which

allow degrees of association between the low-level descriptors and the elements of the
codebook, work better, avoiding both the boundary effects and the imprecision of hard
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assignment [111]. Soft assignment scheme can be modeled by:

αm,j =
Kσ(‖cm − xj|‖2)∑
c∈CKσ(‖c− xj|‖2)

, (2.2)

where cm represents the codewords of the visual dictionary, xj is the low-level local features
for each image, and Kσ is the Gaussian kernel.

The pooling step takes place after the coding, and can also be represented by a function
g: {αj}j∈1,...,N → RM , g({αj}) = z. The classical BoVW corresponds to a “counting of
words” (called sum-pooling) and can be modeled as:

g({αj}) = z : ∀m, zm =
N∑
j=1

αm,j (2.3)

This simplistic pooling has been criticized, and taking the maximum activation of each
codeword (in a scheme aptly named max-pooling) is often much more effective [14]:

g({αj}) = z : ∀m, zm = max
j∈{1,...,N}

αm,j (2.4)

The vector z ∈ RM obtained from pooling is the BoVW representation, which is used
for classification.

There are a number of choices to normalize the BoVW vector. For example, in the
classical BoVW scheme, `1-normalization is often employed to turn a vector of occurrences
into a vector of relative frequencies.

In the following, we overview two recent mid-level representation methods, alternatives
to the BoVW: BossaNova [8] and Fisher Vector [74].

2.1.1 BossaNova

In order to keep more information than the BoVW during the pooling step, BossaNova [8]
introduces a density-based pooling strategy, which computes the histogram of distances
between the local descriptors and the codewords. More formally, BossaNova pooling func-
tion g estimates the probability density function of αm: g(αm) = pdf(αm), by computing
the following histogram of distances zm,b:

g : RN −→ RB,

αm −→ g(αm) = zm,

zm,b = card
(
xj | αm,j ∈

[ b
B
;
b+ 1

B

])
,

b

B
≥ αminm and

b+ 1

B
≤ αmaxm , (2.5)

where N denotes number of local descriptors in the image, B indicates the number of
bins of each histogram zm, αm,j represents a dissimilarity (i.e., a distance) between code-
word cm and descriptor xj, and [αminm ;αmaxm ] limits the range of distances for the descriptors
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considered in the histogram computation.
In addition to that pooling strategy, Avila et al. [8] also proposed a localized soft-

assignment coding that considers only the k-nearest codewords for coding a local descrip-
tor, and keeps the representation compact.

In comparison to the standard BoVW representation, BossaNova significantly outper-
forms BoVW on many challenging image classification benchmarks [7, 8].

2.1.2 Fisher Vector

Fisher Vector [74] is the mid-level image representation with consistently best results in
computer vision literature [17, 91]. Based upon the idea of Fisher information vectors [44]
in the parametric space of Gaussian Mixture Models (GMM) estimated over the whole
set of images, it extends the BoVW paradigm by encoding first- and second-order average
differences between the descriptors and codewords.

Furthermore, Fisher Vector is a compact representation, since much smaller code-
books are required in order to achieve a good classification performance in general vision
problems.

Formally, given a GMM with N Gaussians, let us denote its parameters by λ =

{wi, µi, σi, i = 1 . . . N}, where wi, µi and σi are respectively the mixture weight, mean
vector and diagonal covariance matrix of Gaussian i. In the Fisher Vector framework,
the D-dimensional descriptor xj is encoding with a function Φ(xj) = [ϕ1(xj), . . . , ϕN(xj)]

into a 2ND-dimensional space where each function ϕi(xj) is defined by:

ϕi(xj) : RD −→ R2D,

ϕi(xj) =

[
γj(i)√
wi

(
xj − µi
σi

)
,
γj(i)√
2wi

(
(xj − µi)2

σi2
− 1

)]
, (2.6)

where γj(i) denotes the soft assignment of descriptor xj to Gaussian i.
We evaluate the Fisher Vector mid-level features given that it offers a more complete

representation of the sample set, which we believe would be important for DR analysis.
To the best of our knowledge, it has never been applied to this problem. More details on
Fisher Vector representation can be found in [74, 91].

2.2 Convolutional Neural Networks

For decades, constructing a pattern recognition system with conventional approaches
required a considerable domain expertise in order to convert raw data (such as size,
shape, color and location of retina lesions) into a proper representation; and a posterior
learning stage with algorithms capable of recognizing categorical patterns (e.g., whether
or not a patient needs a follow-up).

Deep learning composes non-linear modules that, starting with raw data, transform
the representation in one level into a more abstract representation [55]. With enough data,
the multiple-level composition enables to learn very complex functions in an end-to-end
manner: represent the data and categorize.
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Figure 2.2: Representation of a Convolutional Neural Network. Example applied to a
raw image with red, green, and blue (RGB) color channels. Each convolutional layer has
a bank of filters (not represented in the image) and outputs a feature map. Information
flows bottom up, with lower-level features, and a score is computed for each image class
in output. Extracted from [55] – license CC BY (see Appendix A).

Convolutional Neural Networks (CNN) are deep-learning methods designed to deal
with data in form of multiple arrays such as images. Inspired by biological processes and
strongly founded on mathematical convolution operations, the first popular CNN was
proposed in 1995 by Lecun and Bengio [54].

In CNNs, convolutional layers play the role of non-linear modules. Units within a
convolutional layer are connected to local patches of its input (that might correspond
to output of a previous layer) through a set of weights, and the weighted-summed lo-
cal patches pass through a non-linearity. Those layers have the role of detecting local
conjunction on features from previous layers [55]. Pooling layers (and its numerous vari-
ations) have the role of merging neighbouring features into one. It is expected that those
neighbour features are semantically similar.

Commonly, convolutional, non-linear and pooling layers are stacked, followed by some
dense layers (each unit is fully-connected to the input, followed by a non-linear unit).
Weights of convolutional and dense layers are traditionally learned by using simple stochas-
tic gradient descent – or more advanced optimization algorithms – and the parameter
updating is performed by backpropagation procedure [55].

Figure 2.2 shows the architecture of a typical CNN, whose structure is composed of
a series of stages [55]. As exposed, the first stages in the CNN are either convolutional
layers or pooling layers. Convolutional units are organized as a feature map (represented
horizontally) resulting from a convolution operation applied to the previous layer through
a set of weights called a filter bank. The result of this convolution is passed through
a non-linearity function (e.g., rectified linear unit). Pooling layers merges semantically
similar features into one, typically computing the maximum of a local patch of units in
one feature map.
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2.2.1 Transfer Learning

Transfer learning aims to transfer knowledge learned in one or more source tasks to
improve the learning process in a target task. Normally, the transfer is sought when
there are not enough training samples in the target domain or when there is already a
reasonable solution for a related (source) problem and it would be natural to leverage
such knowledge while solving the target problem. Most of the existing work that exploit
transfer of skills/knowledge implicitly assume that the source and target domains are
related to each other [70].

Transfer learning normally appears in two distinct scenarios: feature extraction and
fine-tuning. In the former case, we freeze network layers and correspondent parameters
and use them just to extract features to the target task. In practice, this corresponds to
remove the last dense layer and treat the CNN as feature extractor that will be followed
by a classifier (e.g., Support Vector Machine) for the new dataset.

In turn, the latter case involves continuing the backpropagation, updating of the net-
work internal parameters to better adjust them to the target domain. In this situation,
it is possible and sometimes recommended to keep the earlier layers frozen, since they
contain generic features that recognize edges and color blobs. Assuming the domains are
similar, smaller learning rates might be used since the pre-learned weight can be distorted
too quickly and too much.

2.3 Diabetic Retinopathy Lesion Detection

Although obtaining high sensitivities and specificities, in the beginning of the doctoral
program the state of the art on aided diagnosis of DR used to be specialized for a specific
type of lesion [6, 29, 32, 35, 36, 48, 53, 67, 90, 96, 100, 115, 121]. For bright lesion
detection, sensitivities range from 70.5 to 100.0% and specificities from 84.6 to 99.7% [32,
36, 67, 90, 96, 100, 115]; for red lesion detection, sensitivities range from 77.5 to 97.0% and
specificities from 83.1 to 88.7% [29, 48, 96]. A summary of results found in the literature
is presented in Tables 2.1 and 2.2.

The development and implementation of single-lesion algorithms is a limitation for
accurate referral as, in general, a method developed for one lesion cannot be directly
applied to other lesions, preventing the development of a general framework for multi-
lesion detection and referral. In order to overcome this, researches have proposed several
multi-lesion schemes. Li et al. [57] implemented a real-time management tool for diabetic
eye disease that focuses on the two main DR-related lesions: microaneurysms and hard
exudates. However, their framework does not exploit a unique technique for the detection
of both lesions simultaneously. Lesions are first detected using several image analysis
criteria including texture measurements. This provides a content-based image retrieval
framework once the microaneurysms and exudates have been detected in each image. The
information is grouped together and a complete description of the retinal image is created
as query, which is then compared to a database of past images with known diagnoses.

Another common limitation of using current algorithms for DR detection and classifi-
cation is the need for complex and ad hoc pre- and post-processing of the retinal images,
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Table 2.1: State of the art for the detection of bright lesions.
Work Sens Spec AUC Dataset Approach

Sinthanayothin et al. [96] 88.5% 99.7% – 30 Recursive Region-Growing Segmentation
(RRGS) and thresholding

Niemeijer et al. [67] 95.0% 88.0% 95.0% 300 Each pixel is classified in a so-called lesion
probability map

Sánchez et al. [90] 100% 90% – 80
Mixture models and dynamic threshold for
segmentation, followed by a postprocessing to
distinguish the lesions

Giancardo et al. [36] – – 88.0%* 169 + 1200 + 89**
Features based on color, wavelet decomposi-
tion and exudate probability. Several classifi-
cation algorithms

Fleming et al. [32] 95.0% 84.6% – 13219 Multiscale morphological process followed by
thresholding

Sopharak et al. [100] 80.0% 99.5% – 60 Mathematical morphology methods followed
by thresholding

Welfer et al. [115] 70.5% 98.8% – 89 Mathematical morphology methods and
thresholding

* AUC obtained for training on HEI-MED dataset and testing on Messidor dataset.
** HEI-MED, Messidor and ROC datasets, respectively

Table 2.2: State of the art for the detection of red lesions.
Work Sens Spec AUC Dataset Approach
Sinthanayothin et al. [96] 77.5% 88.7% – 23 RRGS in green channel

Jelinek et al. [48] 97.0% 88.0% – 758 A microaneurysm (MA) detector notes the
number of MAs and dot hemorrhages detected

Fleming et al. [29] 85.4% 83.1% 90.1% 1441 MA detection with emphasis on the role of the
local contrast normalization

Giancardo et al. [37] – – – 100* Microaneurysm detection with Radon Cliff
Operator

Antal and Hajdu [6] – – 90.0% 100*+ 120** Combination of internal component of MA de-
tectors

Lazar et al. [53]*** – – – 100*
Statistical measures of attributes on peaks are
used in naïve Bayes classification. Scores are
thresholded for a binary output

Zhang et al. [121]*** – – – 100*
Multiscale Correlation Filtering (MSCF) and
dynamic thresholding for intensity-based de-
tection and localization

Sánchez et al. [90]*** – – – 100* Statistical approach based on mixture model-
based clustering and logistic regression

* ROC dataset.
** Messidor dataset.
*** The authors used the performance measure applied in the Retinal Online Challenge.
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depending on the lesion of interest. The pre- and post-processing address issues like image
acquisition and field-of-view variations, or adaptations to take ethnicity of the patients
into account [23, 35]. Pre-processing of retinal images may include standardizing the res-
olution of the image, normalizing color, segmenting and removing blood vessels [99], and
detecting and removing the optic disk [5, 29]. For this task, morphological operators [39]
are often employed as part of the pre-processing step [32, 100, 115].

Research in automated retinal lesion classification is becoming more general, bypassing
the need for pre- and post-processing. Rocha et al. [87] proposed a unified framework for
detection of both hard exudates and microaneurysms. The authors introduced the use
of BoVW representations for DR lesion detection, creating a framework easily extendible
to different types of retinal lesions. However, the BoVW model employed in that work
was simple and chosen without any theoretical or experimental design analysis but rather
from experimental results in other fields of image analysis [97]. This has opened up the
opportunity for substantial improvements, which are explored in the doctoral program.

2.4 Referable Diabetic Retinopathy Detection

The simple presence of DR lesions is insufficient to warrant referral. For instance, a
small number of microaneurysms in a safe region of the retina might be considered mild
nonproliferative DR, without need of referral.

Following the International Clinical Diabetic Retinopathy (ICDR) severity scale [117],
formulated by a consensus of international experts to standardize and simplify DR clas-
sification, a person is deemed to have referable DR if either or both eyes has moderate
or severe nonproliferative DR, or proliferative DR, macular edema, or both. A person is
deemed to have nonreferable DR if there is no nonproliferative DR or mild proliferative
DR and no macular edema in both eyes.

Referable diabetic retinopathy detection is currently addressed in different ways [1, 2,
12, 25, 34, 76, 82, 84, 86]. Solutions vary from custom-tailored handcrafted lesion detectors
(sometimes encoding expert-domain knowledge) to mid-level representations (combining
a series of low-level descriptors) to data-driven lesion detectors (underpinned by neural
network advances). In this section, we overview existing approaches to detect referable
diabetic retinopathy.

We start with methods based upon the detection of individual lesions. Then, we discuss
some approaches that exploit data mining to diagnose retinal images. Thus, we present
some works which integrates telemedicine systems with automated screening systems. In
sequence, we describe some recent methods that evaluate referral using deep learning.
Afterwards, we show referral solutions that require the lesion detection but alleviate the
complexity of traditional approaches employing unified detection techniques. Table 2.3
shows important prior work regarding referable diabetic retinopathy detection.

Many techniques for referral assessment rely upon examining the positioning of lesions
on retinal landmarks, are complex and, frequently, tailored to each lesion. Some works
rely on the number of microaneurysms [101], although their presence in one quadrant
of the retina characterizes only mild nonproliferative diabetic retinopathy, without the
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need of referral. Naqvi et al. [64] proposed a referral system for hard exudates in diabetic
retinopathy using a robust mid-level representation of bag-of-visual-words (BoVW), which
is reliable and easily adaptable to other lesions. However, they fall short of the aim
of offering reliable referability assessment, ending up providing mostly a screening for
exudates. Moreover, in the task of assessing referral, they did not follow any standard
grading consensus regarding diabetic retinopathy level classification — necessary for a
consistent improvement of communication among specialists [117].

Taking a different path, recent works used data mining to assess referral due to patholo-
gies [25, 86]. Decencière et al. [25] combined visual information (retinal images) and con-
textual data from the individuals (e.g., patient age, weight or diabetes history) to detect
retinal pathologies and to point out whether or not patients need referral to a specialist.
The authors considered image quality metrics, diabetic retinopathy-related lesion infor-
mation (exudates, microaneurysms, and hemorrhages), demographic and diabetes-related
information.

Similarly, Quellec et al. [86] used multiple retina images and contextual information
about the patient to detect abnormal retinas. Instead of detecting just one or more
lesions related to a particular eye disease, they identify patients who need referral to an
eye care provider, regardless of pathology. The method starts by mixing a set of retinal
images and building a mosaic for each one. Then, they characterize the images using
a BoVW model, extracting multi-granular histograms into a cascade of regions. After
characterizing the images, their method extracts diagnosis rules relying on visual word
histograms and contextual information previously collected.

In addition to those solutions, telemedicine systems also improved health care pro-
ductivity and addressed the lack of access to diabetic retinopathy screening. Besides in-
creasing local access, telemedicine programs provide risk stratification of diabetic patients
so that those who require treatment can be scheduled more efficiently [108]. Automated
screening systems integrated with telemedicine frameworks make diabetic retinopathy
screening more accessible, efficient, and cost-effective [94] and a few such systems were
proposed [1, 2, 12].

Bhaskaranand et al. [12] integrated a diabetic retinopathy screening solution that as-
sesses severity and referral into a telemedicine system. The screening tool, called EyeArt,
analyzes image quality (patients with collected ungradable images are also referred), and
enhancing images so as to normalize and improve the appearance of the existing lesions.
With a set of filterbank descriptors, the method identifies and describes regions with
anatomical or pathological structures associated with specific lesions (microaneurysms,
exudates, and hemorrhages). A supervised learning ensemble is employed at the very end
for referral decision.

As exposed above, bags of visual words became a fundamental approach for image
representation and is widely exploited for retinal image analysis. Rocha et al. [87] adopted
a class-aware fashion (one codebook per class) especially suitable for diabetic retinopathy-
related lesions. The approach was suitable to assess quality [49, 81], detect lesions [46,
64, 93], and assess referability [80, 82, 86].

Detecting lesions is usually the first stage of traditional referral assessment, and it
tends to be specific for each lesion. The BoVW methodology allowed general frameworks
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Figure 2.3: Pipeline of the lesion-based methodology for detection of referable diabetic
retinopathy as described in [82].

adaptable for large classes of lesions [46, 49, 80, 93]. Pires et al. [80] applied that unified
methodology to detect lesions with models based on BoVW mid-level features and SVM
classifiers, and gathered the individual scores (per lesion) to referral decision making. The
referability decision had an AUC of 93.4% [80].

In the first phase of the doctoral program, we improved this achievement to 94.2% by
enhancing the lesion detectors with better mid-level image features [82]. Henceforward,
we will refer that referability assessment proposal as state of the art and will call this
as lesion-based methodology. The streamlined technique for lesion-based decision on
referability is illustrated in Figure 2.3.

Abràmoff et al. [1] investigated the potential of the Iowa Detection Program (IDP) to
detect referable diabetic retinopathy. The IDP is a framework for quality analysis and
diabetic retinopathy lesion detection. In a per-patient setup (two images per patient), the
IDP combines analysis of individual lesions, structures, and quality in a simple likelihood
that encapsulates the patient’s diagnostic about referable diabetic retinopathy.

In a follow-up work, Abràmoff et al. [2] integrated the IDP with a set of convolutional
neural networks (CNNs) specialized on detecting hemorrhages, exudates, and neovascu-
larization as well as normal retinal anatomy and image quality. Employing CNNs ranging
from the well-known Alexnet [51] to VGG [95], the hybrid system significantly outperforms
existing solutions at the task of diabetic retinopathy screening.

Unified approaches that capture discriminative patterns of distinct lesions alleviate
the complexity of exploiting specific tailored visual characteristics. However, as any hand-
crafted technique, those approaches are subject to lose critical information that could be
evinced in data-driven approaches to provide effective decisions. In this vein, showing the
potential of a data-driven system over handcrafted counterparts, Gargeya and Leng [34]
customized deep convolutional neural networks for extracting features to classify images
into no DR vs. any stage of DR, and no DR vs. mild DR. Those features are combined
with retinal image metadata for classification (original pixel height of the image, original
pixel width of the image, and field of view of the original image).

Quellec et al. [84] trained CNNs to detect referable DR, using a heatmap optimization
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procedure. To create heatmaps, the authors proposed a training method which involves
a third pass on the CNN to propagate second-order derivatives forward. Those CNNs
trained for image-level classification are also used to detect lesions related to DR (hard
exudates, soft exudates, small red dots, hemorrhages).

Gulshan et al. [41] ensembled 10 CNNs with the Inception-v3 architecture [105],
trained with the ImageNet dataset, to make multiple binary decisions such as (1) mod-
erate or worse DR, (2) severe or worse DR, (3) referable diabetic macular edema, or (4)
fully gradable. An image fits as referable if it fulfills criterion (1), criterion (3) or both.

Given that the doctoral program started when the state of the art for referable diabetic
retinopathy detection relied upon handcrafted lesion-based methods with unified BoVW,
our initial goals were centered on enhancing that scenario. Afterwards, we explored data-
driven methodologies and fusion techniques.

2.5 Retinal Image Quality Assessment

The quality of the retinal images is of paramount importance for automated image ana-
lytics and a factor that successful and reliable computer-aided diagnostic models rely on.
Assessing image quality has been discussed in the literature by a considerable number of
authors [20, 31, 49, 52, 56, 61, 81, 89, 110] and represents an important limiting factor
for automated diabetic retinopathy screening [71].

The fundus quality is subject to be reduced by artifacts such as eye lashes or dust specs
on the lens, only part of the retina is seen, the image is out of focus or badly illuminated.

Image quality factors that might be considered in general includes:

• Focus: Is the focus good enough to perform adequate grading of the smaller retinal
lesions such as microaneurysms?

• Illumination: Is the illumination adequate (not too dark, not too light)?

• Image field definition: Does the primary field include the entire optic nerve head
and macula? Are the nasal and temporal fields adequately centered to include at
least 80% of the non-overlapping portion of the field?

• Artifacts: Are the images sufficiently free of artifacts (such as dust spots, arc defects,
and eyelash images) to allow adequate grading?

The most common handcrafted methods applied for classification of retinal image
quality are edge intensity histograms or luminosity [52, 56] to characterize the sharpness
of the image. Retinal morphology-based methods such as detection of blurring and its
correlation to vessel visibility and retinal field definition [31, 110] have been applied for
automatic detection of retinal image quality. Fleming et al. [31] method involves two
aspects: image clarity and field definition. The clarity analysis is made upon the vascula-
ture of a circular area around the macula. The authors conclude whether or not a given
image has enough quality using as evidence the presence/absence of small vessels in the
selected circular area.
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Pires et al. [49, 81] proposed handcrafted techniques for analyzing image quality in
two aspects: field definition and blur detection (focus). For field definition, the authors
proposed the use of structural similarity to evaluate the quality of fundus images. For
blur detection, the method involved the use of a series of handcrafted descriptors, each
one taking full advantage of the specific variations between poor and good-quality images.
The descriptors are based on area occupied by blood vessels, class-aware BoVW-based
representation, and measuring similarities among original images and versions obtained
by controlled blurring and sharpening operations with gaussian filters. The authors also
employed fusions (early and late), and reached better performance with Meta-SVM.

Data-driven deep learning methodologies comprise the most recent techniques pro-
posed for retinal image quality assessment [20, 61, 89].

Mahapatra et al. [61] combined unsupervised information from local saliency maps and
supervised data-driven information from CNNs to analyze the quality of retinal images.
The authors trained one random forest classifier for each (map-based and CNN-based)
feature vector and calculated the mean of the responses.

Costa et al. [20] proposed an accountable method for quality evaluation. The method
consist on classifying image patches in terms of quality, and combining the local responses
to grade the entire image (the image is graded as good if there are more high-quality
regions that low-quality ones). Those patch responses also compose a final heatmap that
shows the regions that influences the decision.

2.6 Accountable Retinal Image Analysis

In automated diagnostic tasks, the classification accuracy is remarkably relevant, but un-
derstanding the reasons behind a computer-aided decision has become even more required
and appreciated lately. Notwithstanding, most data-driven approaches are not absolutely
explainable. Here we present some recent works that propose accountable methods for
tasks related to diabetic retinopathy and/or performs final decisions based on local and
global information. In this work, we interchange the terms heatmaps and saliency maps
to express pixel importance analysis towards a decision.

To capture visual properties from retinal images, Nandy et al. [63] collect blobs from
a limited set of annotated lesions and learn class-aware GMMs (control and disease),
refine and combine them to provide universal GMMs. Those universal GMMs are used as
prior distributions to adapt individual image’s blobs distributions. Similarities between
components of universal and adapted (individual) GMMs compose the feature vector of
a particular image, ultimately used to train a referral model. The proposed GMM-based
method achieved an AUC of 92.1% with Messidor dataset under a 4-fold cross-validation
protocol.

Yang et al. [119] combine local and global mechanisms for lesion location and severity
grading, respectively. The local stage has the purpose of not only detecting lesions but also
reweighting the images based on a naïve strategy whereby predictions and probabilities
are weights — e.g., control patches are totally removed (label 0) while exudates (label 3)
are more rewarded than microaneurysms and hemorrhages (labels 1 and 2, respectively).
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After reweighting, the images are used as input to the global network that grades the
severity and categorizes as referable if the stage is beyond mild nonproliferative diabetic
retinopathy (NPDR). The two-stage method provides an AUC of 95.9% for RDR over
EyePACS test dataset.

Wang et al. [114] proposed an interpretable approach for DR screening that predicts
the stage of diabetic retinopathy based on the whole image and suspicious patches. Zoom-
in-Net mimics the clinician usual procedure to examine retinal images. The entire Zoom-
in-Net comprises three sub-networks. The first one classifies retinal images producing
probabilistic responses for each class, while the second receives feature maps from a spe-
cific point of the first network (before fully-connected stage) and produces scores and
contextual heatmaps for each disease level. The second network is responsible for pro-
cessing and combining the high-dimensional patches extracted in virtue of the heatmaps.
The third network combines features from all patches by global max pooling, concatenates
with image-level features from the first network and classifies the image generating class
scores. The Zoom-in-Net combines (by sum) the 5-dimensional scores from each subnet-
work, and later on trains an SVM for DR stage detector, whose decisions are later on
converted for referral. Using Messidor dataset under a 10-fold cross-validation protocol,
the authors reached an AUC of 95.7%.

An end-to-end BoVW-like methodology that bypasses the previous stage of codebook
learning was proposed recently by Costa et al. [21]. The method consists on jointly training
two neural networks under the same objective function and joint optimization process.
The first network learns weights in order to encode local features — previously detected
and described with SURF algorithm [11]. The approach aggregates those encoded features
by max-pooling and uses the learned representation as input to the second network, that
discriminates the image in terms of presence/absence of lesions or signs of referable/non-
referable conditions. The authors enhance the model interpretability by modifying the
loss function according to the class, forcing sparse representations for control images and
dense representations for disease cases.

To enhance classification of DR severity, Roy et al. [88] proposed a hybrid approach
that combines data-driven (global) information with BoVW-based (local) approaches by
incorporating local representations encoded in terms of particular lesions. The image-
based global features come from a well-performing Deep Neural Network (DNN) for
severity estimation, while patch-based local features consist of non-overlapping 224× 224

patches described with VGG Net [95] (pre-trained with ImageNet dataset), and encoded
into discriminative and generative pathology histograms. The discriminative histogram
proposed by Roy et al. is based upon encoding local patches with a dictionary created
through random forest’s trees [88]. After encoding into a higher dimensional and sparse
space, the local features are assigned to the lesion class for which it has been classified
by a pre-trained multi-lesion SVM classifier; and the sparse activations are aggregated by
sum pooling. The generative histogram is based on BoVW representations by Fisher Vec-
tors [91]. Before calculating the gradients of local patches with respect to Gaussians’ mean
and standard deviations, the authors reduced the local feature dimensionality by apply-
ing principal component analysis (PCA). Roy et al. concatenate global features (from the
second fully-connected layer), discriminative histograms and generative histograms, and



34

train a random forest classifier to evaluate DR severity. By combining local and global
information, the authors boost the performance from 0.81 (only global information) to
0.86 in quadratic kappa score.

Quellec et al. [84] proposed an accountable solution for automated referral assess-
ment and automated detection of DR-related lesions. The authors trained the o_O1 and
Alexnet architectures for referable DR; and without retraining, evaluated how well the
CNNs could detect lesions. The optimal checkpoints for referral and for each individual
lesion (the one the provides better performance during the learning process on a dataset
with manually delineated lesions) were ensembled in a patient-basis viewpoint. The en-
semble corresponds to a random forest trained with responses of six different networks
(checkpoints exported in different steps), for left and right eyes. By combining those
responses, the method reached an AUC of 95.4% with Kaggle/EyePACS dataset.

1Competitor in the 2015 Kaggle Diabetic Retinopathy Detection Challenge
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Chapter 3

Methodology

Our work involved three paths: Diabetic Retinopathy Lesion Detection, Referable Di-
abetic Retinopathy Detection and Validation with Images from Portable Devices (Sec-
tions 3.1, 3.2 and 3.3, respectively). Here, we present a brief description of each topic,
including the solutions reported in papers published in a conference, journals and a book
chapter during the doctoral program [75–79, 82].

3.1 Diabetic Retinopathy Lesion Detection

Assuming the adoption of diabetic retinopathy screening methodology inspired on unified
approaches suitable for every lesion, it is important to remember that our current research
regarding DR lesion detection relies on the following questions:

Q1.1: Can we combine the advantages of both hard and soft codings and provide a good
balance for designing efficient and effective DR lesion detectors?

Q1.2: Can we preserve information in the pooling process and still obtain satisfactory
results?

Q1.3: Can we improve the results employing global codebooks?

Q1.4: Can we diagnose patients in an ethnic group (e.g., isolated indigenous communi-
ties), even using models trained with data from other different ethnic groups?

Therefore, in the following sections, we delve into the methodologies we have been
proposing and employing to investigate these questions. Section 3.1.1 describes the com-
bination of the classical and the more recent coding schemes in order to provide a enhanced
BoVW-based representation for retinal images (Q1.1). Section 3.1.2, in turn, refers to
the preservation of valuable information in the pooling step (Q1.2). Section 3.1.3 com-
pares the use of class-based codebooks with the use of global codebooks (Q1.3). Lastly,
Section 3.1.4 evaluates the feasibility of diagnosing isolated communities using lesion de-
tectors trained with data from different ethnic groups (Q1.4).
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3.1.1 Semi-soft Coding for Lesion Detection

This section provides a complete description of the technique proposed for answering
Question Q1.1. First a detailed overview of each conceptual aspect of technique is dis-
cussed. The scheme proposed here employs a two-tiered image representation based upon
the extraction of low-level local features from the images, and then the aggregation of
those local features into mid-level BoVW features. Finally, the BoVW features are used
as input to a maximum-margin SVM classifier [19].

BoVW-based Representation

The mid-level BoVW representation is among the most impactful contributions of the
doctoral program and is outlined here. Several BoVW-based representations have been
proposed in the literature [46, 81, 87]. However, the methods discussed in these papers do
not explore and compare the different possible implementations associated with BoVW-
based representations nor do they present any elaborate discussion on the rationale for
using the representations proposed therein.

BoVW-based representations rest upon several possible choices that have to be made
for low-level feature extraction, type of codebook, coding and pooling when applying this
method to image classification. The factors considered for this research are listed below
and explained in the remainder of this section:

• Low-level feature extraction: mid-level BoVW features depend upon low-level
features. The features used for low-level feature extraction have a large impact
on subsequent performance of the classifier. Two low-level BoVW feature extrac-
tion possibilities (factor levels) are sparse features, based upon the detection of
salient regions or points of interest; and dense features, sampled over dense grids
of different scales. Section 3.1.2 provides more details regarding low-level feature
extraction;

• Choice of codebook: “codebook learning” was performed by a k-means clustering
over features chosen at random from a training set of images. An alternative
class-aware factor level is also proposed;

• Coding: For this factor, three levels were compared:

– Hard assignment: associates each descriptor fully and only to its closest
codeword in the codebook (Eq. 2.1). The advantage of these schemes is the
sparsity of the codes; the disadvantages are that they are subject to imprecision
and noise when the descriptors fall in regions close to the limit between the
codewords in the feature space. This scheme was explored in previous work for
detecting DR-related lesions [46, 50, 87].

– Soft assignment: there are several “soft” assignment schemes to deal with
the deficiencies associated with hard assignment. The option employed here
was codeword uncertainty [111] (Eq. 2.2), which has not been explored as a
DR-related lesion detector but is generally considered the most effective for
other classification tasks.
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– Semi-soft assignment: soft assignment solves the boundary effects of hard
assignment, but creates too dense codes. A “semi-soft” scheme is often more
desirable. One such scheme, designed specially for the DR-related lesion de-
tection, is described below.

• Pooling: For the pooling step, both the traditional sum-pooling (Eq. 2.3) and the
more recent max-pooling, described in Eq. 2.4, are employed. The pooling step is
considered one of the most critical for the performance of BoVW representations,
and max-pooling is considered an effective choice [8, 13, 14].

In all cases, an `1-normalization on the final BoVW vector was used.

Semi-soft Coding

The semi-soft coding tries to combine the advantages of both hard and soft assignments,
i.e., avoiding the boundary effects of the former, and the dense codes of the latter. The
main idea is to perform a soft assignment, but just to the codewords that are the closest
to the descriptor, keeping all others at zero. This concept can be translated into many
designs of which two were used for this research:

• only the closest codeword is activated;

• the activation is proportional to the inverse of the distance between the codeword
and the descriptor.

Therefore, the generated codes are very sparse. On the other hand, the effect of the
descriptors is “felt” even at relatively long distances (compared to exponential decay of a
Gaussian kernel as in Eq. 2.2). The scheme has the advantage of not requiring parameters.

The coding function can be described as:

αm,j =

{
1

‖cm−xj‖2 if m = arg mink ‖ck − xj‖2
0 otherwise,

(3.1)

Class-aware codebook

Rocha et al. [87] proposed employing a “double codebook”, extending the usual scheme in
a class-aware fashion, especially adapted for DR-related lesions. This is possible because,
in addition to the training images being annotated for each lesion, the regions where the
lesions appear are also identified (usually 2 to 5 per image from affected patients).

Using the class-aware codebook ensures a sufficient number of codewords representing
the appearance of the lesion structures. Because the lesion areas are relatively small,
a non-class-aware codebook tends to be dominated by codewords representing healthy
regions. During the coding phase, a good codebook is important, as the local feature
vectors need to be assigned to the components of the mid-level feature vector in a way
that allows discriminating the positive and negative classes. Having very few codewords
for the lesion structures reduces this discriminating power. Selection of feature vectors is
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Figure 3.1: Regions of interest (dashed black regions) and the points of interest (blue
circles). Points of interest falling within the regions marked by the specialist are considered
for creating the class-aware codebook — half of the codebook is learned from local features
sampled inside the regions marked as lesions, and half the codebook is learned from local
features outside those regions.

usually employed for general-purpose visual recognition — but in those tasks, recognition
does not hinge on such subtle differences, as is the case for DR-related lesions. The scheme
can be employed for both dense and sparse low-level descriptors, and is illustrated for the
latter case in Figure 3.1.

The class-aware scheme works by creating two independent codebooks, one from de-
scriptors sampled from regions marked as containing lesions by the specialist, and one from
descriptors outside those regions (which includes images from healthy patients). Then,
two independent k-means clustering methods are performed, each with k corresponding
to half the size of the desired codebook. After the clustering is finished, the two sets of
centroids are simply concatenated, generating a codebook of the desired size.

3.1.2 Preserving Information for Lesion Detection

For answering Question Q1.2, this section describes the extraction of low-level local fea-
tures from retinal images, the aggregation of those local features into mid-level BossaNova
features, and the classification of those features by a Support Vector Machine (SVM) clas-
sifier [112].

Low-level Local Feature Extraction

Typically, local feature extraction includes two steps: feature detection and feature de-
scription. The former aims at finding a set of interest points, or salient regions in the
image that are invariant to a range of image transformations. The latter step aims at
obtaining robust local descriptors from the detected features. In the doctoral program,
we extract Speeded-Up Robust Features (SURF) local descriptors [11].
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Two types of local feature extraction can be distinguished [109]: (i) sparse, based
upon the detection of salient regions or interest points, or (ii) dense, where patches of
fixed size are placed on a regular grid over multiple scales. For sparse feature detection,
the SURF [11] is used. SURF sensitivity parameters are pre-tuned to detect, on average,
400 interest points per retinal image.

For dense features, patches are selected on a dense grid using radii of 12, 19, 31, 50,
80, 128 pixels. These radii are used both as scale and as the vertical/horizontal sampling
steps of the grid.

SURF is used to create a feature vector for each detected point of interest. The
algorithm is parameterized to operate on twice the image resolution and to extract 128-
dimensional extended feature vectors instead of the default 64-dimensional feature vectors.

Once extracted, these points need to be analyzed and filtered so as to select the ones
most appropriate for detecting DR lesions. For that, we transform the low level features
into mid-level ones creating a two-tiered representation scheme. These low-level local
features are used also for referral decisions, as discussed in Section 3.2.1.

Mid-level Feature Extraction: BossaNova Representation

As explained in 2.1.1, BossaNova is a recent mid-level representation that follows the
BoVW formalism [97], but keeps more information during the pooling step. Recall that in
a BoVWmodel, pooling is the step responsible for aggregating different features activating
the same visual word onto a final summarized feature vector.

In summary, by using a histogram of distances to capture the relevant information,
the BossaNova approach remains very flexible and keeps the representation compact. In
comparison to the BoVW representation, BossaNova significantly outperforms BoVW on
many challenging image classification benchmarks [8]. Considering those results, we have
chosen the BossaNova approach for mid-level features given that it takes into account
some spatial relationship between features which we believe would be important for DR
lesion detection.

In our experiments, we kept the default BossaNova parameter values the same as in
[8] (B = 2, αminm = 0.4σm, αmaxm = 2.0σm, s = 10−3), except for the number of visual
codewords M , where we considered {1,000, 4,000}.

3.1.3 Class-based Scheme vs. Global Dictionary

For answering Question Q1.3, this section compares the traditional global dictionary and
the class-based scheme. In our work we have used the class-based scheme (also referred
as class-aware scheme 3.1.1) for image representation, which performs well for retinal
images. The class-based scheme, proposed by Rocha et al. [87], creates two independent
codebooks, one from descriptors extracted from retinal images with the lesion present, and
one from descriptors extracted from images of healthy retinas. Then, two independent k-
means clustering methods are performed, each with k corresponding to half the size of the
desired codebook. After the clustering process, the two sets of centroids are concatenated,
generating a codebook of the desired size.
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This class-based scheme is compared to the global dictionary scheme when applying
the BossaNova approach in which the clustering is performed only once with the desired
codebook size.

3.1.4 Diabetic Retinopathy Screening for Isolated Indigenous Com-
munities

The current generation of computer-based classifiers requires training images from the
same population that is being tested, preferably from the same retinal camera and with
the same resolution in addition to specific pre-processing of images for each type of lesion
and is therefore not ideal for multi-lesion detection [30, 35, 47] in diverse populations. In
this section, we present the methodology employed for answering Question Q1.4.

Automated computer detection of multiple lesions presented as single lesions or in
combination of different lesions associated with DR from digital images has the potential
to further improve access to primary care-based screening for Aboriginal and Torres Strait
Islander peoples with diabetes by introducing an automated process for initial classifica-
tion of images into those that require and those that do not require referral or further
investigation [80]. This saves the time-consuming process of evaluating every image by
specialists or trained primary care physicians. Using an automated classifier, special-
ists and primary care physicians can better use their time for patient consultation and
reviewing images that have been identified abnormal by the automated screening process.

The methodology employed for image representation in this step is the Bag of Visual
Words (see Section 2.1), widely explored by the computer vision community [80, 82].

The objective of this study is to demonstrate that the BoVW-based automated diabetic
retinopathy classification system can identify abnormal retinal images in an Aboriginal
and Torres Strait Islander population.

3.2 Referable Diabetic Retinopathy Detection

Most existing art focuses on the detection of DR lesions using either visual characteristics
specific to each type of lesion [29, 30, 32, 35, 66, 67] or unified DR-lesion detectors [46,
49, 75, 80, 82, 87].

It is much harder (and polemic) to decide automatically to refer or not the patient
to the ophthalmologist [1, 80, 82, 101]. Automated referral is a hot topic, because DR
risk assessment is complex, based not only on the presence of lesions and their evolution,
but also on subtle hints revealed during examination and anamnesis. We argue, however,
that automated or semi-automated decision of referable cases can have a huge impact
on the management of care, reducing the specialist’s workload while still attending to
the patients in need. While agreeing that face-to-face consultations with a specialist are
always ideal, we stress that many communities simply lack the luxury of offering them to
every suspect case.

Assuming the interest in proposing effective referability assessment methods and pre-
serving relevant information, we recap the questions crafted to guide the researches within
the scope of referral decisions:
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Q2.1: Can we forgo the detection of individual DR lesions and still have an effective
referral decision?

Q2.2: Can sophisticated handcrafted mid-level features improve direct referral decision?

Q2.3: Can we confirm the suitability of handcrafted direct referral in a second, indepen-
dent, dataset?

Q2.4: Can we learn in the data-driven manner highly abstract features that leverage
referable DR detection without the need of manual feature engineering?

Q2.5: Can we diagnose retinal images collected under different acquisition conditions
with data-driven models?

Q2.6: Can we transfer knowledge acquired with a different but similar task in the context
of diabetic retinopathy screening?

Q2.7: Can we provide an effective and accountable data-driven solution for referable
diabetic retinopathy detection?

Q2.8: Can we enhance the performance of the referral model by applying two-tiered
data-driven image representation?

Q2.9: Can we combine global data-driven and local saliency-oriented two-tier represen-
tations for more accurate decision-making?

In the following sections, we present the methodologies proposed to investigate these
questions. Section 3.2.1 evaluates if forgoing the detection of lesions is practicable for
pursuing accurate referral decisions (Q2.1). Section 3.2.2 presents the proposal for im-
proving the direct referral approach using sophisticated mid-level features (Q2.2). Sec-
tion 3.2.3 describes the scheme to evaluate the fitness of the proposed approach in a
public dataset (Q2.3). Section 3.2.4 refers to outstanding data-driven strategy for as-
sessing need of face-to-face consultation (Q2.4). Section 3.2.5 exposes the methodology
behind the cross-dataset evaluation (Q2.5). Section 3.2.6 describes the investigation re-
garding transferring knowledge from a similar but different domain to the referral context
(Q2.6). Section 3.2.7 illustrates the methodology employed to measure pixel importance
and explain what the complex model is learning indeed (Q2.7). Section 3.2.7 details the
process of creating a two-tier mid-level representation based upon contextual information
previously learned by the data-driven model (Q2.8). Finally, Section 3.2.9 presents the
investigation regarding the fusion of global- and local-based image characterization for
enhancing final decision (Q2.9).

3.2.1 Beyond Lesion-based Diabetic Retinopathy: a Direct Ap-
proach for Referral

Currently, automated referral decisions combine separate DR-lesion classifiers into a final
decision. Those models are complex, cumbersome to implement, and often have limited
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Figure 3.2: Pipeline of the methodology for direct diabetic retinopathy referral assessment
proposed in this work.

accuracy. For answering Question Q2.1, we take a different approach with an effective
method for directly assessing the referability of patients (completely forgoing the identi-
fication of specific types of lesions).

The automated referral assessment proposed in the doctoral program dispenses with
the intermediate stage of detecting DR lesions. That direct approach has both theoretical
and practical motivations.

Lesion-based referral decisions loses critical information on the interface between the
lesion-specific classifiers and the referability classifier. Often, the referral classifier receives
just a vector of classification scores, one per lesion classifiers. This is unfortunate, because
cogent information is lost, like the number, intensity, and even position of the lesions in
the retina. One can create ad hoc schemes to transfer those data between the classifiers,
but, it may be simpler to forgo the lesion classifiers altogether, and just provide the retinal
images, with all cogent information, directly to the referability classifier.

Giving the whole image to the referability classifier has also practical advantages. The
classical scheme involves implementing, debugging, training, and testing several lesion
classifiers, and then one additional layer to combine the results and make the referral
decision. Although using a unified approach for the lesion detectors [75, 80, 82] simplifies
the task, it remains much more complex than implementing, training, and testing a single
model.

The streamlined technique for direct decision on referability is illustrated in Figure 3.2.
For low-level feature extraction, the method selects patches on a dense grid using

diameters of 12, 19, 31, 50, 80, 128 pixels. The selected patches are described with
SURF [11] in 128 dimensions. The low-level features are then integrated into a single
feature vector using mid-level features.

Bag of Visual Words is employed for mid-level features. In the codebook learning step,
while the lesion-based approach uses pre-computed codebooks for each individual lesion
detector [82], the direct methodology uses k -means with Euclidean distance over a sample
of low-level features. The codewords are the centroids of k -means, keeping the class-aware
scheme proposed in [87] (half of the codebook from descriptors sampled from referable
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Table 3.1: Retinopathy grade criterion used for MESSIDOR annotation.
Grade Criterion

0 (µA = 0) AND (H = 0)
1 (0 < µA <= 5) AND (H = 0)
2 ((5 < µA < 15) OR (0 < H < 5)) AND (NV = 0)
3 (µA >= 15) OR (H >= 5) OR (NV = 1)

µA: number of microaneurysms
H: number of hemorrhages

NV = 1: neovascularization - NV = 0: no neovascularization

images, and half from nonreferable images). The method trains just one decision model
for referability.

3.2.2 Direct Referral with Sophisticated Mid-level Features

For the mid-level features, we employ simple BoVW as a baseline and explore two recent
alternatives, BossaNova [8] and Fisher Vector [74] (Section 2.1), for improving direct
referral decisions and answering Question Q2.2.

For comparison purposes, the same low-level features are used in this step. In the
codebook learning step, BossaNova also uses centroids of k -means, while in Fisher Vector,
the codebook learning employs (class-agnostic) Gaussian Mixture Models that is intrinsic
to the representation.

3.2.3 Direct Referral in a Public Dataset

In the doctoral project, for answering Question Q2.3 we also evaluate the fitness of the
proposed direct referral methodology in a public, independent dataset.

The Messidor dataset1, detailed in Chapter 4, comprises images cropped in order to
establish that the relevant circular area of the retina has a radius similar to the DR2
database. Although it has not been graded for referable diabetic retinopathy, the dataset
was annotated with two significant criteria: retinopathy grade (see Table 3.1) and risk of
macular edema.

The severity of the diabetic retinopathy is largely used as guideline for the frequency
of examinations [1, 33]. Although a frequent consultation is recommended for patients
with moderate or severe nonproliferative DR [33], for those without DR lesion or with
just microaneurysms the annual incidence of progression is low [10]. In these situations,
longer intervals between examinations may be recommended (one year for diabetics).
Hence, based on the original annotations about DR severity, the guidelines of periodic
referrals and the opinion of an expert about the criterion employed in the Messidor dataset,
we switched the grading into referable or nonreferable. Given that the presence of just
microaneurysms does not suggest a referral in less than one year, the grades 0 and 1
(including also no risk of macular edema) are considered as nonreferable, while grades 2
and 3 (and also apparent macular edema) as referable, resulting in 688 negative and 512
positive images.

1kindly provided by the MESSIDOR program partners: see http://www.adcis.net/en/
Download-Third-Party/Messidor.html (accessed February 13, 2019)

http://www.adcis.net/en/Download-Third-Party/Messidor.html
http://www.adcis.net/en/Download-Third-Party/Messidor.html
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3.2.4 A Data-Driven Approach to Referable Diabetic Retinopa-
thy Detection

In this section, for answering Question Q2.4 we present our deep learning-based solu-
tion for diabetic retinopathy screening and highlight a series of approaches explored to
achieve a robust and effective framework. An important landmark for automated dia-
betic retinopathy detection was a recent competition promoted at Kaggle2 by California
Health Foundation, with images provided by EyePACS, a platform for retinal screening.
The dataset, comprising more than 88 thousand samples (see Section 4), was the largest
publicly available dataset of retinal images at the time. The aim of the competition
was classifying the images into five degrees of severity, ranging from 0 (no sign of diabetic
retinopathy) until 4 (proliferative diabetic retinopathy). However, here we investigate and
propose binary decisions of referability, while the competition aimed the task of severity
classification. While from the human point of view there’s a relatively direct map between
the two tasks, from a Machine Learning point of view, limiting to binary classification
has theoretical and practical advantages.

Solutions presented at the Kaggle competition have to improve the target metrics in
short time. Rigorous validation of factors leading to performance is less important than
quickly improving metrics. Our aim here is opposite: we are less interested in shaving
tenths of percents from the classification error, and more interested in evaluating the
cost-benefit of each choice and novel contributions.

Our Architecture

Aiming both at effectiveness and efficiency, we present a streamlined architecture for reti-
nal image analysis, which bears some resemblance with two main networks in prior art
(namely o_O, a key competitor in the 2015 Kaggle Diabetic Retinopathy Detection Chal-
lenge, and VGG, a key competitor for natural image classification in the ImageNet chal-
lenge) but with key insights and differences. The solution we propose, which is depicted
in Fig. 3.3, is significantly novel both in practical (CNN architecture) and methodological
(scientific procedure leading to the solution) terms. The proposed architecture has 16
weight layers, with about 10 million parameters.

In terms of arrangements of convolutional and pooling layers, our architecture resem-
bles the VGG-16 [95] except that we reduce by half the number of units on the first four
out of five convolutional blocks and use strides when appropriate, focusing on efficiency
and aiming at working with higher resolution images. We use very small receptive-field
(3×3) convolutions. Pooling layers separate sequences of two or three convolutional layers.
The first pair of convolutional layers starts with 32 kernels/filters. When pooling layers
take place reducing drastically the feature map sizes, the convolutional layers double the
number of kernels. Additionally, we stride in two the first and third convolutional layers
across their respective inputs to reduce more aggressively the initial layers and work with
higher dimensional images. In the fully-connected stage, similarly to the o_O team, we
apply RMSPool with both pool size and stride of (3, 3), and Feature Pool with pool size

2https://www.kaggle.com/c/diabetic-retinopathy-detection (accessed February 13, 2019)

https://www.kaggle.com/c/diabetic-retinopathy-detection
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Figure 3.3: The proposed solution decides to refer the patient directly from the pixels
of the retinal exam, without preliminary feature extraction or lesion detection. From an
initial “basic” configuration, we propose and evaluate improvements step-by-step. The
image is best viewed in electronic form.

of (2, 2). The units of the 1024-unit hidden dense layers employ drop-out with a fixed
probability of 0.5. Our final architecture, in this case, is a hybrid one (not presented be-
fore), which brings to bear essential ideas for an efficient and effective analysis of retinal
images. For instance, in the original VGG-16 design, almost 90% of the parameters reside
on the fully-connected layers. In our new arrangement, convolutional layers represent 75%
of the parameters while fully-connected layers represent only 25%, a remarkable feat for
efficient implementation.

Our idea here is creating a network as similar as possible to VGG-16 [95] in terms of
convolutional and pooling arrangements, but also similar to o_O’s ones in terms of the
fully-connected sequence. Comparing our convolutional/pooling arrangement with one
of the o_O’s architectures, we essentially moved one layer from the coarse stage to finer
one, resulting in more parameters. Above all else, we tried to preserve the structure that
enabled the use of smaller networks for multi-resolution training (see Section 3.2.4).

After each convolutional and dense layer (except the last one), we use leaky rectifier
units (leaky RELU with alpha = 0.01) that applies a small negative slope to address
the shortcomings of the simple rectified linear unit (“dying” RELU), while accelerates the
convergence of the gradient in comparison with conventional activation functions.

We optimize the CNN with Nesterov momentum [103] that, contrasting with stan-
dard stochastic gradient descent, is capable of accelerating convergence in regions of
low-curvature. As well as classical momentum, Nesterov momentum accelerates gradi-
ent descent by accumulating a velocity vector in directions of persistent reduction in the
objective [103]. While conventional momentum computes the gradient update from the
current position θt, Nesterov momentum first computes θt + µvt (a partial update to θt).
This allows Nesterov changing velocity in a more responsive and stable way, especially for
higher values of µ. Given a objective function f , Nesterov momentum is written as:
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vt+1 = µvt − ε∇f(θt + µvt)

θt+1 = θt + vt+1

(3.2)

where ε > 0 is the learning rate, µ ∈ [0, 1] is the momentum coefficient, and ∇f(θt + µvt)

is the gradient at the partially updated θt.
We defined a fixed schedule of 250 epochs for training, starting with a learning rate

of 3×10−3 in the first 150 epochs, decreasing it to 3×10−4 in the following 70 epochs and
finally to 3×10−5 until the end.

We exploited different alternatives for optimization (algorithms and hyper-parameters).
Comparing to o_O’s proposal, we kept the same optimization schedule although with a
different network architecture as that schedule also worked for our problem. Moreover,
here we tackle the problem with a classification point of view rather than a regression one
and apply cross-entropy instead of mean squared error as objective function.

Henceforward, we review and describe, from a rigorous scientific point of view, a set
of approaches proposed by the o_O team and new contributions of our own. We use
such approaches to improve progressively our “basic” framework. We anticipate that we
cannot analyze the following variations (or improvements) independently since it embraces
coarser approaches — essential to the convergence of the CNN — that must be kept to
analyze finer approaches.

Resampling and Data Augmentation

Convolutional Neural Networks thrive with hundreds of thousands, up to several million
learning samples for training. However, contrasting to general-purpose object recognition,
medical tasks count on relatively small annotated datasets. In the rare situations where we
can count on relatively large medical image datasets, the data tends to be very unbalanced,
with the overwhelming portion of the images corresponding to the control group (healthy
patients).

Data augmentation can improve the learning process [51, 120]. The augmentation can
consist of image perturbations by geometric (e.g., zoom, translations, rotations, cropping)
or photometric (e.g., histogram equalizations, contrast enhancements) transformations.

In the technique evaluated here, we propose a data augmentation method to simul-
taneously address the small sample size and the class unbalancing problems. The aim
of data augmentation here is not just inflating the training set for each epoch, but also
dealing with the under-sampled classes by dynamically applying random transformations
to their samples, while keeping the classes balanced.

The set of operations (or perturbations) we consider comprises zoom, flipping, rota-
tions, translations, stretching, and color augmentation. The perturbations are dynami-
cally performed right before submitting an image to the network, bypassing the need for
saving numerous versions of each image. We exploit zooms, rotations, and translations by
randomly choosing a variable into a predefined interval (for instance, we apply rotations
between 0 and 360 degrees, zooms between 1/1.15 and 1.15, and translations between -40
and 40).

The color augmentation, proposed by Krizhevsky et al. [51], consists on changing pixel



47

intensities of RGB channels by adding multiples of principal components (PCA) found in
the training set, with magnitudes proportional to the corresponding eigenvalues times a
random variable drawn from a Gaussian with mean zero and standard deviation 0.5. The
resampling ensures that all classes will be represented equally. The number of randomly
perturbed versions (data augmentation) for each class depends on the balance weights,
that is inversely proportional to the number of images for each class.

Multi-Resolution Training

Poor initialization of network weights leads to poor local minima and, consequently, to an
ineffective solution. Additionally, training large CNNs from scratch requires a very large
dataset. To address those shortcomings, we propose a multi-resolution training strategy
that consists on training simplified variants of the CNN — requiring less training samples
— and using the learned parameters as starting point for next stages. Those variants
have less layers but preserve the number of units of each layer of the original network.

We train reduced versions of the entire network (fewer convolution layers) using smaller
images, and preinitialize larger networks with the learned parameters. Simonyan and
Zisserman [95] employed a similar approach, training the network with the shallowest
configuration and after initializing the first four convolutional and the last three fully-
connected layers of deeper configurations with the learned parameters.

Fig. 3.3 shows in dashed lines the composition of the original and the two smallest
networks. Initially, using the same images resized to 128 × 128 pixels and the same
ground-truth, we train a small variant of the network that does not have the two last
pooling layers and convolution trios (sequences of three convolution layers). Note that
this is a simplified version that comprises just seven convolution layers with the same
number of parameters of the corresponding layers in the original network. Thereafter,
using images resized to 256 × 256 pixels, we produce another simplified network based
on the complete architecture, but without the last pooling and the last convolution trio
(with ten convolution layers), and use the parameters learned with the previously trained
network with 128×128-pixel images to initialize the weights before training. Subsequently,
we initialize the first ten convolution layers with the learned parameters and train the
architecture using 512× 512 pixels images, our final image dimensions of interest.

Robust Feature-Extraction Augmentation

Deep learning-based methods provide us with an end-to-end learning process: the learn-
ing models receive raw images as inputs and produce probabilities as outcomes (resulting
classes), after an extensive and strongly abstract learning highway. In this case, image
representation and pattern recognition are performed together, enabling us to extract
features in any layer before the one responsible for the final decision, and use that infor-
mation in a posterior decision process. This feature extraction procedure is highly flexible
as it allows us to use different machine learning algorithms.

To exploit that flexibility, we extract features in a different pathway. Following the
o_O team’s proposal, we apply pseudo-random data augmentation and create n versions
for each image, both from training and test sets. Pseudo-random augmentation ensures
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that the same sets of perturbations are always applied to all images. The final feature
vector for each image is achieved by concatenating mean and standard deviation of the n
individual feature vectors from the respective n image versions:

xi = [µi, αi], (3.3)

where xi represents the image i. We created 20 image versions (n = 20) in our experiments
and extracted features in the last pooling layer of the CNN. The whole process is data-
driven in the sense that all features are extracted directly from the data with no human
intervention.

Per Patient Analysis

As our ultimate goal is checking whether or not a patient needs to see a doctor within 12
months, and not merely pinpointing the presence of lesions in his/her retinas, whenever
photographs of the two retinas are available, we leverage this additional imagery to mak
the final referral decision.

To provide an outcome for each retina, we concatenate features of the both and include
a binary indicator variable that refers to left or right. The feature vector for a retina is
created as follows:

xretina = [µretina, µretina′ , αretina, αretina′ , δright] (3.4)

where retina′ represents the complementary retina.
In addition to combining information and diagnosing retinas individually, we go be-

yond and assign to the patient the response of the retina that presents the highest risk
(highest probability of needing referral).

3.2.5 Cross-Dataset Validation Protocol

After refining the automated solution for referable diabetic retinopathy screening from
scratch (last question), we investigate the performance over distinct datasets. In this
section, we investigate the performance of the proposed method when training with the
Kaggle/EyePACs dataset and testing it with Messidor-2 and DR2, which have very dif-
ferent acquisition conditions. Basically, we use the CNN trained with data augmentation
and multi-resolution training (Section 3.2.4) to extract features for the test sets (robust
feature-extraction augmentation), and test the features with the classification that pro-
vides referral decisions. We emphasize again that one of the most valuable advantages of
extracting features (in this case, robust feature-extraction augmentation) is that it pro-
vides flexibility to choose different machine learning algorithms. Henceforward, we use
two algorithms: Neural Network and Random Forest. Therefore, for responding Question
Q2.5, we follow a challenging cross-dataset validation protocol with the best solution we
found in the previous section that was trained with Kaggle/EyePACs data.

We highlight that the solution incorporates the proposed data augmentation for train-
ing, multi-resolution training, and robust feature-extraction augmentation steps. We also
exploit the per-patient information whenever we have access to images of both eyes.
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3.2.6 Knowledge transfer for Diabetic Retinopathy Screening

As expounded in Section 2.2.1, we generally employ transfer learning when there are
not enough training samples in the target domain or when there is already a reasonable
solution for a related (source) problem. Additionally, most of the existing works assume
that the source and target domains are related to each other [70].

In this section, for answering Question Q2.6, our proposed domain adaptation cor-
responds to transfer knowledge from a domain also related to retinal image analysis, in
which the source is severity of diabetic retinopathy (a 5-class decision problem), and the
target is referability of diabetic retinopathy (a 2-class decision problem). We explore
transfer learning in its two scenarios — feature extraction and fine-tuning — since we
intend to compare data-driven approaches with previous work that employed handcraft
methods with relatively small datasets under cross-validation protocol.

3.2.7 Accountable Referable Diabetic Retinopathy Detection

For answering Question Q2.7, in this section we present a robust and self-explainable
detector of diabetic retinopathy referability. The method adopts a deep Convolutional
Neural Network trained in an end-to-end fashion for screening of diabetic retinopathy
(referral).

In the next steps, we briefly describe concepts related to accountability, term that
is being widely discussed in artificial intelligence community nowadays. In sequence, we
describe the purely end-to-end data-driven approach we propose.

Accountable Machine Learning

The adoption of machine-learning techniques in supporting automated DR screening
brings an essential question: how these so-called “black boxes” results can be explained?
In this work, we have used a post-hoc interpretation [58], which explains predictions to
ophthalmologists but hides the computational details of the technique.

Considering our data-driven approach through deep CNN, this explanation can be
done using saliency maps. The map highlights input local regions that influence the results
based on the output gradient. However, they are often noisy and difficult to interpret by
human eyes. Smilkov et. al [98] discuss this problem comparing some strategies used
to create saliency maps. In this work, we have used the Guided Backpropagation [102]
strategy, which ignores negative values in the network backward flow. In this way, it
underlines positive neuron contributions to the gradients and attenuates negative ones in
the ReLU functions.

The extracted saliency maps represent sharper visualizations of the activated screening
images, which are pivotal for accountability. In addition, our proposed approach takes
advantage of these maps by extracting saliency-oriented local features, described later on.

Global data-driven approach

Our data-driven approach comprehends essentially a deep CNN model for automated
DR screening. The network design we employ herein is the Inception-ResNet-v2 [104],
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previously trained with ImageNet dataset. We keep using the cross-entropy loss function
with two neurons in the last layer, corresponding to positive and negative categories of
referral.

In this case, we are transferring knowledge learned on a source task to improve the
learning process in a target task. As exposed in Section 2.2.1, transfer learning is normally
sought when the (target) training set is not large, there exists a reasonable solution for
a related (source) problem, and both problems are similar. Since the source and target
domains here are very different, we fine-tune the model with a considerable high learning
rate (we are not concerned so much about distorting pre-trained parameters and need to
practically train from scratch).

Before actually training the entire network, we trained only the last layer, keeping
most of the parameters frozen and avoiding immediate destruction of learned patterns.
Afterwards, we extended the backpropagation to all the network, and optimized the model
with the RMSProp algorithm [107]. We employed an initial learning rate of 0.01 and
decayed it with stochastic gradient descent with warm restarts [59], an aggressive learning
rate reduction combined with periodic restarts. The reduction relies on cosine function,
and the i-th restart takes place after 3.0 × 1.5i epochs to a learning rate of 0.01 × 0.8i.
Increasing the learning rate at each restart allows us to skip of possible local minima and
continue exploring the loss.

To avoid overfitting, we use a weight decay of 0.0004 and keep the dropout with fixed
probability of 0.8 (i.e., preserving 80% of the weights in the training stage). Regarding
data augmentation, we employ both geometric and photometric transformations. Geo-
metric perturbations comprise zoom, flipping, rotations, translations, and stretching, and
are performed by randomly choosing a variable into a predefined interval (for instance,

we apply rotations between 0 and 360 degrees, zoom between
1

1.15
and 1.15, and transla-

tions between -40 and 40). We apply color augmentation for geometric transformations,
that consists on adding, to each training images, multiples of principal components previ-
ously found on the set of RGB pixel values throughout the training set. The magnitudes
are proportional to the corresponding eigenvalues times a random variable drawn from a
Gaussian distribution with mean zero and standard deviation 0.5.

After optimizing the CNN, we can use the model to diagnose new images as well as to
extract saliency maps that highlight pixel importance for the decision made. The saliency
maps provide intuitive explanations about particular decisions. In this work, we use the
guided backpropagation [102] method to acquire pixel importance.

3.2.8 Saliency-Oriented Data-Driven Approach to Diabetic
Retinopathy Detection

In this section, we extend the global data-driven and self-explainable referable DR
detector, presented in Section 3.2.7, to involve also local two-tier saliency-oriented rep-
resentations. For answering Question Q2.8, we use locally significant image regions to
capture evidence that might be stressed to enhance the model. Note that the current stage
requires a reasonably well-optimized model trained in the previous stage (last section).
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Figure 3.4: Overview of the proposed method. Training: two Neural Networks (NN)
are trained; the first based on features from a trained referral deep neural network and
a second one based on lesion patches. Testing: the testing phase combines results of
the two trained neural networks plus the probabilities of the already trained referral deep
neural network.

In the next step, we describe the saliency-oriented data-driven local methodology that
reinforces the performance of the purely global approach as well as the understanding of
the solution. Fig. 3.4 depicts an overview of the proposed solution.

Local saliency-oriented data-driven approach

One of the main novelties in this work is our saliency-oriented local representation method-
ology that relies on heatmaps to gather significant regions (from the previous data-driven
global decision) for enhancing the pipeline and providing a more robust screening method.

In this section, we describe the patch extraction protocol under an image pre-
processing viewpoint, briefly detail the encoding technique (fisher vector), and describe
the methodology for local feature representation.

Patch extraction

After we pass the original image into the deep network, and propagate back the pixel
importance for the decision taken to generate a saliency map (see Fig. 6.11), we process
the map and capture coordinates that are sequentially used to capture regions that could
be relevant to enhance decision.

The saliency map has the same dimensions of the image. As we intend to capture
importance and preserve locality, we initially convert the 3D tensor to a grayscale 2D
tensor by summing up the activations per channel. In general, heatmaps are subject
to visual noise. To reduce undesirable effects in region selection, we apply a threshold
with binarization purposes. Other recent alternatives such as adding noise to reduce
noise could be explored [98], but a single threshold was a reasonable choice towards
efficiency. We filtered the maps with a threshold of 150, a good trade-off for removing noise
and preserving small activations. In sequence, we invert and erode the binary structure
(basic mathematical morphology operation) in order to extend chunks and connect close
components.
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After processing the saliency map, we identify contours in the 2D structure and capture
their respective coordinates. To preserve the aspect ratio and produce visible regions to-
wards boundaries (e.g., keep the boundaries of lesions), we square the regions and enlarge
them using a factor inversely proportional to the original patch size. That operation dou-
bles the height and width for small regions (microaneurysm candidates) and extends by
10% the dimensions of large regions (in general blood vessels or possible connected large
lesions). Smallest regions (in general microaneurysm) are enlarged more than largest
regions. In Fig. 3.5, we show a fundus image superposed with its saliency map, and re-
spective significant regions extracted based on pixel importance for data-driven referral
decision.

Figure 3.5: Saliency-oriented squared patches from which we extract local descriptors.
We enlarge patches in a controlled design taking into account the region sizes: e.g., small
regions (in general microaneurysms) are enlarged more than large regions (e.g., soft and
hard exudates).

Fisher Vector encoding

Once we have the patches, a Fisher Vector encoding strategy is used to capture their
local descriptors by pooling patches features [72, 73]. By combining generative and dis-
criminative techniques, we rank low-level patches descriptions based on their deviation
from a GMM (generative model) by calculating the patch gradient with respect the model
parameters.



53

Integration

After training the deep model for referable diabetic retinopathy detection, generating
the saliency maps for interpretation and local representation, and encoding the multiple
patch-based features, we train a shallow neural network to take a novel complementary
decision regarding need of consultation.

To avoid the new model to be strictly dependent on the decisions performed by the
baseline CNN model, we extract two different, separate mid-level representations for the
test sets — one for each class. We extract those maps by guided backpropagation, each
of which guided by one specific class/neuron. Given that the groundtruth is known, we
can fully use it to extract a unique saliency map and respective mid-level representation
for the training set. As exposed in Fig. 3.4, for inference, the final local saliency-oriented
decision is taken by averaging the two per-class responses.

Per Patient Analysis

As highlighted in Section 3.2.4, the more data available, the more confident and effective
the learned model. One requirement for a robust data-driven model is having available
a large amount of data, except when transferring parameters previously learned from a
different, but similar task. Since our purpose is examining whether or not a patient needs
to see a doctor within one year, we could substantially leverage the accuracy of the model
once photographs of the two retinas are available. As such, we combine image information
to provide final patient responses both in feature level and score level. When the method
involves feature extraction, we concatenate features of both and include a binary indicator
variable that refers to left or right (See Equation 3.4). Regarding score level, we assign
to the patient the response of the retina that presents the highest probability of needing
referral.

3.2.9 Fusion of Global Data-driven and Local Saliency-Oriented
Features to Diabetic Retinopathy Detection

For answering Question Q2.9, we combine global data-driven and two-tiered local
saliency-oriented responses for enhancing diabetic retinopathy screening. In this work,
we perform late fusion by averaging the three softmax probabilities: (1) from the CNN,
(2) from the shallow neural network trained/tested with data-driven features, and (3)
from the shallow neural network trained/tested with the mid-level representations.

Contextualizing with State of the Art

Our accountable solution encompasses saliency-oriented data-driven local patches, en-
coded with Fisher Vectors, combined with a global data-driven representation. In this
section, we compare the proposed method with recent works related to retinal image
analysis (not necessarily regarding referral decisions), presented in the Section 2.6. Ta-
ble 3.2 summarizes the comparison regarding accountability, combining local and global
information, contextual patch extraction, and mid-level representation.
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Table 3.2: Contrasting recent similar works with ours
Work AML GLI CPE MLR
Yang et al. 2017 [119] X X
Wang et al. 2017 [114] X X X
Costa et al. 2018 [21] X X
Roy et al. 2017 [88] X* X X
Quellec et al. [84] X X
Pires et al. (Ours) [79] X X X X

AML: Accountable machine learning GLI: Global and local information
CPE: Contextual patch extractor MLR: Mid-level image representation
* Partially accountable

Yang et al. [119] apply a two-stage data-driven method to detect lesions and identity
severity of diabetic retinopathy. Although using a naïve pixel reweighting approach, the
automated diagnosis of DR severity is regarded as accountable because input images
are weighted based on lesion type and location, aspects that altogether determine the
diabetic retinopathy stage. The authors also used local and global information. Even
they are directly used for different purposes (local features for lesion detection and global
features for severity analysis), the local information has meaningful importance on severity
diagnosis. Note, however, that the patch extraction is performed in a sliding-window
fashion rather than contextual, and the regions are used directly to take individual decision
regarding lesions instead of being encoded into a rich representation for severity/referral
decisions.

The Zoom-in-Net methodology [114] involves three sub-networks with particular func-
tions. The approach is accountable in the sense that it generates heatmaps that represent
pixel importance. Similar to us, the authors also use those heatmaps for region extrac-
tion, and combine those regions in the third subnetwork. Those local information are also
combined with global information. Note, however, that the method only combines fea-
tures of all the patches with a global pooling, instead of encoding those information into
a richer and contextual-aware representation. The final result is achieved by combining
three complete models, aggregating the three best performing results.

Costa et al. [21] proposed a handcrafted BoVW-like methodology that simultaneously
learn encoding and classification steps. The approach is accountable as it can pinpoint
regions on the image that triggered the diagnosis decision, evenly trained with weakly
labeled data (image-level annotation regarding presence/absence of lesions). Note, how-
ever, that the regions are entirely detected by the SURF algorithm. The method does not
necessarily extract patches in a contextual manner, but describe non-contextual interest
points and encode them into a learned mid-level representation. The method does not
take into account global representation.

The hybrid method proposed by Roy et al. [88] combines discriminative and generative
local lesion-based representations with a global data-driven representation. Although
individual patches are classified according to the presence of lesion (in a certain step of
discriminative representation pipeline), it is not projected back onto the image to show
why the decision regarding DR stage was taken (e.g., one specific region was classified
as neovascularization and that justifies the severity decision). Therefore, Roy et al.’s
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approach is partially accountable. The adopted patch extraction is not dependent on pixel
importance or presence of lesion, for instance, but used in a posterior lesion detection and
encoding (mid-level representation).

Quellec et al. [84] proposed a solution that jointly detects referable DR and what
influences the decision in the pixel level (in terms of lesion or other biomarkers). The
accountable solution also produces heatmaps with an additional strategy that reduces
drafting artifacts during training. Although also using heatmaps in order to detect lesions
at the lesion level (as well as image level), the approach does not necessarily combines
global and local information. Indeed, the lesion detection had an important impact on
the final referable DR performance, but it was taken by ensembling different models
specialized in detecting lesions but without retraining for it. “Different” models consist
on parameters that came up with the same architecture, but captured under distinct
training steps. Additionally, the method provides the use of heatmaps to extract regions
with potential candidates to lesions, and use them to detect/identify the lesion itself.
They neither encode nor combine with global information to enhance the detection of
referable DR.

3.3 Validation with images from portable devices

We reiterate that the current work validates the images from portable devices only in
terms of quality assessment since the dataset for presence/absence of referable diabetic
retinopathy is under preparation.

Good quality retinal images are essential for providing reasonable and robust machine
learning models (training) and for receiving reliable diagnostic responses (test). For clin-
ical decisions, the quality is merely mandatory. Hence, before diagnosing images from
low-cost devices, the images must beforehand be evaluated if it has enough quality.

Assuming the interest in integrating our software solutions with simple retinal imaging
devices, we recap the question crafted to guide the researches within the scope of validation
over a new dataset captured with portable devices:

Q3.1: Can we assess the quality of images from portable devices with data-driven models
trained with images from high-cost instruments?

Therefore, in the following section we describe the methodologies we have been em-
ploying to investigate that question. Section 3.3.1 reports the approaches to investigate
and develop models for evaluating the quality of retinal images (Q3.1).

3.3.1 Quality Assessment of images from portable devices

In this section, for responding Question Q3.1 we aim at evaluating in real-time whether
the captured fundus image is proper to higher-level decisions such as need of consultation
within one year. If the image does not suffice in quality, a new one will be collected by
holding the portable device in same position. As long as the exhausting process of image
acquisition and grading is being conducted in hospitals, we postpone the stage 2 of the
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mentoring program (see Section 1.2) that aims at adapting lesion detection and need of
referral solutions for the images acquired by Phelcom. The third stage of the partnership
involves:

• Investigate the feasibility of implementing the techniques developed in IC/Unicamp
and published in the literature on the image acquisition equipment produced by the
company.

In the third stage, we address to investigate and implement efficient and effective smart
quality assessment models that should be incorporated into portable imaging devices such
as the Phelcom. We keep on analyzing the focus factor (blurring detection) since the test
set is not properly annotated in terms of field definition aspect. We have concluded
the second series of experiments (stage 3 of the partnership) in the scope of quality
assessment [81].

We’ve performed a series of experiments — exploring several alternatives in terms of
data augmentation, regularization, optimization, weight initialization and transfer learn-
ing — and throughout the training epochs we use the DR2 dataset to pick up the set of
parameters that provided a better performance. In order to investigate the feasibility of
implementing decision models on the image acquisition equipment produced by Phelcom,
and already considering worse-case scenarios such as remote areas that have no internet
connection, we explored mobile models. Our experiments are based on the MobileNetV2,
the architecture that has the current state-of-the-art performance of mobile models [92].
MobileNetV2 has a good trade-off between accuracy, and number of operations, as well
as the number of parameters. By fine-tuning the MobileNetV2 and discarding batch
normalization, we reduce the memory footprint (size of the checkpoint) from 98MB to
50MB.

Self-annotation procedure

One of the main challenges the scientific community faces to investigate and implement
robust methods for computer-aided decisions is the limitation of data annotated for the
purpose. To address that limitation, we explore the scientific machine learning manner
of self-annotation, that consists of inferring the new data (in the same context) with a
partially-trained model, and attributing labels according to the scores and adopted con-
fidence level. That process could be interactive (re-annotating the new data in different
moments/epochs) or not (just one self-annotation step). In our experiments, we pre-
trained a deep learning model for quality assessment with InceptionResnetV2 architecture
(a costlier hybrid Inception version [104]) with the DR1 dataset, and use the temporary
model to re-annotate the Kaggle/EyePACs dataset. The Kaggle/EyePACs dataset com-
prises +88k images taken under a variety of imaging conditions (a large portion of the data
has limitations in terms of focus and illumination factors), and is annotated for diabetic
retinopathy stage and need of referral (see Chapter 4). We annotate the Kaggle/EyePACs
images using a model that achieved nearly 90% of AUC over DR2 dataset, and applying
the confidence level of 80% (images with score above 80% are labeled as good, and the
ones with score below 20% are considered as poor). We perform the re-annotation just
once (one iteration), and come up with 10,402 poor images and 34,300 good images.



57

Chapter 4

Experimental Protocol

In this chapter, we describe the datasets (Section 4.1), validation protocols (Section 4.2),
and metrics (Section 4.3) adopted in this thesis.

4.1 Datasets

In our research, we are considering eight different retinal image datasets annotated by
medical specialists:

• DR1 dataset, provided by the Department of Ophthalmology, Federal University of
São Paulo (Unifesp), Brazil. Each image was manually annotated by three medical
specialists and all the images in which the three annotations agree were kept in the
final dataset. The images were captured using a TRC-50X (Topcon Inc., Tokyo,
Japan) mydriatic camera with maximum resolution of one megapixel (640 × 480

pixels) and a field of view (FOV) of 45◦. The dataset is annotated in image level
for quality and the commonest DR lesions, and additional auxiliary coordinates
that delimit lesions. The DR1 dataset comprises 5,776 images, including poor- and
good-quality images, with or without lesion annotations.

• DR2 dataset, provided by the Department of Ophthalmology, Federal University of
São Paulo (Unifesp), Brazil. The images were annotated by two medical specialists
(none of them worked on the DR1 dataset). The dataset was captured using a TRC-
NW8 retinograph with a Nikon D90 camera, creating 12.2 megapixel images, which
were then reduced to 867× 575 pixels for accelerating computation. The dataset is
annotated in image level for quality, presence of DR lesions, and need of referral.
The DR2 dataset comprises a total of 920 images.

• Messidor dataset, captured in three different French ophthalmologic departments.
There are three subsets, one for each department. The images were captured using
a Topcon TRC-NW6 non-mydriatic retinograph with a 45◦ field of view, at the
resolutions of 1, 440 × 960, 2, 240 × 1, 488 or 2, 304 × 1, 536 pixels. The dataset is
annotated in image level for retinopathy grade (0 to 3) and risk of macular edema.
The Messidor dataset has 1,200 images.
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• Messidor-2 dataset, an extension of the Messidor dataset, is a collection of di-
abetic retinopathy examinations, each of which consisting of two macula-centered
eye fundus images (one per eye) [24, 85]. These images were captured with a Top-
con TRC NW6 non-mydriatic fundus camera with a 45◦ field of view. Images from
Messidor-2 were independently graded in image level by three board-certified retinal
specialists from all subjects according to the ICDR severity scale and a modified
definition of macular edema (ME) [1, 2]. The Messidor-2 dataset contains 1,748
images for 874 examinations (two images per patient).

• Inala dataset, from the Inala Indigenous Health Service. Captured with a Canon
CR-DGi IOS 30D (Canon Australia Pty. Ltd. Sydney) non-mydriatic digital retinal
camera. The camera settings were 15× 22.5mm, 8.5 megapixels (Mp) and 45◦ field
of view. The dataset is annotated in image level according to presence/absence of
red and bright lesions. The Inala dataset comprises 30 images.

• Kaggle/EyePACS dataset, provided by EyePACS, a free platform for retinopa-
thy screening. It is a large set of high-resolution retinal images, taken under a
variety of imaging conditions. For every subject, the dataset contains two images
corresponding to the left and the right fields. The resolution ranges from 320× 211

pixels to 5184× 3456 pixels. The dataset is annotated in image level in five classes
(0 to 4) according to the DR stage. The Kaggle/EyePACS dataset comprises a total
of 88,702 images.

• IDRiD dataset, is a dataset captured by a retinal specialist at an Eye Clinic
located in Nanded, Maharashtra, India, and provided by a recent competition of
segmentation and grading of diabetic retinopathy. IDRiD images were acquired
using a Kowa VX-10 alpha digital fundus camera with 50◦ field of view (FOV), and
have a resolution of 4, 288 × 2, 848. The entire dataset is annotated in image level
regarding severity (according to the ICDR scale), and a portion of the data has
additional pixel-level annotations about signs of DR. The IDRiD dataset comprises
a total of 516 images.

• Phelcom dataset, collected with the Phelcom Eyer in the Barretos Cancer Hospi-
tal, Pio XII Foundation, Barretos, Brazil. The dataset is annotated in image level
for quality assessment. The Phelcom dataset has 600 eye-fundus images.

Both DR1 and DR2 datasets are publicly available under accession number 10.6084 and
URL http://dx.doi.org/10.6084/m9.figshare.953671. The datasets were collected
in different environments with different cameras, at least one year apart and in different
hospitals.

The Messidor dataset, kindly provided by the MESSIDOR program partners, is also
available for the scientific community: http://messidor.crihan.fr. In Messidor, the
images are annotated not only for the presence of the lesions, but also for the severity,
evaluating the number of microaneurysms and hemorrhages (red lesions), the presence
or absence of neovascularization (not evaluated in this work), and the proximity of the
exudates to the macula. In order to make the cross-dataset classification possible, and

http://dx.doi.org/10.6084/m9.figshare.953671
http://messidor.crihan.fr
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the joint statistical analysis of the two sets of experiments (DR2 and Messidor) feasible,
we proposed correspondences in the annotations.

The Messidor-2 dataset, kindly provided by the LaTIM laboratory (see http://latim.
univ-brest.fr) and the Messidor program partners (see http://messidor.crihan.fr),
has a mean κ value among the three experts is 0.822. The reference standard for referable
diabetic retinopathy is available for researchers1.

The dataset from the Inala Indigenous Health Service involves the use of images of
Aboriginal and Torres Strait Islander peoples, a vulnerable group, and will require ethical
oversight to be shared2.

The Kaggle/EyePACS dataset is originally graded as DR stages, and we convert the
labels (source domain) to referral necessity (target domain), following the International
Clinical Diabetic Retinopathy recommendations (ICDR) [117]: tagging as non-referable
only those patients with no diabetic retinopathy signal or mild non-proliferative diabetic
retinopathy (NPDR). Patients with moderate, severe, or proliferative DR must be referred
(note that the images are not labeled for macular edema). The conversion of labels is
not algorithmic, but it is done manually before training the classifiers. The dataset is
available in https://www.kaggle.com/c/diabetic-retinopathy-detection/data.

The IDRiD images are graded regarding disease severity level and diabetic mac-
ular edema. Part of the dataset, 81 color-fundus images, has pixel-level annota-
tions of lesions such as microaneurysms, cotton-wool spots, hard exudates and hem-
orrhages. Some images contain multiple lesions. The IDRiD is publicly available in
https://idrid.grand-challenge.org.

Tables 4.1, 4.2 and 4.3 show annotations occurrences for the datasets, in terms of
lesion detection, need of referral and quality grading, respectively.

Table 4.1: Annotation occurrences regarding lesions for the datasets
Lesion DR1 DR2 Messidor Inala IDRiD*

Hard Exudates (HE) 234 79 654 5 81
Superficial Hemorrhages (SH) 102 — — — 81
Deep Hemorrhages (DH) 146 — — — 80
Red Lesions (RL)** — 98 226 12 —
Cotton-wool Spots (CS) 73 17 — — 40
Drusen (D) 139 50 — — —
Other lesions, excluding above — 71 — — —
All lesions*** 482 149 654 12 81
Normal (no lesions) 595 300 546 18 0
* Herein we consider only the images with pixel level annotation. The total dataset, including the image-level grading
data, has 516 images.

** “Red Lesion” is a more general annotation that encompasses both SH and DH, besides microaneurysms.
*** The lesions do not sum to this value because an image can present different types of lesion at once.

In DR1, images with red lesions are annotated with the specific tags deep and super-
ficial hemorrhage. A few images are not only labeled in image level, but also have the

1http://www.medicine.uiowa.edu/eye/abramoff/ (accessed February 13, 2019)
2Please contact Prof. Anderson Rocha (anderson.rocha@ic.unicamp.br) and Prof. Geoffrey Spurl-

ing (g.spurling@uq.edu.au) for an application to receive these images.

http://latim.univ-brest.fr
http://latim.univ-brest.fr
http://messidor.crihan.fr
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://idrid.grand-challenge.org
http://www.medicine.uiowa.edu/eye/abramoff/
anderson.rocha@ic.unicamp.br
g.spurling@uq.edu.au
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Table 4.2: Annotation occurrences regarding referral for the datasets
Grading DR2 Messidor-2 Kaggle/EyePACS*

Negative 337 1,368 28,253
Positive 98 380 6,873
* Distribution of the training set (35,126 images).

These images are originally rated only by DR stages.

Table 4.3: Annotation occurrences regarding quality for the datasets
Grading DR1* DR2* Kaggle/EyePACS** Phelcom
Poor quality 1,392 194 10,402 200
Good quality 1,300 466 34,300 400
* Poor quality category involves only the blurred images (images of periphery are not
considered herein.)

** With one-step self-annotation procedure (see Section 3.3.1).

locations of lesions (in terms of image coordinates), essential in our context of lesion-aware
mid-level representation.

In DR2 and Inala, only the general red lesion tag is employed. The DR2 dataset has
an additional annotation indicating the need for referral by the patient for follow-up by
an ophthalmologist in the following 12 months.

The Kaggle/EyePACS dataset comprises 88,702 images, of which 35,126 are designed
for training and 53,576 for testing. For responding the Question Q2.7, we use the entire
Kaggle/EyePACs (+88k images) as training set.

4.2 Validation Protocol

We use three validation protocols: training and testing from the same dataset (without
intersection), the 5×2-fold cross-validation and the cross-dataset validation protocols.

In the first protocol, we perform training and testing operations with different parts
of the dataset in a hold-out fashion. The idea here is finding the best configuration of our
method in a dataset that already provides a clear division of training and testing (Kag-
gle/EyePACS). We use this protocol for investigating and responding the Question Q2.4,
in which we propose our first data-driven model for referable diabetic retinopathy detec-
tion.

The 5×2-fold cross-validation protocol consists of repeating by five times the process of
two-fold cross validation [26] in which we randomly separate the samples into two groups
balanced by class, and use one of them for training and the other for testing. We perform
two experiments per step, with the groups switching roles. We use this protocol to compare
to previous work, mainly evaluations with the DR2 dataset. We use 5×2-fold cross-
validation protocol for investigating and responding the Questions Q2.1, Q2.2 and Q2.3,
in which we propose the handcrafted direct referral assessment; and for responding the
Question Q2.6, in which we explore transferring data-driven knowledge acquired with a
different task in the context of diabetic retinopathy screening.
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Finally, the cross-dataset protocol is the strictest and therefore closer to real-world
operational conditions, in which we train and test the classifiers on different datasets
collected in very different environments with different cameras, at least one year apart
and in different hospitals. This protocol plays an important role in the design, since
in clinical practice, rarely the analyzed images will have the same image specification
(camera, resolution, operator, FOV) as the images used for training the classification
method. Most experiments in this work are performed using the cross-dataset protocol:
(1) all the experiments regarding DR lesion detection; (2) all the data-driven experiments
regarding referable DR detection (except the one about transfer learning, for purpose
of comparison with handcrafted methods); and (3) all the experiments about quality
assessment.

4.3 Metrics

To quantify precisely the performance of the proposed method and enable reliable com-
parisons, we employ receiver operating characteristic curves (ROCs) [27], which plot the
compromise between specificity (few false positives) and sensitivity (few false negatives).
To quantify performance as a single scalar, the area under the ROC curve (AUC) is
applied. Since the classifier can trade specificity for sensitivity, the AUC gives a bet-
ter overall performance measure than any particular point of the specificity-sensitivity
metrics.
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Chapter 5

Results: DR Lesion Detection

In this chapter, we present the results for each question regarding detection of diabetic
retinopathy lesions. For this topic, we have published three papers: two were in the
PLOS One journal [78, 82] for responding questions Q1.1 and Q1.4, respectively; and one
was at the IEEE Engineering in Medicine and Biology Society (EMBC’14) conference for
responding questions Q1.2 and Q1.3 [75].

5.1 Semi-soft Coding for Lesion Detection

The experiments for proposing a good balance for designing efficient and effective lesion
detectors were performed using a cross-dataset protocol. The entire DR1 dataset was
employed as the training dataset. The DR2 and Messidor datasets were then employed
for testing.

The detailed results are presented in Tables 5.1 and 5.2, which show the AUCs obtained
for each lesion with the DR2 and Messidor datasets.

Table 5.1: AUCs in %, for Training with DR1, Testing with DR2
Sparse features Dense features

Hard Semi-soft Soft Hard Semi-soft Soft
Hard Exudates (HE) 93.1 97.8 95.5 94.5 95.6 95.6
Red Lesions (RL) 92.3 93.5 87.1 89.1 90.6 89.9
Cotton-wool Spots (CS) 82.1 90.8 84.9 84.5 90.4 90.3
Drusen (D) 66.5 82.8 62.6 84.1 82.5 75.5

Table 5.2: AUCs in %, for Training with DR1, Testing with Messidor
Sparse features Dense features

Hard Semi-soft Soft Hard Semi-soft Soft
Hard Exhudates (HE) 64.4 70.3 66.2 70.5 70.0 70.0
Red Lesions (RL) 77.4 83.1 76.6 85.2 85.1 82.5

The results suggest that the best configuration of the BoVW for each lesion (and
dataset) are the proposed semi-soft coding on sparse features, except for the drusen,
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where semi-soft coding performs better with dense features. We believe that the good
performance of dense features on Messidor is due to the presence of very challenging images
(patients with very early DR signs, showing very few lesions). However, the results show
that the semi-soft coding scheme works well on the Messidor dataset when associated
either with sparse features or dense features.

Such local case-by-case analysis, however, fails to account for random effects. A less
naïve analysis must take into account all results across BoVW parameters, datasets and
lesions. The goal in DR classification is to obtain the overall best configuration for the
BoVW, if such configuration can be found with confidence. The DR2 and Messidor
datasets provide different annotation standards, with the former having annotations for
all four levels of lesions, but the latter having annotations only for hard exudates (HE)
and red lesions (RL). This presents a challenge for performing (and to interpreting) such
unbalanced experimental designs and separate balanced studies were performed: one con-
sidering only DR2 and all four lesions; and another for both test sets, but with only HE
and RL lesions.

The box-plot in Figure 5.1 illustrates, for each treatment, how much it improves or
decreases the performance of the detection of the lesions, in comparison to the other
treatments. As the lesions and datasets vary widely in difficulty, and we are interested
in determining a treatment (combination of factor levels) that performs globally better
than the others, we analyzed the normalized impact on the AUC of each factor. In order
to do that, for each combination of lesion–dataset, we normalized the AUCs (subtracting
the mean and dividing by the standard deviation of AUCs for that combination). More
formally, the procedure takes each specific lesion `, computes the mean AUC µ` for all
treatments on that lesion, computes the standard deviation of those AUCs σ`, and then,
if the AUC of a specific treatment on that lesion is β`, the normalized AUC will be
v` = (β`−µ`)/σ`. Therefore, Figure 5.1 shows, graphically, those standardized effects. The
correct interpretation of the box-plot shows, for example, that the treatment “sparse–semi-
soft” is, on average for all lesions on DR2, one standard deviation above the mean of AUCs
obtained by all treatments, i.e., avg`[v`] ∼ 1.

The synergy between sparse feature extraction and semi-soft coding for DR-lesion
classification can be better appreciated in the box-plot of Figure 5.1. Remark that most
combinations of feature extraction and coding function have a wide distribution of stan-
dardized effect, meaning that they improve the detection of some lesions at the cost of
decreasing the performance of others. In contrast, sparse feature extraction and semi-soft
coding offer consistently improved results.

In order to obtain quantitative results, we have also performed a factorial ANOVA
that formalizes the same experimental design used on Figure 5.1. The following factors
(and levels) were employed:

(1) low-level feature extractor (Sparse, Dense),

(2) coding (Soft, Semisoft, Hard), and

(3) test dataset (DR2, Messidor).
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Figure 5.1: Standardized AUCs per lesion, for six combinations of feature extraction and
coding (horizontal axis). In the box-plots (black), the whiskers show the range up to 1.5×
the interquartile range, and outliers are shown as small circles. Averages (small squares)
and 95%-confidence intervals (error bars) are also shown, in red, for the same data. The
strong synergy between sparse feature extraction and semi-soft coding is evident: it has
consistently improved results for all lesions, while the other combinations improve the
results of some lesions at the cost of decreasing it for other lesions (as shown by the
spread of the standardized effects in the vertical axis). This plot is based on a balanced
design with the DR2 dataset and all lesions, another balanced design with both datasets
and two lesions show similar results.

with repeated measures for each lesion (HE, RL, CS, D) and all errors measured within-
subjects (the subjects are each individual combinations of lesion and dataset). To remove
the strong scaling effect of the lesions and datasets, each subject was independently stan-
dardized by subtracting the average and dividing by the standard deviation, as explained
above.

The analysis on the DR2 subset indicated an important interaction effect between
the choice of Low-level Features and Coding (p = 0.007). The main effect of Coding
alone just fails significance (p = 0.062), and all other effects and interactions are non-
significant. These factors have a significant interaction effect due to the two low-level
feature extractors providing better results with different coding schemes (Table 5.1). The
analysis on the other data subset, with both test datasets and only HE and RL, shows
similar results, with significantly better outcomes for the sparse+semi-soft combination
(p = 0.011).

Therefore, we conclude that combining advantages of both hard and soft codings pro-
vides a good balance for designing efficient and effective DR-related lesion detectors.
Hence, the answer for Q1.1 is yes .
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5.2 Preserving Information for Lesion Detection

The experiments for investigating whether keeping information still provides satisfactory
results were performed using a cross-dataset protocol. The DR1 dataset was used as
training set, whilst the DR2 dataset was used as the test set in our experiments. To
quantify performance as a single scalar, all the results are reported as the area under the
receiver operating characteristic curve (AUC-ROC).

In this work, we demonstrate the methodology described in Section 3.1.2 for the detec-
tion of hard exudates and red lesions. The experiments were performed with two distinct
codebook sizes: 1,000 and 4,000.

Figure 5.2 shows the ROC curves with their respective AUCs for the detection of hard
exudates and red lesions employing the class-based scheme. The results are contrasted
with those obtained in [80] (showed in the figures as “Sparse/Hard” and “Sparse/Soft”)
using the BoVW approach with 500 codewords for sparse low-level technique and class-
based scheme (the mismatch in codebook size is due to the fact the previous art performed
better with smaller codebooks [87]). As the work [80] already comprises the best results
reported in [87], we opted for not repeating them here.

For the detection of hard exudates, initial results using the sparse low-level feature
extraction but employing larger codebooks, showed that the BossaNova provides a bet-
ter representation and a better accuracy. The proposed new method provides an AUC
of 95.9%, compared to an AUC of 95.6% obtained by the BoVW with soft-max cod-
ing/pooling. When the dense extraction step is used, the difference between BossaNova
and BoVW increases: the best result was with 4,000 codewords, with an AUC of 96.4%

compared to the BoVW with an AUC of 95.6%, which represents an error reduction of
over 18%.

For the detection of red lesions, BossaNova with the sparse low-level feature extraction
technique did not provide a significant advantage over the Bag of Visual Words approach
based on the hard-sum coding/pooling. AUC of 91.9% was achieved, against 92.3%

obtained with BoVW [80]. However, once again, the dense extraction shows its superiority
when applied with the BossaNova mid-level feature extraction, presenting an AUC of
93.5% using a codebook of size 4,000, compared to the BoVW with an AUC of 92.3%,
which represents an error reduction of over 15%.

Both for hard exudates and for red lesions detection, the results outperformed previous
methods showing the importance of preserving some relationship between the detected
features in retinal images instead of just throwing them away as previous BoVW-based
solutions have done.

Therefore, we conclude that preserving information in the pooling process still produces
satisfactory results. Hence, the answer for Q1.2 is yes .

5.3 Class-based Scheme vs. Global Dictionary

The experiments for investigating whether global codebooks is better than the class-aware
approach were performed with BossaNova for detection of hard exudates and red lesions.
The codebook sizes were also 1,000 and 4,000, for comparison purposes.
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Figure 5.2: ROC results using class-based sampling for hard exudates detection (a) and
red lesions detection (b), for codebooks of sizes 1,000 and 4,000. Both for exudates and
red lesions, the best configuration is the new technique, using BossaNova, dense low-level
features, and large codebooks (4,000). For hard exudates, the error reduction compared
to the prior art is over 18% for the best proposed method; while for red lesions it is over
15% for the best proposed method.

Figure 5.3 shows the ROC curves with their respective AUCs for the detection of
hard exudates and red lesions employing the global dictionary approach. In comparison
with the results illustrated in Figure 5.2, we can note that, both for exudates and for red
lesions, the class-based approach that have been used by our research team [46, 80, 81, 87]
is more robust for retinal image representation than the global codebook approach.
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Figure 5.3: ROC results using the global codebooks for hard exudates detection (a) and
red lesions detection (b), for codebooks of sizes 1,000 and 4,000.

Therefore, we conclude that global codebooks do not improve the results achieved using
the class-aware approach. Hence, the answer for Q1.3 is no.
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5.4 Diabetic Retinopathy Screening for Isolated Indige-
nous Communities

The experiments for investigating the diagnostic of patients in different ethnic groups aims
at verifying if it is possible to train classifiers for DR lesion detection using images from a
given population strata and test such classifiers with completely different images coming
from another population strata [78].

We turn our attention to showing that the developed lesion detectors have good gen-
eralization power when training on one dataset and testing on another. In this case, we
train the lesion detectors using the DR1 dataset, which comprises mostly Caucasian peo-
ples and test such classifiers with images from an Aboriginal and Torres Strait Islander
population. The use of the visual word dictionary on this Aboriginal and Torres Strait
Islander population sample achieved an AUC of 97.8%, with a sensitivity of 100.0% and
specificity of 88.9% for bright lesion detection, as shown in Figure 5.4.

Figure 5.4: DR Screening for isolated indigenous communities: Red lesion, bright lesion,
and multi-lesion detection.

For red lesion detection, the classifiers achieved an AUC of 83.1% (Figure 5.4), with
67.0% sensitivity and 95.0% specificity.

The multi-lesion classifier combined the red and white lesion classifier outcomes. The
image is classified as normal if both the red and bright lesion classifiers agree it is normal,
which minimizes the classification of false-negatives.

For identification of multiple lesions, two different test sets were chosen. The first set
contained a mix of 18 normal images and 12 images with red, bright, or both types of
lesions (5 images), representing what may be seen in a screening program. An accuracy of
82.2% was achieved with a sensitivity of 75.0% and specificity of 88.9%. The ROC curve
is represented in Figure 5.4 as Multi-lesion test 1.
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The second test compared 18 normal images and 5 images with both lesions (red
and bright lesions) present. The result achieved an accuracy of 97.2%, associated with a
sensitivity of 100.0% and specificity of 88.9%. The ROC curve is represented in Figure 5.4
as Multi-lesion test 2.

Therefore, we conclude that patients in isolated indigenous communities can be diag-
nosed using lesion detectors trained with data from different ethnic groups. Hence, the
answer for Q1.4 is yes .

Comparison with the State of the Art

For any automated computer-based screening to be clinically useful, it needs to meet
standards such as the St Vincent declaration, which recommends a sensitivity of 80% and
specificity of 95% in agreement with the British Diabetic Association. The Australian
National Health and Medical Research Council (NHMRC) guidelines for primary health
care require 60% sensitivity with 90-95% specificity [15, 62, 116]. The current study
investigated a multi-lesion classifier that does not require pre- or post-processing, and is
robust against differences between training and testing images as well as differences in
ethnicity and meets the NHMRC standards.

Our result for determining red lesions in Aboriginal and Torres Strait Islander im-
ages outperforms previously reported results within the acceptable range for Australian
screening programs [62], although the test image battery was smaller compared to pre-
vious reported studies and the test images were of higher resolution than the training
images. In addition, the number of training images with only red lesions was smaller than
the training set for bright lesions.

Bright lesion detection for diabetic retinopathy using the visual word dictionary was
highly accurate being equal to or improving on previous studies. Our results indicated
100% sensitivity and specificity of 88.9% despite the use of a generic training set which
included no Indigenous images nor pre- or post-processing of any kind. By comparison, a
recent study by Niemeijer et al. achieved a sensitivity of 95.0% and specificity of 88.0%,
for the detection of bright lesions [67], albeit in a non-Aboriginal cohort.

Ideally, automated multi-lesion detection systems should be able to detect specific
lesions present in any combination and at any time of retinopathy progression. Only a
few studies have reported on multi-lesion detection in diabetic retinopathy. Abràmoff
et al. combined existing software from diverse laboratories and achieved a sensitivity of
84.0% with 64.0% specificity (accuracy 87.0%) [3]. A larger cohort improved the accu-
racy to 90.0%. Fleming et al. reported that inclusion of exudate and blot hemorrhages
detection improved the overall sensitivity of detecting referable retinopathy from 94.9%
to 96.6% [28]. The exudate detection algorithm proposed by Fleming and collaborators
is based on the microaneurysm detector previously reported and adds white lesion detec-
tion [68]. Separate pre-processing of images with white and red lesions being detected
in sequential steps as well as requiring prior identification and removal of poor quality
images is required by this software. A more recent study by Abràmoff et al. also discussed
referable retinopathy accuracy but did not discuss bright or red lesion detection accuracy
nor multi-lesion detection [1].
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Chapter 6

Results: Referable DR Detection

In this chapter, we present the results for each question regarding referable diabetic
retinopathy detection. For this topic we have one paper published in the IEEE Jour-
nal of Biomedical and Health Informatics (J-BHI) [76] for responding questions Q2.1,
Q2.2 and Q2.3. We also have one paper published in the Elsevier Artificial Intelligence
in Medicine (AIIM) [77] for responding questions Q2.4, Q2.5 and Q2.6. We were also
invited to publish a chapter in the book Photo Acoustic and Optical Coherence Tomogra-
phy Imaging: An Application in Ophthalmology [79]. The manuscript responds questions
Q2.7, Q2.8 and Q2.9.

6.1 Beyond Lesion-based Diabetic Retinopathy: a Di-
rect Approach for Referral

The experiments for evaluating whether the proposed direct referral leads to better decisions
than the previous lesion-based schemes were performed with the 5×2-fold cross-validation
protocol using the DR2 dataset.

In our experiments, we extracted visual codebooks of {1,000, 2,000} visual codewords.
In order to investigate the hypothesis that lesion detection is nonessential for an

effective referral assessment, we use exactly the same mid-level features both for the
traditional lesion-based method and the current approach. Both employ the BoVW with
semi-soft coding explained in [82].

Figure 6.1 shows the results on the DR2 dataset for both methodologies: lesion-
based [82] (AUC = 94.2%) and the best direct-referral. Direct referral performs better
with 2,000 codewords, reaching an AUC of 94.7%.

The results obtained with BoVW, shown in Figure 6.1, validate our hypothesis that
detection of individual DR lesions is not necessary to provide effective referral decisions.

Therefore, we conclude that forgoing the detection of individual DR lesions still pro-
vides effective referral decisions. Hence, the answer for Q2.1 is yes .
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Figure 6.1: ROC results for direct assessment for need of referral using BoVW mid-level
characterization approach. The experiments were performed for hypothesis validation.

6.2 Direct Referral with Sophisticated Mid-level Fea-
tures

In the experiments for evaluating whether sophisticated mid-level features improve direct
referral decision, the results obtained in Section 6.1 will act as a baseline. We evaluate
two recent mid-level features: BossaNova [8] and Fisher Vector [74].

We extracted visual codebooks of {1,000, 2,000} visual codewords. Except for the
number of visual codewords, we kept the default BossaNova parameter values the same
as in [8]. For Fisher Vector, we used GMM with {128, 256} Gaussians after reducing the
dimensionality of the SURF descriptors to 64 by applying Principal Component Analysis
(PCA), as suggested in [91].

Figure 6.2 shows the best results achieved with each mid-level feature. While BoVW
achieved its best result with 2,000 codewords (AUC = 94.7%), BossaNova reached the
best AUC using 1,000 codewords (AUC = 95.7%). Finally, Fisher Vector obtained the
best result using just 128 Gaussians (AUC = 96.4%).

The results presented in Figure 6.2 express how accurate are the referral decisions by
direct assessment, emphasizing that richer representation approaches yield better results
for referable DR detection. We highlight that the Fisher Vector approach outperforms
the traditional BoVW, reducing the classification error by over 30% (5.3% to 3.6%).

Therefore, we conclude that sophisticated mid-level features improve direct referral
decisions. Hence, the answer for Q2.2 is yes .
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Figure 6.2: ROC results for direct assessment for need of referral using advanced mid-
level characterization approaches. The experiments were performed for improvement of
the method.

Statistical Analysis

In this section we explore the significance of the previous results.
Each single experiment requires picking a large number of parameters (mid-level rep-

resentation, codebook size), that may have interactions. In order to investigate if the
choice of mid-level feature would still appear significant when considering the totality of
experiments performed, we applied a factorial analysis of variance (ANOVA) [45, chap.
22], with a block design using the folds as blocks, on the DR2 dataset. Since the AUC
is a rate and behaves very non-linearly at the extremes of the [0-1] scale, we employ the
more linear “log odds” scale (logit). We lessened the nuisance effect of the choice of the
training set, by subtracting the global average of each fold from the results relative to that
fold. In Table 6.1, the statistical results reinforce the importance of the choice mid-level
representation (p-value < 0.001). Note that the mid-level is responsible for more than
40% of the variation (see the column ‘Sum of squares’).

6.3 Direct Referral in a Public Dataset

The experiments for confirming the suitability of direct referral in an independent dataset
aims at reinforcing the direct approach. We use the Messidor dataset as benchmark.

Once again, we perform this experiment with both the current direct referral and
the previous lesion-based approaches. Figure 6.3 depicts the results reached with the
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Table 6.1: Partial view of the ANOVA table. We omit the second-order interactions
since none of them were significant. The choice of mid-level representation explains the
non-random variation, as seen in the Sum of Squares column.

Parameter Degrees of Sum of Mean F value p-valuefreedom squares square
mid-level 2 59.77 29.885 20.787 2.02×10−7 ***

codebook 1 2.57 2.568 1.786 0.187
residuals 54 77.64 1.438
total 59 143.86

Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05

lesion-based method, as well as the best results achieved with the direct approach for
each mid-level representation. For BoVW, the best result was obtained with a codebook
of size 2,000 (AUC = 79.1%). BossaNova reached its best AUC using 2,000 codewords
(AUC = 85.6%). For Fisher Vector, the best result was achieved using 256 Gaussians
(AUC = 86.3%).
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Figure 6.3: ROC results for direct assessment for need of referral using advanced mid-level
characterization approaches. The experiments were performed for emphasizing the fitness
of the method in the Messidor dataset.

While the lesion-based method obtained an AUC of 76.0%, we achieve the promising
result of 86.3% using the current method that does not depend of lesion detection. The
results reveal Messidor as much more challenging dataset than DR2. Nevertheless, the
relative performance of the techniques confirm the interest of the direct referral choice,
which, in this case, appear prominently better.

Therefore, we conclude that the direct referral is suitable also for independent datasets.
Hence, the answer for Q2.3 is yes .
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6.4 A Data-Driven Approach to Referable Diabetic
Retinopathy Detection

The experiments for learning data-driven models that leverage referable diabetic retinopa-
thy detection without manual feature engineering start from scratch and refine the solution
according to the performance for referral assessment.

In this section we present the first model which we will refer to as baseline, and inves-
tigate some hypothesis aiming at progressively improving the approach before advancing
to the following steps and answering the latter questions. We use the protocol of training
and testing with the Kaggle/EyePACs dataset following the original splits exposed in
Chapter 4.

In this first version of the solution, we still do not employ any data augmentation
technique nor use the augmented feature extraction policy discussed in Section 3.2.4. We
perform a naïve data balancing through sample removal for the most favored classes,
repeating the process in each epoch. Such initial baseline method leads to an AUC of
71.6%. Starting with this baseline, we now break the Question Q2.4 and pose a series of
research questions in order to evaluate possible improvements and design decisions. For
reference, questions Q1–Q4 refer to results depicted in Fig. 6.4.

Q1: Is data augmentation essential to train the proposed CNN? To investigate the
first question, we applied geometric image perturbations and color augmentation, always
aiming at balancing the classes, as detailed in Section 3.2.4. After augmenting the training
set, the CNN reached an AUC of 93.1%. The data augmentation remarkably improved
the initial results, showing that it is critical to choose a good policy of data augmenta-
tion/balancing.

Q2: Is the multi-resolution training important to train with larger images? To inves-
tigate this question, we start the data-driven process by training reduced versions of the
architecture, adapted to images of lower resolutions, as explained in Section 3.2.4. The
weight initialization slightly boosted the AUC to 93.9%, and showed that it was essential
for the convergence of the CNN since deeper networks require larger datasets, and is a
satisfactory option to provide an effective solution.

Q3: Is the robust feature-extraction augmentation satisfactory? Here we extracted
features from augmented versions of each image and created a final feature vector by con-
catenating mean and standard deviation of the image versions, as exposed in Section 3.2.4.
With the augmented features, which feed an extra neural network of two hidden layers
for referral decision, we achieved an AUC of 94.6%, a satisfactory improvement.

Q4: Is the per-patient analysis important to provide more robustness? Since the
Kaggle/EyePACs dataset contains images from the left and right eyes for each patient,
we contrasted per-image decision (each image analyzed independently) to per-patient
decision (aggregating features of both eyes). In the system we advance, the patient need
of referral is the highest resulting classification probability between the two eyes (see
Section 3.2.4). The per-patient analysis improved results considerably, leading to a 95.5%
AUC (95% CI: 95.1% – 95.8%).

After testing each progressive enhancement, the final solution comprises a (1) CNN
trained with data augmentation; (2) employing weight initialization with parameters from
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Figure 6.4: ROC for referral assessment on the Kaggle/EyePACs dataset (with the official
competition splits). The baseline CNN results are compared to the progressive proposed
improvements, showing that those are advantageous for the task. We also compare with
the original o_O’s solution (ensemble of six classifiers).

smaller networks; (3) using robust feature-extraction augmentation and training a decision
classifier (Neural Network) on top of these features. In addition, we also consider (4)
diagnosing patients with images from both eyes. We compare our method with the original
o_O’s proposal. Using an ensemble of six networks (two physical networks with three
distinct sets of parameters) and a per-patient analysis, the o_O solution yields an AUC
of 95.8% AUC (95% CI: 95.5% – 96.1%), while our method, which only relies on one
network instead of six, yields and AUC of 95.5%.

Therefore, we conclude that data-driven models leverage referable diabetic retinopathy
detection. Hence, the answer for Q2.4 is yes .

6.5 Cross-Dataset Validation Protocol

The experiments for diagnosing retinal images collected under different acquisition con-
ditions consists on validating the solution of last section with distinct datasets in a chal-
lenging cross-dataset validation. In this section we provide more comparisons regarding
efficiency and effectiveness and a deeper cost-benefit analysis of our claims.

After refining the automated solution for referable diabetic retinopathy screening from
scratch, we investigate the performance over distinct datasets. Basically, we use the CNN
trained with data augmentation and multi-resolution training to extract features for the
test sets (robust feature-extraction augmentation), and test the features with the classifi-
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cation that provides referral decisions. We emphasize again that one of the most valuable
advantages of extracting features (in this case, robust feature-extraction augmentation) is
that it provides flexibility to choose different machine learning algorithms. Henceforward,
we use two algorithms: Neural Network and Random Forest. Therefore, for research
Question Q2.5, we follow a challenging cross-dataset validation protocol with the best
solution we found in the previous section that was trained with Kaggle/EyePACs data.

We highlight that the solution incorporates the proposed data augmentation for train-
ing, multi-resolution training, and robust feature-extraction augmentation steps. We also
exploit the per-patient information whenever we have access to images of both eyes.

In this section, we assess the possibility of training a retinal image diagnosis system
with one set of images and test it using images collected under very different acquisition
conditions. Here, we use Kaggle/EyePACs dataset images to train the expert CNN and
then use it as a feature extractor for DR2 and Messidor-2. For DR2, the per-patient
analysis is not feasible as the dataset does not have two images per individual.

Fig. 6.5 depicts the ROC curves achieved with the two considered classifiers in the
cross-dataset validation protocol with the DR2 or Messidor-2 datasets for testing. The
Neural Network-based classifier yields the best result for testing with DR2 dataset, with
an AUC of 96.3% (95% CI: 93.8% – 98.1%). With Random Forest, in turn, the AUC
is 96.1% (95% CI: 93.1% – 98.0%). The results show that the models learned with the
Kaggle/EyePACs dataset images (with higher variance) produced relevant results with a
very different dataset (DR2).

We now turn to the case in which we extract features from the Messidor-2 dataset using
network and parameters learned with the Kaggle/EyePACs dataset and test the method
with the individual decision models (Neural Network and Random Forest) on Messidor-2
dataset. As the Messidor-2 dataset also provides pairs of images from left and right eyes
for each patient, we employ the per-patient analysis herein. The Neural Network classifier
reached the best result, resulting in an AUC of 98.2% (95% CI: 97.4% – 98.9%) in a per-
patient analysis. The Random Forest algorithm achieved an AUC of 97.9% (95% CI:
97.0% – 98.6%). These results show the solution has a remarkable performance also with
Messidor-2 dataset, even considering the challenging cross-dataset validation protocol.

These results corroborate the hypothesis that it is possible to train a robust data-
driven solution to precisely pinpoint diabetic retinopathy referral needs, independently of
the ethnicity, operators, and camera settings of the training set of images. Hence, the
answer for Q2.5 is yes .

Comparison with Previous Work on Messidor-2 Dataset

Just for the sake of completeness, we now compare our work (solution explained in Sec-
tion 6.4) with Abràmoff et. al [1, 2]. Note, however, that this comparison is not totally
direct as both methods use different training sets. Considering the Messidor-2 dataset on
a per-patient basis, Abràmoff et. al [1] reported an AUC of 93.7%, and after replacing
most of the feature detectors with CNNs trained to detect features, further improved to
98.0% (95% CI: 96.8% – 99.2%) [2].

In turn, the method described here and trained with Kaggle/EyePACs data produces
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Figure 6.5: ROC results for referral assessment in a cross-dataset protocol (training with
Kaggle/EyePACs; and testing with either DR2 or Messidor-2). The cross-dataset protocol
is the most strict and realistic one, as the dataset present different acquisition character-
istics (operators, equipment, population of patients, etc.)

equally remarkable results for the Messidor-2 dataset with an AUC of 98.2% (95% CI:
97.4% – 98.9%), reinforcing the fact that detecting diabetic retinopathy lesions is not
essential for a reliable and effective diabetic retinopathy screening. Note here that, for
the method in this work, the CNN was trained and optimized using only Kaggle/EyePACs
data, and Messidor-2 data was never used for optimizing nor training the CNN, showing
the robustness of the method.

Comparison with o_O’s solution

For the sake of comparison, we adapted the o_O solution for a two-class classification
problem and evaluate its performance for referable DR detection in terms of efficiency and
effectiveness. To do so, we replaced the last one-neuron fully-connected layer by another
with two neurons (one per class), and tackled the problem with a classification point of
view rather than regression (cross-entropy as objective function, instead of mean squared
error). We recall that the o_O solution consists on a ensemble of six different models,
trained with features extracted from two different CNNs.

Table 6.2 reports the time and memory required for inference. We performed the tests
using one GeForce GTX TITAN X. We simulated a real-time diagnostic environment in
which 50 patients are screened for referral after capturing their fundus images (left and
right), totaling one hundred images. In terms of time consumption, we report the “real”
time, that encompasses loading all required libraries, loading parameters of the CNNs,
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pseudo-augmenting and describing the images and, finally, the inference part with higher
probability among the eyes. For the memory footprint, we consider the disk space required
to keep the CNN parameters and of the two-hidden-layer neural networks in memory.

Table 6.2: Efficiency: Time and memory comparisons.
Work Time (s) Memory (MB)
o_O 295 285
Ours 60 56

Improvement 4.91× 5.08×

Fig 6.6 depicts the results achieved with the current work and o_O proposal, both
using the cross-dataset validation protocol over DR2 and Messidor-2 datasets. The DR2
results correspond to diagnosing one image at a time while Messidor-2 are for patients
analysis. For DR2, the o_O’s ensemble reached an AUC of 96.1% (sens. = 86.7%,
spec. = 95.5%), while we achieved an AUC of 96.3% (sens. = 90.8%, spec. = 95.5%).
For Messidor-2, o_O reached 97.9% of AUC (sens. = 98.4%, spec. = 79.5%), and we
reached 98.2% (sens. = 95.8%, spec. = 83.3%).

Kaggle / DR2 Kaggle / Messidor-2
Train set / Test set

95

96
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Figure 6.6: Comparison of our solution with the o_O’s method on a cross-dataset vali-
dation protocol in terms of effectiveness (quality of referral assessments).

The proposed solution yields an improvement close to 5× in terms of efficiency and
memory footprint when compared to o_O’s method. Furthermore, we have a slightly
superior performance in terms of effectiveness, especially considering the difficult cross-
dataset validation setup.
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6.6 Knowledge transfer for Diabetic Retinopathy
Screening

After testing the proposed screening solution under different conditions, we now investi-
gate the performance of the transfer learning concept to improve decisions about the need
of referral.

The transfer learning field is conducted as a domain adaptation, which generally arises
when the goal is learning an effective model from a source task on a different, but related,
target task. In this case, we use the same dataset, but adapt the model from a different
but related problem: from severity to referability analyses of diabetic retinopathy.

For this experiment, we do not use the CNN trained in Section 6.4 to explore the
transfer learning concept. Rather, as we want to evaluate the potential of using transfer
learning from a source problem to a target problem, we initially train, from scratch, a
CNN with the same architecture (except that the decision layer has five outputs) to assess
severity of diabetic retinopathy incorporating the improvements — data augmentation and
multi-resolution training — we discussed in Section 6.4. We also apply robust feature-
extraction augmentation, but just for referral assessment when transfer learning comes
into play. Note that the robust feature-extraction augmentation is not necessary for the
source problem, since diagnosing severity is beyond the scope of the current work. Again,
we use the per-patient protocol just whenever it is possible.

We explore transfer learning in its two setups — feature extraction and fine-tuning
— explained in Section 2.2.1. We start the experiments with the DR2 dataset in a
strict 5×2-fold cross-validation protocol using the same dataset splits reported in [76,
80, 82]. Fig. 6.7 depicts the results obtained with the two transfer learning setups and
DR2 dataset. Looking at the classification algorithms individually, we note that Random
Forests considerably outperforms the Neural Network classifier. Additionally, the fine-
tuning setup excels considerably the feature extraction, reaching an AUC of 98.0%.

We also evaluate the effectiveness of transfer learning with the Messidor-2 dataset.
Fig. 6.8 shows the ROC curves achieved with Messidor-2 dataset with transfer learning
on per-image and per-patient analyses. Observing the results, we note that Random
Forest is superior in the two transfer learning scenarios on a per image or integrated
per-patient diagnostic.

When evaluating each eye individually (Fig. 6.8(a)), we achieve an AUC of 95.3%
when we use the frozen CNN to extract features, and improve to 96.0% when we tune
the parameters to the target problem. Diagnosing the patient instead of giving a score
for each eye is promising, as Fig. 6.8(b) shows. The performance using fine-tuning with
Random Forest is slightly higher than just using feature extraction: 98.3% over 98.2%.

The results reported herein make it clear that transfer learning with feature extraction
is promising for referable diabetic retinopathy detection, and fine-tuning has the potential
to enhance considerably the effectiveness of the solution. The result also confirms that a
patient-basis diagnostic decision is more effective than just a single-image based decision.
Hence, the answer for Q2.6 is yes .
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Figure 6.7: ROC results for referral assessment evaluating different transfer learning
schemes over DR2 dataset. Two classifiers (Neural Network and Random Forest) are
used to make the final decision, with fine-tuning and without it (using the CNN for
“feature extraction”). The best technique employs Random Forests with fine-tuning.

Comparison with Related Methods on DR2 Dataset

In this section, we compare our solution with prior work [80, 82] that employed the 5×2-
fold cross-validation protocol over the same DR2 dataset. We also compare to our previous
proposal based on handcrafted approaches [76], exposed in Section 6.2.

Those researches have proposed general frameworks adaptable to large classes of le-
sions, and recently bypassed the lesion detection and evaluated directly the referability of
diabetic retinopathy. Initially, we provided referral decision with an AUC of 93.4% [80],
further improving it to 94.2% by enhancing the lesion detectors with better mid-level im-
age features [82]. Finally, bypassing lesion detection and directly training custom-tailored
referral classifiers, we achieved an AUC of 96.4% [76]. Putting in context, the data-driven
method described here outperforms all previous solutions with an AUC of 98.0% when
using the concept of transfer learning by fine-tuning discussed in Section 3. We reduce the
classification error by over 44% over the current state of the art [76], 65% over the solution
that applied enhanced lesion detectors [82], and 70% over the first referral proposal with
DR2 that depends on explicit information of lesions [80].
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(a) Per-Image analysis
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(b) Per-Patient analysis

Figure 6.8: ROC results for referral assessment using transfer learning over Messidor-2
dataset, showing that per-patient analysis (b), which combines both eyes, systematically
outperforms per-image analysis (a), with independent decisions for each eye.

6.7 Accountable Referable Diabetic Retinopathy De-
tection

The experiments for investigating the proposal of an accountable and effective data-driven
solution for referable diabetic retinopathy detection are performed with the Inception-
Resnet convolutional neural network [104], whose parameters were previously optimized
with ImageNet1. We then adapt such parameters for two-class screening of diabetic
retinopathy. The weight adaptation starts by training only parameters that are indeed
being optimized from scratch (last layer) for a few iterations, to avoid losing patterns
previously captured. Thereafter, we propagate the training efforts to the entire network.

In this section, we use the entire Kaggle/EyePACs dataset (88,702 images) for training,
except a portion of 10% reserved for validation. We achieved the optimal performance
over the validation set (10% of the Kaggle/EyePACS dataset) in terms of AUC after 26
epochs. From then on, kept training the network but the result did not improve. The
performance was reached after four learning rate restarts (see Section 3.2.7 for more details
regarding learning rates).

After training the model for referable DR screening, we investigate the performance
over distinct datasets. The training was performed with the Kaggle/EyePACS dataset,
while the test was carried out with Messidor-2 and DR2, which have different acquisition
conditions. Basically, we evaluate the global data-driven method in two different setups:
simply passing the test set once to obtain responses (softmax probabilities), and passing
both training and test sets to extract feature and posteriorly training and validating a
particular classifier. We emphasize that one of the most valuable advantages of extracting
features is that it provides flexibility to choose different machine learning algorithms later
on.

1The parameters are available for research purpose under URL https://github.com/tensorflow/
models/tree/master/research/slim (accessed February 13, 2019)

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
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Fig. 6.9 depicts the ROC curves for training with Kaggle/EyePACS dataset and testing
with DR2. Results were achieved in the per-image scenario and two different protocols
adopted for global information (softmax probabilities and feature extraction). The CNN
alone provided an AUC of 93.73% (95% CI: 89.9% – 96.9%). By feeding the neural
network with global features extracted from the CNN, we reach an AUC of 95.8% (95%
CI: 93.5% – 97.7%), reducing the classification error by 33% over the softmax version.

The results show the models learned with the Kaggle/EyePACS dataset images (with
higher variance) produced relevant results with a very different dataset (DR2).
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Figure 6.9: ROC results for referral assessment using the proposed global data-driven
approach in a cross-dataset protocol: training with Kaggle/EyePACS and testing with
DR2.

Fig. 6.10 depicts cross-dataset ROC curves and respective AUCs for testing with
Messidor-2 dataset. Using softmax probabilities (the chance of needing consultation),
both the image and patient analysis provide AUC of 98.3%2. By extracting features and
using a new shallow neural network for decision making, we reach an AUC of 97.6% (95%
CI: 96.8% – 98.3%) for per-image decision, while diagnosing the patient yields an AUC of
98.5% (95% CI: 97.8% – 99.0%). We emphasize that all results whose approach requires
feature extraction, either on a per-image and per-patient basis, involves combining fea-
tures from left and right eyes. The difference is on measuring the performance with the
decisions themselves or attributing the maximum score to the patient.

As our proposal resides on providing a data-driven referable DR detector that is not
only effective and accurate, but also self-explainable; we use the guided-backpropagation

2AUC of 98.3% (95% CI: 97.8% – 98.8%) for image analysis and 98.3% (95% CI: 97.6% – 99.0%) for
patient analysis.
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Figure 6.10: ROC results for referral assessment using global data-driven approach in a
cross-dataset protocol: training with Kaggle/EyePACS and testing with Messidor-2.

technique to extract pixel importance for the decision taken by the deep-learning model.
Fig. 6.11 depicts a retinal image, its respective saliency map towards importance analysis
for referral decision and their superposition. In a clinical situation, the superposition
could be presented to the ophthalmologists/nurses as well as to the patients to clarify the
reasons behind the automated decision.

Figure 6.11: Retinal image (left); respective saliency map extracted with guided back-
propagation (middle); and the superposition of the map with the image, highlighting
important regions and providing an explanation of the reasons behind the decision made
by the model (right).

Therefore, we conclude that effective solutions for referable DR detection can be pro-
posed with purely end-to-end data-driven approach, and heatmaps reflecting pixel impor-



83

tance turn the method self-explainable. Hence, the answer for Q2.7 is yes .

6.8 Saliency-Oriented Data-Driven Approach to Dia-
betic Retinopathy Detection

The experiments for enhancing the global model with a two-tiered data-driven image repre-
sentation explore heatmaps that express pixel importance for extracting regions of inter-
est. Those regions are represented with the same CNN, encoded to provide an additional
and complementary model for referable DR detection. We use Fisher Vectors for mid-
level representation, with lesion-aware GMMs constructed with two datasets that have
regions annotated by experts (DR1 and IDRiD). We evaluate the performance through
an analysis per image and per patient, when possible.

Fig. 6.12 shows results achieved with the mid-level representation for testing with DR2
and Messidor-2. For the former, only images are analyzed individually, while the latter
consider the two scenarios. Fisher Vector provides an AUC of 97.3% (95% CI: 95.6%
– 98.6%) with DR2. Regarding Messidor-2, features extracted through saliency maps
activations give an AUC of 97.0% (95% CI: 96.0% – 97.9%) per image, that is consider-
able improved to 98.7% (95% CI: 98.1% – 99.3%) when left- and right-eye responses are
combined.

In both DR2 and Messidor-2, local-based results are significantly superior to the global-
based ones, showing the novel approach has potential, and that the operation of empha-
sizing areas that the CNN model could not assimilate sufficiently is promising.

Therefore, we conclude that saliency maps represent a powerful mechanism for compre-
hension of complex models and, additionally, for robust two-tiered image representation.
Hence, the answer for Q2.8 is yes .

6.9 Fusion of Global Data-driven and Local Saliency-
Oriented Features to Diabetic Retinopathy Detec-
tion

The experiments for improving the performance of the model by combining global data-
driven and local saliency-oriented two-tier representations involve the combination of re-
sponses we achieve with both local and global techniques. In this work, we perform late
fusion by averaging the three softmax probabilities: (1) from the CNN, (2) from the shal-
low neural network trained/tested with data-driven features, and (3) from the shallow
neural network trained/tested with the mid-level representations. We present results for
DR2 only for analyzing images, and consider image and patient scenarios for Messidor-2
dataset.

Fig. 6.13 depicts ROC curves and respective AUCs for late fusion. We observe the
combination of global and local information provides an AUC of 96.3% for DR2 dataset
(95% CI: 93.7% – 98.3%). For Messidor-2, in turn, we achieved an AUC of 98.3% (95%
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Figure 6.12: ROC results for referral assessment using the proposed local saliency-oriented
data-driven approach in a cross-dataset protocol: training with Kaggle/EyePACS and
testing with DR2 and Messidor-2.

CI: 97.8% – 98.8%) in the image-based setup, and improved the approach performance to
98.7% (95% CI: 98.1% – 99.2%) by combining eye responses and diagnosing patients.

We note the fusion does not outperform the local-based information (AUC=97.3%)
for DR2 dataset, since the performance of the CNN alone achieved an AUC of 93.7%.
Possibly, the result did not improve since left and right eyes play an important role in
any approach.

The improvement is more evident for Messidor-2. In terms of image analysis, the
AUC with fusion is the same as the AUC by the CNN: 98.3%. However, the method
improves the classification accuracy from 85.2% to 89.9%. When we diagnose patients,
the improvement is even more noticeable. By applying the late fusion of global and local
information, in turn, the AUC is equivalent to the one achieved by Fisher Vector encoding
(AUC=98.7%). However, the fusion not only increases the accuracy — from 88.3% to
89.5% — but also reduces both false positive and false negative rates (one false negative
for ninety-one false positives).

Therefore, we conclude that the fusion of global data-driven and local saliency-oriented
two-tier representations is promising, and the improvement is more relevant when at least
one image per eye is available. Hence, the answer for Q2.9 is yes .

Comparison with State of the Art

Just for the sake of completeness, we now compare our results with all the previous work
that has used DR2 and/or Messidor-2 datasets for testing in prior art. The DR2 is widely



85

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specificity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
ns

iti
vi

ty

Need of Referral

DR2 - per image (AUC = 96.3%)
Messidor-2 - per image (AUC = 98.3%)
Messidor-2 - per patient (AUC = 98.7%)

0.0 0.1 0.2 0.3
0.7

0.8

0.9

1.0

Figure 6.13: ROC results for referral assessment using both the proposed global data-
driven approach and local saliency-oriented approach in a cross-dataset protocol: training
with Kaggle/EyePACS and testing with DR2 and Messidor-2.

used for referral assessment [76, 80, 82], however it has mostly been applied under the
5×2-fold cross-validation protocol. Here we compare the performance with our recent
work, presented in Section 6.5, that also employs the cross-dataset validation policy [77].
In this work, we have reached an AUC of 97.3% by using mid-level representation, and
96.3% using the average of all individual responses. In turn, in Section 6.5, we achieved
also 96.3%. Contrasting the current local-based approach with the previous result, we
reduce the classification error by 27%. We reinforce that, although we use here a larger
training set (the entire kaggle/EyePACS dataset), the result in Section 6.5 [77] is provided
by a robust feature extraction augmentation with a convolutional neural network trained
under a multi-resolution training procedure. While we train the CNN with images in
299 × 299, previous work has performed the optimization and validation with images of
448× 448 pixels.

In turn, we also compare the performance with previous work that have validated
models with the Messidor-2 dataset [1, 2, 77]. Note, however, that this comparison is not
totally direct as the methods use different training sets. Considering only the per-patient
scenario, Abràmoff et. al [1] reached an AUC of 93.7% and further improved this result
significantly to 98.0% [2] (95% CI: 96.8% – 99.2%). More recently, we proposed a data-
driven method [77], presented in Section 6.5, reporting an AUC of 98.2% (95% CI: 97.4%
– 98.9%), with a CNN with multi-resolution training and extracting global data-driven
features in an augmented fashion. Herein we provide a remarkable improvement by reach-
ing an AUC of 98.7% (95% CI: 98.1% – 99.2%), showing the robustness of applying local
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saliency-oriented region characteristics to reinforce the learning process the network has
acquired globally. We reduce the classification error by 28% over the proposal presented
in Section 6.5 [77], and 35% over the solution proposed by Abràmoff et. al [2].
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Chapter 7

Results: Quality Assessment

In this chapter, we present the results for the question regarding the integration of our
software solutions with simple retinal imaging devices.

7.1 Quality Assessment of images from portable de-
vices

The experiments for assessing the quality of images from portable devices with data-driven
models trained with images from high-cost instruments were performed using a cross-
dataset protocol — training with the DR1 dataset and validating with Phelcom dataset.
In practical terms, that protocol puts in an equal footing the Phelcom portable device
and the classical, high-cost retinographs.

In the current stage of the project, we used the entire DR2 dataset for validation. As
well as in the first stage of the project, we report the results with area under ROC curve
(AUC) and accuracy.

The first round of experiments for the third stage of the partnership consists of trans-
ferring knowledge learned with ImageNet dataset to the blur detection problem. Note,
however, that we bypass the batch normalization technique — that did not show be favor-
able in our situation — which does not characterize that procedure as a real knowledge
transferring.

By training the MobileNetV2 with the DR1 dataset, and picking up the set of pa-
rameters that gave the best accuracy with DR2, we achieved an AUC of 91.14% with an
accuracy of 87.50% over the Phelcom dataset (specificity of 74.00% with sensitivity of
94.25%). Table 7.1 shows the confusion matrix regarding the best result in the first round
(specificity of 84.0% with sensitivity of 87.5%).

These results are promising since we’ve surpassed the performance reached with
Inception-Resnet architecture (AUC of 91.03% and accuracy of 86.33%) using much fewer
parameters.

The second round of experiments aims at investigating if the use of more data could
improve the effectiveness of the quality assessment network. In order to investigate the
hypothesis, we explored the self-annotation procedure for labeling the kaggle/EyePACs
dataset to pre-train the mobile network; and posteriorly fine-tuned the model with the
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Table 7.1: Round #1: Validating retinal images captured with Phelcom devices for quality
assessment. The model was trained with the DR1 dataset.

Actual class
poor good

Predicted class poor 148 23
good 52 377

DR1 dataset.
After training the MobileNetV2 network with the self-annotated dataset and selecting

the best parameters (based on performance with DR2), we tested it with Phelcom dataset,
reaching an AUC of 92.60% with an accuracy of 87.00%. In sequence, we fine-tuned the
model with DR1 dataset and pick up the best parameters in virtue of DR2 performance.
The method enhanced substantially the results, providing an AUC of 93.6%, with 87.33%
of accuracy (specificity of 86.00% with sensitivity of 88.00%). Table 7.2 shows the confu-
sion matrix regarding the best result in the second round.

Table 7.2: Round #2: Validating retinal images captured with Phelcom devices for qual-
ity assessment. The model was trained with the DR1 dataset and self-annotated Kag-
gle/EyePACS dataset.

Actual class
poor good

Predicted class poor 172 48
good 28 352

Figure 7.1 shows the ROC curves that highlight the potential of mobile architectures
to address the problem of quality assessment, and the promising benefit of applying self-
annotation to increase the dataset.

Therefore, we conclude that mobile data-driven models trained with images from high-
cost instruments can evaluate the quality of images taken with low-cost devices. Hence,
the answer for Q3.1 is yes .
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Figure 7.1: AUCs in % for quality assessment, validating retinal images captured with
Phelcom devices.
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Chapter 8

Conclusions

In this work, we presented image analytics solution for diabetic retinopathy detection, that
encompasses DR Lesion Detection, Referable DR Detection and Validation with Images
from Portable Devices. The work incorporates both handcrafted and data-driven ap-
proaches, on bottom-up and top-down scenarios, one-stage (global based) and two-tiered
(local based) representations, and ends up by combining methodologies proposed at the
initial stages and the final stages of the doctoral program, compounding a sophisticated
accountable and saliency-oriented mid-level representation.

Prior research on automated screening of diabetic retinopathy has followed the natu-
ral route of identifying DR lesions and gathering all the extracted high-level information
to evaluate referability and/or disease severity. That scenario inherits the common and
natural bottom-up fashion: lesion first, referral later. Before the explosion of data-driven
methodologies, we proposed an approach for direct referral assessment that contradicted
previous beliefs regarding the mandatory necessity of detecting lesions, suggesting that
the loss of information in the interface between the two-stage classification is detrimental
to accurate diagnostic. The adoption of deep-learning strategies came to confirm our pre-
vious conclusion, dramatically improving the performance and becoming the state of the
art for automated DR screening. With the recent demand for accountable solutions —
not only robust and accurate, but also self-explainable — the research has moved toward
an opposed top-down direction: referral first, lesion later. As the models do not require
lesion information for deciding about referable DR, pinpointing pathologies or anatomi-
cal parts through pixel importance turn out a fashionable artifice for understanding the
reasons behind a computer-aided screening.

Throughout the research, we explored prevailing and ongoing computer-vision and
machine-learning methodologies, and proposed novel and advanced retinal image analytic
approaches, with invaluable impacts both in biomedical and technical contexts.

In terms of clinical and biomedical impacts, we highlight the proposal of a “polemic”
method to automatically refer or not the patient to the ophthalmologist, bypassing the
cumbersome task of learning individual lesion detectors. We also designed an effective
and efficient data-driven model for the binary task of referral/non-referral, motivated by
eventual integration with portable low-cost retinographs. Finally, we combined decisions
from local saliency-oriented and global data-driven image representations, with a notable
performance in a particular dataset (two images per patient), reducing both false positive
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and false negative rates contrasting with the local mid-level representation.
In terms of technical and scientific impacts, we explored advances of computer vision

and machine learning thoroughly also proposing important methods. In a summarized
timeline, we started with local-based two-tiered mid-level representations, explored global
data-driven approaches with deep learning, and combined both to yield an accountable,
mid-level, and data-driven rich representation. One of the major impacts was the proposal
of a novel handcrafted coding method, semi-soft, that combines advantages of both hard
and soft codings. We also crafted a new deep-learning architecture, inspired on two
proposals in recent competitions, as well as performed a procedural investigation for
analyzing, from a rigorous scientific point of view, the advantages and disadvantages of a
series of novel and consolidated techniques. Among those methods, we highlight the multi-
resolution training and the robust feature extraction augmentation. Finally, we proposed
a hybrid computer-aided diagnostic model that relies on global data-driven decision and
local mid-level saliency-oriented decision. Our saliency-oriented mid-level technique can
be viewed as less human-centered two-tiered approach since it does not require local lesion
annotation.

The thesis was organized in a series of research questions which are adequately an-
swered through investigations in order to evaluate possible improvements and design de-
cisions. The question-answers design is based upon a rigorous investigation of the tech-
niques explored herein, measuring how much they improve the solution. We reported the
advances of this research in top publication venues:

1. Automatic Diabetic Retinopathy Detection using BossaNova Representation
- Conference: IEEE Engineering in Medicine and Biology Society (EMBC’14)
- Date of Publication: November 6, 2014
- Context: Diabetic Retinopathy Lesion Detection
- Questions: Q1.2, and Q1.3

2. Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal
Images
- Journal: PLoS ONE
- Date of Publication: June 2, 2014
- Context: Diabetic Retinopathy Lesion Detection
- Questions: Q1.1

3. Automated Multi-Lesion Detection for Referable Diabetic Retinopathy in Indigenous
Health Care
- Journal: PLoS ONE
- Date of Publication: June 2, 2015
- Context: Diabetic Retinopathy Lesion Detection
- Questions: Q1.4

4. Beyond Lesion-based Diabetic Retinopathy: a Direct Approach for Referral
- Journal: IEEE Journal of Biomedical and Health Informatics (J-BHI)
- Date of Publication: November 05, 2015
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- Context: Referable Diabetic Retinopathy Detection
- Questions: Q2.1, Q2.2 and Q2.3

5. A Data-driven Approach to Referable Diabetic Retinopathy Detection
- Journal: Elsevier Artificial Intelligence in Medicine (AIIM)
- Date of Publication: March 26, 2019
- Context: Referable Diabetic Retinopathy Detection
- Questions: Q2.4, Q2.5 and Q2.6

6. An Accountable Saliency-Oriented Data-Driven Approach to Diabetic Retinopathy
Detection
- Book: Photo Acoustic and Optical Coherence Tomography Imaging: An Applica-
tion in Ophthalmology
- Date of Publication: 2019
- Context: Referable Diabetic Retinopathy Detection
- Questions: Q2.7, Q2.8 and Q2.9

8.1 Diabetic Retinopathy Lesion Detection

The state of the art in BoVW methods for DR lesion detection was advanced by extend-
ing possible combinations of applying BoVW for detecting DR-related lesions in retinal
images. We explored several combinations of handcrafted alternatives for the extraction
of low-level features, and the creation of mid-level representations pointing out important
choices when designing a unified framework for detecting DR lesions.

One of the contributions in this work was the proposal of a new semi-soft coding
scheme, which explores the advantages of the most traditional hard-sum coding (sparse
coding) as used in prior work for DR lesion detection and soft assignments (which better
deal with imprecision and noise). As we show in the experiments, with ANOVA, the
semi-soft coding associated with sparse feature extraction provides a good balance for
designing an efficient and effective DR-related lesion detector.

Besides proposing a new coding approach to retinal images analysis, we also explored
the BossaNova, a mid-level feature extraction technique that consists of an improvement
in the pooling stage. Both for hard exudates and for red lesions detection, the results
outperformed previous methods showing the importance of preserving some relationship
between the detected features in retinal images instead of just throwing them away as
previous BoVW-based solutions have done.

As another contribution of this work, we mention the description and the use of a
cross-training methodology with results obtained from training with images from a par-
ticular ethnic group, and testing with a different population: Aboriginal and Torres Strait
Islander people. This policy has important health screening and treatment impacts as
the program can be trained at metropolitan clinics and taken to rural and remote areas
for live screening and have a high degree of accuracy — typically, training images are not
always available from remote communities in enough numbers to train the classifier and
many towns comprise a very heterogeneous ethnic population mix.
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8.2 Referable Diabetic Retinopathy Detection

In this research, we prioritized investigations of need of consultation, helping to decide
who should be referred to the ophthalmologist for further examination. We started by
detecting referable DR based on responses from lesion classifiers, by elaborating fusion
technique based on meta-classification (which seeks a pattern based upon the classification
score confidences returned by each individual lesion detector).

We also proposed a novel approach to decide, directly from the retinal images and
without preliminary lesion detection, whether or not a patient will need to be referred to
an ophthalmic specialist within a year. This decision to forgo specific DR-lesion detection
has both theoretical motivations (making the referral decision using all information present
in the image instead of just lesion scores) and practical advantages (much simpler to
implement, test, and deploy). We highlight that, in the time we proposed the methodology
and before the adoption of data-driven approaches, direct assessment was new for referable
DR, and had not been developed before.

We emphasize the novelty of using cutting-edge mid-level representations (BossaNova
and Fisher Vector), over the traditional BoVW approach. The experiments and statistical
analysis confirm that the choice of the mid-level representation is critical. The best
result for direct referral, reached by the Fisher Vector approach, clearly outperforms
the traditional lesion-based method by more than two percentage points, reducing the
classification error by almost 40% (from 5.8% to 3.6%). We also conclude that the direct
referral is suitable also for independent datasets.

In this work, we also presented a data-driven solution for referable diabetic retinopathy
detection. In contrast to works we inspire on (proposed in recent competitions), here we
take into account not only the aim of improving classification accuracies, but we also take
into consideration two important issues for real-world deployment: the (computational
and implementation) complexity of the solution, and its ability to generalize under the
stricter cross-dataset protocol. In addition to the solution itself, we also offer a novel re-
search methodology regarding a procedural investigation approach. Our evaluation shows
CNNs performance can be boosted by a set of directives. First, good data augmentation
is essential for robust decision. Also, a robust feature-extraction augmentation improves
performance considerably, while allowing for a diverse choice of machine learning algo-
rithms at the final decision layer. The experiments also show that it is possible (and
advantageous) to train high-resolution networks using the weights of low-resolution ones
as initialization.

As expected, more information about the patients translates to better-informed deci-
sions for referral. Thus, per patient diagnosis is more effective than per image, even under
a challenging cross-dataset protocol.

Another novel aspect of our work is the investigation of the capability of transfer
learning in the context of diabetic retinopathy screening, in order to compare data-driven
approaches with previous work that employed handcraft methods with relatively small
datasets (DR2 and Messidor-2) under cross-validation protocol. The model trained (fine-
tuned) with DR2 clearly outperforms the method of direct referral over the same dataset,
reducing the classification error by over 44%. This is in agreement with recent studies in
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the literature: a novel family of data-driven methods is the state of the art for diabetic
retinopathy screening.

In this work, we also presented an accountable and robust framework for automated
screening of diabetic retinopathy. A series of works in prior art have been focused on
accurate data-driven approaches to effective diagnostic, even using a single deep convo-
lutional neural network or ensembling a set of models. However, the interpretability of
those models — which has become a requirement in order to understand the reasons be-
hind a decision — is frequently disregarded. In this vein, we proposed the use of saliency
maps whose objective is twofold: highlighting regions that potentially influence the deci-
sion taken, and capturing regions of interest that could be leveraged for the final model
response.

Purely data-driven CNNs naturally perform global evaluations, by receiving the entire
image and assigning decision probabilities. Herein, we use global information to extract
two data-driven responses: the softmax probability itself as well as scores coming from a
neural network that receives pre-softmax features.

One of the main novelties in the current work is the breakdown of the global data-
driven scenario. The pipeline involves extracting saliency-oriented regions of interest and
combining those information through Fisher Vector. Exploring the encoded contextual
local-based representations, we reduce the classification error by 27% contrasting with
our previous global data-driven method testing with DR2 under cross-dataset validation
protocol. By testing with Messidor-2, the robust local saliency-oriented region character-
istics had a remarkable improvement, reducing the classification error by 28% over our
previous global data-driven proposal. By enhancing considerably the performance both
over DR2 and Messidor-2, in comparison with the strict global method, we showed that
the guided mid-level representation, which emphasizes areas that the CNN model could
not assimilate sufficiently, is promising.

8.3 Validation with images from portable devices

One of the main aims at this work was integrating our solutions regarding image analytics
for diabetic retinopathy detection with simple and portable retinal imaging solutions. Our
purpose was combining our software with portable and low-cost image acquisition devices.

Our intention was validating retinal images from portable devices with our methods.
As the images collected in time for validation during the doctoral program were only
graded in terms of quality assessment, we evaluate if they were properly ready for a
computer-aided DR screening (if they encompass the minimum required quality).

By fine-tuning the MobileNetV2, that has good trade-off between accuracy and number
of operations and parameters, we achieved a promising result that surpassed the Inception-
Resnet architecture. We also figured out that the self-annotation procedure — for labeling
a large dataset to pre-train the mobile network — enhanced substantially the results.
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8.4 Future Work

In closing this work, we would like to emphasize important open questions to be explored
in image analytics for diabetic retinopathy detection.

Once the performance of combining global data-driven and local saliency-oriented
characteristic depends on the robustness of the baseline CNN model, possible future work
comprises exploring higher image resolutions, possibly exploring strategies such as multi-
resolution training [77] to easily capture very small lesions and subtle image details.

Moving towards an opposed direction comparing to the natural advance of research
in diabetic retinopathy diagnostic represents a strong route. Instead of detecting lesions
and using the assembled information to decide about disease stages or referral need, in
a bottom-up manner; it would involve identifying referable DR and using pixel impor-
tance for pointing out and recognizing lesions or anatomical retina parts, as a top-down
approach.

Another trend is identifying the DR severity degree of a patient — further classifying
the images as related to DR cases in early, mild, proliferative and severe stages — and
exploring saliency-oriented representation in order to perform an extensive comparison
with the prior art.

Possible future work also encompasses exploring more deeply the iterative self-
annotation procedure, by dynamically training the model interchanging the train set per
epoch: with expert-annotated (DR1) and model-annotated (kaggle/EyePACs) datasets.

Additionally, investigating whether the quality-aware photometric data augmentation
is a strategy capable of enhancing performance. We believe that applying a little of
blurring in poor images and sharpening in good images might highlight the expected
aspects into retinal images that were not properly annotated by experts.

Finally, future work also comprehends validating the referral solutions with fundus im-
ages captured via mobile devices, and intensifying investigations of models that efficiently
trade off between effectiveness (accuracy) and time consumption/memory footprint, in
order to bypass cloud services and embed into portable retinal cameras.
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