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RESUMO 

 
Considerado um grupo monofilético, os Anomalodesmata Dall, 1889 possuem 

atualmente mais de 800 espécies, abrigando alguns dos bivalves marinhos mais raros, 

bizarros e especializados. Essa raridade aliada a uma carência de informações 

anatômicas detalhadas sobre suas espécies sempre foram obstáculos para a 

compreensão de suas relações internas, consequentemente, resultando também em 

uma baixa representatividade de táxons em reconstruções filogenéticas. Com o intuito 

de preencher algumas das principais lacunas no conhecimento dos Anomalodesmata, 

a presente Tese propôs três objetivos específicos, buscando, através de diferentes 

ferramentas, ampliar, atualizar e apresentar novas idéias ao conhecimento evolutivo, 

morfológico e taxonômico desse importante grupo de bivalves. O primeiro objetivo se 

deu por meio de coletas realizadas na Baía do Araçá, litoral Norte do Estado de São 

Paulo, onde foi possível observar e descrever em detalhes a morfologia funcional e o 

comportamento de Cardiomya cleryana, trazendo novos insights sobre os bivalves 

carnívoros como um todo. O segundo objetivo foi realizado por meio do acesso à 

coleção malacológica do Museum of Comparative Zoology - Harvard University, onde 

grande parte dos lotes depositados nessa instituição foram revisados, gerando novos 

dados conquiliológicos e anatômicos para a elaboração de uma análise morfológica, 

gerando uma nova filogenia para os Anomalodesmata. Por fim, o terceiro objetivo versou 

sobre o uso de microtomógrafos de raios-x para ampliar o conhecimento anatômico dos 

anomalodesmados, culminando nos primeiros protocolos de contraste para bivalves 

marinhos, comparações entre diferentes técnicas invasivas, além das primeiras 

descrições anatômicas de bivalves baseadas exclusivamente em imagens tomográficas 

e reconstruções 3D.   

 

 

 

 



 
 

ABSTRACT 

 
Considered a monophyletic group, the Anomalodesmata Dall, 1889 currently have more 

than 800 species, bearing some of the rarest, bizarre and specialized marine bivalves. 

This rarity combined with the scarcity of detailed anatomical information about their 

species has always been obstacles to the understanding of their internal relationships, 

consequently, also resulting in a low representativeness of taxa in phylogenetic 

reconstructions. In order to fill some of the main gaps in the knowledge of 

Anomalodesmata, the present thesis proposed three specific objectives, by using 

different tools, to expand, update and present new insights about the evolutionary, 

morphological and taxonomic knowledge of this important group of bivalves. The first 

objective took place through field collections in the Araçá Bay, north coast of the State 

of São Paulo, where it was possible to observe and to describe in detail the functional 

morphology and behaviour of Cardiomya cleryana, bringing new ideas about the 

carnivorous bivalves as a whole. The second goal was through the access to the 

malacological collection of the Museum of Comparative Zoology - Harvard University, 

where most of the lots deposited in this institution were reviewed, generating new 

conchological and anatomical data for the elaboration of a morphological analysis, 

generating a new phylogeny for the Anomalodesmata. Finally, the third objective was to 

increase the anatomical knowledge of anomalodesmatans by using X-ray 

microtomography, culminating in the first contrast protocols for marine bivalves, 

comparisons between different invasive techniques, and the first anatomical descriptions 

of bivalves based exclusively on tomographic images and 3D reconstructions.  
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INTRODUÇÃO GERAL 

 

Considerado o segundo maior grupo de metazoários, o Filo Mollusca inclui 

cerca de 70.000 espécies fósseis e mais de 80.000 pertencentes a fauna 

Recente (Margulis & Schwartz 1998, Ponder & Lindberg 2008, Rosenberg 2014, 

Moretzsohn 2009). Contudo, apesar de ser considerado um grupo de 

invertebrados bem conhecido, abrigando formas típicas como lesmas, 

caramujos, bivalves, polvos e lulas, estima-se que ainda existam milhares de 

novas espécies de moluscos a serem descritas (Bouchet et al. 2002, 

Groombridge & Jenkins 2002). Atualmente, estudos filogenéticos sugerem que 

os Mollusca estão representados por oito clados, distribuídos dentre dois 

importantes agrupamentos monofiléticos: (i) Aculífera, formado pelos clados 

Polyplacophora + Caudofoveata + Solenogastres e (ii) Conchífera, reunindo 

Monoplacophora + Gastropoda + Bivalvia + Cephalopoda + Scaphopoda (Kocot 

et al. 2011, Smith et al. 2011, Sherhorlz et al. 2017). De maneira geral, a 

presença de escleritos e de uma concha primariamente univalve, correspondem 

a algumas das sinapomorfias que caracterizam os Aculífera e Conchífera, 

respectivamente (Sigwart & Lindberg 2015).  

Dentre os clados que compõem Mollusca, Bivalvia (= Pelecypoda, = 

Lamellibranchiata) se destaca por sua incrível diversidade morfológica, 

importância econômica, ecológica e até mesmo biomédica (Faust et al. 2009, 

Pawiro 2010, Elshawari et al. 2013), sendo o segundo maior grupo de moluscos 

em número de espécies (~8.000) (Boss 1982, Coan et al. 2000, Huber 2010, 

Sharma et al. 2012). Caracterizados por apresentarem uma compressão lateral 

do corpo, que por sua vez se encerra em uma concha bivalve dorsalmente 
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articulada via charneira e ligamento (Coan & Valentich-Scott 2000), os bivalves 

são extremamente abundantes dentre a fauna marinha, distribuindo-se desde o 

entremarés até regiões abissais, constituindo um importante elemento na 

composição da biomassa bêntica (Giribet 2008).       

Atualmente seis grupos principais compõem Bivalvia, Protobranchia 

(nuculídeos, nuculanídeos e solemyiídeos); Pteriomorpha (mexilhões, ostras, 

vieiras e arcídeos); Palaeoheterodonta (mexilhões de água doce e trigonídeos); 

Archiheterodonta (bivalves dotados de hemoglobina); Anomalodesmata 

(bivalves tubículas e carnívoros) e Imparidentia (o maior e mais amplamente 

distribuído grupo de bivalves) (Bieler et al. 2014, González et al. 2016). 

Conhecida por abrigar as mais raras e bizarras espécies de bivalves 

marinhos, a subclasse Anomalodesmata Dall, 1889 se destaca por apresentar a 

maior diversidade de hábitos de vida dentre todos os Bivalvia (Machado et al. 

2016). De difícil acesso, as espécies desse grupo geralmente ocorrem em águas 

profundas (> 500 metros) e quase sempre estão associadas a nichos ecológicos 

altamente especializados (Harper et al. 2000; Allen 2008; Morton et al. 2016a). 

Como consequência, os Anomalodesmata possuem também uma elevada 

diversidade morfológica. Escavadores de sedimento, endolíticos, cimentantes, 

bissados, construtores de tubo, predadores e até mesmo microcarnívoros 

incubadores são alguns exemplos dessa importante diversidade (Harper et al. 

2000; Morton et al. 2016a, b).  

Considerado um grupo monofilético, os Anomalodesmata possuem 

atualmente mais de 800 espécies distribuídas entre oito superfamílias, 

Clavagelloidea d’Orbigny, 1844, Myochamoidea P.P. Carpenter, 1861, 
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Pandoroidea Rafinesque, 1815, Pholadomyoidea King, 1844, Thracioidea 

Stoliczka, 1870, Cuspidarioidea Dall, 1970; Poromyoidea Dall, 1886 e 

Verticordioidea Stoliczka, 1870 (Runnegar 1974, Bieler et al. 2010, Morton 1981, 

Bieler & Gofas 2016). Comparado a outros grupos de Bivalvia os 

Anomalodesmata possuem um considerável número de espécies, no entanto, o 

conhecimento sobre sua morfologia (anatomia) e relações filogenéticas ainda 

está aquém do necessário para entender as relações internas de seus grupos 

(Harper et al. 2006). Isto porque, na maioria dos casos a maior parte desse 

conhecimento está baseado apenas em detalhes da concha como, por exemplo, 

formato, cor, escultura externa, ligamento e detalhes da charneira (Pimenta & 

Oliveira 2003, Oliveira & Absalão 2009, Oliveira & Absalão 2010, Absalão & 

Oliveira 2011, Coan et al. 2000; Coan & Valentich-Scott 2012). Apesar de ser um 

importante elemento taxonômico, a morfologia da concha por si só impossibilita 

a robustez das reconstruções filogenéticas, tendo, portanto, que estar aliada à 

anatomia (Harper et al. 2000, 2006, Bieler et al. 2014). Contudo, o conhecimento 

anatômico sobre os Anomalodesmata ainda é muito escasso, principalmente 

quando comparado à totalidade de suas espécies (~811 spp); apenas 7,5% (~61 

espécies) tiveram seus tecidos internos estudados em detalhes (órgãos da 

cavidade palial e da massa visceral) e destas apenas 27% (~17 espécies) foram 

observadas vivas (Machado et al. 2018- submitted, Worms 2018, NCBI 2018). 

Consequentemente, a maior parte dos resultados sobre a anatomia do grupo são 

quase que exclusivamente baseados em espécimes fixados, o geralmente 

dificulta a interpretação de possíveis homologias, gera incertezas durante a 

codificação de caracteres (órgãos contraídos, quebrados e/ou deformados) e 

principalmente cria ruídos nas reconstruções filogenéticas. 
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Com o advento de técnicas moleculares, o início dos anos 2000 foram 

marcados por importantes trabalhos sobre a evolução dos Bivalvia e em especial 

dos Anomalodesmata, como por exemplo, as primeiras análises cladísticas 

morfológicas e combinadas entre dados morfológicos e moleculares (Harper et 

al. 2000, 2006; Dreyer et al. 2003). Contudo, não apenas o conhecimento 

morfológico anatômico como também o molecular se desenvolveu muito nos 

últimos 17 anos, trazendo uma significativa quantidade de novos dados e 

ferramentas que poderão auxiliar na ampliação e reinterpretação do 

conhecimento evolutivo dos Anomalodesmata (Bieler et al. 2014). Vale destacar 

ainda que nesse período, dezenas de anomalodesmados tiveram seus tecidos 

internos estudados em detalhes, estudos sobre a ultraestrutura dos 

espermatozoides ganharam destaque, novas ideias sobre o hábito de vida dos 

bivalves carnívoros foram apresentadas e até mesmo uma nova família, 

Clistoconchidae Morton, 2012, foi descrita (Krylova 2001; Morton 2003, 2015; 

Healy et al. 2008; Leal 2008; Simone & Cunha 2008; Morton 2012; Temkin & 

Strong 2013; Machado et al. 2016; Morton et al. 2016a, b). Além disso, 

importantes ferramentas como micro tomógrafos (técnica não-destrutiva) e o 

Next-generation sequencing (nova tecnologia de sequenciamento) também 

começaram a ser utilizadas (Goulding et al. 2009, Handschuh et al. 2013, 

González et al. 2015). E é nesse novo cenário que a presente Tese de Doutorado 

está inserida, não apenas revisando a taxonomia e descrevendo em detalhes a 

anatomia de algumas espécies, como também propondo pela primeira vez a 

utilização de ferramentas não-invasivas para o estudo dos Anomalodesmata, 

assim como, elaborando testes cladísticos morfológicos que irão incorporar e 

reinterpretar a relações internas desse importante grupo de bivalves.  
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OBJETIVOS 

 

A presente Tese tem como objetivo principal ampliar, atualizar e 

apresentar novas idéias ao conhecimento evolutivo, morfológico e taxonômico 

dos Anomalodesmata; gerando três diferentes objetivos específicos: 

- Taxonomia e morfologia funcional - (Capítulo 1) 

1- Descrever em detalhes a anatomia e o comportamento de Cardiomya 

cleryana (d’Orbigny, 1842) ampliando o conhecimento sobre a família 

Cuspidariidae Dall, 1886 e fornecendo novas informações sobre os bivalves 

carnívoros como um todo; além de elaborar uma breve revisão taxonômica 

sobre o gênero Cardiomya A. Adams, 1864 no Oceano Atlântico. 

- Sistemática filogenética - (Capítulo 2) 

2- Elaborar uma análise filogenética morfológica mais abrangente e atual para 

os Anomalodesmata, consequentemente, promovendo uma rediscussão sobre 

as relações internas de suas famílias e apresentando uma nova filogenia para 

esse importante grupo de bivalves marinhos. 

- Morfologia não-invasiva - (Capítulo 3) 

3- Expandir o conhecimento sobre a morfologia funcional dos Anomalodesmata 

por meio de técnicas não invasivas (microtomografia de raios-x), elaborando 

protocolos de contraste e propondo pela primeira vez a descrição anatômica de 

algumas espécies de Anomalodesmata, baseado exclusivamente em imagens 

tomográficas e reconstruções 3D. 
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METODOLOGIA 

 

- Área de estudo, coletas e preparação dos espécimes estudados 

A baía do Araçá, localizada no canal de São Sebastião, no Litoral Norte 

do Estado de São Paulo, se constitui no último testemunho existente preservado 

das áreas de manguezal no trecho entre Bertioga e Ubatuba. O Araçá é uma 

área de grande complexidade constituída por uma pequena baía limitada por 

flancos rochosos que abrange quatro praias (Deodato, Pernambuco, Germano e 

Topo), duas ilhotas (Pernambuco e Pedroso), três núcleos principais de bosques 

de mangue, e uma extensa planície de fundo mole, inteiramente descoberta em 

períodos de maré baixa de sizígia. A fisionomia resultante é de declividade suave 

(planície de maré), com largura da zona entremarés de 50-300 m, constituídas 

por sedimentos areno-lamosos, relativamente compactos, e cascalhos que 

também constituem o sublitoral. Assim, o Araçá pode ser classificado como uma 

baía muito protegida, com hidrodinâmica dominada pela maré, mas que também 

sofre a ação de ondas de baixa amplitude (Amaral et al. 2010). 

Todas as estações foram efetuadas de modo a amostrar, da melhor 

maneira possível, a região de estudo, até a isóbata de 20 m de profundidade 

(Fig. 1). As coletas foram efetuadas com auxílio de embarcação do Instituto 

Oceanográfico da USP. Foram escolhidos 18 pontos mediante o posicionamento 

das isóbatas. As posições exatas das estações foram determinadas com um 

GPS Garmin Map 185 Sounder, com acoplamento de carta náutica. As coletas 

do sedimento para estudo da fauna dos Mollusca foram efetuadas com pegador 

do tipo van Veen, com área de amostragem de 0,25 m2. Além disso, uma draga 

de arrasto retangular, medindo aproximadamente 70 cm de abertura (rede 
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cônica de 2 cm de abertura entrenós) também foi usada em alguns pontos 

selecionados para a ampliação do material coletado. 

Todo o sedimento referente à coleta do sublitoral foi inicialmente levado 

para o CEBIMar (Centro de Biologia Marinha da USP), peneirado em malha de 

0,3 mm. Os espécimes encontrados foram triados e identificados até o nível de 

espécie utilizando-se de literatura especializada. Foram selecionados e 

acondicionados em aquários os indivíduos mais ativos e bem preservados de C. 

cleryana, para as análises do comportamento de escavação e atividade sifonal. 

 

Figura 1: Baía do Araçá. Desenho amostral contendo todas as estações de coleta, com 

destaque para os pontos 21-36, ambos localizados no sublitoral 

 

Alguns indivíduos foram então fotografados, filmados, dissecados e 

desenhados com o auxílio de um microscópio estereoscópico com câmara clara. 
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Alguns exemplares foram anestesiados em mentol, e trazidos para o laboratório 

de Malacologia, no Departamento de Biologia Animal da Universidade Estadual 

de Campinas (UNICAMP), onde foram submetidos à microscopia eletrônica de 

varredura (MEV) e histologia.  

Para a descrição da morfologia funcional de C. cleryana, a presente Tese 

seguiu uma sequência metodológica de observações baseado nos trabalhos de 

Domaneschi (1995), Passos & Domaneschi (2004) e Piffer et al. (2011). Essa 

sequência se aplica apenas a espécimes vivos e inicia-se pela descrição 

detalhada da morfologia da concha (dimensões, formato, escultura externa, 

dentes da charneira e cicatrizes musculares) com subsequente análise dos 

tecidos internos como: sifões (quando presentes), bordas do manto, musculatura 

(adutores, retratores do pé, protratores do pé, entre outros), cavidade do manto 

(disposição dos principais órgãos na cavidade palial), caracterização dos septos 

musculares, correntes ciliares na superfície da massa visceral, caracterização 

dos palpos labiais e definição da estrutura e do funcionamento do estômago. 

Para mais detalhes, consultar o Capitulo 1. 

- Análise filogenética 

Com o intuito de elaborar a análise morfológica foi criada uma matriz 

contendo 61 táxons + 61 caracteres, ambos obtidos por meio de uma extensa 

revisão bibliográfica e também pela reanálise de táxons depositados em 

instituições de pesquisa ao redor do mundo. O teste cladístico foi elaborado a 

partir de uma análise de implied weigth parcimony, com diferentes valores de K, 

baseado em metodologia previamente usada por Mirande (2009) e Guadanucci 

(2009) utilizando-se do programa TNT (Goloboff et al. 2008). Os índices de 

consistência (CI) e de retenção (RI) foram efetuados no programa WINCLADA 
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1.00.08, assim como a otimização dos caracteres e edição das árvores (Nixon 

2002). Os índices de suporte de ramos (Bremmer support) também foram 

devidamente fornecidos (Goloboff & Farris 2001). Para mais detalhes, consultar 

o Capítulo 2. 

- Microtomografia de raios-x: especificações e contraste 

Imagens tomográficas de algumas espécies de Anomalodesmata foram 

adquiridas por meio de dois diferentes modelos de microtomógrafos (µCT) - 

SkyScan 1272 e 1172 (Bruker MicroCT, Kontich, Bélgica) - através de duas 

importantes parcerias: LNNano (Brazilian Nanotechnology National Laboratory) 

e Harvard University. Durante a aquisição de imagens, com o intuito de 

estabelecer uma comparação entre os protocolos de contraste e tempo de 

aquisição, foram selecionados espécimes recém coletados e espécimes 

depositados em Museus. Para os recém coletados, os espécimes foram 

previamente anestesiados (Mentol) e fixados em glutaraldeído; posteriormente 

imersos em solução de contraste (ácido fosfotungstico + DMSO) durante 3 dias 

e então levados ao Micro-CT; já para os espécimes depositados em museus, 

geralmente preservados em álcool 70%, o tempo em solução de contraste 

variou entre 10 e 35 dias. De maneira geral os parâmetros utilizados durante a 

aquisição das imagens foram: voltagem= 30 Kv; corrente= 140µA; tempo de 

exposição= 1,699ms; média de frames= 3-10; filtro de alumínio= sim 0,5mm; 

rotação 360º= não; escala da imagem em pixel= 1,5 a 6 µm; flat field correction 

= ativado; câmera binning= 2x2; tempo de aquisição= 2 a 6 horas. 

Reconstruções tridimensionais dessas espécies foram elaboradas por meio dos 

programas NRecon 1.6.8.0 e CTvox 2.4.0 Bruker, Bélgica. Imagens 

tomográficas em cortes transversais e sagitais também foram analisadas por 
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meio do programa DataViewer 1.4.4.0, Bruker, Bélgica. Para mais detalhes, 

consultar o Capítulo 3. 

- Visitas às coleções malacológicas  

Embora muitos lotes de Anomalodesmata depositados em Instituições 

nacionais tenham sido analisados e fotografados, a maior parte das análises e 

dados morfológicos foram obtidos por meio do acesso a espécimes depositados 

em Instituições estrangeiras, como por exemplo, o Museum of Comparative 

Zoology - Harvard University (MCZ), e o Smithsoniam Institution (USNM), devido 

a maior representatividade do grupo nesses locais. Com o intuito de revisar e 

codificar novos caracteres morfológicos, assim como elaborar a revisão 

taxonômica de alguns gêneros, foi priorizada inicialmente a análise de lotes das 

séries tipo (holótipos e parátipos), além daqueles contendo tecidos internos em 

um bom estado de preservação. Utilizando-se de microscopia de luz e 

microtomografia de raios-x novos registros da concha e partes moles foram 

elaborados, complementando o conhecimento do grupo e consequentemente 

revisando a identificação de algumas espécies. Detalhes sobre as instituições 

visitadas, quantidade de lotes e voucher numbers, consultar o Capítulo 2.   

 

RESULTADOS 

A presente Tese optou por apresentar todos os resultados e discussões 

em formato de manuscritos, previamente redigidos em língua inglesa. Portanto, 

cada capítulo corresponde a um manuscrito, sendo os dois primeiros já 

publicados e/ou submetidos.  
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CAPÍTULO 1 

Functional morphology of Cardiomya cleryana (d’Orbigny, 

1842) (Bivalvia: Anomalodesmata: Cuspidariidae) from 

Brazilian waters: new insights into the lifestyle of carnivorous 

bivalves 

FABRIZIO MARCONDES MACHADO, BRIAN MORTON & FLÁVIO DIAS PASSOS 

[Published by the Journal of the Marine Biological Association of the United Kingdom, 2017, 97: 

447–462] 

 

Abstract 

Of the more than 800 Recent species of Anomalodesmata only 16 have been studied alive. 

The Septibranchia, comprising a number of carnivorous bivalve superfamilies, are no 

exception to this generalisation and, until recently, no living member of this group has 

been studied since the 1980's. Collected from the shallow, shelf, seabed off Brazil, 

Cardiomya cleryana is one of only a few species to have its morphology described in 

recent years and the first ever anomalodesmatan to be filmed alive. Important anatomical 

features such as a greatly extensible foot to secure itself in the sediment with a single 

byssal thread, exhalant siphon inter-tentacular projections and micro-papillae on the 

surface of the siphonal tentacles are described. Observations on the species’ behaviour 

have revealed a lifestyle hitherto not recorded for any septibranch, indeed any 

anomalodesmatan. The anchoring mechanism of C. cleryana using an extraordinarily 

long byssal thread is described for the first time. The life position of C. cleryana is at 45° 

to the sediment-water interface whereas other cuspidariids have been considered to 

orient themselves vertically. An anatomical comparison between Cardiomya and 

Bathyneaera has revealed close affinities. This study thus provides new insights into the 

morphology and behaviour of the Cuspidariidae. 

 

INTRODUCTION 

The Anomalodesmata Dall, 1889 is the richest subclass of marine bivalves in 

terms of the variety of life habits expressed and the most specialized and often bizarre 
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species. Their living representatives are typically rare, since many occur in deeper waters 

while others are restricted to highly specialized niches (Morton 1985a; Morton et al. 

2015a; Harper et al. 2000; Allen 2008). Long considered a monophyletic group, the 

anomalodesmatans are currently placed within the basal Imparidentia (Bieler et al. 2014) 

and encompass ten superfamilies, with eight occurring in the Recent fauna, that is, the 

Clavagelloidea d’Orbigny, 1844, Myochamoidea P.P. Carpenter, 1861, Pandoroidea 

Rafinesque, 1815, Pholadomyoidea King, 1844, Thracioidea Stoliczka, 1870, 

Cuspidarioidea Dall, 1970, Poromyoidea Dall, 1886, Verticordioidea Stoliczka, 1870, 

and two extinct groups - the Ceratomyoidea Arkell, 1844 and Edmondioidea King, 1850 

(Runnegar 1974; Bieler et al. 2010; Morton 1981a, 2012).  

Among the estimated more than 800 Recent species of Anomalodesmata (Gofas 

2015), few have been studied alive and, as a consequence, most of the available 

information pertaining to their functional morphology and behaviour (lifestyle) is mainly 

based on preserved specimens highlighted mostly in the works of Morton (1973, 1980, 

1982, 1984a, b, 2002a, 2003, 2005, 2006, 2012, 2015) and Morton et al. (2015a, b). 

Living individuals of only eight families (16 species) of Anomalodesmata have been 

studied, that is, the Cuspidariidae - Cuspidaria cuspidata (Olivi, 1792), Cuspidaria 

rostrata (Spengler, 1793), Cuspidaria obesa (Lóven, 1846) and Cardiomya planetica 

(Dall, 1908) (Yonge 1980; Allen & Morgan 1981; Reid & Reid 1974; Reid & Crosby 

1980); Penicillidae – Brechites (=Verpa) penis (Linnaeus, 1758), Brechites vaginiferus 

(Lamarck, 1818) and Foegia novaezelandiae (Bruguière, 1789) (Purchon 1955, 1960; 

Morton 2002b, 2004); Lyonsiiidae - Lyonsia californica Conrad, 1837, Entodesma 

navicula (A. Adams & Reeve, 1850) new comb. of E. saxicola and Mytilimeria nuttalli 

Conrad, 1837 (Narchi 1968; Yonge 1952); Myochamidae - Myadora striata (Quoy & 

Gaimard, 1835) (Morton 1977); Periplomatidae- Offadesma angasi (Crosse & P. Fischer, 

1864) (Morton 1981a); Poromyidae - Poromya granulata (Nyst & Westendorp, 1839) 

(Morton 1981b); Pandoridae - Pandora filosa (Carpenter, 1864) (Thomas 1994) and 

Frenamya ceylanica (G.B. Sowerby I, 1835) (Morton 1984c); and Thraciidae - 

Trigonothracia jinxingae Xu, 1980 and Thracia meridionalis E. A. Smith, 1885 (Morton 

1995; Sartori & Domaneschi 2005). Among these, only the Cuspidariidae and 

Poromyidae have carnivorous representatives. 

According to Bieler et al. (2010), the carnivorous bivalves (clade Septibranchia) 

are currently represented by three superfamilies: the Cuspidarioidea, Verticordioidea and 



 

 
 

25 

Poromyoidea. Typically, but not wholly, these carnivorous bivalves are characterized by 

the presence of a muscular septum which functions in prey capture. Of these 

superfamilies, the Cuspidarioidea has the most representatives with about 300 species 

distributed in four families: the Cuspidariidae Dall, 1886, Halonymphidae Scarlato & 

Starobogatov, 1983, Protocuspidariidae Scarlato & Starobogatov, 1983 and 

Spheniopsidae J. Gardner, 1928 newly allocated by Morton et al. (2015a). 

The Cuspidariidae stands out among the Anomalodesmata in comprising about 

32% (~260 spp) of all the species described (Gofas & Bouchet 2015). Commonly 

occurring in deep and abyssal waters, the family is composed exclusively of carnivorous 

bivalves, which have wide geographic distributions and can generally be identified by the 

presence of a posteriorly rostrate shell (Allen 2008, 2011; Mikkelsen & Bieler 2008; Coan 

& Valentich-Scott 2012). Despite showing great diversity in terms of anatomical 

characters, the cuspidariids generally have a muscular septum pierced by pores, sensory 

siphonal tentacles and a stomach of Type II (Yonge 1928; Purchon 1956; Allen & Morgan 

1981; Krylova 1993; Poutiers & Bernard 1995). According to Gofas & Bouchet (2015), 

the Cuspidariidae is represented today by 18 living genera. Of these, eleven genera and 

100 species have been recorded from the Atlantic Ocean while from Brazilian waters 

representatives of only five genera are known, that is, Cuspidaria Nardo, 1840, 

Cardiomya A. Adams, 1864, Plectodon Carpenter, 1865, Myonera Dall & Smith, 1886, 

and Octoporia Scarlato & Starogobatov, 1983 (Allen & Morgan 1981; Rios 1994, 2001; 

Absalão et al. 2003; Absalão & Pimenta 2005; Absalão & Oliveira 2011; Allen 2011). 

Oliveira & Absalão (2009) also reported three species of Protocuspidaria Allen & 

Morgan, 1981, and included them as cuspidariids, but now this genus is considered in a 

separated family, Protocuspidariidae (Scarlato & Starogobatov, 1983; Krylova, 1995).  

The genus Cardiomya is represented in Brazilian waters by only five species that 

are identified by rostrate shells with radial ribbing. The anatomy of Cardiomya was first 

described by Allen & Morgan (1981) who examined the Atlantic species C. perrostrata 

(Dall, 1881), C. costellata (Deshayes, 1835), C. knudseni Allen & Morgan, 1981 and C. 

curta (Jeffreys, 1876) (= C. cadiziana M. Hubber, 2010) and, more recently, by Morton 

(2015) who described the anatomy of C. costellata. More than three decades after the last 

species of Cuspidariidae were observed alive, individuals of C. cleryana (d’Orbigny, 

1842) have been collected from relatively shallow waters off southeastern Brazil. This 

material has provided not only the first anatomical description of a Brazilian cuspidariid 
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but also allowed for a detailed examination of the functional morphology and behaviour 

of living individuals of this species, providing new insights into the lifestyle of this 

carnivorous family of bivalves. 

MATERIALS AND METHODS 

Living individuals of C. cleryana were obtained from bottom samples collected with a 

rectangular dredge (40 x 80 cm and 90 cm bag length) in waters off southeastern Brazil, 

specifically from the São Sebastião Channel, Araçá Bay (23º 49' 20.1" S; 45º 24' 10.3" 

W), off the northern coast of São Paulo State by the BIOTA-FAPESP Program, between 

October 2012 and December 2014. Hundreds of intertidal and subtidal samples were 

obtained from between 3 to 20 metres depths and sieved using a 0.5 mm mesh. From ten 

of these, samples collected at depths of between 10 to 20 metres, five empty shells and 

33 living individuals of C. cleryana were obtained. Of these, the most active individuals 

were selected for behavioural observations. To do this, aquaria were filled to a depth of 

15 cm with the ambient sediment (fine sand and gravel) from the collection station and 

then filled with seawater. Ten individuals were photographed and observed for about two 

hours. Some were also videotaped. Behaviours, such as the digging process, digging 

depth and siphonal movements were recorded. Other individuals were anaesthetized with 

menthol and magnesium chloride and dissected to remove the mantle, foot and adductor 

muscles (for future molecular analysis) and male gonads (for future TEM analysis). Other 

individuals were selected for SEM examination of the shells and internal tissues. For 

histological purposes, the most relaxed individuals were decalcified in a solution of 100 

ml distilled water containing 0.89 g of NaCl and 1.02 g of ascorbic acid and embedded in 

Historesin® in order to obtain serial transverse and sagittal sections of between 3-5 µm 

thick. All specimens, SEM stubs and histological slides are deposited in the Museum of 

Zoology “Prof. Adão José Cardoso” of the University of Campinas (ZUEC), with the 

following accession numbers: ZUEC-BIV 5119 to 5141. 

 

RESULTS                                           

SYSTEMATICS 

Order ANOMALODESMATA Dall, 1889 

Superfamily CUSPIDARIOIDEA Dall, 1886 

Family CUSPIDARIIDAE Dall, 1886 

Genus Cardiomya A. Adams, 1864 

Cardiomya cleryana (d’Orbigny, 1846) 
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(Figures 1-10) 

 

Cardiomya A. Adams, 1864 

Cardiomya has an inflated globular to ovate shell, with an elongated rostrum. The 

sculpture is of strong radial ribs posteriorly and commarginal striae. Right valve with a 

posterior lateral tooth, which may be obsolete; left valve edentate. Resilifer shallow to 

deep, sub-vertical. Muscular septum with four pairs of pores and small lateral septal 

muscles attached close to the anterior end of the posterior siphonal retractor muscles 

(Poutiers & Bernard 1995; Coan et al. 2000; Coan & Valentich-Scott 2012). 

Original description 

Sphène de Cléry (Homage to Mr. Cléry) or Sphena cleryana d’Orbigny, 1845: 572, pl. 

LXXXIII, figs 16-18 or in d’Orbigny 1853: 285. 

 

Synonymy 

Sphena cleryana d’Orbigny, 1846; Cuspidaria simillima E.A. Smith, 1915; Cuspidaria 

(Cardiomya) simillima E.A. Smith, 1915.  

Type locality 

Cape St. Thomé Peninsula, Campos dos Goytakazes - off Rio de Janeiro State, Brazil 

from 80 metres depth.  

 

Conchological remarks 

According to Gofas & Bouchet (2015), 53 recent species constitute the genus Cardiomya. 

Of these, the Pacific C. lanieri (Strong & Hertlein, 1937), C. gouldiana (Hinds, 1843) 

and C. pectinata (P.P. Carpenter, 1864) most resemble C. cleryana particularly in terms 

of the outline and arrangement of the radial ribs. Although similar, however, some 

significant conchological differences can be identified, for example, the presence of two 

sharp and widely-spaced radial ribs in the posterior portion of the disk of C. lanieri; the 

presence of regular commarginal lirae between all the ribs and a reduced rostrum in C. 

gouldiana and the undifferentiated shape of the ribs in C. pectinata (Poutiers & Bernard 

1995, figures 59, 60; Coan & Valentich- Scott 2012, plate 318; Coan et al. 2000, plate 

120).  

Only seven species of Cardiomya are known to occur in the Western Atlantic 

Ocean. Of these, according to Rios (1994, 2009) and Absalão & Pimenta (2005), but five 
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species occur in Brazilian waters. These are: C. cleryana, C. ornatissima (d’Orbigny, 

1853), C. perrostrata (Dall, 1881), C. striata (Jeffreys, 1876) and C. surinamensis van 

Regteren Altena, 1871. Among the possible Brazilian species, C. ornatissima is different 

from the others in having prominent radial ribs with broad interspaces, resembling C. 

costata (G.B. Sowerby I, 1834), which occurs from Baja California to Ecuador, and C. 

glypta Bush, 1898, which occurs off French Guiana. Both of these taxa are illustrated by 

Coan & Valentich-Scott (2012, plate 317) and Massemin et al. (2009, p. 349), 

respectively. No other Brazilian records have been identified with regard to C. striata and 

C. surinamensis other than Rios (1994, figure 1486; 2009, figure 1681) and Absalão & 

Pimenta (2005, figure 135), respectively; and though similar to C. cleryana in the number 

of ribs, C. surinamensis has an oval shape and a much reduced rostrum (Altena 1971, 

figure 3).  

Cardiomya cleryana and C. perrostrata are the most well known taxa from 

Brazilian waters and are similar to each other and easily confused. After analyzing 

photographs of museum lots (NMR- Natuurhistorisch Museum, Rotterdam, Holland; 

ZUEC- Museum of Zoology “Prof. Adão José Cardoso” of the University of Campinas, 

Brazil; USNM - United States National Museum, Smithsonian Institution, USA) 

containing shells of different sizes of these two species this paper describes and illustrates 

some characteristics that help in their differentiation. It is also worth noting that there are 

no significant differences between their hinge plates. We, therefore, highlight four 

distinctive shell characters that separate them: the contours of the posterior-anterior dorsal 

margin, the shape of the rostrum, the presence or absence of a rostral rib and the position 

of the umbones. Individuals of C. perrostrata are on average smaller than congenerics 

(2.4 to 7.3 mm in shell length) and have a straight and continuous postero-dorsal shell 

margin (pdm), confluent with the rostrum (r); a straight antero-dorsal margin (adm) 

forming a small shoulder more obvious in larger individuals; a straight, thick and slightly 

upwardly pointing rostrum with one diagonal rostral ridge (rr) on the surface and umbones 

(u) small, low and positioned more medially (Figure 1A, B). Cardiomya perrostrata is, 

therefore, different from C. cleryana (4.5 to 11.8 mm in shell length), which has rounded 

anterior and slightly concave posterior dorsal shell margins, a thin, slightly recurved, 

rostrum and more prominent umbones slightly displaced towards the posterior (Figure 

1C, D).  
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Fig. 1. Comparison between the shells of Cardiomya perrostrata and Cardiomya cleryana. (A, 

B) outer view of right valve of two specimens of C. perrostrata, with straight dorsal margins, 

umbones smaller and low with a straighter, thicker and slightly pointed up rostrum; (A) a 

specimen with ~2.4 mm in length - USNM 832408; (B) a specimen with ~7.3 mm in length – 

ZUEC-BIV 5130. (C, D) outer view of right valve of two specimens of C. cleryana, showing the 

contour of dorsal margins, umbones more prominent with rostrum thinner and slightly recurved. 

(C) a specimen with ~6.3 mm in length – ZUEC-BIV 5133; (D) a specimen with ~11.7 mm in 

length – ZUEC-BIV 2218. (See the list of abbreviations). Scale bars: A-D, 1mm. 

 

BIOLOGY AND BEHAVIOUR 

Distribution 

Rio de Janeiro to Tierra del Fuego and the Falklands Islands (Carcelles &Williamson 

1950; Rios 1994, 2009; Scarabino 2003). Specifically with regard to Brazil: Bahia de 

Paranaguá (25°30’S; 48°30’ W), Paraná State (Boehs et al. 2004); Ilha Grande Bay 

(44°45’W; 23° 20’S), Angra dos Reis, Rio de Janeiro State (Grillo et al. 1998); Channel 

of São Sebastião, Ponta do Guaecá (23°50’S, 45°27’W) to Baía do Araçá (23°48’S, 

45°24’W), 5-10 m, São Paulo State (Migotto et al. 1993). This species was also originally 

reported upon from Jamaica, Cuba, St. Thomas, Guadalupe (d’Orbigny, 1846). 
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The living animal 

Siphonal movements 

Ten living individuals of C. cleryana were observed in relation to their siphonal 

movements and five of these also had these filmed with high-resolution cameras 

providing the first such record of a carnivorous bivalve. This tool was important for the 

interpretation of the complex movements exhibited by the siphons. The siphons of C. 

cleryana are sensitive to vibrations in the water column and these and other mechanical 

disturbances caused their rapid retraction within the rostrum. When they re-emerged, the 

seven sensory tentacles and the two sets of exhalant inter-tentacular projections were also 

extended. In living individuals also it was possible to see the colour of the siphonal sheath, 

which was also extended from the posterior margins of the rostrum. Even though buried 

at 45° to the sediment-water interface, the siphons of C. cleryana are always extended in 

a near-vertical position.  

Three sequential siphonal movements undertaken by C. cleryana were observed: 

(i) water circulation, (ii) cleaning and (iii) feeding. 

(i) The circulation of water into and out of the mantle cavity of C. cleryana was 

characterized by the simultaneous extrusion of the inhalant and exhalant siphons, 

creating currents that circulate through the infra- and supra-septal chambers via 

the septal pores. This movement was not constant, occurring at intervals of 

between 5-10 seconds and was synchronized with movements of the muscular 

septum that creates these currents. When the exhalant siphon was extended its 

length was greater than that of the inhalant whereas the latter had a much wider 

aperture. It is noteworthy that relaxation of the septum resulted in the retraction 

of the exhalant siphon, the two sets of inter-tentacular projections thereby closing 

the exhalant opening. The projections resemble two small opercula that open and 

close according to the status of the exhalant siphon. This movement possibly 

assists in the oxygenation of tissues and removes faeces and other nitrogenous 

wastes. 

(ii) A cleaning action was observed during the digging process of C. cleryana and 

appears to be associated mainly with removing sediment and pseudofaeces 

accumulated in the infra-septal chamber. This movement was performed 

exclusively by the inhalant siphon and lasted for but 1-2 seconds. It resulted in the 
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extension of the inhalant siphon while simultaneously reducing its diameter, 

creating a more elongate but narrower tube. The simultaneous depression of the 

septum increases the pressure in the infra-septal chamber creating this action and 

which in conjunction with valve closure results in sediment and/or pseudofaeces 

being ejected from the inhalant siphon thereby cleaning the infraseptal chamber. 

Throughout a digging cycle this movement was repeated two to three times. 

(iii) Feeding is uniquely associated with prey capture in C. cleryana and was more 

difficult to observe, because it was typically confused with water circulation 

movements. Feeding was only observed in completely buried individuals and it 

was thus not possible to observe the associated movements of the muscular 

septum. During feeding, however, the aperture of the inhalant siphon was 

narrowed and pointed towards potential prey, capturing it by means of the 

dramatic extension and opening of the siphonal aperture, as described and 

illustrated for C. planetica by Reid and Crosby (1980, figure 1).  

 

The digging and re-burial process  

Cardiomya cleryana naturally occurs in a sediment characterized by a mix of fine sand 

and gravel. A change in the type of sediment appears to affect the ability to dig in this 

species. After being collected, ten individuals of C. cleryana were kept in aquaria without 

sediment but with running seawater for 30 minutes. The most active individuals of these 

were then placed in Petri dishes with a thick bed of sediment. Some individuals were 

filmed. During these observations, three combinations of sediment were offered, that is, 

fine sand + gravel (original combination), gravel only and fine sand only. When exposed 

to the original sediment (fine sand + gravel) most individuals buried themselves with in 

6-7 minutes. In gravel, no individuals buried themselves whereas in fine sand most re-

buried within 2-4 minutes. No significant differences were observed either between adults 

and young individuals or between males and females. All the observed individuals 

behaved in the same way during the re-burial process. The digging sequence can be 

divided into three parts: (i) recognition of sediment type, (ii) pedal digging movements, 

and (iii) final positioning in the sediment as follows (see video in 

https://www.researchgate.net/publication/301697915_Behaviour_movie_Cardiomya_cl

eryana_Bivalvia_Septibranchia_Anomalodesmata).  
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(i) When placed on the sediment, the foot of each individual was extended from the 

pedal gape to touch the sediment and was then retracted immediately into the infra-septal 

chamber bringing with it some of the particles. Possibly, this helps the bivalve to evaluate 

grain size and thus its resistance to re-burial. The same movement could be repeated 

several (2-20) times and may or may not result in re-burial. When exposed to fine sand, 

the individual’s foot made similar movements but digging movements commenced 

immediately. 

(ii) When digging commenced, the foot penetrated the sediment and initially turned 

an individual onto its side. As the foot began the re-burial process, contraction of the 

pedal retractor muscles straightened the shell so that the ventral margin was in contact 

with the sediment surface. From this point onwards, the foot began to burrow deeper and 

deeper and the pedal retractor muscles interracted with movements of the septum to 

complete the re-burial process in a series of downward oriented jerky movements. These 

intermittent movements were not continuous but occurred at intervals of about 2-3 

seconds. The direction of the excavation was always the same for all individuals, that is, 

the anterior region was buried first and, then, in a series of antero-posterior rocking 

movements, the shell was eventually positioned at 45° to the sediment surface. 

Cardiomya cleryana continued the re-bural process until only about 1/3 of the rostrum 

was exposed above the sediment surface. This region of the shell and siphonal sheath is 

camouflaged within the sediment by the adhesion of sand grains to it using arenophilic 

gland secretions. 

(iii) After removing each of the individuals carefully from the sediment, it was clear 

that they were all buried at an angle of approximately 45° (Figure 2), different to the 

vertical position (90°) observed by Yonge (1928) for Cuspidaria obesa and Cuspidaria 

cuspidata and for Cuspidaria rostrata by Reid & Reid (1974) and as generally postulated 

by Morton (1987, figure 13) for species of Cardiomya and Cuspidaria. In addition to 

observing position in the sediment, burial depth was measured and this was shown to 

approximate individual shell length. 
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Fig. 2. Cardiomya cleryana. 

An adult individual in its life 

position in the sediment. 

 

ANATOMY 

The shell 

Shell small (length: 4.5–

11.7 mm; height: 3-6 mm; 

width: 2.3–5.1 mm), 

elongate, pear-shaped, 

inequilateral, slightly 

inequivalve, rostrate, inflated (Figure 3A-C); shell valves thin, whitish to somewhat 

transparent; left valve (lv) larger than the right (rv) and overlapping it ventrally (Figure 

3A). Rostrum (r) moderately narrow (~800-1,100 µm), long (~1/2 the length of the shell), 

slightly recurved, subtruncate (Figure 3A-C); with sinuous radial lines (rl) on the external 

surface (Figure 3B, D). Umbones prominent and slightly displaced to the posterior. 

Prodissoconch I (pr I) small (~130 µm in length), circular and smooth; limits of 

prodissoconch II not visible (Figure 3H). Antero-dorsal shell margin small, rounded, 

merging with the umbones and confluent with the anterior margin; posterodorsal shell 

margin larger than the anterior, straight to slightly concave, confluent with the posterior 

margin and merging with the rostrum (Figure 3F, G). In some individuals the anterior 

dorsal margin may be slightly prominent and convex (Figure 3B, F, G). Lunule and 

escutcheon absent. Periostracum thin, adherent and translucent white to light brown 

(Figure 3A). External surface of the valves with fine commarginal striae, stronger 

ventrally; main body of the shell or disk (dk) characterised by 13-20 complete radial ribs 

which extend from close to the umbones of each valve to the ventral margin; anterior 

slope with 10-15 fine and narrow radial ribs (fr); posterior portion with 3-5 heavy radial 

ribs (hr) with short interspaces, sometimes with fine radial ribs (Figure 3A-C). Micropits 

(mp) present but restricted to around prodissoconch I, only visible with SEM (Figure 3E). 

Inner surface whitish and smooth, anterior slope and ventral margin with crenulations 

corresponding in position with the external ribs. Hinge plate very narrow. Right valve 

with only one strong, moderately short, posterior lateral tooth (lt) (Figure 3F, H); left 

valve edentulous (Figure 3G). Amphidetic ligament (li) fibrous (fp) and with a calcified 
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lithodesma (lit), deeply located on a subtriangular resilifer (re) placed directly below the 

umbones (Figure 3I, J). Anterior adductor muscle scar (aam) elongate, barely visible; 

posterior adductor muscle scar (ppm) more rounded than the anterior, deep and well 

marked (Figure 3F-H). Pallial line entire and not visible, even with SEM. 

 

 

Fig. 3. Cardiomya cleryana, details of shell. (A) photomicrograph of a living specimen (right 

view) with the limits of disk and rostrum, showing the overlap between the valves – ZUEC-BIV 

5132; (B-J) SEM views – ZUEC-BIV 5119, 5120; (B) external view of the left valve, showing 

the disk decorated with fine and heavy radial ribs and the rostrum with fine radial lines; (C) dorsal 

view; (D) higher magnification of rostrum with radial lines; (E) magnification of dissoconch, near 

its limits with the prodissoconch, showing micropits; (F) inner view of right valve, showing the 
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posterior lateral tooth and the adductor muscle scars; (G) inner view of left valve, with ligament 

bellow the umbo; (H) magnification of the right hinge plate, showing the prodissoconch I, 

posterior lateral tooth and adductor muscle scar; (I) ligament, with its calcified (lithodesma) and 

fibrous parts; (J) resilifer with a part of the ligament. (See the list of abbreviations). Scale bars: 

A-C, F, G, 1mm; D, H, I, J, 100 µm; E, 10 µm.  

The siphons 

Posteriorly, the siphonal apparatus (sa) comprises two siphons, inhalant (is) and exhalant 

(es), surrounded by small sensory tentacles and encased in a thick and muscular siphonal 

sheath (ss) (Figure 4A, B & D). The siphons are formed by fusion of the inner folds and 

inner surfaces of the middle mantle folds (type B of Yonge 1957) and are separate. This 

separation occurs by means of a specific structure, the inter-siphonal septum, a delicate 

posterior extension of the muscular septum. This same extension also forms the sphincter 

at the base of the inhalant siphon, which is dorsally attached to the posterior septal 

retractor muscle. The inhalant sphincter is important in regulating the water flow and 

input of prey into the infra-septal chamber. In anesthetized individuals, the sphincter 

measures ~570 µm in length and 340 µm in diameter.  

The siphons are supported by a set of muscle bundles, peripherally traversing the 

entire length of the siphonal apparatus and terminating near the posterior septal muscle 

as the siphonal retractor muscles. The inhalant siphon is large and possesses four finger-

shaped sensory tentacles (it) arising from its ventral and lateral base. The exhalant siphon 

is about one third smaller in diameter than the inhalant, with three tentacles arising from 

its latero-dorsal base. Also identified are two projections attached to the free edge 

between the exhalant siphonal tentacles (et). These inter-tentacular projections (ip) are 

formed by three small papillae resembling siphonal tentacles still in the process of 

formation (Figure 4B, C, D). Similar structures have been observed previously in some 

species of Bathyneaera (Cuspidariidae) (Krylova 1993).  

Using SEM, the opening at the tip (to) of each siphonal tentacles comprises a pit 

containg a bundle of cilia (ci) (Figure 4F). The seven siphonal tentacles are similar in 

shape and size and measure about 100 µm in length. In living individuals, the tentacles 

are pigmented with small white spots. Using SEM, it is possible to observe the presence 

of micro-papillae (tp) on the external surfaces of the siphonal tentacles these being larger 

and more prominent on the lateral and ventral faces (Figure 4E). Such micro-papillae 

were not observed on the surfaces of the inter-tentacular projections.  
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In cross section, the siphons are formed by five tissue layers: (i) an outer 

epithelium characterized by the presence of cylindrical cells; (ii) an arenophilic layer with 

numerous arenophilic glands; (iii) a layer of circular muscles; (iv) an innermost layer of 

longitudinal muscles overlying; and (v) the internal squamous epithelium. The arenohilic 

glands (ag) characterized by a core (cg) and a duct (gd) that in living individuals extends 

outwards forming a small U-shaped papilla (Figure 4G, H). In fixed individuals these 

glandular papillae and their ducts are inverted (Oliveira & Sartori 2013, figure 3). Using 

SEM, the glandular papillae can be observed easily on the surface of the siphons and are 

cylindrical in shape sometimes with a constriction apically (Figure 4E). 

The siphonal sheath that surrounds the siphons is a tubular extension of the outer 

fold of left and right mantle lobes that extend from the posterior end of the septum into 

the rostrum. In living individuals, the most posterior portion of the sheath is pigmented 

with small white spots as in the inhalant siphon and its tentacles. Anteriorly, the sheath is 

light reddish pigmented.  

 

The mantle 

The mantle of Cardiomya cleryana is thin, transparent and formed by three marginal folds 

(inner, middle and outer), which are antero-ventrally unfused forming a large pedal gape 

occupying approximately one-third the length of the ventral margin. A single mantle 

fusion occurs in the middle of the ventral margin and is formed by union of the inner folds 

and the inner surfaces of the middle folds, that is, type B fusion of Yonge (1948, 1982). 

Ciliated rejection tracts were not observed here. Except for the pedal gape, therefore, there 

are no unfused mantle areas, that is, there is no 4th pallial aperture, as in some 

anomalodesmatans (Morton 1981c).  

A more detailed cross-section of the ventral mantle margin of Cardiomya cleryana 

is illustrated in Figure 5. Here, each lobe comprises an elongated inner fold (imf), a 

reduced middle fold (mmf) and a large outer fold (omf) – the latter containing a large 

haemocoelic space (ha). From the periostracal groove (pg) between the latter two folds 

arises an exceedingly thin periostracum (p). A well developed pallial retractor muscle 

(prm) is present and connects the mantle margin with the shell. Two different glandular 

regions are present in the ventral mantle margin along the entire length of the pedal gape. 

The first, mantle margin gland I (mmg I), is located dorsally and parallels the fibres of 

the pallial retractor musculature. Well developed, this gland stains dark blue and is thus 

basophilic. The second region, mantle margin gland II (mmg II) stains light blue and is 
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located internally between inner and middle mantle folds. Both glands may be mucus 

secreting. In life, a large amount of mucus was observed around the region of the pedal 

gape during the re-burrowing process and may prevent sediment entering the infra-septal 

chamber via this large aperture. 

 

 

Fig. 4. Cardiomya cleryana, details of anatomy. (A) photomicrograph of a living specimen with 

the siphons protruded; (B) magnification of siphons, showing the seven siphonal tentacles (4 in 

the inhalant and 3 in the exhalant) and one set of inter-tentacular projections between the exhalant 

siphonal tentacles. (C-F) SEM views of siphons – ZUEC-BIV 5123, 5124. (C) an exhalant inter-
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tentacular projection, formed by three small papillae; (D) frontal view of the siphonal apparatus 

with inhalant and exhalant siphons, showing the siphonal sheath; (E) siphonal tentacle, with 

micro-papillae in the surface and glandular papillae in the surface of siphons; (F) apical ciliated 

tip, showing cilia inside. (G-H) histological sections – ZUEC-BIV 5139. (G) transverse section 

of siphons, showing the arenophilic glands; (H) sagittal section of arenophilic layer, showing the 

glandular papillae, duct and core; (I) dissected specimen – ZUEC-BIV 5127, showing the septum 

with four pairs of pores, mouth and septal pedal opening; (J) higher magnification of one septal 

pore, with internal ring of cilia. (See the list of abbreviations). Scale bars: A, 1 mm; B, 200 µm; 

C, 30 µm; D, J, 100 µm; E, F, 10 µm; G, 200 µm; H, 50 µm; I, 500 µm.   

 

Fig. 5. Cardiomya cleryana. 

Transverse section through right 

mantle margin. (See the list of 

abbreviations). 

 

The septum 

A horizontal septum (se) is 

present in Cardiomya cleryana 

dividing the mantle cavity into 

infra and supraseptal chambers. 

The infraseptal chamber is 

capacious (Figure 6). The septum 

is long and wide, ~2.5 to 3.5 mm 

in length and 400-750 µm in width, and comprises longitudinal muscle bands. It is 

suspended in the mantle cavity by robust posterior and anterior septal retractor muscles 

(psm/asm) that are attached to the shell valves just above their respective adductor 

muscles and lie close to the minute pedal retractor muscles (pprm/arpm) (Figure 6). A 

pair of narrow inner longitudinal septal muscles are also present lateral to the pores and 

septal pedal gape (spg), and attach close to the anterior septal retractor muscle (Figure 6). 

Lateral septal retractor muscles are also present being more concentrated posteriorly. This 

lateral septal retractor musculature is formed by finely separated bundles of delicate 

muscles that extend tangentially from the posterior septal retractor muscles and to the left 

and right shell valves dorsal to the visceral mass.  
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In Cardiomya cleryana there is also an extra lateral septal retractor muscle 

attached close to the anterior end of the siphonal retractor muscles, as reported for some 

species of Cardiomya, Cuspidaria and Myonera by Allen & Morgan (1981) and Morton 

2015). Left and right halves of the septum are united by the septal membrane (sm), which 

separates anteriorly to create the siphonal gape (~1.5 mm in length) through which the 

foot can protrude. Unlike in Grippina coronata Machado & Passos, 2015 (Spheniopsidae) 

(Morton et al. 2015) no cilia were observed along the margin of this membrane. The 

septum is perforated ventrally by four pairs of pores (sep 1-4) more or less equally spaced 

and measuring about 250 µm in diameter (Figure 4I). Inside these pores are small internal 

lips (100-150 µm) similar to those observed in Cuspidaria parva Verril & Bush, 1898 by 

Allen & Morgan (1981, figure 17). These lightly muscular lips are ciliated dorsally 

forming a ring. A ring of such cilia (ci) is illustrated in Figure 4J. 

 

 

Fig. 6. Cardiomya cleryana. An adult individual as seen from the right side, with the right shell 

valve and mantle lobe removed to illustrate the organs of the mantle cavity and visceral mass. 

(See the list of abbreviations). 

The foot and byssus 

The visceral mass is situated above the septum and is continuous with an anterior foot 

that extends through a septal gape in the septum anteriorly and can also be extended 

outwards from the similarly anterior pedal gape (pga) in the mantle margin (mm) to effect 

burrowing. The foot (f) is large and during the digging process can reach a length that 

almost equals the length of the shell. On average, living individuals each had a foot about 
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4-5 mm in length (Figures 7E). In fixed individuals, the foot is contracted (0.5–1.5 mm), 

anteriorly pointed with a narrow sole and a defined heel. In SEM, cilia can be seen to 

cover the ventral surface of the foot. Ventrally too, the sole has a deep pedal groove (peg) 

extending from the end of the heel to almost the tip of the foot (Figure 7F, G). No cilia 

occur on the dorsal surface of the foot.  

The foot of Cardiomya cleryana is invaded by two pairs of pedal retractor 

muscles. These are a shorter anterior pair attached to the shell valves above the anterior 

adductor muscle. The posterior pedal retractor muscles are long, bifurcated at two points, 

and attach to the shell close to the posterior adductor muscle. The first bifurcation occurs 

in the middle region of the muscles fusing with the visceral mass. The second bifurcation 

occurs before the attachment to the shell valves, creating two small insertion points. A 

pair of short, fine, muscle bundles from the visceral mass usually attach to the gonads and 

merge with the posterior pedal retractor muscles just above the first bifurcation.  

Internally, through sagittal and parasagittal sections it is possible to see the byssal 

gland (bg) that is formed by two glandular regions. The first of these is larger (bg I), wide 

and well developed throughout the length of the foot. The second is smaller (bg II) and 

restricted to the anterior region, close to the tip of the foot (Figure 7H). Posteriorly, the 

developed glandular region (bg I) opens via about seventeen small ducts which converge 

and secrete a single long byssal thread (bt) (Figure 7H). In almost all individuals such a 

transparent thread was apparent and which in some could measure up to 20 mm in length, 

that is, three to four times the length of shell (Figures 6, 8 & 9C). This long byssal thread 

demonstrates that the foot must extend to an equal length so that it can plant it within the 

sediment (Figure 8) thereby securely anchoring each individual. During planting of the 

thread, the foot also twists to facilitate the necessary sediment probing action (Figure 8, f 

(tw)). 

 

The alimentary system 

The alimentary system of C. cleryana, as seen from the right side, is illustrated in Figure 

6. Anteriorly, the septum ends at a large mouth (m) (~800 µm in diameter), which, in 

turn, has lateral muscular extensions forming the walls of the buccal funnel (Figures 9A 

& B). Small labial palps are present. The anterior palps (ap) are narrow, horn-shaped and 

measure ~400 µm in length. The posterior palps (pp) are reduced, flattened (~300 µm in 

length) and are located along the postero-lateral margins of the mouth (Figure 9A, B). 

The palps are ciliated and similar in shape to type I described by Allen & Morgan (1981, 
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figure 7). From the mouth a short, thick and muscular oesophagus (o) (~340 µm in 

diameter) opens into the anterior-dorsal part of the elongated-oval stomach (st) (Figure 

9A, C). The stomach (type II of Purchon, 1956) is large (1.5 to 2.1 mm in length), thick, 

with a well defined posterior extension (pest) and a reduced crystalline style sac (css) 

(Figure 6). Laterally, the stomach is lined by an epithelium that secretes an internal thick 

layer of cuticle, the gastric shield (gs) (Figure 9A). Ventral and antero-ventral portions of 

the stomach are laterally covered by the digestive diverticulae (dd) while the 

posteroventral region is laterally covered by the gonads (g/te) (Figure 9A). The dorsal 

area of the stomach is not covered. In immature individuals, the stomach is surrounded 

by the digestive diverticulae.  

In all individuals of C. cleryana examined, the stomach always contained ingested 

prey (ipi), either whole or partially digested (Figure 9A). In section, the sizes of these 

prey items ranged from 150 to 250 µm in length and most resembled small copepods 

(Crustacea) (Figure 9A). Sorting areas were also observed on the stomach floor. From the 

right side of the stomach floor arises the small crystalline style sac (css) (~350 µm in 

length) and the mid gut (mg), close to each other but separated other than at their origins 

with the stomach (Figures 6 & 9C), similar to C. knudseni (Allen & Morgan 1981, figure 

32). The style-sac of C. cleryana is a short oval-circular cavity (~400 µm in diameter) 

inside which is a cylindrical style (~150-200 µm in diameter) (Figure 6 & 9C). Close to 

the style-sac opening into the stomach are two typhlosoles, one smaller the other larger.  

The mid gut (mg) begins on the right side of the stomach floor, extends ventrally 

from the base of the style-sac and travels dorsally along the border of the right lateral wall 

of the stomach. Here it curves posteriorly and then its lumen expands and eventually gives 

rise to the hind gut (hg) (Figures 6 & 9C). In sagittal section, the mid gut is large and 

contains many skeletal remains of digested prey (ipi) (Figure 9A). Within the visceral 

mass, the digestive diverticulae (dd) are located anterodorsally. In living individuals, the 

rectum (rc), anus (an) and visceral ganglia (vg) are displaced posterior to the posterior 

adductor muscle when the siphons are extended (Figure 6). 

The hind gut (hg) is straight, long and narrow eventually giving rise to the rectum 

(rc). Smaller fragments of prey skeletons occur inside the hind gut. The hind gut 

penetrates the pericardial cavity/heart (pc/h) traversing the ventricle of the heart from 

front to back (Figures 6 & 9A). In living individuals, with siphons extended, the rectum 

and the anus (an) are displaced by about 1 mm from the posterior end of the posterior 
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adductor muscle (Figures 6 & 9D). The anus opens between the visceral ganglia (vg), 

releasing the faeces into the exhalant chamber and siphon.  

 

Fig. 7. Cardiomya cleryana details of anatomy. (A-B) photomicrographs of two living specimens. 

(A) a female, showing pink ovaries; (B) a male with whitish testes; (C) sagittal section in a single 

ovarian follicle, showing the follicular wall, lumen and oocytes in different stages of maturity; 

(D) transverse section of testes, showing spermatogonia, spermatocyte and spermatozoa; (E) 

living specimen with the protruded extensible foot. (F-G) SEM images – ZUEC-BIV 5127. (F) 

ventral view of foot showing the pedal groove; (G) higher magnification of the pedal groove, 
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showing the cilia. (H-I) histological sections of the foot – ZUEC-BIV 5139. (H) sagittal section 

showing dorsally the digestive diverticulae, septum, supraseptal chamber, septum membrane, 

byssal gland with the two glandular regions and the formation of a single byssal thread; (I) 

transverse section, showing the byssal gland region I, pedal ganglia and statocysts with small, 

irregular and cristal-like statoconia inside. (See the list of abbreviations). Scale bars: A, B, E, 1 

mm; C, 100 µm; D, 50 µm; F, H, 200 µm; G, 20 µm; I, 50 µm. 

The reproductive system 

All sectioned specimens were either males or females, none was obviously 

hermaphroditic, and C. cleryana is, thus, possibly dioecious. However, only three 

individuals were sectioned and the smallest of these (5.2 mm shell length) was a male. 

The other two larger individuals (5.5 and 6.3 mm shell length) were both females, raising 

the possibility of protandric hermaphroditism as in C. costellata (see Morton 2015). 

Moreover, the sex ratio was biased in favour of males (2:1) and since no individuals of a 

shell length <5 mm was collected, the expression of sexuality in C. cleryana remains 

speculative.  

The gonads, testes (t) and ovaries (ov) of C. cleryana are located near the 

posterolateral and dorsal walls of the stomach and occupy a large part of the visceral mass 

(vm) (Figure 7A & B). In some cases, the gonads extend around almost all the organs of 

the visceral mass, and are evaginated as lateral pouches into the supraseptal chamber. The 

gonads of C. cleryana are formed by several follicular lobes. These lobes each has a small 

duct that connects to a wider one, the gonoduct. This opens into the posterodorsal region 

of the supraseptal chamber. The follicular lobes vary in size and shape depending on the 

individual. In living individuals, males and females can be identified by the shape and 

colour of their follicular lobes. The testes are usually thinner (0.1–0.4 mm) and whitish 

whereas the ovarian lobes are thicker (0.7–1.0 mm) with a transparent outer wall and 

containing small pink spheres - the oocytes (Figure 7A & B).  

Although less common than males, it was possible to observe female 

gametogenesis, which in C. cleryana comprises oocytes in four stages of maturity: (i) 

immature oocytes (io) located in the wall of the ovarian follicle are the smallest (5-10 µm 

in diameter) with an oval to flattened shape. Each follicle may contain 70 to 100 immature 

oocytes; (ii) early maturing oocytes (emo) are also located in the walls of follicles (fw) 

close to the immature cells but are larger (20-30 µm in diameter) with a rounded shape 

and a large central nucleus; (iii) pre-vitellogenic, teardrop shaped, oocytes (pvo) (50-110 

µm in diameter) are the most common cells in mature individuals and are always attached 
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to the follicular wall via a stalk. Within the follicles are many; (iv) mature oocytes (mo) 

(80-150 µm in diameter), which are characterized by a large amount of yolk displacing 

the nucleus to the cell periphery. This cell type was not attached to the follicle wall and 

was free in the lumen (Figure 7C). The testes could be differentiated into spermatogonia 

(spo), spermatocytes (spm) and spermatozoa (spz) (Figure 7D). 

 

Fig. 8. Cardiomya cleryana. An adult individual 

in its natural position in the sediment, with the 

elongated foot and the anchoring byssal thread. 

(See the list of abbreviations). 

 

The nervous system 

The nervous system of C. cleryana is similar 

to that described for most species of 

Cuspidariidae, with three pairs of ganglia: 

the cerebropleural, pedal and visceral. The 

cerebropleural (cg) pair is the largest with 

each ganglion measuring approximately ~80 

µm in diameter. These are located close to 

the anterior adductor muscle and dorso-

laterally to the mouth. This pair is formed by 

elaborated nerve connections and each 

ganglion is formed by six branches: (i) a 

large commissure nerve (cn) (~800 µm in 

length) linking the pair; (ii) two divergent 

nerves (~350 µm in length), a labial nerve 

(ln) and a buccal nerve (bn) innervating the 

anterior labial palps and mouth; (iii) the 

dorsal adductor muscle nerve (an), inserted ventrally in the anterior adductor muscle. In 

C. cleryana the anterior adductor muscle is divided somewhat and has a thin groove in 

the middle; (iv) a muscular nerve (mmn), innervating the anterior septal and pedal 

retractor muscles with some of these nerve bundles also extending towards the mantle 

margin, and a visceral nerve (vn) extending into the visceral mass (Figure 9E).  
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The pedal ganglia (pega) (diameter ~150 µm) are located in the dorsal region of 

the foot near the ventral margin of the visceral mass and anterior to the byssal glands. 

Closely applied to the dorsal surface of the pedal ganglia is a pair of separate statocysts 

(sta) (~60 µm in diameter) (Figures 7I & 10). The statocysts comprise a small capsule of 

but six or eight cells in transverse section and inside each capsule are numerous crystal-

like statoconia (stc). The number (20-30) and size (10 to 15 µm in diameter) of these 

statoconia differ in each capsule. There is no statolith. The statocysts of C. cleryana 

resemble statocyst types B and C described by Morton (1985b, figures 3a, b). A similar 

situation was also observed for Spheniopsis brasiliensis Machado & Passos, 2016 

(Spheniopsidae) (Morton et al. 2015b).  

When the siphons are contracted the visceral ganglia (vg) (~100 µm in diameter) 

of C. cleryana are situated beneath the posterior adductor muscle. In individuals with 

relaxed siphons, the ganglia are displaced by about 1 mm behind the posterior adductor 

muscle (Figures 6 & 9D). In both positions, the visceral ganglia are situated close to the 

anus and the base of the exhalant siphon. The same situation also applies to the rectum 

and the anus of C. cleryana, linked as they are to the visceral ganglia (Figures 6 & 9D). 

Between five to seven nerve bundles (cnb) pass from the ganglia into the visceral mass 

and foot and the ventral margin of the posterior adductor muscle and rectum (Figure 9D). 

Small nerve fibres also innervate the siphons. 

 

DISCUSSION 

Anatomical remarks 

According to Poutiers & Bernard (1995), Coan et al. (2000) and Coan & Valentich-Scott 

(2012) the genus Cardiomya possesses only two diagnostic anatomical features, that is: a 

septum perforated by four pairs of pores, and a small lateral septal retractor muscle 

attached close to the anterior end of the siphonal retractor muscles. The second feature is 

not, however, unique to this genus and has been described for species of Bathyneaera 

such as B. hadalis (Knudsen, 1970) by Allen & Morgan (1981, figure 34). Among the 30 

individuals of C. cleryana herein examined, all possessed the two diagnostic features 

identified above, although as described other important behavioural and morphological 

characters have also been identified and will be discussed below. 



 

 
 

46 

 

Fig. 9. Cardiomya cleryana details of anatomy. (A) sagittal section from the left side without 

siphons, showing details of organs of pallial cavity and visceral mass – ZUEC-BIV 5139. (B-E) 

photomicrographs made from dissected specimens – ZUEC-BIV 5127, 5129. (B) anteroventral 

view showing the mouth with labial palps, septal pores and septal pedal opening; (C) right view 

showing some organs of pallial cavity and visceral mass; (D) posteroventral view showing the 

posterior septal muscle, retractor pedal muscle bifurcated before attachment in the shell, 

posterior adductor muscle, connectives nerve bundles, hind gut, rectum and visceral ganglia; (E) 

dorsal view of the buccal funnel after removal of the anterior adductor muscle, showing the 
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cerebropleural ganglia and its branches. (See the list of abbreviations). Scale bars: A, E, 500 µm 

B, 200 µm; C, D, 1000 µm. 

Fig. 10. Cardiomya cleryana. A 

transverse section through the pedal 

ganglia and paired statocysts at the 

base of the foot. (See the list of 

abbreviations) 

Life orientation 

Few species of the Cuspidariidae, 

have ever been examined alive with 

information about the behaviour of 

this carnivorous family restricted to 

the work of Yonge (1928) on 

Cuspidaria rostrata and Cuspidaria 

cuspidata, Reid & Reid (1974) on 

C. rostrata and Cuspidaria obesa, Reid & Crosby (1980) on Cardiomya planetica and 

Allen & Morgan (1981) on C. cuspidata.  

This study examined ten living individuals of Cardiomya cleryana. The main 

difference found between C. cleryana and other Cuspidariidae species was the life 

orientation adopted by this bivalve in the sediment. Morton (1987, figure 13) postulated, 

based on the illustrations of Cardiomya planetica by Reid and Reid (1974), that members 

of the Cuspidariidae adopt a position approximately perpendicular to the sediment 

surface. The orientation adopted by C. cleryana in the sediment, however, is ~45° degrees 

to the sediment surface (Figures 2 & 8).  

The siphons 

The siphons of Cardiomya cleryana are similar to those described by Yonge (1928), Reid 

& Reid (1974), Allen & Morgan (1981) and Morton (2015) for Cuspidaria rostrata, 

Cuspidaria cuspidata, Cuspidaria obesa and Cardiomya costellata, respectively. The 

presence of finger-shaped siphonal tentacles with micro papillae on the surface, each 

tipped with a pit occupied by sensory cilia, as well as two sets of inter-tentacular 

projections between the exhalant siphonal tentacles, differentiates C. cleryana from the 

above species. The siphonal tentacles of Cuspidata cuspidata and Cuspidaria obesa are 

club-shaped at their tips, whereas in Cuspidaria rostrata they are more elaborately 
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expanded at the tips into foliate structures each of which has two notches (Reid & Reid, 

1974, figure 2), and are thus different from the rounded structures seen in C. cleryana 

(Figure 4E & F).  

The presence of siphonal tentacles (=siphonal papillae) with a ciliated apical pit 

have also been observed in Cardiomya planetica (Cuspidariidae) by Reid & Crosby 

(1980, figure 5); Multitentacula venusta Krylova, 1995 (Protocuspidariidae) Krylova 

(1995, figure 3D); Grippina coronata and Spheniopsis brasiliensis (Spheniopsidae) 

Morton et al. (2015a, b) and more recently in C. costellata (Morton 2015, figures 6-7). 

According to Reid & Crosby (1980) and Morton et al. (2015a) these apical cilia are used 

as mechanoreceptors of the vicinal movements of potential prey. The same function may 

also be attributed to those of C. cleryana. 

The colour pattern of the siphons of Cardiomya cleryana (orange red siphonal 

sheath and small white spots on the surface of the inhalant siphon and siphonal tentacles) 

has also been observed in other anomalodesmatans including Lyonsia californica Conrad, 

1837 (black spots on both siphons and tentacles), Pandora filosa (brownish pigment spots 

on both siphons and tentacles), Cuspidaria cuspidata (scarlet pigments on the inhalant 

siphon and its tentacles) and both C. obesa and Cardiomya costellata (siphons coloured 

red in life) by Narchi (1968, figure 2), Thomas (1994, figure 3), Allen & Morgan (1981, 

p. 529), Yonge (1928) and Martins et al. (2009), respectively. The red end of the spectrum 

is lost quickly with depth so that it appears black, and is thus characteristic of many deeper 

water species. It is thus not unusual to see it in deeper water cuspidariids and their 

relatives. 

The relationship with Bathyneaera 

Similar structures to the exhalant inter-tentacular projections observed in Cardiomya 

cleryana have been reported previously in the literature by Knudsen (1970) and Reid & 

Crosby (1980) for Myonera mexicana Knudsen, 1970 and Cardiomya planetica (Dall, 

1908), respectively, and thereafter by Allen & Morgan (1981, figure 34b) and Krylova 

(1993, figures 1, 2) for species of Myonera and Bathyaneaera, again respectively. 

According to Knudsen (1970) and Allen & Morgan (1981), M. mexicana, Myonera 

demistriata (Allen & Morgan, 1981) (=Bathyaneaera hadalis Knudsen, 1970) and 

Myonera garretti Dall, 1908 have an ‘inter-tentacular tuberculous web’ along the free 

edge of the exhalant tentacles. Reid & Crosby (1980, figure 3b) also observed ‘minor 

tentacles arising between the three exhalant siphonal tentacles and exhalant siphon’ in 
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C. planetica. Later, Krylova (1993) observed this same feature, now called ‘projections 

between the dorsal exhalant tentacles’ in Bathyaneaera hadalis, B. tillamookensis (Dall, 

1916), B. paleifera Krylova, 1993, B. disa (Bernard, 1989) and B. bernardi Krylova, 

1993. Subsequently, this feature has been included in the diagnosis for species of 

Bathyaneaera. The presence of these inter-tentacular projections in C. cleryana further 

adds to the arguments for a close relationship between Cardiomya and Bathyaneaera 

corroborating the initial observations made by Scarlato & Storobogatov (1983) and 

Krylova (1993).  

The function of these inter-tentacular projections remains uncertain however. 

Histological examination of Cardiomya cleryana suggests that the origin of the small 

papillae that form these projections is the same as that of the siphonal tentacles, that is, 

they originate on the middle (typically sensory) mantle fold. In addition, observations on 

living individuals also showed that these projections assist in closing the exhalant opening 

when the siphons are retracted. It is therefore suggested that the inter-tentacular 

projections function as: extra sensory structures assisting the siphonal tentacles in 

detecting potential prey; replacing damaged siphonal tentacles; and assist in the closing 

of the exhalant opening preventing unwanted particles from entering the supraseptal 

chamber. 

In addition, the shape of the Cardiomya cleryana stomach is similar to the 

description given by Temkin & Strong (2013) of that of Bathyaneaera demistriata. In 

both species, an expansion of the stomach wall is evident. This expansion is only to the 

posterior region of the stomach in C. cleryana that is fused to the posterior pedal retractor 

muscle whereas in B. demistriata the stomach is anteroposteriorly expanded. 

According to Krylova (1993), the main differences between Cardiomya and 

Bathyaneaera include: (i) occurrence depth - Cardiomya 0-4,000 m, Bathyanearea 439-

8,430 m; (ii) the absence of a lateral tooth in the hinge plate and (iii) a reduced rostrum 

in Bathyanearea species. In addition, (iv) the tips of the siphonal tentacles of C. cleryana 

but not Bathyaneaera spp have an apical ciliated pit and micro-papillae on their surface 

(this study).  

 

The foot and byssal thread 

Other new morphological features concerning Cardiomya cleryana and reported upon in 

this study include the presence of a long byssal thread and a greatly extensible foot 

(Figures 7E & 8). Although byssal threads have been reported upon for the representatives 
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of a number of anomalodesmatan families such as the Lyonsiidae (Entodesma saxicola 

(Baird, 1863) =E. navicula (A. Adams & Reeve, 1850)), Lyonsiellidae (Lyonsiella 

horrida Allen & Turner, 1974, Lyonsiella frielei Allen & Turner, 1974 and Policordia 

jeffreysi (Friele, 1879)), Verticordiidae (Verticordia triangularis Locard, 1898, 

Verticordia quadrata Smith, 1885 and Spinosipella deshayesiana (P. Fisher, 1862)) and, 

more recently, the Poromyidae (Dillema frumarkernorum Leal, 2008 and Dillema 

spectralis Leal, 2008) (Yonge 1952; Allen & Turner 1974; Morgan & Allen 1976; Leal 

2008; Simone & Cunha 2008; Simone 2009) such a long thread seen in C. cleryana has 

never been reported upon before for any anomalodesmatan.  

More specifically, with regard to the Cuspidariidae, Allen & Morgan (1981, p. 

440) reported that ‘Threads have been seen in only two species’ but did not identify which 

taxa nor illustrate them. Krylova (1993) reported upon the presence of a byssal thread in 

a single individual of Bathyaneaera tillamokensis (Cuspidariidae) but also did not either 

describe or illustrate this feature. The byssal thread identified in Cardiomya cleryana 

seems to be an important adaptation to survival in an area of the sea bed where there are 

strong sea bed currents (Dottori et al. 2015). In small Araçá Bay, strong currents (South 

Atlantic Central Water), constantly cause the sediment to be displaced from the sea bed 

and they thereby modify the benthic environment and displace unsecurely anchored 

species. The long byssal thread thus favours survival in such a disturbed habitat.  

A similarly long foot has, however, been described for species of the Mytilidae 

such as Modiolarca subpicta (Cantraine, 1835) (=Musculus subpictus Cantraine, 1835) 

and is similarly responsible for the planting of byssal threads in the juvenile (Morton & 

Dinesen, 2011). Another example is provided by Crenella decussata (Montagu, 1808) 

which has a long foot mainly used to construct an adventitious tube within which an 

individual resides (Morton et al. 2015c). Some representatives of the Lucinoidea such as 

Diplodonta punctata (Say, 1822) (Domaneschi 1979), Lucina pectinata (Gmelin, 1791) 

[=Phacoides pectinatus (Gmelin, 1791)] (Narchi & Assis 1980), Anodontia philippiana 

(Reeve, 1850) [=Pegophysema philippiana (Reeve, 1850)] (Taylor & Glover 2006, fig. 

4) also have a long, highly extensible, foot. This is also the case for some thyasirids such 

as those reported by Payne and Allen (1991), Dufour & Felbeck (2003) and Passos et al. 

(2007).  
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The statocysts 

The nervous system of Cardiomya cleryana is similar to that described by Allen & 

Morgan (1981) for other species of the Cuspidariidae and is formed by three pairs of 

ganglia: cerebropleural, pedal and visceral. The position of the visceral ganglia in C. 

cleryana is similar to that observed in Cuspidaria rostrata by Reid & Reid (1974: figure 

3) and Cardiomya planetica by Reid & Crosby (1980, figure 4) where the ganglia are 

situated distant from the posterior adductor muscle (Figures 6 & 9D). They are, however, 

different from the situation observed in Cardiomya costellata by Morton (2015, figure 

21A), where the ganglia are located beneath the posterior adductor muscle (but with the 

siphons retracted). 

The only feature of the nervous system observed in Cardiomya cleryana that 

differs from other Cuspidariidae is the morphology of the statocysts. According to Morton 

(1985b), three types of statocyst occur in representatives of the Anomalodesmata: A, B 

and C. Type B can, however, be sub-divided into three groups on the basis of differences 

in statolith structure. In C. cleryana the statocyst are closely applied to the dorsal surface 

of the pedal ganglia with each capsule formed by between 5-6 cells (in transverse section) 

and with a large number of statoconia in the capsule’s cavity (Figures 7I & 10). This is 

similar in part to Morton’s Type B2 seen in Parilimya maoria Dell (1963) (Parilimyiidae) 

(statocysts closely applied to the pedal ganglia with both a statolith and statoconia inside) 

and to Type C, exclusive to the Cuspidariidae. This latter type is formed by 4-5 cells, each 

with little cytoplasm. Spheniopsis brasiliensis (Spheniopsidae) also has statocsyts which 

resemble both Type B1 and the Type C; although Morton et al. (2015b) defined them as 

Type C. The presence of many crystalline statoconia in Cardiomya cleryana suggests that 

though a sedentary lie-in-wait predator, it is capable of fine orientation within the 

sediment as demonstrated in this study.  
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CAPÍTULO 2 

A morphological analysis of the Anomalodesmata (Mollusca, Bivalvia) 

and a new phylogeny for this eccentric, sometimes bizarre, group 

FABRIZIO MARCONDES MACHADO, BRIAN MORTON & FLÁVIO DIAS PASSOS 

 

 

Abstract 

The Anomalodesmata Dall, 1889 comprises a diverse sub-class of the Bivalvia, composed 

by some of the rarest and most specialized species. This rarity has consequently 

constituted the greatest obstacle for a comprehensive understanding of the internal 

relationships of this group due to the low representativeness of species present in any 

phylogenetic reconstructions. Herein, therefore, with the primary purpose of creating the 

first comprehensive morphological analysis of the sub-class, data concerning all the, as 

currently recognized, anomalodesmatans families were gathered into the same cladistic 

analysis including, for the first-time, information about members of the Clistoconchidae, 

Cetoconchidae, Protocuspidariidae and Spheniopsidae. Plus, the identification and 

description of a new family - the Bentholyonsiidae. Information about shell morphology, 

anatomy and behaviour of anomalodesmatans were compiled through a review of the 

literature (from 1895 to 2017) and by a re-analysis of shells and internal tissues of some 

species deposited in museum collections around the world. More than 190 museum lots 

have been analysed, 60 papers reviewed and 61 taxa selected. Our sensitivity analysis 

(equal and implied weighting) suggests a deep division of the Anomalodesmata into four 

main clades: the first three composed generally by shallow marine water species bringing 

together 12 families and treated here as non-carnivorous lineages and a carnivorous 

lineage mainly comprising deep water species (10 families). As a consequence, a new 

anomalodesmatan phylogenetic tree is presented bringing new insights into the internal 

relationships of this, sometimes bizarre, sub-class.  

Introduction 

Different from all other groups, the Anomalodesmata Dall, 1889 stands out in 

comprising the most rarely encountered and specialized species of the Bivalvia, occurring 

in virtually all marine habitats and, as a consequence, demonstrating a wide range of 
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morphological adaptations to them (Morton 1981, 1982, 1985a). These morphological 

features variously include, for example, a dorsal crack in both valves of the shell, a 

ligamental lithodesma, pallial arenophilic glands, a fourth pallial aperture, a raptorial 

inhalant siphon, ectopic pallial eyes, taenioid muscles, a ctenidium modified into a 

muscular septum, an opisthopodium, a post-larval byssus, and an ability to build either 

calcareous adventitious crypts or tubes. Such features, and many others, have allowed 

representatives of the Anomalodesmata to explore a great diversity of highly specific 

ecological niches and providing them with the epithet of ‘bizarre’ (Morton 1985a; Harper 

et al. 2000).  

Knowledge of the above diversity of eccentric morphological features, contained 

in the descriptions of the functional morphology of many anomalodesmatan taxa, 

commenced in the 19th century (Smith 1885; Dall 1895; Pelseneer 1891) and continued 

into the 1900s, driven mainly by important marine expeditions such as the British 

Antarctic Terra Nova Expedition, the Woods Hole Oceanographic Institution’s deep-sea 

benthic programme, the John Murray Expedition and the French expeditions of 1978-

1989 among others (Pelseneer 1906, 1911; Burne 1920; Yonge 1928; Knudsen 1967, 

1970; Allen & Turner 1974; Allen & Morgan 1981; Krylova 1991, 1993, 1994a, b, 1995; 

Poutiers & Bernard 1995). Contemporaneously, other important studies on the biology, 

anatomy, ecology and evolution of anomalodesmatans have been conducted, many 

highlighted in the researches of Brian Morton (second author of this paper) (Adal & 

Morton 1973; Morton 1973, 1974, 1976, 1977, 1980, 1981a, 1981b, 1982, 1984a, b, c, d, 

1985a, b, 1987, 1995; Yonge & Morton 1980). 

The first cladistical analysis of the sub-class was undertaken by Harper et al. 

(2000), who gathered together much of the anomalodesmatan morphological knowledge 

elucidated over the last 100 years. The same century was also marked by an expansion of 

knowledge about the biology, anatomy and life style habits of a highly specialized group 

of anomalodesmatans colloquially referred to as the watering pot shells (Morton & Harper 

2001; Morton 2002a, b, 2003a, b, 2004a, b, c, 2005a, b, 2006a, b, c, 2007, 2009, 2011; 

Harper & Morton 2004). This century too saw the first researches using techniques that 

increased the number of anomalodesmatan molecular sequences (Dreyer et al. 2003; 

Harper et al. 2006; Williams et al. 2017) with the aim of resolving the overall 

phylogenetic complexity of the Bivalvia (Giribet & Wheeler 2002; Taylor et al. 2007; 

Sharma et al. 2012; Bieler et al. 2014; González et al. 2016; Combosh et al. 2017). In 
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another way, the 2000s were marked by the first study of spermatozoan ultrastructure in 

some members of the Anomalodesmata (Healy et al. 2008); the description of a new 

anomalodesmatan family, the Clistoconchidae by Morton (2012) and of important studies 

on the anatomy and behaviour of carnivorous bivalves (Krylova 2001; Morton 2003a, 

2015; Leal 2008; Simone & Cunha 2008; Bieler et al. 2014; Temkin & Strong 2013; 

Morton et al. 2016a, b; Safonova & Barwick 2016) generating the first high definition 

moving images of a living species of this group (Machado et al. 2017).  

Although, therefore, there has been a significant increase in morphological and 

molecular data concerning the Anomalodesmata in recent years, the sub-class is still 

poorly studied in comparison with other groups of the Bivalvia, for example the 

Imparidentia Bieler, Mikkelsen & Giribet, 2014 (= Euheterodonta, excluding the 

Anomalodesmata). In addition, due to the rarity of virtually all anomalodesmatan taxa, 

their low representativeness in the most recent phylogenetic analyses remains the greatest 

challenge to a comprehensive understanding of their internal relationships, although its 

monophyly is well demonstrated by many authors such as Giribet & Wheeler (2002), 

Giribet & Distel (2003), Dreyer et al. (2003), Healy et al. (2008), Harper et al. (2006), 

Sharma et al. (2012), Bieler et al. (2014), González et al. (2016), Combosh et al. (2017) 

and Williams et al. (2017). 

With the primary purpose of creating the first comprehensive morphological 

analysis of the Anomalodesmata, therefore, this work has reviewed and analyzed all the 

available information on the sub-class contained within the literature. The principal aim 

of our study was to propose a new phylogeny for Anomalodesmata using a cladistical 

analysis that has gathered together, for the first time, all that is known about the 

morphological attributes of the 21 Recent and, as currently recognized, families of this 

sub-class. 

Following completion of the resulting, based on the consensus tree, we have also 

identified and herein describe a new anomalodesmatan family - the Bentholyonsiidae. 

Finally, we engage in a discussion on the evolution of the sub-class to try and put, as 

described herein, its extraordinary phylogeny showing a broader picture of evolution and 

adaptive radiation that Morton (1985a) has attempted previously, but which, now, in the 

light of this study, revealed by the increase in the taxa representativeness new internal 

relationships for this important group of marine.  
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Materials and Methods 

Literature review 

This study commenced with a review of the extensive, but disparate, literature containing 

anatomical information about the diverse species of extant Anomalodesmata. More than 

60 papers have been analyzed, 180 species reviewed and 61 taxa selected to create the 

present cladistical analysis (Table 1). Species were selected taking into account those taxa 

studied previously in detail (functional morphology, including histology) and with the 

shell and internal details of each species’ anatomy illustrated through drawings and/or 

photographs, for example, Grippina coronata Machado & Passos, 2016 (Morton et al. 

2016a), Lyonsiella abyssicola (G. O. Sars, 1872) (Allen & Turner 1974), Cardiomya 

cleryana (d’Orbigny, 1842) (Machado et al. 2017) and Thracia meridionalis Smith, 1885 

(Sartori & Domaneschi 2005). In addition, there was also a preference for species that 

besides having information available in the literature, could also be re-accessed through 

lots deposited in Museums.  

For the 61 chosen taxa, 61 morphological characters were coded and categorized 

as follows: 12 characters on the shell microstructure and shell morphology; 3 on the 

general features of the mantle; 16 on the siphonal features; 6 on the musculature; 16 on 

the visceral mass organs (alimentary tract + nervous system); 3 on the reproductive 

biology; and 5 on the life style. Ultrastructural characters, such as sperm morphology, 

have not been included in this analysis. 

Table 1. A list of the extant families of Recent Anomalodesmata and all the species for 

which anatomical information is available as well as the main reference sources in 

chronological order. The sixty-one taxa from the 180 species reviewed that were selected 

to compose the present cladistical analysis are identified in bold. Basic statistical 

information on each of the families is also provided, as well as an estimation of the 

representativeness (%) of each family within the framework of the present cladistical 

analysis. Abbreviations: Ʃ= total of species recorded for the family (based in WoRMS); 

R= number of species that were reviewed by the present study; U= number of species 

used in this cladistic analysis and the percentage in relation to the total of registered 

species. 
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Families Species Main references 

Pholadomyidae 
King, 1844 

 

Ʃ= 1spp 

R= 1spp 

U= 1spp (100%) 

Pholadomya candida Sowerby, 1863  Morton (1980) 

  

Parilimyidae 
Morton, 1981 
 

Ʃ= 17 spp 

R= 1spp 

U= 1spp (5,8%) 

 

Parilimya fragilis (Grieg, 1920)  Morton (1982) 

  

Clavagellidae 
d’Orbigny, 1844 

 

Ʃ= 12 spp 

R= 8 spp 

U= 5 spp (41,6%) 

Bryropa melitensis (Broderip, 1824) Pelseneer (1911) 

Dacosta australis (Sowerby, 1829)  Morton (1984a) 

Bryropa lata (Broderip, 1824) 
Savazzi (2000), Pallazzi 

& Villari (2000) 

Humphreyia strangei (Adams, 1854)  Morton (2002b) 

Dianadema multangularis (Tate, 1887)  Morton (2003a) 

Bryropa aligamenta Morton, 2005  Morton (2005) 

Stirpulina ramosa (Dunker, 1882)  
Morton (2006c), Morton 

(2013) 

Dianadema minima G.B Sowerby III, 1889 Morton (2009) 

Penicillidae  
Gray, 1858 

 

Ʃ= 9 spp 

R= 6 spp 

U= 5 spp (55,5%) 

Verpa penis (Linnaeus, 1758) 
Purchon (1956a), 

Purchon (1960) 

Brechites attrahens (Lightfoot, 1786)  
Morton (1984b), Morton 

(2002a) 

Kendrickiana veitchi (Smith, 1971)  Morton (2004b) 

Nipponoclava gigantea (Sowerby, 1888)  Morton (2004c) 

Foegia novaezelandiae (Bruguière, 1789)  Morton (2004a) 

Verpa philippinensis (Chenu, 1843)  
Morton (2006b), Liu 

(2008) 

Lyonsiidae  
P. Fisher, 1887 

 

Ʃ= 34 spp 

R= 7 spp 

U= 4 spp (11,7%) 

Lyonsia norwegica (Gmelin, 1791) Pelseneer (1911) 

Entodesma navicula (Adams & Reeve, 1850)  

Yonge (1952), Morgan 

& Allen (1976), Morton 

(1987b), Huber (2010) 

Mytilimeria nuttalli Conrad, 1839  Yonge (1952) 

Lyonsia californica Conrad, 1837  Narchi (1968) 

Lyonsia hyalina (Conrad, 1831)  
Prezant (1979), Thomas 

(1993) 

Entodesma beana (Gould, 1850) 

Mikkelsen & Bieler 

(2008), Simone et al. 

(2015) 

Lyonsia floridana Conrad, 1849 Bieler et al. (2014) 

Pandoridae 
Rafinesque, 1815 

 

Ʃ= 46 spp 

R= 5 spp 

U= 2 spp (4,3%) 

Frenamya elongata Carpenter, 1846 
Pelseneer (1911), Bieler 

et al. (2014) 

Pandora inaequivalvis (Linnaeus, 1758)  Allen (1954) 

Frenamya ceylanica (Sowerby, 1835)  Morton (1984d) 

Pandora filosa (Carpenter, 1864) Thomas (1994) 

Pandora brevirostris Güller & Zelaya, 2016  Güller & Zelaya, 2016 

Pandora braziliensis G. B. Sowerby II, 1874 Güller & Zelaya, 2016 
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Myochamidae 
Carpenter, 1861 
 

Ʃ= 35 spp 

R= 3 spp 

U= 2 spp (5,7%) 

 

Myadora complexa Iredale, 1924 Pelseneer (1911) 

Myadora striata (Quoy & Gaimard, 1835)  Morton (1977) 

Myochama anomioides Strutchbury, 1830  

Yonge & Morton (1980), 

Harper & Morton 

(2000), Bieler et al. 

(2014) 

Cleidothaeridae 
Hedley, 1918 
 

Ʃ= 2 spp 

R= 1 spp 

U= 1 spp (50%) 

 

Cleidothaerus albidus (Lamarck, 1819)  Morton (1974) 

  

Thraciidae 
Stoliczka, 1870 
 

Ʃ= 81 spp 

R= 6 spp 

U= 3 spp (3,7%) 

Thracia conradi Couthouy, 1839 Thomas (1967) 

Trigonothracia jinxingae Xu, 1980  Morton (1995) 

Parvithracia lukini Kamenev, 2002  Kamenev (2002) 

Parvithracia sirenkoi Kamenev, 2002 Kamenev (2002) 

Thracia meridionalis Smith, 1885  
Sartori & Domaneschi 

(2005) 

Thracia phaseolina (Lamarck, 1818) 
Sartori & Ball (2009), 

Bieler et al. (2014) 

Periplomatidae 
Dall, 1895 

 

Ʃ= 44 spp 

R= 4 spp 

U= 2 spp (4,5%) 

 

Pendaloma otohimeae (Habe, 1952) Pelseneer (1911) 

Cochlodesma praetenue (Pulteney, 1799)  
Allen (1958, 1960), 

Bieler et al. (2014) 

Offadesma angasi (Crosse & P. Fischer, 1864)  Morton (1981b) 

Periploma margaritaceum (Lamarck, 1801) Rosewater (1984) 

Laternulidae 
Hedley 1918 

 

Ʃ= 20 spp 

R= 3 spp 

U= 2 spp (10%) 

Laternula elliptica (King, 1832)   

Burne (1920), Morton 

(1976), Sartori et al. 

(2006), Bieler et al. 

(2014) 

Laternula truncata (Lamarck, 1818)  

Adal & Morton (1973), 

Morton (1973), Morton 

(1976) 

Laternula spengleri (Gmelin, 1791)  
Morton (1976), Savazzi 

(1990) 

Clistoconchidae 
Morton, 2012 

 

Ʃ= 1 spp 

R= 1 spp 

U= 1 spp (100%) 

 

Clistoconcha insignis E. A. Smith, 1980  Morton (2012) 

  

Bentholyonsiidae 

fam. nov 

 

Ʃ= 1 spp 

R= 1 spp 

U= 1 spp (100%) 

 

Bentholyonsia teramachii Habe, 1952  Morton (2003b) 
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Cetoconchidae 
Ridewood, 1903 
 

Ʃ= 23 spp 

R= 7 spp 

U= 1 spp (4,34%) 

 

Cetoconcha pelseneeri Pelseneer, 1911 Pelsenner (1911) 

Cetoconcha ceylonensis Knudsen, 1970 Knudsen (1970) 

Cetoconcha galatheae Knudsen, 1970 Knudsen (1970) 

Cetoconcha braziliensis Allen & Morgan, 1981   Allen & Morgan (1981) 

Cetoconcha angolensis Allen & Morgan, 1981 Allen & Morgan (1981) 

Cetoconcha alephtinae (Krylova, 1991) Krylova (1991) 

Cetoconcha elegans (Krylova, 1991) Krylova (1991) 

Poromyidae  
Dall, 1886 

 

Ʃ= 52 spp 

R= 17 spp 

U= 4 spp (7,7%) 

Cetomya tornata (Jeffreys, 1876)  

Pelseneer (1906), 

Knudsen (1970), Allen 

& Morgan (1981) 

Poromya australis Smith, 1885 
Pelseneer (1911), 

Krylova (2001) 

Cetomya eximia (Pelseneer, 1911) 

Pelseneer (1911), 

Knudsen (1967), Krylova 

(2001) 

Poromya granulata (Nyst & Westendorp, 1839)  

Yonge (1928), Yonge & 

Morton (1980), Morton 

(1981c) 

Dermatomya tenuiconcha (Dall, 1913) Knudsen (1970) 

Cetomya perla (Dall, 1908) Knudsen (1970) 

Lissomya rotundula Krylova, 1997  Krylova (1997) 

Cetomya butoni (Prashad, 1932) Krylova (2001) 

Cetomya poutiersi Krylova, 2001 Krylova (2001) 

Cetomya nataliae Krylova, 2001 Krylova (2001) 

Cetomya voskresenskii Krylova, 2001 Krylova (2001) 

Cetomya bacata Krylova, 2001 Krylova (2001) 

Cetomya celsa Krylova, 2001 Krylova (2001) 

Poromya undosa Hadley & Petterd, 1906 Krylova (2001) 
Dillema frumarkernorum Leal, 2008  Leal (2008) 

Dillema spectralis Leal, 2008 Leal (2008) 

Poromya illevis Hedley, 1913 Bieler et al. (2014) 

Lyonsiellidae 
Dall, 1895 
 

Ʃ= 49 spp 

R= 22 spp 

U= 4 spp (8,16%) 

Policordia pilula (Pelseneer, 1911) Pelseneer (1911) 

Lyonsiella abscissa Pelseneer, 1911 Pelseneer (1911) 

Policordia murrayi (Knudsen, 1967)  Knudsen (1967) 

Lyonsiella galatheae (Knudsen, 1970) Knudsen (1970) 

Dallicordia alaskana (Dall, 1895) 
Dall (1895), Knudsen 

(1970) 
Policordia lisbetae Knudsen, 1970  Knudsen (1970) 

Policordia densicostata (Locard, 1898)  
Allen & Turner (1974), 

Morton (1987c) 

Policordia olivacea Poutiers & Bernard, 1995 
Poutiers & Bernard 

(1995) 

Policordia atlantica Allen & Turner, 1974 Allen & Turner (1974) 
Policordia gemma (A. E. Verril, 1880) Allen & Turner (1974) 
Policordia papyracea (E. A. Smith, 1885) Allen & Turner (1974) 
Policordia jeffreysi (Friele, 1879) Allen & Turner (1974) 
Policordia laevis Allen & Turner, 1974 Allen & Turner (1974) 

Allograma formosa (Jeffreys, 1881)  
Allen & Turner (1974), 

Morton (1984c) 

Lyonsiella subquadrata (Jeffreys, 1882) Allen & Turner (1974) 

Lyonsiella perplexa Allen & Turner, 1974 Allen & Turner (1974) 

Lyonsiella frielei Allen & Turner, 1974 Allen & Turner (1974) 

Lyonsiella smidti Friele, 1886 Allen & Turner (1974) 

Lyonsiella abyssicola (G. O. Sars, 1872)  
Allen & Turner (1974), 

Morton (1987c)  

Lyonsiella fragilis Allen & Turner, 1974 Allen & Turner (1974) 

Lyonsiella horrida (Allen & Turner, 1974) Allen & Turner (1974) 

Policordia hispida Safonova & Barwick, 2016 
Safonova & Barwick, 

(2016) 
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Verticordiidae 
Stoliczka, 1870 
 

Ʃ= 58 spp 

R= 10 spp 

U= 5 spp (8,6%) 

Spinosipella acuticostata (Philippi, 1894) Dall (1895) 

Halicardia nipponensis Okutani, 1967  Nakazima (1967) 

Verticordia triangularis Locard, 1898  
Allen & Turner (1974), 

Morton (1987c) 
Verticordia quadrata Smith, 1885 Allen & Turner (1974) 
Halicardia flexuosa (Verril & S. Smith, 1881) Allen & Turner (1974) 

Halicardia philippinensis Poutiers, 1981  Morton (1987c) 

Spinosipella deshayesiana (P. Fischer, 1862)  Simone & Cunha (2008) 

Spinosipella costeminens (Poutiers, 1981) Simone & Cunha (2008) 

Haliris tenerrima (Jaeckel & Thiele, 1931) Bieler et al. (2014) 

 

Trigonulina ornata d'Orbigny, 1853  

 

Analysed by the authors 

Euciroidae  
Dall, 1895 

 

Ʃ= 13 spp 

R= 3 

U= 2 (15,3%)  

 

Euciroa pacifica Dall, 1895  Dall (1895) 

Euciroa rostrata Jaeckel & Thiele, 1931  

Knudsen (1967), 

Poutiers & Bernard 

(1995) 

Euciroa eburnea (Wood-Mason & Alcock, 1891)  

Knudsen (1967), 

Poutiers & Bernard 

(1995)  

Spheniopsidae  
J. Gardner, 1928 
 

Ʃ= 14 spp 

R= 2 spp 

U= 2 spp (14,3%) 

 

Grippina coronata Machado & Passos (2016)  

Machado & Passos 

(2015), Morton et al. 

(2016a) 

Spheniopsis brasiliensis Machado & Passos (2016) 

Machado & Passos 

(2015), Morton et al. 

(2016b) 

Protocuspidariidae 
Scarlato & 

Starogobatov, 1983 

 

Ʃ= 19 spp 

R= 11 spp 

U= 2 spp (10,5%) 

Protocuspidaria atlantica Allen & Morgan, 1981   
Allen & Morgan (1981), 

Krylova (1995) 

Protocuspidaria pusilla Krylova, 1995 Krylova (1995) 

Protocuspidaria speciosa Krylova, 1995 Krylova (1995) 
Protocuspidaria fragilis Krylova, 1995 Krylova (1995) 
Multitentacula composita Krylova, 1995  Krylova (1995) 
Multitentacula venusta Krylova, 1995 Krylova (1995) 
Multitentacula admirabilis Krylova, 1995 Krylova (1995) 
Multitentacula parvula Krylova, 1995 Krylova (1995) 
Multitentacula paulula Krylova, 1995 Krylova (1995) 
Multitentacula parilis Krylova, 1995 Krylova (1995) 
Multitentacula amoena Krylova, 1995 Krylova (1995) 

Halonymphidae 
Scarlato & 

Starogobatov, 1983 
 

Ʃ= 17 spp 

R= 7 spp 

U= 2 spp (11,7%) 

Halonympha depressa (Jeffreys, 1882)  Allen & Morgan (1981) 

Halonympha atlanta Allen & Morgan, 1981 Allen & Morgan (1981) 

Octoporia octoporosa (Allen & Morgan, 1981)  
Allen & Morgan (1981), 

Krylova (1994b) 

Octoporia podobeda Krylova, 1994 Krylova (1994b) 

Octoporia rugosa Krylova, 1994 Krylova (1994b) 
Octoporia sinuosa Krylova, 1994 Krylova (1994b) 
Octoporia poutiera Allen, 2011 Allen (2011) 

 

Cuspidariidae  
Dall, 1886 

 

Ʃ= 254 spp 

R= 54 spp 

U= 9 spp (3,54%) 

 Cuspidaria cuspidata (Olivi, 1792)  

Pelseneer (1906); Yonge 

& Morton (1980), Allen 

& Morgan (1981), 

Morton (1987b) 

 Cuspidaria convexa Pelseneer, 1911 Pelseneer (1911) 

 Rhinoclama dubia (Pelseneer, 1911)  

Pelseneer (1911), 

Knudsen (1967), Krylova 

(1994a) 

 Pseudoneaera thaumasia Sturany, 1901 Pelseneer (1911) 
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Cuspidaria rostrata (Spengler, 1793) 
Yonge (1928), Reid & 

Reid (1974) 

Cuspidaria approximata E. A. Smith, 1896 Knudsen (1967) 

Cuspidaria gigantea Prashad, 1932 Knudsen (1967) 

Rengea caduca (E. A. Smith, 1894) Knudsen (1967) 

Cuspidaria barnardi Knudsen, 1970 
Knudsen (1970), Allen 

& Morgan (1981) 

Cuspidaria undata (Verril, 1884) 
Knudsen (1970), Allen 

& Morgan (1981) 

Cuspidaria delli Knudsen, 1970  Knudsen (1970) 

Cuspidaria guineensis Knudsen, 1970 Knudsen (1970) 
Cuspidaria haasi Knudsen, 1970 Knudsen (1970) 
Cuspidaria natalensis Knudsen, 1970  Knudsen (1970) 
Cuspidaria parkeri Knudsen, 1970 Knudsen (1970) 
Myonera garretti Dall, 1908 Knudsen (1970) 

Bathyneaera hadalis (Knudsen, 1970)  

Knudsen (1970), Allen 

& Morgan (1981), 

Krylova (1993), Bieler et 

al. (2014) 
Myonera tasmanica (Knudsen, 1970) Knudsen (1970) 

Cuspidaria obesa (Lóven, 1846)  
Reid & Reid (1974), 

Allen & Morgan (1981) 

Cuspidaria parva Verril & Bush, 1898 Allen & Morgan (1981) 
Cuspidaria jeffreysi (Dall, 1881) Allen & Morgan (1981) 
Cuspidaria atlantica Allen & Morgan, 1881 Allen & Morgan (1981) 
Cuspidaria circinata (Jeffreys, 1876) Allen & Morgan (1981) 
Cuspidaria ventricosa Verril & Bush, 1898 Allen & Morgan (1981) 
Cardiomya planetica (Dall, 1908) Reid & Crosby (1980) 

Cardiomya perrostrata (Dall, 1881) Allen & Morgan (1981) 
Cardiomya knudseni (Allen & Morgan, 1881) Allen & Morgan (1981) 
Cardiomya cadiziana Huber, 2010 Allen & Morgan (1981) 
Rhinoclama abrupta (Allen & Morgan, 1981) Allen & Morgan (1981) 

Rhinoclama halimera (Dall, 1886)  
Allen & Morgan (1981), 

Krylova (1994a) 

Cardiomya costellata (Deshayes, 1835)  
Allen & Morgan (1981), 

Morton (2015) 
Myonera alleni Poutiers in Poutiers & Bernard, 1995 Allen & Morgan (1981) 
Myonera pauscistriata Dall, 1886 Allen & Morgan (1981) 
Luzonia simplex (Allen & Morgan, 1981) Allen & Morgan (1981) 
Tropidomya abbreviata (Forbes, 1843) Allen & Morgan (1981) 
Rhinoclama notabilis (Jeffreys, 1876) Allen & Morgan (1981) 

Tropidomya diagonalis (Allen & Morgan, 1981)  Allen & Morgan (1981) 

Bathyneaera tillamookensis (Dall, 1916) 
Allen & Morgan (1981), 

Krylova (1993) 

Bathyneaera quadrostrata (Poutiers, 1984) Krylova (1993) 

Bathyneaera globulosa Krylova, 1993 Krylova (1993) 

Bathyneaera laticella (Dall, 1886) Krylova (1993) 
Bathyneaera paleifera Krylova, 1993  Krylova (1993) 
Bathyneaera disa (Bernard, 1989) Krylova (1993) 
Bathyneaera bernardi Krylova, 1993 Krylova (1993) 
Rhinoclama similis Krylova, 1994 Krylova (1994a) 

Rhinoclama semistrigosa (Jeffreys, 1881) Krylova (1994a) 
Rhinoclama teres (Jeffreys, 1881) Krylova (1994a) 
Rhinoclama raoulensis (Powel, 1958) Krylova (1994a) 
Rhinoclama dorsirecta (Verco, 1908) Krylova (1994a) 
Cuspidaria concentrica Thiele (1912) Zelaya & Ituarte (2006) 

Cuspidaria minima (Egorova, 1993) Zelaya & Ituarte (2006) 

Cuspidaria krylovae Allen, 2011 Allen (2011) 

Luzonia morganae Allen, 2011  Allen (2011) 

Cardiomya cleryana (d'Orbigny, 1842)  Machado et al. (2016) 
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Material examined 

Of the 61 species selected for this cladistical analysis, 35 had previously been studied by 

their respective authors and voucher specimens are deposited in different institutions 

around the word (Appendix 1), the anatomical data about another 26 species were 

obtained exclusively from literature. In addition, the private collection of Dr Flávio Dias 

Passos (Universidade Estadual de Campinas, Brazil) has been consulted and from it 

Trigonulina ornata d'Orbigny, 1853, Laternula elliptica (King, 1832) and Thracia 

meridionalis Smith, 1885 have been examined, plus the MCZ collection where more than 

40 species of Anomalodesmata had their shells and internal tissues re-analyzed. These 

are all illustrated in Figures 1-5.  

 

Figure 1. Shells of some species of Anomalodesmata analysed in this paper. A, Pholadomya candida (MCZ 

387668), outer and inner views of the right shell valve; B, Dacosta australis (MCZ 387672), adventitious 
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tube and a frontal view of the anterior pedal disc; C, Brechites attrahens (MCZ 32406), shell, adventitious 

tube and a frontal view of the anterior pedal disc; D, Verpa phillipinensis (MCZ 85837), shell and 

adventitious tube; E, Foegia novaezelandiae (MCZ 387671), adventitious tube; F, Nipponoclava gigantea 

(MCZ 44735), adventitious tube and a magnification of the shell valves; G, Entodesma navicula (MCZ 

239531), adult and a juvenile (below) specimens; H, Pandora inaequivalvis (MCZ 374289), outer and inner 

view of the valve surfaces of four individuals; I, Cleidothaerus albidus (MCZ 182201) outer and inner 

views of the valves surfaces plus an isolated lithodesma. Scale bar = 2 cm. Abbreviations: il, internal 

ligament; lit, lithodesma; lv, left valve; lt, lateral tubules; pep, perforate plate; ps, pedal slit; rv, right valve; 

v, valves.   

 

Figure 2. Shells of some species of Anomalodesmata analysed in this paper. A, Myadora striata (MCZ 

60089), outer and inner views of the shell valve surfaces highlighting some internal details; B, Offadesma 

angasi (MCZ 23173) outer, inner and dorsal views highlighting shell details; C, Laternula truncata (MCZ 

233215) outer, inner and dorsal views of three individuals showing some details of the shells, siphons and 

an isolated lithodesma; D, Frenamya ceylanica (MCZ 385771) outer, inner and dorsal views of the right 



 

 
 

72 

and left valves; E, Lyonsia californica (MCZ 63945) an outer view of the valve surface; F, Thracia 

meridionalis (MCZ 27/880), outer view of the valve surface; G, Mytilimeria nuttalli (MCZ 61821) outer 

and inner views of the surfaces of four individuals showing a large amount of debris attached to the shell 

surface; H, Thracia similis (MCZ 387667), outer and inner views of the right and left shell valves; I, Lyonsia 

hyalina (MCZ 182003), outer and inner views of the right and left valves plus debris attached to the shell 

surface of the juvenile specimen (right). Scale bar: A-H = 2cm, I = 1cm. Abbreviations: aam, anterior 

adductor muscle scar; c, chondrophore; cs, crack in the shell; de, debris attached in the valve surface; il, 

internal ligament; isb, internal shell buttress; li, ligament; lit, lithodesma; lst, lateral secondary tooth; lv, 

left valve; pls, pallial sinus; ppm, posterior adductor muscle scar; rv, right valve; s, shell; sct, secondary 

cardinal tooth; sl, secondary ligament; s/pe, siphons/periostracal sheath. 

 

Figure 3. Shells of some species of Anomalodesmata analysed in this paper. A, Clistoconcha insignis 

(NHMUK 1911.30.19-20 paralectotypes, courtesy of  A. Salvador/photos by Kevin Webb), outer (above) 

and inner views (below) of the shell valves; B, Cochlodesma praetenue (MCZ 375545), outer and inner 
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views of the left shell valve; C, Myochama anomioides (MCZ 379067), outer and inner views of the 

unattached left shell valve showing the internal tissues; D, Euciroa eburnea (MCZ 387669), outer and inner 

views of the shell valves; E, Trigonulina ornata (personal collection of Dr. Flávio D. Passos), outer and 

inner views of the shell valves; F, Halicardia nipponensis (personal collection, courtesy of Dr. Takuma 

Haga), views of the outer surfaces of the right and left shell valves; G, Vertambitus triangularis (MCZ 

348045), views of the outer surfaces of the right and left shell valves; H, Lyonsiella abyssicola (MCZ 

348034), views of the outer surfaces of the right and left shell valves. Scale bars: A, C, E = 2mm; D, F, G 

= 1cm; B, H = 5mm. Abbreviations: aam, anterior adductor muscle scar; c, chondrophore; cs, crack in the 

shell; de, debris attached in the valve surface; il, internal ligament; it, Internal tissue; isb, internal shell 

buttress; lit, lithodesma; lst, lateral secondary tooth; ppm, posterior adductor muscle scar; r, rostrum; sct, 

secondary cardinal tooth; sl, secondary ligament.  

 

 

Figure 4. Shells of some species of Anomalodesmata analysed in this paper. A, Cetoconcha braziliensis 

(MCZ 281315- holotype), views of the outer and inner surfaces of the right (whole) and left (broken) shell 
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valves; B, Cetomya tornata (MCZ 353657), views of the outer surfaces of the right and left shell valves; C, 

Poromya rostrata (ZUEC 2240), views of the outer and inner surfaces of the right and left shell valves; D, 

Dilemma frumarkenorum (BSMN 15029 – holotype, courtesy of Prof José H. Leal), views of the outer 

surfaces of the right and left shell valves articulated and non-articulated; E, Bathyneaera hadalis (MCZ 

377976), views of the outer surfaces of the right and left shell valves; F, Bathyneaera hadalis (MCZ 

281308- holotype) views of the outer and inner surfaces of the right shell valve; G, Poromya granulata 

(MCZ 163/77), views of the outer surfaces of the right and left shell valves; H, Halonympha depressa (MCZ 

348009), views of the outer surfaces of the right and left shell valves; I, Myonera paucistriata (MCZ 

349123), an outer view of the left valve. Scale bars: A-I = 5mm. Abbreviations: brs, broken shell region; 

it, internal tissue; r, rostrum; sct, secondary cardinal tooth. 

 

 

Figure 5. Shells of some species of Anomalodesmata analysed in this paper. A, Allograma formosa (Museo 

Argentino de Ciencias Naturales “Bernardino Rivadavia”), outer and inner views of the shell valves; B, 

Acreuciroa rostrata (MCZ 387671), outer and inner views of the right valve; C, Tropidomya diagonalis 
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(MCZ 348004), views of the outer surfaces of the right and left shell valves; D, Bentholyonsia teramachii 

(Mo50619- courtesy of Dr Takuma Haga and Dr Hiroshi Saito), views of the outer and inner surfaces of 

the left shell valve; E, Tropidomya diagonalis (MCZ 281311- holotype), views of the outer and inner 

surfaces of the right shell valve; F, Spheniopsis brasiliensis (ZUEC 6483), views of the outer surfaces of 

the right and left shell valves, showing part of internal tissues  due to the transparency of the shells; G, 

Grippina coronata (ZUEC 6181), views of the outer surfaces of the right and left shell valves, showing part 

of internal tissues due to the transparency of the shells; H, Cardiomya cleryana (ZUEC 2218), views of the 

outer surfaces of the right and left shell valves; I. Cuspidaria cuspidata (MCZ 226442), views of the outer 

and inner surfaces of the right shell valve; J, Cuspidaria obesa (MCZ 387673), views of the outer surfaces 

of the right and left shell valves; K, Cardiomya costellata (MCZ 243626), views of the outer surfaces of 

the right and left shell valves. Scale bars: A, J, K = 2mm; B-D, E = 1cm, F-H = 1000µm. Abbreviations: 

sl, secondary ligament; r, rostrum. 

 

Phylogenetic analysis 

The character matrix derived from analyses of the shell and internal tissue morphology 

of the studied taxa relates to representatives of all 22 families of the Anomalodesmata 

including the new, herein described, Bentholyonsiidae. The data matrix obtained included 

61 ingroup taxa plus three outgroup taxa, with shell features and anatomical data available 

from the literature (Morton 1987a; Simone et al. 2015; Paine & Allen 1991), including: 

(i), the Palaeoheterodonta - Neotrigonia margaritacea (Lamarck, 1804); (ii), the 

Archiheterodonta - Cardites floridanus (Conrad, 1835), new comb. to Carditamera 

floridana; and (iii), Imparidentia - Thyasira trisinuata (d’Orbigny, 1853), all representing 

distinctive phylogenetic groups that are broadly considered distinct from the 

Anomalodesmata (Combosh et al. 2017).  

The matrix was scored for 61 morphological characters (12 from the shell, 41 from 

internal tissues and eight associated with reproductive biology/life style characters) 

(Appendix 2). Of the 61 characters, 26 (43,3%) were coded as multistate and treated as 

non-additive while 35 (57,3%) other characters were coded as binary. The data matrix 

was assembled and edited using the computer software NDE 0.5.0 (Page 2001) and 

analysed by a heuristic search under different parameters of character weighting with the 

computer program TNT (Goloboff et al. 2008). Parsimony analysis was conducted using 

equally-weighted characters and implied weighting (with differing parameters), in order 

to perform a sensitivity analysis of the dataset under distinct situations (Wheeler 1995). 

To establish the K-values that would be used in our implied weighting analyses, we 

followed Mirande (2009) and Guadanucci (2014) dividing the values of fit/distortion into 
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regular intervals, obtained under different K-values. The values of K used were those that 

can be assigned to the ‘not perfectly hierarchical’ character fits of 70%, 72.7%, 75.5%, 

78.3%, 81.1%, 83.8%, 86.6%, 89.4%, 92.2% and 95% (script commands aaa 3 10 70 95 

7) of the fit of a ‘perfectly hierarchical’ one (regular intervals of 2.7%). According to 

Goloboff (1993), due to the concave/convex shape of the curve of K-values versus 

fit/distortion, higher values of K tend to produce more similar results. Mirande (2009) 

and Guadanucci (2014), therefore, drew attention to the importance of setting K-values 

that permit appropriate comparisons, and this was accordingly also undertaken herein.   

Most parsimonious trees were searched by heuristic methods, with 100,000 

replications, holding five trees per search and collapsing trees after searching (the number 

of trees were identical when used collapsing rules either 1 or 3). In order to eliminate 

‘zero length branches’, the nodes without support were collapsed (‘hard collapse 

unsupported nodes in all trees’) and only the best trees kept (‘keep best tree only - delete 

suboptimal’). Strict consensus was calculated for all searches. Branch support was 

evaluated through relative Bremer support (Goloboff & Farris 2001). All character 

optimizations and tree editing were performed with the software WINCLADA 1.00.08 

(Nixon 2002). 

Results  

Morphological characters and states 

Of the 61 characters constituting this analysis, about 35 (57%) had previously been coded 

in earlier publications (Harper et al. 2000, 2006; Giribet & Wheeler 2002; Bieler et al. 

2014) and others were described and discussed by Morton (1985a). Of these 35 previously 

coded characters, some have been re-interpreted and new character states either included 

and/or modified. The other 26 characters (~43%) have been coded for the first time. Our 

final matrix consisted of 3,904 cells with ~3.3% missing data most of which were related 

to details of the visceral mass and alimentary tract, reproductive features and the nervous 

system (characters 46, 47, 48, 49, 53, 54 and 55). The descriptions of all 61 characters 

including the number of steps (L), consistency (CI) and retention (RI) indexes of each 

character are described below. The autapomorphies (characters 28, 34, 50, 51) were 

retained in our analyses for three reasons: (i), there is no reduction of resolution in our 

analyses if they remain; (ii), there is no increase in the values of CI and RI indexes in the 

consensus trees; and (iii), future researches will be able to assess the evidential support 
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for the monophyly of ingroup terminals. In addition, important anatomical features of the 

main groupings recovered in our analyses are illustrated in Figures 6 and 7. 

Shell microstructure and shell morphology 

1- Shell microstructure: (0) prismatic + nacreous microstructures; (1) fine homogenous 

+ nacreous microstructures; (2) homogenous + homogeneous microstructure; (3) coarse 

(>µm) homogenous + nacreous microstructure; (4) Prismatic + lenticular and sheet nacre 

microstructures; (5) Prismatic + complex crossed lamellar (aragonite); (6) Prismatic + 

crossed lamellar + complex crossed (aragonite) (L= 6, CI= 66, RI= 88). This character 

was coded by Harper et al. (2000, character 1). Although the authors know that many 

efforts were made to improve this character (see Harper et al. 2006: p. 412, Bieler et al. 

2014: p. 49), the impossibility of a more detailed shell analysis for some species led us to 

coded multiple layers in a single data. 

 

2- Valve equality: (0) equivalve; (1) slightly inequivalve; (2) strongly inequivalve (L= 

12, CI= 16, RI= 62). All species that have one of the valves either cemented or associated 

intimately with the substratum (rocks, tubes) were also coded as strongly inequivalve, 

state ‘2’, for example, Dianadema multangularis (Tate, 1887) (Morton 2003a). This 

character was coded by Harper et al. (2000, character 3).   

 

3- Dorsal, left to right crack in the shell: (0) absent; (1) present, partially; (2) present, 

entire (L= 2, CI= 100, RI= 100). According to Morton (2002: figs. 3-11), unlike the dorsal 

cracks observed in other anomalodesmatans (Laternulidae and Periplomatidae), those of 

Clistoconcha insignis E. A. Smith, 1980 extend from the shell’s dorsal apex to the ventral 

margins of both shell valves so that, effectively, each valve is split into two pieces, 

anterior and posterior, with a sharp distinction between morphologies on either side of 

the crack. According to Savazzi (1990), the cracks ameliorate mechanical stresses to the 

posterior regions of the shell during valve adduction. Herein, therefore, the crack in the 

shell of C. insignis was coded as being present and entire, whereas representatives of the 

Periplomatidae and Laternulidae were coded as being partially present. This character 

was coded by Harper et al. (2000, character 4) and Bieler et al. (2014, character 19) 

 

4- Internal shell buttress: (0) absent; (1) present (L= 2, I= 50, RI= 80) (Fig. 2C). 

According to Morton (1976), extending from the resilifer of each valve in a postero-
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ventral direction are the clavicles, or buttresses, which follow the umbonal ridge and act 

as strengthening struts to the shell. These are usually seen in representatives of the 

Laternulidae and Periplomatidae and have, more recently, been described for C. insignis 

(Morton 2002). New character. 

 

5- Posterior rostrum: (0) absent; (1) present (L= 2, CI= 50, RI= 92) (Figs 3F, H, J, 4E, 

F, H, I, 5A-D, F-I). Unique among the Bivalvia, the rostrum is a posterior extension of 

the shell valves secreted by the mantle that usually house the siphons when they contract. 

New character. 

 

6- Hinge teeth: (0) edentulous; (1) secondary teeth; (2) schizodont type (L= 14, CI= 14, 

RI= 58). The presence of secondary teeth is not an exclusive to some representatives of 

the Anomalodesmata but, herein, this character is most common, for example, the 

crura/cru structure in species of Pandora (Pandoridae) or the cardinal-like tooth in species 

of Dilemma (Poromyidae) (Figs 1H, 4D). Here, as with Bieler et al. (2014, character 24), 

anomalodesmatan secondary teeth are interpreted as being non-homologous structures to 

the cardinal and lateral teeth present throughout the other taxa of the Bivalvia. The state 

‘2’ was also considered here as a secondary dentition type, but exclusive of the species 

Neotrigonia margaritacea (Lamarck, 1804) (Morton 1987: fig. 14). Carditamera 

floridana Conrad, 1838 that has heterodont (cardinal and lateral) hinge teeth was coded 

as ‘not applicable’. This character was coded by Giribet & Wheeler (2002, character 41). 

 

7- Denticulate structure(s) located below the umbones: (0) absent; (1) present (L= 5, 

CI= 20, RI= 42) (Figs 3D-E, 4C-D). This denticulate structure is non-homologous with 

cardinal teeth but are similar in position. Species either without teeth (edentulous) or with 

heterodont hinge teeth were coded as ‘not applicable’. New character.  

 

8- Denticulate structure(s) located lateral to the umbones: (0) absent; (1) present (L= 

6, CI= 16, RI= 50) (Figs 2A, 3E). This denticulate structure is non-homologous with 

lateral teeth but are similar in position. Species either without teeth (edentulous) or with 

heterodont hinge teeth were coded as ‘not applicable’. New character.  

 

9- Primary ligament: (0) external; (1) internal; (2) absent at least in the adult (L= 5, CI= 

40, RI= 50). This character was initially coded by Harper et al. (2000, character 9), but 
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here a state ‘2’ was included in the analyses due to the absence of a primary ligament in 

adult individuals of Bryopa aligamenta (Morton 2005). 

 

10- Ligament and resilifer: (0) not sunken; (1) simple sunken; (2) sunken between 

chondrophore; (3) sunken between coiled chondrophore (L= 8, CI= 37, RI= 82) (Fig. 2B-

C). Some observations: not sunken = species without resilifer; simple sunken = ligament 

inserted in a shallow resilifer; sunken between chondrophores = ligament inserted into a 

usually deep and spoon-shaped resilifer; sunken between coiled chondrophores = 

ligament inserted in a deep and coiled spoon-shaped resilifer (exclusively coded for the 

coiled shell of Cleidothaerus albidus). This character was coded by Harper et al. (2000, 

character 10).  

 

11- Secondary ligament: (0) thin; (1) thick (L= 7, CI= 28, RI= 73) (Fig. 2I). All 

anomalodesmatans reviewed in this study have a secondary ligament or a periostracal 

‘ligament’. According to Yonge (1982), a secondary ligament of fused periostracum 

assists in the alignment of the edentulous shell valves. The term ‘fused periostracum’ was 

established by Owen (1958) although, since periostracum must cover the entire shell, 

there is no fusion. The term is nevertheless retained herein simply to emphasise that it is 

present and, thus, even those species with secondary teeth have a ‘secondary ligament’ 

although such structures may not function as such. This character was coded by Harper 

et al. (2000, character 11). 

 

12- Lithodesma: (0) absent; (1) present in adult individuals; (2) present in only juvenile 

individuals (L= 5, CI= 40, RI= 81) (Figs 1I, 2A, C). The lithodesma is a solid structure, 

like an ossicle, formed by calcification of the medial portion of the internal ligament layer 

(Yonge 1976). This character was also coded by Harper et al. (2000, 2006, characters 12 

and 4, respectively). Herein, it has also been included as state ‘2’ based on observations 

made on Thracia meridionalis and Thracia phaseolina (Lamarck, 1818) by Sartori & 

Domaneschi (2005) and Sartori & Ball (2009), respectively.  

 

General features of the mantle 

13- Ventral mantle fusion (Yonge 1982): (1) Type A; (1) Type B; (2) Type C (L= 7, 

CI= 28, RI= 66). This character was coded by Harper et al. (2000, character 13). 
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14- Arenophilic glands and their secretions: (0) absent; (1) present only on the posterior 

valve surfaces; (2) present over entire valve surfaces; (3) present only over the siphons; 

(4) present both on the posterior surface of the shell valves and the siphons (L= 13, CI= 

30, RI= 67) (Figs. 2I, 4G). This character was coded by Harper et al. (2000, character 14) 

and more recently by Bieler et al. (2014, character 46). Herein, a state ‘4’ has been added 

to accommodate some species that had arenophilic gland secretions on the surface of the 

posterior shell rostrum and on the outer surface of the siphonal sheath, for example, 

Cardiomya cleryana (d’ Orbigny, 1842) (Machado et al. 2016). Pholadomya candida G. 

B. Sowerby I, 1823 was codified here as '1' based in the observations made by Sartori & 

Harper (2009: fig. 1a-c) and more recently by the photographs of a specimen collected 

alive from the shallow waters of the National Natural Park Tayrona on the Colombian 

Caribbean coast by Juan M. Díaz, CoML Caribbean’s Colombian country co-ordinator. 

 

15- Fourth pallial aperture: (0) absent; (1) present in adults; (2) present only in juvenile 

individuals (L= 8, CI= 25, RI= 60) (Figs 6, 7). Located close to the base of the siphons, 

the fourth pallial aperture probably has the function of facilitating the elimination of 

pseudofaeces from the interior of the pallial cavity or functions as a pressure release valve 

through which some of the mantle water is ejected following rapid adduction in fast-

burrowing bivalves (Atkins 1937, Yonge 1952b). This character was coded by Harper et 

al. (2000, 2006, characters 14 and 5). Herein a state ‘2’ has been added to accommodate 

two species, that is, Brechites attrahens (Lightfoot, 1786) – new combination for 

Brechites vaginiferus (Lamarck, 1818), and Humphreyia strangei (A. Adams, 1854) 

(Morton 1984b, 2002b: fig. 8). The fourth pallial aperture is also seen in representatives 

of a few non-anomalodesmatan taxa, for example, Spisula, Lutraria (Imparidentia, 

Mactridae), Ensis (Pharidae), Tagelus (Solecurtidae) and Siliqua (Solenidae), but the 

homology between these structures has never been tested (Yonge 1948, 1952b; Morton 

2010). 

 

Siphonal characters 

16- Siphons: (0) absent; (1) present (L= 1, CI= 100, RI= 100). The state ‘0’ was used to 

code the out-group species that do not have siphons or that have only an inhalant aperture 

and exhalant siphon. According to Morton (1987), for example, Neotrigonia 

margaritacea (out-group) has two functional 'siphons', which are not, however, 
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morphologically delineated by pallial fusions. This character was coded by Giribet & 

Wheeler (2002, character 55) and Bieler et al. (2014, character, 63).  

 

17- Siphon length: (0) pallial sinus absent; (1) pallial sinus present but does not extend 

beyond the mid dorsal-ventral axis of the shell; (2) pallial sinus present and extends 

beyond the mid dorso-ventral axis of the shell (L= 6, CI= 33, RI= 82) (Fig. 2A, B, H). 

This character was coded by Harper et al. (2000, character 16), Giribet & Wheeler (2002, 

character 25) and Bieler et al. (2014, character, 8).  

 

18- Siphonal separation: (0) separated; (1) fused (L= 3, CI= 33, RI= 85). Here the 

inhalant and exhalant siphons were coded as ‘separated’ when completely unfused or 

partially fused (about 1/3 of it extension free). Siphons were considered ‘fused’ when 

they are fused completely (90 to 100% fusion when fully extended). This character was 

coded by Harper et al. (2000, character 17) 

 

19- Symmetrical relationship between inhalant and exhalant siphons: (0) similar in 

shape and size; (1) different in shape and size (L= 2, CI= 50, RI= 96) (Figs 6, 7). This 

character was coded by Harper et al. (2000, character 18) but has been re-interpreted 

herein.  

 

20- Siphons encased in a periostracal sheath: (0) absent; (1) present (L= 2, CI= 50, RI= 

90) (Figs 2C, 6). New character. 

 

21- Siphons encased in a tissue sheath: (0) absent; (1) present. (L= 1, CI= 100, RI= 100) 

(Fig. 7). This tissue or siphonal sheath is a tubular muscular extension of the outer fold 

of the left and right mantle lobes that extend from the posterior end of the septum into the 

rostrum, consequently surrounding, protecting and camouflaging the siphons. This 

structure probably promotes support and help in guiding the siphons during protraction 

(Machado et al. 2016: see supplementary material). Usually associated with the presence 

of modified siphons for prey capture, this muscular sheath is only seen in species of the 

Cuspidarioidea, for example, Cardiomya cleryana (d’Orbigny, 1842). New character.  

 

22- Siphonal fusion type (Yonge 1982): (0) Type A; (1) Type B; (2) Type C (L= 6, CI= 

33, RI= 84). This character was coded by Harper et al. (2000, character 19).  
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23- Ciliary sense organs: (0) absent; (1) present (L= 5, CI= 20, RI= 80) (Fig. 7). 

Associated to the siphonal tentacles of some bivalves, these sensory organs are more 

common found in carnivorous bivalves probably receptive to the vibrations made by their 

potential prey. These organs have, however, also been identified in non-carnivorous 

species probably helping them to control the input of water into the mantle cavity. This 

character was coded by Harper et al. (2000, character 20). 

 

24- Siphonal tentacles: (0) absent from both siphons; (1) present on the exhalant siphon 

only; (2) present on the inhalant siphon only; (3) present on both (L= 5, CI= 40, RI= 40). 

This character was coded by Harper et al. (2000, character 21).  

 

25- Siphonal tentacles (position): (0) on siphonal apertures; (1) on siphonal base; (2) 

present on both (L= 2, CI= 100, RI= 100). Species without siphonal tentacles were coded 

as ‘not applicable’, for example, Parilimya fragilis (Grieg, 1920). New character. 

 

26- Siphonal tentacles (4I + 3E arrangement): (0) present; (1) absent (L= 2, CI= 50, 

RI= 92). This arrangement is typical of the Cuspidariidae and is characterised by four 

ventral tentacles around the inhalant siphon and three dorsal ones around the exhalant 

siphon (Machado et al. 2016: fig. 4B). Species without siphonal tentacles were coded as 

‘not applicable’. New character. 

 

27- Branched siphonal tentacles: (0) absent; (1) present (L= 1, CI= 100, RI= 100). 

Characteristic of species of the Lyonsiellidae and Verticordiidae, these siphonal tentacles 

have either a fringing or arborescent appearance usually associated with the presence of 

a large number of gland cells and haemocoelomic spaces (Allen & Turner 1974: figs 57 

& 75). Species without siphonal tentacles were coded as ‘not applicable’. New character. 

 

28- Ectopic pallial eyes: (0) absent; (1) present (L= 1 UNINF) (Fig. 6). Arranged in a 

circle around the siphons, ectopic eyes comprise a cornea, sclerotic coat and a double 

retina. Hitherto only recorded for Laternula truncata (Lamarck, 1818) (Morton 1973: fig. 

4; Adal & Morton 1973: fig. 1). Species without siphons were coded as ‘not applicable’. 

New character. (UNINF= uninformative character, this character is an autapomorphy). 
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29- Papillate tentacles covering the surface of the siphons: (0) absent; (1) present (L= 

1, CI= 100, RI= 100) (Fig. 6). These are typical of some species of the Lyonsiidae, for 

example, Entodesma navicula (Adams & Reeve, 1950) (Yonge 1952a: figs 5 & 6; Morton 

1985: fig. 8). New character. 

 

30- Exhalant inter-tentacular margin: (0) free; (1) with projections (L= 4, CI= 25, RI= 

0). Also called ‘inter-tentacular projections web’ or ‘projections between the dorsal 

exhalant tentacles’ by Knudsen (1970: fig. 92C) and Krylova (1993: fig. 1D, F-H), 

respectively, this structure is formed on the middle mantle folds. The function of these 

exhalant inter-tentacular projections is little understood although observations of living 

individuals of C. cleryana, Machado et al. (2016: fig. 4C) suggested three possible 

hypotheses to explain their function: (i), extra sensory structures assisting the siphonal 

tentacles in detecting potential prey; (ii), replacing damaged siphonal tentacles and/or 

(iii), assisting in the closure of the exhalant opening preventing unwanted particles from 

entering the supraseptal chamber. Species either without siphonal tentacles or with 

tentacles only on the inhalant siphon were coded as ‘not applicable’. New character. 

 

31- Inhalant siphon: (0) long, simple tube shaped; (1) short to long, cone shaped; (2) 

Parilimya type; (3) extensible type; (4) raptorial type (L= 5, CI= 80, RI= 96). Siphons 

coded as long and tube shaped represent the typical bivalve form, for example, the 

inhalant siphon of Thracia meridionalis Smith, 1885. Siphons coded as cone shaped 

represent a type of short inhalant siphon observed in some species of carnivorous 

bivalves, for example, Lyonsiella abyssicola (G. O. Sars, 1872). The Parilimya type 

corresponds to the extensible inhalant siphon with an internal posterior membranous 

tongue. This siphon type has only been identified in P. fragilis. The state ‘3’, extensible 

type, is proposed here to represent a typical form of inhalant siphon observed in the 

majority of Cuspidariidae species, for example, Cardiomya costellata (Deshayes, 1835). 

Although it is also considered an extensible inhalant siphon, the raptorial, or hood-like, 

form represents a modification only seen in active predatory species, for example, the 

raptorial inhalant siphon of Allograma formosa (Jeffreys, 1881). This type of raptorial 

siphon encompasses those species that possesses a ‘siphonal cowl’ or ‘inner valve’, 

formerly interpreted by Allen & Turner (1974) as a tongue of tissue attached peripherally 

to the inside of the lateral and ventral walls of the inhalant siphon extending into the 

mantle cavity forming a broad channel that assists in the transport of food from the 
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inhalant aperture to the mouth, that is, a structure associated with the inhalant siphon. 

Herein, and according to Morton (1981b), the raptorial siphon type was interpreted as 

being the inhalant siphon itself that, in most cases, in fixed specimens, is inverted into the 

mantle cavity. This character was coded, in part, by Harper et al. (2000, character 22).  

 

Musculature 

32- Adductor musculature: (0) present; (1) absent (L= 3, CI= 33, RI= 0). Herein, state 

‘1’ refers to the species where the adults are amyarian, for example, Brechites attrahens 

(Lightfoot, 1786) (Morton 1984). New character. 

 

33- Relationship between the adductor muscles: (0) isomyarian; (1) anterior larger; (2) 

posterior larger (L= 8, CI= 25, RI= 40) (Fig. 6). This character was used by Harper et al. 

(2000, character 24). Species that do not have adductor muscles as adults were coded as 

‘not applicable’. 

 

34- Pedal gape muscles: (0) normal; (1) Pholadomya type (Morton 1980) (L= 1 UNINF). 

According to Morton (1980), the pedal gape of Pholadomya candida possesses a unique 

pedal gape musculature resembling the cruciform muscles of the Tellinoidea. According 

to this author, these muscles provide the species with an exclusive (to the 

Anomalodesmata) type of feeding, that is, feeding via the pedal gape in the nutrient poor 

waters of the Caribbean. This character was used by Harper et al. (2000, character 25). 

(UNINF= uninformative character, autapomorphy). 

 

35- Pedal musculature: (0) normal; (1) reduced; (2) absent (L= 11, CI= 18, RI= 40). 

This character was coded by Harper et al. (2000, character 26). 

 

36- Pedal disc: (0) absent; (1) present (L= 1, CI= 100, RI= 100) (Fig. 6). This structure 

is a muscular thickening of tissues surrounding the pedal gape with the prime function of 

pumping interstitial water into and out of the mantle cavity via the pedal gape to generate 

the hydrodynamic pressures necessary in the pallial haemocoels to extend the siphons 

following retraction (Morton 1984b, 2002b) and to facilitate reburial (Purchon 1956). 

New character. 
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37- Taenioid muscles: (0) absent; (1) present; (2) present, very reduced (L= 4, CI= 50, 

RI= 0) (Figs 6, 7). This pair of muscles are elongate siphonal retractors that have separate 

insertions on the shell valves. In P. fragilis, for example, they serve to pull the inhalant 

siphon into the mantle cavity (Morton 1982). Herein, Bentholyonsia teramachii (Habe, 

1952) was coded as ‘1’, based exclusively in the presence of shell scars located on each 

valve, internal to the anterior adductor and pedal retractor muscle scars (Morton 2003: 

fig. 2F). This character was coded, in part, by Harper et al. (2000, character 27). 

 

Visceral mass 

38- Mouth: (0) tube-shaped, usually reduced; (1) funnel-shaped, usually large (L= 2, CI= 

50, RI= 96). Among the Bivalvia, the most common mouth form is tube-shaped. With a 

small buccal aperture, this mouth form is usually associated with a thin and ciliated 

oesophagus. This mouth shape is also associated with suspension and deposit-feeding 

species, for example, Lyonsia californica Conrad, 1837 (Narchi 1968: fig. 6). The large 

funnel-shaped mouth facilitates the ingestion of large prey and is usually associated with 

a short, muscular and non-ciliated, oesophagus; this mouth form is commonly observed 

in carnivorous bivalves, for example, Cardiomya knudseni (Allen & Morgan, 1981) 

(Allen & Morgan 1981: figs 5 & 32). New character. 

 

39- Labial palps: (0) absent; (1) present; (2) present, but reduced (L= 1, CI= 100, RI= 

100) (Figs 6, 7). The state ‘0’ was coded to include members of the Spheniopsidae. This 

character was coded by Bieler et al. (2014, character 136). 

 

40- Labial palps (type): (0) lamellate (with sorting ridges); (1) non-lamellate (either 

reduced or non-sorting ridges) (L= 1, CI= 100, RI= 100) (Figs 6, 7). Parilimya fragilis 

was coded as ambiguous ‘0/1’ in presenting a condition intermediate between the 

lamellate palps of Pholadomya and the non-lamellate palps of some families of 

carnivorous bivalves such as, for example, representatives of the Cuspidariidae and 

Poromyidae (Morton 19821: figs 26 & 27). New character. 

 

41- Anterior and posterior labial palps: (0) symmetrical (typical bivalve plan); (1) 

slightly asymmetrical; (2) anterior pair reduced and posterior pair well developed; (3) 

anterior pair well developed and posterior pair reduced; (4) medially fused into a 

pouch/buccal sac (L= 6, CI= 66, RI= 91). New character. 
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42- Ctenidia: (0) plicate, usually large, vertically aligned, eulamellibranch condition 

(Ridewood 1903); (1) non-plicate, usually reduced, horizontal aligned (typical 

Lyonsiellidae condition); (2) modified into a thick septum (typical septibranch condition); 

(3) reduced and associated with a thin septum (intermediate condition); (4) modified into 

a membranous septum (pseudoseptal condition, Krylova 1995: figs 1D, 3A, 5C); (5) 

Neotrigonia type (intermediate fillibranch condition). (L= 7, CI= 85, RI= 96) (Figs 6, 7). 

This character was also coded, in part, by Harper et al. (2000, characters 29 and 30), 

Giribet & Wheeler (2002, characters. 64, 65 and 68) and Bieler et al. (2014, character 

149), but herein these are gathered into the same character representing the five possible 

morphological types of ctenidia characteristic of the Anomalodesmata.  

 

43- Septum perforated by isolated pores: (0) absent; (1) present (L= 1, CI= 100, RI= 

100) (Fig. 7). Species without a septum were coded as ‘not applicable’. New character. 

(Allen & Morgan 1981: figs. 3, 22 & 24; Morton et al. 2016: figs. 2B, E & 11A).  

 

44- Septum with branchial sieves (with inter-filamentar connections): (0) absent; (1) 

present (L= 1, CI= 100, RI= 100) (Fig. 7). Species without a septum were coded as ‘not 

applicable’. New character. (Allen & Morgan 1981: figs 71 & 74).  

 

45- Septum perforated by grouped pores (without inter-filamentar connections): (0) 

absent; (1) present (L= 2, CI= 50, RI= 50) (Fig. 7). Species without a septum were coded 

as ‘not applicable’. New character. (Allen & Morgan 1981: fig. 86; Leal 2008: figs. 52, 

58). 

 

Alimentary tract 

46- Stomach type (Purchon 1956): (0) stomach Type II; (1) stomach Type IV (L= 1, 

CI= 100, RI= 100). Herein, stomach Type II was characterized by the presence of thick 

muscular folds, an oval to elongate-oval chamber (with a posterior extension), extensive 

protective chitinous lining, reduced crystalline style sac, sorting areas either reduced or 

absent, few openings (two or three) to the digestive diverticulae and usually associated 

with a large, muscular and non-ciliated, oesophagus; and of Purchon’s type IV, with an 

oval dorsal chamber elongated ventrally, an absence of muscular folds, well development 

crystalline style sac, the presence of sorting areas, numerous ducts to the digestive 

diverticulae and usually associated with a narrow, ciliated, oesophagus. This character 
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was used, in part, by Harper et al. (2000, 2006: characters 33 and 8, respectively). 

Parilimya fragilis (Grieg, 1920) has been coded in our matrix as ambiguous ‘0/1’, since 

it represents a stomach considered morphologically intermediate between types II and IV 

(Purchon 1987, 1990; Temkin & Strong 2013). 

 

47- Style sac: (0) free; (1) conjoined with mid gut (L= 3, CI= 33, RI= 81). This character 

was coded in a different way by Bieler et al. (2014, character 123). 

 

48- Rectum: (0) located above heart; (1) located below heart; (2) penetrates heart (L= 4, 

CI= 50, RI= 0). This character was coded by Harper et al. (2000, character 35). 

 

49- Rectum: (0) passes over kidneys; (1) penetrates kidneys (L= 10, CI= 10, RI= 35). 

This character was coded by Harper et al. (2000, character 36). 

 

50- Accessory excretory organ: (0) absent; (1) present (L= 1 UNINF). According to 

Morton (1980: fig. 19), this organ is a branched appendage flanked ventrally and 

posteriorly by two small papillae and located on the posterior border of the visceral mass. 

The presence of densely packed amoebocytes in the interior of this structure suggested a 

possible excretory function. New character. (UNINF= uninformative character, this 

feature is an autapomorphy for the Pholadomyidae). 

 

51- Waste storage pouch: (0) absent; (1) present (L= 1 UNINF). Located in the left 

posterior end of the stomach, this pouch has the function of storing exoskeletal remains 

of ingested prey (Morton et al. 2016: figs. 2H, 18-20). New character. (UNINF= un-

informative character, this character is an autapomorphy). 

 

Nervous system 

52- Opisthopodium: (0) absent; (1) present, bifurcated; (2) present, non-bifurcated (L= 

2, CI= 100, RI= 100) (Fig. 6). This organ is a posterior slender process (‘elongated 

appendage’) arising from the postero-ventral edge of the visceral mass and is formed 

mainly by nerve bundles, indicating a possible sensory function (Morton 1980). Two 

different morphological shapes of this organ have been identified: (i) either enlarged at 

the base and bifurcated at the tip as shown, for example, in Pholadomya candida 

Sowerby, 1863 or (ii) enlarged at the base and non-bifurcated at the tip as shown, for 
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example, in Halicardia nipponensis Okutani, 1967 (Nakazima 1967: plates VI-3, VII-3, 

VIII-1,2). According to Dall (1895), the ophisthopodium observed in Halicardia flexuosa 

(Verrill & S. Smith [in Verrill], 1881) is analogous to the structure described initially by 

Owen (M.S) for Pholadomya (Morton 1985: pp. 86-95). Herein, they are considered to 

be homologous structures. New character. 

 

53- Statocyst (Morton 1985): (0) absent; (1) type A; (2) type B1; (3) type B2; (4) type 

B3; (5) type C (L= 10, CI= 50, RI= 72). This character was used by Harper et al. (2000, 

character 37), but herein the state ‘absent’ is used to include certain species of tube 

builders, for example, Stirpulina ramosa (Dunker, 1882) (Morton 2013).  

 

Reproductive biology 

54- Expression of sexuality: (0) dioecious; (1) hermaphrodite (L= 5, CI= 20, RI= 69). 

Herein, character state ‘1’ is considered to represent both hermaphrodite types, 

simultaneous and consecutive. This character was coded by Harper et al. (2000, character 

39). 

 

55- Gonadial apertures: (0) united; (1) separated; (2) united with the urinary ducts (L= 

7, CI= 28, RI= 68). This character was coded by Harper et al. (2000, character 40).  

 

56- Fertilized eggs incubated in the visceral mass: (0) absent; (1) present (L= 1, CI= 

100, RI= 100) (Fig. 7). This feature has been identified only for Grippina coronata 

Machado & Passos, 2015 (Spheniopsidae) by Morton et al. (2016a: fig. 2G, H). New 

character. 

 

Life style characters 

 

57- Cementation to the substratum by glandular secretions: (0) absent; (1) present, 

via mantle margin glands; (2) present, via siphonal glands; (3) present, via sticky outer 

periostracal layer (L= 4, CI= 75, RI= 0). Knowledge of the production site for the 

cementing substance is unresolved in such anomalodesmatans, although some hypotheses 

have been discussed by Harper & Morton (2000), Morton & Harper (2001) and Morton 

(2007) and herein these have been considered to code this character. This character was 
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coded by Giribet & Wheeler (2002, character 53) and Bieler et al. (2014, character 21) 

but is re-interpreted herein.  

 

58- Calcareous adventitious tube/crypt: (0) absent; (1) present (L= 1, CI= 100, RI= 

100). According to Morton (2004c), calcareous adventitious tube formation probably 

results from the mantle epithelium that secretes it. This character was coded for the first 

time by Harper et al. (2000, character 42) and later by Giribet & Wheeler (2002, character 

136) and Bieler et al. (2014, character 20).  

 

59- Post-larval byssus: (0) absent; (1) anchorage via a single byssal thread; (2) anchorage 

via more than one byssal thread (L= 11, CI= 18, RI= 25) (Fig. 7). This character was 

coded, in part, by Harper et al. (2000, character 43).  

 

60- Water input (feeding mode): (0) via siphons; (1) via pedal gape (L= 1, CI= 100, 

RI= 100). Possible path of water from the external environment to the interior of the 

mantle cavity (Morton, 1980: fig. 57). New character. 

 

61- Digging: (0) active burrower; (1) passive burrower (sedentary life); (2) non-borrower 

(tube-builder/cemented/endolithic) (L= 7, CI= 28, RI= 85). New character.  

 

Phylogenetic analyses 

The results of all analyses (equal and implied weighting) are summarized in Table 2. The 

final cladogram obtained from the results of these analyses (Figs. 8, 9) shows the strict 

consensus tree obtained under implied weighting analysis with K-values of 7.319, 9.137, 

11.911, 16.667 and 26.708. Preference for this topology, which has been used to discuss 

phylogenetic relationships, is due to it being the most consistent cladogram resulting from 

sensitivity analysis implemented with TNT (script aaa.run). 

Herein, the description of results is subdivided into two main elements: the non-

carnivorous lineages, composed by three different clades, and a single carnivorous 

lineage (Figs. 8, 9). The analysis described herein recovered the Anomalodesmata as 

monophyletic, supported by the following synapomorphies: the presence of siphons 

(character 16, non-ambiguous), hermaphroditism as the main expression of sexuality (54, 
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ambiguous), united gonadial apertures (55, ambiguous) and passive burrowing sedentary 

life-style (61, ambiguous).  

 

Figure 6. Illustrations of some anatomical features of the ‘non-carnivorous’ lineages, showing all families 

and sister groups analysed in this paper. In clades formed by either two or more families, the presence of 

the symbol (*) identifies the illustration and its respective family. All drawings were based on species 

already illustrated previously by Brian Morton that in some cases were re-designed either to show new 

features or to highlight a specific composition of characters of the same sister group. Abbreviations: aam, 

anterior adductor muscle; ct, ctenidia; cs, crack in the shell; ee, ectopic eyes; es, exhalant siphon; f, foot; 
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fpa, fourth pallial aperture; is, inhalant siphon; lp, lamellate labial palps; op, ophistopodium; pam, posterior 

adductor muscle; pg + pd, pedal gape + pedal disc; pg + tm, pedal gape + taenioid muscle; ps, periostracal 

sheath; pt, papillate tentacles; rlp, reduced labial palps; sl, secondary ligament; tm, taenioid muscle. 

 

 

Figure 7. Illustrations of some anatomical features of the ‘carnivorous’ lineage, showing all families and 

sister groups analysed in this paper. All drawings were based on species already illustrated previously by 

Brian Morton that in some cases were re-designed either to show new features or to highlight a specific 

composition of characters of a same sister group (ex. Poromyidae + Cetoconchidae), except for the 

Euciroidae illustration that was based on the drawings of Dall (1895, plate. XXIII, figs 2 & 4 and XXIV 

figs 4, 5, 7 & 8) for Euciroa pacifica and the description provided by Poutiers & Bernard (1995, pp 116-

118) for Euciroa eburnea. Abbreviations: alp, anterior labial palp; bt, byssal thread; bs, branchial sieve 

(with inter-filamentar connections); bcs, buccal-sac; cso, ciliary sense organs; es, exhalant siphon; fpa, 

fourth pallial aperture; gp, grouped pores (without inter-filamentar connection); ie, incubated eggs in the 

visceral mass; is, inhalant siphon; lp, labial pals; nlp, non-lamellate labial palp; plp, posterior labial palp; 

rct, reduced ctenidia; ris, retracted inhalant siphon; s, septum; sct, secondary cardinal tooth; slt, secondary 

lateral tooth; sp, septal pore; st, siphonal tentacle; tm, taenioid muscle; ts, tissue sheath.       
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Table 2. Results obtained from the trees identified from the herein undertaken analysis of the 

anomalodesmatan characters identified for all studied taxa and described and discussed in this 

research paper. EW= Equal weighted; IW= Implied weighting (k=values); MPTs= Most 

parsimonious trees; Ci/Ri= Consistency index/Retention index in the consensus trees. 

 

 

Analyses MPTs Length 

(MPTs/consensus) 

Ci/Ri 

(MPTs) 

Total fit Percentage 

weight 

of characters 

EW 

IW (k0= 3.280) 

IW (k1= 3.758) 

IW (k2= 4.345) 

IW (k3= 5.082) 

IW (k4= 6.036) 

IW (k5= 7.319) 

IW (k6= 9.137) 

IW (k7= 11.911) 

IW (k8= 16.667) 

IW (k9= 26.708) 

3978 

60 

16 

16 

10 

10 

12 

12 

12 

12 

12 

255/311 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.41/0.80 

0.40/0.79 

0.40/0.80 

0.40/0.80 

0.40/0.80 

0.40/0.80 

0.41/0.80 

0.41/0.80 

0.41/0.80 

0.41/0.80 

0.41/0.80 

- 

18.596 

17.491 

16.277 

14.985 

13.600 

12.102 

10.486 

8.731 

6.802 

4.655 

- 

70 

72.778 

75.556 

78.333 

81.111 

83.889 

86.667 

89.444 

92.222 
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The non-carnivorous anomalodesmatans 

Herein, the sister group of all other anomalodesmatans, the nested Pholadomyidae + 

Parilimyidae, was recovered in 100% of all implied weighting analyses and is supported 

by the following synapomorphies: the presence of an external primary ligament (9, 

ambiguous); arenophilic gland secretions on the posterior valve surface (14, ambiguous); 

a fourth pallial aperture (15, ambiguous) and a pallial sinus that does not extend beyond 

the mid dorso-ventral axis of the shell (17, ambiguous). 

The Pholadomyidae, represented here only by Pholadomya candida, is supported 

by five apomorphies, that are: a pedal gape musculature of the Pholadomya type (34); an 

accessory excretory organ (50); a rectum passing below the heart (48, ambiguous); a 

bifurcated opisthopodium (52, non-ambiguous) and statocysts of Type A (53, 

ambiguous). In turn, the also monotypic Parilimyidae, represented by P. fragilis, is 

supported by six apomorphies: the absence of hinge teeth (6, ambiguous), non-

symmetrical siphons (19, ambiguous), a Parilimya type inhalant siphon (31, ambiguous), 

the absence of a pedal musculature (35, ambiguous), a funnel-shaped mouth (38, non-

ambiguous) and slightly asymmetrical labial palps (41, ambiguous). The grouping 

between these two families, recovering the taxonomic superfamily Pholadomyoidea and 
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its consequent topology as sister-group to all other anomalodesmatans, as previously 

argued for, on the basis of its fossil history, by Pojeta (1971), Runnegar (1974), Morton 

(1985a) and Harper et al. (2000, 2006).   

In addition, the new topology observed for P. fragilis did not recover it as a 

carnivorous member, as initially proposed by Morton (1982). The sharing of some 

morphological features with the Pholadomyidae, however, such as: the presence of 

taenioid muscles (37, ambiguous), a fourth pallial aperture (15), arenophilic secretions on 

the posterior valve surfaces (14) and the absence of siphonal tentacles (24, ambiguous), 

suggests the current topology for the Parilimyidae. However, it should be noted that the 

presence of two characters exclusively associated with the carnivorous 

anomalodesmatans, such as non-lamellate labial palps (40, ambiguous) and a stomach of 

Type II (46, ambiguous), were coded in our matrix as ambiguous ‘0/1’ for P. fragilis and, 

thereby, probably, reinforcing a closer proximity to the Pholadomyidae. There is no direct 

evidence that P. fragilis is carnivorous such as, for example, the presence of prey items 

inside the stomach although the species’ funnel shaped labial palps would suggest this 

strongly (Morton 1982: figs. 26, 27).  

The monophyletic Pandoridae was recovered in 100% of all sensitivity analyses 

and this node is supported by the one synapomorphy: a rectum that penetrates the kidney 

(49, ambiguous). Usually recovered as a sister group of the Lyonsiidae in the most recent 

molecular phylogenetic researches (Harper et al. 2006; Bieler et al. 2014; Combosh et al. 

2017), this family appears herein as an independent clade among the non-carnivorous 

lineages of Anomalodesmata.  

The cladogram brought together the other nine families of the non-carnivorous 

lineages, and are supported mainly by the combination of two ambiguous 

synapomorphies: a pallial sinus that does not extend beyond the mid dorso-ventral axis 

of the shell (17) and siphonal fusions of type A (22, ambiguous). 

One branch of the large non-carnivorous clade is formed by three families, the 

paraphyletic Periplomatidae with the Laternulidae + Clistoconchidae. The node that 

united these families is supported by two non-ambiguous synapomorphies: the presence 

of a dorsal crack in the shell (3) and an internal shell buttress (4). For the Periplomatidae, 

specifically, the non-monophily is explained mainly by the difference in the valve 

equality (2) between Offadesma angasii (Crosse & P. Fischer, 1864) and Cochlodesma 
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praetenue (zero branch length), with a slightly inequivalve shell in the latter. In addition, 

O. angasii demonstrates other differences in relation to C. praetenue such as: the presence 

of a strongly inequivalve shell (2), a ventral mantle fusion of Type A (13, ambiguous), 

arenophilic secretions on the posterior valve surfaces (14), presence of a fourth pallial 

aperture (15), siphonal tentacles only on the inhalant siphon (24) and a rectum that 

penetrates the kidneys (49). 

The well supported grouping between the paraphyletic Laternulidae and the 

monotypic Clistoconchidae is supported by the following synapomorphies: the presence 

of fused siphons (18, ambiguous), siphons encased in a periostracal sheath (20, 

ambiguous), fused siphons of Type C (22) and gonadial apertures united with the urinary 

ducts (55). Herein, for the first time, we provide a phylogenetic analysis based on 

morphological data obtained by Morton (2012) for the Clistoconchidae. Our analysis 

shows a strong affinity between the Clistoconchidae and Laternulidae (a topology 

recovered in all implied and equal weight analysis), a somewhat different relationship to 

that hypothesised by Morton (2012) who suggested an affinity between the 

Clistoconchidae and Thraciidae. In addition, a clear sub-division between two species of 

Laternulidae, that is, Laternula elliptica (King, 1832) and Laternula truncata (Lamarck, 

1818) (Fig. 8*), is caused mainly by the absence of a lithodesma in the former and by its 

presence in the latter.   

The monotypic Cleidothaeridae, represented by Cleidothaerus albidus, also arises 

here as an independent clade, supported by six apomorphies: the presence of a ligament 

between a sunken coiled chondrophore (10, ambiguous), siphonal tentacles only on the 

inhalant siphon (24), an anterior adductor muscle larger than the posterior (33, 

ambiguous), a rectum passing below the heart (48), cementation to the substratum via a 

sticky layer of outer periostracum associated with mantle glands (57, non-ambiguous) 

and the absence of a pedal musculature (35), 

The monophyletic clade Thraciidae comprising species of genera Trigonothracia, 

Thracia and Parvithracia, being the latter used for the first time in a cladistical analysis. 

This clade is supported by three synapomorphies: the presence of a shell microstructure 

characterized for two homogenous layers (1, ambiguous), slightly inequivalve shells (2) 

and ciliary sense organs (23, ambiguous). In addition, Thracia meridionalis E. A. Smith, 

1885 does not group closely with other thraciids due to the presence of a lithodesma only 
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in juvenile individuals (12). Other taxa, such as Trigonothracia jinxingae Xu, 1980 and 

Parvithracia lukini Kamenev, 2002, are grouped by the presence of a pallial sinus that 

extends beyond the mid dorso-ventral axis of the shell (17).  

The monophyletic Myochamidae was recovered in all the implied and equal 

weighting analyses, but this clade is supported herein only by one ambiguous 

synapomorphy, that is, the presence of a thin secondary ligament (11). Usually recovered 

as a group closer to the Cleidothaeridae and/or Thraciidae in most publications on 

anomalodesmatan phylogeny (Harper et al. 2000, 2006; Healy et al. 2008; Bieler et al. 

2014; Combosh et al. 2017), here Myochamidae was recovered as an independent clade, 

forming a sister-group with Lyonsiidae + Clavagelloidea (Clavagellidae + Penicillidae).  

The Lyonsiidae clade was specifically recovered in all our analyses and their 

monophyly is supported by the following synapomorphies: the presence of papillate 

tentacles covering the surface of the siphons (29, non-ambiguous) and by a posterior 

adductor muscle larger than the anterior (33). Herein, Mytilimeria nuttalli Conrad, 1837 

is separated from other lyonsiid taxa in being considered endolithic, living in association 

with ascidian colonies and consequently coded as a non-burrower (61, ambiguous). 

Recently, however, Combosh et al. (2017) have suggested, following a molecular 

analysis of representatives of the same three genera examined in the present study 

(Mytilimeria, Entodesma, Lyonsia), that the Lyonsiidae is not monophyletic and should 

be nested within the Pandoridae, an opinion thus differing from the morphological 

analyses described and discussed herein. 

Another important cluster among the non-carnivorous lineages is formed by the 

monophyletic Lyonsiidae and by its the sister group the Penicillidae + Clavagellidae. The 

grouping between these three families has been recovered in 100% of all implied 

weighting analyses and is supported by only one ambiguous synapomorphy, that is, the 

presence of tentacles at the base and on the external apertures to the siphons (25).  
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Figure 8. Strict consensus of 12 trees obtained under implied weighting analysis with K-values of 7.319 

(topology identical to K-values of 9.137, 11.911, 16.667 and 26.708). Numbers above nodes are Relative 

Bremer Support. In clades formed by either two or more families, their underlining or the presence of the 

symbol (*) identifies the species and its respective family. Sensitive plots on key nodes: black squares are 

recovered topologies; white squares are non-recovered topologies. 
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In our analyses, the Clavageloidea (adventitious tube-building group), represented 

here by the Clavagellidae and Penicillidae, has been consistently recovered as 

monophyletic. The main synapomorphies that support the monophyletic status of the 

Clavagelloidea are: a ventral mantle fusion of Type C (13), the presence of fused siphons 

(18), siphons encased in a periostracal sheath (20), siphonal fusions of type A (22), an 

ability to build a calcareous adventitious tube or crypt (58, non-ambiguous) and a water 

input (feeding) preferably via pedal gape (60). The topology of the Clavagelloidea was 

also recovered in all our implied and equal weights analyses. In addition, our analyses 

show a clear division within the Clavagelloidea into two well supported paraphyletic 

assemblages represented by (i), five species (terminal taxa underlined) of the Penicillidae, 

excluding Kendrickiana veitchi (B. J. Smith, 1971) (but see discussion), and supported 

by two non-ambiguous synapomorphies, that is, the presence of an equivalve shell (2) 

and a pedal disc (36, non-ambiguous); and (ii), four species plus K. veitchi of the 

Clavagellidae and supported by two synapomorphies, that is, the absence of a lithodesma 

in adult individuals (12) and of a fourth pallial aperture (15). The monophyly of these two 

families requires the inclusion of K. veitchi within the Penicillidae [as originally placed 

by Morton (2004b)] although the absence of a fourth pallial aperture and of a pedal disc 

corroborates the current positioning of this species within the Clavagellidae clade. In 

addition, it is interesting to note that the Penicillidae identifies an internal subdivision 

separating Brechites attrahens (Lightfoot, 1786) and Humphreyia strangei (A. Adams, 

1854) from other taxa. These species (juvenile only for H. strangei) are linked by two 

features, that is, the presence of a fourth pallial aperture only in juvenile individuals (15) 

and the absence of a pallial sinus (17, ambiguous); while Verpa philippinensis (Chenu, 

1843), Foegia novaezeladiae (Bruguière, 1789) and Nipponoclava gigantea (Sowerby, 

1888) are supported by two ambiguous synapomorphies, that is, an anterior adductor 

muscle larger than the posterior (33) and the absence of a pedal musculature (35). 

 

The carnivorous anomalodesmatans 

The carnivorous lineage, is supported by 100% of implied weighting analyses, gathering 

together 32 taxa supported by the following synapomorphies: the presence of a slightly 

inequivalve shell (2), ciliary sense organs (23), siphonal tentacles located on the siphonal 

base (25) and by a stomach of Type II (46). 
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The monophyletic Euciroidae is recovered in 100% of all implied weighting 

analyses and supported by the following synapomorphies: the presence of denticulate 

structure located laterally to the umbones (8, ambiguous), a ligament sunken between 

chondrophores (11), a short and cone-shaped inhalant siphon (31), a normal pedal 

musculature (35) and labial palps medially fused into a pouch/buccal sac (41). Herein 

only two species of Euciroidae, that is, Euciroa eburnea (Wood-Mason & Alcock, 1891) 

and Euciroa pacifica Dall, 1895, were tested revealing the monophyly of this family and 

arising as an independent clade among the Anomalodesmata.  

Here a new family, the Bentholyonsiidae also is described based upon the 

morphological data obtained for Bentholyonsia teramachii by Morton (2003a), which 

provides sufficient information to justify this decision. Below is the description for this 

new family of the Anomalodesmata. 

Bentholyonsiidae fam. nov. Morton & Machado, 2017 (this study) 

Type genus: Bentholyonsia Habe, 1952 

Type species by original designation: Bentholyonsia teramachii Habe, 1952 (Genera of 

Japanese shells, 3: 257) (Figs. 5D, 7) 

Composition. This new family includes only one species: Bentholyonsia teramachii Habe, 

1952. This taxon is known only from the Pacific Ocean, specifically the central coast of 

Japan and Western Australia, occurring at depths of between 100 to 150 metres.      

Diagnosis. Bentholyonsiidae fam. nov., can be identified by the combination of eleven 

important features: the presence of (i), ventral mantle fusions of Type C (13); (ii), 

arenophilic gland secretions only on the posterior external margin of the valves (14); (iii), 

a fourth pallial aperture (15); (iv), a pallial sinus that does not extend beyond the mid 

dorso-ventral axis of the shell (17); (v), siphonal tentacles located at the base of the 

siphons (25); (vi), taenioid muscles (37); (vii), a funnel-shaped mouth (38); (viii) non-

lamellate labial palps (40); (ix), a stomach of Type II (46); (x), statocysts of the Type B3 

(53) and (xi), a dioecious sexuality (54). 

Description of the shell. The shells of B. teramachii were measured by Morton (2003a: 

figs. 1, 2) and ranged in length from 22.5 to 39.0 mm and are slightly inequivalve, 

equilateral, rounded anteriorly, squarely truncate posteriorly, slightly pointed postero-
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dorsally with valve gapes, especially posteriorly. Right valve slightly larger than the left 

overlapping it ventrally giving a sinuous form to the posterior and anterior shell areas. 

Umbones central, slightly inflated, opisthogyrate. Outer sculpture composed of fine radial 

striae with a bulbous, medial, dorso-ventrally aligned, ridge. A yellow periostracum 

covered ventrally and posteriorly with attached sand grains and other debris. Hinge plate 

weak, without teeth. Ligament internal, opisthodetic, sunken between chondrophores. 

Calcified central portion of the ligament formed into a large lithodesma. Secondary 

ligament of fused periostracum connecting the two valves anterior and posterior to the 

ligament. The pallial line scar thick, concave posteriorly and convex anteriorly. Pallial 

sinus short. Taenioid muscle scars visible and located on each valve just internal to the 

anterior adductor and pedal retractor muscle scars on each valve. Suspensory muscle scar 

present, dorsally located just anterior to the umbones. Scars of adductor muscles visible 

and of a similar shape and size.  

Internal morphology. Short, sensory, siphons. Ctenidia of Type E, non-plicate, an absence 

of food grooves and the outer demibranch aligned horizontally. Extendable and non-

lamellate labial palps with a simple lips and mouth. Non-ciliated oesophagus. Stomach 

Type II, muscular, with a thick gastric shield. Midgut-rectum ciliated. Midgut and style 

sac conjoined, the latter without a crystalline style (in the intact specimen examined); 

hindgut passing under the ventricle of the heart and over the kidneys. Kidneys paired with 

baggy distal limbs and opening into the suprabranchial chamber at the reno-pericardial 

apertures. Arenophilic glands occurring along all the mantle margins. Foot well 

development with a ventral and vertically-aligned byssal groove, but no byssal threads 

reported upon. Statocysts of type B3. A pair of anterior suspensory muscles attach to the 

shell valves antero-ventral to the umbones. Probably dioecious, but only a female 

individual examined. 

Remarks. An important discussion regarding the taxonomy of the type species of 

this new family was made by Morton (2003a) when preserved specimens collected from 

Japan and Australia were compared, and both previously deposited in the National 

Science Museum, Tokyo, Japan and in the Western Australian Museum, Perth, Western 

Australia, respectively. Recently, in the WoRMS web site Marshall & Bouchet (2015) 

proposed that the genus Bentholyonsia Habe, 1952 should be a synonym of Lyonsia 

Turton, 1822, citing Coan & Valentich-Scott (2012) as the source for this 

synonymization. Detailed information on the genus Bentholyonsia was not, however, 
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found in this work. In addition, Bouchet (2013) in the same web site, cite Huber (2010) 

as the ‘basis of record’ for re-allocating Bentholyonsia teramachii Habe, 1952 into 

Lyonsia teramachii (Habe, 1952). This work provided basic data about Bentholyonsia, 

based on Morton (2003a), but does not present, in our opinion, sufficiently detailed 

information to justify this change (Huber, 2010 pp 520 and 796). 

We, thus, consider Bentholyonsia Habe, 1952 to be a valid genus. In addition, the 

Bentholyonsiidae fam. nov has been recovered, distinctively, as a member of the 

carnivorous lineage, from all consensus trees with the same topology identified in all our 

analyses. In general, therefore, B. teramachii can be considered to represent a lyonsiid-

like carnivore, sharing some morphological features with the Lyonsiidae (non-

carnivorous clade), such as: a possible potential for suspension feeding, the presence of a 

thick secondary ligament uniting the valves (11), the presence of a fourth pallial aperture 

in adult individuals (15); a long, tube-shaped, inhalant siphon (31) and symmetrical labial 

palps (41) but, as with some other carnivorous species, siphonal tentacles located on a 

siphonal base (25), a funnel-shaped mouth (38), non-lamellate labial palps (40), non-

plicate and reduced ctenidia aligned horizontally (42, ambiguous) and a stomach of Type 

II (46).  

The Lyonsiellidae and Verticordiidae form a large, sister-group, cluster recovered 

from 100% of implied weighting analyses. This clade is supported by the following 

synapomorphies: branched siphonal tentacles (27, ambiguous), a rectum that penetrates 

the kidneys (49) and a post-larval byssus (59, ambiguous). The Lyonsiellidae is 

represented by an unresolving internal relationship between the species Allograma 

formosa, Lyonsiella abyssicola and the polytomy of Policordia densicostata and 

Policordia hispida. In our consensus tree, the last three species share with the 

Verticordiidae the presence of arenophilic gland secretions over the entire valve surfaces 

(14) and a short and cone-shaped inhalant siphon (31) - features absent in another 

lyonsiellid - Allograma formosa.  

The monophyletic Verticordiidae, also recovered in 100% of implied weighting 

analyses, is supported by a single synapomorphy, that is, the presence of secondary hinge 

teeth (6). The family Verticordiidae also represents an unresolving internal relationship 

(polytomy) between some of their species, that is, Vertambitus triangularis (Locard, 

1898), Spinosipella desahyesiana (P. Fischer, 1862) and Trigonulina ornata d'Orbigny, 
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1853. Herein, V. triangularis is supported by the presence of gonadial apertures separated 

from the urinary duct (55), while T. ornata is supported by: the presence of a slightly 

inequivalve shell (2), Type B2 statocysts (53) and the absence of a post-larval byssus 

(59). Spinosipella deshayesiana, in turn, is only supported by one ambiguous 

synapomorphy, that is, the presence of reduced ctenidia associated with a thin septum 

(42). In addition, the grouping formed by the two species of Halicardia is supported by 

three synapomorphies: the presence of siphonal fusion Type A (22), siphonal tentacles 

only on the inhalant siphon (24) and by a non-bifurcated opisthopodium (52).  

The clade, formed by the Cetoconchidae + Poromyidae (=Poromyoidea Dall, 

1886), also has a topology recovered in all our analyses and is supported by the following 

synapomorphies: the presence of an external primary ligament (9) and a thin secondary 

ligament (11) and asymmetrical labial palps, that is, well developed anterior palps and 

reduced posterior ones (41), and by the absence of a lithodesma (12). The Cetoconchidae, 

herein analysed for the first time in a morphological cladistical analysis and represented 

by Cetoconcha braziliensis Allen & Morgan, 1981, is supported by but one apomorphy, 

that is, the presence of a normal pedal musculature (35). This analysis recovers a 

morphological proximity between the Cetoconchidae and Poromyidae as has been 

suggested previously by Knudsen (1970), Allen & Morgan (1981) and Krylova (1991), 

although such a monophyly has not been tested hitherto.  

The monophyletic Poromyidae, in turn, was recovered in 50% of implied and 

equal weighting analyses and is supported by two ambiguous synapomorphies: siphonal 

fusions of type A (22) and a free style sac (47, ambiguous), remembering that this latter 

character was coded as missing data ‘?’ for Lissomya rotundula Krylova, 1997 and 

Dillema frumarkernorum Leal, 2008 due to the absence of such information in the 

literature. Internally, this clade has two well defined clusters, the first formed by Cetomya 

tornata + L. rotundula supported by the presence of a muscular septum with branchial 

sieves (44, ambiguous) and the second represented by Poromya granulata (Nyst & 

Westendorp, 1839) plus D. frumarkernorum supported by ventral mantle fusions of Type 

A (13). Despite presenting a low Bremmer support, the relationship between the 

Cetoconchidae and Poromyidae shows a topology similar to that reported upon previously 

(Harper et al. 2000, 2006; Bieler et al. 2014), that is, forming a clade with the 

Cuspidarioidea Dall, 1886. This large clade composed of the Poromyoidea and 
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Cuspidarioidea is, in turn, supported by the presence of ctenidia modified into a variously 

thin to thick muscular septum (42) and by an active burrowing life-style (61, ambiguous). 

With a topology recovered in all our analyses, the well supported Cuspidarioidea 

clade is the largest amongst the other, carnivorous, groups of Anomalodesmata analyzed 

and comprises the Spheniopsidae (2 spp), Cuspidariidae (9 spp), Halonymphidae (2 spp) 

and Protocuspidariidae (2 spp). This clade is supported mainly by the following 

synapomorphies: a pallial sinus that does not extend beyond the mid dorso-ventral axis 

of the shell (17), siphons encased in a tissue sheath (21, non-ambiguous), siphonal 

tentacles in a 4I + 3E arrangement (26, ambiguous), an extensible inhalant siphon (31, 

ambiguous), a septum perforated by isolated pores (43, ambiguous) and Type C statocysts 

(53), noting that the latter was coded as missing data ‘?’ for nine of the fifteen species 

that form this clade due the absence of such information in the literature. 

 Inside this clade there are two main groupings: the first comprising the 

Spheniopsidae and the second comprising the Cuspidariidae, Halonymphidae and 

Protocuspidariidae, forming a sister-group. This analysis recovered the Spheniopsidae as 

being monophyletic supported by the following synapomorphies: the presence of 

fertilized eggs incubated in the visceral mass (56, non-ambiguous) and by the absence of 

labial palps (39, non-ambiguous). Members of this family have been used for the first 

time in a cladistical analysis and it demonstrates their relationship with other 

Cuspidarioidea. This new topology for the Spheniopsidae corroborates the previously 

observation made by Marshall (2002) and most recently by Machado et al. (2015) and 

Morton et al. (2016a, b) upon shell morphology plus anatomy, about a possible 

relationship between the Spheniopsidae and the Cuspidarioidea.   

The large sister-group formed by the Cuspidariidae, Halonymphidae and 

Protocuspidariidae is supported by four ambiguous synapomorphies: the presence of 

denticulate structures located lateral to the umbones (8), arenophilic gland secretions 

present on the posterior surfaces of the shell and siphons (14), a free style sac (47) and a 

dioecious sexuality (54), the latter three coded as missing data ‘?’ for some of the species 

analysed. This clade appears in our consensus tree with a large polytomy, that is, with an 

unresolved relationship between taxa analysed resulting from zero length branches. This 

topology is probably associated with the poor anatomical knowledge about the members 

of these families, and reflected in a low representativeness of them in our cladistic 
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framework, mainly for Cuspidariidae (Table 1). As a consequence, internally, only the 

monophyly of the Protocuspidariidae is recovered, where Protocuspidaria atlantica Allen 

& Morgan, 1981 and Multitentacula composita Krylova, 1995 are nested and supported 

by the following synapomorphies: an equivalve shell (2), a normal pedal musculature 

(35), reduced anterior and well developed posterior labial palps (41) and by ctenidia 

modified into a membranous septum (42). 

The polytomy between the Cuspidariidae and Halonymphidae is seen in all the 

most parcimonious trees, while the Protocuspidariidae has always been recovered as 

monophyletic. Figure 10, however, brings an alternative topology for Cuspidarioidea 

showing a grouping between Bathyneaera paleifera Krylova, 1993, Bathyneaera hadalis 

(Knudsen, 1970), Cardiomya cleryana (d'Orbigny, 1842), Cardiomya costellata 

(Deshayes, 1835), except Tropidomya diagonalis (Allen & Morgan, 1981), supported by 

the presence of projections on the exhalant inter-tentacular margin (30, ambiguous). This 

grouping is interesting because may suggest the possibility of a subdivision into 

Cuspidariidae to include the Cardiomyinae as previously proposed by Scarlato & 

Storagobatov (1983) and accepted by Krylova (1993: pp 52), but never before recovered 

by a phylogenetic analysis. A description and discussion about the possible functions and 

significance of these inter-tentacular projections was recently provided by Machado et al. 

(2017: pp 458). 

The consensus tree obtained from a total of 12 most parsimonious trees, resulting 

from our sensitivity analyses, are identified in Figure 8 showing the sensitivity plots 

(navajo rugs) on nodes of interest and in Figure 9 providing the set of synapomorphies 

cited above. No different overall resolutions were obtained for most of the analysed 

clades, indicating the strong stability of the phylogenetic relationships presented.  

 

Discussion 

For the purposes of this study, the shell features and internal anatomies of 61 species of 

Anomalodesmata were selected to make up the present cladistical analyses. For the first 

time, representatives of all 22 families of Anomalodesmata, included the newly, herein, 

described, Bentholyonsiidae and members of Clistoconchidae, Cetoconchidae, 

Protocuspidariidae and Spheniopsidae, were gathered together in the same phylogenetic 
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analysis. In comparison with the previous morphological cladistic work undertaken by 

Harper et al. (2000), this study contains about 258% more species (61 versus 17), 117% 

more genera (37 versus 17), 57% more families (22 versus 14), and 41% more characters 

(61 versus 43) thereby considerably increasing the representativeness of these groups and, 

as a consequence, allowing for a greater number of phylogenetic relationships to be 

identified for the Anomalodesmata.  

These results identify a different path towards our greater understanding of the 

internal relationships within the Anomalodesmata, where the most accepted sub-division 

into three clades, Septibranchia (Verticordiidae + Euciroidae + Lyonsiellidae + 

Poromyidae + Halonymphidae + Cuspidariidae), ‘thraciid’ (Thraciidae + Cleidothaeridae 

+ Myochamidae + Periplomatidae) plus ‘lyonsiid’ (polyphyletic Lyonsiidae + 

Clavagellidae + Pandoridae + Laternulidae) lineages supported by Harper et al (2006), 

Healy et al (2008), Bieler et al (2014) and in part by Combosh et al (2017), have not been 

wholly recovered here.  

The analysis herein suggests a deep division within the Anomalodesmata into four 

clades: (i), the Pholadomyoidea (Pholadomyidae + Parilimyidae) as sister group of all 

other Anomalodesmata; (ii), the Pandoridae as an monophiletic group, (iii) a large clade 

that includes nine families (Periplomatidae, Laternulidae, Clistoconchidae, 

Cleidothaeridae, Thraciidae, Myochamidae, Lyonsiidae, Clavagellidae, Penicillidae), and 

(iv), a generally deep water marine carnivorous lineage formed by 10 families 

(Euciroidae, Bentholyonsiidae fam. nov., Lyonsiellidae, Verticordiidae, Cetoconchidae, 

Poromyidae, Spheniopsidae, Cuspidariidae, Halonymphidae, Protocuspidariidae). 

Herein, the first three lineages referred in this paper as non-carnivorous, are usually 

composed of shallow-water marine anomalodesmatans. 
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Figure 9. Strict consensus of 12 trees obtained under implied weighting analysis with K-values of 7.319 

(topology identical to K-values of 9.137, 11.911, 16.667 and 26.708). A. non-carnivorous lineages; B. 

carnivorous lineage. Black circles = synapomophies; white circles = homoplasies. Numbers above branches 

are characters; numbers below branches are character states. 
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The non-carnivorous lineages 

Although a greater genus-level sampling is necessary, more specifically for the 

Periplomatidae, Clavagellidae and Penicillidae, our morphological analyses point to new 

taxonomic relationships within the Anomalodesmata when compared with some previous 

taxonomic groupings. According to the classification proposed by Bieler et al. (2010), for 

example, the superfamilies Pholadomyoidea (Pholadomyidae + Parilimyidae) and 

Clavagelloidea (Clavagellidae + Penicillidae) should be maintained, that is, have been 

recovered in our analysis, while the Pandoroidea (Pandoridae + Lyonsiidae), 

Myochamoidea (Myochamidae + Cleidothaeridae) and Thracioidea (Thraciidae + 

Periplomatidae + Laternulidae) need to be re-interpreted as will be discussed below. In 

addition, the monophyly of the Lyonsiidae and Thraciidae has been identified for the first 

time, while the Periplomatidae, Clavagellidae and Penicillidae were recovered as 

paraphyletic groups. For the monophyly of these two crypt/tube-building families, that is, 

the Clavagellidae and Penicillidae, specifically, our analysis suggests that Kendrickiana 

veitchi (B. J. Smith, 1971) may be a clavagellid due the absence of a fourth pallial aperture 

(15) and of a pedal disc (36), therefore, their re-allocation to the Clavagellidae would be 

necessary. The presence of both valves fused into the fabric of the adventitious tube of K. 

veitchi, however, does not support this re-allocation (Morton 2005, 2007) and which, 

therefore, the second author of this paper declines to support. 

Herein, the Pholadomyidae and Parilimyidae are nested forming a monophyletic 

group, the Pholadomyoidea, this consisting the sister-group to all other 

anomalodesmatans. As a consequence, some of character states shared by these families 

also represent the plesiomorphic states of the Anomalodesmata as a whole, for example: 

an equivalve shell (2), absence of a dorsal crack (3), absence of an internal shell buttress 

(4), absence of a posterior rostrum (5), absence of a lithodesma (12), absence of a pedal 

disc (36), labial palps (39), stomach Type IV (46) and a conjoined mid gut and style sac 

(47). 

The phylogenetic position observed to the deep-water species, Parilimya fragilis 

(Parilimyidae), has been recovered as a non-carnivorous member of the 

Anomalodesmata. In 10% of the implied weighting analyses (K value 3.280), however, 

this family was recovered from the Cuspidarioidea, specifically grouped with the families 

Cetoconchidae and Poromyidae (Poromyoidea). For this K value, not considered here due 



 

 
 

109 

to low support, the Parilimyidae shared three ambiguous synapomorphies with these 

carnivorous families, that is: the presence of an external primary ligament (9), a thin 

secondary ligament (11) and the absence of a ligamental lithodesma (12). Although, this 

topology has not been considered here, this specific situation deserves further attention 

because of an early suggestion made by Morton (1985a) in which it was hypothesised 

that species of Parilimya could reveal more about the origin of the Poromyidae and here, 

for the first time, a possible relationship between P. fragilis and a septibranch clade has 

been identified.  

In addition, although the shell morphology and details of the internal tissues of P. 

candida and P. fragilis have been described by Morton (1980, 1982), some limitations 

experienced during the dissections of these long-term preserved specimens plus the 

absence of any new fresh individuals, have prevented access to some important 

anatomical details, such as that of the stomach, labial palps and structures associated with 

the siphons. Some of these limitations have directly influenced the coding of some 

characters of P. fragilis, such as character 40 (labial palps type) and character 46 (stomach 

type), both coded as an ambiguous character ‘0/1’. In addition, a tentative re-analysis of 

the shells of P. fragilis is not possible since the type-specimen deposited in the Zoological 

Museum of the University of Bergen, Norway (ZMUB 17192), is missing. The topologies 

observed to these families (Pholadomyidae + Parilimyidae), however, in the present 

cladistical analysis, that is, as a sister-group to all other anomalodesmatans, re-inforces 

the evolutionary concept hypothesized by Morton (1985a) for the extant superfamilies of 

the Anomalodesmata as evolving from a pholadomyoidean stock is herein upheld. 

 The Pandoridae topology was recovered in most of the analyses is different from 

those reported upon in studies where the Pandoridae generally appears to be associated 

with either the Lyonsiidae (Harper et al. 2006; Combosh et al. 2017), Lyonsiidae + 

Laternulidae (Bieler et al. 2014) or with the Cleidothaeridae (Harper et al. 2000). In 

addition, it also shows a conflicting result in relation to fossil records that usually indicate 

a more recent origin for the Pandoridae, that is, the Cenozoic (Boss 1978). Herein, 

therefore, two hypotheses were considered in an attempt to explain the topology of the 

Pandoridae: (i), the absence of a lithodesma in the species analysed and (ii), the low 

representativeness of members of this family in our matrix dataset (Table 1). Our results 

suggest that the absence of a lithodesma (12) is a plesiomorphic state for the 

Anomalodesmata, showing that this calcified ligament arose only once during the 
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radiation of this sub-class and that was variably lost in some clades such as, for example, 

Poromyidae and in some representatives of the Laternulidae and Pandoridae. In Thracia 

meridionalis E. A. Smith, 1885 (Thraciidae) too, the presence of a lithodesma is seen only 

in juvenile individuals, suggesting a different interpretation for the function of this 

structure in the Anomalodesmata and questioning, if observed in other taxa, their real 

phylogenetic signal (Sartori & Domaneschi 2005). In addition, although neither Pandora 

inaequivalvis (Linnaeus, 1758) and Frenamya ceylanica (G. B. Sowerby I, 1835) have a 

lithodesma, other pandoriids such as, for example, Pandora braziliensis G. B. Sowerby 

II, 1874 and Pandora brevirostris Güller & Zelaya, 2016 have a well-development one 

(Güller & Zelaya 2016). Perhaps the inclusion of pandoriids with a lithodesma in our 

analyses could change the topology of this family within the Anomalodesmata although 

a more complete study of the anatomy of the above species would be first necessary. 

Traditional morphology-based classifications have consistently grouped the 

Thraciidae, Laternulidae and Periplomatidae within the Thracioidea (Boss 1978; Yonge 

& Morton 1980; Morton 1981, 1985a; Harper et al. 2000). Most recently, however, 

molecular approaches have suggested that these families could be, for example, separated 

into two different lineages, ‘thraciid’ (Thraciidae, Periplomatidae) and ‘lyonsiid’ 

(Periplomatidae) (Harper et al. 2006; Bieler et al. 2014). Now, with the inclusion of 

morphological data available for Clistoconcha insignis E. A Smith, 1910 

(Clistoconchidae), our results suggest a remodeling of the grouping of these families with 

the Periplomatidae + Laternulidae + Clistoconchidae forming a clade not directly related 

to the Thraciidae. The group Periplomatidae + Laternulidae + Clistoconchidae is 

supported by the presence of a dorsal crack in the shell (3) plus the presence of an internal 

shell buttress (4), both considered exclusive to those families and consequently absent in 

thraciids.  

 Although, the Thraciidae share other important characters with the 

Periplomatidae + Laternulidae + Clistoconchidae, the fact that could perhaps justify a 

greater proximity between them, would be the inclusion of Parvithracia lukini Kamenev, 

2002 into our analyses. If so, this would apparently displace the clade Thraciidae due to 

the presence of hinge teeth (secondary teeth) – a feature usually absent among 

confamilials. It is, however, true that the Thraciidae is known to be morphologically 

variable and, therefore, a greater representativeness should be considered within future 
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researches to include anatomical data about Asthenothaerus, Bushia, Cyathondonta and 

Skoglundia – all hitherto unstudied in any sufficient detail.   

The cementing bivalves belonging to the Cleidothaeridae (Cleidothaerus) and 

Myochamidae (Myochama and the non-cementing Myadora), specifically, herein 

considered to arise as independent clades different from previous analyses that have 

generally recovered these families either as sister-groups (Combosh et al. 2017) or nested 

with other anomalodesmatan clades (Dreyer et al. 2003; Harper et al. 2006; Bieler et al. 

2014). Our results suggest that the Cleidothaeridae and Myochamidae are valid families, 

although the monophyly of the former has not been tested, and neither has the probability 

that the cemented habit has arisen independently in these two families. Cementation in 

representatives of these families is from glandular secretions, the mechanisms appearing 

to be different between Myochama and Cleidothaerus, being via mantle margin glands in 

the former and via a sticky layer of outer periostracum in the latter (Harper & Morton 

2000; Morton & Harper 2001; Morton 2007). In addition, the ability to cement is not 

exclusive to the species belonging to the genera identified above, but can also be observed 

in the tube-builders Humphreyia strangei (Penicillidae) and Dianadema multangularis 

(Clavagellidae) (Morton 2003b, 2002b), although there is no ecological equivalence. 

These observations suggest that maybe this ability has arisen at least three times during 

the adaptive radiation of the Anomalodesmata, possibly at different times in the 

Myochamidae, Cleidothaeridae and Clavagelloidea.  

Considered by Yonge & Morton (1980) as the most primitive family among the 

Pandoroidea (Lyonsiidae, Myochamidae, Pandoridae, Cleidothaeridae), especially in 

terms of ligament structure, the Lyonsiidae presents their monophyly supported by two 

synapomorphies, that is, the presence of papillate tentacles covering the surface of the 

siphons (29) and a posterior adductor muscle larger than the anterior (33). The papillate 

tentacles covering the surface of the inhalant and exhalant siphons, seems to be an 

exclusive feature of lyonsiids, being observed for most the species reviewed in this study. 

Observed and illustrated for the first time by Yonge (1952a), the function of these small 

structures is unknown. They probably act as sensory organs, however, helping the short 

siphons to regulate the input/output of water into and out of the mantle cavity. The 

reduction of the anterior adductor muscle is also a common feature shared among the 

Lyonsiidae due to the effects of byssal attachment; although it is more evident in 

Entodesma navicula and Mytilimeria nuttali than in species of Lyonsia. Herein, a new 
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topology for the monophyletic Lyonsiidae is presented, nesting this family close the 

Clavagelloidea (Clavagellidae + Penicillidae) and sharing with them a single 

synapomorphy, that is, the presence of siphonal tentacles on the apertures and at the bases 

of the siphons (25). The close relationship between the Lyonsiidae and Clavagelloidea 

has been reported upon in part by Dreyer et al. (2003), Harper et al. (2006) and more 

recently by Combosh et al. (2017) and Williams et al. (2017), the latter using 

mitochondrial molecular data.  

Our analysis has also brought together representatives of all extant genera of the 

Clavagelloidea, showing for the first time a deep division of this superfamily into two 

main clades, the Penicillidae and Clavagellidae. This division is similar to that proposed 

by Morton (2007) where the Clavagelloidea would be divided into two functional clades, 

but now including information on Dianadema minima and Stirpulina ramosa (Morton 

2009, 2013).   

In summary, some factors such as the analysis of members of the Pholadomyidae 

and Parilimyidae as an anomalodesmatan ingroup, the inclusion of information on 

Clistoconcha insignis (Clistoconchidae) plus the considerable increase in the 

representativeness of the Clavagelloidea (10 species) in our morphological dataset, have 

identified new internal topological configurations relating to the phylogeny of the 

Anomalodesmata, specifically to the set of 12 families (Pholadomyidae, Parilimyidae, 

Pandoridae, Periplomatidae, Laternulidae, Clistoconchidae, Cleidothaeridae, Thraciidae, 

Myochamidae, Lyonsiidae, Clavagellidae, Penicillidae) now representing the non-

carnivorous lineages.  

The carnivorous lineage 

Our analysis recovered the Euciroidae, Verticordiidae, Poromyidae and Spheniopsidae as 

monophyletic clades, the Lyonsiellidae as paraphyletic and a part of the clade 

Cuspidarioidea (that is, Cuspidariidae + Halonymphidae + Protocuspidariidae + 

Spheniopsidae) as unresolved (polytomy), except for the Protocuspidariidae and 

Spheniopsidae. The monotypic Bentholyonsiidae fam. nov and Cetoconchidae were 

recovered in all our analyses and are supported by a set of seven and one synapomorphy, 

respectively. Our results suggest a possible re-interpretation of the Verticordioidea (that 

is, it is formed by the non-monophyletic families Lyonsiellidae and Verticordiidae plus 

the Euciroidae) and confirm for the first time the Cetoconchidae as a member of the 
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Poromyoidea (that is, Cetoconchidae + Poromyidae) and the Spheniopsidae as member 

of the Cuspidarioidea.  

Usually associated with the Verticordioidea Stoliczka, 1870, the Euciroidae arises 

here as an independent clade among the carnivorous lineage. Although sharing some 

characters with some Verticordioidea such as, for example: the presence of secondary 

hinge teeth, a thin secondary ligament, arenophilic secretions over the entire shell, a short 

and cone-shaped inhalant siphon and labial palps medially fused into a pouch/buccal sac, 

our analyses suggest that the Euciroidae should be removed from the Verticordioidea, 

although the present work recognizes some limitations during the encoding of some 

characters for the Euciroidae, based exclusively on data contained in the literature. In fact, 

there is a gap in current knowledge of the Euciroidae, in that all anatomical knowledge 

of this family is restricted to the works of Dall (1895), Poutiers & Bernard (1995) and 

Knudsen (1967: pp 302-304) who recorded for the first time prey inside of stomach of 

Euciroa eburnea (foraminifera + copepods) and Euciroa rostrata (20 foraminifera). An 

interesting discussion concerning Euciroa eburnea and other members of the 

Verticordiidae and Poromyidae was also provided by Poutiers & Bernard (1995) and, 

although short, the authors suggested that predation in Euciroa could be similar to the 

strategy used by representatives of the Verticordiidae, which, due to the absence of a 

raptorial inhalant siphon, probably capture their prey via sticky siphonal tentacles (Allen 

& Turner 1974; Morton 1987b).  

According to Allen & Morgan (1981), in general, members of Cetoconcha 

(Cetoconchidae) are basically ‘poromyids’, possessing similar labial palps, siphons, foot 

and stomach structure. Conversely, the same authors also called attention towards 

possible anatomical differences between Cetoconcha and Poromya such as the presence 

of an intermediate muscular septum between the condition observed in P. granulata and 

species of Cuspidaria plus three rows of grouped pores perforating it (without 

interfilamentar connections). Krylova (1991), analysing Pacific species, described a 

similar pattern of septal pores for Cetoconcha alephinae (Krylova, 1991) and Cetoconcha 

elegans (Krylova, 1991) with three rows of pores, but with the presence of interfilamentar 

connections. In addition, Krylova (1991) also highlighted the number of siphonal 

tentacles and the number of pores of each row to differentiate the species analysed. 

Herein, therefore, the morphological information concerning only one species of 

Cetoconchidae, Cetoconcha braziliensis, has been analysed, due to the availability of 
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anatomical information in the literature and the presence of some specimens deposited in 

the Museum of Comparative Zoology- Harvard University (MCZ 281315- holotype, 

357597), allowing a re-analysis of this species. In our re-analyses, no differences were 

found between the muscular septum of C. braziliensis and Poromya species; the presence 

of three rows of septal pores were confirmed; and a difference between the musculature 

associated with the foot of these species has been identified. Despite the contracted state 

of the museum specimens, C. braziliensis has a large foot with a normal pedal 

musculature similar to other carnivorous taxa, such as, for example, Protocuspidaria 

atlantica (MCZ 352417), while some species of Poromyidae, such as Poromya granulata 

(ZUEC 2238) and Cetomya tornata (MCZ 348406), have a reduced foot associated with 

a reduced pedal musculature. Our analysis has, therefore, recovered for the first time the 

Cetoconchidae as a member of the Poromyoidea corroborating some previous 

classifications as, for example Bieler et al. (2010) and Carter et al. (2011).  

The Cuspidarioidea has been recovered in all our analyses and is supported by a 

set of six synapomorphies and including now the monophyletic Spheniopsidae. The 

inclusion of spheniopsids in our analyses was only possible due to recent researches on 

the taxonomy and functional morphology of Grippina coronata and Spheniopsis 

brasiliensis from Brazilian waters (Machado & Passos 2015; Morton et al. 2016a, b). 

These studies provided, for the first time, details about the muscular septum, siphons, 

stomach and reproductive features of this family. Although the Spheniopsidae share some 

characteristics with other representatives of the Cuspidarioidea such as, for example, the 

presence of siphons encased in a tissue sheath (21), a 4I + 3E siphonal tentacle 

arrangement (31), a septum perforated by isolated pores (43) and statocysts of Type C 

(53); other characters such as the presence of fertilized eggs in the visceral mass (56) and 

the absence of labial palps (39) support our conclusion of the Spheniopsidae being 

monophyletic and seem to suggest that this clade may be a valid family. In addition, it is 

worth mentioning the absence of an arenophilic system (14) in members of the 

Spheniopsidae, at least in the species analysed here, showing for the first time the loss of 

this character within the Cuspidarioidea. Commonly associated as a synapomorphy of the 

Anomalodesmata (Sartori et al. 2006; Sartori 2008; Oliveira & Sartori 2013), the presence 

of arenophilic glands/secretions is not always recorded for representatives of this sub-

class, being absent in the Myochamidae, Thraciidae, Cleidothaeridae, Clistoconchidae 

and in some members of the Pandoridae, Clavagellidae, Penicillidae, Periplomatidae, 
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Poromyidae and Lyonsiellidae. So, we argue that the arenophilic glands and their 

secretions has been probably lost on multiple occasions during the adaptive radiation of 

the Anomalodesmata. 

The Cuspidariidae, in turn, is the most diverse family among the Anomalodesmata 

with more than 250 species recorded (Gofas & Bouchet 2015). Herein, this family was 

recovered as an unresolved clade nested within the Halonymphidae and 

Protocuspidariidae, probably due to its low representativeness in our matrix dataset, 

3.54% (see Table 1). Even with such low representativeness, however, previous 

researches have been successful in obtaining a monophyly for this family, although none 

of them have used representatives of the Halonymphidae and Protocuspidariidae in the 

same analyses (Dreyer et al. 2003; Harper et al. 2000, 2006; Combosh et al. 2017). 

Another unresolved topology for Cuspidarioidea was highlighted from the other 12 

equally parsimonious trees suggesting a grouping between species of Bathyneaera and 

Cardiomya (Cuspidariidae) - a relationship previously pointed to by Scarlato & 

Storagobatov (1983), Krylova (1993) and, most recently, by Machado et al. (2017) (see 

Fig. 10).  

Initially proposed by Scarlato & Storagobatov (1983) in a work with little 

morphological detailing, the Halonymphidae and Protocuspidariidae have been, until 

now, the target of many doubts in relation to their taxonomic status, being accepted as a 

valid-families by Krylova (1994b, 1995), Bieler et al. (2010), Carter et al. (2011) and 

rejected by Poutiers & Bernard (1995), Morton (2003a), Oliveira & Absalão (2009), and 

Allen (2011). This taxonomic rejection by some authors is based mainly in the 

inconsistency of morphological characters, generating insufficient data that, as a 

consequence, could help differentiate them from the Cuspidariidae. Conversely, the 

presence of more than five pairs of septal pores in species of Halonympha and Octoporia 

(Halonymphidae) and Protocuspidaria and Multitentacula (Protocuspidariidae) (Allen & 

Morgan 1981; Krylova 1994b, 1995) has been identified as an important morphological 

character to justify this taxonomic status. In addition, hinge dentition, the muscularised 

septum, the labial palps and the number of siphonal tentacles have also been recognised 

by some authors to differentiate these families from the Cuspidariidae (Poutiers 1984; 

Allen & Morgan 1981; Krylova 1994b, 1995; Allen 2011).  
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Figure 10. One distinct topology for the clade Cuspidarioidea, showing a grouping between species that 

have projections in the exhalant intertentacular margin (character 30), except Tropidomya diagonalis, 

suggesting a subfamilial division in the Cuspidariidae to include the ‘Cardiomyinae’. The 

Protocuspidariidae (underlined species) and Halonymphidae (*) are highlighted. Black circles = 

homologies; white circles = homoplasies. Numbers above branches are characters; numbers below branches 

are character states. 

Herein, therefore, we consider the Halonymphidae and Protocuspidariidae to be 

valid families following Bieler et al. (2010). Some problematic characters, such as the 

number of septal pores and siphonal tentacles, however, were not encoded in this study 

in an attempt to avoid misinterpretation of internal relationships among these families 

constituting the carnivorous lineage. The number of septal pores is highly variable among 

members of the Halonymphidae (8-20) and Protocuspidariidae (5-30) (Allen & Morgan 

1981; Krylova 1994b, 1995) suggesting, at least to us, that this variation could be 

associated with intra-specific variations in individual size and shape perhaps related to 

age. The same phenomenon has been identified for the number of siphonal tentacles, that 

may vary from 7 to 34 in species of Octoporia and 9 to 33 in Multitentacula (Krylova 
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1994b, 1995). In addition, according to Oliveira & Sartori (2013: pp. 7), the siphonal 

tentacles described by Krylova (1995) may be arenophilic papillae, which could generate 

a mis-interpretation of this structure and mis-represent the real number of siphonal 

tentacles in species of Multitentacula. Our analyses, however, show that even without the 

use of these characters, the clade formed by Protocuspidaria atlantica + Multitentacula 

composita (that is, the Protocuspidariidae) is always recovered, while the Halonymphidae 

(Halonympha depressa and Octoporia octoporosa) was not recovered in any of our 

analyses. This absence of support for the Halonymphidae, specifically, may suggest that: 

(i), the use of characters such as the number of septal pores and siphonal tentacles, though 

problematic, should be considered or (ii), the Halonymphidae do not have sufficient 

unique morphological features to justify their familial status and, therefore, the genera 

Halonympha and Octoporia should be considered for relocation within the Cuspidariidae.  

In addition, it is worth noting that although the vast majority of carnivorous 

anomalodesmatans live in deep waters, recent works also have shown the presence of 

living carnivorous in shallow waters as, for example, Cardiomya cleryana (10 to 20m) 

and Grippina coronata (21 to 53m) (Machado et al. 2017; Machado & Passos 2015; 

Morton et al. 2016a, b, respectively), suggesting that there may have been an evolutive 

divergence within the Cuspidarioidea specifically, shaping the evolution of this clade in 

two different types of carnivorous, that is, shallow and deep waters predators. Up until 

now, no morphological pattern has been observed that could differentiate these two 

possible sub-lineages of predators, however, more and more studies about the natural 

history of these organisms has brought new clues for understanding of the evolution of 

the Cuspidarioidea and consequently about the carnivorous lineage as a whole. 

Conclusions 

Probably evolving in the Palaeozoic, representatives of the Pholadomyidae and its sister 

group the Parilimyidae have subsequently and respectively radiated into shallower 

subtidal waters as suspension feeders and typically as predators of, generally, small 

benthic invertebrates. From such beginnings, this study has shown through a greater 

increase in genus-level representativeness and of characters choice and scoring, new 

internal relationships for this important marine bivalve sub-class. Morphological data on 

representatives of the Clistoconchidae, Cetoconchidae, Spheniopsidae and 

Protocuspidariidae have been gathered together for the first time and analysed in a 
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cladistical analysis and a new family has been described - the Bentholyonsiidae. Into the 

non-carnivorous lineages, the Lyonsiidae has been specifically recovered in all our 

analyses and the monophyly of this clade and its clustering with its the sister group the 

Penicillidae + Clavagellidae is an important step towards our understanding of the bizarre 

Clavagelloidea. We have also identified a well-supported grouping between the 

paraphyletic Laternulidae and the monotypic Clistoconchidae, forming a deeply nested 

sister group. For the monophyletic carnivorous clade, this study presents for the first time 

an imagined but never before analysed phylogenetic diversity of carnivorous 

anomalodesmatans. Herein, we have identified, for the first time, the Euciroidae as an 

independent clade from the Verticordioidea. The topology of the Cetoconchidae and 

Spheniopsidae within the Poromyoidea and Cuspidarioidea, respectively, has been 

confirmed for the first time in a cladistical analysis. In summary, therefore, our analyses 

have identified new internal relationships for the Anomalodesmata as well as, new 

elements for the reconstruction of the evolutionary history of this important group of 

marine bivalves, using a morphological perspective.  
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Appendix 1. List of museum lots containing voucher specimens that were previously 

analysed and/or re-analysed by the authors. Museum abbreviations: BMNH/NHM, 

Natural History Museum, London, United Kingdom; MCZ, Museum of Comparative 

Zoology- Harvard University, Cambridge, USA; ZMUB, Zoological Museum of the 

University of Bergen, Norway; WAM, Western Australian Museum, Perth, Australia; 

SAM, South Australian Museum, Adelaide, Australia; NSMT-MoR, Imperial Household 

to the National Museum of Nature and Science, Tokyo, Japan; NMV, National Museum 

of Victoria, Melbourne, Australia; SAM, South Australian Museum, Adelaide, Australia; 

SBMNH, Santa Barbara Museum of Natural History, California, USA; MA, Auckland 

War Memorial Museum, New Zealand; AM, Australian Museum, Sydney, Australia; 

MZUSP, Museu de Zoologia da Universidade de São Paulo, Brazil; SAM, South African 

Museum, Cape Town, Africa; WAM, Western Australian Museum; ZUEC, Museu de 

Zoologia da Universidade Estadual de Campinas- São Paulo, Brazil; PBBM, Bernice 

Pauahi Bishop Museum, Hawai, USA; MNRJ, Museu Nacional do Rio de Janeiro, Brazil; 

DBUA, Department of Biology of the University of the Azores, Portugal; BMSM, Bailey-

Matthews National Shell Museum- Florida, USA; AM, Australian Museum- Australia. 

 Species used as ‘outgroup’: 

Family Trigoniidae (Bivalvia: Palaeoheterodonta) 

Neotrigonia margaritacea: The original specimens used by Morton (1987) were not 

found, probably were not deposited in a Museum; MCZ 83283. 

 

Family Carditidae (Bivalvia: Archiheterodonta) 

Cardites floridanus (new comb. to Carditamera floridana): MCZ 383274, 295688, 

289937, 289953. 

 

Family Thyasiridae (Bivalvia: Imparidentia) 

Thyasira trisinuata: MCZ 347671, 355327, 355166, 375810. 

 

 

Species of Anomalodesmata:  

 

Family Pholadomyidae 

Pholadomya candida: NHM 1969266, 19525108, 19677688; MCZ 387668. 

 

Family Parilimyidae 

Parilimya fragilis: ZMUB 17192, this lot is missing. 

 

Family Pandoridae 

Frenamya ceylanica: BMNH 1983102; MCZ 385771. 

Pandora inaequivalvis: MCZ 374289. 

 

Family Periplomatidae 
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Offadesma angasi: NHM 1894; MCZ 23173. 

Cochlodesma praetenue: MCZ 375545. 

Family Laternulidae 

Laternula truncata: The original specimen(s) used by Morton (1973) were not found, 

probably were not deposited in a Museum; MCZ 233215. 

Laternula elliptica: 10 preserved specimens in the private collection of Dr. Flávio Dias 

Passos, Laboratory of Malacology, Universidade Estadual de Campinas, São Paulo, 

Brazil. 

 

Family Clistoconchidae 

Clistoconcha insignis: NHM 1911.8.30.18, 1911.8.30.19, 1911.8.30.20, 19911.8.30.21, 

19911.8.30.23; SAM A37285. 

 

Family Cleidothaeridae 

Cleidothaerus albidus (new comb. to Cleidothaerus maorianus): The original 

specimen(s) used by Morton (1974) to described the anatomy were not found, probably 

were not deposited in a Museum; MCZ 182201.  

 

Family Thraciidae 

Trigonothracia jinxingae: BMNH 1994049; 

Thracia meridionalis: MZUSP 40934, 40935, 40936, 27/880; 5 preserved specimens in 

the private collection of Dr. Flávio Dias Passos, Malacology laboratory, Universidade 

Estadual de Campinas, São Paulo, Brazil. 

 

Family Myochamidae 

Myadora striata: MA104092, MA80208; MCZ 60089. 

Myochama anomioides: NHM 1887.2.9.2452, 1887.2.9.2453, 1857.11.18.62, 

1887.2.9.2454, 1857.11.18.8, 1887.2.9.2455; MCZ 379067. 

 

Family Lyonsiidae 

Entodesma navicula (new comb. to Entodesma saxicola): SBMNH 3119, 3120; MCZ 

239531.  

Lyonsia californica: MCZ 63945. 

Lyonsia hyalina: MCZ 182003. 

Mytilimeria nutalli: MCZ 61821. 

 

Family Penicillidae 

Humphreyia strangei: BMNH 1910, 12.31.1; WAM S12727, S12726, S12725. 

Brechites attrahens (new comb. to Brechites vaginiferus): NHM 1984026; MCZ 31, 

32406. 

Kendrickiana veitchi: NMV F27419; SAM D14890, D14992, D14993. 

Nipponoclava gigantea: NSMT 73509; MCZ 44735. 

Foegia novaezelandiae: WAM S10960; MCZ 387671. 

Verpa philippinensis (new comb. to Penicillus philippinensis): MCZ 342343.  
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Family Clavagellidae 

Dacosta australis (new comb. to Clavagella australis): BMNH 198249; MCZ 387672. 

Stirpulina ramosa: NSMT 20709. 

Dianadema multangularis: SAM TD16110. 

Bryopa aligamenta: NSMT 73507. 

 

Family Euciroidae 

Euciroa eburnea: MCZ 387669. 

 

Family Bentholyonsiidae fam. nov 

Bentholyonsia teramachii: WAM S14105; NSMT Mo50619; Mo73490 (missing), 

Mo56343. 

 

Family Lyonsiellidae 

Policordia densicostata: BMNH 1985078, 1985079, 1985080; MCZ 272769, 348053, 

357595. 

Allograma formosa: NHM 1885.11.5.1210; PBBM 204791. 

Lyonsiella abyssicola: BMNH 198575, 198576, 198577; MCZ 272772, 348034. 

 

Family Verticordiidae 

Vertambitus triangularis (new comb. to Verticordia triangularis): BMNH 198574; MCZ 

353653, 348045. 

Halicardia philippinensis: The original specimen(s) used by Morton (1973) were not 

found, probably were not deposited in a Museum; MCZ 85837. 

Halicardia nipponensis: Personal collection of Prof. Dr. Takuma Haga. 

Trigonulina ornata: NMNH 856388, 1237124, 1237122; SMNH 856388, 1237124, 

843174, 800037, 891378; ZUEC 2227, 2228 plus four preserved specimens in process of 

description (Museu de Zoologia da Universidade Estadual de Campinas- Unicamp, 

Brazil.  

 

Family Cetoconchidae 

Cetoconcha braziliensis: MCZ 281315. 

 

Family Poromyidae 

Poromya granulata: The original specimen(s) used by Morton (1973) were not found, 

probably were not deposited in a Museum; ZUEC 2238; MCZ 163/77.  

Poromya rostrata: MCZ 2240; ZUEC 2240, 2242. 

Cetomya tornata: MCZ 353657, 348406. 

Dillema frumarkernorum: BMSM 15029. 

 

Family Spheniopsidae 

Grippina coronata: ZUEC BIV 6167, 6181, 6183, 6203, 6204; MNRJ 26279, 26280; 

MZUSP 117138, 117139. 
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Spheniopsis brasiliensis: ZUEC BIV 6173, 6486, 6192; MNRJ 26281, 26282, 26283, 

26284; MZSP 117134, 117135, 117136, 117137.  

 

Family Cuspidariidae 

Cuspidaria cuspidata: The original specimen(s) used by Yonge & Morton (1980) were 

not found, probably were not deposited in a Museum; MCZ 378947, 226442. 

Cuspidaria obesa: MCZ 387673. 

Cardiomya costellata: DBUA 158, 162, 606, 614; MCZ 352385  

Cardiomya cleryana: ZUEC-BIV 5119 to 5141. 

Bathyneaera hadalis: MCZ 281308, 377976. 

Myonera paucistriata: MCZ 349123. 

Tropidomya diagonalis: MCZ 281311, 348004. 

Luzonia morganae: MCZ 375553. 

 

Family Halonymphidae 

Halonympha depressa: MCZ 348009. 

Octoporia octaporosa: MCZ 281307. 

 

Family Protocuspidariidae 

Protocuspidaria atlantica: MCZ 281314
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Appendix 2. Data matrix scored by 61 taxa plus 61 morphological characters. Abbreviations: n= not applicable, ?= miss data, x/y= ambiguous. 

 

 000000000 

123456789 

1111111111 

0123456789 

2222222222 

0123456789 

3333333333 

0123456789 

4444444444 

0123456789 

5555555555 

0123456789 

66 

01 

Neotrigonia margaritacea 400002100 n20n0000nn nnnnnnnnnn nn00000001 005nnn112? 000?010000 n0 

Carditamera floridana 50000nnn0 n00?0000nn nnnnnnnnnn nn00000001 000nnn1101 000?010002 n0 

Thyasira trisinuata 600001101 n0000000nn nnnnnnnnnn nn02000001 ??6nnn1120 000?0?0000 n0 

Pholadomya candida 000001100 0001111110 00100nnn00 n000100201 000nnn1110 1011100000 0/11 

Parilimya fragilis 000000nn0 0000111111 00100nnn00 n200020111 0/110nnn0/1120 0002100000 01 

Dacosta australis 020000nn1 2102301110 1021321000 0002010001 000nnn1120 0004110010 12 

Stirpulina ramosa 020000nn1 1102001110 1020321000 0002010001 000nnn?121 00001?0010 12 

Dianadema multangularis 020000nn1 1102301110 1020321000 0000010001 000nnn??20 0000??0110 12 

Bryopa aligamenta 020000nn2 n102001110 1020321000 0000020001 000nnn??21 000??10010 12 

Brechites attrahens 000000nn1 1112121010 1021321000 001n011001 000nnn1?20 0004110010 12 

Humphreyia strangei 000000nn1 1112121010 1020321000 0000011001 000nnn?121 0004110210 12 

Verpa philippinensis 000000nn1 11?2011?10 1020321000 0001021001 000nnn??20 0004110010 12 

Foegia novaezelandiae 000000nn1 11?2111110 1020321000 001n021001 000nnn??20 000???0010 12 

Kendrickiana veitchi 000000nn1 11?2301110 1020321000 001n010001 000nnn??20 0004??0010 12 

Nipponoclava gigantea 000000nn1 11?2111110 1020321000 0001001001 000nnn??20 0004??0010 12 

Cleidothaerus albidus 020001101 3111011100 0000201000 n001020001 000nnn1100 0003110300 02 

Cuspidaria cuspidata 210011011 2111401101 0111310000 0300010011 1121000120 0005010000 00 

Cuspidaria obesa 210011011 2111401101 0111310000 0300010011 1121000120 0005010000 00 

Cardiomya cleryana 210011011 2111401101 0111310000 1300010011 1121000020 0005010001 00 

Cardiomya costellata 210011011 2111401101 0111310000 ?300010011 1121000020 00051100? 00 

Bathyneaera paleifera 210010nn1 21?1401101 0111310000 1300010011 11210000?? 000???0001 00 

Rhinoclama halimera 210011011 21?1401101 0111310000 03000?0011 11210000?? 000???0000 0? 

Bathyneaera hadalis 210010nn1 21?1?01101 0111310000 1300010011 11210000?? 000?0?0000 00 

Luzonia morganae 210011101 2111?01101 011?310000 0300010011 112100002? 000?010000 00 

Tropidomya diagonalis 210011101 2111?01101 0111310000 1300010011 1121000??? 000?0?0001 00 

Halonympha depressa 210111111 2111?01101 0111310000 0300010011 11/221000?? 000?0?0000 00 
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Appendix 2. Data matrix (continue) 

 000000000 

123456789 

1111111111 

0123456789 

2222222222 

0123456789 

3333333333 

0123456789 

4444444444 

0123456789 

5555555555 

0123456789 

66 

01 

Octoporia octoporosa 210010nn1 2111401101 0111310000 0300010011 11/221000020 000???0000 00 

Protocuspidaria atlantica 200011011 2111?01101 0111310000 0300000011 1241000020 000?010000 00 

Multitentacula composita 200010nn1 2111401101 0111311000 0301000011 12410000?? 000???0000 00 

Grippina coronata 210001111 2111001101 0111310000 0300010010 nn2100012? 01051?1000 00 

Spheniopsis brasiliensis 210011111 2111001101 0111310000 0300010010 nn2100012? 00051?1000 00 

Poromya granulata 1/200001100 1000001001 0001311000 0400010011 1320010020 0002100000 00 

Cetomya tornata 1/210001100 1001001001 0001311000 0400010011 1320100020 000?100000 00 

Lissomya rotundula 1/200001101 1001?01001 0001311000 04000?0011 1320100??? 000?1?0000 00 

Dillema frumarkernorum 1/200001100 1000001001 0001311000 0400010011 1320010??? 000?1?0002 02 

Cetoconcha braziliensis 1/210000nn0 0001?01001 0011311000 0400000011 1320010120 000?100000 00 

Allograma formosa 000000nn1 1111001001 0011311100 0400010111 141nnn0121 0002100002 01 

Lyonsiella abyssicola 010000nn1 1011201001 0011311100 0100010011 111nnn0121 0002100001 01 

Policordia densicostata 010000nn1 1111201001 0011311100 0100010011 111nnn012? 000?100002 01 

Policordia hispida 010000nn1 111?201001 00?1311100 0100010011 111nnn012? 000?100001 0? 

Bentholyonsia teramakii 010000nn1 2112111100 0011311000 0000010111 101nnn0120 00040?0000 01 

Vertambitus triangularis 010001101 1011201001 0011311100 0100010011 111nnn0121 0002110002 01 

Halicardia philippinensis 010001101 1011?01001 0001211100 n100010011 111nnn012? 002???000? 01 

Halicardia nipponensis 010001101 1011?01001 0001211100 n100010011 111nnn0120 002???0001 01 

Spinosipella deshayesiana 010001101 1011201001 0011311100 0100010011 1130000121 000?100001 01 

Trigonulina ornata 000001101 1011201001 0011311100 0100010011 111nnn0121 0003100000 01 

Euciroa pacifica 0/210001111 201??01000 00?1311000 0100000001 0430000121 000?1?0000 01 

Euciroa eburnea 0/210001111 201?201000 00?1311000 0100000001 043000012? 000?1?0000 01 

Entodesma navicula 0/310000nn1 1111211100 0000321001 0002010001 000nnn1120 0002110002 01 

Lyonsia hyalina 0/310000nn1 1111211100 0010321001 0002010001 000nnn1120 00021?0002 01 

Lyonsia californica 0/310000nn1 1111211100 0010321001 0002010001 000nnn1120 000?11000? 01 

Mytilimeria nuttallii 0/320000nn1 1111211100 0000321001 0002010001 000nnn1120 000?1?0000 02 

Pandora inaequivalvis 020001101 1101001000 0010301000 0000010001 000nnn1101 0002100000 01 
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Appendix 2. Data matrix (continue) 

 000000000 

123456789 

1111111111 

0123456789 

2222222222 

0123456789 

3333333333 

0123456789 

4444444444 

0123456789 

5555555555 

0123456789 

66 

01 

Frenamya ceylanica 020001101 1101001000 0010301000 0000010001 000nnn1121 0002100000 01 

Myadora striata 020001011 1011011100 0000301000 0000010001 000nnn1120 0004110000 00 

Myochama anomioides 020001011 1011001100 00000nnn00 n000010001 000nnn1120 0004110100 02 

Offadesma angasii 021100nn1 2110111100 0000201000 0000010001 000nnn1121 0003100000 01 

Cochlodesma praetenue 011100nn1 2111001100 0000301000 0000010001 000nnn1120 000?100000 01 

Laternula truncata 011100nn1 2111301110 1021301010 0001010001 000nnn1121 0002020000 01 

Laternula elliptica 011100nn1 210?301110 102???100? 000?010001 000nnn112? 000?120000 01 

Trigonothracia jinxingae 210000nn1 2111001200 0001301000 0000020001 000nnn1121 0003100000 01 

Thracia meridionalis 210000nn1 2121011100 0001301000 0000010001 000nnn1120 0004110000 01 

Parvithracia lukini 210001011 211??11200 00?1301000 0000010001 000nnn1120 000?1?0000 01 

Clistoconcha insignis 212100nn1 2012001110 1021301000 0000020001 000nnn1120 0002010000 01 
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CAPÍTULO 3 

The use of Micro-Computed Tomography as a non-invasive tool for 

anatomical study of bivalves (Mollusca: Bivalvia)  

FABRIZIO MARCONDES MACHADO & FLÁVIO DIAS PASSOS 

 

ABSTRACT 

The X-ray microtomograph is a non-invasive technique capable of generating 2D images 

and 3D tomographic reconstructions of the small-sized bivalves without altering or 

destroying the specimens. Bivalvia outstands as its second largest class of Mollusca, 

comprising about 8,000 Recent species, for which anatomical data have been 

fundamental to understand the various aspects related to their taxonomy, phylogeny and 

biology. Among Bivalvia, the Anomalodesmata Dall 1886 stands out for harbouring the 

rarest and most specialized marine species, being considered a key group for 

understanding the phylogenetic backbone of this class. The difficulty in accessing 

anomalodesmatans makes that group remains one of the least known and least 

understood groups of Bivalvia, with 80% of their species without any anatomical 

information. In order to explore and evaluate the use of X-ray microtomography as a new 

tool for the anatomical description of marine bivalves and to increase the knowledge 

about the anomalodesmatans, fleshy fixed and museum species of seven different families 

of Anomalodesmata were scanned. Herein, tomographic anatomical descriptions of 

Pandora pinna, Lyonsia alvarezii, Allograma formosa, Trigonulina ornata, Poromya 

rostrata, Cetoconcha spinosula, Cetoconcha smithii and Cuspidaria glacialis were 

provided, highlighting the main internal features for the systematics of Anomalodesmata. 

The tomographic images allow the description of important anatomical structures as 

mantle, ctenidia, labial palps, siphons and details about the digestive, reproductive and 

nervous systems, expanding the knowledge on the taxonomy of the group as whole. The 

re-discussion of some organs of A. formosa, as well as, the reallocation of Poromya 

spinosula into the genus Cetoconcha also was possible through a tomographic approach. 

This non-destructive tool is, therefore, very efficient for the anatomical description of 

marine bivalves allowing a complete and precise interpretation of the internal tissues via 

high resolution tomographic images. The potential of this tool allied to the constant 

development of new scanners, brings new perspectives for the anatomical study of 

bivalves, making of this technique a potential tool for the development of a new taxonomic 

era.  

 

INTRODUCTION
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Among the Mollusca, the Bivalvia outstands as its second largest class, 

comprising about 8,000 known Recent species (Rosenberg 2014, Gofas 2017), for which 

anatomical data have been fundamental to understand the various aspects related to their 

taxonomy, phylogeny and biology, such as the mode of feeding and locomotion, and the 

details of the reproduction and development (e.g., Purchon 1959, 1960, 1963, Cox 1969, 

Morse & Zardus 1997, Morton et al. 1998, Giribet 2008). Traditionally, the knowledge 

about the anatomy of bivalves has been constructed through observations made by 

dissections, histology and electron microscopy (e.g., Pelseener 1911, Atkins 1937, Stasek 

1963, Knudsen 1970, Yonge 1982, Morton 1985, Purchon 1987, Passos & Machado 

2014, Morton et al. 2016a), techniques which commonly result in permanently change of 

the original sample, and for this collectively called as “invasive”. Through these studies, 

the animal is sectioned (for histology), or modified by a metallic coating (for SEM), or 

completely destroyed (in the case of dissections), this representing a particular problem 

when a limited number of specimens or just one specimen of the species are available 

(Candás et al. 2016). 

In the last years, by using micro-computed X-ray tomography (µCT or micro-CT), 

the acquisition of images both in 2D and 3D has greatly improved anatomical studies, 

allowing observations without altering or destroying the specimens (Golding et al. 2009, 

Faulwetter et al. 2013a, Fernández et al. 2014, Parapar et al. 2017). The Micro-CT is also 

faster and capable of generating sections in three planes (sagittal, frontal, transverse) from 

a single specimen, impossible via histological approach (Golding et al. 2007, Candás, 

2016). Although this novel non-invasive tool also has limitations, as for example, the 

difficult to distinguish organs with a similar density, it expands the possibilities for the 

study of internal tissues, consequently, bringing a new perspective for the anatomical 

studies of small and rare marine bivalves. 

Among the six monophyletic groups that make up Bivalvia, Anomalodesmata 

stands out for harbouring the rarest species, since many occur in deeper waters and are 

usually restricted to highly specialized niches (Morton 1985, Harper et al. 2000, Allen 

2008, Machado et al. 2017). In addition, the difficulty in accessing the species of this 

group, both in the field and in museums, makes that Anomalodesmata remains one of the 

least known and least understood groups of Bivalvia (Harper et al. 2006). According to 

Machado et al. (2018, submitted), just about 20% of all species of Anomalodesmata have 

any information about their internal tissues. 
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In this context, the main goal of this paper is to explore and evaluate the use of X-

ray microtomography as a non-destructive tool for the anatomical description of marine 

bivalves. For this purpose, fleshy fixed and museum species of seven different families 

of Anomalodesmata were selected, aiming to increase the anatomical knowledge of this 

group and to elaborate brief anatomical descriptions highlighting the main internal 

features used for taxonomy and systematics of this group. 

MATERIAL AND METHODS 

Specimens 

Eight bivalve specimens from eight different species were used for µCT scanning, all 

belonging to the clade Anomalodesmata (Bivalvia): Pandora pinna (Montagu, 1803) and 

Cuspidaria glacialis (Sars G. O., 1878) collected in the 60’s decade, stored in the MCZ 

(Museum of Comparative Zoology- Harvard University) – USA; Poromya rostrata 

Rehder, 1843, Cetoconcha smithii Dall, 1808 collected in the 90’s; and Lyonsia alvarezii 

d’Orbigny, 1846, Poromya spinosula Thiele, 1912, Allograma formosa (Jeffreys, 1882) 

and Trigonulina ornata d’Orbigny, 1853 in the 2000s (freshly fixed specimens), 

deposited in the ZUEC (Museu de Zoologia da Universidade Estadual de Campinas) – 

Brazil. Table 1 provides an overview of the specimens employed for imaging, as well as 

GPS coordinates for the localities, depth and dimensions. 

Contrast solution 

The specimens were stained using a solution containing 0.3% phosphotungstic acid 

(PTA), which also included 3% dimethyl sulfoxide (DMSO) to increase cell membrane 

permeability, in ethanol (at 95% concentration) (protocol adapted of Faulwetter et al. 

2013b and Fernández et al. 2014). However, to compare the effectiveness of contrast in 

the internal tissues and the immersion time of the samples in the solution, two different 

PTA contrast solutions were tested: (i), elaborated from an initial concentration of 

99.995% of acid (pure concentration) and (ii), from an already diluted solution as a 

concentration of 10% of PTA. Once stained the specimens were placed into small plastic 

tubes of 0.5 ml (for small specimens) and 1.5 ml (for large specimens) submerged in clean 

ethanol (95% EtOh) and closed at the top end using Parafilm (Pechiney Plastic Packaging 

Co., Chicago, Illinois, USA) to be scanned. All specimens were scanned in their full-

length prioritizing the visualization of all internal structures, important for the anatomical 

description and taxonomy of these bivalves.   
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Table 1. List of specimens used for µCT scanning. 

 

 

Micro-computed tomography (image acquisition) 

Imaging was performed using two µCT scanners (Bruker MicroCT, Kontich, Belgium), 

SkyScan 1173 equipped with X-ray source of 40-130 Kv, Flat Panel sensor of 2240x2240 

pixels and maximum detectability of 5 µm; and SkyScan 1272 equipped with X-ray 

source of 20-100 kV, Flat Panel sensor of 14450x14450 pixels and maximum 

detectability of 0,3-0,4 µm. Scanning parameters for these two µCT scanners were as 

follows: SkyScan 1173, source voltage = 35–123 kV, source current = 60-140 mA, 

exposure time = 350- 3,200 ms, frames averaged = 4–6, random movement = 10, filter= 

no, binning = no, flat field correction= on, and scanning time = about 40–166 min; and 

Family Species Specimen data Specimen       

dimensions 

Staining 

information 

Scanning 

parameters 

Pandoridae Pandora 

pinna 

(Montagu, 

1803) 

MCZ 375576; collected July 

1967; Bay of Biscay, Atlantic 

Ocean; GPS 47°40'N, 5°0'W; 

fixed in formalin, stored in 80% 

EtOh 

1 mm 

diameter, 

9 mm 

length 

0.3% PTA-

10% + 3% 

DMSO for 

38 days. 

SkyScan 1173, 

106 Kv, 60 

µA, 41 min 9 

s, 6.31 µm 

Lyonsiidae Lyonsia 

alvarezii 

d’Orbigny, 

1846 

ZUEC 7005; collected July 2014; 

Araçá Bay, São Paulo, Brazil; 

GPS 23º49′20′′S, 45º24′10′′W, 20 

m; fixed in glutaraldehyde, stored 

in 95% EtOh 

2.1 mm 

diameter, 

6 mm 

length 

0.3% PTA-

99,9% + 3% 

DMSO for 3 

days 

SkyScan 1272, 

37 Kv, 140 

µA, 3h 45 min 

11 s, Al 1mm, 

4.24 µm 

Lyonsiellidae Allograma 

formosa 

(Jeffreys, 

1882) 

ZUEC 7003; collected September 

2013 on the continental slope, 

Argentina; GPS 37°49.661'S, 

54°7.943'W, 1395 m; fixed and 

strored in 95% EtOh 

5.8 mm 

diameter, 

12.6 mm 

length 

0.3% PTA- 

10% + 3% 

DMSO for 

38 days 

SkyScan 1173, 

123 kV, 63 

µA, 1h 2 min 

14 s, 6.37µm   

Verticordiidae Trigonulina 

ornata 

d’Orbigny, 

1853 

ZUEC 7004; collected February 

2009; Campos Basin, Rio de 

Janeiro, Brazil; GPS 22º55'7,5"S, 

42º0'49,2"W, 29 m; fixed in 

formalin, stored in 70% 

1 mm 

diameter, 

3.2 mm 

length 

0.3% PTA-

99.9% + 3% 

DMSO for 3 

days 

SkyScan 1272, 

35 Kv, 140 

µA, 5h 4 min 

43 s, 4 µm 

Poromyidae Poromya 

rostrata 

(Rehder, 

1843) 

ZUEC 2243; collected January 

1998; São Paulo, Brazil; GPS 

25º43'90''S,45º09'50''W, 511 m; 

fixed in formalin, stored in 70% 

EtOh 

2.2 mm 

diameter, 

6.5 mm 

length 

0.3% PTA-

99.9% + 3% 

DMSO for 3 

days 

SkyScan 1272, 

70 Kv, 142 

µA, 3h 40 min 

17 s, Al 0.5 

mm, 4.66 µm. 

Cetoconchidae Cetoconcha 

spinosula 

(Thiele, 

1912) 

ZUEC 7002; collected September 

2013 on the continental slope, 

Argentina; GPS 37°49.661'S, 

54°7.943'W, 1395 m; fixed and 

strored in 95% EtOh 

4.6 mm 

diameter, 

13.8 mm 

length 

0.3% PTA-

99.9% + 3% 

DMSO for 3 

days 

SkyScan 1173, 

35 Kv, 140 

µA, 2h 46 min 

40 s, 7.08 µm 

Cetoconchidae Cetoconcha 

aff. smithii 

Dall, 1808 

ZUEC 2235; collected Setember 

1998; São Paulo, Brazil; GPS 

24º20'53''S, 43º46'76''W, 505 m; 

fixed in formalin, stored in 70% 

EtOh 

2.7 mm 

diameter, 

7.1 mm 

length 

0.3% PTA-

99.9% + 3% 

DMSO for 3 

days 

SkyScan 1272, 

70 Kv, 142 

µA, 3h 37 min 

23 s, 5 µm 

Cuspidariidae Cuspidaria 

glacialis 
(Sars G. O., 

1878) 

MCZ 388260; collected June 

1961; Gulf of Maine, Atlantic 

Ocean; GPS 43°0'N, 69°45'W, 

3300 m; stored in 80% EtOh 

3.5 mm 

diameter, 

13 mm 

length 

0.3% PTA-

10% + 3% 

DMSO for 

35 days 

SkyScan 1173, 

120 Kv, 61 

µA, 40 min 36 

s, 8.14 µm 
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SkyScan 1272 source voltage = 35–70 kV, source current = 140-142 mA, exposure time 

= 658-3,751 ms, frames averaged = 3–5, random movement = 10, filter= Al, binning = 

no, flat field correction= on, and scanning time = about 217–304 min. Images were 

reconstructed using the software Nrecon and processed with the software CTAnalyzer. 

DataViewer software was used for the visualization and interpretation of 2D serial 

tomographic sections. The plates of 2D images were made using inverse background to 

improve the sharpness and consequently the visualization of the virtual sections. CTVox 

software was used to perform the 3D volume rendering and to assist in the virtual 

dissections. Density-based false-colour renderings were applied to the data in order to 

facilitate the visualization of the internal structures.  

Anatomical description  

The mantle, siphons, ctenidia, labial palps, musculature and the organs of the digestive, 

reproductive and nervous system were specially emphasized and described, when 

possible. Some shell features of these species (outline, thickness, outer sculpture and 

ligament) also had been provided using stereomicroscope (Fig. 1). In order to put these 

species in a taxonomic context, a summary about the most accepted classification for 

these species was also provided before each description (see Bieler et al. 2014). At the 

end of each description there is a list containing the main references that helped us in the 

identification of the species and interpretation of the tomographic images. In addition, it 

worth noting that among the bivalves studied, just Allograma formosa (Lyonsiellidae) 

already had detailed anatomical information available in the literature (see Morton 

1984b), while the other seven species were hitherto unknown as to their anatomical 

aspects. 

RESULTS 

Herein, the 3D tomographic reconstructions were able to reproduce with good quality all 

large anatomical structures (siphons, ctenidia, labial palps, etc) of the eight specimens 

analysed, being therefore extremely useful for the visualization and interpretation of these 

structures. Specifically, for some minute organs of the visceral mass (small nervous 

ganglia, kidney, heart) the three-dimensional reconstructions were not very effective, 

being that some of them could not be easily visualized. For these minute organs, therefore, 

visualization was only possible through the 2D tomographic sections. Anatomical 
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structures measuring less than 4µm, as for example, mantle margin glands, statocysts and 

gametic cells were not possible to be observed through µCT scanners used in this study. 

Figure 1. Shell photomicrographys of the specimens scanned. A. Pandora pinna (MCZ 

375576), B. Lyonsia alvarezii (ZUEC 7005), C. Trigonulina ornata (ZUEC 7004), D. 

Allograma formosa (ZUEC 7003), E. Cetoconcha spinosula (ZUEC 7002), F. Poromya 

rostrata (ZUEC 2243), G. Cetoconcha aff. smithii (ZUEC 2235), H. Cuspidaria glacialis 

(MCZ 388260). Scale bars: A, B, D-H = 2 mm, C = 1 mm.      

Below follow the anatomical descriptions for these bivalves plus two anatomical 

plates for each species: (i) 2D tomographic images, with transverse, sagittal and frontal 

sections, (ii) 3D renderings, showing the virtual dissections.  

Systematics 

Class Bivalvia Linnaeus, 1758 

Subclass Heterodonta Neumayr, 1884 

Infraclass Euheterodonta Giribet & Distel, 2003 
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Superorder Anomalodesmata Dall, 1889  

Family Pandoridae Rafinesque, 1815 

Genus Pandora Bruguière, 1797 

Pandora pinna (Montagu, 1803) 

(Figs. 2, 3) 

Description 

Shell: subquadrate to subovate, robust, very compressed, strongly inequivalve with left 

valve inflated and right valve flat or slightly concave, lithodesma absent. Mantle: mantle 

margin fused forming a short anterior pedal aperture and posteriorly forming short and 

very similar siphons; fourth pallial aperture absent. Siphons: inhalant and exhalant 

siphons similar in size and outline, simple tube-shaped, fused almost to the tip but not 

covered with periostracum; apertures of the inhalant and exhalant fringed with a ring of, 

respectively, ~18 and ~16 short tentacles. Ctenidia: eulamellibranch and plicate; 

complete with a large inner demibranch and a much reduced outer demibranch consisting 

only of reflected descending lamellae; presence of a marginal food groove on the inner 

demibranch. Labial palps: large, wide, lamellate with sorting ridges, complete and 

symmetrical (typically bivalve plan). Musculature: adductor muscles present, well 

developed, posterior slightly larger than anterior; presence of poor developed posterior 

and anterior pedal retractor muscles. Foot: well developed with a large pedal groove. 

Digestive system: presence of a tube-shaped mouth, long and thin oesophagus, small and 

rounded shape stomach with a short anterodorsal extension; stomach associated to the 

long crystalline style sac; crystalline style not visible in the specimen analysed; style sac 

conjoined with the mid gut; hind gut/rectum penetrates the heart and kidney to pass over 

the posterior adductor muscle and the end in an anus. Organs of the visceral mass:  heart 

+ kidney apparently supported by a thin accessory muscle. Reproductive system: located 

in the dorsal portion of the visceral mass, the ovarian is closely associated to the digestive 

diverticulum; although congeneric species are generally described as hermaphrodites, 

testes were not observed here. Nervous system: presence of circumesophagic and visceral 

ganglia; pedal ganglia and statocysts not visible. 

Main references: Pelseneer (1911), Allen (1954), Thomas (1994), Morton (1984a), Güller 

& Zelaya (2016). 
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Figure 2. Selected virtual 2D sections through the µCT dataset of a PTA-stained specimen 

of Pandora pinna. Transverse (A-E), sagittal (F, G) and frontal (H, I) sections. 

Abbreviations: an, anus; aam, anterior adductor muscle; arm, anterior retractor muscle; 

cg, circumesophagic ganglia; ct, ctenidia; css, crystalline style sac; dd, digestive 

diverticulum; de, debris; ea, exhalant siphonal aperture; es, exhalant siphon; f, foot; g, 

gut; go, gonad; hg, hind gut; ia, inhalant siphonal aperture; id, inner demibranch; ilj, 

interlamellar junctions; ilp, inner labial palp; k + h, kidney + heart; mfg, marginal food 

groove; gut; mo, mouth; mm, mantle margin; o, oesophagus; olp, outer labial palp; pam, 

posterior adductor muscle; prm, posterior retractor muscle; st, stomach; ?, unknown 

structure (maybe an accessory muscle). Scale bars: A-E – 0.5mm; F, G – 2mm; H, I – 

1mm. 
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Figure 3. 3D volume rendering based on the µCT dataset of Pandora pinna. Dissection 

sequence in original tomographic color (A-A2); false-color volume rendering (B-H) and 

virtual dissections (A1, A2, C-H). Abbreviations: aam, anterior adductor muscle; arm, 

anterior retractor muscle; ct, ctenidia; css, crystalline style sac; dd, digestive diverticulum; 

de, debris; es, exhalant siphon; f, foot; g, gut; hg, hind gut; ia, inhalant siphonal aperture; 

id, inner demibranch; ilp, inner labial palp; is, inhalant siphon; k + h, kidney + heart; mo, 

mouth; mm, mantle margin; o, oesophagus; olp, outer labial palp; ov, ovarian; pam, 

posterior adductor muscle; prm, posterior retractor muscle; si, siphons; sit, siphonal 

tentacle; sm, siphonal musculature; st, stomach; t, testis; vg, visceral ganglia. Scale bars: 

A-C – 2mm; D, H – 1mm. 

 

Family Lyonsiidae P. Fischer, 1887 

Genus Lyonsia Turton, 1822 

Lyonsia alvarezii d'Orbigny, 1846  



 

 
 

148 
 

(Figs. 4, 5) 

Description 

Shell: subovate-elongated, thin, delicate, translucid, moderately inflate in the anterior 

part, posterior end laterally compressed; external sculpture formed by thin radial ridges 

with sand grains attached by the entire extension of the valves; presence of a large 

lithodesma. Mantle: this specimen had an important part of the mantle lost during the 

removal of the shell, turning the analysis incomplete; presence of a fourth pallial opening 

closer to the inhalant aperture. Siphons: inhalant and exhalant siphons similar in size and 

outline, short, simple tube-shaped and separated; papillate tentacles covering the inhalant 

siphon; apertures of the inhalant and exhalant fringed with a ring of, respectively, ~32 

and ~45 short tentacles. Ctenidia: eulamellibranch and plicate; complete with a large 

inner demibranch bigger than outer; free edge of inner demibranch with a deep marginal 

food groove. Labial palps: large, wide, lamellate with sorting ridges, symmetrical 

(typically bivalve plan) and coiling. Musculature: adductor muscles present, 

heteromyarian, with the posterior adductor well-developed and the anterior reduced; 

presence of well-developed posterior and a reduced anterior pedal retractor muscle. Foot: 

elongated with a long pedal groove; presence of byssal thread. Digestive system: the tube-

shaped mouth opens into a long oesophagus that enters into the anterior portion of the 

stomach; with an elongated shaped, the stomach is connected to the also elongated 

crystalline style sac; style sac conjoined with an anterior coiled mid gut; hind gut/rectum 

penetrates the heart; kidney not visible. Reproductive system: hermaphrodite, ovarian 

located in the dorsal portion of the visceral mass, closely associated to the digestive 

diverticulum; testis small and poor visible located in the anterior portion of visceral mass. 

Nervous system: nervous ganglia not visible. 

Main references: Yonge (1952), Narchi (1968), Morgan & Allen (1976), Morton (1987a), 

Thomas (1994).  
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Figure 4. Selected virtual 2D sections through the µCT dataset of a PTA-stained specimen 

of Lyonsia alvarezii. Transverse (A-C), sagittal (D, E) and frontal (F, G) sections. 

Abbreviations: aam, anterior adductor muscle; ct, ctenidia; css, crystalline style sac; dd, 

digestive diverticulum; did/dia, descending and ascending lamella of the inner 

demibranch; ea, exhalant siphonal aperture; f, foot; fpo, fourth pallial opening; g, gut; h, 

heart; hg, hind gut; ia, inhalant siphonal aperture; k, kidney; lp, labial palp; mfg, marginal 

food groove; mg, mid gut; mo, mouth; mm, mantle margin; o, oesophagus; ov, ovarian; 

pam, posterior adductor muscle; prm, posterior retractor muscle; st, stomach; t, testis. 

Scale bars: A-C, F, G – 1mm; D, E – 2mm.  



 

 
 

150 
 

 

Figure 5. 3D volume rendering based on the µCT dataset of Lyonsia alvarezii. Dissection 

sequence in original tomographic color (A-A2); false-color volume rendering (B-F) and 

virtual dissections (A1, A2, D-F). Abbreviations: aam, anterior adductor muscle; bt, 

byssal thread; ct, ctenidia; css + mg, crystalline style sac + mid gut; dd, digestive 

diverticulum; es, exhalant siphon; f, foot; g, gut; hg, hind gut; ia, inhalant aperture; id, 

inner demibranch; ilp, inner labial palp; is, inhalant siphon; k, kidney; mfg, marginal food 

groove; mg, midgut; mm, mantle margin; mo, mouth; o, oesophagus; od, outer 

demibranch; olp, outer labial palp; pam, posterior adductor muscle; prm, posterior 

retractor muscle; si, siphons; sm, siphonal musculature; st, stomach; sit, siphonal 

tentacles, t, testis. Scale bars: A-C, F – 2mm; D – 1mm; E – 0.5mm. 

 

Family Lyonsiellidae Dall, 1895 

Genus Allogramma Dall, 1903 

Allogramma formosa (Jeffreys, 1882)  
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(Figs. 6, 7) 

Description 

Shell: subquadrate, inflated, equivalve and inequilateral; extremely fragile, pearl glow; 

outer sculpture well marked with two long radial ridges from the umbo until the posterior 

ventral margin of the valves, small spines in the posterodorsal portion of the shell; 

presence of lithodesma. Mantle: mantle margin with two fused points, anteriorly forming 

a wide pedal gape and posteriorly forming the siphons; postero-ventrally mantle margin 

fusion formed by inner and middle folds (Type B) (Yonge, 1982); absence of a fourth 

pallial aperture. Siphons: separated, different in size and outline; inhalant siphon, large, 

modified in a raptorial appendice, usually contracted into the pallial cavity; exhalant 

siphon short, tube-shaped; both surrounded in the base by a ring of approximately 50 

smaller tentacles closest to the apertures and by ~60 bigger tentacles peripherally located. 

Ctenidia: eulamellibranch very reduced, non-plicate and horizontal aligned; complete, 

with two demibranchs. Labial palps: non-lamellate, extremely complex, outer and inner 

palps medially fused forming two pouches or buccal sacs, one small anterior and another 

large posterior; unfused tips forming narrow fluted funnels laterally. Musculature: 

posterior and anterior adductor muscles present and isomyarian; presence of posterior and 

anterior pedal retractor muscle; absence of taenioid muscle. Foot: large and elongated; 

absence of byssal thread. Digestive system: the funnel-shaped mouth opens into a thick 

and muscular oesophagus that enters into the anterodorsal portion of the stomach, a 

sphincter is present between the oesophagus and the stomach; the stomach is small, 

rounded, with internal longitudinal grooves in the dorsal wall, connected to the large 

crystalline style sac and surrounded dorsally and anteriorly by gonads and digestive 

diverticulum; style sac conjoined with an anterior coiled mid gut; presence of crystalline 

style; hind gut/rectum penetrates the heart and the kidney. Organs of visceral mass: a 

lacunar system formed by haemocoel spaces is present in the posterior portion of visceral 

mass associated with kidney and heart. Reproductive system: hermaphrodite, ovarian and 

testis well visible closely associated to the digestive diverticulum; ovarian dorsally 

located and testis in the anteroventral portion of visceral mass penetrating partially into 

the foot. Nervous system: presence of circumesophagic, pedal and visceral ganglia; 

nervous bundles of visceral ganglia branching into the siphons, visceral mass and 

ctenidia. 
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Main references: Knudsen (1967, 1970), Allen & Turner (1974), Morton (1984b), 

Poutiers & Bernard (1995). 

 

Figure 6. Selected virtual 2D sections through the µCT dataset of a PTA-stained specimen 

of Allograma formosa. Transverse (A-C), sagittal (D, E) and frontal (F, G) sections. 

Abbreviations: an, anus; aam, anterior adductor muscle; alp, anterior labial palp or 

anterior labial pouch; arm, anterior retractor muscle; ca, ctenidia axis; cg, 

circumesophagic ganglia; ct, ctenidia; cs, crystalline style; css, crystalline style sac; dd, 

digestive diverticulum; f, foot; flp, fusion of the labial palp; go, gonad; h, heart; ha, 

haemocoel space; hg, hind gut; ibc, infra-branchial chamber; id, inner demibranch; is, 

inhalant siphon; iss, inter-siphonal septum; ibc, infra-brachial chamber; k, kidney; li, 

lithodesma (calcified ligament); lp, labial palp; mm, mantle margin; mmf, mantle margin 
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fused; mmg, mantle margin glands; mo, mouth; nb, nervous bundles; o, oesophagus; od, 

outer demibranch; ov, ovaria; pam, posterior adductor muscle; pg. pedal ganglia; prm, 

posterior retractor muscle; s, shell; sbc, supra-branchial chamber; sit, siphonal tentacle; 

sph, sphincter; st, stomach; t, testis; ulp, unfused labial palps, vg, visceral ganglia. Scale 

bars: A-G – 3mm. 

 

Figure 7. 3D volume rendering based on the µCT dataset of Allograma formosa. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-F) and virtual dissections (A1, A2, C-F). Abbreviations: aam, anterior adductor 

muscle; alp, anterior labial palp or anterior labial pouch; cg, circumesophagic ganglia; ct, 

ctenidia; ea, exhalant aperture; f, foot; hg, hind gut; ia, inhalant aperture; is, inhalant 

siphon; li, lithodesma (calcified ligament); mo, mouth; o, oesophagus; pam, posterior 

adductor muscle; pg, pedal ganglia; plp, posterior labial palp or posterior labial pouch; s, 
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shell; sit, siphonal tentacles; sph, sphincter; vg, visceral ganglia; vm, visceral mass. Scale 

bars: A-F – 3mm. 

 

Family Verticordiidae Stoliczka, 1870 

Genus Trigonulina d'Orbigny, 1853 

Trigonulina ornata d'Orbigny, 1853  

(Figs. 8, 9) 

Description 

Shell: oval, compressed, robust; external sculpture formed by prominent and irregularly 

spaced radial ribs; lunule deeply impressed; debris attached by the entire length of outer 

surface of the valves; lithodesma present. Mantle: mantle margin completely unfused 

anteriorly forming a large pedal aperture; posteriorly there is a ventral fusion forming the 

siphons; absence of a fourth pallial opening. Siphons: separated; inhalant siphon, small, 

muscular, half cone-shaped, inverted into pallial cavity; exhalant, very small, probably 

contracted, not visible; siphonal apertures surrounded in their base by siphonal tentacles, 

~20 around the inhalant and 3 around the exhalant aperture. Ctenidia: very reduced, non-

plicate and horizontal aligned; complete, with inner and reduced outer demibranchs, 

extended from the mouth to the ventral side of the exhalant aperture. Labial palps: absent 

Musculature: adductor muscles present, isomyarian; presence of posterior and anterior 

pedal retractor muscle. Foot: small, short; pedal groove and byssal thread absent. 

Digestive system: the funnel-shaped mouth opens into a thick and muscular oesophagus 

that enters into the anterodorsal portion of the stomach; oesophagus large with the 

presence of longitudinal internal grooves throughout its all length; the stomach is 

rounded, large, probably dilated by the presence of huge preys (maybe ostracods); 

stomach connected to the short and reduced crystalline style sac with a typhlosole 

stomach and the crystalline sac open; the stomach is surrounded dorsally and anteriorly 

by gonads and digestive diverticulum; style sac conjoined with the mid gut; crystalline 

style absent; hind gut/rectum penetrates the heart. Organs of visceral mass: haemocoel 

spaces can be observed closed to the siphons. Reproductive system: hermaphrodite, 

ovarian located in the dorsal portion of the visceral mass, closely associated to the 

digestive diverticulum; testis located in the anterior portion of visceral mass. Nervous 

system: presence of circumesophagic, pedal and visceral ganglia. 
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Main references: Allen & Turner (1974), Morton (1987b).  

 

Figure 8. Selected virtual 2D sections through the µCT dataset of a PTA-stained specimen 

of Trigonulina ornata. Transverse (A-C), sagittal (D, E) and frontal (F, G) sections. 

Abbreviations: aam, anterior adductor muscle; aod, ascending lamellae of outer 

demibranch; arm, anterior retractor muscle; cg, circumesophagic ganglia; ct, ctenidia; dd, 

digestive diverticulum; did/dod, descending lamella of the inner and outer demibranch; f, 

foot; g, gut; ha, haemocoel space; hg, hind gut; k, kidney; mo, mouth; mm, mantle margin; 

mmf, mantle margin fusion; o, oesophagus; ; og, oesophagus grooves; ov, ovarian; p, prey 

inside stomach; pam, posterior adductor muscle; pg, pedal ganglia; prm, posterior 

retractor muscle; si, siphons; st, stomach; t, testis; ty, typhlosole; vg, visceral ganglia. 

Scale bars: A-C – 0.5mm; D-G – 1mm. 
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Figure 9. 3D volume rendering based on the µCT dataset of Trigonulina ornata. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-F) and virtual dissections (A1, A2, B-F). Abbreviations: aam, anterior adductor 

muscle; ct, ctenidia; dd, digestive diverticulum; f, foot; mo, mouth; o, oesophagus; ov, 

ovarian; p, prey inside stomach; pam, posterior adductor muscle; pg, pedal ganglia; prm, 

posterior retractor muscle; si, siphons; sit, siphonal tentacle; st, stomach, t, testis. Scale 

bars: A-F – 1mm. 

Family Poromyidae Dall, 1886 

Genus Poromya Forbes, 1844 

Poromya rostrata (Rehder, 1943) 

(Figs. 10, 11) 

 Description    

Shell: ovate-trigonal, inflated, thin, whitish, inequilateral, slightly inequivalve; posterior 

margin with a short rostrum; outer sculpture granulated with micro pustules over the 
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entire shell; absence of lithodesma. Mantle: ventral mantle margin with one anteriorly 

wide pedal gape, extending from the anterior adductor until the inhalant siphon; absence 

of a fourth pallial aperture. Siphons: separated, different in size and outline; inhalant 

siphon, large, modified in a raptorial appendice, typically retracted into the infra-septal 

chamber; exhalant siphon short, cone-like and everted in this specimen; both surrounded 

in the base by a ring of large siphonal tentacles, 12 around the inhalant and 3 around 

exhalant; debris are also attached in the siphonal walls. Septum: thin, ventral surface with 

well defined two paired groups of slit-like branchial apertures, with no interfilamentar 

connections; anterior group with four and posterior with five slits. Presence of a small 

and lobulate hollow sac in the posterior inner floor of the septum. Labial palps: non-

lamellate, flattened and asymmetrical with anterior labial palp large and posterior labial 

palp small. Musculature: posterior and anterior adductor muscles present and isomyarian; 

presence of posterior and anterior pedal and septal retractor muscles; lateral septal 

muscles not visible in this specimen; taenioid muscle absent. Foot: large and elongated; 

absence of pedal groove and byssal thread. Digestive system: the funnel-shaped mouth 

opens into a thick, short and muscular oesophagus that enters into the anterodorsal portion 

of the stomach; presence of a sphincter between oesophagus and the stomach opening; 

stomach large, rounded, internal grooves not visible into the gastric chamber; stomach 

connected to the short and small crystalline style sac located on the median portion of the 

stomach floor; no preys were observed inside of stomach of this specimen; stomach 

surrounded dorsally and anteriorly by gonads and digestive diverticulum; two gastric 

caeca were also observed from the digestive diverticulum; crystalline style sac conjoined 

with the anterior portion of the mid gut; crystalline style present; hind gut/rectum 

penetrates the heart and pass above the kidney. Reproductive system: hermaphrodite, 

ovarian and testis well visible; ovarian is closely associated to the digestive diverticulum 

cover the roof and the posterior wall of the stomach; the testis lie ventral to the ovary and 

consist of a pair of large lobulate sacs. Nervous system: presence of circumesophagic, 

pedal and visceral ganglia. 

Main references: Pelsenner (1911), Yonge (1928), Allen & Morgan (1981), Morton 

(1981, 1987b). 
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Figure 10. Selected virtual 2D sections through the µCT dataset of a PTA-stained 

specimen of Poromya rostrata. Transverse (A-C), sagittal (D, E) and frontal (F, G) 

sections. Abbreviations: aam, anterior adductor muscle; alp, anterior labial palp; arm, 

anterior retractor muscle; bf, branchial filament; bs, branchial apertures; css, crystalline 

style sac; dd, digestive diverticulum; f, foot; g, gut; gc, gastric caecum; hg, hind gut; hs, 

hollow sac; is, inhalant siphon; k, kidney; mm, mantle margin; mo, mouth; mo + o, mouth 

+ oesophagus; nb, nervous bundles; o, oesophagus; ov, ovarian; pam, posterior adductor 

muscle; plp, posterior labial palp; sep, muscular septum; sit, siphonal tentacles; st, 

stomach; t, testis; vg, visceral ganglia. Scale bars: A-C, F, G – 1mm; D, E – 2mm. 
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Figure 11. 3D volume rendering based on the µCT dataset of Poromya rostrata. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-F) and virtual dissections (A1, A2, C-F). Abbreviations: aam, anterior adductor 

muscle; aba, anterior branchial apertures; alp, anterior labial palp; arm, anterior retractor 

muscle; asm, anterior septal muscle; bf, branchial filament; bs, branchial sieve slit; da, 

debris attached; dd, digestive diverticulum; cg, circumesophagic ganglia; css, crystalline 

style sac; dd, digestive diverticulum; es, exhalant siphon; f, foot; g, gut; ia, inhalant 

aperture; ilp, inner labial palp; is, inhalant siphon; k + h, kidney + heart; lp, labial palp; 

mm, mantle margin; m, mouth; o, oesophagus; olp, outer labial palp; ov, ovarian; pam, 

posterior adductor muscle; pba, posterior branchial apertures; plp, posterior labial palp; 

pg, pedal ganglia; po, pedal opening; prm, posterior retractor muscle; psm, posterior 

septal muscle; sit, siphonal tentacle; sm, siphonal musculature; sep, septum; st, stomach; 

t, testis. Scale bars: A-C, F – 2mm; D, E – 1mm.    

 

Family Cetoconchidae Dall, 1886 
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Genus Cetoconcha Forbes, 1844 

Cetoconcha spinosula (Thiele, 1912) 

(new combination for Poromya spinosula sensu Thiele)  

(Figs. 12, 13) 

Description 

Shell: ovate, relatively thick, inflated, equivalve and approximately equilateral; presence 

of a brownish periostracum and sand grains attached covering the shell; absence of 

lithodesma. Mantle: ventral mantle margin with one anteriorly and wide pedal gape, 

extending from the anterior adductor until 2/3 of the full length of ventral margin; postero-

ventrally mantle margin fusion formed by inner folds (Type A) (Yonge, 1982); absence 

of a fourth pallial aperture. Siphons: separated, different in size and outline; inhalant 

siphon, huge, modified in a raptorial appendice, typically retracted into the infra-septal 

chamber when the living animal is at rest or in museum specimens due to the alcohol 

contraction; the inverted inhalant siphon can also be referred to in the literature as 

siphonal cowl (hood) or branchial valve, the latter considered a misinterpretation 

(Pelsenner 1911, Yonge 1928, Bernard 1974, Morton 1981); exhalant siphon short, cone-

like; siphons surrounded in the base by a ring of large siphonal tentacles, 10 around the 

inhalant and 3 around exhalant; presence of ~15 siphonal papillae between the siphonal 

tentacles. Septum: thin, transparent, perforated by three pairs of ostial perforations 

withouth interfilamentar connections, comprising six perforations anteriorly, five to six 

in the middle and four posteriorly. Presence of a swollen, hollow and bilobate sac in the 

posterior inner floor of the septum. Labial palps: non-lamellate and asymmetric with 

anterior labial palp, well-developed, large, cup-shaped and posterior palp reduced, almost 

imperceptible in the 3D reconstructions. Musculature: posterior and anterior adductor 

muscles present, isomyarian; presence of posterior and anterior pedal and septal retractor 

muscles; lateral septal muscles and taenioid muscle absent. Foot: large and elongated; 

absence of pedal groove and byssal thread. Digestive system: the funnel-shaped mouth 

opens into a thick, short and muscular oesophagus that enters into the anterodorsal portion 

of the stomach; no sphincter was observed between oesophagus and the stomach opening; 

stomach large, rounded, with longitudinal deep grooves in the posterodorsal and 

anteroventral walls; presence of preys inside of the gastric chamber (maybe ostracod and 

copepods); stomach connected to the short and small crystalline style sac located on the 

ventroanterior portion of the stomach floor; stomach surrounded dorsally and anteriorly 
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by gonads and digestive diverticulum; crystalline style sac conjoined with an anterior mid 

gut; crystalline style not visible; hind gut/rectum penetrates the heart and pass above the 

kidney. Organs of visceral mass: haemocoel spaces are present in the dorsoposterior 

portion of visceral mass. Reproductive system: hermaphrodite; ovarian and testis well 

visible closely associated to the digestive diverticulum; ovarian dorsally located and testis 

in the anteroventral portion of visceral mass close to the lateral wall of the stomach. 

Nervous system: presence of circumesophagic, pedal and visceral ganglia. 

Main references: Pelsenner (1911), Thiele (1912: plate 18, fig. 26), Yonge (1928), 

Bernard (1974), Allen & Morgan (1981), Morton (1981, 1987b), Dell (1990: fig. 107), 

Aldea & Troncoso (2010: fig. 245). 
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Figure 12. Selected virtual 2D sections through the µCT dataset of a PTA-stained 

specimen of Cetoconcha spinosula. Transverse (A-C), sagittal (D, E) and frontal (F, G) 

sections. Abbreviations: aam, anterior adductor muscle; alp, anterior labial palp; ao, anal 

opening; arm, anterior retractor muscle; css, crystalline style sac; ct, ctenidia; dd, 

digestive diverticulum; f, foot; gs, gastric shield; h, heart; h + k, heart + kidney; hg, hind 

gut; hs, hollow sac; is, inhalant siphon; k, kidney; mm, mantle margin; mo, mouth; nb, 

nervous bundles; o, oesophagus; op, ostial perforations; ov, ovarian; p, prey inside 

stomach; pam, posterior adductor muscle; prm, posterior retractor muscle; sep, muscular 

septum; sg, stomach grooves; st, stomach; t, testis; vg, visceral ganglia. Scale bars: A-G 

– 3mm. 

 

Figure 13. 3D volume rendering based on the µCT dataset of Cetoconcha spinosula. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-F) and virtual dissections (A1, A2, C-F). Abbreviations: aam, anterior adductor 

muscle; alp, anterior labial palp; asa, anterior septal apertures; asm, anterior septal 

muscle; da, debris attached; cg, circumesophagic ganglia; dd, digestive diverticulum; es, 
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exhalant siphon; f, foot; gc, gastric chamber; hg, hind gut; hs, hollow sac; ia, inhalant 

aperture; is, inhalant siphon; mm, mantle margin; m, mouth; msa, middle septal apertures; 

o, oesophagus; oa, ostial aperture; ov, ovarian; p, prey inside stomach; pam, posterior 

adductor muscle; psa, posterior septal apertures; psm, posterior septal muscle; sg, 

stomach grooves; si, siphons; sip, siphonal papillae; sit, siphonal tentacle; sep, septum; 

st, stomach; t, testis; vg, visceral ganglia. Scale bars: A-F – 3mm. 

 

Family Cetoconchidae Ridewood, 1903 

Genus Cetoconcha Dall, 1886 

Cetoconcha aff. smithii Dall, 1908  

(Figs. 14, 15) 

Description 

Shell: ovate-trigonal, thin, inflated, slightly translucid, prominent umbones, inflated; 

sculpture of radial lines of micro pustules for entire ventral surface of the valves; absence 

of lithodesma. Mantle: ventral mantle margin with one anteriorly wide pedal gape 

extending from the anterior adductor until the inhalant siphon; absence of a fourth pallial 

aperture. Siphons: separated, different in size and outline; inhalant siphon, large, modified 

in a raptorial appendice, typically retracted into the infra-septal chamber; exhalant siphon 

short, cone-like and everted in this specimen; both surrounded in the base by a ring of 

siphonal tentacles, ~10 around the inhalant and ~3 around exhalant. Septum: thin, 

perforated by three rows of grouped pores, the two anterior groups lie in a similar position 

to those in Cetoconcha spinosula and the third and smallest group lies behind the posterior 

septal muscles; absence of a hollow sac in the posterior inner septal floor. There are nine 

pairs of pores in the anterior group, five in the middle and three in the posterior group. 

Labial palps: non-lamellate and asymmetrical with anterior labial palp, large, thin 

(probably contracted), cup-shaped and the posterior labial palp small. Musculature: 

posterior and anterior adductor muscles present and isomyarian; presence of posterior and 

anterior pedal and septal retractor muscles; prominent lateral septal muscles are present 

in this specimen; taenioid muscle absent. Foot: large, pedal groove not observed, absence 

of byssal thread. Digestive system: the funnel-shaped mouth opens into a thick and 

muscular oesophagus that enters into the anterodorsal portion of the stomach; stomach 

large, rounded, with longitudinal deep internal grooves in the dorsal wall, connected to 
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the short and small crystalline style sac located on the median portion of the stomach 

floor; preys were observed inside of stomach (ostracod: fig. 14A2); stomach surrounded 

dorsally and anteriorly by gonads and digestive diverticulum; crystalline style sac not 

visible in this specimen. Reproductive system: maybe dioecious, only ovarian is visible 

in this specimen; ovarian closely associated to the digestive diverticulum cover the roof 

of the stomach. Nervous system: only the visceral ganglia was observed. 

 Main references: Knudsen (1970), Allen & Morgan (1981), Krylova (1991), Coan & 

Valentich-Scott (2012: plate 323). 

 

Figure 14. Selected virtual 2D sections through the µCT dataset of a PTA-stained 

specimen of Cetoconcha aff. smithii. Transverse (A-C), frontal slightly oblique (D, E) 

sections. Abbreviations: aam, anterior adductor muscle; alp, anterior labial palp; arm, 

anterior retractor muscle; cg, circumesophagic ganglia; dd, digestive diverticulum; f, foot; 

g, gut; is, inhalant siphon; lp, labial palp; mm, mantle margin; mmf, mantle margin fused; 

mo, mouth; o, oesophagus; ov, ovarian; p, prey inside stomach; pam, posterior adductor 

muscle; plp, posterior labial palp; sep, septum; sg, stomach grooves; sit, siphonal 

tentacles; st, stomach; vg, visceral ganglia. Scale bars: A-C – 1mm; D, E – 2mm. 
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Figure 15. 3D volume rendering based on the µCT dataset of Cetoconcha aff. smithii. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-F) and virtual dissections (A1, A2, C-F). Abbreviations: aam, anterior adductor 

muscle; alp, anterior labial palp; arm, anterior retractor muscle; asm, anterior septal 

muscle; cg, circunesophagic ganglia; dd, digestive diverticulum; es, exhalant siphon; f, 

foot; gsp1-3, grouped septal pores; is, inhalant siphon; lsm, lateral septal muscle; mm, 

mantle margin; mmf, mantle margin fused; mo, mouth; o, oesophagus; ov, ovarian; p, 

prey inside stomach; pam, posterior adductor muscle; plp, posterior labial palp; psm, 

posterior septal muscle; sit, siphonal tentacles; sep, muscular septum; sm, siphonal 

musculature; st, stomach. Scale bars: A-C, F – 2mm; D, E – 1mm. 
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Family Cuspidariidae Dall, 1886 

Genus Cuspidaria Nardo, 1840 

Cuspidaria glacialis (Sars G. O., 1878)  

(Figs. 16, 17) 

Description 

Shell: elongated, robust, inequilateral, equivalve and slightly inflated; presence of a 

prominent and long rostrum in the posterior portion of the shell; smooth, valves covered 

by a dehiscent, thick and light brown periostracum; presence of lithodesma. Mantle: 

mantle margin with one anteriorly large pedal gape, extending from the anterior adductor 

until almost the beginning of the inhalant siphon; posteroventral mantle margin fusion 

formed by inner and middle folds (Type B) (Yonge 1982); absence of a fourth pallial 

aperture. Siphons: the detailing of this structure was not possible due to the state of 

contraction of the specimen analysed. Septum: presence of a well-developed horizontal 

muscular septum (‘septibranch condition’) dividing the mantle cavity into infra and 

supraseptal chambers; the septum is long and wide, perforated ventrally by 5 pairs of 

isolated septal pores. Labial palps: poor developed, non-lamellate, slightly asymmetrical, 

with the anterior palp bigger than posterior palp; anterior labial palp attached to the 

ventroanterior mantle margin, close to the anterior adductor muscle. Musculature: 

posterior and anterior adductor muscles present and isomyarian; presence of a well-

developed pedal and septal retractor muscles, both bifurcated in the end portion before 

insertion into the shell; lateral septal muscle is also present being more concentrated 

posteriorly; taenioid muscle absent. Foot: large, with a long pedal groove; byssal thread 

absent. Digestive system: a funnel-shaped mouth opens into a thick and muscular 

oesophagus that enters into the anterodorsal portion of the stomach; stomach large, 

rounded, with a dorsal short projection, internal grooves not visible; stomach connected 

to the short and small crystalline style sac located on the median portion of the stomach 

floor; crystalline style present; large preys were observed inside of stomach (gastropod 

and ostracod: figs. 15B, F; 16D, E); stomach surrounded dorsally and anteriorly by gonad 

and digestive diverticulum. Reproductive system: dioecious, only ovarian is visible in this 

specimen; ovarian closely associated to the digestive diverticulum cover the roof of the 

stomach. Nervous system: only the visceral ganglia had been observed. 

Main references: Yonge (1928), Knudsen (1970), Reid & Reid (1974), Allen & Morgan 

(1981), Machado et al. (2017). 
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Figure 16. Selected virtual 2D sections through the µCT dataset of a PTA-stained 

specimen of Cuspidaria glacialis. Transverse (A-C), sagittal (D, E) and frontal (F, G) 

sections. Abbreviations: aam, anterior adductor muscle; alp, anterior labial palp; asm, 

anterior septal muscle; cs, crystalline style; css, crystalline style sac; dd, digestive 

diverticulum; f, foot; hg, hind gut; isc, infraseptal chamber; li, lithodesma; lsm, lateral 

septal muscle; mm, mantle margin; mmf, mantle margin fused; mo, mouth; o, 

oesophagus; ov, ovarian; p, prey inside stomach; pam, posterior adductor muscle; plp, 

posterior labial palp; prm, posterior retratctor muscle; psm, posterior septal muscle; sep, 

septum; si, siphons; sp, septal pore; ssc, supraseptal chamber; st, stomach. Scale bars: A-

C, F, G – 2mm; D, E – 3mm. 
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Figure 17. 3D volume rendering based on the µCT dataset of Cuspidaria glacialis. 

Dissection sequence in original tomographic color (A-A2); false-color volume rendering 

(B-G) and virtual dissections (A1, A2, C-G). Abbreviations: aam, anterior adductor 

muscle; alp, anterior labial palp; arm, anterior retractor muscle; asm, anterior septal 

muscle; css, crystalline style sac; dd, digestive diverticulum; f, foot; g, gut; isc, infra septal 

chamber; li, lithodesma; lsm, lateral septal muscle; mg, mid gut; mm, mantle margin; mo, 

mouth; o, oesophagus; ov, ovarian; p, prey inside stomach; pam, posterior adductor 

muscle; plp, posterior labial palp; prm, posterior retractor muscle; psm, posterior septal 
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muscle; pg, pedal ganglia; si, siphons; sm, siphonal musculature; sep, muscular septum; 

sp1-5, septal pores; st, stomach. Scale bars: A-C – 3mm; D-G – 2mm. 

 

DISCUSSION 

Although some works have already used molluscs species as models to test the 

contrast and to evaluate the effectiveness of Micro-CT as tool to obtain anatomical 

information (Goulding et al. 2007, 2009, Alba-Tercedor et al. 2011, Faulwetter et al. 

2013b, Candás et al. 2016, Pedrouzo et al. 2017), its application for the Bivalvia 

systematics is hitherto unknown. Therefore, the present study is the first to evaluate the 

potential of this non-destructive imaging method for the taxonomic and phylogenetic 

study of marine bivalves.  

Our results show that the tomography is a very useful tool for the anatomical 

descriptions of marine bivalves, for both large (>10 mm) and small (<2 mm in length) or 

for freshly fixed and museum specimens, allowing not only a detailed analysis of the 

internal tissues but also a topographic visualization of the organs of the pallial cavity in 

3D, in some cases replacing dissections and scientific drawings. The 2D tomographic 

sections also are of extreme importance since it provided an interpretation at the 

histological level of organs of the visceral mass as for example, the alimentary tract path, 

the differentiation between male and female gonads, nervous bundles, among others. 

Therefore, this non-destructive technique proved to be efficient not only to describe the 

anatomy but also as an important tool in the construction of the taxonomic and 

phylogenetic knowledge of Bivalvia.  

A brief discussion about each internal morphological feature, important for the 

Anomalodesmata taxonomy is provided below, highlighting the effectiveness of Micro-

CT for the visualization and interpretation of these structures.  

Mantle 

The mantle margins on Anomalodesmata are extensively fused, presenting three 

main openings: (i) a ventral and usually large pedal opening, and (ii), two posterior 

openings correspond to the inhalant and exhalant siphons. Besides, some 

Anomalodesmata species also presented a fourth pallial opening, as for example, 
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Brechites attrahens (Lightfoot, 1786), Humphreyia strangei (A. Adams, 1854), Lyonsia 

californica Conrad, 1837, among others (Narchi 1968: fig. 1, Morton 1984c, 2002: fig. 

8). This opening, located close to the base of the siphons, probably has the function of 

facilitating the elimination of pseudofaeces from the interior of the pallial cavity or 

functions as a pressure release valve through which some of the mantle water is ejected 

following rapid adduction in fast burrowing bivalves (Atkins 1937, Yonge 1952). It worth 

noting that among the eight species analysed, only Lyonsia alvarezii d'Orbigny, 1846 

presented a fourth pallial aperture. The fourth aperture is also seen in representatives of a 

few non-anomalodesmatan taxa, for example, Spisula, Lutraria (Imparidentia, 

Mactridae), Ensis (Pharidae), Tagelus (Solecurtidae) and Siliqua (Solenidae), but the 

homology between these structures has never been tested (Morton 2010).  

In Anomalodesmata, the mantle fusion involving different numbers of mantle 

folds and thus different species may be classified into three different types (A, B, C) 

according to Yonge (1982). Through the 2D tomographic sections some species had the 

ventral fusion of the mantle observed in detail as Allograma formosa (Jeffreys, 1882) and 

Cuspidaria glacialis (Sars G. O., 1878), Type B and Cetoconcha spinosula (Thiele, 1912) 

(new comb. to Poromya spinosula), Type A. For the other species, it was not possible to 

observe the mantle fusions.  

Musculature 

The µCT reconstructions were very effective for the visualization of the muscular 

structures in the species analysed, allowing a topographical interpretation of the main 

muscles present in Anomalodesmata. Herein, the structure, position and insertion of the 

adductor muscles, foot retractors and septal muscles were described. Taeniod muscles 

were not observed in any of the species analysed. 

Here, it is also worth noting the absence of taenioid muscles in A. formosa. Usually 

associated to the predatory bivalves, these muscles are elongate siphonal retractors that 

have separate insertions on the shell valves. In Parilimya fragilis (Grieg, 1920), for 

example, they serve to pull the inhalant siphon into the mantle cavity assisting the bivalve 

in prey capture (Morton 1982). However, according to Morton (1984b) this musculature 

would be modified and reduced in Allograma formosa located within the fused ventral 

mantle margin. Through a detailed analysis of the 2D tomographic sections no muscle 

bundles were observed within the posteroventral portion of the mantle margin of A. 
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formosa, confirming, therefore, the absence of a taenioid muscle in the specimen 

analysed. 

For the species without a muscular septum, as Pandora pinna (Montagu, 1803), 

L. alvarezii, Trigonulina ornata d'Orbigny, 1853 and A. formosa, adductor muscles with 

similar shape and size and poorly developed pedal retractor muscles were observed, 

except for L. alvarezii. The reduction of the pedal musculature is usually associated with 

the adoption of a passive burrowing or epifaunal lifestyle and had already observed to 

another anomalodesmatans as P. fragilis, Cleidothaerus albidus (Lamarck, 1819) and for 

some clavagellids (Morton 1974, 1982). Therefore, our results suggest that P. pinna, T. 

ornata and A. formosa, may also have a passive burrowing lifestyle. For L. alvarezii, 

specifically, the presence of a small byssal thread suggest a epifaunal lifestyle. In 

addition, the heteromyarian condition observed in L. alvarezii seems to be a feature 

common to other lyonsiids, due to the effects of byssal attachment (see Yonge 1952). 

For the species that have a muscular septum, as Cetoconcha spinosula, Poromya 

rostrata Rehder, 1943, Cetoconcha aff. smithii Dall, 1908 and Cuspidaria glacialis (Sars 

G. O., 1878), the main differences are associated to the bifurcation of the retractor 

muscles of the foot and the septum, and the presence or absence of lateral septal muscles. 

These differences are mainly observed between some species of Poromyidae and 

Cetoconchidae, with the presence of a well developed lateral septal musculature in C. aff. 

smithii and absence in Poromya rostrata. In the same way, C. glacialis (Cuspidariidae) 

has a muscular pattern very different from the poromyids and cetoconchids due to the 

presence of a thick and wide septum, presenting a well-developed and bifurcated posterior 

and anterior pedal and septal retractor muscles. 

In general, the musculature of Anomalodesmata is little used for the taxonomic 

and phylogenetic studies of this group, although are almost always described, and 

sometimes well detailed in works on the anatomy of the group (Allen & Turner 1974, 

Allen & Morgan, 1981). Our results showed that the Micro-CT can be very useful in the 

reconstruction of the musculature and that some patterns are easily observed through this 

technique. 

Ctenidia 
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According to Harper et al. (2006) the anomalodesmatan ctenidia, if present, are 

complete, deeply plicate and heterorhabdic, defined as Type E by Atkins (1937). This 

type of eulamellibranch ctenidia is usually characterized by the presence of a complete 

inner demibranch and a reduced outer demibranch with only the descending lamellae. 

However, during the adaptive radiation of Anomalodesmata, the ctenidia were drastically 

reduced in the families Euciroidae, Lyonsiellidae and Verticordiidae; with remaining 

ctenidia filaments in Cetoconchidae and Poromyidae or entirely lost in Cuspidariidae and 

Spheniopsidae (Allen & Morgan 1974, 1981, Morton et al. 2016a, b). 

Among the species analysed, just P. pinna and L. alvarezii present a Type E 

ctenidia. In P. pinna, for example, the µCT images show a deep plicate ctenidia and a 

much reduced outer demibranch with the presence of a marginal food groove at free edge 

of inner demibranch. For L. alvarezii the 3D reconstructions were important to visualize 

the disposition of demibranchs and a deep marginal groove. For both, the tomographic 

images were not able to show some gill details as the ctenidia filaments (shape, cilia) or 

the interfilamentar junctions. 

For A. formosa (Lyonsiellidae) and T. ornata (Verticordiidae) the µCT images 

showed a reduced ctenidia without a dorsal attachment with the visceral mass, giving it a 

horizonal orientation into the pallial cavity. According to Morton (1984b) the horizontal 

position of the ctenidia in A. formosa allow that the ctenidia axis separated posteriorly 

from the visceral mass divide the pallial cavity in supra and infrabrachial chambers, a 

condition very similar to that observed in anomalodematans with a muscular septum. Still 

for A. formosa, important details as the ctenidia axis had been also observed via 2D 

tomographic sections.  

The specimen of T. ornata scanned is the smallest among the species analysed, 

sized 3.2 mm in length, even so the 3D reconstructions were effective to visualize and 

consequently to understand the topography of the organs into the pallial cavity. The 

ctenidia of T. ornata, for example, is smaller and has less demibranch filaments when 

compared to the A. formosa, indicating a greater morphological proximity with the 

septibranch condition. Although it is apparently closer, it is also worth noting that T. 

ornata have just the ctenidia, i.e. this species does not have any type of muscular septum 

associated with their gill. Other verticordiids as, for example, Spinosipella deshayesiana 

(P. Fischer, 1862) and Spinosipella costeminens (Poutiers, 1981) have a ctenidia attached 
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to a remaining septum (Simone & Cunha, 2008), showing an even greater proximity to 

this septal condition. 

The muscular septum and its associated musculature are some of the anatomical 

structures best represented in our μCT images, allowing an excellent visualization of the 

different degrees of the ctenidia reduction. Therefore, it was also possible to distinguish 

thinner septa with remaining gill filaments (Cetoconcha spinosula, C. aff. smithii, 

Poromya rostrata) of a thick and well-developed septum without ctenidia filaments 

(Cuspidaria glacialis). Furthermore, the 3D reconstructions facilitated the descriptions 

about the position and quantity of branchial apertures and septal pores present in these 

muscular septa, consequently, producing very important information for the taxonomy of 

these families.  

 In general, the Poromyidae include species with septum perforated by two paired 

groups of branchial apertures, being divided into two subfamilies, the Poromyiinae, with 

no interfilamentar connections in the apertures (usually slit-like or ostial apertures) and 

the Cetomyinae, with such connections (usually sieve-like apertures) (Allen & Morgan 

1981, Krylova 1997, 2001). The family Cetoconchidae, in turn, included species with 

three paired groups of branchial apertures (grouped pores) represented by only one genus, 

Cetoconcha, presenting species with or without interfilamentar connections, as for 

example, Cetoconcha (Cribrosoconcha) alephtinae and Cetoconcha angolensis Allen & 

Morgan, 1981, respectively (Allen & Morgan 1981, Krylova 1997, 2001). Based in this 

background, Cetoconcha aff. smithii and Poromya rostrata presented septal features 

corresponding to the diagnostic characteristics of their families, while the species 

previously identified as Poromya spinosula belongs to the geneus Cetoconcha, since it 

has three ostial septal apertures (grouped pores). Therefore, this paper suggests a new 

combination for the species Poromya spinosula Thiele, 1912, now designated as 

Cetoconcha spinosula (Thiele, 1912) and their consequent reallocation for the family 

Cetoconchidae. 

Also associated to the septum, the presence of a bilobate hollow sac located in the 

posterior inner septal floor has been observed in Cetoconcha spinosula and Poromya 

rostrata. This structure is very similar to the ‘haemocoelic compensation sac’ observed 

in Poromya granulata (Nyst & Westendorp, 1839) (Morton 1981). According to the 

author this structure is associated to a complex mechanism of feed and ingestion in P. 
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granulata helping in the evertion of the inhalant siphon during the prey capture, through 

of fluids release (Morton 1981: fig.15). Although have not been observed alive, the 

presence of this structure in C. spinosula and C. rostrata suggests a similar prey capture 

mechanism to that described for P. granulata. This structure has not been observed in C. 

aff. smithii, maybe due to the contraction state of some organs of the posterior portion of 

the scanned specimen. 

Finally, the Cuspidariidae have species with a thick and well-developed muscular 

septum (without ctenidia filaments) ventrally perforated by isolated pores. Usually 

presenting four pairs of pores, some genera can be 5-30 pores as for example, species of 

Protocuspidaria (5-30 pores) and Halonympha (8-20 pores) (Allen & Morgan 1981; 

Krylova 1994, 1995). The µCT reconstructions showed that C. glacialis have a huge 

muscular septum perforated by five pair of isolated pores. This number of pores is not 

common among species of Cuspidaria that usually presents four pairs, although this same 

configuration had already been observed in Cuspidaria cuspidata by Allen & Morgan 

(1981: pg. 453).  

Labial palps 

The palps are considered important feeding structures in Bivalvia, since it assists 

the ctenidia in the conduction of the food particles available into the pallial cavity until 

the mouth, to be ingested (Stasek 1963). In general, for Anomalodesmata, these labial 

palps can be present or absent, large or reduced, symmetrical or asymmetrical, lamellate 

with sorting ridges in the filter-feeding species (typical bivalve plan) or non-lamellate and 

usually modified in carnivorous species. Herein, the 3D reconstructions provided good 

quality images for the main characteristics of this structure and when present, outer and 

inner labial palps were described.     

Among the species scanned, T. ornata is the only one that does not have labial 

palps. The suspension-feeders P. pinna and L. alvarezii have large, lamellate and 

symmetrical labial palps while the other five carnivorous species have a non-lamellate 

and modified outer and inner palps (asymmetrical). 

The absence of labial palps is rare among the anomalodesmatans and appears to 

be exclusively associated with minute-sized carnivorous species as T. ornata and the 

spheniopsids Grippina coronata Machado & Passos, 2015 (1.67 mm in length) and 
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Spheniopsis brasiliensis Machado & Passos, 2015 (1.78 mm in length) (Machado & 

Passos 2015, Morton et al. 2016a, b). According to Morton et al. (2016b) in species 

without labial palps, the foot is probably used to push inhaled prey from the infra-septal 

chamber until the funnel-shaped mouth. 

For the carnivorous species, C. spinosula, P. rostrata and C. aff. smithii, the 

anterior labial palps are larger than the posterior palps; A. formosa have extremely 

complex labial palps, while C. glacialis possess reduced labial palps. In species of 

Poromyiidae and Cetoconchidae, for example, the palp pattern observed (anterior larger 

and posterior reduced) is also reported for most species of these families as Poromya 

australis E. A. Smith, 1885, Cetomya tornata (Jeffreys, 1876), Lissomya rotundula 

Krylova, 1997, C. angolensis among others (Allen & Morgan 1981, Krylova 1997, 2001); 

being, therefore, an important characteristic for the systematic of this group.  

The palps of A. formosa are complex, fused medially forming two globular flask-

shaped buccal cavities below the mouth, very similar to the previous palp descriptions 

made by Morton (1984b) for the same species. The function for these palps is unknown.  

For the Cuspidariidae the labial palps are generally small and reduced, can be 

classified as Type I, II and III (see Allen & Morgan,1981: pgs. 438, 439). The reduced 

palps of C. glacialis, specifically, also follow the same cuspidariid pattern, being similar 

to the palps observed for other Cuspidaria species and, therefore, classified as Type II by 

Allen & Morgan (1981).  

Siphons 

The siphons are muscular structures formed by the mantle margin fusion that 

perform the function of to connect the bivalves to the environment around it, allowing to 

explore the food resources, make gas exchange and release gametes. In Anomalodesmata 

these siphons can be, fused or separated, similar or different in size and outline, encased 

or not in a periostracal or in a tissue sheath, with or without sensory tentacles, inhalant 

siphon as a simple tube-shaped or highly modified, among others. Important for the 

taxonomy of Anomalodesmata, the siphons are also structures widely used in 

phylogenetic studies, presenting a good phylogenetic signal (Harper et al. 2000, Giribet 

& Wheller 2002, Bieler et al. 2014). 
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The µCT images, mainly 3D reconstructions, were very effective for visualizing 

of the inhalant and exhalant siphons, siphonal apertures, musculature associated and the 

number and position of sensory tentacles, allowing an accurate description of these 

structures. Except for C. glacialis, all species had their siphons and sensory tentacles 

characterized. The species P. pinna and L. alvarezii were the only ones to present siphons 

with the same size and outline (suspension-feeders), T. ornata have a short and half cone-

shaped inhalant and a non-visible exhalant siphon, and for the other species the inhalant 

siphon is modified into a raptorial structure usually associated to the prey capture 

(predatory bivalves). 

The raptorial inhalant siphons of A. formosa, C. spinosula, P. rostrata and C. aff. 

smithii are similar in size and outline, being usually visualized inverted into the pallial 

cavity. For these species, sensory tentacles always are present on the base of siphons, 

usually presenting a variation in relation to the shape, quantity and position. In A. 

formosa, for example, two different types of siphonal tentacles were identified, ~50 

smaller tentacles resembling papillae and located closest to the siphonal apertures and 

~60 bigger tentacles, with a finger-like shape peripherally located. According to Morton 

(1984b) the siphons of A. formosa are surrounded by a ring of ~48 tentacles arranged in 

two cycles; those of the outer cycle are larger and longer than those of the inner; results 

partially similar at those observed via 3D reconstructions, except for the number of 

tentacles. 

For the Poromyidae, specifically, the arrangment (number and position of siphonal 

tentacles and papillae) are important for the taxonomy of this group (Krylova 2001: 

fig.17). Herein, the species Poromya rostrata (12 is, 3es + 0 sip) presented a configuration 

similar to that reported for Poromya undosa Hedley & Petterd, 1906 (10 is, 3es + 0 sip) 

and different to that observed for Cetomya poutiersi Krylova, 2001 (10 is, 3 es + 12 sip) 

and Cetomya celsa Krylova, 2001 (10 is, 3 es + 10 sip), indicating the potential of these 

siphonal arrangements to a differentiation to the genus-level. 

The arrangement described for the cetoconchid C. spinosula (10 is, 3es + 15 sip) 

is diferrent to that observed in C. aff. smithii (10 is, 3 es + 0 sip), mainly due to the absence 

of siphonal papillae (sip) in the latter. On the other hand, the siphonal configuration of C. 

aff. smithii is similar to that reported for C. angolensis and Cetoconcha braziliensis by 

Allen & Morgan (1981), i.e. 15 tentacles around the siphons and no papillae. This paper 
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shows for the first time the presence of siphonal papillae for a member of Cetoconchidae, 

indicating, therefore, a possible similarity between the siphonal arrangement of C. 

spinosula and some Poromyidae members. 

Alimentary tract 

Among the main structures that compose the digestive system, the stomach is the 

most important feature for the Bivalvia systematic, since the gastric chamber morphology 

generally reflects the feeding modes of species. For Anomalodesmata, specifically, two 

different types of stomach are reported, Type II and Type IV (see Purchon 1956, 1987). 

In general, the morphology of the stomach Type II is associated to the carnivorous habit 

characterized by a large rounded sac with thick muscular walls and an extensive 

scleroprotein linings which facilitate crushing prey; the stomach is combined with a 

reduced crystalline style sac (short crystalline style) plus a muscular oesophagus and a 

large mouth. Associated to the filter-feeder anomalodesmatans, the Type IV comprising 

a small and oval stomach associated to an elongated and non-muscularized oesophagus 

and a small mouth; and a gastric chamber elongated ventrally combined with the 

crystalline style sac and the presence of numerous gastric caeca (Purchon 1956, 1987, 

Harper et al. 2006, Mikkelsen & Bieler 2008).  

The µCT images showed with a good quality the most of these structures, allowing 

the classification of the stomach type for the species analysed. Therefore, T. ornata, C. 

spinosula, P. rostrata, C. glacialis and C. aff. smithii have a stomach Type II, while P. 

pinna and L. alvarezii have the Type IV. A. formosa is the only one belonging to a 

traditionally carnivorous family (Lyonsiellidae) that presented an intermediate 

morphology between types II and IV, with a small and oval stomach associated to a well-

developed muscular oesophagus. Although uncommon among the Bivalvia, the 

carnivorous P. fragilis (Parilimyidae) and the non-Anomalodesmata Propeamussium 

jeffreysii (E.A. Smith, 1885) (Propeamussiidae) also displays an intermediate 

morphology type between that of a filter feeding and that of a more specialized carnivore 

(Purchon 1897, 1990, Temkin & Strong 2013). It worth noting, that A. formosa also have 

a well-developed sphincter between oesophagus and stomach (oesophageal opening), 

very similar to the muscular sphincter reported for Bathyneaera demistriata (Allen & 

Morgan, 1981) (Cuspidariidae) by Temkin & Strong (2013).   
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In addition, most of Type II species present whole preys inside stomach, 

reinforcing its carnivorous habit. The tomographic images also showed for the first time 

a gastropod inside the stomach of C. glacialis, a type of prey never before reported for a 

cuspidariid member (Morton 1987b: table 1). Gastropods had already been found into the 

stomach of some poromyiids as Cetomya butoni (Prashad, 1932), Cetomya bacata 

Krylova, 2001 and Cetomya celsa Krylova, 2001 (Krylova 2001: table 1).  

Other structures related to the alimentary system as the path of the gut, details 

about the mid gut, relationship between hind gut (rectum), kidney and heart were also 

possible to be visualized through the 2D tomographic images for all species scanned. 

 

CONCLUSION 

Our results demonstrate that micro-computed tomography is a tool of great 

potential for the study of the anatomy of small marine bivalves. The Micro-CT proved to 

be a fast and very precise tool, presenting 3D reconstructions and 2D tomographic 

sections of high quality. This paper provided, for the first time, anatomical data for seven 

Anomalodesmata species, P. pinna, L. alvarezii, T. ornata, C. spinosula, P. rostrata, C. 

aff. smithii and C. glacialis, re-discuss some characters of A. formosa and suggests the 

reallocation of Poromya spinosula Thiele, 1912 for the genus Cetoconcha; expanding, 

therefore, the taxonomic knowledge of this group via a tomographic approach. Although 

the Micro-CT scanners used in this study has presented some resolution limitations, 

especially for tiny structures (<3µm), new equipment as the Nano-CT and True-color 

Micro-CT are becoming more and more accessible allowing to increase the resolution 

and sharpness of the tomographic images, consequently, making of this technique a 

potential tool for the development of a new taxonomic era. 
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CONSIDERAÇÕES FINAIS 

 

Baseado em técnicas tradicionais como a dissecção, MEV e histologia, a 

descrição da morfologia funcional de Cardiomya cleryana trouxe de fato novos 

insights sobre o hábito carnívoro em Bivalvia, resultando no primeiro vídeo sobre 

o comportamento de uma espécie do grupo. Alguns resultados anatômicos 

como, por exemplo, orgãos internos bem visíveis e não contraídos, presença de 

um longo fio de bisso, glândulas arenofílicas protraídas, gânglios nervosos bem 

preservados, fácil diferenciação entre testículos e ovários, assim como detalhes 

sobre o comportamento dessa espécie, sugerem a importância da utilização de 

espécimes vivos em descrições desse tipo. Além disso, embora bivalves 

carnívoros sejam frequentemente descritos na literatura como raros e de águas 

profundas, a presença de C. cleryana em águas rasas e com uma certa 

abundância propõe uma nova perspectiva para o estudo desses bivalves, 

sugerindo que algumas espécies desse grupo sejam talvez mais comuns nesses 

ambientes do que se imaginava.  

A nova filogenia apresentada no segundo capítulo dessa Tese amplia 

ainda mais o conhecimento sobre os bivalves carnívoros, reunindo pela primeira 

vez, em um mesmo teste cladístico, informações morfológicas sobre todas as 

famílias de hábito carnívoro, elucidando as relações filogenéticas de famílias 

pouco estudadas como Cetoconchidae, Euciroidae, Protocuspidariidae e 

Spheniopsidae. Além disso, as análises sugerem uma nova família de bivalves 

carnívoros (Bentholyonsiidae), formalmente descrita nesse trabalho. Nossos 

resultados também mostraram que o aumento da representatividade de taxa 

trouxe uma nova interpretação para as relações internas desse grupo, sugerindo 
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que os Anomalodesmata, a despeito do que se imaginava em trabalhos 

anteriores, são compostos por quatro grupos monofiléticos, sendo três linhagens 

não-carnívoras reunindo 12 famílias, e uma única e complexa linhagem 

carnívora formada por 10 famílias.    

Em relação ao escasso conhecimento sobre a anatomia dos 

Anomalodesmata, fato este que tem influenciado negativamente no 

entendimento sobre a evolução do grupo como um todo, o terceiro capítulo 

propõe uma alternativa para a ampliação desse conhecimento sem a 

necessidade de coletar novos espécimes e/ou destruir por meio de dissecções, 

exemplares raros depositados em museus. Os resultados apresentados nesse 

capítulo mostram que a tomografia de raios-x é uma ferramenta muito útil para a 

descrição dos tecidos internos de bivalves, propondo as primeiras descrições 

anatômicas de bivalves marinhos baseadas exclusivamente em imagens 

tomográficas e reconstruções 3D.  

Embora estejamos em uma aparente Era molecular, onde estudos de 

genômica e proteômica são muito valorizados, os resultados apresentados aqui 

sugerem que uma abordagem morfológica, combinando taxonomia alfa e uma 

anatomia funcional bem detalhada, ainda pode e deve continuar a ser utilizada 

como uma ferramenta para o entendimento evolutivo de moluscos bivalves.   
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