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RESUMO 
 
O objetivo deste estudo foi desenvolver uma nova interface entre 

partículas de carga e matriz resinosa de compósitos resinosos. Nanogéis foram 

sintetizados e reagidos na superfície das partículas de carga em combinação 

com agentes silanos alternativos, com a finalidade de utilizar essa interface não 

apenas como sítio de ligação entre as fases inorgânica e orgânica, mas como 

um mecanismo de redução das tensões desenvolvida durante a reação de 

polimerização. Inicialmente, nanogéis com funcionalidades isocianato-

metacrilato foram adicionados à superfície das partículas via ligações de ureia 

associados a silanos a base de amina. Em uma segunda abordagem, nanogéis 

com funcionalidades tiol foram reagidos com partículas tratadas com um silano 

vinil via reação tiol-ene. Partículas tratadas com silano convencional γ-

metacrilioxipropiltrimetoxi foram utilizadas como controle. Os procedimentos de 

silanização foram realizados por deposição hidrolítica. Os nanogéis foram 

caracterizados por cromatografia de permeação em gel (GPC) e análise 

mecânica dinâmica (DMA). A proporção de 1:3 em peso de partícula:nanogel foi 

utilizada nas reações. Os tratamentos de superfície foram avaliados por análise 

termogravimétrica (TGA) e espectroscopia de refletância difusa (DR-IR). 

Compósitos foram formulados com uma blenda de BisGMA/TEGDMA com 

adição de 60% em peso de partículas silanizadas ou modificadas por nanogel. 

Os materiais foram avaliados quanto à cinética de polimerização, tensão de 

polimerização (PS), contração volumétrica, propriedades mecânicas e reologia. 

Análise estatística foi realizada pelos testes ANOVA e Tukey a nível de 

significância de 5%. Os tratamentos de superfície foram confirmados por TGA 

e DR-IR. As partículas modificadas por nanogéis foram capazes de reduzir 

significativamente a PS, para ambas estratégias de interface, sem comprometer 

o grau de conversão e módulo de elasticidade. Um desenvolvimento similar do 

módulo foi observado para os diferentes grupos nas análises de reologia 

concomitantemente com a polimerização. O mesmo efeito não foi observado 

quando quantidades semelhantes de nanogéis foram adicionados livres na 

matriz resinosa, no qual foi necessário 15% em peso de nanogéis para 

promover uma redução da PS na mesma magnitude. Para tanto, também foram 



  

 

   

avaliados os efeitos da adição de nanogel livre na matriz resinosa, combinados 

ou não com partículas modificadas por nanogel. Quando ambas as estratégias 

foram associadas, houve uma redução de 50% da PS. As taxas de 

polimerização e contração volumétrica foram significativamente reduzidas para 

esses sistemas com aditivos de nanogel livre na resina. Notavelmente, o módulo 

de elasticidade nesses sistemas não foi comprometido. Já para a resistência à 

flexão, observou-se redução significativa para grupos de silanos amina, no 

entanto, não houve diferença significativa do grupo controle quando os nanogéis 

de isocianato-metacrilato foram adicionados. Em contrapartida, uma redução 

significativa na resistência à flexão associada à interface modificada com 

nanogel de tiol foi observada. Dessa forma, conclui-se que modificação da 

interface entre partícula de carga e matriz resinosa com nanogéis apresenta um 

potencial de redução da tensão de polimerização, sem comprometer o módulo 

de elasticidade. Essa estratégia pode ser combinada com quantidades 

relativamente baixas de aditivos de nanogel livres na fase de resina, reduzindo 

assim drasticamente a PS de compósitos.  

 

Palavras-chave: Resinas compostas. Metacrilatos. Silanos. Polimerização. 

Estresse mecânico. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

 

   

ABSTRACT 
 
The objective of this study was to develop a novel filler particle and 

resin matrix interfacial design in resin composites. Polymeric nanogels were 

synthesized and attached to the filler surface in combination with alternative 

silane coupling agents, in order to use this interphase not only as a linkage 

between inorganic and organic components but also as a source of compliance 

to minimize stress development during polymerization. At first, isocyanate-

methacrylate functional nanogels were end-threated to the fillers surface via urea 

linkages using amine functional silanes. In a different approach, nanogels with 

thiol functionalities were reacted to vinyl silane treated fillers via free-radical thiol-

ene ‘click’ reaction. Fillers treated with the conventional γ-methacryloxypropyl-

trimethoxy silane were used as control. Silanization procedures were carried out 

through hydrolytic deposition.  Polymeric nanogels were characterized by triple-

detector gel permeation chromatography (GPC) and dynamic mechanical 

analysis (DMA). Nanogels were reacted to the silanated surfaces in a 1:3 weight 

ratio of fillers to nanogels. Filler surface treatments were assessed by 

thermogravimetric analysis (TGA) and diffuse reflectance spectroscopy (DR-IR). 

Composites were formulated with a BisGMA/TEGDMA resin blend with 60 wt% 

loading of silanated or nanogel-functionalized fillers. Materials were evaluated 

for polymerization kinetics, polymerization stress (PS), volumetric shrinkage, 

mechanical properties, and photorheology. The statistical analyses were 

performed using ANOVA and Tukey’s test at 5% significance. Filler surface 

treatments were confirmed by TGA and DR-IR. Nanogel-functionalized fillers 

were able to significantly reduce the PS for both interfaces’ strategies, without 

compromising the degree of conversion and elastic modulus. Similar storage 

modulus development during polymerization was observed among materials in 

photorheology evaluation. The same effect was not observed when similar 

amounts of free nanogels were added to the resin, in which 15 wt% was required 

to generate the same magnitude of PS reduction. Moreover, the effects of free 

nanogel addition to the resin matrix, combined or not with nanogel-modified 

fillers were evaluated. When both strategies were associated, the PS was 

reduced in 50% magnitude. Polymerization rate and volumetric shrinkage were 



  

 

   

significantly reduced for systems with free nanogel additives into the resin. 

Notably, the elastic modulus of the materials was not compromised. However, 

for flexural strength a significant reduction was observed for amino functional 

silane groups, yet it did not differ statistically from control group when combined 

with isocyanate-methacrylate nanogels. In contrast, a significant reduction in 

flexural strength for the thiol nanogel-modified interface was observed. In this 

way, it is concluded that filler surface treatment modified with a reactive nanogels 

enables the potential for reduction of polymerization stress, without 

compromising the elastic modulus.  This strategy can be combined with modest 

amounts of free nanogel additives in the resin phase dramatically reduce overall 

PS of composites.  

 
Key words: Composite resins. Methacrylates. Silanes. Polymerization. 

Mechanical stress. 
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   1 INTRODUÇÃO 

 

Os compósitos resinosos são os materiais restauradores mais 

utilizados na Odontologia devido à sua capacidade de adesão às estruturas 

dentais quando associados aos sistemas adesivos, propriedades mecânicas 

suficientes para suportar as cargas oclusais, características estéticas 

satisfatórias e baixa toxicidade em meio oral. Além disso, podem ser aplicados 

através de técnicas diretas à estrutura dental com preparos minimamente 

invasivos (Anusavice et al. 2013; Opdam et al. 2014). Apesar destas inúmeras 

vantagens, a longevidade dessas restaurações é em média 10 anos, sendo que 

estudos clínicos apontam que as restaurações adesivas em dentes posteriores 

ainda apresentam longevidade significativamente menor em comparação às 

restaurações de amálgama (Moraschini et al. 2015; Rho et al. 2013). As 

principais causas de falhas das restaurações de resina composta são a 

formação de novas lesões de cárie nas margens da restauração e a fratura do 

material restaurador ou estrutura dental. O desenvolvimento de lesões de cárie 

nas margens de uma restauração tem influência primária do risco de cárie do 

indivíduo (Opdam et al. 2014), porém fatores intrínsecos ao material podem ter 

efeitos deletérios que contribuem para essas falhas (Demarco et al. 2012). 

A composição básica das resinas compostas é uma matriz orgânica 

com diferentes combinações de monômeros, reforçada pela dispersão de 

partículas de carga inorgânicas ligadas à matriz através de agentes de união à 

base de silano, além de iniciadores responsáveis por desencadear a reação de 

polimerização (Anusavice et al. 2013). Quando ativados por uma fonte de luz 

com comprimento de onda específico, o sistema de iniciadores gera radicais 

livres capazes de quebrar as ligações duplas de carbono dos monômeros 

metacrilatos, que por sua vez reagem entre si (Rueggeberg 2011). Durante esse 

processo, os monômeros se aproximam para estabelecer ligações covalentes e 

formar uma rede polimérica de ligações cruzadas. A distância entre as duas 

moléculas é reduzida levando à diminuição no volume livre, o que resulta na 

contração volumétrica do material (Carvalho et al. 1996). Nessa transição da 

fase de monômeros livres para uma rede polimérica de mobilidade altamente 

restrita, concomitante à contração volumétrica e ao confinamento devido à 
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   adesão do material aos substratos dentais, tensões são geradas e transferidas 

para a interface do material (Braga et al., 2005). Além disso, o comportamento 

viscoelástico do material, caracterizado por sua capacidade de escoamento nos 

estágios iniciais da reação de polimerização, também é um fator importante no 

desenvolvimento dessa tensão (Stansbury 2012). Dessa forma, a magnitude da 

tensão de polimerização vai depender do grau de contração volumétrica 

juntamente com a evolução do módulo de elasticidade do polímero em 

formação, nos quais a contração é determinada pela concentração inicial de 

grupamentos reativos e grau de conversão dos monômeros, enquanto o módulo 

é uma função da densidade da rede polimérica e o aumento da temperatura de 

transição vítrea durante a reação (Braga et al. 2005; Calheiros et al. 2004; 

Stansbury 2012)  

A tensão de polimerização pode causar danos na interface entre a 

restauração e o substrato dental, levando ao desenvolvimento de defeitos e 

fendas marginais. Clinicamente, isso pode gerar sensibilidade pós-operatória, 

pigmentação e infiltração bacteriana nas margens da restauração (Ferracane 

and Hilton 2016; Ferracane and Mitchem 2003). Estudos prévios demonstraram 

que há uma correlação positiva entre a magnitude da tensão e a extensão da 

fenda formada, assim como para infiltração marginal e redução da resistência 

de união (Boaro et al. 2014; Fronza et al. 2015). Além disso, a tensão pode 

induzir deflexão de cúspides e provocar trincas na estrutura dental (Braga et al. 

2012; Rosatto et al. 2015). Esses efeitos deletérios favorecem tanto o 

desenvolvimento de lesões de cárie nas margens da restauração, bem como a 

redução das propriedades mecânicas do conjunto dente-restauração 

(Ferracane 2013; Ferracane and Hilton 2016). 

Muitas pesquisas têm focado em desenvolvimento de materiais e 

estratégias clínicas para minimizar os efeitos negativos associados à tensão de 

polimerização. Inicialmente, os avanços se concentraram na modificação do 

sistema de partículas de carga (Chen 2010; Ferracane 2011). A carga 

inorgânica é adicionada com o propósito principal de aumentar a resistência 

mecânica e ao desgaste do material (Lawson and Burgess 2015; Manhart et al. 

2000). Além disso, com o aumento do conteúdo de carga é possível reduzir a 

quantidade de matriz resinosa e a concentração de grupamentos reativos, 
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   diminuindo assim o potencial de contração volumétrica. Por outro lado, isso leva 

a um aumento do módulo de elasticidade do material como um todo, o que 

diminui sua capacidade de deformação e alivio de tensões (Shah and Stansbury 

2014).   

Recentemente, a maioria dos estudos têm proposto modificações na 

matriz orgânica. Estratégias foram desenvolvidas para reduzir o potencial de 

contração, seja através de monômeros com maior peso molecular, coeficientes 

de contração molar inferior, ou adição de aditivos pré-polimerizados (i.e., 

oligômeros, nanogéis) (Bacchi et al. 2016; Fugolin and Pfeifer 2017). Outras 

pesquisas focam na alteração da cinética da reação, em que taxas de 

polimerização mais lentas podem fornecer períodos prolongados no estágio em 

que o material ainda é capaz de se deformar e ceder às forças de contração 

antes de atingir um alto módulo de elasticidade, ou seja, retardar o ponto de 

geleificação e vitrificação do polímero. Alterações da taxa de reação foram 

propostas utilizando agentes de transferência de cadeias, ou através de 

ligações com capacidade de fragmentação e adição incorporada na cadeia de 

monômeros dimetacrilatos (Bacchi et al. 2016; Pfeifer et al. 2011; Shah et al. 

2017). Esses métodos têm o potencial de diminuir significativamente a tensão 

de polimerização. Entretanto, há uma complexidade em reduzir a tensão sem 

comprometer as propriedades viscoelásticas e mecânicas do material, visto que 

um alto grau de conversão da matriz por consequência aumenta a contração 

volumétrica e o módulo elástico simultaneamente. Dessa forma, muitos 

materiais disponíveis comercialmente que possuem uma menor tensão de 

polimerização, apresentam propriedades mecânicas inferiores (Leprince et al. 

2014) 

Considerando a composição das resinas compostas, o agente de 

união é o componente menos explorado quando novas formulações são 

propostas. Embora essa interface seja a menos abundante do material, ela pode 

ter efeitos significativos sobre as suas propriedades (Sideridou and Karabela 

2009). A superfície das partículas de carga é tratada com um agente bifuncional, 

usualmente o γ-metacrilioxipropiltrimetoxi (MPS) silano. Essa molécula reage 

com os grupos silanol presentes nas partículas de carga por meio dos seus 

próprios grupos silanol, formados a partir da hidrolização dos grupamentos 
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   metóxi presentes em sua estrutura, formando assim ligações siloxano. Em sua 

outra extremidade, essa molécula apresenta um grupamento metacrilato que se 

une à matriz resinosa através da copolimerização das duplas ligações 

carbônicas. Dessa forma são estabelecidas ligações covalentes entre as duas 

fases do material: orgânica e inorgânica (Anusavice et al. 2013). Essa união é 

fundamental para a resistência mecânica e ao desgaste do material, para 

proteger as partículas de carga de deslocamento, diminuir o processo de 

degradação hidrolítica, além de melhorar a distribuição de tensões da fase 

menos rígida de matriz orgânica para as partículas de carga inorgânica mais 

rígidas (Chen 2010; Karabela and Sideridou 2008; Lim et al. 2002; Yoshida et 

al. 2002). 

Entretanto, o MPS pode formar uma interface com múltiplas 

camadas, através da formação de pontes de hidrogênio entre os grupos silanol 

ou entre os grupos silanol e a carbonila presente no silano, dependendo da 

orientação dessas moléculas na superfície da partícula. Desse modo, os 

grupamentos metacrilatos podem ficar inacessíveis e relativamente 

imobilizados, sendo incapazes de promover uma união eficiente (Soderholm 

and Shang 1993). Além disso, a polimerização próxima à superfície das 

partículas impõe restrições de conformação nas cadeias poliméricas durante a 

reação, o que resulta em acúmulo de tensões internas no compósito. Quando 

altas porcentagens de carga são utilizadas, a maior área de superfície das 

partículas disponível restringe ainda mais o movimento dos monômeros nessas 

áreas (Halvorson et al. 2003). 

Dessa forma, além da utilização de agentes silanos alternativos para 

melhorar a estabilidade de ligações nessa superfície (Yoshida et al. 2002), 

alguns estudos propuseram a adição de pré-polímeros nessa região de 

interface, com o intuito de estender a reação para mais distante da superfície 

das partículas. Um estudo demonstrou, por meio da funcionalização das 

partículas de carga com oligômeros, que essa camada interfacial de pré-

polímeros é capaz de minimizar o desenvolvimento de tensões em compósitos 

restauradores (Shah 2012). Em outra estratégia, dendrímeros flexíveis 

ramificados foram utilizados como agentes de união alternativos de partículas 

de carga que, incorporadas à uma matriz resinosa modificada de tiol-γ-
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   metacrilato, reduziram a tensão de polimerização desse material (Ye et al. 

2012). Da mesma forma, o uso de um silano modificado com tiouretanos 

também foi efetivo para diminuir significativamente a tensão de polimerização 

via mecanismo de transferência de cadeia disponível nessa interface (Faria et 

al. 2018).  

Baseando-se nesse conceito, o uso da interface entre a partícula de 

carga e a matriz pode ser utilizado não apenas como sítio de ligação entre as 

duas fases, mas também como área de complacência para aliviar as tensões 

desenvolvidas durante a reação. Assim, um potencial de relaxamento pode ser 

projetado na região de interface que, cumulativamente, com base na grande 

quantidade de área superficial disponível em materiais com alto conteúdo de 

carga, oferece uma perspectiva para redução significativa da tensão de 

polimerização. Dessa forma, é possível conseguir uma acomodação da resina 

e das partículas simultaneamente à polimerização, fornecendo uma união mais 

estável entre as duas fases, sem comprometer as propriedades mecânicas do 

material. 

No presente estudo, é proposta a modificação da interface de união 

entre partículas de carga e matriz resinosa de compósitos restauradores 

utilizando nanogéis associados à agentes silanos alternativos. Nanogéis são 

partículas poliméricas única ou multi-cadeias, ciclizados e ramificados 

internamente, tipicamente com tamanho na escala nanométrica. De acordo com 

sua formulação e processo de síntese, eles podem variar em termos de 

tamanho, características físicas (i.e., temperatura de transição vítrea, índice de 

refração, contribuição do módulo híbrido do nanogel para absorção de 

monômero) e funcionalização (Dailing et al. 2013). O design do nanogel 

influencia sua área superficial e a taxa de polimerização entre as fases de 

monômero da matriz e do nanogel, uma vez que eles podem ter sítios reativos 

para se ligar à matriz resinosa dos compósitos. Alguns estudos demonstraram 

que a adição de nanogéis reativos dispersos livremente na matriz de compósitos 

é capaz de reduzir a contração e a tensão de polimerização, sem comprometer 

as propriedades mecânicas do material (Liu et al. 2012; Moraes et al. 2011). No 

entanto, esse efeito é limitado uma vez que, em maiores volumes, a dispersão 

de nanogéis na resina pode aumentar a viscosidade significativamente e 
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   comprometer a consistência do material (Moraes et al. 2011). Com isso, a 

utilização de nanogéis em quantidades mínimas para funcionalizar as partículas 

de carga pode ser uma alternativa viável. Além disso, a variação nas 

propriedades dos nanogéis pode ser utilizada para controlar a interação entre a 

carga e a matriz, bem como as propriedades dessa interface de maneira geral. 

O maior controle dessas variáveis, também torna mais fácil determinar o 

comportamento de transferências e alívio de tensão no material. 

Portanto, o objetivo do presente estudo foi desenvolver alternativas 

para o tratamento de superfície de partículas de carga, e criar uma nova 

interface de união entre partículas de carga e matriz resinosa, com a finalidade 

principal de reduzir o desenvolvimento de tensões durante o processo de 

polimerização de compósitos restauradores utilizados na Odontologia. As 

partículas modificadas foram aplicadas também em associação à adição de 

nanogéis dispersos livremente na matriz resinosa, e as propriedades físico-

químicas dos compósitos experimentais foram avaliadas.  
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   Abstract 

This study probes how modified approaches for filler surface 

treatment in dental composites based on alternative silanes and functional 

nanogel additives affects physicochemical properties of these materials with a 

focus on polymerization stress development. Methods: Nanogels were 

synthesized from isobornyl methacrylate, ethoxylated bisphenol-A 

dimethacrylate and isocyanatoethyl methacrylate followed by partial further 

reaction with 2-hydroxyethyl methacrylate to provide both isocyanate and 

methacrylate functionalization. A barium glass filler (~1 μm particle size) was 

treated with either γ-methacryloxypropyltrimethoxysilane (MPS), N-

methylaminopropyltrimethoxy (MAP) or N-allylaminopropyltrimethoxy (AAP) 

silanes. The reactive nanogels were then covalently attached to the aminosilane 

treated fillers via urea linkages. Surface treatment was characterized by 

thermogravimetric analysis (TGA) and diffuse reflectance infrared spectroscopy 

(DR-IR). Composites were formulated with 60wt% of the various functionalized 

fillers and the materials were evaluated for polymerization kinetics, 

polymerization stress (PS), volumetric shrinkage, mechanical properties and 

photorheology. Data were evaluated by one-way ANOVA and Tukey's test at 5% 

significance level. Results: Filler surface treatments were confirmed by TGA and 

DR-IR analyses. Nanogel-functionalized fillers significantly reduced PS up to 

20%, while the degree of conversion and elastic modulus were not 

compromised. Similar storage modulus development during polymerization was 

observed among materials by photorheology although the rate of polymerization 

was significantly increased for nanogel-based treatments. A significant decrease 

in flexural strength was observed for amino functional silane groups; however, 

there was no statistical difference in strength for the MPS control group 

compared with the nanogel-modified composites. Significance: Filler surface 

treatment modified with a reactive nanogel enables significant PS reduction, 

without compromise to degree of conversion or mechanical properties of dental 

composites. 

 

Keywords: Composite resin, fillers, methacrylates, isocyanates, nanogels, 

surface treatment, silanization, polymerization, stress, mechanical properties. 
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   Introduction 

 

Composite resins have been used in dentistry as restorative materials 

for 50 years, with significant improvements over time. At the beginning, 

advances have focused on the filler systems to improve mechanical properties 

(Chen 2010; Ferracane 2011). More recently, the focus has turned to the resin 

matrix with particular attention to reduce polymerization shrinkage and stress, 

and to improve materials’ resistance to degradation in the oral environment 

(Fugolin and Pfeifer 2017). The polymerization stress (PS) induces early gap 

formation at the resin-tooth bonded interface, which can cause post-operative 

sensitivity, facilitate staining and bacterial infiltration with the potential 

consequence of reduced clinical longevity (Ferracane and Hilton 2016; Fronza 

et al. 2015; Goncalves et al. 2012; Opdam et al. 2014). Furthermore, PS can 

cause cusp deflection and cracks on the tooth structure and the material, which 

along with degradation may lead to fracture of the restoration or tooth (Oliveira 

et al. 2018; Rosatto et al. 2015). 

Among the research strategies devoted to overcome these issues 

and improve resin composites performance, very few studies have focused on 

the coupling between the organic resin and inorganic fillers. Fillers surface are 

commonly treated with γ-methacryloxypropyltrimethoxy silane (MPS) to provide 

a covalent linkage between both distinct phases. This link is fundamental to 

mechanical reinforcement and wear resistance, to slow the degradation process, 

and to promote stress transition from the flexible organic matrix to the stiffer 

inorganic fillers (Antonucci et al. 2005; Condon and Ferracane 1997; Sideridou 

and Karabela 2009). However, the MPS’s methacrylate functional groups are 

relatively immobile at the filler surface, which places conformational restrictions 

to the resin matrix during polymerization resulting in a build-up of internal 

stresses. Likewise, this interface accumulates stress by itself as the fillers 

present the lowest compliance in a composite system (Condon and Ferracane 

2002).  

A previous study demonstrated the application of flexible 

hyperbranched oligomers to the fillers surface as an alternative coupling agent 

to lower PS of composites when incorporated to modified a thiol–yne–
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   methacrylate resin matrix (Ye et al. 2012). Likewise, the use of a thiourethane-

modified silane was also beneficial to reduce the PS of composites via chain 

transfer mechanism (Faria et al. 2018). Based on this concept of using the resin-

filler interface not only as a linkage, but also as a source of compliance to 

minimize stress development during polymerization, herein we contemplate the 

use of amine functional silanes associated with isocyanate-methacrylate 

nanogels as fillers surface treatment. The use of nanogels end-tethered to the 

silane provide an extension of the reactive methacrylate groups away from the 

surface to interact with the resin matrix. Moreover, nanogels features potential 

for PS reduction when used as additives in the resin (Liu et al. 2012; Moraes et 

al. 2011). 

Therefore, the objectives of this study were to modify the filler surface 

treatment using alternative silanes and reactive nanogel additives as a means 

to alter the physicochemical properties of composites loaded with the 

experimentally treated fillers. The hypotheses tested were as follows: (1) 

nanogel-functionalized fillers will reduce the PS of composites and (2) there will 

be no adverse effect on mechanical properties of composites with nanogel-

functionalized fillers in comparison to analog composites with conventional 

methacrylate silane filler treatment. 

 

Materials and Methods 

 

Nanogel syntheses  

Nanogels were synthesized by a batch process from isobornyl 

methacrylate (IBMA; TCI America, Portland, OR, USA), ethoxylated bisphenol-

A dimethacrylate (BisEMA; Esstech, Essington, PA, USA), and isocyanatoethyl 

methacrylate (IEM; TCI America) at 50:30:20 molar ratio. Azobisisobutyronitrile 

(AIBN; Sigma-Aldrich, St. Louis, MO, USA) at 1 mol% was used as thermal 

initiator. Free-radical polymerization was carried out in solution using 15-fold 

excess of methyl ethyl ketone solvent (MEK; Fisher Scientific, Waltham, MA, 

USA) at 80°C and a stirring rate of 200 rpm. Methacrylate conversion during 

synthesis was followed (based on C=C peak area at 1637 cm-1) in mid-IR spectra 

(Nicolet 6700, Thermo Scientific, Waltham, MA, USA) until 60% conversion was 
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   achieved. Nanogels were precipitated from the clear reaction mixture by 

dropwise addition into hexanes (15-fold excess; Fisher Scientific). Resulting 

precipitates were re-suspended in dichloromethane (BDH Chemicals, VWR 

Analytical, Radnor, PA, USA). In order to obtain reactive polymerizable 

nanogels, 2-hydroxyethylmethacrylate (HEMA; TCI America) was added to the 

solution to partially convert isocyanate groups to methacrylate, and reacted at 

room temperature for 12 hours with a trace amount of dibutyltin dilaurate (Sigma-

Aldrich) as catalyst. The polymer precipitation method was repeated, and 

residual solvent was removed completely under vacuum until the nanogels were 

obtained as dry powders. At the end nanogels had both isocyanate and 

methacrylate functionalities (Figure 1). 

Nanogels were characterized by triple detector (refractive index, 

viscosity, light scattering) gel permeation chromatography (GPC; Viscotek, 

Malvern Instruments, Malvern, UK) in tetrahydrofuran (MilliporeSigma, 

Burlington, MA, USA) using a series of four columns spanning molecular weights 

of 104 – 107 with absolute Mw based on right/low angle light scattering detection 

calibrated with a 65 kDa poly(methyl methacrylate) standard.  

Tg of nanogel (n = 2) was determined by dynamic mechanical 

analyzer (DMA; Perkin Elmer 8000, Perkin Elmer, Waltham, MA, USA) by 

sandwiching 10 mg of nanogel powders in a thin metallic pocket that was then 

subjected to single cantilever cyclic displacement of 50 m at 1 Hz. The nanogel 

was heated from 0 to 150 ◦C with tan d data collected in the second cycle of 

heating at 2◦C/min in air. 

 

 

 

 



   

 

 
Figure 1. Structures of monomers used in the nanogel synthesis. At the first step internally crosslinked nanogels with chain-end 

isocyanate functionality is formed. This allows a route for reintroduction of functional methacrylate groups via the hydroxyl group from 

HEMA. The final nanogels obtained contain both isocyanate and methacrylate functionalities. 

 



   

Fillers surface treatment  

Barium glass filler (1 micrometer, Lot. 161130, Dentsply, York, PA, 

USA) were treated with three different silanes (Figure 2): the conventional 

methacrylate γ-methacryloxypropyltrimethoxy (MPS; Sigma-Aldrich), one amine 

h-methylaminopropyltrimethoxy (MAP; Gelest, Morrisville, PA, USA) and one 

amine silane containing also a pendant vinyl group h-allylaminopropyltrimethoxy 

(AAP; Gelest). Fillers were silanated with 5 wt% silane (relative to fillers) in 

cyclohexane (Sigma-Aldrich) using h-propylamine (Sigma-Aldrich) at 2% as 

catalyst. The mixture was stirred at room temperature for 30 minutes and then 

at 60±5◦C for additional 30 minutes at atmospheric pressure and then placed in 

a rotary evaporator at 60◦C for the removing of the solvent and the volatile by-

products. The powder was then heated at 95±5◦C for 1 hour on the rotary 

evaporator, and finally dried at 80◦C in a vacuum oven for 23 hours. Solvent 

washing with acetone (Sigma-Aldrich) was performed to remove physically 

adsorbed silane.  

Pendant methacrylate (MPS) or amine (MAP and AAP) groups at filler 

surface were reacted with nanogels. The secondary amino functional silanes 

(MAP and AAP) covalently connect with the isocyanate-functionalized nanogels 

forming substituted urea linkages. The reaction was confirmed by proton nuclear 

magnetic resonance spectroscopy (1H NMR; detailed methodology described in 

the Appendix). Else, for the MPS control silane nanogels were added to the 

surface via methacrylate functional groups. The reactions were carried out using 

a filler to nanogel weight ratio of 1:3 in toluene at room temperature for 4 hours 

with a trace amount of dibutyltin dilaurate. Multi-step solvent washing of the 

treated fillers with acetone was performed to remove any unbound nanogel, and 

then followed by solvent removal during 24 h vacuum storage.  

Filler surface treatments were identified by diffuse reflectance Fourier 

transform infrared spectroscopy (DR-IR; Nicolet 6700) spectroscopy. 

Spectroscopic grade KBr (Sigma-Aldrich) and fillers were grinded together and 

placed in the DR-IR accessory.  Spectra were taken at 8 cm-1 resolution, 64 

scans, from 4000 to 1350 cm−1 range, using KBr as background. 
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Figure 2. Chemical structures of the silane agents. 

 

Thermogravimetric analysis (TGA; Pyris 7 TGA, Perkin Elmer) was 

used to determine the amount of silane and/or nanogel on surface of treated 

fillers. Samples (5±1 mg) were placed in platinum pans in nitrogen atmosphere 

flow of 20 ml/min and heated from 50 oC to 850 oC with a heating rate of 10 ◦C 

min-1. The mass loss, which corresponds to the organic phase lost, as a function 

of temperature was recorded. 

 

Resin and composites formulation 

A resin blend with bisphenylglycidyl dimethacrylate (BisGMA; Sigma-

Aldrich) and triethylene glycol dimethacrylate (TEGDMA; Sigma-Aldrich) at 

70:30 molar ratio was formulated. The photoinitiator system consisted of 

camphorquinone (0.3 wt%; Sigma-Aldrich) associated with a tertiary amine 

ethyl-4-dimethylaminobenzoate (0.8 wt%; Sigma-Aldrich). Composites were 

formulated at 60 wt% loading of silanated or nanogel-functionalized fillers, which 

were incorporated to the resins with the aid of a mechanical mixer (DAC 150 

Speed Mixer, Flacktek, Landrum, SC, USA) for 5 minutes at 2000 rpm.  

 

Resin and composites testing 

Polymerization kinetics was monitored in by Fourier transform near-

infrared spectroscopy (FT-NIR, Nicolet 6700) in specimens (n = 3) of 6 mm in 

diameter and 0.8 mm thick laminated between two glass slides. The area of the 

methacrylate vinyl absorbance peak centered at 6165 cm-1 (Stansbury and 

Dickens 2001) was used to follow the real-time polymerization reaction 

continuously for 10 minutes. Specimens were photoactivated for 20 s at an 
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   incident irradiance of 1470 mW/cm2  at 430-480 nm wavelength (Elipar 

DeepCure-S LED, 3M ESPE, St. Paul, MN, USA). Measurements were taken at 

a wavenumber resolution of 4 cm-1 with 32 scans per spectrum acquired for static 

scans before and after polymerization to measure degree of conversion (DC) 

and 2 scans per spectrum for polymerization kinetics, which provides 2 Hz 

acquisition rate. Polymerization rate (PRmax) was calculated as the first derivate 

of the conversion vs. time curve. 

PS (n = 5) was evaluated with a tensometer (Paffenbarger Research 

Center, American Dental Association, Chicago, IL, USA) using 6 mm diameter 

glass rods. Rods were sectioned into lengths of 28 and 5 mm, in which one 

surface of the 28-mm long rods was polished with a sequence of silicon carbide 

abrasive papers and felt disks in order to optimize the transmission through the 

rod end into the specimen during light-activation. The opposite surfaces of the 

28- and 5-mm rods were polished with abrasive papers to create a rough 

surface, followed by silane application. The 28 mm rod were attached to the 

lower clamp of the tensometer and the 5 mm rods to the upper clamp. Each 

material was placed between the rods with a Centrix syringe at 1 mm thickness. 

The tip of the light-curing unit was positioned in contact with the polished lower 

rod. Force development was monitored for 10 minutes from the beginning of 

photoactivation (20 s), and the maximum nominal stress (MPa) was calculated 

by dividing the maximum force value recorded by the cross-sectional area of the 

rods.  

Volumetric shrinkage (n = 5) was evaluated with a non-contact linear 

variable differential transducer-based linometer (Academic Center for Dentistry, 

Amsterdam, ND). Composites were placed onto an aluminum disc in linometer 

and covered with a glass slide, which was adjusted to produce a specimen disc 

of approximately 1 mm thickness × 6 mm diameter. All specimens were light-

activated for 20 s. The displacement caused by linear shrinkage during 

polymerization was measured and converted to the corresponding volumetric 

shrinkage. The dynamic shrinkage data was recorded during and extending 

beyond the irradiation interval for a total period of 10 minutes.  

A rheometer (ARES, TA Instruments, New Castle, DE, USA) was 

used to assess the photorheology of the composites (n = 2). Materials were 
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   placed between two 20 mm parallel quartz disc plates and tested in shear at a 

frequency of 100 rad/s with 10% strain (ensuring linear viscoelastic regime), 

while being photopolymerized at 50 mW/cm2. An optical apparatus (Pfeifer et al. 

2011) allowed both curing light and FT-NIR direct transmission access to the 

specimen within the photorheometer, in this way degree of conversion was 

followed concomitantly with storage modulus development. 

Flexural strength and elastic modulus (n = 5) were determined by the 

three-point bending test. Bar specimens (n = 5) were fabricated (2 mm x 2 mm 

x 25 mm) between glass slides and polymerized with three overlapping 20 s light 

exposures each sides glass side, according to ISO 4049 (Iso 4049. Dentistry - 

polymer-based restorative materials  2009). Specimens were stored dry for 24 

hours in dark containers at room temperature. The three-point bending test was 

performed on the MTS testing machine using a span of 20 mm and a cross-head 

speed of 1 mm/min (MTS Mini Bionix II, MTS, Eden Prairie, MN, USA). The 

flexural strength (FS) in MPa was then calculated as:  

 

!"($) = 	 3!)2+ℎ- 

 

where F stands for load at fracture (N), ) is the span length (20 mm), 

and b and h are the width and thickness of the specimens in mm, respectively.  

The elastic modulus (E) was determined from the slope of the initial 

linear part of stress–strain curve.  

 

.	 = 	 !)/
4+ℎ/1 

 

where F is the load at some point on the linear region of the stress–

strain curve, d the slack compensated deflection at load F, and ), b, and h are as 

defined above.  
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   Statistical analysis 

Normal distribution was assessed by Shapiro-Wilk test and Brown-

Forsythe’s method was used to analyze the presence of equal variance. Data 

from degree of conversion, PRmax, PS, volumetric shrinkage, elastic modulus, 

and flexural strength were evaluated using One-way ANOVA tests (factor: 

composite, 6 levels). Where appropriate, Tukey post-hoc tests were applied in 

order to detect pair-wise mean differences among the groups. For all statistical 

testing, a pre-set, global significance level of 5% was used.  

 

Results 
 
GPC analysis (Table 1) demonstrates that nanogels presented 

moderate distributions of high-molecular-weight polymer with size of 

approximately 17±1 nm. The low Mark-Houwink exponent values indicated 

branched globular structures. DMA (Table 1) of nanogel powders revealed Tg 

values from 57 to 63 °C.  

 

Table 1. Gel permeation chromatography parameters and glass transition 

temperature of nanogels. 

 Mw (Kg/mol) PDI Rh (nm) MH-α Tg (oC) 
Batch 1 484.51 1.48 9.08 0.49 57.3 

Batch 2 428.81 2.01 8.24 0.23 63.3 

Batch 3 400.83 1.99 8.18 0.40 57.9 

Batch 4 426.92 1.76 8.45 0.46 57.1 

Molecular weight (Mw), polydispersity index (PDI), hydrodynamic radius (Rh), 

Mark-Houwink exponent (MH-α), and glass transition temperature (Tg). Data 

represent single analyses. 

 

Filler surface treatment was estimated by TGA as 0.8 to 1.3 wt% for 

silanes, and 2.8 to 4.7 wt% for nanogel-functionalized fillers (Figure 3A). The 

major weight loss associated with nanogel treatment starts around 250 oC, which 

confirms that nanogels are reacted to the surface. DR-IR (Figure 3B) shows free 

silanol groups (3742 cm-1) for untreated fillers, which were consumed after 
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   silanization. Methacrylate carbonyl peak at 1706 cm-1 (indicated by *) is present 

for MPS and all nanogel-functionalized fillers. Multiple aliphatic peaks (2856-

2962 cm-1) can also be observed for MPS and in a higher intensity for nanogel 

treatment.  

 

 
Figure 3. Thermogravimetric analysis displays weight loss of fillers as function 

of temperature increase. Ffiller surface treatment is estimated as 0.8 to 1.3 wt% 

for silanes and 2.8 to 4.7 wt% for nanogel additives (A). Diffuse reflectance 

spectroscopy spectra filler surface treatments. The non-treated fillers show the 

free silanol groups (3742 cm-1 peak indicated by arrow). The methacrylate 

carbonyl peak at 1706 cm-1 (indicated by *) is identified for MPS, MPS ng, MAP 

ng, and AAP ng. Multiple aliphatic peaks (2856-2962 cm-1) can also be observed 

in higher intensity for nanogel treatments.  

 

Properties results of composites are presented in Table 2. After 10 

minutes polymerization kinetics evaluation (Figure 4A), there was no statistically 

significant differences among groups for degree of conversion. Although, the 

rate of polymerization (Figure 4B) was significantly higher for nanogel-

functionalized fillers in comparison with its respective control silanes. Nanogel-

functionalized fillers were able to significantly reduce the PS, with the lowest 

values found for MPS and MAP associated with nanogels (Figure 3C). However, 

the filler surface treatment did not affect the volumetric shrinkage (Table 2, 

Figure 3D).  
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   Table 2. Mean (standard deviation) for degree of conversion (DC), maximum polymerization rate (PRmax), volumetric 

shrinkage (VS), polymerization stress (PS), elastic modulus (EM) and flexural strength (FS) of composites. 

 DC (%) PRmax (%/s) VS (%) PS (MPa) FS (MPa) EM (GPa) 

One-way ANOVA p = 0.226 p < 0.001 p = 0.829 p < 0.001 p < 0.001 p = 0.430 

MPS 65.5 (1.1) 11.0 (0.4) bc 4.1 (0.1) 2.3 (0.1) b 140.3 (18.3) a 6.0 (0.5) 

MPS ng 64.1 (0.6) 13.1 (0.3) a 4.1 (0.1) 1.7 (0.1) d 132.5 (14.2) a 6.0 (0.8) 

MAP 65.1 (0.5) 9.5 (0.3) d 4.1 (0.1) 2.6 (0.07) a 82.8 (6.9) c 5.8 (0.8) 

MAP ng 65.3 (0.3) 11.6 (0.5) bc 4.1 (0.2) 1.7 (0.1) d 127.2 (13.2) ab 6.2 (0.2) 

AAP 65.2 (0.2) 10.7 (0.2) cd 4.0 (0.3) 2.5 (0.1) ab 107.9 (2.4) b 6.7 (0.7) 

AAP ng 64.0 (1.6) 12.4 (1.0) ab 4.1 (0.1) 2.0 (0.1) c 122.1 (10.6) ab 6.0 (0.8) 

Within a column, means followed by the same letter are not statistically different (p > 0.05).
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Figure 4. Degree of conversion (A) and rate of polymerization (B), polymerization 

stress development (C), and volumetric shrinkage (D) as function of reaction 

time for composites with different surface filler treatments. Notably, there is a 

reduction in polymerization stress for groups with nanogel-functionalized fillers. 

 

Regarding the mechanical properties, flexural strength of MPS silane 

and all treatments with nanogel additives provided significantly higher values, 

while the amino functional silane MAP presented the lowest. Nonetheless, the 

filler surface treatment did not affect the elastic modulus of the materials. 

Herewith, real-time photorheology demonstrates similar modulus evolution along 

with degree of conversion and polymerization reaction progression to all 

experimental composites (Figures 5A and B). 
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Figure 5. Photorheomether analysis demonstrates the storage modulus 

development as the reaction progresses (A), as well as storage modulus along 

with conversion acquirement (B). Note that the elastic modulus development and 

final values are similar to all materials, independent of filler surface treat 

 

Discussion 

 

The coupling agent between resin matrix and fillers represents the 

minor portion of the overall composite formulation; however, it serves an 

essential role in achieving the robust mechanical performance that is demanded 

of dental composite restoratives. Here, the modification of the resin-filler 

interface with amino-functional silanes allowed the controlled introduction of a 

single layer interphase since the nanogels offer no interparticle interactions. This 

nanogel-derived surface layer contributes negligible dimension to the overall 

filler particle size yet, this approach significantly reduced PS, without 

compromise to the mechanical properties of the composites. Therefore, the 

hypotheses of the study were accepted.  

Nanogel functionalized fillers were able to significantly reduce the PS 

compared to the controls with silane treatment only (Table 2; Figure 4C). The 

PS development and its magnitude are dependent on volumetric shrinkage 

along with evolution of elastic modulus, with both properties reliant on the degree 

of conversion (Braga et al. 2005; Stansbury 2012). Notably, there was no 

significant decrease in volumetric shrinkage or elastic modulus for the 

experimental materials (Figure 4D; Table 2). Volumetric shrinkage is determined 
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   by the initial concentration of reactive groups in the composite overall as well as 

the degree of conversion reached during polymerization. Since the ratio of resin 

to the inorganic component of the filler do not differ substantially among the 

groups here, the starting reactive group density is comparable. This along with 

the similar levels of limiting conversion achieved across the series of composites 

studied here, means a reduction in shrinkage is not expected. Also related to 

this, the equivalence of the elastic modulus results for all the materials indicates 

that the polymer network density and quality is not affected by the presence of 

the nanogel-modified filler surfaces (Table 2; Figure 5). It is worth noting that the 

Tg of the bulk nanogels offers a reasonably good match to the Tg obtained when 

the BisGMA/TEGDMA resin is photocured to its vitrification limiting conversion.  

Because neither shrinkage nor modulus are altered for composites 

with the nanogelmodified filler, we consider that the introduction of a nanogel 

interphase provides a stress relaxation mechanism that operates during the 

course of photopolymerization (Figure 4C). Nanogels are synthesized in a 

solution polymerization process, which results in a swellable structure. Once 

dispersed in resin, the nanogel polymeric particles, are swollen by monomer (Liu 

et al. 2014), which presumably occurs whether the nanogels are freely dispersed 

in the resin phase or tethered to the filler surface. This means an effective volume 

fraction of the monomer-swollen nanogel rather than a simple calculated volume 

fraction should be considered, which may have contributed to the reduction in 

stress. Additionally, the monomer swollen nanogels function as a 

transition phase between the resin and filler in terms of the local reaction rate as 

well as the evolving Tg and mechanical properties. These features along with 

the highly branched structure of the nanogels may allow compliant interfacial 

zone during polymerization that can internally absorb some of the developing 

stress. An important component of this is likely the physical displacement of the 

copolymerizable methacrylate groups in the nanogels away from the filler 

surface, which would enable a degree of compliant behavior.   

Nanogels were synthesized from a mono-functional monomer (IBMA) 

and a di-functional crosslinker (BisEMA), with addition of IEM to introduce 

isocyanate functional groups (Figure 1). In order to avoid macrogelation and 

control nanogels size, a 15-fold excess of MEK solvent was used along with a 
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   restriction of the reaction to 60 % conversion. Chain transfer agents, such as 

alkyl thiols, are commonly used to help control nanogel molecular weight and 

size (Moraes et al. 2011)  however, thiols would be consumed by the isocyanate 

groups from IEM and thus, the chain transfer agent was avoided here. Despite 

of use of the higher dilution in the nanogel synthesis as compared with previous 

nanogel synthetic procedures, the molecular weights of the functional nanogels 

are approximately an order of magnitude greater than those that can be 

produced with a chain transfer agent under much more concentrated reaction 

conditions. The use of isocyanate nanogel functionality here was to produce 

substituted urea linkages through reaction with the secondary amine functional 

silanes on the filler surface, ultimately forming a polyurea-based interphase. 

Polyureas are widely used in materials science to produce soft elastomers, rigid 

thermosets, and foams (Chattopadhyay and Raju 2007). Urea linkages have 

been found to be more hydrolytically stable than the ester bonds found in 

methacrylate structures, which are readily hydrolyzed in either basic or acidic 

solutions. The hydrolysis process diminishes material properties over time and 

ultimately leads to mechanical failure (Ferracane 2006; Pegoretti et al. 1998; 

Podgorski et al. 2015).  In this way, this alternative linkage has potential 

advantages for application at the critical filler-resin interface. 

Notwithstanding, it is acknowledged that the pervasive use of 

methacrylate resins as the resin phase component of dental composites requires 

accommodation by coupling agent. Therefore, methacrylate groups were 

introduced into the nanogel structures via partial conversion of the pendant 

isocyanates through reaction with hydroxyl groups of HEMA. This provides the 

nanogels appropriate orthogonal functionality to covalently attach to the filler 

while presenting direct copolymerizabilty with the resin matrix to promote proper 

mechanical properties. However, even when these isocyanate/methacrylate 

functional nanogels were added to MPS silanated fillers, the mechanical 

properties obtained for the photocured composites indicate that suitable coupling 

was achieved between the filler and matrix phases (Table 2). For the filler 

surfaces treated with MPS or AAP that likely provide residual silane-based vinyl 

groups as well as to the methacrylate groups within the tethered nanogel layer, 

this offers an additional point of connection with the resin matrix to insure a 
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   strong connection between the composite phases. This is highlighted by the 

good mechanical properties observed with the MPS and AAP silane-only surface 

treatments (Table 2), albeit without the benefit of reduced PS that is attributed to 

the tethered nanogels. The restoration of mechanical properties when the non-

copolymerizable MAP surface treatment is modified by appending the reactive 

nanogel layer provides a good demonstration of the filler-bound nanogel 

interaction with resin while the good mechanical strength of the AAP-only filler 

surface treatment indicates effective copolymerization between the silane-based 

allyl groups and the methacrylate resin. 

Furthermore, the final degree of conversion attained was also 

unaffected by silane type or nanogel-functionalized fillers (Table 2; Figure 4A). 

However, the presence of nanogels does provide a significant increase in the 

photopolymerization rate (Table 2; Figure 4B). Previous studies have 

demonstrated that the use of nanogel additives dispersed in a monomer matrix 

can enhance, reduce or leave polymerization rates unaltered (Liu et al. 2012; 

Moraes et al. 2011). As compared with neat monomer, the internal monomer-

swollen nanogel domain presents a localized higher viscosity environment, 

particularly with the highly branched nanogels used here. Therefore, when 

polymerization is initiated, depending on the amount of nanogel added, varying 

proportions of monomer will be in this more mobility-restricted state and the 

overall auto-acceleration behavior would also vary accordingly (Liu et al. 2012; 

Moraes et al. 2012).  

 The viscoelastic behavior of the material characterized by its 

resistance to flow in the initial stages of the reaction, is also an important factor 

for stress development (Braga et al. 2005; Stansbury 2012). Despite the 

differences in polymerization rate, the rheology during polymerization was not 

affected, as demonstrated by storage modulus acquirement over time as well as 

in terms of degree of conversion (Figure 5). The effect of low amounts of 

nanogels in resin viscosity is minimal as is typically observed for globular 

hyperbranched or dendritic polymeric additives (Moraes et al. 2011). Likewise, 

no obvious differences in handling characteristics were noticed here for the 

experimental and control composites. Moreover, the final storage modulus 
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   acquired corroborates with results from the three-point-bending test, in which no 

differences in final modulus were observed between groups (Table 2). 

 Herein we evaluated filler surface modification with 1 µm glass 

fillers only, while modern dental composites are multicomponent mixtures of 

fillers with a distributed range of sizes. Further studies should check the 

proposed surface treatment that include fumed silica or other nanoscale 

particles, which feature a greater surface area and offer features such as 

enhanced filler packing and wear resistance. As mentioned, approaches that 

provide surface-active nanogels of even smaller dimension (<10 nm) would also 

be of interest. The current combination of amino silanes with isocyanate 

nanogels may provide a more reliable stable interface between filler and resin 

matrix; however, longer-term studies regarding hydrolytic and mechanical 

stability of both the modified silane-based interfaces and the nanogel-based 

interphases need to be carried out. 

 

Conclusion 

 

Filler surface treatment modified with reactive nanogels enables the 

potential for a significant reduction in PS, without compromise to degree of 

conversion or physical/mechanical properties of photocurable dental 

composites. The production of this substantial stress reduction based on a 

relatively small nanogel content located exclusively at the filler surface, highlights 

the potential of this intentionally engineered resin-filler interphase region in 

heterogeneous composite materials. 
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   2.2 Artigo: Nanogel based filler-matrix interphase reduces polymerization 

stress of composites 
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   Abstract 

A novel filler-resin matrix interphase structure was developed and 

evaluated for dental composite restoratives. Nanogel additives were chemically 

attached to the filler surface in order to use this created interphase as a potential 

source of compliance to minimize stress development during polymerization. In 

addition, we evaluated the effects of free nanogel dispersion into the resin matrix, 

combined or not with nanogel-modified fillers. Nanogels with varied 

characteristics (i.e. size of 5 and 11 nm; glass transition temperature (Tg) from 

28 to 65 oC) were synthesized. Glass fillers were treated with 

trimethoxyvinylsilane and further reacted with thiol-functionalized nanogels via a 

free-radical thiol-ene reaction. γ-Methacryloxypropyltrimethoxysilane-surface 

treated fillers were used as a control. Composites were formulated with 

BisGMA/TEGDMA resin blend with 60 wt% fillers using nanogel-modified fillers 

and/or free nanogel additives at 15 wt% in the resin phase. Polymerization 

kinetics, polymerization stress, volumetric shrinkage, rheological, and 

mechanical properties were evaluated to provide comprehensive 

characterization. Nanogel-modified fillers significantly reduced the 

polymerization stress from 2.2 MPa to 1.7 - 1.4 MPa, resulting in 20% stress 

reduction. A significantly greater nanogel content was required to generate the 

same magnitude stress reduction when the nanogels were only dispersed in the 

resin phase. When the nanogel-modified filler surface treatment and resin-

dispersed nanogel strategies were combined, there was a stress reduction of 

50% (values of 1.2 - 1.1 MPa). Polymerization rate and volumetric shrinkage 

were significantly reduced for systems with nanogel additives into the resin. 

Notably, the flexural modulus of the materials was not compromised although, a 

slight reduction in flexural strength associated with the nanogel-modified 

interphase was observed. Overall, modest amounts of free nanogel additives in 

the resin phase can be effectively combined with very limited nanogel content 

filler-resin interphase to lower volumetric shrinkage and dramatically reduce 

overall polymerization stress of composites. 

 

Keywords: Polymers, methacrylates, silanes, light-curing of dental resins, 

polymerization, stress 
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   Introduction 

 

Polymerization stress (PS) in dental composites can damage the 

resin-tooth bonded interface, exhibiting a positive correlation with gap formation 

and leakage of restorations (Boaro et al. 2014; Fronza et al. 2015). It can also 

lead to cuspal deflection, tooth cracking, reduced bond strength, and lowered 

mechanical properties of the restorative (Braga et al. 2013; Nayif et al. 2008). 

During polymerization, the build-up of post-gel stress begins with the evolution 

of elastic modulus (EM) along with the degree to which the free shrinkage 

associated with polymerization is constrained by bonding to substrates  (Braga 

et al. 2005). Free shrinkage is determined by initial reactive group density within 

the resin and the degree of conversion (DC) attained, while EM is a function of 

polymer network density and increasing glass transition temperature (Tg) as 

polymerization occurs (Stansbury 2012). Addition of fillers to the resin affects 

both parameters. Increased filler volume fraction accounts for a reduction in the 

overall resin reactive group concentration, which reduces bulk shrinkage; 

however, increased filler loading also produces a significant increase in EM that 

can counter the stress reduction of lower shrinkage (Shah and Stansbury 2014).  

γ-methacryloxypropyltrimethoxysilane is commonly used to provide a 

covalent linkage between fillers and resin matrix, which increases bulk 

mechanical properties through transfer of stresses between the inorganic and 

organic phases (Wilson et al. 2007). This coupling at the filler surface places 

local conformational restrictions on the resin network during polymerization. 

Despite the reactive methacrylate functional groups from the silane being 

relatively immobile and buried, which leads to relatively inefficient coupling 

between two phases, the resin-filler interface contributes to the build-up of 

significant internal stresses in the composite during polymerization (Sideridou 

and Karabela 2009; Soderholm 1984).  

Most advances to reduce PS focus on modification of the polymeric 

network. Step-growth thiol-Michael resins have demonstrated reduced PS 

compared to conventional methacrylates. Nevertheless, further investigations 

are needed to achieve optimal proportions of resin, fillers, and photobase 

initiators to suit clinical use  (Huang et al. 2018). Addition–fragmentation chain 
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   transfer capable linkages incorporated into dimethacrylate monomers also 

reduce stress. However, concentrations higher than 5 wt% of this compound 

lower significantly both polymerization kinetics and final conversion (Shah et al. 

2017). Although advantages of chain-transfer reactions by use of thiols (Pfeifer 

et al. 2011) or methacrylate-thiol-ene systems (Boulden et al. 2011) are 

promising to lower PS, the use of small molecule thiols is usually related to 

reduced shelf life and unpleasant odor prior to polymerization. These drawbacks 

can be overcome by the use of thiols as oligomers, such as off-stoichiometric 

thiourethanes (Bacchi et al. 2016; Bacchi et al. 2018), nonetheless its effect to 

lower PS is concentration dependent, in which higher amounts increase resin 

viscosity, impairing addition of fillers and compromising handling characteristics. 

Recently, the use of a thiourethane modified silane was demonstrated to reduce 

PS of composites as well (Faria et al. 2018). 

Another potential alternative to reduce shrinkage and PS is the use of 

reactive nanogels (Liu et al. 2012; Moraes et al. 2011). Nanogels are highly 

tailorable polymeric particles are very attractive for biomedical applications, such 

as drug delivery systems and tissue engineering (Jiang et al. 2014; Zhang et al. 

2016). Nanogels are internally cyclized and branched polymers which can be 

varied in terms of size, physical characteristics (i.e. Tg, refractive index, and 

hybrid modulus contribution of a monomer-swollen nanogel), and chemical 

functionalities. The nanogel design as well as the variation in loading levels 

results in control over the interfacial surface area and polymerization rate 

between the matrix monomer and nanogel phases. Nanogel addition potentially 

provides enhanced polymerization rates with increased limiting conversion while 

significantly reducing both the rate and extent of PS (Dailing et al. 2013). 

Reactive nanogel addition to resin and composites has been demonstrated to 

reduce stress without compromise to mechanical properties. However, nanogel 

dispersion into resin can increase resin viscosity and composite paste 

consistency dramatically (Moraes et al. 2011).  

To overcome these issues, herein we developed and propose a novel 

interphase structure between fillers and resin matrix based on minimal amounts 

of nanogel additives intentionally positioned at the filler surface, in order to use 

this interphase as a source of compliance to minimize stress development during 
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   polymerization. This concept relies on small relaxation potential designed into 

the interphase region that offers the prospect for substantial bulk stress reduction 

based on the high overall interfacial surface area available in highly filled 

composite materials. In this way, the utility of the interface extends beyond just 

a connection between the phases.  

Therefore, the objective of this study was to treat filler surfaces with 

systematically varied nanogels in order to reduce PS of restorative composites. 

In addition, we evaluated the effects of a modest content of free nanogel addition 

to the resin matrix, which can be combined with nanogel-modified fillers, in terms 

of material physical-chemical properties. The hypotheses tested were as follows: 

(1) nanogel-modified fillers will reduce PS of composites and (2) there will be no 

compromise to EM of composites relative to control materials.  

 

Materials and Methods 

 

Nanogel syntheses  

Three nanogels with different sizes and Tg’s were prepared (Table 1). 

Ng 1 and 2 were synthesized from isobornyl methacrylate (IBMA) and urethane 

dimethacrylate (UDMA) at 70:30 molar ratio. To avoid macrogelation and control 

nanogel molecular weight/particle size, Ng 1 used 15 mol% of a chain-transfer 

agent (2-mercaptoethanol; ME) and six-fold excess of solvent (methyl ethyl 

ketone; MEK), while Ng 2 used 5 mol% ME and four-fold excess of MEK. In order 

to provide a lower Tg, Ng 3 was synthesized with butyl methacrylate (BMA) 

replacing IBMA and using 15 mol% ME with a six-fold excess of MEK. 

Azobisisobutyronitrile (AIBN) at 1 mol% was used as thermal initiator. Free-

radical polymerization was carried out in solution using a four or six-fold excess 

of methyl ethyl ketone solvent at 80 °C and a stirring rate of 200 rpm. 

Methacrylate conversion during nanogel synthesis was followed (based on C=C 

peak area at 1637 cm
-1 

relative to the C=O absorbance at 1720 cm
-1

) in mid-IR 

spectra (Nicolet 6700, Thermo Scientific, USA). When the reaction reached 60% 

conversion, pentaerythritol tetra(3-mercaptopropionate) (PETMP; 10 mol%) was 

added to introduce pendant thiol functionalities in the nanogels as the reaction 

progressed until 85% conversion. Nanogels were precipitated from the clear 
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   reaction mixture by dropwise addition into hexanes (10-fold excess). The 

residual solvent was removed and nanogels were obtained as powders.  

Polymeric nanogels were characterized by triple-detector gel 

permeation chromatography (GPC), the Tg of nanogels was determined by 

dynamic mechanical analysis (DMA), and Ellman’s reagent test was used for 

quantitating free sulfhydryl groups of nanogels. Detailed characterization 

methodologies are described in the Appendix. 

 

Filler surface treatment  

 To introduce the thiol-functionalized nanogel to the surface of a 

bare barium glass filler (average diameter 1 µm (Dentsply Sirona), the filler was 

initially treated with trimethoxyvinylsilane (VIN). Separately, the control filler was 

prepared by analogous treatment with γ-methacryloxypropyltrimethoxysilane 

(MET). Silanization methods are described in the Appendix. 

Pendant vinyl groups from VIN on the filler surface were reacted with 

nanogels via a free-radical thiol-ene ‘click’ reaction (Lowe 2010). The reaction 

was carried out using a filler to nanogel weight ratio of 1:3 in toluene at 70 °C 

and a stirring rate of 200 rpm with 1% AIBN as initiator. In a pilot study, reaction 

times of 24, 48 and 72 h were tested regarding the extent of nanogel attachment 

in coordination with composite property testing. Multi-step solvent washing of the 

treated fillers with acetone was performed to remove any unbound nanogel, 

which was then followed by solvent removal during 24 h vacuum storage.  

Filler treatments were analyzed by diffuse reflectance Fourier 

transform infrared spectroscopy (DR-IR) spectroscopy, thermogravimetric 

analysis (TGA) and energy dispersive X-ray (EDX) spectrometry analysis, as 

described in the Appendix. Filler surface images were obtained by transmission 

electron microscopy (TEM; JEM 2100, JEOL, Japan). 

 

Resin and composite formulation 

A resin blend was formulated with bisphenol A glycidyl dimethacrylate 

(BisGMA; Esstech, USA) and triethylene glycol dimethacrylate (TEGDMA; 

Esstech) in 70:30 molar ratio. The visible light photoinitiator system consisted of 

camphorquinone (0.3 wt%; Sigma Aldrich) and ethyl 4-dimethylaminobenzoate 
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   (0.8 wt%; Sigma Aldrich). Fillers were mechanically mixed into the resins (DAC 

150 Speed Mixer, Flacktek, USA; 5 min at 2000 rpm). Besides the 

nanogelfunctionalized fillers, the different nanogels were also tested as free 

additives in the resin. In this way, four sets of materials were formulated and 

tested: resin systems containing 15 wt% of free nanogel additives; composites 

with 60 wt% MPS fillers and 15 wt% of nanogel additives; composites with 60 

wt% VIN nanogel-functionalized fillers; and composites with 60 wt% VIN 

nanogel-functionalized fillers combined with 15 wt% of nanogel additives. 

 

Resin and composites testing 

Real-time polymerization kinetics was monitored by Fourier transform 

near-infrared spectroscopy (FT-NIR, Nicolet 6700). Specimens (n=3) were light-

activated for 20 s at an incident irradiance of 1470 mW/cm2 at 430-480 nm 

wavelength (Elipar DeepCure-S LED, 3M ESPE, USA). The area of the 

methacrylate vinyl absorbance band centered at 6165 cm-1 (Stansbury and 

Dickens 2001) was used to follow the polymerization reaction (FT-IR settings are 

presented in the Appendix). Measurements were taken before and after 

polymerization to assess DC and provide the dynamic polymerization kinetic 

data, which was collected for 10 minutes during and continuing after curing light 

exposure. Polymerization rate (RPmax) was calculated as the maximum in the first 

derivative of the conversion vs. time curve. 

PS (n=5) was evaluated with a tensometer (Volpe Research Center, 

American Dental Association), as described in the Appendix. FT-NIR 

spectroscopy was simultaneously incorporated in direct transmission mode via 

fiber optic cables (1 mm diameter single fiber) to obtain the concomitant reaction 

kinetics profile correlated with stress evolution.  

Volumetric shrinkage (VS; n=5) was evaluated with a non-contact 

linear variable differential transducer-based linometer (Academic Center for 

Dentistry Amsterdam, ND), as described in the Appendix. 

Viscosity measurements of the nanogel resins blends (n=5) were 

performed using a cone-plate digital viscometer (CAP 2000, Brookfield, USA). 

Rheology of the composites (n=2) was assessed by photorheometry (ARES, TA 

Instruments, USA), while being photopolymerized at 50 mW/cm2 (Mercury arc 
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   lamp 460 nm, Acticure 4000, EXFO, USA) for 10 minutes. Detailed rheology 

testing is described in the Appendix.  

The three-point bending test (Iso 4049. Dentistry - polymer-based 

restorative materials  2009) was used to determine the EM and flexural strength 

(FS) of the materials (n=5), as described in the Appendix.  

 

Statistical analysis 

Normal distribution and equal variance were assessed by Shapiro-

Wilk and Brown-Forsythe’s tests. Data from DC, RPmax, PS, VS, EM, and FS were 

evaluated using One-way ANOVA for resin formulations (factor: material, 4 

levels) and composites (factor: material, 10 levels). Tukey post-hoc tests were 

applied to detect pair-wise mean differences among groups. For all statistical 

testing, a pre-set global significance level of 5% was used.  

 

Results 

 

GPC analysis demonstrated similar molecular weight for Ng1 and 

Ng3, and a higher molecular weight for Ng2 with a consequently larger 

hydrodynamic radius as intended by the use of a reduced chain transfer agent 

concentration. According to DMA analysis, the nanogels presented different Tg’s 

as expected based on the different monomers and reactant ratios selected. 

Elman’s reagent test assessed slightly higher thiol content for Ng3 (Table 1) 

compared with the other nanogels.  
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   Table 1. Gel permeation chromatography parameters, glass transition 

temperature and SH content from Elman’s reagent test. 

 Composition Mn 

(Kg/mol) 

PDI Rh 

(nm) 

Tg 

(oC) 

SH 

(mMol/g) 

Ng 1 IBMA/UDMA 70:30 

15 mol% ME + 10 

mol% PETMP 

17.8 1.1 2.5 49 0.09 

Ng 2 IBMA/UDMA 70:30 

5 mol% ME + 10 mol% 

PETMP 

182.3 5.4 5.8 65 0.08 

Ng 3 BMA/UDMA 70:30 

15 mol% ME + 10 

mol% PETMP 

19.3 1.4 2.6 28 0.13 

Number average molecular weight (Mn), polydispersity index (PDI), 

hydrodynamic radius (Rh), glass transition temperature (Tg), and thiol content 

(SH) per gram of nanogel. Data represent single analyses. 

 

Filler surface treatment was estimated by TGA as 1 wt% for silane, 

and an additional 3±1 wt% for nanogels (Figure 1A). The amount of nanogel 

covalently added to the filler surface was optimized by varying the reaction time 

in order to provide an appropriate nanogel content to modulate stress 

development with no decrease in EM (Appendix Figure 3). DR-IR (Figure 1B) 

showed he presence of methacrylate carbonyl peak (1706 cm-1) and multiple 

aliphatic peaks (2856-2962 cm-1) for nanogel surface treatments. EDX analysis 

identified C, O, Al, Si, and Ba in the composition of the silanated fillers. S 

correspondent to thiol functional groups was identified in the nanogel-modified 

fillers (Figure 2C, D; Appendix Table 1). Elemental mapping demonstrated a 

uniform surface distribution of S on the fillers (Figure 2E; Appendix Table 2 and 

Figure 4). Nanogel attachment to the filler surface was further confirmed with 

TEM images (Figure 2F), which indicates nanogels both isolated and in 

agglomerates on the filler surface (Figure 2G, H). 
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Figure 1. Thermogravimetric analysis displays filler surface coverage with silane 

(1 wt%) in relation to the non-treated filler, and nanogels added (3±1 wt%). The 

major weight loss associated with nanogel treatment starts around 250 oC, which 

along with the mass loss confirm that nanogels are reacted to the surface (A). 

Diffuse reflectance spectroscopy shows free silanol groups (3742 cm-1 indicated 

by arrow) for untreated glass fillers, which were consumed after silanization. 

Methacrylate carbonyl peak at 1706 cm-1 (indicated by *) is present for MPS 

silane and in a higher intensity for nanogel treatments. Multiple aliphatic peaks 

(2856-2962 cm-1) can also be observed for nanogel treatments (B). Energy 

dispersive X-ray spectrometry analysis identified C, O, Al, Si, and Ba in silanated 

fillers composition (C,D). Elemental mapping demonstrates uniform distribution 

of S on the fillers surface, correspondent to thiol-functional groups on the 
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   surface-bound nanogels (E). The filler surface can be observed in transmission 

electron microscopy image with no treatment (300K´, F) and with nanogel 

attachment found both isolated and in agglomerates (300K´, G), with size 

compatible to GPC characterization (VIN Ng 2 at 500K´, H). 

 

Properties of the resin systems and composites are presented in 

Table 2. Resins without any glass filler but with 15 wt% free nanogel loading 

demonstrated significantly lower PS and VS, in which the smaller and lower Tg 

nanogels generated the greater PS reduction (Figure 2C,D). RPmax and DC were 

also significantly decreased for these systems (Figure 2A,B). Nonetheless, the 

slightly lower DC did not affect the mechanical properties as both EM (Figure 

2E) but FS was found to be significantly higher for Ng 1 in comparison to the 

others. A significant increase in resin viscosity (p < 0.001) was found with 

nanogel addition, in which the nanogels of larger size and higher Tg had the 

more pronounced effect (Figure 2F). 

When MPS-silanated fillers were associated with free nanogel loaded 

into the resin phase, the composites demonstrated a compressed range of PS 

reduction with all nanogels yielding significant lower PS and VS compared to the 

MPS control (Table 2). A control composite with filler treated with the VIN silane 

produced a PS value of 2.3±0.1 MPa, similar to the MPS control. As found in the 

resin systems, here the DC and RPmax were also significantly reduced, but with 

no consequences in mechanical properties. Afterward, VIN nanogel-based were 

able to significantly reduce PS in a magnitude similar to the free nanogel addition 

in composites (reduction of ~ 20 %), unlike the lack of significant decrease in 

VS. Furthermore, there was a significant reduction in DC but not for the RPmax 

compared to the control, with exception of VIN Ng3. The EM of nanogel-based 

filler composites was similar to control; however, the FS was significantly lower.  
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   Table 2. Degree of conversion (DC), maximum polymerization rate (RPmax), polymerization stress (PS), volumetric shrinkage 

(VS), elastic modulus (EM) and flexural strength (FS) of resins* and composites using different nanogels. 

 DC (%) RPmax(%/s) PS (MPa) VS (%) EM (GPa) FS (MPa) 
Resin       

One-way ANOVA p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.056 p = 0.010 
Control resin* 63.9 (0.4) a 9.4 (0.2) a 2.8 (0.1) a 6.4 (0.5) a 2.7 (0.2) 121.7 (3.6) ab 
Ng 1* 59.8 (0.2) c 5.1 (0.1) b 1.5 (0.2) bc 5.3 (0.2) b 3.0 (0.1) 129.4 (1.0) a 
Ng 2* 60.3 (0.3) bc 5.5 (0.1) b 1.7 (0.1) b 5.2 (0.3) b 2.8 (0.1) 118.1 (4.7) b 
Ng 3* 60.7 (0.1) b 5.4 (0.3) b 1.2 (0.3) c 5.0 (0.2) b 2.7 (0.2) 118.7 (6.0) b 
Composite       
One-way ANOVA p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.447 p < 0.001 
Control MPS 64.6 (0.4) a 10.9 (0.4) a 2.2 (0.1) a 4.3 (0.2) a 6.3 (0.3) 145.7 (8.7) a 
MPS + Ng 1 60.4 (0.4) bc 8.7 (0.2) bc 1.7 (0.1) b 3.4 (0.1) b 6.2 (0.2) 141.5 (10.6) a 
MPS + Ng 2 60.2 (0.8) c 8.2 (0.3) c 1.7 (0.1) b 3.3 (0.1) b 6.2 (0.1) 132.2 (3.9) ab 
MPS + Ng 3 60.3 (1.5) c 7.8 (0.1) c 1.8 (0.1) b 3.1 (0.1) b 6.0 (0.1) 126.2 (6.2) abc 
VIN Ng 1 62.6 (1.1) ab 9.9 (0.6) ab 1.7 (0.1) b 4.1 (0.2) a 6.0 (0.1) 107.6 (14.2) bc 
VIN Ng 2 60.9 (0.3) bc 9.7 (0.2) ab 1.7 (0.1) b 4.2 (0.3) a 6.4 (0.4) 108.4 (15.2) bc 
VIN Ng 3 60.3 (0.9) c 9.2 (0.4) bc 1.4 (0.1) c 4.0 (0.1) a 6.3 (0.3) 112.0 (9.1) bc 
VIN Ng 1 + Ng 1 57.3 (0.5) d 5.4 (0.3) d 1.1 (0.1) d 3.1 (0.1) b 6.1 (0.2) 102.8 (2.2) c 
VIN Ng 2 + Ng 2 56.7 (0.3) d 6.7 (1.0) d 1.2 (0.1) d 3.1 (0.2) b 6.2 (0.2) 95.8 (6.5) c 
VIN Ng 3 + Ng 3 61.0 (0.1) bc 7.8 (0.5) c 1.2 (0.1) d 3.0 (0.2) b 6.2 (0.2) 94.1 (8.6) c 

Within a column, means followed by the same letter are not statistically different (p > 0.05)
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Figure 2. Polymerization kinetics of BisGMA/TEGDMA shows slightly diminished 

degree of conversion when resin is loaded with 15 wt% of nanogels (A). In 

contrast, the maximum polymerization rate is noticeably lower for nanogel 

systems (B). The polymerization stress with nanogel loading is approximately 

half that of the control resin (C) and it accompanies a decrease in volumetric 

shrinkage as well (D). The smaller, lower Tg nanogel additive tended to provide 

a greater degree of stress reduction than the larger, higher Tg nanogel analog 

(C). Notably, the elastic modulus of nanogel loaded resins is similar to control 

(E). Incorporation of nanogel increased resin viscosity significantly, especially in 

the case of the larger size Ng 2 (F). 
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   Finally, the combined nanogel-modified fillers with free nanogel 

loading in resin produced a significant stress reduction of ~ 50% relative to the 

control (Table 2 and Figure 3). There was a significant decrease in VS, DC and 

RPmax compared to the control composite while notably, the EM was not 

compromised. Only the FS was significantly diminished as was also the case 

with the VIN Ng composites. When an equivalent portion of filler is replaced by 

free nanogel at 5 wt%, it still presents similar PS and FM as the MPS control 

(Appendix Figure 5). Photorheology (Figure 3F) shows the real-time modulus 

evolution during polymerization. The control demonstrated an early-stage 

increase in modulus compared to free nanogel addition or nanogel-modified 

fillers, with later modulus acquirement when both are combined, yet with similar 

final storage modulus.  

 



    

 

  58 

   

 
Figure 3. Real-time polymerization shows a slightly lower degree of conversion 

for the different composite systems compared to MPS control composite (A), 

while the polymerization rate is slower in systems with free nanogel addition but 

similar to control for nanogel-based fillers (B). Composite polymerization stress 

profiles demonstrate a reduction in polymerization stress by about 20% for free 

nanogel addition and nanogel-based fillers, but a 50% reduction when both 

strategies are combined (C). The MPS control composite and nanogel-based 

fillers present stress development at lower degree of conversion than the 

systems with free nanogel loading (D). The elastic modulus is similar to control 

for all experimental materials (E). Real-time modulus development during 

polymerization shows early increase in modulus for MPS control, followed by 
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   nanogel based-fillers and free nanogel addition with the latest modulus rise 

observed when both approaches are combined. Notably, the final storage 

modulus is similar for all groups (F). 

 

Discussion 

 

Nanogels with different sizes and Tg’s were synthesized from mono-

functional monomers and a di-functional crosslinker, with available thiol 

functionalities to covalent connect with the vinyl pendant groups from the silane 

on the filler surface via thiol-ene reaction (Boulden et al. 2011; Hoyle and 

Bowman 2010). The residual thiol groups can participate in the matrix phase 

methacrylate network formation via chain transfer reaction to couple the matrix 

and filler in the final polymerized composite (Pfeifer et al. 2011). Nanogel-

modified fillers engender ~20% magnitude reduction of PS, regardless of the 

nanogel used (Table 2). Therefore, the first hypothesis of the study was 

accepted. 

Chain transfer reactions involve the exchange of an active radical 

from a propagating polymer chain to create a nanogel-bound thiol radical that 

then initiates incipient growth of a new polymer chain (Bacchi et al. 2016). This 

process completes the chemical connection between nanogel and matrix and if 

the nanogel is pre-attached to a filler particle, then it bonds the filler and matrix 

via a hybrid monomer/nanogel interphase since nanogels are readily swollen by 

monomer (Dailing et al. 2013). It should also be noted that chain transfer 

reactions are chain breaking, which means that the polymerization progresses 

through a radically assisted step-growth reaction, else than chain growth 

polymerization of methacrylates (Fairbanks et al. 2009). Within this mechanism, 

even in dense crosslinking systems, high molecular weight polymers are formed 

at later DC, reducing the magnitude of the viscoelastic effects on internal and 

interfacial stress through flow during the delayed gelation and vitrification stages 

(Bacchi et al. 2018; Pfeifer et al. 2011). Consequently, the PS development is 

diminished by a greater flowability within the polymer system, as demonstrated 

here in all nanogel-modified systems (Table 2).  
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   Among nanogels, Ng 3 provided the lowest PS among resin systems 

and at the interphase (Table 2; Figure 2C) presumably because of its higher thiol 

bonds concentration (Table 1) and lower Tg as a bulk nanogel that may produce 

a more compliant domain either within the resin or at the filler interface (Charton 

et al. 2007). Interestingly, the same magnitude of PS reduction of the nanogel-

based interphases is not observed for similar amounts (up to 5 wt%, in 

comparison with 3±1 wt% nanogel attached to the filler, as showed by TGA in 

Figure 1A) of nanogel dispersed in the resin. Equivalent stress reduction was 

only achieved with 15 wt% of free nanogel loaded in the composite (Appendix 

Figure 5). This likely means that not only did the chain transfer process provide 

stress relief, but it also arises from the interphase itself (Faria et al. 2018). The 

filler surface end-tethered with nanogel swelled by monomers from the resin 

phase feature a relatively flexible interphase with a relaxation potential to relieve 

stress during polymerization (Table 2). The compliance of the system is probably 

increased during the polymerization, which assist stress accommodation during 

the reaction. This is an internalized version of the lower stress that is observed 

when the external compliance of the measurement device is increased (Meira et 

al. 2011). 

When both strategies of nanogel attached to the filler and dispersed 

in the resin matrix were combined a synergic effect was observed and there was 

a stress reduction of ~50% magnitude (Figures 3C). The addition of free nanogel 

to the resin matrix reduces the overall reactive group concentration of 

BisGMA/TEGDMA, which decreases VS and consequently PS (Table 2) (Braga 

et al. 2005; Moraes et al. 2011). Moreover, the simultaneous measurement of 

both real-time conversion and stress development demonstrated a delay to 

higher conversion for the onset of vitrification for the nanogel compositions 

(Figure 3D). The RPmax was also decreased for these systems (Figure 3B) as 

might be expected once the presence of nanogel also increased the viscosity of 

the resin blend (Figure 2F) (Liu et al. 2012; Liu et al. 2014). A statistically 

significant decrease in DC is observed for the nanogel-modified materials, with 

the greatest reduction when both strategies of nanogel introduction are 

combined. Because DC directly influences volumetric shrinkage and EM, which 

combine to produce stress (Braga et al. 2005), lower DC values could contribute 
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   to diminished PS. However, the marginally lower DC for the experimental 

materials did not lead to any decrease in EM (Table 2) and as such, small 

reductions in final conversion of compositionally different materials, absent any 

modulus reduction, would not be expected to contribute significantly toward 

lower PS. 

There was a substantial reduction of FS for the nanogel-modified filler 

materials (Table 2). This effect is not evident when the same nanogels are freely 

dispersed in the resin phase, which suggests that shortened polymer chains in 

the vicinity of the critical filler interface due to the chain transfer mechanism may 

be limiting the ultimate strength of the composite. Indeed, when fillers treated 

with VIN only were tested with no nanogel addition, the FS of the composite was 

135.5±6.8 MPa. A potential means to probe this question would involve the use 

of methacrylate-functionalized nanogels attached to the filler surfaces to allow 

direct copolymerization between matrix and filler-tethered nanogel interphase.  

Besides, the thiol functionality forms a thiol-carbon bond via chain-

transfer that is more flexible than carbon–carbon bonds that are formed via 

copolymerization of the methacrylate on the filler surface (Kloxin et al. 2009). It 

should be noted that any residual vinyl silane groups on the filler surface can 

copolymerize with the methacrylate network of the matrix, but access may be 

limited under the nanogel layer. Even so, the FS values still exceed the 

requirements for composites FS test (Iso 4049. Dentistry - polymer-based 

restorative materials  2009). 

On the contrary of the FS, the EM was not compromised for all our 

experimental systems (Table 2). Thereby, the second hypothesis was also 

accepted. This is important since a PS reduction is usually accompanied by a 

decrease in EM (Braga et al. 2005; Stansbury 2012). The modulus retention 

indicates that the hybrid matrix/nanogel interphase has an overall crosslink 

density similar to the BisGMA/TEGDMA control network. This may be attributed 

to the fact that thiol-ene step-growth polymerization reaction induces a higher 

crosslinking density, as well as the later modulus acquirement induced by the 

chain transfer mechanism (Fairbanks et al. 2009; Pfeifer et al. 2011), as 

demonstrated in the photorheology outcomes (Figure 3F). In this way, the 

gelation and vitrification points are not reached until high functional group 
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   conversions, which collaborate for a lower PS without compromising the quality 

of the polymer network.  

Despite the exciting results, this research presents its limitations. A 

reduction in FS of the composites appear to be reliant on this current nanogel-

based interphase. Alternative functional silanes on the filler surface with different 

complimentary functionality and reactive sites within the nanogels should be 

explored in future researches. The interface design presented here provides a 

generic approach with other potential applications that can be explored to 

improve materials, at the same time that accommodates existing resins and 

fillers used in dental composites, which facilitates the translation for clinical 

application. 

 

Conclusion 

 

A nanogel based filler-matrix interphase is able to reduce PS even 

with minimum amounts of nanogel, which can be combined with free nanogel 

additives in the resin phase to lower VS and dramatically reduce overall PS of 

composites. This was accomplished without compromise to modulus and we see 

excellent potential for implementation of this designed interphase approach. 
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   3 DISCUSSÃO 

 

O presente estudo demonstrou a influência da estrutura da interface 

entre partículas de carga e matriz resinosa nas propriedades físico-químicas 

dos compósitos restauradores. O tratamento de superfície realizado nas 

partículas tem o objetivo principal de ligar as duas fases de naturezas distintas, 

orgânica e inorgânica, e assim viabilizar propriedades mecânicas satisfatórias 

para o material. Mais do que isto, demonstrou-se o potencial de que essa 

interface pode ser explorada para outras finalidades. Neste ponto, o foco foi 

utilizar-se da modificação da interface para controlar o desenvolvimento de 

tensões durante a polimerização dos compósitos, sem que fossem 

comprometidas as outras propriedades do material de maneira geral. 

O tratamento de superfície convencional com o agente silano MPS, 

utilizado neste estudo como controle, funcionaliza as partículas de carga com 

grupamentos metacrilato relativamente rígidos. Durante a polimerização, ocorre 

a ligação dos monômeros da matriz nesses sítios reativos das partículas 

tratadas, e uma subsequente restrição da mobilidade nessa área. Isso resulta 

em um aumento no acúmulo de tensões na interface ente carga e matriz que, 

em função de uma resultante interface rígida, não permite o alívio dessas 

tensões e, consequentemente, aumenta a tensão interna do material de forma 

geral. (Soderholm and Shang 1993; Wilson et al. 2007). 

Em uma primeira abordagem, uma interface formada por ligações de 

poli-ureias foi desenvolvida através de agentes silanos alternativos à base de 

amina associados à nanogéis funcionalizados com grupamentos isocianato, 

capazes de se ligar aos silanos, e metacrilatos para copolimerizar com a matriz 

resinosa. Quando essas partículas modificadas foram incorporadas em 

compósitos, houve uma redução significativa da tensão de polimerização em 

uma magnitude de 20 a 34%, dependendo do agente silano utilizado. 

Em virtude da sintetização dos nanogéis em solvente, estes formam 

um arcabouço flexível permitindo a penetração de monômeros em seu interior 

e, dessa forma, expandindo. Supõem-se que essa camada formada por cadeias 

pré-polimerizadas relativamente móveis e monômeros livres tiveram um 

comportamento semelhante à molas de um modelo viscoelástico (Anusavice et 
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   al. 2013), capazes de se deformar para aliviar as tensões internas. Por 

conseguinte, há uma maior complacência que, projetada na superfície das 

partículas de carga, aumenta a complacência do sistema em geral, diminuindo 

a magnitude da tensão de polimerização. Além disso, há uma extensão dos 

grupamentos metacrilatos reativos, ficando mais distantes da superfície da 

partícula, e assim prontamente disponíveis para copolimerizar com a matriz.  

No segundo estudo, foram utilizados nanogéis funcionalizados com 

grupamentos tiol, que por sua vez foram reagidos na superfície das partículas 

através de uma reação tiol-ene com grupamentos vinilos de um agente silano.  

Neste caso, além do efeito da interface formada por nanogéis para aliviar o as 

tensões, os grupamentos tiol atuam como agentes de transferência de cadeia. 

Com isso, o radical livre ativo de uma cadeia polimérica em crescimento é 

transferido para outra molécula, interrompendo seu crescimento, e um novo 

núcleo de crescimento é formado. Esse mecanismo diminui a taxa da reação e 

forma, inicialmente, cadeias menores, o que retarda a geleificação do material 

e permite uma movimentação mais livre das cadeias pela maior fluidez do 

material nos estágios iniciais da polimerização (Hoyle and Bowman 2010; Pfeifer 

et al. 2011). Dessa forma, há um menor desenvolvimento de tensões internas. 

De fato, essa estratégia de interface também foi capaz de reduzir 

significativamente a tensão final, em aproximadamente 20% comparado ao 

grupo controle. Entretanto, essa redução tem, provavelmente, uma maior 

influência da interface de nanogéis em si, do que da ação dos grupamentos tiol, 

visto que não houve uma diminuição significativa na taxa de reação para esses 

materiais. Como essa estrutura de interface é formada por quantidades mínimas 

de nanogéis (determinada por termogravimetria em 3% em peso de nanogéis), 

e a concentração dos grupamentos tiol também é baixa.  

É interessante ressaltar que a redução da tensão de polimerização, 

para ambas estratégias de interface, não foi acompanhada de uma diminuição 

na contração volumétrica ou no módulo de elasticidade do material. Visto que o 

desenvolvimento de tensões está diretamente relacionado com essas duas 

propriedades, em que a contração é determinada pela concentração inicial de 

grupamentos reativos e o grau de conversão dos monômeros, enquanto o 

módulo é uma função da densidade da rede polimérica e o aumento da 
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   temperatura de transição vítrea durante a reação (Boaro et al. 2010; Braga and 

Ferracane 2002), pode-se concluir que não houve uma alteração na 

conformação da rede polimérica de maneira geral. Isto é confirmado também 

nos resultados encontrados na cinética de polimerização e fotoreologia dos 

materiais avaliados.  

As interfaces desenvolvidas com nanogéis podem ainda ser 

combinadas com outras estratégias para promover uma redução de tensão 

ainda maior, como apresentado no segundo estudo. Os mesmos nanogéis à 

base de tiol foram dispersados livremente na matriz resinosa, o que resultou em 

uma redução de tensão semelhante à interface modificada. Entretanto, vale 

ressaltar que uma quantidade maior de nanogéis foi necessária (15% em peso). 

Nessa situação, houve também uma redução da contração volumétrica do 

material em virtude da menor densidade de grupamentos reativos, além de uma 

menor da taxa de reação. Este efeito, por sua vez, pode estar associado a um 

maior efeito dos agentes de transferência de cadeia, além de um moderado 

aumento da viscosidade ocasionado pela adição dos nanogéis (Moraes et al. 

2011). Quando a interface modificada por nanogéis foi associada à adição de 

nanogéis livres, houve uma redução drástica da tensão de polimerização final 

de aproximadamente 50%, comparado ao grupo controle. Notavelmente, o 

módulo de elasticidade do material também não foi comprometido nessa 

situação. 

Em relação à resistência flexural, a utilização dos silanos contendo 

grupamento funcional amina por si só não foram capazes de manter uma 

resistência adequada. No entanto, quando associados aos nanogéis 

funcionalizados com grupos reativos metacrilatos capazes de copolimerizar com 

a matriz resinosa, uma união eficiente entre as duas fases, com valores de 

resistência comparáveis ao controle, foi alcançada. Por outro lado, a ligação 

promovida pelos grupamentos vinil do silano ligados aos nanogéis 

funcionalizados com tiol resultaram em uma resistência flexural inferior. Esses 

resultados podem ser explicados pela característica mais flexível da ligação 

entre carbono e tiol, comparada à uma estrutura mais rígida proveniente da 

reação de dois carbonos (Kloxin et al. 2009). Contudo, apesar dos valores 

serem significativamente inferiores ao grupo controle, a resistência à flexão 
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   desses materiais ainda está de acordo com as normas requisitadas pela 

Organização Internacional de Estandardização (Iso 4049. Dentistry - polymer-

based restorative materials  2009).  

 Os resultados apresentados neste estudo são promissores e 

instigam possibilidades para novas pesquisas nesse seguimento. Diferentes 

combinações de funcionalidades e propriedades da interface devem ser 

estudadas, assim como a estabilidade físico-química dessas novas interfaces e 

seu comportamento à longo prazo. Ao mesmo tempo, acomoda resinas e 

partículas de carga já utilizadas em compósitos restauradores, o que facilita a 

transição da pesquisa para a aplicação clínica. 
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   4 CONCLUSÃO 

 

A modificação da interface de união entre partículas de carga e matriz 

resinosa utilizando agentes silanos alternativos associados à nanogéis 

apresenta um potencial para redução significativa da tensão desenvolvida 

durante a reação de polimerização de compósitos restauradores. Essa 

diminuição da tensão de polimerização não alterou a contração volumétrica ou 

comprometeu o módulo de elasticidade do material. Essa estratégia pode ser 

combinada com a adição de nanogéis livres na matriz, produzindo um efeito 

sinérgico para uma maior redução da tensão de polimerização e, nesse caso, 

para redução da contração em si.  

Diferentes características projetadas no tratamento de superfície das 

partículas de carga influenciam as propriedades finais do material restaurador. 

Essa estratégia trás uma nova abordagem genérica de tratamento de superfície, 

que pode ser explorada para melhorar os materiais de forma geral.  
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APÊNDICES 
 

Apêndice 1: Modification of filler surface treatment of composite resins 

using alternative silanes and reactive nanogels 

 

Materials and Methods 

 

Proton nuclear magnetic resonance spectroscopy 

As a small molecule model, N-allylmethylamine and butyl isocyanate 

(Sigma-Aldrich, St. Louis, MO, USA) were reacted in dichloromethane at 1:1 

molar ratio with a trace amount of dibutyltin dilaurate (Sigma-Aldrich). Each of 

the reactants as well as the reaction product obtained with no purification other 

than solvent removal were analyzed by proton nuclear magnetic resonance 

spectroscopy (1H NMR; Figure 1A). This was done to determine the ease and 

efficiency of the reaction between a secondary amine and an alkyl isocyanate, 

which directly corresponds to the silane-nanogel linkages formed here. With the 

1H NMR spectra, we demonstrate that the secondary alkyl amine quantitively 

adds to the alkyl isocyanate providing a N,N-dialkyl-N’-alkyl urea, without any 

production of residual by-products. 

 

 
Figure 1A. NMR 1H spectra of allylmethylamine (top), butyl isocyanate (center), 
and the final Nallyl-N-methyl-N’-butylurea. 
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   Apêndice 2: Nanogel based filler-matrix interphase reduces polymerization 

stress of composites 

 

Materials and Methods 

 

Nanogel syntheses  

 Appendix Figure 1 shows the chemical structures of the monomers 

(all from Esstech, USA) used in the nanogel syntheses. 

 

Appendix Figure 1. Chemical structures of the monomers used in the nanogel 

syntheses: mono-functional monomers isobornyl methacrylate (IBMA) and butyl 

methacrylate (BMA); di-functional crosslinker urethane dimethacrylate (UDMA); 

2-mercaptoethanol (ME), and pentaerythritol tetra(3-mercaptopropionate) 

(PETMP). 

 

Polymeric nanogels’ number average molecular weight (Mn), 

polydispersity index (PDI), and hydrodynamic radius (Rh) were characterized 

using gel permeation chromatography (GPC; Viscotek, Malvern Instruments, 

UK) with triple detectors detectors (refractive index, right angle light scattering, 

and differential viscometer) with tetrahydrofuran (EMD Millipore, USA) used as 

mobile phase. GPC calibration was based on a series of linear polystyrene 

standards of known molecular weight and dispersity. 

Tg of nanogel powders (n = 2) was determined by dynamic 

mechanical analyzer (DMA; Perkin Elmer 8000, USA) by sandwiching 10 mg of 
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   nanogel in a thin metallic pocket that was then subjected to single cantilever 

cyclic displacement of 50 m at 1 Hz. The nanogel was heated from 0 to 150 ◦C 

with tan d data collected in the second cycle of heating at 2 ◦C/min in air.  

Ellman’s reagent test (Thermo Scientific, USA) was used for 

quantitating free sulfhydryl groups of nanogels in solution.  

 

Fillers surface treatment  

For both silanes (Appendix Figure 2), i.e. trimethoxyvinylsilane (VIN; 

Sigma Aldrich, USA) and methacrylate γ-methacryloxypropyltrimethoxy silane 

(MPS; Sigma Aldrich), fillers were silanized with 5 wt% silane (relative to fillers) 

in cyclohexane using h-propylamine at 2 wt% as catalyst. The mixture was 

stirred at room temperature for 30 minutes and then at 60±5 ◦C for additional 30 

minutes at atmospheric pressure and then placed in a rotary evaporator at 60 ◦C 

for the removing of the solvent and the volatile byproducts. The powder was then 

heated at 95±5 ◦C for 1 h on the rotary evaporator and finally was dried at 80 ◦C 

in a vacuum oven for 23 h. Extensive solvent washing with acetone was 

performed to remove physically adsorbed silane. 

 

 
Appendix Figure 2. Chemical structures of the silanes: trimethoxyvinylsilane 

(VIN) and γ-methacryloxypropyltrimethoxysilane (MPS). 

 

Filler treatments were identified by diffuse reflectance Fourier 

transform infrared spectroscopy (DR-IR; Nicolet 6700, Thermo Scientific, USA) 

spectroscopy. Spectroscopic grade KBr and filler powders were ground together 

and placed in the DR-IR accessory sample slide.  Spectra were taken at 8 cm-1 

resolution, 64 scans, from 4000 to 1350 cm−1 range, using KBr as background. 
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   Thermogravimetric analysis (TGA; Pyris 7 TGA, Perkin Elmer, USA) 

was used to determine the amount of nanogel deposited on surface of treated 

fillers. Samples (5±1 mg) were placed in platinum pans in nitrogen atmosphere 

flow of 20 ml/min and heated from 50 oC to 850 oC with a heating rate of 10 ◦C 

min-1. The mass loss as a function of temperature was recorded. 

Energy dispersive X-ray spectrometry (EDX; Oxford Instruments SDD 

X-MaxN) analysis coupled to a scanning electron microscope (JSM IT 300, 

JEOL, Japan) was used to identify the elemental composition of filler surface 

treatment. Fillers were placed on stubs and sputter-coated with carbon. Each 

spectrum was acquired for 300 s (voltage 15 kV, working distance 10 mm). 

Images showing the identified chemical elements and their relative concentration 

were obtained from five different spectra of each material at different locations 

on the stub. 

Filler surface images were obtained by transmission electron 

microscopy (TEM; JEM 2100, JEOL, Japan). Fillers were dispersed in acetone, 

then few mL of the solution were dropped in formvar grids and TEM images were 

then obtained. Images were obtained at magnification of 300K and 500K´. 

 

Polymerization kinetics 

Real-time polymerization kinetics was monitored by Fourier transform 

near-infrared spectroscopy (FT-NIR, Nicolet 6700) in specimens (n=3) of 6 mm 

in diameter and 0.8 mm thick laminated between two glass slides. Specimens 

were light-activated for 20 s at an incident irradiance of 1470 mW/cm2 at 430-

480 nm wavelength (Elipar DeepCure-S LED, 3M ESPE, USA). The area of the 

methacrylate vinyl absorbance band centered at 6165 cm-1 (Stansbury and 

Dickens 2001) was used to follow the polymerization reaction. Measurements 

were taken at a wavenumber resolution of 4 cm-1 with 32 scans per spectrum 

acquired for static scans before and after polymerization to measure degree of 

conversion (DC) and 2 scans per spectrum for dynamic measurements of 

polymerization kinetics, which provides a 2 Hz acquisition rate. Data was 

collected for 10 minutes during and continuing after curing light exposure. 

Polymerization rate (RPmax) was calculated as the first derivate of the conversion 

vs. time curve. 
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   Polymerization stress 

Dynamic polymerization stress was evaluated with a tensometer 

(Volpe Research Center, American Dental Association). Glass rods (6 mm 

diameter) were sectioned into lengths of 28 and 5 mm. One surface of the 28-

mm long rods was polished with a sequence of silicon carbide abrasive papers 

felt disks in order to optimize the transmission of light through the rod end into 

the specimen during photoactivation. The opposite surfaces of the 28- and 5-

mm rods were polished with 600 grit using abrasive papers to create a rough 

surface. Silane was applied to these surfaces. The rods were subsequently 

attached to the tensometer.  The 28 mm rod were attached to the lower clamp 

and the 5 mm rods to the upper clamp. Composite was placed (6 mm x 1 mm) 

between the rods with a Centrix syringe. The tip of the light-curing unit was 

positioned in contact with the polished lower rod. Force development was 

monitored for 10 minutes from the beginning of light-activation, and the 

maximum nominal stress (MPa) was calculated by dividing the maximum force 

value recorded by the cross-sectional area of the rods. 

 

Volumetric shrinkage 

A constant volume of each material was placed onto an aluminum 

disc in a non-contact linear variable differential transducer-based linometer 

(Academic Center for Dentistry Amsterdam, The Netherlands). The material was 

covered with a glass slide, which was adjusted to produce a specimen disc 

(approximately 1 mm × 6 mm). Both resins and composites specimens were 

irradiated for 20 s through the glass slide. The displacement of the aluminum 

disk, caused by the lifting action of the material’s shrinkage, was registered 

during and extending beyond the irradiation interval for a total period of 10 

minutes. The linear shrinkage during polymerization was measured and 

converted to the corresponding volumetric shrinkage (de Gee et al. 1993), as 

follows: 

 

!"#% = ∆'
' +	∆' 	× 	100% 
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   where DL is the recorded displacement and L the thickness of the 

sample after polymerization. The volumetric shrinkage derived from the linear 

shrinkage is given by: 

 

-.!% = 3!"#% − 0.03(!"#%)4 + 0.0001(!"#%)5 
 

Rheology 

Viscosity measurements of the nanogel resins blends (n=5) were 

performed using a cone-plate digital viscometer (CAP 2000, Brookfield, USA). A 

defined volume of the materials was tested at room temperature (23 °C) using a 

14 mm diameter spindle 200 rpm and 1 Hz (hold time: 15 s; run time: 30 s). 

Rheology of the composites (n=2) was assessed in a photorheometer (ARES, 

TA Instruments, USA), with materials placed between two 20 mm parallel quartz 

disc plates and tested in shear at a frequency of 100 rad/s with 10% strain 

(ensuring that the test was carried out within the linear viscoelastic regime), while 

being photopolymerized at 50 mW/cm2  (mercury arc lamp 460 nm, Acticure 

4000, EXFO, USA) for 10 minutes. An optical apparatus (Pfeifer et al. 2011) 

allowed both curing light and FT-NIR direct transmission access to the specimen 

within the photorheometer, in this way methacrylate conversion was followed 

concomitantly with modulus development. 

 

Mechanical properties 

The three-point bending test was used to assess the flexural strength 

and elastic modulus. The bar specimens were prepared in dimensions of 2 mm 

x 2 mm x 25 mm according to ISO 4049 (Iso 4049. Dentistry - polymer-based 

restorative materials  2009). Specimens (n = 8) were fabricated between glass 

slides and polymerized with three overlapping 20 s light exposures each sides 

glass side. Specimens were stored dry for 24 h in dark containers at room 

temperature. The three-point bending test was performed on the MTS testing 

machine using a span of 20 mm and a cross-head speed of 1 mm/min (MTS Mini 

Bionix II, MTS, Eden Prairie, MN, USA). The flexural strength (FS) in MPa was 

then calculated as:  



    

 

  85 

   67	(8) = 369
2;ℎ4 

 

where F stands for load at fracture (N), 9 is the span length (20 mm), 

and b and h are the width and thickness of the specimens in mm, respectively.  

The elastic modulus was determined from the slope of the initial linear 

part of stress–strain curve.  

=	 = 	 695
4;ℎ5? 

 

where F is the load at some point on the linear region of the stress–

strain curve, d the slack compensated deflection at load F, and 9, b, and h are as 

defined above.  

 

Results 

 

In a pilot study, fillers were reacted with nanogel (Ng 2) at the times 

of 24, 48 and 72 h in order to create different concentrations of nanogel on the 

surface (Appendix Figure 3). It is noticeable that polymerization stress 

progressively decreases with higher amount of nanogel attached to the surface, 

i.e. longer nanogel addition reaction times, providing a more complete nanogel 

layer on the surface as well as a higher thiol concentration (Appendix Table 2 

and Appendix Figure 4). However, there may be a limit with respect to the final 

polymeric elastic modulus, as is presented in the plot that indicates at 72 h 

reaction, the modulus may be decreasing as well.  The coverage for 48 h is 

estimated by TGA to be 3 wt%, which would offer reasonable stress reduction 

with no compromise in the mechanical properties of the material. 
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Appendix Figure 3. TGA analysis of fillers reacted with nanogels for 24, 48 and 72 h, and its respectively composites results for 

polymerization stress and elastic modulus. 
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Appendix Table 1. Apparent element concentration for fillers with different 

surface treatments. 

 No treatment VIN silane VIN Ng 1 VIN Ng 2 VIN Ng 3 
C 4.6 (0.5) 6.3 (0.2) 7.0 (1.2) 4.4 (0.2) 7.7 (0.5) 

O 96.6 (8.2) 128.8 
(11.2) 114.2 (2.3) 64.5 (1.5) 103.0 (5.1) 

Al 5.8 (5.8) 7.3 (0.4 6.6 (0.3) 4.3 (0.1) 6.1 (0.2) 

Si 33.4 (2.3) 40.8 (1.8) 36.5 (0.3) 25.3 (0.2) 34.0 (1.2) 

Ba 56.0 (1.6) 55.8 (0.8) 51.1 (2.0) 47.5 (0.8) 47.7 (0.7) 
S - - 0.4 (0.0) 0.6 (0.1) 0.7 (0.3) 

 
Appendix Table 2. Apparent element concentration for fillers threated with 

nanogels for different reaction times. 

 VIN Ng 2 24 h VIN Ng 2 48 h VIN Ng 2 72 h 

C 5.4 (0.9) 4.4 (0.2) 5.8 (1.0) 

O 93.0 (17.2) 64.5 (1.5) 109.5 (24.1) 

Al 5.6 (0.8) 4.3 (0.1) 6.3 (0.9) 

Si 32.2 (4.0) 25.3 (0.2) 35.4 (4.5) 

Ba 49.3 (1.4) 47.5 (0.8) 50.0 (0.2) 

S 0.2 (0.0) 0.6 (0.1) 1.2 (0.3) 
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Appendix Figure 4. Elemental composition through EDX and S mapping for 24, 48 and 72 h nanogel addition reaction to the fillers. 
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   Discussion 
 

Different loading of fillers and free nanogel (Ng 2) were evaluated, but 

always keeping the total loading of 60 wt% (Appendix Figure 5). When an 

equivalent portion (in terms of weight fraction not volume fraction) of the glass 

filler is replaced by nanogel at 5 wt%, it still presents similar PS and EM as the 

MPS control. At free nanogel loading levels of 10 and 20 wt%, the PS is 

decreased while the EM is also reduced as expected with the lower inorganic 

filler content. This demonstrates that the interphase created at the filler surface 

with minimum amount of nanogel (3 wt%) has the potential to significantly reduce 

the PS without compromising the EM, and this effect is not observed when 

similar amount of free nanogel (5 wt%) is added to the resin. 

 

 
Appendix Figure 5. Polymerization stress and elastic modulus of composites with 

different filler and free nanogel loadings. 
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ANEXOS 

Anexo 1. Verificação de originalidade e prevenção de plágio 
 

Modificação da interface de união entre partículas de carga e matriz 
resinosa de compósitos restauradores 
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   Anexo 2. Comprovante de submissão do artigo 
 

 


