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Abstract

In this dissertation we investigated two many-body systems. For the first part we chose
a classical approach to study the adsorption of heavy rare-gases, Ne, Ar, Kr, Xe and
Rn, on graphene substrates. We presented evidences of commensurate adlayers, which
depend strongly on the symmetry of the substrate, for two structures: Ne adlayers in the√

7 ×
√

7 superlattice and Kr in the
√

3 ×
√

3 lattice. In order to study the melting of
the system we introduced an order parameter, and its susceptibility. The specific heat
and susceptibility as a function of the temperature were calculated for the heavy noble
gases at various densities. The position and characteristic width of the specific heat and
susceptibility peaks of these systems were determined. Finally, we investigated the first
neighbor distance and the distance between the adlayer and the substrate, identifying
contributions related to specific heat and melting peaks.

The second part of the dissertation deals with a vortex line in the unitary Fermi
gas. Ultracold Fermi gases are remarkable due to the experimental possibility to tune
interparticle interactions through Feshbach resonances, which allows the observation of
the BCS-BEC crossover. Right in the middle of the crossover lies a strongly interacting
state, the unitary Fermi gas. A vortex line corresponds to an excitation of this system
with quantized units of circulation. We developed wavefunctions, inspired by the BCS
wavefunction, to describe the ground state and also for a system with a vortex line. Our
results for the ground state elucidate aspects of the cylindrical geometry of the problem.
The density profile is flat in the center of the cylinder and vanishes smoothly at the wall.
We were able to separate from the ground state of the system the wall contribution and
we have determined the bulk energy as ε0 = (0.42 ± 0.01)EFG per particle. We also
calculated the superfluid pairing gap for this geometry, ∆ = (0.76 ± 0.01)EFG. For the
system with a vortex line we obtained the density profile, which corresponds to a non-zero
density at the core, and the excitation energy, εex = (0.0058 ± 0.0003)EFG per particle.
The methods employed in this dissertation, Molecular Dynamics, Variational Monte Carlo
and Diffusion Monte Carlo, give us a solid basis for the investigation of related and other
many-body systems in the future.
Keywords: heavy rare-gases; adsorption; graphene substrates; unitary Fermi gas; vortex
line.
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Resumo

Nessa dissertação nós investigamos dois sistemas de muitos corpos. Na primeira parte
nós escolhemos uma abordagem clássica para estudar a adsorção de gases nobres pesados,
Ne, Ar, Kr, Xe e Rn, em substratos de grafeno. Nós apresentamos evidências de camadas
adsorvidas comensuradas, as quais dependem fortemente da simetria do substrato, para
duas estruturas: camadas de Ne na rede

√
7 ×
√

7 e Kr na rede
√

3 ×
√

3. Para estudar
o derretimento nós introduzimos um parâmetro de ordem e sua susceptibilidade. O calor
espećıfico e a susceptibilidade em função da temperatura foram calculados para os gases
nobres pesados em diversas densidades. A posição e largura caracteŕıstica dos picos do
calor espećıfico e da susceptibilidade foram determinadas. Finalmente, nós investigamos a
distância dos primeiros vizinhos e a distância entre a camada e o substrato, identificando
contribuições relacionadas aos picos do calor espećıfico e da susceptibilidade.

A segunda parte da dissertação trata de uma linha de vórtice no gás unitário de Fermi.
Gases fermiônicos ultrafrios são notáveis devido à possibilidade experimental de variar
as interações interpart́ıculas através de ressonâncias de Feshbach, o que possibilita a ob-
servação do crossover BCS-BEC. No meio do crossover encontra-se um estado fortemente
interagente, o gás unitário de Fermi. Uma linha de vórtice corresponde a uma excitação
desse sistema com unidades de circulação quantizadas. Nós constrúımos funções de onda,
inspiradas na função BCS, para descrever o estado fundamental e também o sistema
com uma linha de vórtice. Nossos resultados para o estado fundamental elucidam as-
pectos da geometria ciĺındrica do problema. O perfil de densidade é constante no centro
do cilindro e vai a zero suavemente na borda. Nós separamos a contribuição devido à
parede da energia do estado fundamental e determinamos a energia por part́ıcula do bulk,
ε0 = (0.42 ± 0.01)EFG. Nós também calculamos o gap superflúıdo para essa geometria,
∆ = (0.76 ± 0.01)EFG. Para o sistema com a linha de vórtice nós obtivemos o perfil de
densidade, o qual corresponde a uma densidade não nula no centro do vórtice, e a energia
de excitação por part́ıcula, εex = (0.0058 ± 0.0003)EFG. Os métodos empregados nessa
dissertação, Dinâmica Molecular, Monte Carlo Variacional e Monte Carlo de Difusão, nos
dão uma base sólida para a investigação de sistemas relacionados, e outros sistemas, de
muitos corpos no futuro.
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Primeiramente, começo com a pessoa absolutamente essencial para todo esse trabalho.
Agradeço o prof. Silvio pelas discussões e, principalmente, pela paciência. As lições que
ele me ensinou não estão restritas somente à F́ısica, mas sim representam minha formação
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Chapter 1

Introduction

Condensed matter physics is simplified by the common topologies of phase diagrams of
distinct materials, and universal values of critical exponents of phase transitions. Thin
films adsorbed on substrates are confined to a narrow domain near the surface of the
substrate, and they are very close to a 2D phase of matter. The subject of adsorbed
layers is particularly interesting because of the possibility of bidimensional phases that
have no tridimensional analog, considering the same material. Furthermore, the spatial
periodicity of the substrate may cause interesting effects. We look for conditions that
cause near coincidence of the adsorbate and substrate length scales. The desired match is
called a commensurate structure, which is an adsorbate lattice that “obeys” the symmetry
of the substrate. Usually, the density distribution and other thermodynamical properties
are quite different from what would be expected a simple 2D material.

The study of adsorption on solid surfaces began long time ago because of its intrinsic
scientific interest and also due to its importance as a mean to better understand physical
processes, at atomic level, which can be of technological interest. Adsorption of noble gases
on graphite substrate has been extensively studied from the theoretical and experimental
point of view. For a comprehensive review of the subject, the reader is referred to [25]
and references therein. Although adsorption on graphite and other carbon structures can
be considered well-known, we know very little of noble gases adsorbed on graphene.

The physics of graphene was once considered a simplified approximation to that of
graphite. However, once a single graphene sheet was isolated in 2004, physicists and
chemists have taken great interest in novel properties of this carbon structure. In 2010
the Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics
to Andre Geim and Konstantin Novoselov “for groundbreaking experiments regarding the
two-dimensional material graphene”.

1



2 Chapter 1. Introduction

“Graphene is a form of carbon. As a material it is completely new – not
only the thinnest ever but also the strongest. As a conductor of electricity it
performs as well as copper. As a conductor of heat it outperforms all other
known materials. It is almost completely transparent, yet so dense that not
even helium, the smallest gas atom, can pass through it. Carbon, the basis of
all known life on earth, has surprised us once again.” - The Nobel Foundation,
press release, 5 October 2010, http://www.nobelprize.org/nobel_prizes/
physics/laureates/2010/press.html

The first goal of this dissertation is to study heavy1 noble gases (Ne, Ar, Kr, Xe and
Rn) adsorbed on graphene substrates. We are motivated by the interesting characteristics
of similar systems, noble gases adsorbed on graphite. Ne adsorbed on graphite exhibits a
superlattice structure known as

√
7×
√

7 [13], whereas Kr and Xe form a
√

3×
√

3 commen-
surate lattice [1]. Although the formation of a commensurate lattice of Ar/graphite has
not been reported, the specific heat of this system presents fascinating characteristics [26].

The second goal of this work is to study an intrinsically quantum system: the uni-
tary Fermi gas. Fermions, such as electrons, protons and neutrons, are all around us:
nuclei, atoms, electrons in metals and even neutron stars; and the behavior of such sys-
tems is governed by the Fermi-Dirac statistics. If a Fermi gas is cooled below the Fermi
temperature, quantum statistic effects can be observed.

This ultracold Fermi gas is a dilute system in which interparticle interactions can be
controlled through Feshbach resonances, which allows us to access strongly interacting
regimes. Until very recently, superfluids were classified as either bosonic or fermionic.
The Bose-Einstein condensate (BEC) theory was developed to describe bosonic fluids.
The condensate is a macroscopic occupation of a single quantum state which occurs at a
temperature of same order of magnitude as the quantum degeneracy temperature. The
interparticle spacing in these systems is of the order of the thermal de Broglie wavelength.
The Bardeen-Cooper-Schrieffer (BCS) theory was first conceived to describe pairing in-
stability, arising from weak interactions, in a highly degenerate Fermi gas. The formation
of the pairs and their condensation occur at a temperature which is orders of magnitude
smaller than the Fermi temperature.

Later it was realized that the BCS and BEC schemes are limit cases of a continuum of
interactions. The possibility of tuning parameters in order to observe the change from one
paradigm to the other was conceptually interesting, but real enthusiasm came from the
experimental realization of the BCS-BEC crossover [27]. In the middle of the crossover
lies a strongly interacting system known as unitary Fermi gas, with remarkable properties.

1The Molecular Dynamics algorithms described in this dissertation would not depict the quantum
effects observed for He, so we chose to restrict ourselves to the other noble gases.

http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html
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Our goal is to investigate superfluidity in the unitary Fermi gas; particularly, we
are interested in a vortex line excitation in these systems. This study is motivated by
the discovery of vortex lattices in strongly interacting rotating Fermi gases [28]. The
quantization of the flow manifests itself in quantized units of circulation, and there has
not been evidence of vortices with more than one quanta of circulation. A large body of
experimental and theoretical work has been carried out for bosonic systems, however the
structure of quantized vortices in fermionic fluids still has unresolved questions.

As stated above, this dissertation is comprised of two distinct parts which complement
each other, in the sense that we simulate classical systems as well as quantum systems.
The first part, chapters 2 to 5, deals with physical adsorption. In chapter 2 we introduce
theoretical aspects of physical adsorption, focusing on graphite and graphene substrates.
In chapter 3 we present the molecular dynamics method and the potential interactions we
chose to model the noble gas adsorbed on graphene systems. The results and conclusions
are in chapters 4 and 5, respectively. The second part consists of chapters 6 to 9, where
we develop the tools needed for the study of vortex line excitations in the unitary Fermi
gas. We begin with an introduction to ultracold Fermi gases in chapter 6. The simulation
methods we have employed and the wavefunctions we have constructed are presented in
chapter 7. Chapter 8 contains the results for the ground state of this system as well as
the vortex line excitation. Finally, we present our conclusions in chapter 9. We make our
final considerations about the character of the two parts of the dissertation in chapter 10.
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Part I

Heavy rare-gas atoms adsorbed on
graphene
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Chapter 2

Adsorption

2.1 Introduction

Consider an ideal atomic surface exposed to a vapor, held at pressure P and temperature
T . In equilibrium with this vapor there will be a film on the surface, with coverage that
depends on P , T and relevant interaction potentials. If P , but not necessarily T , is low,
the number of atoms per unit area on the surface is small, and the atoms will be confined
to a narrow domain near the surface because of the attraction of the substrate. This film
is very close to a 2D phase of matter and, in the most interesting cases, with properties
qualitatively distinct from the 3D phase of the same material. This subject is particularly
interesting because of the vast behaviors that may occur varying P and T . Included in the
possible behaviors are some phases similar to 3D phases: gases, liquids and solids; more
intriguing are states totally new, with no 3D analog. Among the possibilities there are
the commensurate phases, in which the adsorbed layer has its positional order imposed
by the substrate symmetry.

Condensed matter physics of 3D matter is simplified, conceptually and computation-
ally, by the common topologies of phase diagrams of distinct materials, as exemplified
by universal values of the critical exponents of phase transitions. Similar universality is
found in 2D, however there are more classes because of the numerous combinations of
adsorbate and substrate. One of the many challenges of this field is to predict and model
these different behaviors, which requires careful assessment of the relevant forces and,
very often, imagination to conceive the possible 2D states.

This work is concerned with physical adsorption, sometimes called by the agglutination
physisorption, which is the weak binding of atoms or molecules to surfaces. In contrast
there is chemisorption, which refers to stronger binding. The distinction arises from the
“chemical” forces in the latter case, while only van der Waals forces are present in the
former. This is an oversimplification because there is a continuum of interactions energies

7



8 Chapter 2. Adsorption

and the line must be drawn somewhere.

“In the structure of matter there can be no fundamental distinction be-
tween chemical and physical forces: it has been customary to call a force chem-
ical when it is more familiar to chemists, and to call the same force physical
when the physicist discovers an explanation of it.” - I. Langmuir, Phenomena,
Atoms, and Molecules (Philosophical Library, NY, 1950) p.60

We adopt the arbitrary value of 0.3 eV as the upper bound for the binding energy of a
single atom in the case of physical adsorption, which makes all the systems considered in
this work subject to physisorption.

Several consequences of weak binding make physical adsorption interesting for theoret-
ical and experimental study. The phenomena often reveal conceptual simplicity, making
the subject ideal for fundamental research and attracting scientists from various back-
grounds.

In this chapter we introduce some aspects of physical adsorption. First, we develop the
theoretical background; in Sec. 2.2 we model the interactions between the constituents
of an adsorption system: interatomic interactions, Sec. 2.2.1, atom-surface, Secs. 2.2.2
and 2.2.3. In Sec. 2.3 we focus on characteristics of a monolayer; we provide examples of
commensurate structures, Sec. 2.3.1, and we introduce a theory which allows continuous
melting in 2D systems, Sec. 2.3.2. Finally we review the advances in the study of heavy
noble gases on graphite, Sec. 2.4, and graphene, Sec. 2.5.

2.2 Interactions
The properties of the adlayers are ultimately determined by the interaction between the
constituents. In this section we develop the concepts that are useful to understand and
model the forces acting in the system. One of the simplifying aspects of physisorption,
opposed to chemisorption, is that the electronic structures of both the adsorbate and the
surface are only weakly perturbed. Likewise, the interactions between the constituents of
the adlayer are, to a good first approximation, determined by interactions between atoms
in the gas phase.

2.2.1 Interatomic interactions

The interactions between the atoms in the adsorbed layer and between atoms and solid
surfaces can be represented, to a good approximation, by the sum of interactions of pairs
of atoms.
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From a quantum chemistry point of view, the interaction between two atoms is un-
equivocally defined: for a given separation one must calculate the ground state energy.
Not surprisingly enough, this is far easier stated than done.

Consider two atoms A and B, with nuclear charges ZA and ZB, located at RA and
RB, respectively. The Hamiltonian of the system with N = ZA + ZB electrons can be
written as

H =
N∑
i=1

p2
i

2m −
N∑
i=1

[
e2ZA
|ri −RA|

+ e2ZB
|ri −RB|

]
+ 1

2
∑
i 6=j

e2

|ri − rj|
+ e2ZAZB
|RA −RB|

. (2.1)

The total ground state energy of the system E(R) is a function of the nuclear separation
R = |RA −RB|

E(R) = 〈Ψ|H|Ψ〉, (2.2)

where the total N -electron wavefunction must be antisymmetric. If at large separations
the ground state energy is EA

0 + EB
0 , then the interatomic potential V (R) is defined as

V (R) = E(R)− EA
0 − EB

0 . (2.3)

Typical features of the potential are: V (R) approaches zero as R→∞; it has an attractive
well at interatomic separations typical of a condensed phase, few Å; strongly repulsive at
small separations. The depth and position of the well depends on the atomic species and
nature of bonding.

No analytical solutions of Eq. (2.1) are available and we must resort to some form of
approximation. The most appropriated approach depends on the system of interest. So
far in the discussion we have assumed that the electrons were shared by atoms A and B,
that is, a particular subset of electrons cannot be associated with a particular nucleus,
even though on average each nucleus retains a fixed number of electrons. However, at
large separations, the interactions between atoms is weak and we may assume that one
subset of electrons belongs to atom A and a second to atom B. This leads to a partition
of the Hamiltonian

H = HA +HB + VAB, (2.4)

where

HA =
ZA∑
i=1

p2
i

2m −
ZA∑
i=1

e2ZA
|ri −RA|

+ 1
2

ZA∑
i 6=j

e2

|ri − rj|
, (2.5)

similarly for HB,

VAB = −
ZA∑
i=1

e2ZB
|ri −RB|

−
ZB∑
j=1

e2ZA
|rj −RA|

+
ZA∑
i=1

ZB∑
j=1

e2

|ri − rj|
+ e2ZAZB
|RA −RB|

. (2.6)
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If VAB is neglected then the product states |ΨA
mΨB

n 〉 = |ΨA
m〉 ⊗ |ΨB

n 〉 are eigenstates of
H. The ground state is |ΨA

0 ΨB
0 〉 with the energy value of infinite separation, EA

0 + EB
0 .

The product state makes a distinction between electrons of the two atoms, violating the
antisymmetry requirement for the total wavefunction. However, exchange terms have
negligible effects on the ground state energy when R is large.

At large interatomic separations the Coulomb term VAB can be treated as a pertur-
bation of the isolated atomic Hamiltonians. VAB induces correlations between electronic
motions of the two atoms, resulting in an attractive force that arises from the change
in the total correlation energy of the system. This interaction between atoms with no
permanent electrostatic moment was first hypothesized by van der Waals and it is referred
as van der Waals force. The leading term in the interaction at large R arises from the
fluctuations of the dipole moments

VvdW (R) = −C6

R6 , (2.7)

with
C6 = 3~

π

∫ ∞
0

du αa(iu) αb(iu), (2.8)

where αa(ω) and αb(ω) are the dynamic dipole polarizabilities of the atoms, continued to
imaginary frequencies ω = iu. Higher R−n terms are obtained including the interaction
of higher multipole moments, but it still fails at small R, due to the negligence of the
antisymmetric parity of the wavefunction.

We resort to a semiempirical construction [1]. The idea is to write the total interaction
V (R) as a sum of the repulsive Vrep(R) and attractive Vatt(R) parts

V (R) = Vrep(R) + Vatt(R). (2.9)

We must keep in mind that only V (R) has a definite physical meaning. At large sepa-
rations only Vatt(R) survives, and it has the form of Eq. (2.7) 1. At small separations,
a self-consistent-field approximation such as Hartree-Fock (HF) is useful. The electronic
wavefunction is approximated as a Slater determinant of molecular orbitals, optimized to
minimize the electronic energy. We rewrite Eq. (2.9) as

V (R) = VHF (R) + Vcorr(R),
VHF (R) = EHF − EA

HF − EB
HF ,

Vcorr(R) = Ecorr − EA
corr − EB

corr, (2.10)

where VHF is the change in energy at the HF level and Vcorr is the change in the cor-
relation energy. This definition conforms to the usual definition of correlation energy as

1For now we will assume that only dipolar interactions are relevant. Higher multipole contributions
can be included in a similar fashion.
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the correction to the total energy obtained in the HF approximation. The partitioning
in Eq. (2.10) has the advantage that the HF energy VHF (R) can be evaluated numeri-
cally, with reasonable accuracy, for many atomic combinations. For a pair of closed shell
atoms, such as the noble gases, VHF (R) is expected to be purely repulsive. The repulsive
interaction can be approximated, over a limited range, as

VHF (R) = V0e
−αR. (2.11)

The change in the total correlation energy Vcorr(R) is assumed to be [29]

Vcorr(R) = −fN(αR)C6

R6 ,

fN(x) = 1− e−x
N∑
n=0

xn

n! . (2.12)

The damping factor fN vanishes as xN+1 as x→ 0; tends to 1 for large x; and it eliminates
the small R divergence for N > 5. When several terms are retained in the multipole series,
it is usual to separate fN for each inverse power law, and set the value of N equal to that
power. The value of α is the range parameter in the exponential repulsion, although it is
commonly treated as an adjustable parameter. This prescription, Eqs. (2.11) and (2.12),
turns out to be a good representation of the interactions of noble gases pairs [30].

2.2.2 Atom-surface interactions
Conceptually, the problem of an atom interacting with a surface is similar to the atom-
atom problem. However, it is more complex due to the number of interacting components.
Let us consider the interaction of one adatom at R with Na substrate atoms at Ri (i =
1, . . . , Na). Analogously to the Born-Oppenheimer approximation, we could calculate the
electronic energy states of the total system, and obtain the ground state energy E({Ri})
as a function of the atomic positions. The minimization of this function with respect to
the {Ri} offers the possibility of deriving the surface structure. In practice, the atom-
surface interaction is much weaker than interactions within the substrate, so the latter
minimization is not performed.

The total energy of the combined system is given by

E(R) = 〈Ψ|H(R)|Ψ〉, (2.13)

where R is the position of the adsorbate and Ψ is the total electronic wavefunction. The
interaction energy is defined as

V (R) = E(R)− Ea
0 − Es

0, (2.14)
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where Ea
0 and Es

0 are the adsorbate and the substrate ground-state energies, respectively.
At large separations V (R) is a correlation energy, the analogue of the van der Waals inter-
action for a pair of atoms. The correlation energy changes when the adatom and substrate
wave functions overlap significantly, ultimately leading to a short-range repulsion.

However, if we consider large enough separations, we can extend the van der Waals
interaction between two closed-shell atoms to the atom-surface problem. We begin with
a heuristic discussion of the interaction, which at large separations, takes the form

VvdW (Z) ' −C3

Z3 , (2.15)

with C3 given by
C3 = ~

4π

∫ ∞
0

dω
[ε(iω)− 1]
[ε(iω) + 1]α(iω), (2.16)

where α is the electric dipole polarizability of the adatom and ε is the long wavelength
dielectric function of the substrate; both continued to imaginary frequencies.

In order to obtain Eq. (2.15) we consider Lennard-Jones’ elementary model [1]. Con-
sider a neutral spherically symmetric atom at a distance Z from a metal surface. Because
of the motion of the electrons in the atom 2, the atom has instantaneous multipole mo-
ments with which the metallic electrons interact. If we assume a perfect conductor, its
electrons respond instantaneously to the fields generated by the atomic charges and screen
them. The leading term at large Z is determined by dipole interactions and we use the
method of images to evaluate it. A dipole moment p = pxx̂ + pyŷ + pz ẑ has an image
p′ = −pxx̂− pyŷ + pz ẑ at −Z, and the potential energy between the two is

Vp(Z) = 1
2

[
p · p′ − 3pzp′z

(2Z)3

]
. (2.17)

First order perturbation theory leads to

Vp(Z) = −〈p
2
z〉

4Z3 = − 〈p
2〉

12Z3 , (2.18)

where the brackets denote an average taken in the atomic ground state. Equations
Eq. (2.16) and Eq. (2.18) are consistent since perfect screening corresponds to ε → ∞
and

~
∫ ∞

0
dωα(iω) = π〈p2

z〉. (2.19)

Thus we have shown that an attractive interaction arises from the correlation between
substrate charges and fluctuations of the adatom density, even when the time-dependent
dipole moment has zero average value. Surely the idealization of perfect screening is
extreme, but it is possible to show that, when all contributions to the screening response
are included, we obtain Eq. (2.16).

2Because of the zero-point energy this statement holds even at T = 0 K.
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2.2.3 Semiempirical methods

Most adsorbates are complex enough that first principles calculations do not provide
realistic adatom-substrate interactions. We resort to semiempirical methods to construct
the interactions [1].

The starting point is to consider the sum of pairwise interactions between the adsorbate
with adatoms α and the substrate with components β at sites jβ

V ({Rα}) =
∑
α,jβ

φα,β(Rα −Rjβ). (2.20)

First we must choose a functional form for φα,β(r), taking into account our knowledge of
the substrate. Even if we know the exact interaction of an isolated α-β pair, the function
entering Eq. (2.20) would be different because the β atoms are in a dense substrate
environment, and the α atoms also suffer modifications. Luckly, for physical adsorption,
the substrate is only weakly perturbed so that we may find an effective function for φα,β(r).

The most extensive use of (2.20) is with the Lennard-Jones (12,6) potential

φ(r) = 4ε
[(
σ

r

)12
−
(
σ

r

)6
]
. (2.21)

The 1/r6 term is the London-van der Waals dispersion energy, while 1/r12 is included to
model the strong short range repulsion.

We analyze the holding potential obtained from using Eq. (2.21) in Eq. (2.20). Usually,
the Lennard-Jones (LJ) parameters for a pair of like atoms X-X, σXX and εXX , are known
and we wish to obtain the LJ parameters for a mixed pair X-Y , σXY and εXY . A set of
combining rules was devised to determine the parameters of the mixed pair X-Y in terms
of like pairs X-X and Y -Y , which is

σXY = (σXX + σY Y )
2

εXY = √
εXX εY Y (2.22)

2.3 Monolayer physics

Adsorption experiments are not always carried in thermodynamical equilibrium between
the film and vapor. The main advantage of conducting experiments in equilibrium is that
the state’s properties are independent of the path taken to achieve it. Other advantage
is the certainty that the chemical potential of the film equals that of the vapor.
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It is physically plausible, and it can be proven [1], that a low density film coexists
with a low pressure vapor 3. In this regime, the linear relationship between coverage and
pressure is called Henry’s law

P = kH(T )N
A

(N/A� 1), (2.23)

where kH(T ) depends on the adsorption potential and the coverage, or density, is a 2D
quantity, the number of adsorbed atoms N per unit area of surface A.

At higher pressures, many film structures are possible. The physical adsorption usually
involves the formation of one or more well-defined layers with increasing P . Our concern in
this work is the properties of the first layer. Often there is little ambiguity in experiments
and simulations regarding this concept. However we should bear in mind that, at finite
T , there is always an incomplete first layer at the same time that second layer sites are
increasing in occupancy. This is one example of the several ambiguities in the definition
of monolayer completion.

In the next section, Sec. 2.3.1, we present two commensurate lattices of the graphene
and graphite substrates. In Sec. 2.3.2 we show how topological defects may result in a
continuous melting of a bidimensional solid.

2.3.1 Commensurate structures

Physically adsorbed monolayer solids have lattice constants on the scale of few angstroms,
and they may be compressed by increasing the pressure of the coexisting 3D gas. A small
number of lattice classes is sufficient to describe most monolayer solids. The primitive
vectors and basis vectors provide a convenient set of coordinates to express the periodicity
of the lattice. Furthermore, the spatial periodicity of the potential arising from the
substrate is conveniently described with such vectors.

First, we must introduce the 2D Bravais lattices that is basic to the description of
the adlayer and substrate surface. For 2D disks there is one close-packed lattice, the
triangular (or hexagonal), Fig. (2.1a). The primitive lattice vectors a1 and a2 of this
lattice can be chosen to be

a1 = a

(√
3

2 x̂+ 1
2 ŷ
)
,

a2 = a

(√
3

2 x̂− 1
2 ŷ
)
, (2.24)

3The converse is not necessarily true, at sufficient low temperatures the film is at a high density phase
coexisting with a low pressure vapor.
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both of length a and at an angle of 60◦. It may be intuitive that inert gases tend to solidify
in a triangular lattice, maximizing the packing. In fact, it is the most encountered lattice
in monolayer solids.

(a) Illustration of the triangular lattice sites
(×) spawned by the vectors a1 and a2.

(b) The graphene honeycomb lattice ( ) is
generated by adding a two atom basis, b1 and
b2, to the triangular lattice.

(c) Triangular lattice (�) of the commensurate
√

3 ×
√

3 structure. Notice the 30◦ rotation of
the vectors with respect to Fig. (2.1a).

Figure 2.1: Bravais lattices of the graphene substrate and of the
√

3×
√

3 commensurate
adlayer.

Points Rm,n of the Bravais lattice are linear combinations of the primitive lattice
vectors

Rm,n = ma1 + na2. (2.25)
A more general lattice is achieved with a Bravais lattice with a basis. For example, a
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graphene sheet is a triangular lattice with a basis of two carbon atoms, Fig. (2.1b), at

b1 = (a1 + a2)
3 = b x̂,

b2 = 2b1 = 2b x̂, (2.26)

where we took a = b
√

3, with the bond length of two carbon atoms b = 1.42 Å. Generally,
the sites of a Bravais lattice with a basis are generate by

Rm,n,j = Rm,n + bj. (2.27)

A shift in the origin of the adlayer may be accomplished by addition of a constant vector
on the right-hand side of Eq. (2.27).

The commensurate structure
√

3×
√

3R30◦
The commensurate structure

√
3 ×
√

3R30◦ 4 is a triangular lattice with a lattice
constant of 3b, and its axes are rotated (R) by 30◦ relative to the underlying triangular
lattice, Fig. (2.1c). The primitive vectors c1 and c2 are obtained from Eq. (2.24) by
performing a 30◦ rotation

c1 = 3bx̂,

c2 = 3b
2 x̂+ 3b

√
3

2 ŷ, (2.28)

and with the identification a = 3b. Deviations of this commensurate structure, or incom-
mensurability, are measured by the misfit, m3, defined as

m3 = ā− 3b
3b , (2.29)

where ā is the average nearest neighbor distance in the monolayer.

The commensurate structure
√

7×
√

7R19.1◦
The

√
7×
√

7R19.1◦ 5, Fig. (2.2c), is a superlattice structure with four atoms in the
basis. The primitive vectors, Fig. (2.2a), are

d1 = a1 + 2a2,

d2 = 3a2 − 2a1. (2.30)
4 It is common in the literature, and in this work, to reference this structure by shorter names:√

3×
√

3,
√

3R30◦, or simply
√

3 commensurate lattice.
5Analogously to Footnote (4), several terms are available for this commensurate lattice:

√
7 ×
√

7,√
7R19.1◦ and

√
7.
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Notice that |d1| = |d2| = a
√

7, and the angle between the vectors d1 and a1 is 19.1◦,
hence the designation

√
7×
√

7R19.1◦. The 4-atom basis vectors, Fig. (2.2b), are

f1 = 0,

f2 = d1

2 ,

f3 = d2

2 ,

f4 = d1 + d2

2 . (2.31)

(a) Triangular lattice sites (×) spawned by
the vectors d1 and d2.

(b) Four sites generated by the basis vectors
f1 (�), f2 (�), f3 (+) and f4 (N).

(c) Commensurate
√

7×
√

7R19.1◦ lattice.

Figure 2.2: Geometrical construction of the commensurate
√

7×
√

7R19.1◦ lattice.
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2.3.2 Topological defects
So far we have adopted an approach based on discrete atomic positions. Over a wide range
of conditions, the substrate potential constrains the monolayer to an effectively quasi-two-
dimensional system. This creates situations where the long-range order is characteristic of
continuous low-dimensional systems, with strong fluctuation effects which lead to singular
thermodynamical behavior.

An edge dislocation is a point defect in a monolayer solid which has a role analogous
to vortex singularities in a superfluid film. The energy of an isolated edge dislocation
depends logarithmically on the area of the monolayer; the corresponding entropy of num-
ber of sites, which is also logarithmically on the area, leads to a threshold temperature
at which edge dislocations can be thermally excited. It is characteristic of 2D systems
that such topological defects may have quite large thermal populations, which contribute
in a dominant way to the thermodynamics of the adlayer. A theory for melting of a 2D
isotropic elastic solid was introduced by Kosterlitz, Thouless, Halperin, Nelson and Young
(KTHNY) [31–35].

We use continuum elasticity theory to describe the monolayer solid and to provide an
estimate of the temperatures to thermally activate dislocations. The deformation tensor
uij, in Cartesian coordinates, of a continuous distortion of positions ri to r′i (i = 1, 2, 3)
is accomplished by introducing a displacement vector u

r′i = ri + ui(r), (2.32)

which is related to the deformation tensor

uij = dui
drj

. (2.33)

Although linear elasticity theory is based on ‘smooth’ strains, it also admits point
defects, solutions for which the closed line integral about the site of the dislocation does
not vanish ∮

du = b0, (2.34)

where b0 is the Burgers vector of the dislocation. We will use the lowest energy dislocation
in the following discussion, which implies that |b0| = a0, the lattice constant of the
underlying lattice.

Deforming a 2D solid that is initially in a triangular lattice of total area A and spread-
ing pressure Π requires an energy

∆E =
∫
A
d2r

−Π
∑
i

ηii + 1
2λ

(∑
i

ηii

)2

+ µ
∑
ij

η2
ij

 , (2.35)
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where λ and µ are the Lamé constants of an isotropic elastic medium and the Lagrange
strain tensor ηij is related to the deformation tensor uij by

ηij = 1
2

[
uij + uji +

∑
k

ukiukj

]
. (2.36)

Inversion and 6-fold-rotation symmetries of the triangular lattice were employed to pro-
duce Eq. (2.35). Nelson and Halperin [34] present an expression for the asymptotic be-
havior of an isolated dislocation obeying Eqs. (2.34) and (2.35). The energy increment
at Π = 0 is

∆E1 = a2
0

4π

[
µ(λ+ µ)
(λ+ 2µ)

]
ln
(
A

A0

)
. (2.37)

The area A0 is set by the small-distance behavior of the dislocation, which lies outside of
the elastic approximation. The most important information in this result is the logarith-
mic dependence on the area A. Since the entropy of the dislocation is S ' kB ln(A/A0),
the free energy will be lowered by spontaneous creation of dislocations above a tempera-
ture Tm given by

a2
0

4πkBTm
= 1
µ

+ 1
µ+ λ

. (2.38)

Kosterlitz and Thouless [31] argue that below Tm there are bound pairs of dislocations
with Burgers vectors of same magnitude and opposite directions, so that the logarithmic
dependence on the total area is canceled and the energy of a pair depends logarithmically
on its separation. The separation increases with increasing temperature and diverges at
Tm. A more accurate description includes the effects of other thermally excited dislocation
pairs on the energy of this pair, which requires a renormalization µ → µR and λ → λR.
Qualitatively, the relation between thermally excited dislocations to melting is that they
are a mechanism for the solid to release shear stress; contrary to the solid, the fluid is not
able to withstand a static shear. Thus, if there are unbound dislocations they must be in
a medium that has melted.

For an incommensurate monolayer on a periodic substrate there is an additional term
to the energy increment of Eq. (2.35),

∆E ′ = ∆E − h

2

∫
d2r cos(6θ), (2.39)

where h is a substrate-dependent elastic constant [36].
The long-range orientational order in the triangular 2D solid is described by the cor-

relation function
c6(R) = 〈exp [i6{θ(R)− θ(0)}]〉, (2.40)
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where θ(R) is the orientation of the bond between two neighboring atoms relative to a
fixed axis; θ(R) is related to u(r) by

θ(r) = 1
2

(
duy
dx
− dux

dy

)
. (2.41)

The KTHNY theory characterizes the low temperature solid by long-range bond-
orientational order in c6, considering the triangular lattice on a smooth surface; and
defects, such as dislocations, are defined by local short-range order. The melting scenario
is characterized by the evolution of the correlations with increasing temperature. An
isolated dislocation has an energy that increases logarithmically with the total area of
the solid, thus it has a low thermodynamic probability at low temperatures. However,
the strain field can be localized enough that pairs are thermally excited. Increasing the
temperature increases the the relative separation of the pair, and at Tm the dislocations
unbind and move freely relative to each other. As this system does not support shear
stress we characterize it as a liquid. The orientational long-range order may remain for a
temperature interval after the shear stress modulus has vanished, this is called a hexatic
phase. For a second temperature Ti, higher than Tm, c6(R) has an exponential decay
for large R. Both transitions at Tm and Ti are continuous, with no signatures in the
specific heat. Interest in observing evidences of this theory in experiments arises from the
contrasting discontinuous first-order melting with a latent heat that occurs for 3D solids
of the same adsorbate.

2.4 Heavy noble gases adlayers on graphite substrates
In this section we survey several characteristics of physically adsorbed heavy noble gases
layers on graphite substrates, which present a very diverse set of phenomena. The graphite
substrate can be considered “well known” [1]: the basal plane surface exhibits a honey-
comb net of carbon atoms spaced by 1.42 Å and its triangular Bravais cell of area 5.24
Å2 contains a basis of two carbon atoms.

The spatially periodic potential arising from the substrate lattice may cause the density
to be quite different from what would be expected of the bulk bidimensional noble gas. We
are interested in conditions that enhance effects of the near coincidence of the adsorbate
and the substrate length scales. Thus we scan the heavy noble gases looking for systems
close enough to the desired match, and the remaining difference can be manipulated with
thermomechanical stress. Solid phases present a diverse set of structures in the monolayer
regime and their lattices vary with temperature and lateral stress. As an overview we
present in Table 2.1 a survey of the commensurate structures, introduced in Sec. 2.3.1,
observed for noble gases on graphite, which are discussed in the following sections. We
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also present several phase diagrams; while it is a cliché to repeat that we are “standing
on the shoulders of giants”, each figure represents contributions of many authors and
experiments.

Table 2.1: Survey of observed commensurate lattices for spherical adsorbates on graphite
substrates [1].

Adsorbate Structure
Ne

√
7

Ar None
Kr

√
3

Xe
√

3

2.4.1 Neon

Quantum effects are much smaller for neon than for helium, but are still significant. This
is evident even in the 3D solid where the nearest neighbor distance Lnn in the ground
state is 3.155 Å, whereas the minimum in the pair potential Rm occurs at ≈ 3.09 Å [1].
For a classical monoatomic solid Lnn is smaller than Rm, because it is compressed due to
energy terms from farther neighbors.

Neutron diffraction experiments [37] found the lattice constant of monolayer solid
Ne/graphite to be (3.25 ± 0.02) Å at 1.5 K. This length coincides with a higher order
superlattice on graphite, the

√
7 ×
√

7R 19.1◦ lattice containing 4 neon atoms in the
basis [13]. Further evidence which supports the existence of the superlattice in this system
is low temperature specific heat data [13] showing an energy gap of 3.5 K. A model for
Ne/graphite was constructed with 4-atoms unit cell [38] and calculations based on this
model obtained a gap compatible with the experimental data [39].

Low energy electron diffraction (LEED) experiments [9,40] have shown an orientational
angle between the incommensurate adlayer and the substrate for 14.5 K 6 T 6 17.5 K.
The angle is 12◦−13◦ relative to the primitive vector ~a1, for lattice constants of 3.09−3.23
Å. The smallest lattice constant is ≈ 2% smaller than Lnn for the 3D solid, which makes
the compressed monolayer a relative poor template for epitaxial growth of bulk neon.

A phase diagram from Calisti et al. [9] is shown in Fig. 2.3. The
√

7 superlattice is
not indicated in the figure, it has been observed only for temperatures less than 5 K. The
phase diagram indicates a gas-liquid critical point at Tc = 15.8 K and a gas-liquid-solid
triple point at Tt = 13.6 K [41].

Modeling studies of the Ne/graphite include: the monolayer equation of state [42],
layering transitions [43] and lattice dynamics of the monolayer solid [44].
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Figure 2.3: Neon phase diagram from Calisti et al. [9]. The
√

7 ordered phase at lower T is
not shown, and the 2D critical and triple points, indicated as Tc and Tt respectively, occur
at pressures too low to measure. Data with filled symbols: triangles, Calisti et al. [9];
circles, Antoniou [10]; squares, Lerner and Hanono [11]. Data with unfilled symbols:
squares, Lerner et al. [12]; triangles, Huff and Dash [13]; inverted triangles, Demetrio de
Souza et al. [14].

2.4.2 Argon

The argon atom is massive enough that quantum effects are small. The monolayer solid
Ar/graphite was one of the first adsorption systems to have a wide range of structural
data, mainly because the isotope 36Ar has a large neutron scattering cross section. The
P − T phase diagram for Ar/graphite [15] is shown in Fig. 2.4. It presents gas, liquid
and incommensurate solid phases (only a triangular lattice is observed). There is a triple
point at Tt = 49.7 K according to D’Amico et al. [45] or at 47 K according to Migone et
al. [46]; and a critical point Tc = 59 K [47] or 55 K [46]. The nearest neighbor spacing
in the ground state of the 3D solid is 3.756 Å [1]. The monolayer solid is a triangular
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lattice with nearest neighbor spacing of 3.86 Å near T = 0 K [48]; and 3.97 Å at T = 49.7
K [45]. The first few layers of Ar/graphite provide a relative good template for further
layer growth [49].

Figure 2.4: Phase diagram of Ar/graphite from Shaw and Fain [15]. The upper solid line
denotes the bulk vapor pressure [16]. The solid-fluid transition is denoted by asterisks
and long dashes [17–19]. All other symbols denote data of Shaw and Fain.

Experiments show that the behavior of argon films on graphite substrates (Ar/Graphite)
is complex due to the quasi-bidimensional characteristics of the system. The first mea-
surements of the system were performed by Chung [50] and they showed only one specific
heat peak centered in ≈ 50 K with a Full Width at Half Maximum (FWHM) of the order
of 20 K. Some words concerning the FWHM are in order. If we consider a Lorentzian
function

f(T ) = 1

πγ
[
1 +

(
T−T0
γ

)2
] , (2.42)

where T0 is the mean, it is easy to show that the FWHM is 2γ. Other functions, for ex-
ample Gaussians, also present well defined FWHM. These measurements were performed
with superficial densities n ≤ 0, 84 n0, where n0 corresponds to a complete monolayer.
For n = 0, 97 n0 the peak was centered in 78.5 K. The author concluded that the results
were consistent with a continuous phase transition (melting).
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Experiments with better resolution performed by Migone et al. [46] showed an ad-
ditional feature not observed by Chung. For superficial densities n ≤ 0.83 n0 a peak
centered in 49.5 K with FWHM of 6.0 K was observed, in accordance to the previous ex-
periments, but also a sharp peak with FWHM of 0.3 K was observed at 47.5 K. Thus the
authors identified the sharp peak as evidence of a “weakly first order transition”, and the
broad peak was related to a gradual loss of sixfold symmetry. In a more recent study [51],
Ma et al. reproduced the experiments of Migone for n = 0.32 n0 with the same results.
However, with the addition of a small fraction of CH4 or Xe to the argon mixture, only
the broad peak remained.

Scattering experiments [45, 48, 52–54] contributed with much information about the
Ar/Graphite system. The LEED results showed that the hexagonal lattice of the Ar
adlayer is not aligned with the

√
3 ×
√

3 symmetry axes of the substrate, in fact it is
rotated [54]. In the x-ray experiments of D’Amico et al. [45], for n = 0.65 n0, the
rotation angle varied from 2,87◦, at 44.29 K, to 2◦, at 50.03 K. The measured melting
temperature was Tm = 49.67K, thus they concluded that the rotated state persists in
the fluid. However, the scattering experiments concluded that melting is continuous and
none could identify the character of the narrow or the broad peak.

Interest in the order of bidimensional melting arises from the possibility of continuous
melting, unlike 3D systems which exhibit first order transitions. A theory for melting of
strictly bidimensional films was introduced by Kosterlitz, Thouless, Halperin, Nelson and
Young (KTHNY) [31–35], where a continuous transition is possible. According to the
theory, Sec. 2.3.2, melting is preceded by a hexatic fluid with short range spatial ordering
and quasi-long-range bond orientation. At higher temperatures, the system would undergo
a second transition into an isotropic fluid. It is noteworthy that the KTHNY theory
predicts an undetectable singularity in the specific heat at the first melting temperature,
followed by a large anomaly at higher temperatures. First order melting, similar to 3D
systems, is another possibility predicted by this theory. Many of the 2D systems which
have been examined exhibited first order melting transitions. Two possible exceptions
are Xe/Graphite and Ar/Graphite. It is settled that melting submonolayer Xe/Graphite
is of first order [55, 56], but at higher densities there is no agreement on the order of
melting [52,57].

Uncertainty in the order of melting in Ar/Graphite is raised in Refs. [46], [51] and
[53]. Many computer simulations were designed to probe the characteristics of the phase
transition of Ar/graphite. One study [58] observed continuous melting over an interval
of 7 K; and it also determined that the probability of finding an Ar atom over the center
of a substrate hexagon is higher than in other sites, despite the incommensurate lattice
of Ar. The broad peak of the specific heat was successfully observed in a more recent
calculation [59], and the extension of these simulations [60] showed the narrow peak at
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43.8 K in addition to the broad peak at 49.5 K, in accordance with Refs. [46] and [51].
However, the interpretation was quite different: the sharp peak was associated with a
rotational transition of the adlayer, from an angle off the substrate symmetry axis to
zero; and the broad peak was interpreted as a signature of continuous melting. Another
study by the same authors [26] investigated the disappearance of the sharp peak for
densities n & 0.84 n0 and was able to relate it to the rotational transition.

2.4.3 Krypton
Although the characteristic length increase from Ar to Kr is only ≈ 6%, this leads to a
system which has a monolayer phase diagram dominated by effects of substrate corruga-
tion [20, 61]. The ground state of the 3D solid has a nearest neighbor spacing of 3.993
Å [1] and the monolayer condensates at low temperature to the

√
3 ×
√

3R30◦ lattice,
which means 6.5% dilation is required.

We present two phase diagrams for Kr/graphite: Fig. 2.5 [20] which gives an overview
of the monolayer phase diagram; and Fig. 2.6 [21] with significant differences in the region
of commensurate solid to fluid transitions. It is noteworthy that these diagrams do not
present a gas-liquid critical point. Some authors claim that the substrate corrugation
has such a large effect on the monolayer that the distinction between gas and liquid is
lost [61, 62].

Figure 2.5: Phase diagram of Kr/graphite in terms of fractional coverage and temperature
[20]. C, F and IC denote commensurate, fluid and incommensurate, respectively. There
is a tricritical point at the intersection of the C to F boundary and the extrapolation
(dashed) of the IC to C+F. C1 is a multicritical point.
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Figure 2.6: Kr/graphite phase diagram as function of the chemical potential and the
temperature [21]. RF stands for the reentrant fluid phase, a domain wall fluid bounded
by C (commensurate) and IC (incommensurate) regimes. S and L are the 3D bulk solid
and liquid phases, respectively. Solid lines denote first-order transitions and dashed lines
denote continuous transitions.

At low temperatures the fluid coexisting with the solid has a very low (gas-like) density,
and for T > 90 K it has the characteristic density of the coexistence at a melting curve.
The density difference between the fluid and the commensurate solid appears to vanish
at a tricritical point at a temperature above 100 K [63]. This is quite remarkable when
we recall that the melting transition in 3D is of first order, with no indication that the
density difference between liquid and solid should vanish 6. The phase diagram of Fig. 2.5
has a tricritical point at ≈ 115 K on the fluid-commensurate solid phase boundary; and
at higher temperatures the density is no longer discontinuous upon solidification. The
fluid to commensurate solid transition becomes continuous at (117±2) K [64].

The higher density region in Fig. 2.6 is denoted as fluid, but it is in fact a subtly disor-
dered phase. Before it was recognized, the results for the transition from commensurate to
incommensurate solid appeared to be a continuous transition to a hexagonal incommen-
surate lattice. Analysis [65] had indicated that the alternatives for this transition were a

6The melting curve in the P-T diagram presents vertical tangent for some materials which, according to
the Clausius–Clapeyron relation, would imply a vanishing specific volume difference. Here the monolayers
appear to have a range of temperature where the density difference of coexisting liquid and solid vanishes.
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continuous transition to a striped lattice or a discontinuous transition to a hexagonal lat-
tice, both not observed experimentally. The fluid phase between the two regions of solid
in Fig. 2.6 is termed domain wall fluid to escape this contradiction. The well separated
walls in the uniaxial incommensurate lattice are subject to large meanderings [66], but
with a low level of thermal excitations, which cause the subtle disorder.

The incommensurate solid can be compressed by increasing the 3D gas pressure (at
constant temperature) or by decreasing the temperature (constant gas pressure). These
processes terminate with bilayer formation; at 47 K the nearest neighbor distance is
(4.02±0.02) Å, which coincides with the spacing of bulk Kr at this temperature [1].

The low temperature specific heat data shows a gap of ≈ 10 K [67], which corresponds
to a corrugation amplitude large enough to stabilize the commensurate solid as the ground
state [68].

Modeling of the Kr/graphite monolayer includes: simulations of the coexistence of
2D gas and commensurate solid [69, 70]; analysis of the domain wall network in the
incommensurate solid at T = 0 K [71] and finite temperature [72, 73]; adjustments of
the interaction model to include substrate-mediated interactions in order to improve the
agreement with experimental data [74].

2.4.4 Xenon

The ground state of the 3D xenon solid, with Lnn = 4.336 Å [1], has a length scale 8%
larger than krypton. Thus the

√
3×
√

3 commensurate lattice corresponds to ≈ 2% com-
pression. The condensation of the Xe/graphite monolayer is a hexagonal incommensurate
lattice down to the lowest observed temperatures, with Lnn = 4.32 Å at 25 K [75]. The√

3 lattice is reached by compression at sufficient low temperatures [76–78]. There does
not seem to be a striped uniaxially incommensurate solid phase between the triangular
incommensurate and commensurate solids [79].

Features expected from a 2D system occur for most of the monolayer regime, only with
small perturbations arising from the substrate corrugation. The density temperature
phase diagram has the appearance of a classical triple point system with Tt = 99 K
and Tc = 117 K. Unexpected behavior is shown when following the melting curve to
temperatures above 120 K.

The nearest neighbor spacing in the triangular lattice increases from 4.32 Å at 25 K
to 4.34 Å at 60 K, 4.54 Å at 80 K, and 4.59 Å at 97 K, just below the triple point [75–78].
The lattice constant of the solid varies little (4.55-4.59 Å) along the melting curve up to
150 K [80–82]. In comparison, the values for the 3D solid are Lnn = 4.42 Å at 100 K and
4.49 Å at 160 K.

The melting transition is found to be of first order [55, 76]. The density difference
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between the solid and fluid along the melting line decreases with temperature increase.
A discontinuity is observed up to ≈ 150 K [56, 83, 84], but some experiments report a
continuous transition for temperatures above 125 K [81,85]. Some evidence points out to
a two-stage melting process in the temperature range 110-120 K [86].

The incommensurate solid has a dependence between Lnn and orientational alignment
of the adlayer. There is a small rotation angle at low temperatures, which decreases to
zero near the melting transition. The Xe solid melts from the aligned R30◦ phase [87,88].

There is a domain of temperature and pressure where the commensurate solid is stable,
for example, below 70 K just before bilayer condensation. The observations differ whether
the transition from the hexagonal commensurate lattice to the commensurate solid is of
first order [78] or continuous [88].

Modeling of the Xe/graphite system includes commensurate solid lattice dynamics [89]
and computer simulations of the solid at relatively high temperatures [58, 90–94]. Abra-
ham and coworkers found in their simulations of the melting that there is an appreciable
density of second layer atoms, and the exchange of atoms between layers plays an impor-
tant role in the system. Suh et al. used a different potential model which stabilized the
commensurate monolayer and identified a transition to a rotated lattice.

2.4.5 Radon

Radon is set apart from the other noble gases because of its radioactivity. The 222Rn
isotope is of great importance since it is a decay product of 238U. Because of the relatively
long lifetime (5.5 days) of 222Rn, it emanates to a considerable amount from the soil into
the atmosphere. Atmospheric particles containing Rn decay products are of high relevance
to humans since they may be deposited in the respiratory tract, raising concerns about
radiation hazards. Thus the great interest in Rn filters, which require knowledge of
adsorption behavior on solid surfaces.

Little is known about adsorption of Rn on solid surfaces. Hobson et al. [95] conducted
calculations of adsorption isotherms of Rn on a heterogeneous surface, but they were
unable to compare the results to experimental data due to lack of experiments. Eichler
et al. [96] investigated adsorption on ice surfaces, mainly the molar adsorption enthalpy.
Pershina et al. [97] used fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations
of atomic properties to investigate the interaction of Rn with various surfaces, including
graphite. The Van der Waals coefficient C3 and the adsorption enthalpy for Rn/graphite
were calculated.
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2.5 Heavy noble gases adlayers on graphene substrates
The physics of graphene was once considered a simplified approximation to that of
graphite. This is not unreasonable because in graphite the individual layers are weakly
interacting and the electrons are confined to the plane of the carbon nuclei. The ability
to produce graphene in the laboratory turned attention to experiments and theories con-
cerning adsorption in this substrate. There is particular interest in this problem because
physical adsorption on graphite has been extensively investigated in the past 60 years.
Although the great interest in noble gases adsorbates on graphene, very little can be found
in the literature about experiments, simulations and theories concerning these systems.

Bruch et al. [98] conducted a theoretical study of the phase behavior of gases physically
adsorbed on graphene. The authors addressed 3 problems: the condensation of quasi-2D
films bound on both sides of a single graphene sheet, and it is shown that the critical
temperature of this transition is only 5% higher than that of a single film adsorbed on
graphite; the ground-state of a quantum He monolayer; and the wetting transition. None
of the problems had been explored experimentally.

Ab Initio studies of Xe adsorption on graphene where conducted by Li et al. [99]. The
results showed that Xe preferentially occupies the hollow site on the graphene surface. The
equilibrium distance of Xe at the hollow site is calculated as 3.56 Å, which is in agreement
with the experimental value of (3.59±0.05) Å. The corresponding binding energy at the
hollow site is calculated as -142.9 meV, whereas the binding energies at the bridge and
on-top sites are calculated as -130.8 and -127.4 meV, respectively.

There have been several molecular dynamics simulations of noble gases adsorption on
structures somewhat similar to graphene, for example: Ne adsorbed on nanocones [100];
Ar [101], Kr [102] and Xe [103] on nanotubes; Ne and Xe adsorbed on nanotube bundles
[104].



30



Chapter 3

Methods

3.1 Introduction

In this chapter we present the methods used to model, simulate and analyze the results of
noble gases atoms adsorbed on graphene systems. Sec. 3.2 is an introduction to molecular
dynamics simulations in which we introduce the basic aspects of this powerful method.
We chose to use the Liouville formulation of classical mechanics to obtain an integration
algorithm for the canonical ensemble. The potential interactions we used to model our
system are presented in Sec. 3.3, and they were carefully chosen to model, as accurately
as possible, the interactions of each atomic species. In Sec. 3.4 we show how to obtain
certain thermodynamical properties during molecular dynamics simulations. Finally, we
present some technical aspects of the simulations in Sec. 3.5.

3.2 Molecular Dynamics

Molecular Dynamics (MD) is a technique for computing the properties of a classical
many-body system. We wish to solve Newton’s equations of motion numerically for the
N particles until the system reaches a steady state. After equilibration, we perform the
actual estimates. The calculation of an observable in MD simulations requires us to be
able to write it as a function of the positions and momenta of the particles in the system.

First, we assign arbitrary initial positions and velocities to all particles in the system.
The particle positions should be compatible with the structure that we aim to simulate,
and choosing carefully the velocities may reduce considerably the equilibration time. The
next step is the most time-consuming in MD simulations: the calculation of the force
acting on each particle. If we model the potential energy as pairwise additive interactions,
we must evaluate N(N − 1)/2 interactions. The force on particle i due to j, Fij, follows
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from
Fij = −∇V (rij), (3.1)

where V (r) is the pairwise potential energy and rij is the distance between particles i
and j. After computing all the forces, we can integrate Newton’s equations of motion.
First, we present the Verlet algorithm, which is one of the simplest and, usually, the best
algorithm. In the next section, Sec. 3.2.1, we present a more formal derivation for it.
Consider the Taylor expansion of the coordinate of a particle around time t,

r(t+ ∆t) = r(t) + v(t)∆t+ f(t)
2m (∆t)2 + (∆t)3

3!
...
r +O((∆t)4). (3.2)

Similarly,

r(t−∆t) = r(t)− v(t)∆t+ f(t)
2m (∆t)2 − (∆t)3

3!
...
r +O((∆t)4). (3.3)

Summing Eq. (3.2) and (3.3) we obtain

r(t+ ∆t) + r(t−∆t) = 2r(t) + f(t)
m

(∆t)2 +O((∆t)4, (3.4)

or
r(t+ ∆t) ≈ 2r(t)− r(t−∆t) = +f(t)

m
(∆t)2. (3.5)

Thus the estimate of the new position contains an error of order (∆t)4, where ∆t is the
step in the MD simulation. Note that we did not use the velocity to compute the new
position, but it is possible to cast the Verlet algorithm in a form that uses positions and
velocities computed at equal times. This velocity Verlet algorithm is

r(t+ ∆t) = r(t) + v(t)∆t+ f(t)
2m (∆t)2,

v(t+ ∆t) = v(t) + (f(t+ ∆t) + f(t))
2m ∆t. (3.6)

In this scheme, we can compute the updated velocities only after we have computed the
new positions and, from these, the new forces.

In the next section, Sec. 3.2.1, we use the Liouville formulation of classical mechanics
to formally obtain Eq. (3.6). In Sec 3.2.2, we introduce the Nosé-Hoover thermostat in
order to extend MD simulations to the NVT ensemble 1, which is the ensemble employed
in all our simulations of heavy rare-gases adsorbed on graphene. The periodic boundary
conditions are presented in Sec. 3.2.3. Finally, we conclude with the MD program which
was employed in this work, Sec. 3.2.4.

1In Appendix A we use the Liouville formalism to obtain a numerical algorithm for the canonical
ensemble
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3.2.1 Liouville formulation
So far we have considered algorithms for integrating Newton’s equations purely mathemat-
ical. We now use the Liouville formulation of classical mechanics to derive an algorithm.
Recently, Tuckerman et al. [105] have shown how to derive time-reversible, area preserv-
ing MD algorithms using the Liouville formulation of classical mechanics. Let f be an
arbitrary function that depends on all coordinates rN and momenta pN of the N-body
classical system. The function f(pN(t), rN(t)) depends implicitly on the time t. The time
derivative of f is

ḟ = ṙ
∂f

∂r
+ ṗ

∂f

∂p
≡ iLf, (3.7)

where we have used the shorthand notation r for rN and p for pN . The last term in
Eq. (3.7) defines the Liouville operator

iL = ṙ
∂

∂r
+ ṗ

∂

∂p
. (3.8)

Integrating Eq. (3.7) yields

f(pN(t), rN(t)) = exp(iLt)f(pN(0), rN(0)). (3.9)

Suppose that the Liouville operator contained only the first term on the right-hand side
of Eq. (3.7). We denote this part of iL by iLr

iLr = ṙ(0) ∂
∂r
. (3.10)

Inserting Eq. (3.10) in (3.9) and expanding the exponential using a Taylor series, we have

f(pN(t), rN(t)) = exp
(

ṙ(0)t ∂
∂r

)
f(pN(0), rN(0))

=
∞∑
n=0

(ṙ(0)t)n
n!

∂n

∂rn
f(pN(0), rN(0))

= f
[
pN(0), (r + ṙ(0)t)N

]
. (3.11)

Thus, the effect of exp(iLrt) is a shift in the coordinates. Similarly, exp(iLpt) given by

iLp = ṗ(0) ∂
∂p

, (3.12)

is a shift of momenta. The total Liouville operator is given by iL = iLr + iLp, however
iLr and iLp are non-commuting operators. We may use the Trotter identity to evaluate
the exponential of a sum of two non-commuting operators A and B

exp (A+B) = lim
P→∞

(
eA/(2P )eB/P eA/(2P )

)P
. (3.13)
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For finite P this expression is approximated by

exp (A+B) =
(
eA/(2P )eB/P eA/(2P )

)P
eO(1/P 2). (3.14)

Now let us apply this expression to the solution of the Liouville equation, Eq. (3.9). We
identify

A

P
≡ iLpt

P
≡ ∆tṗ(0) ∂

∂p
,

B

P
≡ iLrt

P
≡ ∆tṙ(0) ∂

∂r
, (3.15)

where ∆t ≡ t/P . We replace the formal solution of the Liouville equation by a discretized
version. In this scheme, one time step corresponds to applying once the operator

eiLp∆t/2eiLr∆teiLp∆t/2. (3.16)

Let us see what is the effect of this operator on the coordinates and momenta of the
particles. Applying the operator, Eq. (3.16), to f(pN(0), rN(0)) yields

eiLp∆t/2eiLr∆teiLp∆t/2f(pN(0), rN(0)) = (3.17)

= eiLp∆t/2eiLr∆tf


[
p(0) + ∆t

2 ṗ(0)
]N

, rN(0)


= eiLp∆t/2f


[
p(0) + ∆t

2 ṗ(0)
]N

, [r(0) + ∆tṙ(∆t/2)]N


= f


[
p(0) + ∆t

2 ṗ(0) + ∆t
2 ṗ(∆t)

]N
, [r(0) + ∆tṙ(∆t/2)]N

 .
It is important to note that the shift in r is a function of p only, because ṙ = p/m; and the
shift in p is a function of r only, because ṗ = F(rN). The Jacobian of the transformation
(pN(0), rN(0)) → (pN(∆t), rN(∆t)) is the product of the three transformations, but, as
each Jacobian is one, the overall transformation has an unitary Jacobian. Hence, the
algorithm is area preserving in the phase space.

The overall effect of these transformations in the positions and momenta are

p(0) → p(0) + ∆t
2 (F(0) + F(∆t)),

r(0) → r(0) + ∆tṙ(∆t/2) =

= r(0) + ∆tṙ(0) + (∆t)2

2m F(0). (3.18)

These are precisely the equations of the Verlet algorithm (Eq. (3.6))! Thus we conclude
that the Verlet algorithm is area preserving. Its reversibility follows from the fact that
past and future coordinates are symmetric in the algorithm.
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3.2.2 Nosé-Hoover thermostat
So far we have restricted ourselves to the NVE (microcanonical) ensemble, however it is
useful to extend MD simulations to the NVT (canonical) ensemble, which is the ensemble
employed in our adsorption simulations. We discuss the Nosé thermostat, however it is
more common to utilize Nosé’s scheme with the formulation of Hoover. The approach we
present [106] is a clever use of an extended Lagrangian, which is a Lagrangian containing
additional artificial coordinates and velocities.

The Lagrangian of a classical N -body system is given by

L =
N∑
i=1

miṙ2
i

2 − U(rN), (3.19)

where mi is the mass of the i-th atom, ri is the position of the i-th particle and U(rN)
is the potential energy which depends on the N -particle configuration rN . In order to
construct isothermal MD, Nosé introduced an additional coordinate s in Eq. (3.19)

LNosé =
N∑
i=1

mis
2ṙi2

2 − U(rN) + Qṡ2

2 − L

β
ln s, (3.20)

where L is a parameter that will be fixed later and Q is an effective mass associated with
s. The momenta conjugate to ri and s are

pi ≡
∂L
∂ṙi

= mis
2ṙi,

ps ≡
∂L
∂ṡ

= Qṡ. (3.21)

Thus, the Hamiltonian of the extended system is

HNosé =
N∑
i=1

p2
i

2mis2 + U(rN) + p2
s

2Q + L

β
ln s. (3.22)

We consider a system containing N atoms, which makes the extended system spawn a
microcanonical ensemble with 6N + 2 degrees of freedom (ri, pi, s and ps). The partition
function of this ensemble is

QNosé = 1
N !

∫
dpsdsdpNdrNδ [E −HNosé]

= 1
N !

∫
dpsdsdp′NdrNs3Nδ

[
N∑
i=1

p′2i
2mi

+ U(rN) + p2
s

2Q + L

β
ln s− E

]
, (3.23)

with p′ = p/s. One useful property of a delta function of a function h(s) with a single
root s0 is

δ [h(s)] = δ(s− s0)
|h′(s0)| . (3.24)
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If we define
H(p′, r) =

N∑
i=1

p′2i
2mi

+ U(rN), (3.25)

and take
h(s) = H(p′, r) + p2

s

2Q + L

β
ln s− E, (3.26)

then
s0 = exp

[
−β
L

(
H(p′, r) + p2

s

2Q − E
)]

and h′(s0) = L

βs0
. (3.27)

Rewriting Eq. (3.23), using Eq. (3.24), we have

QNosé = 1
N !

∫
dpsdsdp′NdrN

βs3N

L
exp

[
−β
L

(
H(p′, r) + p2

s

2Q − E
)]
×

δ

[
s− exp

[
−β
L

(
H(p′, r) + p2

s

2Q − E
)]]

. (3.28)

Integrating in s we have

QNosé = 1
N !

β

L
exp

[
βE

(3N + 1
L

)] ∫
dps exp

[
−β

(3N + 1
L

)
p2
s

2Q

]
︸ ︷︷ ︸

C

×
∫
dp′NdrN exp

[
−β

(3N + 1
L

)
H(p′, r)

]
= C

1
N !

∫
dp′NdrN exp

[
−β

(3N + 1
L

)
H(p′, r)

]
. (3.29)

We wish to relate this ensemble partition function with the NVT partition function

QNV T = 1
N !

∫
dp′NdrN exp [−βH(p′, r)]. (3.30)

In this Nosé ensemble, the time-average A of a quantity A that depends on p′ and r is
given by

A = lim
τ→∞

1
τ

∫ τ

0
dt A(p(t)/s(t), r(t)) ≡ 〈A(p/s, r)〉Nosé. (3.31)

If we take L = 3N + 1, this expression reduces to the canonical average

〈A(p/s, r)〉Nosé ≡
∫
dp′NdrNA(p′, r) exp [−βH(p′, r)(3N + 1)/L]∫

dp′NdrN exp [−βH(p′, r)(3N + 1)/L]

= (1/N !)
∫
dp′NdrNA(p′, r) exp [−βH(p′, r)]

QNV T

= 〈A(p′, r)〉NV T . (3.32)



3.2. Molecular Dynamics 37

Let us look carefully into the role of the variable s. The phase space is spawned by r
and the scaled momenta p′ = p/s. As the scaled momentum is most directly related to
observable quantities, we refer to p′ as the real momentum and p is a virtual momentum.
We make similar distinctions between the other variables; real variables are indicated by
a prime and unprimed variables are the virtual counterparts. We summarize the relations
in the following set of equations

r′ = r

p′ = p/s

s′ = s

∆t′ = ∆t/s. (3.33)

From Eq. (3.33) we note that s can be interpreted as a scaling factor of the time
step, implying that the real time step fluctuates during a simulation. However, we are
interested to sample the system at equal intervals in the real time. We define

lim
τ ′→∞

1
τ ′

∫ τ ′

0
dt′A[p(t′)/s(t′), r(t′)] (3.34)

as a different average than Eq. (3.31). Real τ ′ and virtual τ measuring times are related
through

τ ′ =
∫ τ

0
dt 1/s(t). (3.35)

Thus

lim
τ ′→∞

1
τ ′

∫ τ ′

0
dt′ A[p(t′)/s(t′), r(t′)] = lim

τ ′→∞

τ

τ ′
1
τ

∫ τ

0
dt A[p(t)/s(t), r(t)]/s(t)

=
lim
τ→∞

1
τ

∫ τ
0 dt A[p(t)/s(t), r(t)]/s(t)
lim
τ→∞

1
τ

∫ τ
0 dt 1/s(t)

= 〈A(p/s, r)/s〉
〈1/s〉 . (3.36)

Using QNosé, Eq. (3.29), to calculate the averages yields

〈A(p/s, r)/s〉
〈1/s〉 ≡

{
∫
dp′NdrNA(p′,r) exp [−βH(p′,r)(3N)/L]∫
dp′NdrN exp [−βH(p′,r)3(N+1)/L] }

{
∫
dp′NdrNA(p′,r) exp [−βH(p′,r)(3N)/L]∫
dp′NdrN exp [−βH(p′,r)3(N+1)/L] }

=
∫
dp′NdrNA(p/s, r) exp [−βH(p′, r)(3N)/L]∫

dp′NdrN exp [−βH(p′, r)(3N)/L]
= 〈A(p/s, r)〉NV T , (3.37)
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noting that we assumed L = 3N in the last step. Therefore, if we want to sample our
system on equal time steps in real time we have to use a different value for L than the
previously found 3N + 1.

From the Hamiltonian, Eq. (3.22), we can derive the equations of motion for the virtual
variables

dri
dt

= ∂HNosé

∂pi
= pi
mis2 ,

dpi
dt

= −∂HNosé

∂ri
= −∂U(rN)

∂ri
,

ds

dt
= ∂HNosé

∂ps
= ps
Q
,

dps
dt

= −∂HNosé

∂s
= 1
s

(∑
i

p2
i

mis2 −
L

β

)
. (3.38)

We can rewrite these equations in terms of real variables

dr′i
dt′

= s
dri
dt

= p′i
mi

,

dp′i
dt′

= s
d

dt

(pi
s

)
= dpi

dt
− pi

s

ds

dt
= −∂U(r′N)

∂r′i
− s′p′s

Q
p′i,

1
s

ds′

dt′
= s

s

ds

dt
= s′p′s

Q
,

d

dt′

(
s′p′s
Q

)
= s

Q

dps
dt

= 1
Q

(∑
i

p′2i
mi

− L

β

)
. (3.39)

The quantity conserved for these equations of motion is

H ′Nosé =
N∑
i=1

p′2i
2mi

+ U(r′N) + s′p′2s
2Q + L

β
ln s′. (3.40)

This expression for H ′Nosé is not a Hamiltonian! It is a conserved quantity, but the equa-
tions of motion cannot be derived from it. For the full algorithm and implementation of
the Nosé-Hoover thermostat, the reader is referred to Appendix A.

3.2.3 Periodic boundary conditions
Let us consider a simulation of 1000 particles arranged in a 10×10×10 cube. No less than
488 particles appear on the faces! Atoms on the surface will experience quite different
forces from those in the bulk. The problem might be mitigated by implementing periodic
boundary conditions (PBC) [107]. The cubic box is replicated throughout space to form
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an infinite lattice, Fig. (3.1). During the simulation, as an atom moves in the original
box, its image in each of the neighboring boxes moves the exact same way. If a particle
leaves the central box, one of its images will enter through the opposite face, thus the
number density in the system is conserved.

Figure 3.1: Illustration of the PBC procedure. The central cell has three atoms (red,
blue and green) and the vectors indicate their velocities. For sake of simplicity, we just
replicated the central blue cell 8 times (red cells), out of the 26 in the 3D case.

3.2.4 LAMMPS

For the MD simulations we employed the LAMMPS [108] code.

“LAMMPS is a classical molecular dynamics code, and an acronym for
Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has
potentials for solid-state materials (metals, semiconductors) and soft matter
(biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be
used to model atoms or, more generically, as a parallel particle simulator at
the atomic, meso, or continuum scale. LAMMPS runs on single processors or
in parallel using message-passing techniques and a spatial-decomposition of
the simulation domain. The code is designed to be easy to modify or extend
with new functionality.” - LAMMPS web site, http://lammps.sandia.gov,
accessed on 16/03/2015.

http://lammps.sandia.gov
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3.3 Potential interactions
We adopted pair potentials to describe the interactions between noble gases atoms, and
the semiempirical approach of Sec. 2.2.3 to model atom-surface interactions, Eq. (2.20).
The considered potential energy of the system is given by

U =
NX∑
i<j

UX−X(rij) +
NX∑
i

NC∑
j

UX−C(rij) +
NC∑
i,j,k

Uijk, (3.41)

where X is one of the heavy noble gases (Ne, Ar, Kr, Xe or Rn); NX and NC are the
number of X atoms and carbon atoms, respectively; rij = |~ri− ~rj|, ~ri is the position of the
i-th atom; and we devote ourselves to explain the UX−X , UX−C and Uijk in the following
sections.

3.3.1 Adatoms interactions
The first term on the right-hand side of Eq. (3.41) presents a pairwise interaction UX−X
between the adatoms. In Sec. 2.2.1 we wrote the potential energy as a sum of a Hartree-
Fock term and a correlation part, Eq. (2.10). We adopted pair interactions that are
similar to those of Eqs. (2.11) and (2.12), but represent a more accurate description of
the potential energies.

HFD-B potential

For Ne-Ne [2], Kr-Kr [3] and Xe-Xe [4] we employed an interatomic potential called HFD-
B. The designation arises from the acronym of Hartree-Fock Dispersion, and ‘B’ refers
to a second attempt for a functional form of the Hartree-Fock term. This potential is
derived by refining the procedure of Sec. 2.2.1 and by empirical values of the constants
involved. The form of HFD-B is

U (HFD-B)(x) = ε
[
U

(HFD-B)
SCF (x) + U

(HFD-B)
Cor (x)

]
, (3.42)

where U (HFD-B)
SCF is the self-consistent field (SCF) Hartree-Fock interaction energy for rare

gas dimers, U (HFD-B)
Cor is the correlation energy and x = r/rm. Hereafter we adopt the

convention that starred constants are dimensionless. The SCF term is often represented
by

U
(HFD-B)
SCF (x) = A∗ exp(−α∗x+ β∗x2), (3.43)

where the parameters A∗, α∗ and β∗ are obtained by fitting ab initio SCF results. In the
single-damped HFD model, U (HFD-B)

Cor takes the form

U
(HFD-B)
Cor (x) = −F (x)

2∑
j=0

c∗2j+6

x2j+6 , (3.44)
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with

F (x) =

 exp
[
−
(
D∗

x−1

)2
]

if x < D∗,

1 if x > D∗.
(3.45)

The parameters are presented in Table 3.1 and we plot the potential energy as a function
of the separation in Fig. 3.2.

Table 3.1: HFD-B parameters for Ne [2], Kr [3] and Xe [4]. Not all figures displayed are
significant, they are displayed only to avoid round off errors.

Ne Kr Xe
A∗ 8.957 179 5×105 1.101 468 11×105 0.210 582 98×105

α∗ 13.864 346 71 9.394 904 95 5.416 370 17
c∗6 1.213 175 45 1.088 225 26 1.028 717 48
c∗8 0.532 227 49 0.539 115 67 0.576 558 12
c∗10 0.245 707 03 0.421 741 19 0.431 846 85
β∗ -0.129 938 22 -2.326 076 47 -4.948 619 34
D∗ 1.36 1.28 1.45

ε/kB (K) 42.25 201.2 282.29
rm (Å) 3.091 4.008 4.362 7

HFDID1 potential

For Ar-Ar interactions we employed a modified version of HFD-B called HFDID1 (Hartree-
Fock Dispersion Individually Damped) [5],

U (HFDID1)(R) = εU
(HFDID1)
SCF (R) + U

(HFDID1)
Cor (R). (3.46)

The SCF term has the same functional form of Eq. (3.43),

U
(HFDID1)
SCF (R) = A∗ exp(−α∗R + β∗R2), (3.47)

where R is in atomic units hereafter. However, the correlation energy includes more terms
in the inverse power law and it is “doubly corrected”

U
(HFDID1)
Cor (R) = −f(ρ∗R)

4∑
j=0

[
C2j+6

R2j+6 gn(ρ∗R)
]
, (3.48)

with
gn(R) =

[
1− exp

(
−2.1R

n
− 0.109R2

√
n

)]n
, (3.49)
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Figure 3.2: Potential energies for the Ne-Ne, Ar-Ar, Kr-Kr, Xe-Xe and Rn-Rn interac-
tions.

and
f(R) = 1−R1.68 exp(−0.78R). (3.50)

Table 3.2 summarizes the employed parameters and we plot the Ar-Ar potential energy
in Fig. 3.2.

Tang-Toennies potential

The Rn-Rn interactions were based on the Tang-Toennies model: a short range Born-
Mayer potential plus a long-range attractive potential [6]

U (TT)(R) = Ae−bR −
5∑

n=3
f2n(bR)C2n

R2n , (3.51)

where
f2n(x) = 1− e−x

2n∑
k=0

xk

k! . (3.52)
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Table 3.2: HFDID1 parameters for Ar [5]. Not all figures displayed are significant, some
are displayed only to avoid round off errors.

Ar
A∗ 8.739 339 27 ×104

α∗ 9.032 283 28
C6 (a.u.) 63.50
C8 (a.u.) 1 510.00
C10 (a.u.) 4.800 000 00 ×104

C12 (a.u.) 2.069 581 26 ×106

C14 (a.u.) 1.166 706 33 ×108

β∗ -2.371 328 23
ρ∗ 1.107 000 00

ε/kB (K) 143.235

Table 3.3 contains the parameters for this potential and Fig. 3.2 presents the potential
energy of a Rn pair as a function of the distance.

Table 3.3: Tang-Toennies parameters for Rn [6]. All values are in atomic units.

Rn
C6 420.6
C8 19 260
C10 1 067 000
A 5 565
b 1.824

3.3.2 Adatom-substrate interaction

The second term on the right-hand side of Eq. (3.41) contains UX−C , which is a pairwise
interaction between adsorbate and substrate atoms. We employed the Lennard-Jones po-
tential to model these interactions, Eq. (2.21). The chosen carbon-carbon LJ parameters
are σCC = 3.35 Å and εCC = 0.0024 eV [109], thus we may use the combining rules,
Eq. (2.22), to determine the LJ parameters of the mixed X-C interactions. Table 3.4
summarizes σXX and εXX from the literature, as well as the obtained X-C parameters.
The corresponding LJ potential energies are plotted in Fig. 3.3.
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Table 3.4: Lennard-Jones parameters for the interactions between noble gases and carbon
atoms.

σXX (Å) εXX (eV) σXC (Å) εXC (eV)
Ne [2] 2.759 0.0036 3.055 0.003
Ar [5] 3.400 0.0103 3.375 0.005
Kr [3] 3.571 0.0173 3.460 0.006
Xe [4] 3.892 0.0243 3.621 0.008
Rn [6] 3.988 0.0343 3.669 0.009
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Figure 3.3: Potentials for the Ne-C, Ar-C, Kr-C, Xe-C and Rn-C interactions.

3.3.3 Substrate interactions

The last term on the right-hand side of Eq. (3.41) models interactions between the con-
stituents of the substrate. Uijk is related to the Tersoff potential [7, 8, 110] which takes
into account three-body interactions between carbon atoms. Tersoff studied the trade-off
between energy per bond and coordination number in order to construct this potential for
carbon and silicon. The interatomic potential includes an environment-dependent bond
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order explicitly, and it is taken to be

E =
∑
i

Ei = 1
2
∑
i 6=j

Vij,

Vij = fC(rij) [fR(rij) + bijfA(rij))] . (3.53)

Here E is the total energy of the system, conveniently decomposed into a site energy Ei
and a bond energy Vij. The summations are over all atoms i and j of the system. The
function fR is a repulsive pair potential, which takes into account overlapping atomic
wavefunctions

fR(r) = A exp(−λ1r); (3.54)

fA is an attractive pair potential associated with bonding

fA(r) = −B exp(−λ2r); (3.55)

and the fC term is a smooth cutoff function

fC(r) =


1 if r < R−D,

1
2 −

1
2 sin

(
π(r−R)

2D

)
if R−D < r < R +D,

0 if r > R +D.

(3.56)

The function bij was the novel feature introduced by Tersoff; it represents a measure of
the bond order and determining a satisfactory form for it is the most difficult part of this
approach. The following set of equations defines bij

bij = (1 + βnζnij)−
1

2n ,

ζij =
∑
k 6=i,j

fC(rik)g(θijk) exp [λm3 (rij − rik)m] ,

g(θ) = γijk

(
1 + c2

d2 −
c2

[d2 + (cos θ − cos θ0)2]

)
, (3.57)

where θijk is the bond angle between bonds ij and ik. We present the parameters for C-C
interactions in Table 3.5.

3.4 Thermodynamical quantities
In the following sections we give some insight of how to extract thermodynamical quan-
tities such as specific heat, Sec. 3.4.1, and the pair distribution function, Sec. 3.4.2, from
MD simulations in the canonical ensemble.
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Table 3.5: Tersoff parameters for C-C interactions [7, 8].

Tersoff
m 3.0
γ 1.0
λ3 (Å−1) 0.0
c 38 049
d 4.3484
cos θ0 -0.57058
n 0.72751
β 1.5724×10−7

λ2 (Å−1) 2.2119
B (eV) 346.7
R (Å) 1.95
D (Å) 0.15
λ1 (Å−1) 3.4879
A (eV) 1 393.6

3.4.1 Specific Heat
The partition function Z of the NVT ensemble is defined [111] as

Z =
∑
j

exp {−βEj}, (3.58)

where β = 1/(kBT ) and Ej is the energy of a particular microstate j. The energy
fluctuates in the NVT ensemble, thus we can calculate the mean energy value using

〈Ej〉 =

∑
j
Ej exp {−βEj}∑
j

exp {−βEj}
= − ∂

∂β
lnZ, (3.59)

where we have used the definition of a mean value in the canonical ensemble. We also
can compute the fluctuation of the mean value

〈δE2〉 = 〈(Ej − 〈Ej〉)2〉 = 〈E2
j 〉 − 〈Ej〉2 =

= 1
Z

∑
j

E2
j exp {−βEj} −

 1
Z

∑
j

Ej exp {−βEj}
2

.(3.60)

Rewriting Eq. (3.60) as a function of Z yields

〈δE2〉 = ∂

∂β

[
1
Z

∂Z

∂β

]
= − ∂

∂β
〈Ej〉. (3.61)
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Finally, we identify the expected value of the energy as the internal energy U of the
thermodynamical system

〈δE2〉 = −∂U
∂β

= kBT
2∂U

∂T
. (3.62)

Hence, the specific heat is given by

cv = 1
N

∂U

∂T
= 〈δE2〉
NkBT 2 , (3.63)

which is a common method for evaluating the specific heat in MD simulations [112].

3.4.2 First neighbor distance
The distance to the first neighbor is related to the lattice parameter for temperatures
below melting, and it gives insight about the structure of the liquid for temperatures above
melting. The structure of simple solids and fluids is characterized by a set of distribution
functions for the atomic positions, and one of the simplest is the pair distribution function
g(r) [107]. This function gives the probability of finding a pair of atoms a distance r apart,
relative to a random distribution at the same density. One useful form of g(r) for computer
simulations is

g(r) = ρ−2〈
∑
i

∑
j 6=i
δ(ri)δ(rj − r)〉 = V

N2 〈
∑
i

∑
j 6=i

δ(r− rij)〉, (3.64)

where 〈·〉 denotes an ensemble average, ρ is the density and V is the volume. In practice,
the delta function is replaced by a function which is non-zero in a small range of separa-
tions and a histogram is accumulated of all pair separations falling within each such range.
Analyzing the first peak of this function we may determine the first neighbor distance in
the adlayer.

3.5 Simulation setup
Properties of the noble gases adsorbed on graphene systems were determined using MD
in the canonical (NV T ) ensemble. Thermal averages of physical quantities were formed
from as many as 107 time steps of 1 fs.

The initial positions of the atoms must be chosen carefully. In Sec. 2.3.1 we presented
two commensurate structures:

√
3×
√

3R30◦ and
√

7×
√

7R19.1◦. The two dimensional
unit cell of the

√
3 commensurate lattice corresponds to 12 carbon atoms and 2 heavy

noble gases atoms, as shown in Figure 3.4. The lengths of the cell are Lx = 3
√

3 b and Ly =
3 b, where b = 1.42 Å is the bond length of two carbon atoms in graphene. The repetition
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of this unit cell in the xy plane spawns our system, Fig. 3.5. The surface density ρ will be
given hereafter in units of ρ0=0.0636 atoms/Å2, the density of the

√
3×
√

3 commensurate
lattice. The initial z coordinate of the noble gases atoms is set based on the minimum of
the X-C pair potential. Initial positions using the

√
7×
√

7 superlattice can be achieved
with a cell of 224 Ne atoms and 784 C atoms, obeying the lattice presented in Sec. 2.3.1
(see Fig. 2.2 for instance). The corresponding superficial density is ρ = 1.71.

Lx

Ly

l

l
b

b

b

b

b

b

b

b

b

b

b

b

Figure 3.4: Commensurate lattice rectangular cell. The black circles represent the posi-
tion of C atoms and the purple diamonds indicate the position of the heavy noble gases
atoms.

Figure 3.5: Initial configuration of the system for ρ = 1. The argon atoms (purple) are
arranged in the

√
3 commensurate structure over the carbon atoms (grey). This figure

was produced with the AtomEye software [22].

Densities other than the densities of the two commensurate structures were initial-
ized with triangular lattices with suitable lattice parameters. Tab. 3.6 summarizes the
number of noble gases atoms, carbon atoms and corresponding densities employed in the
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simulations. We used PBC in the xy plane of the substrate and we fixed the z coordinates
only of the carbon atoms. No PBC were employed in the z direction, normal to the sub-
strate, in order to allow evaporation of noble gases atoms. Because the adlayer may be
incommensurate with the substrate symmetry, we must choose certain surface densities
which will guarantee PBC to both the substrate and the adlayer. The initial velocities
were chosen from a Gaussian distribution compatible with the desired temperature.

Table 3.6: Number of noble gases atoms, carbon atoms and densities employed in the
simulations.

ρ NX NC

0.38 210 3360
0.73 232 1920
1.00 224 1344
1.08 216 1200
1.71 224 784
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Chapter 4

Results

4.1 Introduction

In this chapter we present our results for heavy noble gases adsorbed on graphene sub-
strates. Our main focus is on Ar/graphene systems, due to interesting behavior of the
relate system Ar/graphite. Thus we studied properties for four Ar surface densities: the√

3 ×
√

3 commensurate density (ρ = 1), one slightly above (ρ = 1.08) and two below
(ρ = 0.73 and 0.38). Ne/graphite exhibits a superlattice

√
7 ×
√

7 thus, in addition to
ρ = 1, we also considered the

√
7×
√

7 density (ρ = 1.71) for neon adlayers. For Xe, Kr
and Rn we restricted ourselves to calculations at ρ = 1.

First we show evidences of commensurate structures of Ne and Kr, section 4.2. In
section 4.3 we present the main motivation for this work, the specific heat calculations.
In section 4.4 we analyze the melting transition. We study the behavior of the first
neighbor distance and the distance between the layer and the substrate in the context of
melting and specific heat peaks in Sections 4.5 and 4.6, respectively.

4.2 Commensurate solids

The radial pair distribution function g(r), Sec. 3.4.2, presents peaks at distances corre-
sponding to the positions of the neighbors of a atom. These positions are easily calculated
for the ideal commensurate structures. Fig. 4.1 shows g(r) for Ne atoms, at ρ = 1.71 and
T = 10 K, and we also plot dashed lines corresponding to the ideal positions of the

√
7×
√

7
structure. The coincidence between the peaks and the superlattice positions occurs for
low temperatures, which is evidence of the

√
7×
√

7 commensurate adlayer. However, as
the temperature increases towards the melting temperature, the peaks broaden and the
adlayer is no longer in the commensurate structure.
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Figure 4.1: Radial pair distribution function for Ne atoms at ρ = 1.71 and T = 10 K.
The dashed lines correspond to the ideal positions of atoms in the

√
7×
√

7 superlattice.

Another method to analyze the spatial distribution of rare-gas atoms over the graphene
sheet is to determine the probability of finding an atom in a given position. Thus, we
accumulated a two-dimensional histogram in a grid of the xy plane and then formed an
average of the results over a unit cell. In Fig. 4.2 we present the result for krypton atoms
at ρ = 1 and T = 100 K. If we compare this figure with Fig. 3.4 we see that the Kr
atoms are located exactly in the positions corresponding to the

√
3×
√

3 commensurate
lattice. Further evidence to support this claim comes from the coincidence of the peaks of
g(r) and the expected positions of the commensurate structure. This behavior is observed
for temperatures below melting; for higher temperatures the probability of finding a Kr
atom over the center of a substrate hexagon is higher, although it can be found in other
positions.
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Figure 4.2: Spatial distribution of Kr atoms over a cell at ρ = 1 and T = 100 K. The
red circles represent the ideal positions of carbon atoms. The color code is related to the
probability of finding a Kr atom at a given position in the plane parallel to the substrate.
Only the regions compatible with the

√
3×
√

3 lattice are occupied.

We found no evidence of commensurate structures for Ar, Xe and Rn adlayers. Fig.
4.3 illustrates the spatial distribution of argon adatoms in the unit cell at ρ = 1 and T =
40 K. Although the minimum energy state of the system is not an adlayer commensurated
with the substrate symmetry, the probability of finding one adatom over the center of a
substrate hexagon is larger than in other positions. Also, the lowest probability is right on
top of carbon atoms. This behavior is qualitatively the same for Xe and Rn. For higher
temperatures we observed similar distributions, but with slightly less intense peaks at the
center of the substrate hexagons.
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Figure 4.3: Spatial distribution of argon atoms over a cell at ρ = 1 and T = 40 K.
The black circles represent the ideal positions of carbon atoms. The color code is related
to the probability of finding an Ar atom at a given position in the plane parallel to the
graphene. Although the probability of finding an Ar atom over the center of a carbon
hexagon is higher than in other positions, the atoms are not arranged in the

√
3 ×
√

3
commensurate structure.

4.3 Specific Heat

The specific heat cv is a quantity of thermodynamical interest which can be experimentally
measured. It is computed using the fluctuation of the internal energy of noble gases atoms
δE2

cv = 〈δE
2〉NV T

NArkBT 2 , (4.1)

where the brackets indicate an average in the canonical ensemble.
In Fig. 4.4 we show the calculated specific heat for Ar at ρ = 1. The behavior of

the specific heat for other noble gases and densities is qualitatively the same. The region
of the peak is magnified in the inset and the errorbars are shown only in the region of
interest.

In order to associate a temperature to the specific heat peak and a characteristic width
we fitted the specific heat as a function of the temperature using a Lorentzian function

cv(T ) = as

πγs

[
1 +

(
T−Ts
γs

)2
] + bs, (4.2)
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Figure 4.4: Ar adlayer specific heat as a function of the temperature for ρ = 1. The region
of the peak is magnified in the inset and the line corresponds to a Lorentzian fitting.

where Ts is the location of the peak, 2γs corresponds to the FWHM of the peak, as is
related to the area of the curve and bs is a y−shift. For example, the inset of Fig. 4.4
contains the fitted curve. We carried out the procedure to other rare-gases and densities;
the results are summarized in Table 4.1.

Table 4.1: Position and width of the specific heat peak for various noble gases and den-
sities. The system size for each density is found in Table 3.6.

ρ Ts (K) FWHM (K)
Ne 1.00 15.7 ± 0.1 1.9 ± 0.2

1.71 35.6 ± 0.2 8.3 ± 0.8
Ar 0.38 54.4 ± 0.2 12.7 ± 1.3

0.73 54.4 ± 0.1 4.0 ± 0.3
1.00 55.0 ± 0.1 3.8 ± 0.2
1.08 53.6 ± 0.1 3.7 ± 0.2

Kr 1.00 107.4 ± 0.2 6.5 ± 1.2
Xe 1.00 134.3 ± 0.5 7.9 ± 1.3
Rn 1.00 180.4 ± 5.6 59.4 ±11.3

Comparing the different noble gases at the same density (ρ = 1) we note that, as the
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atomic number increases, the position of the peak corresponds to higher temperatures.
Additionally, we observe an enlargement of the characteristic width of the peak. These
properties are consistent with bulk properties of the same noble gases in the absence of
the graphene substrate.

Interesting properties arise when we compare Ar adlayers at different densities. The
position of the peak increases with higher densities between 0.38 6 ρ 6 1, but for ρ = 1.08
it is considerably lower than for the commensurate density. One possible explanation for
this deviation is that although the Ar adlayer is not commensurate, substrate forces tend
to expand the adlayer towards the

√
3 ×
√

3 structure. Clearly this is possible only for
ρ 6 1, and increasing the density actually contributes to lowering the temperature of the
peak in the specific heat. The FWHM of the peaks is very similar, except for ρ = 0.38
due to size effects: for low densities the coverage of the graphene sheet is not complete,
and the proportion of atoms in the border of the adlayer to bulk atoms is substantial,
thus deviations are expected.

4.4 Melting

In order to investigate the melting of the adlayer, which is intimately related to loss of
sixfold symmetry, we introduce the order parameter

Ψ6 = 1
NB

〈∣∣∣∣∣∣
N∑
j,k

exp (6iΦjk)

∣∣∣∣∣∣
〉
, (4.3)

where Φjk is the angle between the projections in the xy plane of rare-gas atoms j and
k with respect to a fixed axis in this plane and NB is the number of bonds used in the
calculation. The sum on j extends over all noble gas atoms, and the sum in k considers
only the nearest neighbors of j. The brackets indicate a thermal average. If the adlayer
possesses six-fold symmetry, as a triangular lattice does, Ψ6 = 1. If the fluid is isotropic,
then Ψ6 is zero. The loss of sixfold symmetry can be characterized by a peak in the
susceptibility χ6 of Ψ6 given by

χ6 = 〈Ψ
2
6〉 − 〈Ψ6〉2

T
. (4.4)

Fig. 4.5 shows the order parameter and susceptibility for Ar at ρ = 0.38, for other rare-
gases and densities the behavior is qualitatively the same. The order parameter is near
unity for low temperatures and drops when the melting occurs, while the susceptibility
peaks near the transition.
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Figure 4.5: Order parameter (circles) and susceptibility (squares) for Ar at ρ = 0.38
as a function of the temperature. The line corresponds to a Lorentzian fitting of the
susceptibility peak.

We also assumed a Lorentzian form for the susceptibility peak as a function of the
temperature,

χ6(T ) = am

πγm

[
1 +

(
T−Tm
γm

)2
] + bm, (4.5)

where Tm is taken to be the melting temperature, 2γm corresponds to the FWHM of the
peak, am is related to the area of the curve and bm is a y−shift. We present our results
in Table 4.2.

If we compare different systems at the same density, ρ = 1, the melting temperature
increases as we consider increasing atomic number. Furthermore, the increase of the
melting temperature is accompanied by an enlargement of the FWHM. The only exception
is the characteristic width of the Kr melting. As we recall, we have evidences of the√

3 ×
√

3 only for Kr, which may explain this smaller FWHM. Comparing Ar adlayers
at different densities we see that the melting temperature increases with higher densities,
although for ρ = 1.08 it is within the errorbars.

In general, the melting temperatures and FWHM obtained from the susceptibility
peaks do not coincide with the specific heat peaks, which suggests that melting is not the
only phenomena contributing to the specific heat. In the next sections, Sec. 4.5 and 4.6,
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Table 4.2: Melting temperature and characteristic width for various noble gases and
densities. The system size for each density is found in Table 3.6.

ρ Tm (K) FWHM (K)
Ne 1.00 16.2 ± 0.1 1.5 ± 0.2

1.71 25.9 ± 0.2 9.9 ± 1.6
Ar 0.38 54.8 ± 0.1 7.0 ± 0.5

0.73 55.7 ± 0.1 2.9 ± 0.3
1.00 56.9 ± 0.1 7.6 ± 1.8
1.08 56.5 ± 0.4 4.9 ± 1.3

Kr 1.00 107.9 ± 0.1 4.2 ± 0.6
Xe 1.00 181.3 ± 0.7 19.4 ± 4.4
Rn 1.00 250.0 ± 0.8 34.8 ± 6.8

we investigate how the specific heat peaks and melting are related to other properties of
the adlayers.

4.5 First neighbor distance
The average first neighbor distance 〈a〉 can be obtained from the position of the first
peak of the pair distribution function g(r). The behavior of 〈a〉 as a function of the
temperature can be quite different for the various densities and rare-gases studied. We
begin analyzing the first neighbor distance for Ar adlayers, Fig. 4.6. For low temperatures,
T ≈ 40 K, and temperatures above melting, T & 58 K, increasing density corresponds to
lower first neighbor distances, as expected. However, for temperatures near the melting
transition and the specific heat, 〈a〉 does not necessarily follow this expectation. For high
temperatures the distance tends towards a constant value, which can be explained if we
think in terms of the Helmholtz free energy F (since we are working with the canonical
ensemble),

F = E − TS, (4.6)

where S is the entropy. For low temperatures, the free energy is dominated by the internal
energy E, and the layer expands. The term TS is significant at higher temperatures, and
disorder of the layer is energetically favored instead of expansion. This situation of nearly
constant 〈a〉 would persist until second layer promotion would be thermally activated.

Fig. 4.7 shows the first neighbor distance as function of the temperature for Ne and
Kr adlayers. For Ne at ρ = 1 the first neighbor distance increases with the temperature
and tends toward a constant for high temperatures, qualitatively the same as Ar. More
interesting behavior arises with the commensurate structures, Ne at ρ = 1.71 and Kr
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Figure 4.6: First neighbor distance 〈a〉 as a function of the temperature for Ar adlayers
at various densities.

at ρ = 1, which present minimums and decreasing lattice parameters with increasing
temperatures. In Fig. 4.7a we plot 〈a〉 alongside with the temperature range of the melting
peak (Tm and the corresponding FWHM) for Ne at ρ = 1.71; and in Fig. 4.7b we repeat
the procedure with Kr at ρ = 1. The melting temperature corresponds approximately
to the minimum of the first neighbor distance, and the characteristic width encompasses
the change between negative and positive slopes. One possible explanation is that, with
increasing temperature, the adatoms have sufficient energy to overcome the substrate
potential expansion and get closer. This is possible for temperatures below melting, for
temperatures above Tm the liquid expands as it would be expected.

Finally, a third behavior is observed in the first adsorbed layer of Xe and Rn. Fig.
4.8 shows the first neighbor distance for Xe at ρ = 1; the same quantity for Rn presents
similar features. The abrupt change near 134 K coincides with the specific heat peak, as
we can see in the filled region corresponding to the temperature range of the specific heat
peak.
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Figure 4.7: First neighbor distance as a function of the temperature for Ne and Kr
adlayers.
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4.6 Distance from the substrate
In this section we are interested in the dimension perpendicular to the substrate plane, the
distance between the adlayer and the graphene sheet. We accumulated the z coordinates
of the adatoms during the simulations and obtained the mean value 〈z〉 which corresponds
to the average distance to the substrate. Fig. 4.9 shows this quantity for Ar adlayers at
ρ = 0.38, 0.73, 1 and 1.08. The expected behavior of increasing the distance from the
substrate with increasing density is observed at low and high temperatures, however near
the melting and specific heat peaks deviations occur. For example, ρ = 1 presents the
highest value of 〈z〉 during the temperature range if compared with the other densities.
For Ar adlayers we have no evidence of second layer formation for the range of densities
and temperatures employed.
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Figure 4.9: Distance from the substrate as a function of the temperature for Ar adlayers
at the given densities.

Ne adlayers present similar characteristics of the Ar adlayers, with the difference that
ρ = 1 is always closer to the substrate than ρ = 1.71, for the considered temperature
range. On the other hand, Kr adlayers present fascinating behavior. Fig 4.10 shows that
the distance from substrate has an inflection point, which coincides with the specific heat
peak temperature.

Finally, we analyze the two systems that formed a second adsorbed layer, Xe and
Rn adlayers, Fig 4.11. For Xe adlayers, the sharp increase in the distance of the second
adsorbed layer coincides with the specific heat peak, Fig. 4.11a. Interestingly, there is
no sharp change in the first adlayer. The distance of the second adsorbed layer of Rn,
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Figure 4.10: Distance from the substrate as a function of the temperature for Kr adlayers
at ρ = 1. The filled region corresponds to the specific heat peak Tp = 107.4 K and its
corresponding FWHM.

Fig. 4.11b, decreases with increasing temperature, while the first layer remains at an
approximately constant 〈z〉.

(a) Distance from the substrate as a function
of the temperature for Xe adlayers at ρ = 1.
The green region corresponds to the specific
heat peak Tp = 134.3 K and its corresponding
FWHM.

(b) Distance from the substrate as a function
of the temperature for Rn adlayers at ρ = 1.
The green region corresponds to the specific
heat peak Tp = 180.4 K and its corresponding
FWHM.

Figure 4.11: Distance from the substrate as a function of the temperature for Xe and Rn
adlayers. Note that the y−scale differs between the different layers.
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Conclusions

We consider that one of the main contributions of our work on adsorption of noble gases on
graphene is evidences of commensurate adlayers, which depend strongly on the symmetry
of the exposed surface. Since graphite and graphene present the same surface, we looked
for the two well-known commensurate structures previously observed on graphite:

√
3×
√

3
and
√

7×
√

7 [1]. Interestingly, we observed the two structures for low temperatures; the
Ne adlayer forms a

√
7×
√

7 lattice and Kr adatoms are found in the
√

3×
√

3 structure.
Although graphite and graphene share many aspects, this is remarkable because graphene
is a much less attractive substrate than graphite, and we could not know if these structures
would be found a priori.

The specific heat is a quantity of thermodynamical interest that can be measured in
experiments with relatively simple apparatus. Its peaks contain information on the sys-
tem and it can be used to determine the order of the melting transition. For graphite
substrates, all heavy noble gases present continuous melting, with the possible exception
of Ar due to a narrow peak in the specific heat (at the shoulder of a broad peak). We de-
termined the position and width of the peaks for the heavy rare-gases at various densities,
and we only found evidences of continuous melting, due to the broad FWHM observed.

The melting, in the sense of loss of sixfold symmetry, was also investigated. We
introduced an order parameter and determined the melting temperature using the sus-
ceptibility associated with the order parameter. The melting temperature, alongside with
the FWHM, indicates a temperature range in which we have solid-liquid coexistence.

In order to better understand the specific heat peaks and the melting transition we
have to consider the influence of the substrate on the adlayer. The pair interaction noble-
gas-noble-gas is stronger than noble-gas-carbon, enough to prevent the formation of the
commensurate lattice in most cases. However, the probability of finding one noble gas
atom over the center of a carbon hexagon is higher than in other positions, as shown in Sec.
4.2. This might explain the deviations found for Ar at ρ = 1.08. Apparently increasing
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the density slightly above the commensurate density allows, energetically, more frequent
occupation of sites other than the center of the hexagons, which facilitates the melting
transition.

We also studied two other properties of the adlayers: the first neighbor distance and
the distance between the adlayer and the substrate. It is possible to relate the behavior
of these quantities directly to the specific heat peaks or the melting transition. It is note-
worthy that the commensurate adlayers have a signature behavior for the first neighbor
spacing near the melting transition.

It was our intention to complement a large body of knowledge of the literature about
relate systems, namely noble gases adsorbed on graphite substrates, see [1] and references
therein. Unfortunately, to the best of our knowledge, experimental data is not available
for the noble-gas/graphene system. We hope that this study motivates experiments to
enlarge our understanding of this system and to improve the simulations.



Part II

Vortex line in the unitary Fermi gas
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Chapter 6

Ultracold Fermi gases

6.1 Introduction
Fermions, such as electrons, protons and neutrons, compose all the usual matter around
us. The Fermi-Dirac statistics governs the behavior of a wide range of systems: electrons
in metals, nuclei, atoms and even neutron stars. Several Fermi systems are dense and
strongly interacting. On the other hand, ultracold atomic gases are dilute systems in
which the interparticle interactions can be tuned via Feshbach resonances, leading to
strongly interacting systems.

The statistics of a neutral atom is determined by its number of neutrons, which must
be odd for a fermionic atom. Alkali atoms have odd atomic number Z and their fermionic
isotopes have even mass number A. These isotopes are less abundant than their odd-
A counterparts, since they have an unpaired neutron and an unpaired proton, which
increases the energy due to the odd-even effect [113]. In Sec. 8.3.2 we will comment on
how superfluid pairing in nuclear matter is related to pairing in cold atoms.

In early experiments designed to cool Fermi gases, 40K [114, 115] and 6Li [116, 117]
were cooled to approximately one quarter of their Fermi temperature. More recently,
lower temperatures were achieved and degenerate gases of 173Yb have been prepared at
temperatures of the order of µK [118].

In the classical limit, low densities and/or high temperatures, fermions and bosons
behave alike. The quantum degeneracy is governed by the phase-space density ω̄, which
is defined as the number of particles contained within a volume equal to the cube of the
thermal de Broglie wave length λT

ω̄ = nλ3
T = n

(
2π~2

mkBT

)3/2

, (6.1)

where n is the number density. In the classical limit ω̄ � 1, and for ω̄ of the order of
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the unit, gases become degenerate. Bosons condense in the lowest energy state, while
fermions tend to a filled Fermi sea. The Fermi temperature TF controls the degeneracy.

Experimental difficulties arise from the evaporative cooling of degenerate fermionic
gases. The efficiency of evaporative cooling depends strongly on the scattering cross sec-
tion, which vanishes at low energies due to the antisymmetry requirement of the wavefunc-
tion, Eq. (B.81). Thus, evaporative cooling with a single fermionic state is not feasible.
Two internal states of fermions, for instance the hyperfine states |9/2, 9/2〉 and |9/2, 7/2〉
of 40K [114], or a boson-fermion mixture, 7Li and 6Li [116], overcome this experimental
challenge.

Interparticle interactions in ultracold atomic gases can be tuned via Feshbach res-
onances, thus realizing the BCS-BEC crossover, a problem of significant interest [119].
The investigation of Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC)
crossover arises in an attempt to better understand superfluidity and superconductivity
beyond the standard paradigms [23]. Recent developments led to realizations of the BCS-
BEC crossover of ultracold Fermi gases in the laboratory. The most interesting results
are related to a very strongly interacting state of matter, the unitary Fermi gas, which is
right at the heart of the crossover. Until recently, all superconductors and superfluids fell
into one of two classes, bosonic and fermionic. This led to two different paradigms, BEC
and BCS, for understanding the properties of quantum fluids.

In the BEC scheme, first developed for noninteracting bosons and later generalized to
include repulsive interactions, it is possible to describe bosonic fluids, such as 4He, and
ultracold Bose gases, 87Rb for instance. The condensate is a macroscopic occupation of a
single quantum state that occurs below a transition temperature Tc, which is of the same
order of magnitude as the quantum degeneracy temperature, at which the interparticle
spacing is of the order of the thermal de Broglie wavelength. Although the ultracold
Bose gases studied in laboratory are composite particles, with even number of fermionic
constituents, the internal structure is quite irrelevant for low-energy properties of the
superfluid and normal states.

The BCS paradigm, first conceived for metallic superconductors, describes a pairing
instability arising from a weak attractive interaction in a highly degenerate system of
fermions. Both the formation of pairs and their condensation occur at the same temper-
ature Tc, which is orders of magnitude smaller than EF/kB, which sets the degeneracy
temperature. The BCS theory is very successful in describing conventional superconduc-
tors and it has been generalized to describe various systems, such as superfluidity in 3He
and pairing in nuclei.

Early theoretical work on the crossover was conceptually interesting, but real enthu-
siasm came from its experimental realization [27]. Now there is recognition that the BCS
and BEC theories are not as distinct as they were once thought to be, instead they are two
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extrema of a continuum. Right in the middle of this crossover lies a strongly interacting
state, the unitary Fermi gas, with remarkable properties.

In the next section, Sec. 6.2, we show how Feshbach resonances may be used to tune
interactions between components of the gas, from the BCS regime up to the BEC scheme.
Sec. 6.3 focuses on obtaining a phase diagram for the ground state crossover. Finally,
Sec. 6.4 presents some quantum Monte Carlo results for the unitary Fermi gas. Aspects
of scattering theory related to development of this chapter are in Appendix B; and we
review some aspects of superfluidity in Appendix C.

6.2 Tunable interactions
The fermionic species used in the BCS-BEC usually are 6Li or 40K. Typical experimental
parameters are: total number of atoms N ∼ 105 - 107, interparticle distance k−1

F approx-
imate one micron, EF/kB ∼ 100 nanoKelvin, and temperatures of ∼ 0.1EF/kB. The two
species of fermions are two different hyperfine states, but are often called | ↑〉 and | ↓〉, in
accordance with the standard BCS theory.

The most important difference between ultracold Fermi gases and all previously stud-
ied superfluids is that the interaction between spin | ↑〉 and spin | ↓〉 can be tuned in the
laboratory. The average separation between atoms, k−1

F , is much larger than the range of
the interatomic potential r0. For a dilute gas with kF r0 � 1, the interaction is described
by a single parameter, the s-wave scattering length a. All thermodynamic properties of
the gas can be written in a universal scaling form. For example, the free-energy F takes
the form

F = NEFF(kBT/EF , 1/(kFa)), (6.2)

where F is a scaling function. This result is universal in the sense that it is independent
of microscopic details, as long as kF r0 → 0.

Consider the two-body scattering in vacuum at T = 0. A Feshbach resonance is a
dramatic increase in the collision cross-section of two atoms, due to a bound state in the
closed channel crossing the scattering continuum of the open channel, Fig. 6.1 (a). Let
us consider the specific example of 6Li, of electronic spin S = 1/2 and nuclear spin I = 1.
The electric spin is fully polarized, usually the magnetic field B > 500 G, and aligned in
the same direction for each of the three lowest hyperfine states 1. Hence, two colliding
6Li atoms are in a continuum spin-triplet state in the open channel. The closed channel
has a singlet-bound state that can resonantly mix with the open channel as a result of
the hyperfine interaction that couples the electron spin to the nuclear spin.

1Here we explicit discuss the electronic spin states of the Fermi atoms. At all other places, spin up
and spin down are short-hand notations for the two hyperfine states of the two-species Fermi gas.
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(a) (b)

Figure 6.1: Figures from [23] illustrating the open and closed channels in two-body scat-
tering (a) and the scattering length a relation with the square well potential depth V0 and
the formation of a bound state with energy Eb (b).

The difference in the magnetic moments in the closed and open channels allows ex-
perimentalists to use an external magnetic field B to tune a Feshbach resonance. The
resulting interatomic interaction in the open channel can be described by a B-dependent
scattering length which, near the resonance, is

a(B) = aBG

[
1− ∆B

B −B0

]
, (6.3)

where aBG is the background value, in the absence of the coupling to the closed channel,
B0 is the location of the resonance and |∆B| is the width. Experimental results are often
plotted as a function of −1/(kFa), rather than 1/(kFa), because usually aBG∆B > 0
which means that for increasing B the inverse scattering length goes from positive to
negative.

We do not need to understand the intricacies of the two-channel model of a Feshbach
resonance. A simple model of a single-channel short range two-body scattering can give
an intuitive feel of the problem. The reason for the validity of this model is that most
experiments are in the broad resonance limit, where the effective range of the Feshbach
resonance is much smaller that k−1

F . This implies that the fraction of closed-channel
particles is extremely small, which is observed in experiments [120].

Let us consider the problem of two fermions with spin | ↑〉 and spin | ↓〉 interacting
with a two-body potential with range r0. The low-energy properties as a function of the
momentum k, such that kr0 � 1, are described by the s-wave scattering amplitude

f(k) = 1
k cot[δ0(k)]− ik ≈ −

1
1/a+ ik

. (6.4)
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The scattering length a completely determines δ0(k → 0) = − tan−1(ka), the s-wave
scattering phase shift with low-energy. The effective interaction is independent of the
shape of the potential, thus we choose the simplest one: a square well of depth V0 and
range r0, studied in detail in Sec. B.4.2. Figure 6.1 (b) shows a < 0 for weak attraction,
grows in magnitude with increasing V0, and diverges to −∞ at the formation of a bound
state in vacuum (V0 = ~2π2/(mr2

0), where the reduced mass is m/2). Once the bound
state has been formed, the scattering length changes to a > 0 and decreases from +∞
with increasing V0. For positive a, the scattering length a is the size of the bound state,
with energy −~2/(ma2).

The threshold for bound-state formation, where |a| → ∞, is called unitary point. The
phase shift is δ0(k = 0) = π/2, and the scattering amplitude takes the maximum value
f ≈ −1/(ik). The unitary regime is the most strongly interacting regime in the BCS-BEC
crossover.

The s-wave wavefunction for the relative motion of two particles in vacuum, with
vanishing energy at infinity, is [23]

ψ(r) ∝ 1
r
− 1
a
, for r > r0. (6.5)

Hence, the N -particle wavefunction in the many-body problem must have the same short-
distance behavior when two particles of unlike spins come together.

6.3 Global phase diagram
We now address the many-body problem of a finite density of spin up and spin down
fermions with a two-body interaction specified by the scattering length a, so that the
dimensionless coupling constant is 1/(kFa). The BCS limit, 1/(kFa)→ −∞, corresponds
to a weak attraction which leads to a collective Cooper instability in the presence of a
Fermi surface. On the other extreme, 1/(kFa) → +∞, the BEC regime leads to tightly
bound diatomic molecules.

6.3.1 Ground-state crossover

The BCS wavefunction provides a reasonable variational description of the pairing corre-
lations for arbitrary attraction. The zero-temperature crossover mean-field theory (MFT)
is in essence the same as the standard BCS theory, however the chemical potential µ is
self-consistently renormalized in the gap equation. The chemical potential decreases with
increasing attraction, from EF in the BCS limit to a negative value in the BEC extreme,
approaching half of the pair-binding energy −~2/(2ma2).
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In the MFT scheme, the crossover is smooth: in the BCS limit the Cooper pairs of size
ξpair ∼ k−1

F exp[π/(2kF |a|)] � k−1
F ; and in the BEC limit exhibits tightly bound dimers

ξpair � k−1
F . There is no singularity in the many-body state at unitarity, the threshold for

a two-body state in vacuum, because the collective Cooper pairs have already formed.
We emphasize that, although the attraction increases from BCS to BEC, both limits

are weakly interacting. This is straightforward to notice in the BCS limit; for the BEC
regime, once the dimers are formed, all that remains is a weak residual repulsion between
dimers which vanishes in the “deep” BEC limit.

At the heart of the crossover, 1/(kFa) = 0 with |a| � k−1
F . The pair size is of the

order of interparticle spacing ξpair ' k−1
F .

6.3.2 Finite temperature properties
In order to determine the T > 0 phase diagram, we need to calculate Tc as a function of
1/(kFa). MFT [121] yields the BCS result, see Eq. (C.39),

Tc =
( 8γ
πe2

)
EF exp

[
− π

2kFa

]
, (6.6)

when 1/(kFa)→ −∞. With increasing interaction, the Tc estimate becomes qualitatively
incorrect. In [121], it is argued that the MFT estimate is in fact a pairing temperature T ∗,
below which a significant fraction of fermions are bound in pairs and this has nothing to
do with condensation, except in the BCS limit. The dissociation energy for dimers with
binding energy Eb = −~2/(ma2) in the strong-coupling limit is T ∗ ∼ |Eb|/ ln(|Eb|/EF )
[121].

An exponential interpolation of Tc between the BCS result and the non-interacting
BEC is carried out in [122], which is

Tc = π

m

(
n

2ζ(3/2)

)2/3

' 0.22EF , (6.7)

where ζ is the Riemann zeta function, the mass of the dimers is 2m and the density is
n/2. Figure 6.2 is an illustration of the BCS-BEC phase diagram.

6.4 Unitary Fermi gas: quantum Monte Carlo stud-
ies

The 3D unitary Fermi gas is a strongly interacting system of fermions with short-range
interactions in the continuum. When |a| = ∞, the low-energy s-wave scattering phase
shift is δ0 = π/2, and the scattering amplitude f(k) = i/k has no scale. The ground state
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Figure 6.2: Qualitative phase diagram of the BCS-BEC crossover from [23], which relates
kBT/EF with the coupling 1/(kFa). The illustrations show schematically the evolution
from large Cooper pairs (BCS) to tightly bound molecules (BEC). Unitarity, 1/(kFa) = 0,
corresponds to strongly interacting pairs with pair sizes' k−1

F . With increasing attraction,
the pair-formation temperature T ∗ diverges from the transition temperature Tc.

energy per particle E0 is proportional to that of the noninteracting Fermi gas EFG, Eq.
C.10,

E0 = ξEFG = ξ
3
10
k2
F

M
, (6.8)

where the constant ξ is known as the Bertsch parameter. In the limit akF → −∞,
theoretical estimates of ξ = 0.326 and 0.568 were reported [123,124].

The main theoretical challenge is to determine properties of the unitary Fermi gas
(ground-state energy, Tc and scaling functions) in the absence of a small parameter. Nu-
merical simulations using various quantum Monte Carlo (QMC) methods have been quite
successful at calculating some of these properties.

The earliest QMC works focused on the ground-state properties across the crossover
using diffusion QMC at T = 0. The energy of the gas at unitarity was found to be ' 0.42
to 0.44 times that of the noninteracting gas [125, 126], while a more recent study gives a
bound of 0.383(1) [127].
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Other QMC studies [128] found a Bogoliubov quasiparticle dispersion of the from

E(k) =
(~2k2

2m∗ − µ̃
)2

+ ∆2

1/2

, (6.9)

at T = 0, where the gap is ∆/EF ' 0.5 at unitarity [129,130].
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Quantum Monte Carlo methods

7.1 Introduction

In this chapter we introduce the methods used for the study of dilute fermionic systems.
Particularly, we are interested in the study of vortex excitations in the unitary Fermi gas.

Quantum Monte Carlo (QMC), which is a way of sampling multidimensional integrals,
is presented in Sec. 7.2. The Variational Monte Carlo (VMC) method is introduced in
Sec. 7.3. It relies on a trial wavefunction which should include as much information
as we know about the system. In Sec. 7.4, we introduce the Diffusion Monte Carlo
method (DMC). The DMC calculations for the ground state energy yield the best results
that are compatible with the nodal structure introduced by a guide function. In a DMC
calculation, quantities that do not commute with the Hamiltonian can be determined by
using both VMC and DMC results. In Sec. 7.5 we present the problem have studied: a
single vortex line in the unitary Fermi gas.

7.2 Monte Carlo methods

The core of a Monte Carlo simulation is the evaluation of multidimensional integrals by
sampling the integrand statistically and averaging the sampled values [131]. Suppose we
define a 3N -dimensional vector

R = (r1, r2, . . . , rN), (7.1)

where ri is the position of the i-th particle. Commonly, a particular R is called configu-
ration or walker. If the probability density of finding the particles in the configuration R
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is given by

P(R) > 0,∫
dRP(R) = 1. (7.2)

then let {Rm : m = 1,M} be a set of uncorrelated configurations distributed accordingly
to P(R). We define a random variable Zf by

Zf = [f(R1) + f(R2) + · · ·+ f(RM)]
M

. (7.3)

The function f(R) is any reasonable function with mean µf and variance σ2
f given by

µf =
∫
dRf(R)P(R),

σ2
f =

∫
dR[f(R)− µf ]2P(R). (7.4)

For large enough M , Zf is normally distributed with mean µf and standard deviation
σf/
√
M . Thus, regardless of P(R), the mean value of a function of R will be a good

estimator of the mean of that function with respect to P(R). Moreover, the standard
deviation will decrease as 1/

√
M , regardless of the dimension of the integral.

Suppose we want to evaluate an integral such as

I =
∫
dRg(R). (7.5)

We begin by introducing an “importance function” P(R) and cast the integral in the form

I =
∫
dRf(R)P(R), (7.6)

where f(R) ≡ g(R)/P(R). The importance function is chosen such that it obeys
Eq. (7.2), hence it is a probability density. The value of I may be obtained by draw-
ing an infinite number of vectors from P(R),

I = lim
M→∞

{
1
M

M∑
m=1

f(Rm)
}
. (7.7)

A Monte Carlo estimate of I is obtained by a large, but finite, number of samples drawn
from P(R),

I ≈ 1
M

M∑
m=1

f(Rm). (7.8)

The variance σ2
f/M is

σ2
f

M
≈ 1
M(M − 1)

M∑
m=1

[
f(Rm)− 1

M

M∑
n=1

f(Rn)
]2

, (7.9)

leading to error bars of ±σf/
√
M on the computed value of I. A wise choice of P(R) can

significantly reduce the variance for a fixed number of samples.
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7.2.1 The Metropolis algorithm
The method described in the previous section relies on evaluating multidimensional in-
tegrals by sampling probability distributions in high-dimensional spaces. Generally, nor-
malizations of these distributions are unknown. The Metropolis rejection algorithm [132]
allows us to sample complex distributions without knowledge of its normalization.

The Metropolis algorithm generates a sequence of sampling points Rm, and it can be
summarized as the following:

(1) Start the walker at a random position R.
(2) Make a trial move to a new position R’ chosen from a probability

density function T (R′ ← R).
(3) Accept the trial move to R’ with probability

A(R′ ← R) = min
(

1, T (R← R′)P(R′)
T (R′ ← R)P(R)

)
, (7.10)

If the trial move is accepted, R’ becomes the next walker, otherwise R is
the next walker.

(4) Return to step (2) and repeat.
To understand how this algorithm works, let us consider an enormous number of

walkers executing random walks according to the algorithm. After an equilibration period,
we assume an equilibrium state in which the average number of walkers in the element dR
is n(R)dR. We also assume that the average number of walkers moving from dR→ dR′

in one time step is the same as dR′ → dR.
The probability that a walker at R is taken to dR′ in one move is dR′A(R′ ←

R)T (R′ ← R), the average number of walkers moving from dR → dR′ in a single move
is

dR′A(R′ ← R)T (R′ ← R)× n(R)dR. (7.11)
This must be balanced with the number moving from dR′ → dR,

dR′A(R′ ← R)T (R′ ← R)n(R)dR = dRA(R← R′)T (R← R′)n(R′)dR′. (7.12)

Hence, n(R) satisfies
n(R)
n(R′) = A(R← R′)T (R← R′)

A(R′ ← R)T (R′ ← R) . (7.13)

Since the ratio of acceptance probabilities are
A(R← R′)
A(R′ ← R) = T (R′ ← R)P(R)

T (R← R′)P(R′) , (7.14)

then
n(R)
n(R′) = P(R)

P(R′) . (7.15)
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Therefore, the equilibrium walker density n(R) is proportional to P(R), and the proba-
bility of finding any given walker in dR is P(R)dR, as required.

7.3 Variational Monte Carlo
The Variational Monte Carlo (VMC) method is based on the variational principle, and
the Monte Carlo method is applied in the evaluation of the resulting multidimensional
integrals [131]. It relies on a trial wave function ΨT which should mimic as many as
possible properties of the true ground state function Ψ0.

The expectation value of Ĥ, evaluated with a trial wave function ΨT , provides an
upper bound on the exact ground state energy E0

EV =
∫

Ψ∗T (R)ĤΨT (R)dR∫
Ψ∗T (R)ΨT (R)dR > E0, (7.16)

where R= (r1, r2, . . . , rN) is a 3N -dimensional vector with the coordinates of the N

particles. This property can be easily verified, it is enough to consider the expansion

ΨT =
∑
i

αiΨi, (7.17)

where {Ψi} are the eigenstates of Ĥ with eigenvalues {Ei}. The substitution of the last
expression in Eq. (7.16) shows that EV is an upper bound of the exact ground state
energy.

The application of the Monte Carlo method in the evaluation of Eq. (7.16) is accom-
plished by rewriting this equation in the form

EV =
∫
|ΨT (R)|2

[
ΨT (R)−1ĤΨT (R)

]
dR∫

|ΨT (R)|2dR . (7.18)

The Metropolis algorithm then can be used to sample a set of points {Rm : m = 1,M}
from the configuration-space, with probability density P(R) = |ΨT (R)|2/

∫
|ΨT (R)|2dR.

We define a “local energy” EL(R) = ΨT (R)−1ĤΨT (R) and at each of the points it is
evaluated and average energy accumulated

EV ≈
1
M

M∑
m=1

EL(Rm). (7.19)

The trial moves can be sampled from a Gaussian centered on the current position of
the walker and the variance is chosen such that the average acceptance probability is ≈
50%. Expectation values of operators other than the Hamiltonian can be computed in
analogous ways.
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7.4 Diffusion Monte Carlo
Diffusion Monte Carlo (DMC) is a method for solving the imaginary-time many-body
Schrödinger equation [131]

−∂tΦ(R, t) = (Ĥ − ET )Φ(R, t), (7.20)

where t is real and measures the progress in imaginary time and ET is an energy offset.
In the integral form Eq. (7.20) is rewritten as

Φ(R, t+ τ) =
∫
G(R← R′, τ)Φ(R′, t)dR′ (7.21)

where
G(R← R′, τ) = 〈R| exp [−τ(Ĥ − ET )]|R′〉 (7.22)

is the Green’s function. It obeys the same equation as Φ(R, t)

−∂tG(R← R′, τ) = (Ĥ − ET )G(R← R′, τ), (7.23)

with the initial condition G(R ← R′, 0) = δ(R − R′). The Green’s function can be
expressed as

G(R← R′, τ) =
∑
i

Ψi(R) exp {−τ(Ei − ET )}Ψ∗i (R′), (7.24)

where {Ψi} and {Ei} are the complete set of eigenstates and eigenenergies of Ĥ, respec-
tively. As τ → ∞, the operator exp {−τ(Ei − ET )} projects out the lowest eigenstate
|Ψ0〉 that has non-zero overlap with an initial state |Φinit〉

lim
τ→∞
〈R| exp [−τ(Ĥ − ET )]|Φinit〉 = lim

τ→∞

∫
G(R← R′, τ)Φinit(R′)dR′

= lim
τ→∞

∑
i

Ψi(R) exp [−τ(Ei − ET )]〈Ψi|Φinit〉.(7.25)

By adjusting ET = E0 and taking the limit τ →∞ only the |Ψ0〉 state is projected, since
the higher states are all exponentially damped because their energies are higher than E0.

If we neglect potential terms in Eq. (7.20) it simplifies to

∂tΦ0(R, t) = ~2

2m

N∑
i=1
∇2
iΦ0(R, t). (7.26)

The Green’s function for this problem is

G0(R← R′, τ) =
[

m

2π~2τ

]3N/2
exp

[
−m(R−R′)2

2~2τ

]
. (7.27)
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If we consider the Hamiltonian with both kinetic and potential terms, the exact Green’s
function is known only for a few special cases. The Trotter-Suzuki formula can be used
to obtain an approximation of the Green’s function. For two operators Â and B̂

e−τ(Â+B̂) = e−τB̂/2e−τÂe−τB̂/2 +O(τ 3). (7.28)

If Â = T̂ , where T̂ is the kinetic energy operator, and B̂ = V̂ −ET , V̂ being the potential
energy operator, we have

G(R← R′, τ) = 〈R|e−τ(T̂+V̂−ET )|R′〉 ≈ e−τ [V (R)−ET ]/2〈R|e−τT̂ |R′〉e−τ [V (R′)−ET ]/2.(7.29)

The approximate Green’s function for small τ is therefore

G(R← R′, τ) = G0(R← R′, τ) exp [−τ [V (R) + V (R′)− 2ET ]/2], (7.30)

and the error is proportional to τ 3. The exponential

P = exp [−τ [V (R) + V (R′)− 2ET ]/2] (7.31)

is a time-depending reweighting of the Green’s function. This change of normalization is
incorporated in the calculations by using the branching algorithm, in which P determines
the number of surviving walkers in each step. The procedure is:

(1) If P < 1 the walker continues its evolution with probability P .
(2) If P > 1 the walker continues and, in addition, a new walker is created

in the same position with probability P − 1.
The number Mnew of walkers evolving to the next step at a given position can be coded

as
Mnew = INT(P + ξ), (7.32)

where INT is the integer part of a real number and ξ is a random number drawn from
a uniform distribution in the interval [0,1]. The energy offset ET is used to control the
population of walkers. By adjusting ET the total number of walkers fluctuates around a
desirable value.

The ground state energy can be calculated by the mixed estimate

〈H〉mix = 〈ΨT |Ĥ|Φ(t→∞)〉
〈ΨT |Φ(t→∞)〉 = E0

〈ΨT |Φ(t→∞)〉
〈ΨT |Φ(t→∞)〉 = E0 (7.33)

7.4.1 Importance sampling
The simple DMC algorithm described so far is spectacularly inefficient. The main reason
is that P from Eq. (7.31) may fluctuate wildly between steps. This difficulty is overcome
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by carrying out an importance-sampling transformation using a trial wavefunction ΨT (R).
Let us multiply Eq. (7.20) by ΨT (R) and introduce f(R, t) = Φ(R, t)ΨT (R). After some
manipulations,

−∂f(R, t) = −1
2∇

2f(R, t) +∇ · [vD(R)f(R, t)] + [EL(R)− ET ]f(R, t), (7.34)

where ∇ = (∇1, . . . ,∇N), vD(R) is the 3N -dimensional drift velocity,

vD(R) = ∇ ln |ΨT (R)| = ΨT (R)−1∇ΨT (R). (7.35)

The integral equation becomes

f(R, t+ τ) =
∫
G̃(R← R′, τ)f(R′, t)dR′, (7.36)

where
G̃(R← R′, τ) ≡ ΨT (R)G(R← R′, τ)ΨT (R′)−1. (7.37)

The short-time approximation to G̃(R← R′, τ) is

G̃(R← R′, τ) ≈ Gd(R← R′, τ)Gb(R← R′, τ), (7.38)

where

Gd(R← R′, τ) = (2πτ)−3N/2 exp
[
− [R−R′ − τvD(R′)]2

2τ

]
,

Gb(R← R′, τ) = exp {−τ [EL(R) + EL(R′)− 2ET ]/2} . (7.39)

Importance sampling has several consequences. The density of walkers is increased
(decreased) where ΨT is large (small), because vD(R) carries the walkers along in the
direction of increasing |ΨT |. Moreover, the exponent in the reweighting term contains the
local energy, instead of the potential. This is crucial because, for a good trial wavefunction,
the local energy is close to the ground-state energy and approximately constant, thus
diminishing population fluctuations.

Importance sampling is also extremely helpful in fulfilling the fixed-node constraint.
Whenever a walker approaches the nodal surface, the drift velocity grows and pushes it
away. Despite that, in the event of a walker crossing the nodal surface, the walker is
eliminated.

Note that the trial wave function ΨT (R) is used in three different ways: approximation
of the ground state in the VMC calculation, importance function and for avoiding the
sign problem as we will see in the next section.
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7.4.2 The fixed-node approximation

So far we have assumed that the wavefunction is positive everywhere, which is not true
for fermions due to the antisymmetry requirement. Unfortunately, DMC can only handle
positive distributions. For example, the denominator of a matrix element such as the
mixed energy contains the sum ∑Ns

i=1 PiΨT (Ri). If the path of sample i has crossed nodes
of ΨT an odd number of times, the contribution to the sum will be negative. For large
times, the contributions of the negative paths cancel almost completely the contributions
of the paths that have not crossed the nodes (or crossed an even number of times). The
signal dies out exponentially compared to the noise.

Fixed-node DMC [133] is an alternative method to overcome the sign problem. A trial
many-body wavefunction is chosen and used to define a trial many-body nodal surface.
In a tridimensional system with N fermions, the wavefunction depends on 3N variables
and the trial nodal surface is a (3N − 1)-dimensional surface. If a walker in a proposed
move crosses the nodal surface, it is deleted.

The fixed-node DMC algorithm then produces the lowest-energy state given the nodal
surface. Therefore, fixed-node DMC may be regarded as a variational method that gives
exact results provided that the nodal surface is exact.

7.4.3 Extrapolated estimators

Expectations of quantities that do not commute with the Hamiltonian can be calculated
using a combination of mixed and variational estimators [131],

〈Φ|Ŝ|Φ〉 ≈ 2〈Φ|Ŝ|ΨT 〉 − 〈ΨT |Ŝ|ΨT 〉+O
[
(Φ−ΨT )2

]
, (7.40)

where Ŝ is the operator related to some physical quantity of interest. For nonnegative
quantities, for example the density, another possibility is

〈Φ|Ŝ|Φ〉 ≈ 〈Φ|Ŝ|ΨT 〉2

〈ΨT |Ŝ|ΨT 〉
+O

[
(Φ−ΨT )2

]
. (7.41)

Such combinations of VMC and DMC estimators are called extrapolated estimators.

7.4.4 QMC on parallel computers

Monte Carlo calculations are intrinsically parallel. The calculations performed on each
walker are independent, and may be carried on in parallel. QMC calculations are very
suitable for parallel architecture machines, which offer orders of magnitude more compu-
tational power.
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The most common paradigm used in QMC on massively parallel processors is the
“master-slave”, with one processor orchestrating the whole simulation. In VMC simula-
tions, the argument for using parallel computers is even more compelling. Each process
independently runs a simulation and accumulates its own set of observables; at the end
of the run the master processor gathers and averages the results. The situation is similar
in DMC simulations, however some inter-process communication is required during the
simulation to control the population of walkers and perform the load balance between
processes.

7.5 Vortex line

7.5.1 Introduction

Since the first observations of quantized vortices in superfluid 4He a large body of exper-
imental and theoretical work has been carried out concerning bosonic systems [134,135].
On the other hand, the discovery of vortex lattices in a strongly interacting rotating Fermi
gas of 6Li [28] was a milestone in the study of superfluidity in cold Fermi gases. Many
aspects of the core region of the quantum vortex remain to be studied.

A vortex line consists of an extended irrotational flow field, with a core region where the
vorticity is concentrated, Eq. (D.6); in appendix D we introduce some useful concepts in
classical hydrodynamics concerning vortices. The quantization of the flow manifests itself
in the quantized units h/(2M) of circulation, Eq. (D.19), where h is Planck’s constant
and M is the mass of the fermion. Astonishingly, there is no evidence for stable quantized
vortices with more than one unit of circulation. Many questions remain to be answered
concerning the structure of the vortex core for fermions. The purpose of our study is
to present results of quantities that may help to shed light to these unsolved questions.
First, we wish to study the properties of the ground state of cold dilute spin-1/2 unitary
Fermi gases in a cylindrical container. Then we proceed to the investigation of the excited
state with the presence of a vortex line.

The potential of interaction between fermions of the unlike spins is presented in 7.5.2.
Sec. 7.5.3 contains the information on the wavefunctions we constructed to simulate the
systems of interest. We begin by solving Schrodinger’s equation in cylindrical coordinates
in Sec. 7.5.3; we particle-project the BCS wavefunction in Sec. 7.5.3; the wavefunctions
for the ground state and vortex line excitation are presented in Secs. 7.5.3 and 7.5.3,
respectively; finally we comment on parameter optimization in Sec. 7.5.3.
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7.5.2 Potential
The model we considered consists of A fermions in a cylinder of radius R and height
L. We considered periodic boundary conditions in the axis direction (z direction) and
rigid walls. Fermions of the same spin do not feel the effects of interaction because it is
short range and Pauli exclusion principle dominates. We must use a potential with the
following characteristics:

(i) It is attractive with very short range, as we assume the dilute limit;
(ii) the details of the potential do not matter, in principle we can think of it as an

attractive δ-function potential;
(iii) the potential needs to be adjusted such that we can reproduce the regime of

akF →∞.
For different spins we have assumed a central potential V (r) that has those desirable

features
V (r) = −v0

2~2

M

µ2

cosh2 (µr)
, (7.42)

where v0 is adjusted to obtain the desired value of akF and µ controls the effective range
Reff of the potential. We chose v0 = 1 which implies a = ±∞ and Reff = 2/µ. The
calculations were performed with µr0 = 24.

7.5.3 Wavefunctions
The trial wave function for this problem must have several characteristics. It must reflect
the fact that fermions with attractive interaction can form bound Cooper pairs in the
ground state. We also desire to have the possibility to vary the nodal surface, in order
to minimize the energy. Finally, the wave function must obey the boundary conditions of
the cylindrical container.

Schrödinger’s equation in cylindrical coordinates

We begin by looking at the solution of Schrodinger’s equation for a free particle in a
cylinder of radius R and height L. We wish to solve

− ~2

2M

(
∂2Ψnmp

∂ρ2 + 1
ρ

∂Ψnmp

∂ρ
+ 1
ρ2
∂2Ψnmp

∂ϕ2 + ∂2Ψnmp

∂z2

)
= EnmpΨnmp, (7.43)

where (ρ, ϕ, z) are the usual cylindrical coordinates. We suppose a separable solution of
the form Ψnmp(ρ, ϕ, z) = P (ρ)Φ(ϕ)Z(z), subject to the boundary conditions

Ψnmp(ρ = R, ϕ, z) = 0,
Ψnmp(ρ, ϕ, z) = Ψnmp(ρ, ϕ+ 2π, z),
Ψnmp(ρ, ϕ, z) = Ψnmp(ρ, ϕ, z + L), (7.44)
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and that it is finite at ρ = 0. The functions Φ(ϕ) and Z(z) are elementary complex
exponential functions. The equation for P (ρ) is

ρ2P ′′(ρ) + ρP ′(ρ) + (kmpρ2 −m2)P (ρ) = 0, (7.45)

where kmp is a constant dependent on the labels m and p. The solutions of this equation,
with the imposed boundary conditions, are the Bessel functions of first-kind Jm(kmpρ)
such that kmpR = jmp, jmp being the p-th zero of Jm.

The total solution is

Ψnmp(ρ, ϕ, z) = NmpJm (jmpρ/R) exp [i(kzz +mϕ)], (7.46)

where Nmp is a normalization constant dependent of m, p, R and L; and kz = 2πn/L.
The quantum numbers can take the values n = 0,±1,±2, . . . ; m = 0,±1,±2, . . . ; and
p = 1, 2, 3, . . . . The eigenenergies are

Enmp = ~2

2M

[(
jmp
R

)2
+
(2πn
L

)2]
. (7.47)

The set of states {Ψnmp} with corresponding energies {Enmp} is a complete set, therefore
we can use it to expand our trial wave function.

BCS wavefunction projected to a fixed number of particles

The BCS wave function is used to describe the bound Cooper pairs in the ground state.
We write

|BCS〉θ = ∏
k

(uk + eiθvkâ
†
k↑â
†
T k↓)|0〉,

u2
k + v2

k = 1, (7.48)

where uk and vk are real numbers, k is the wavenumber vector, T is the time reversal
operator1 and |0〉 represents the vacuum. However this function has broken particle
number symmetry, i.e., it is not an eigenstate of the particle number operator. In fact,
expanding the wave function we can write

|BCS〉θ = |0〉+ eiθP̂†|0〉+ ei2θ(P̂†)2|0〉+ ei3θ(P̂†)3|0〉+ . . . , (7.49)

where P̂† = ∑
k

(vk/uk)â†k↑â
†
T k↓ is the pair creation operator. The component which corre-

sponds to A particles, M = A/2 pairs, is

|BCS〉A = 1
2π

∫ 2π

0
e−iθM|BCS〉θdθ = (P̂†)M|0〉. (7.50)

1If we consider plane waves in a cube, T k = −k. In general, T k is not −k in the cylindrical geometry.
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We wish to write the BCS function for a fixed number of particles as a function of pair
wavefunctions. We proceed analogously to [136], considering our cylindrical geometry.
We begin by considering the antisymmetric position- and spin-projected states

A|r1, s1, . . . , rA, sA〉 = 1
A!

∑
permutations P

(−1)P |P (r1, s1, . . . , rA, sA)〉

= 1√
A!
ψ̂†s1(r1) . . . ψ̂†sA(rA)|0〉, (7.51)

where P represents the permutation of particle labels, (−1)P is 1 (-1) for even (odd)
permutations and ψ̂†si(ri) is the fermionic creation operator for the i-th particle of spin si
at ri. The position and momentum creation operators are related by

â†ks =
∫ L/2
−L/2

dz
∫ R

0
dρ ρ

∫ 2π

0
dϕ NmpJm (jmpρ/R) exp [i(kzz +mϕ)]ψ̂†s(r), (7.52)

where we should note that specifying one k is equivalent to specifying the quantum
numbers (n,m, p) of Eq. (7.46), kz = 2πn/L.

The standard BCS state is normalized according to Eq. (7.48). Since we will project
the part with A particles, even if we begin with a normalized state, the projected part
will no longer be normalized. Thus, there is no advantage to begin with a normalized
state and we divide each term by the corresponding uk. If one or more are zero, it means
that we should drop the 1 term for that k since it is always filled. Hence

|BCS〉θ =
∏
k

[
1 + vk

uk
â†k↑â

†
T k↓

]
|0〉. (7.53)

The particle-projected BCS wavefunction can be cast in the form

ΨBCS(R, S) = 〈R, S|BCS〉 = 1√
A!

[
〈0|ψ̂sA(rA) . . . ψ̂s1(r1)

]∏
k

[
1 + vk

uk
â†k↑â

†
T k↓

]
|0〉.(7.54)

We use Wick’s theorem [137] to change from the given order to the normal order. Con-
tracting ψs(r) and â†ks′ yields

ψs(r)â†ks′ = NmpJm (jmpρ/R) exp [i(kzz +mϕ)]δss′ . (7.55)

A careful analysis of Eq. (7.54) shows that one particular contraction occurs when ψs1(r1)
and ψs2(r2) contract with a pair in k1; ψs3(r3) and ψs4(r4) contract with another pair in
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k2; and so forth:

ψs2(r2)ψs1(r1)â†k1↑â
†
T k1↓ = (−1)m1N 2

m1p1Jm1

(
jm1p1ρ1

R

)
Jm1

(
jm1p1ρ2

R

)
×

exp {i [kz1(z1 − z2) +m1(ϕ1 − ϕ2)]}〈s1s2| ↑↓〉;

ψs4(r4)ψs3(r3)â†k2↑â
†
T k2↓ = (−1)m2N 2

m2p2Jm2

(
jm2p2ρ3

R

)
Jm2

(
jm2p2ρ4

R

)
×

exp {i [kz2(z3 − z4) +m2(ϕ3 − ϕ4)]}〈s3s4| ↑↓〉;
...

ψsA(rA)ψsA−1(rA−1)â†kA/2↑â
†
T kA/2↓ = (−1)mA/2N 2

mA/2pA/2
JmA/2

(
jmA/2pA/2ρA−1

R

)
×

JmA/2

(
jmA/2pA/2ρA

R

)
×

exp {i
[
kzA/2(zA−1 − zA) +mA/2(ϕA−1 − ϕA)

]
}×

〈sA−1sA| ↑↓〉. (7.56)

This gives a term

vk1

uk1

(−1)m1N 2
m1p1Jm1

(
jm1p1ρ1

R

)
Jm1

(
jm1p1ρ2

R

)
×

exp {i [kz1(z1 − z2) +m1(ϕ1 − ϕ2)]}〈s1s2| ↑↓〉×
vk2

uk2

(−1)m2N 2
m2p2Jm2

(
jm2p2ρ3

R

)
Jm2

(
jm2p2ρ4

R

)
×

exp {i [kz2(z3 − z4) +m2(ϕ3 − ϕ4)]}〈s3s4| ↑↓〉×

. . .
vkA/2

ukA/2

(−1)mA/2N 2
mA/2pA/2

JmA/2

(
jmA/2pA/2ρA−1

R

)
JmA/2

(
jmA/2pA/2ρA

R

)
×

exp {i
[
kzA/2(zA−1 − zA) +mA/2(ϕA−1 − ϕA)

]
}〈sA−1sA| ↑↓〉, (7.57)

where we have dropped the overall normalization. Choosing different k terms to contract
with corresponds to summing over all values of k1, k2, etc., with the constraint that no
two of the ki should be equal,[∑

k

vk

uk
(−1)mN 2

mpJm

(
jmpρ1

R

)
Jm

(
jmpρ2

R

)
exp {i [kz(z1 − z2) +m(ϕ1 − ϕ2)]} [〈s1s2| ↑↓〉]

]
×[∑

k

vk

uk
(−1)mN 2

mpJm

(
jmpρ3

R

)
Jm

(
jmpρ4

R

)
exp {i [kz(z3 − z4) +m(ϕ3 − ϕ4)]} [〈s3s4| ↑↓〉]

]
×

. . . (subject to the constraint that no two of the ki should be equal). (7.58)
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Choosing other contractions completely antisymmetrizes this form, and we can include
all terms in the k sums since these cancel when antisymmetrized. The result is

ψBCS(R, S) = A[φ(r1, s1, r2, s2)φ(r3, s3, r4, s4) . . . φ(rA−1, sA−1, rA, sA)], (7.59)

where, for example,

φ(r1, s1, r2, s2) =
∑

k

vk

uk
(−1)mN 2

mpJm (jmpρ1/R) Jm (jmpρ2/R)×

exp {i [kz(z1 − z2) +m(ϕ1 − ϕ2)]} [〈s1s2| ↑↓〉] . (7.60)

Since the many-body antisymmetrizer will interchange the particles in φ, we usually ex-
plicitly antisymmetrize φ. Up to an unimportant normalization we get

φ(r1, s1, r2, s2) =
∑

k

vk

uk
(−1)mN 2

mpJm (jmpρ1/R) Jm (jmpρ2/R)×

exp {i [kz(z1 − z2) +m(ϕ1 − ϕ2)]} [〈s1s2| ↑↓〉 − 〈s1s2| ↓↑〉] , (7.61)

demonstrating singlet pairing.
Often we want to simulate systems that are not fully paired. We include unpaired

particles in specific states (n,m, p) by multiplying the |BCS〉 state by a product (or
linear combinations) of creation operators for those states. The change in the previously
described procedure is that these creation operators must be contracted with one of the
ψs(r), or the result is zero. For q pairs and o occupied single-particle states, thus A =
2q + o, we have

ψBCS(R, S) = A[φ12φ34 . . . φ2q−1,2q ψ1 . . . ψo]. (7.62)

Ground state

For the ground state of fermions in a cylindrical container, we use Eq. (7.59), or Eq. (7.62)
if we have unpaired particles. We define αk ≡ vk/uk as our real variational parameters.
The momentum vectors in the cylinder are quantized and the system has a shell structure
with closures which depend on R and L, see Eq. (7.47).

In the present calculations, we assume the pair wave function φ(r, r′) to be

φ(r, r′) = β̃(r, r′) +
∑
I6IC

αIN 2
mp(−1)mJm (jmpρ/R) Jm (jmpρ′/R)×

exp {i [kz(z − z′) +m(ϕ− ϕ′)]}, (7.63)

where we adopted hereafter primed indexes to denote spin-down particles and unprimed
ones to refer to spin-up particles and we omit the spin part. Here IC is a cutoff shell
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number and we assume that contributions of shells with I > IC are present in the β̃(r, r′)
function, given by

β̃(r, r′) =


N 2

01J0 (j01ρ/R) J0 (j01ρ
′/R)×

(β(r) + β(L − r)− 2β(L/2)) for r 6 L/2
0 for r > L/2

and

β(r) = [1 + γbr][1− e−cbr]e
−br

cbr
, (7.64)

where r = |r − r′| and b, c and γ are variational parameters. It is convenient to require
∂β̃/∂r = 0 at r = 0 because the local energy has terms like (1/r)(β̃/∂r) which would have
large fluctuations at r = 0 otherwise. The factor [1− e−cbr] cuts off 1/cbr dependence of
β at br < 1/c. The set of parameters which yielded the lowest energy was c = 10, γ = 5
and b =0.5.

We also included an one-body Jastrow factor of the form

χ(ρi) =
(

a√
2πσ2

exp
{

(ρi − ρ̄)2

2σ2

}
+ ν

)λ
, (7.65)

where a, σ, ρ̄, ν and λ are variational parameters. The correlation between antiparallel
spins is included in the two-body Jastrow factor f(rij′). It is obtained from solutions of
the two-body Schrodinger equation[

− 1
M
∇2 + V (r)

]
f(r < d) = λf(r < d), (7.66)

where d is a variational parameter. The boundary conditions are f(r > d) = 1 and
f ′(r = d) = 0 [138].

The total wave function for the ground state of fermions in a cylindrical container is

ψ0(R) =
∏
k

χ(ρk)
∏
i,j′
f(rij′)ψBCS(R), (7.67)

with ψBCS(R) given by Eq. (7.59) (or Eq. (7.62) if we have unpaired particles) and the
pairing function given by Eq. (7.63).

Vortex line

In order to introduce the vortex line in the system we need to have Cooper pairs which
are eigenstates of Lz with eigenvalues ±~. This can be accomplished by coupling single
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particle states that have the quantum number m with (−m+ 1). The proposed pair wave
function is

φV (r, r′) = β̃(r, r′) +
K∑
i=1

α̃iNm;pN−m+1;p {

Jm

(
jmpρ

R

)
J−m+1

(
j−m+1;pρ

′

R

)
exp {i [kz(z − z′) +mϕ+ (−m+ 1)ϕ′)]}+

Jm

(
jmpρ

′

R

)
J−m+1

(
j−m+1;pρ

R

)
exp {i [kz(z′ − z) +mϕ′ + (−m+ 1)ϕ)]}} ,(7.68)

where K is the number of single particle states with quantum numbers (n,m, p) being
paired with (−n,−m+ 1, p). A few words are in order regarding this choice of coupling.
We do not wish to have a winding number in the z direction, that is why we have the
quantum number n for a particle and the time-reversed −n for the other. Also, the
largest contribution was assume to be from states with the same quantum number p for
the radial part. Another important property of the pair function is being symmetric under
exchange of two particles, because we are considering the spin part as singlet. The total
wave function is

ψ1(R) = A[φV (r1, r1′)φV (r2, r2′) . . . φV (rM, rM′)],
ψV (R) =

∏
k

χ(ρk)
∏
i,j′
f(rij′)ψ1(R). (7.69)

The wave function ψV describes a quantized vortex line with circulation κ = h/(2M),
with localized vorticity on the vortex axis.

Variational Parameters Optimization

The variational parameters for the pairing functions and two-body Jastrow factor were
optimized using the Stochastic Reconfiguration method [139], described in detail in Ap-
pendix E. The parameters for the one-body term were chosen to maximize the overlap of
the density profile along the radial coordinate between the DMC and VMC calculations.
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Results

8.1 Introduction
In this chapter we present the results obtained with the BCS wave function ψ0 for fermions
in a cylinder, Eq. (7.67); and the results for the system with a vortex line along the z-axis,
ψV from Eq. (7.69). Energy related quantities are calculated using the DMC method, as
described in Sec. 7.4. The density profile calculations involve results of both DMC and
VMC simulations, as it was discussed in Sec. 7.3.

We have fixed the number density at k3
F/(3π2), which is the density of the free Fermi

gas. Thus, we have freedom to choose the radius R and the height L of the cylinder. In
all simulations we set L = 2R, so that the diameter is equal to the height of the cylinder.

The ground state of spin-1/2 fermions in a cylinder presents a shell structure, with
closures given by the free state energy levels. Interestingly, the shell structure must be
determined for each value of A, because the energy levels depend on R and L.

In Sec. 8.2 we present the spatial distribution of the particles in the cylinder for both
the ground state and the system with a vortex line. Energy related quantities, such as
the ground state energy, the superfluid pairing gap and the vortex excitation energy are
shown in Sec. 8.3.

8.2 Density profile
In order to study the spatial distribution of the particles in the cylinder we calculated the
density profile along the radial direction ρ, D(ρ). Because the density operator does not
commute with the Hamiltonian, we extrapolate the values using the procedure described
in Sec. 7.4.3, see Eq. 7.40. The normalization is chosen so that∫

V
D(ρ)dv = 1, (8.1)
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where the integral is over the volume V = πR2L = 2πR3 of the cylinder.
Figs. 8.1 and 8.2 show the ground state density profile for open and closed shells, re-

spectively. Due to unfilled states, the density profiles of Fig. 8.1 present more oscillations,
whereas the profiles of Fig. 8.2 tend to be more flat. This behavior is expected because
closed shells correspond to isotropic (in the sense of the cylindrical geometry) wavefunc-
tions, while an open shell privileges certain directions, in this case they are related to the
angular direction.
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Figure 8.1: Ground state density as a function of the cylindrical coordinate ρ at the given
values of A, all corresponding to systems with open shells.

Considering both the open and closed shell systems we notice that, for A & 34, the
behavior is qualitatively the same. The density is approximately flat near the center of
the cylinder and it smoothly decreases until it vanishes at the wall. A constant density for
small ρ is consistent with the ground state, since it corresponds to the bulk of the system.
We note as well that, as the number of particles increases, size effects decrease. This can
be observed by a more uniform density up to a region near the border of the cylinder.
For the largest number of particles we have considered size effects to be negligible.

In Figs. 8.3 and 8.4 we present the density profile for systems with a vortex line
excitation with open and closed shells, respectively. For A & 30 the form of the curve is
qualitatively the same. The most interesting feature of this quantity is a non-zero density
at the core, near ρ = 0. The densities of the ground state and the vortex line system are
very close, however they do differ for small ρ. Fig. 8.5 shows a comparison between the
ground state and the vortex for A = 50, for other values of A the behavior is qualitatively
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Figure 8.2: Ground state density as a function of the cylindrical coordinate ρ at the given
values of A, all corresponding to systems with closed shells.

the same. The density of the vortex, although not zero at the core, is considerably lower
than the ground state.
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Figure 8.3: Density of the system with a vortex line as a function of the cylindrical
coordinate ρ at the given values of A, all corresponding to systems with open shells.
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Figure 8.4: Density of the system with a vortex line as a function of the cylindrical
coordinate ρ for various values of A, all corresponding to systems with closed shells.
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Figure 8.5: Comparison between the density profile for the ground state and the system
with a vortex line, both for A = 50.
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8.3 Energy
Some words about the chosen energy units are in order. The usual energy unity for
superfluid Fermi gases is the energy of the noninteracting Fermi gas, see Eq. (C.10).
However, it is not possible to calculate analytically this energy for a cylindrical geometry.
Instead, we sum the energy levels of the free gas, Eq. (7.47), and use this sum as energy
unit. For each value of A, R and L this energy unity must be computed

EFG =
A∑
i=1

E(i)
nmp, (8.2)

where the sum is over the A-lowest level energies E(i)
nmp.

8.3.1 Ground state

Fig. 8.6 presents the ground state energy per particle for 20 6 A 6 58, where we have
indicated whether the shell is opened or closed.
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Figure 8.6: Ground state energy per particle as a function of the number of particles for
open and closed shells.

In the limit of R,L → ∞ the energy per particle in the cylindrical geometry should be
equal to the energy per particle of the same system in a cubic box with periodic boundary
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conditions. Because the chosen wavefunction vanishes at the cylinder walls, we expect
that the energy should be related to the surface area of the wall, S = 2πRL = 4πR2. We
propose a functional form to the energy per particle as a function of the radius,

ε(R) = E(R)
A

= ε0 + εs
4πR2 , (8.3)

where ε0 and εs are constants. For A < 26, the energy per particle seems to be suffering
from size effects, due to the small number of particles. Thus, we fitted the energy per
particle as a function of the radius for A > 26 using Eq. (8.3). The resulting parameters
were ε0 = (0.42± 0.01)EFG and εs = (11.4± 1.0)EFGk−2

F , and ε(R) is shown in Fig. 8.7.
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Figure 8.7: Ground state energy per particle as a function of the cylinder radius R. The
solid line corresponds to the fitted energy per particle (Eq. (8.3)).

8.3.2 Superfluid pairing gap

Ultracold atomic gases and low-density neutron matter are unique in the sense that they
exhibit pairing gaps comparable to the Fermi energy [140]. Although the energy and
momentum scales of cold atomic gases and atomic nuclei differ by many orders of mag-
nitude, dilute neutron matter and ultracold unitary Fermi gases present similar pairing
gaps. The possibility to tune particle-particle interactions experimentally in cold atomic
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gases systems provides an emulation of low-density neutron matter, which is beyond direct
experimental reach.

Experiments with cold atom gases determined the pairing gap to be approximately
half of the Fermi energy [128]. The pairing gap at T = 0 is calculated using the odd-even
staggering formula [140]

∆(2A+ 1) = E(2A+ 1)− 1
2 [E(2A) + E(2A+ 2)] , (8.4)

where A is the number of fermions.
We consider that, for an even number of particles, all of them are paired; and for an

odd number, one must be unpaired. The unpaired particle may be in any of the free
particle states of Eq. (7.46) (or in a linear combination of them), however we must find
the one which yields the lowest total energy for the system. We suppose that n and m are
good quantum numbers for the unpaired particle, because we employ periodic boundary
conditions in the z-direction and the wavefunction must be an eigenstate of Lz. Thus, we
chose the wavefunction of the unpaired particle to be a linear combination of free particle
states,

ψnm(ρ, φ, z) =
∑
p

νpΨnmp(ρ, φ, z), (8.5)

where the νp are variational coefficients and Ψnmp is given by Eq. (7.46). For different
values of n and m we determine the νp which minimize the total energy of the system.
Then, we perform DMC simulations using the resulting wavefunctions as guiding functions
and we choose the lowest energy result.

Fig. 8.8 shows the total energy of the system for 20 6 A 6 40. Using Eq. (8.4) we
estimate the pairing gap to be ∆ = (0.76 ± 0.01)EFG. Another estimate is provided by
using Eq. (8.3) to correct Eq. (8.4) for different cylinder radii. Denoting the parameters
of ε(R) by ε

(even)
0 and ε(even)

s for an even number of particles, as in Sec. 8.3.1, and ε
(odd)
0

and ε(odd)
s for the systems with an odd number of particles, we have

∆R = (2A+ 1)

ε(odd)
0 + ε(odd)

s

4πR2

∣∣∣∣∣∣
2A+1

− 1
2

2A

ε(even)
0 + ε(even)

s

4πR2

∣∣∣∣∣∣
2A

+

(2A+ 2)

ε(even)
0 + ε(even)

s

4πR2

∣∣∣∣∣∣
2A+2


 =

= (2A+ 1)

ε(odd)
0 − ε(even)

0 + ε(odd)
s

4πR2

∣∣∣∣∣∣
2A+1

− ε(even)
s

4π

A
R

∣∣∣∣∣∣
2A

+ A+ 1
R

∣∣∣∣∣∣
2A+2

 .(8.6)

Thus we fit the data, for 25 6 A 6 39, for an odd number of particles using Eq. (8.3),
which yields ε(odd)

0 = (0.42 ± 0.01)EFG and ε(odd)
s = (21.1 ± 3.2)EFGk−2

F . Finally, (8.6)
provides the estimate ∆R = (0.77± 0.11)EFG.
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Figure 8.8: Ground state energy for even and odd number of particles. The solid lines
correspond to linear fits of the even and odd system energies.

8.3.3 Excitation energy
A vortex line in the unitary Fermi gas is an excited state, and the excitation energy is
given by the difference between the energy of the system with a vortex and the ground
state energy. In Fig. 8.9 we present both energies for 22 6 A 6 48. For A < 26, the
systems suffer from size effects, so we chose to calculate the excitation energy only for
A > 26. The corresponding excitation energy per particle is εex = (0.0058± 0.0003)EFG.
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Figure 8.9: Ground state and vortex line energy per particle.
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Chapter 9

Conclusions

Ultracold Fermi gases are remarkable fermionic systems due to the possibility to tune
their interparticle interactions from weak to very strongly interacting regimes. Through
Feshbach resonances in the BCS-BEC crossover we have the unitary Fermi gas, a strongly
interacting system with short-range interactions.

A large body of experimental and theoretical work has been carried out concerning
bosonic systems that led us to an improved knowledge of them. However, many questions
remain to be answered regarding quantized vortices in fermionic systems. A vortex line
consists of an irrotational flow field with a core region, where the vorticity is concentrated.
The quanta of circulation is h/(2M) and, amazingly, there is no evidence for quantized
vortices with more than one quanta of circulation.

Our premise was to study properties of a single vortex line in the unitary Fermi gas.
We developed wavefunctions, inspired by the BCS wavefunction, to describe the ground
state of the superfluid unitary Fermi gas in a cylindrical container and the excited state
of a vortex line in this system.

We consider that our results elucidate many aspects of the ground state in this non-
trivial1 geometry. In addition, our calculations for the system with a single vortex line
shed light on some properties of this excited state.

We obtained the density profile of the ground state, which is flat near the center of
the cylinder and it smoothly decreases until the density vanishes at the wall. The density
profile of the ground state was compared to the vortex line system. The most interesting
feature of the later is a non-vanishing density at the core, ρ = 0, however considerably
lower than the ground state density for small ρ.

For this geometry, we calculated the energy of the ground state for an even number
of particles (all paired). Because the wavefunction vanishes at the walls of the cylinder,

1For example, the ordering of the free particle energy levels depends on the radius and height of the
cylinder.
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we would need very large values of R and L to neglect the effects introduced by this
condition. We proposed a functional form for the energy per particle as a function of the
radius of the cylinder which takes into account the energy term due to the walls. The
value found for the constant term ε0 = (0.42±0.01)EFG does not differ much, considering
these effects, from the value of (0.383 ± 0.001)EFG found for much larger systems in a
box with periodic boundary conditions [127].

The superfluid pairing gap of these ultra cold atomic gases is of interest because it is
comparable to the Fermi energy of the system. We found two estimates for the pairing
gap; the usual odd-even staggering formula [140] yields a gap of ∆ = (0.76 ± 0.01)EFG,
and we propose a correction, due to different radii of the cylinders, which provides a gap
of ∆R = (0.77 ± 0.11)EFG. Previous quantum Monte Carlo simulations of fermions in a
box, using periodic boundary conditions, predicted ∆ = (0.84± 0.05)EFG [130]; while an
experiment at finite temperature produced the value ∆ = (0.45± 0.05)EFG [128].

The excitation energy is readily calculated from the energies of the ground state and
the vortex line system. The calculated excitation energy per particle is εex = (0.0058 ±
0.0003)EFG. Associating a frequency ω with this energy we may write

εex = ~ω = (0.0058± 0.0003)EFG. (9.1)

We now compare our results to one of the milestones in the study of vortices in Fermi
gases [28], which used 6Li atoms to study the BCS-BEC crossover. The experiment focused
on obtaining vortex lattices for different interaction strengths, ranging from the BCS limit
to the BEC scheme. In the experiment, they found the characteristic microscopic length
to be 1/kF = 0.3 µm, which yields a Fermi energy

EF = ~2k2
F

2m ≈ 3.30× 10−11 eV, (9.2)

where m = 1.17 × 1026 kg. Using this Fermi energy in Eq. 9.1 we obtain εex = ~ω =
(1.9 ± 0.1) × 10−13 eV. They found the rotational frequency of the lattice to be close to
the stirring frequency, which is fstirr ' 45 Hz near unitarity. Hence, ~ωstirr = ~ 2πfstirr '
1.86×10−13 eV. Although we compare these two quantities, the systems are quite different:
we studied a single vortex line, and the experiment is comprised of a vortex lattice.
However, if we neglect the vortices interactions in the experiment, the agreement between
experiment and theory is a good one.



Chapter 10

Final remarks

The two parts of this dissertation deal with very distinct systems. We chose a classical
approach to the first one, and the second is intrinsically in the realm of quantum me-
chanics. The common aspect between parts I and II is that we employed simulations to
tackle both problems. Simulations fill a gap between theory and experiments: we may
resort to numerical solutions of equations, that would be otherwise unsolvable; and we
can simulate systems at extreme conditions, which could require ingenious experiments
to be observed. The possibilities are innumerable, from single particle simulations up to
large proteins chains.

The earliest work of Metropolis et al. [132] in 1953 laid the foundations to modern
Monte Carlo simulations, so-called because of the role that random numbers play in
the algorithm. The origin of molecular dynamics, in the sense of numerical solutions of
Newton’s equation for a many-body system, can be traced to the study of hard spheres
by Alder and Wainwright [141] in 1957. These techniques evolved, efficient algorithms
were devised and decades later we were able to investigate two intricate problems using
these methods.

There are many other simulation methods available, such as Density Functional Theory
(DFT) and Path Integral Monte Carlo (PIMC). Nevertheless, we feel that the triplet
employed in this dissertation, Molecular Dynamics, Variational Monte Carlo and Diffusion
Monte Carlo, gives us a solid basis for simulations of other systems in the future, to uncover
fascinating properties of many-body systems.
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Appendix A

Implementation of the Nosé-Hoover
thermostat

We showed that the Nosé equations of motion can be written in terms of virtual or real
variables. Because it is convenient to work with fixed time steps we favor the real-variable
formulation. Hoover showed that the equations derived by Nosé could be simplified [142].
In the Eq. set (3.39) the variables s′, p′s and Q occur only as the combination s′p′s/Q.
Thus, we introduce a thermodynamic friction coefficient ξ = s′p′s/Q to simplify these
equations. Dropping the primes, we have

ṙi = pi
mi

, (A.1)

ṗi = −∂U(rN)
∂ri

− ξpi, (A.2)

ξ̇ = 1
Q

(∑
i

p2
i

mi

− L

β

)
, (A.3)

ṡ

s
= d ln s

dt
= ξ. (A.4)

The last equation is redundant, since the other three form a closed set. However, if
we solve the equation for s as well, we can use the conserved quantity of Eq. (3.40) as
a diagnostic tool during the simulation. In terms of real-variables and thermodynamic
friction coefficient formulation, HNosé is

HNosé =
N∑
i=1

p2
i

2mi

+ U(rN) + ξ2Q

2 + L

β
ln s, (A.5)

where we take L = 3N .
The equations of motion of the Nosé-Hoover scheme cannot be derived from a Hamil-

tonian. The consequence of this non-Hamiltonian dynamics is that the Nosé-Hoover algo-
rithm only generates the correct distribution if there is a single constant of motion, which
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is HNosé for most systems. If we want to simulate systems with more than one conservation
law, we have to use Nosé-Hoover chains to obtain the correct canonical distribution.

A.1 Nosé-Hoover chains
In order to alleviate the restriction of only one conserved quantity for the Nosé-Hoover
thermostat, Martyna et al. [143] proposed a scheme in which the Nosé-Hoover thermostat
is coupled to another one or, if necessary, to a chain of thermostats. In [143] it is shown
that this construction still generates a canonical distribution.

The equations of motion for N particles coupled with M Nosé-Hoover chains are given,
in real variables (L = 3N), by

ṙi = pi
mi

;

ṗi = Fi −
pξ1

Q1
pi;

ξ̇k = pξk
Qk

k = 1, . . . ,M ;

ṗξ1 =
(∑

i

p2
i

mi

− LkBT
)
− pξ2

Q2
pξ1 ;

˙pξk =
[
p2
ξk−1

Qk−1
− kBT

]
−
pξk+1

Qk+1
pξk ;

ṗξM =
[
p2
ξM−1

QM−1
− kBT

]
. (A.6)

For these equations of motion, the conserved energy is

HNHC = H(r,p) +
M∑
k=1

p2
ξk

2Qk

+ LkBTξ1 +
M∑
k=2

kBTξk, (A.7)

thus we use this quantity to check the integration scheme. The additional M−1 equations
of motion are relatively easy to implement because they form an one-dimensional chain.

We now use the Liouville approach of Sec. 3.2.1 to derive a set of time-reversible, area
preserving integrators for the Nosé-Hoover chains. The Liouville operator is defined as

iL ≡ η̇ ∂

∂η
, (A.8)

where η = (rN ,pN , ξM , pMξ ). Using the equations of motion

pi = mivi,
pξk = Qkvξk , (A.9)
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we obtain the Liouville operator

iLNHC =
N∑
i=1

vi · ∇ri +
N∑
i=1

[
Fi(ri)
mi

]
· ∇vi −

N∑
i=1

vξ1vi · ∇vi +
M∑
k=1

vξk
∂

∂ξk

+
M−1∑
k=1

(Gk − vξkvξk+1) ∂

∂vξk
+GM

∂

∂vξM
, (A.10)

with

G1 = 1
Q1

(
N∑
i=1

miv2
i − LkBT

)

Gk = 1
Qk

(Qk−1v
2
ξk−1
− kBT ). (A.11)

We break the Liouville operator into iLr, only position dependent, iLv, which depends
only on velocities, and iLC , which contains the chain of thermostats

iLNHC = iLr + iLv + iLC , (A.12)

with

iLr =
N∑
i=1

vi · ∇ri ,

iLv =
N∑
i=1

[
Fi(ri)
mi

]
· ∇vi ,

iLC = −
N∑
i=1

vξ1vi · ∇vi +
M∑
k=1

vξk
∂

∂ξk
+

M−1∑
k=1

(Gk − vξkvξk+1) ∂

∂vξk
+GM

∂

∂vξM
.(A.13)

One way to use the Trotter formula (Eq. (3.14)), out of the several possibilities, is

e(iL∆t) = e(iLC∆t/2)e(iLv∆t/2)e(iLr∆t)e(iLv∆t/2)e(iLC∆t/2) +O((∆t)3). (A.14)

The Nosé-Hoover chain part needs to be broken into smaller pieces. We will consider the
case M = 2, but more general cases are possible. We separate iLC into

iLC = iLξ + iLCv + iLG1 + iLvξ1
+ iLG2 , (A.15)
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with

iLξ ≡
2∑

k=1
vξk

∂

∂ξk
,

iLCv ≡ −
N∑
i=1

vξ1vi · ∇vi ,

iLG1 ≡ G1
∂

∂vξ1

,

iLvξ1
≡ −(vξ1vξ2) ∂

∂vξ1

,

iLG2 ≡ G2
∂

∂vξ2

. (A.16)

The factorization for the Trotter equation that we employ is

e(iLC∆t/2) = e(iLG2∆t/4)e
(iLvξ1

∆t/4+iLG1∆t/4)
e(iLξ∆t/2) ×

e(iLCv∆t/2)e
(iLG1∆t/4+iLvξ1

∆t/4)
e(iLG2∆t/4)

= e(iLG2∆t/4)
[
e

(iLvξ1
∆t/8)

e(iLG1∆t/4)e
(iLvξ1

∆t/8)]
× e(iLξ∆t/2)e(iLCv∆t/2)

×
[
e

(iLvξ1
∆t/8)

e(iLG1∆t/4)e
(iLvξ1

∆t/8)]
e(iLG2∆t/4). (A.17)

This seemingly complicated Liouville operator is relatively easy to implement in a com-
puter program. We need to know how the operators act on the coordinates
η = (rN ,vN , ξ1, vξ1 , ξ2, vξ2). If we start at t = 0, at t = ∆t we have

eiLNHC∆tf [rN ,vN , ξ1, vξ1 , ξ2, vξ2 ]. (A.18)

We can apply each term of iLNHC sequentially. We begin with iLG2 ,

e(iLG2∆t/4)f [rN ,vN , ξ1, vξ1 , ξ2, vξ2 ] =
∞∑
n=0

(G2∆t/4)n
n!

∂n

∂vnξ2

f [rN ,vN , ξ1, vξ1 , ξ2, vξ2 ]

= f [rN ,vN , ξ1, vξ1 , ξ2, vξ2 +G2∆t/4]. (A.19)

Hence, iLG2 affects only vξ2 , giving a simple transformation rule for this operator

e(iLG2∆t/4) : vξ2 → vξ2 +G2∆t/4. (A.20)

The action of the operator iLvξ1
can be evaluated using the identity

exp
(
a

∂

∂g(x)

)
f(x) = f{g−1[g(x) + a]}. (A.21)
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Thus,

exp
(
−∆t

8 vξ2vξ1

∂

∂vξ1

)
f [rN ,vN , ξ1, vξ1 , ξ2, vξ2 ] =

f [rN ,vN , ξ1, exp
(
−∆t

8 vξ2

)
vξ1 , ξ2, vξ2 ], (A.22)

giving the transformation rule

e
(iLvξ1

∆t/8) : vξ1 → exp
(
−∆t

8 vξ2

)
vξ1 . (A.23)

Similarly, we can derive the action of the other operators

e(iLG1∆t/4) : vξ1 → vξ1 +G1∆t/4,
e(iLξ∆t/8) : ξ1 → ξ1 − vξ1∆t/2,

ξ2 → ξ2 − vξ2∆t/2,

e(iLCv∆t/2) : vi → exp
(
−∆t

2 vξ1

)
vi. (A.24)

Finally, the transformations associated with iLv and iLr are similar to the velocity Verlet

eiLv∆t/2 : vi → vi + Fi∆t/(2m),
eiLr∆t : ri → ri + vi∆t. (A.25)

With the set of rules of Eqs. (A.20), (A.23)-(A.25) we can write our numerical algo-
rithm and apply the transformations according to the order defined by Eqs. (A.14) and
(A.17).
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Appendix B

Scattering theory

B.1 The Lippmann-Schwinger equation
We begin with the time-independent scattering process [24]. We assume the Hamiltonian
to be

H = H0 + V , (B.1)

where H0 = p2/2m. In the absence of a scatterer, V = 0 and an energy eigenstate
would be |p〉, the same as a free-particle state. If we consider an elastic scattering we are
interested in the full Hamiltonian with the same energy eigenvalue. Let |φ〉 be the energy
eigenket of H0, then

H0|φ〉 = E|φ〉. (B.2)

The equation we want to solve is

(H0 + V )|ψ〉 = E|ψ〉. (B.3)

The energy spectrum is continuous for both H0 and (H0 + V ). We want a solution of Eq.
(B.3) such that |ψ〉 → |φ〉 as V → 0, where φ is a solution of Eq. (B.2) with the same
energy. The desired solution is

|ψ〉 = 1
E −H0

V |ψ〉+ |φ〉, (B.4)

which reduces to |φ〉 as V → 0. However, we still need to deal with the singular operator
1/(E −H0). We make E sightly complex

|ψ(±)〉 = |φ〉+ 1
E −H0 ± iε

V |ψ(±)〉. (B.5)

This is the Lippmann-Schwinger equation. The physical meaning of ± will be discussed
in a moment. This equation is independent of the representation, let us look at it in the
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position basis

〈x|ψ(±)〉 = 〈x|φ〉+
∫
d3x′〈x| 1

E −H0 ± iε
|x′〉〈x′|V |ψ(±)〉. (B.6)

If |φ〉 stands for a plane-wave state with momentum p then

〈x|φ〉 = eip·x/~

(2π~)3/2 . (B.7)

We must evaluate the kernel of the integral equation Eq. (B.6), defined by

G±(x,x′) = ~2

2m〈x|
1

E −H0 ± iε
|x′〉. (B.8)

Alternatively, G±(x,x′) is given by

G±(x,x′) = − 1
4π

e±ik|x−x′|

|x− x′|
, (B.9)

where E = ~2k2/(2m). For the proof we evaluate:

G±(x,x′) = ~2

2m〈x|
1

E −H0 ± iε
|x′〉

= ~2

2m

∫
d3p′

∫
d3p′′〈x|p′〉〈p′| 1

E − (p′2/2m)± iε |p
′′〉〈p′′|x′〉. (B.10)

We can use

〈p′| 1
E − (p′2/2m)± iε |p

′′〉 = δ(3)(p′ − p′′)
E − (p′2/2m)± iε

〈x|p′〉 = eip
′·x/~

(2π~)3/2

〈p′′|x′〉 = e−ip
′′·x′/~

(2π~)3/2 . (B.11)

Therefore
G±(x,x′) = ~2

2m

∫ d3p′

(2π~)3
eip
′·(x−x′)/~

[E − (p′2/2m)± iε] . (B.12)

We set p′ = ~q and E = ~2k2/(2m)

G±(x,x′) = 1
(2π)3

∫ ∞
0

q2dq
∫ 2π

0
dφ
∫ π

0
sin θdθe

i|q||x−x′| cos θ

k2 − q2 ± iε
=

− 1
8π2

1
i|x− x′|

∫ ∞
−∞

dqq
(eiq|x−x′| − e−iq|x−x′|)

q2 − k2 ∓ iε
. (B.13)
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Re q

Im q

b

(k+iε’)

b

(-k-iε’)

Γ1

Γ2

R−R

Figure B.1: Integration in the complex plane using the residues method.

The integrand has poles in the complex plane at q2 − k2 ∓ iε, or, q = ±(k ± iε′), with
ε′ = ε/k2. The original +iε corresponds to +k + iε′ and −k − iε′; and −iε corresponds
to +k − iε′ and −k + iε′. The +iε case is represented in Figure (B.1).

Let us begin with G+(x,x′)

G+(x,x′) = − 1
8π2

1
i|x− x′|

∫ ∞
−∞

dqq
(eiq|x−x′| − e−iq|x−x′|)

q2 − k2 ∓ iε
=

−1
8π2i|x− x′|

(∮
Γ1
dq

q(eiq|x−x′|)
q2 − k2 − iε

−
∮

Γ2
dq
q(e−iq|x−x′|)
q2 − k2 − iε

)
, (B.14)

where Γ1 and Γ2 are the paths shown in Figure (B.1). If we take the limit ε→ 0 and use

1
q2 − k2 = 1

2q

(
1

q − k
+ 1
q + k

)
, (B.15)

the expression for G+(x,x′) is

G+(x,x′) = −1
16π2i|x− x′|

(∮
Γ1
dq
q(eiq|x−x′|)
q − k

+
∮

Γ1
dq
q(eiq|x−x′|)
q + k

−
∮

Γ2
dq
q(e−iq|x−x′|)

q − k
−
∮

Γ2
dq
q(e−iq|x−x′|)

q + k

)
. (B.16)

Only the integrals along paths that enclose a pole contribute. Using Cauchy’s Theorem∮ f(z)
z − zi

dz = 2πif(zi), (B.17)
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where zi is a pole and the integral is taken in a counterclockwise path that encloses zi,
we evaluate G+(x,x′)

G+(x,x′) = − 1
4π

eik|x−x′|

|x− x′|
. (B.18)

The whole calculation can be repeated for G−(x,x′). Finally

G±(x,x′) = − 1
4π

e±ik|x−x′|

|x− x′|
. (B.19)

Using this result we may rewrite Eq. (B.6) as

〈x|ψ(±)〉 = 〈x|φ〉 − 2m
~2

∫
d3x′

1
4π

e±ik|x−x′|

|x− x′|
〈x′|V |ψ(±)〉. (B.20)

Let us look at a local potential

〈x′|V |x′′〉 = V (x′)δ(x′ − x′′). (B.21)

Then, Eq. (B.20) becomes

〈x|ψ(±)〉 = 〈x|φ〉 − 2m
~2

∫
d3x′

1
4π

e±ik|x−x′|

|x− x′|
V (x′)〈x′|ψ(±)〉. (B.22)

As depicted in Figure B.2, the vector x is directed towards the observation point, at
which the wavefunction is going to be evaluated. The potential is limited in space and
we are interested in the study of a scatterer very far from the range of the potential, thus
|x| � |x′|. We introduce the variables r = |x|, r′ = |x′| and α (the angle between x and
x′).

Figure B.2: The dashed region corresponds to the finite-range scattering potential. The
point P denotes where the wavefunction 〈x|ψ(±)〉 is going to be evaluated.

For r � r′

|x− x′| =
√
r2 − 2rr′ cosα + r′2 = r

(
1− 2r′

r
cosα + r′2

r2

)1/2

≈ r − r̂ · x′, (B.23)
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with r̂ = x/|x|. We also define k′ = kr̂ so that k′ represents the propagation vector for
waves reaching the observation point (x). Thus

e±ik|x−x′| ≈ e±ikr∓ik
′·x′ (large r). (B.24)

Using |k〉 instead of |p〉, we have an expression for large r

〈x|ψ(+)〉 = 〈x|k〉 − 1
4π

2m
~2

eikr

r

∫
d3x′

e−ik
′·x′

|x− x′|
V (x′)〈x′|ψ(+)〉 =

1
(2π)3/2

[
eik·x + eikr

r
f(k′,k)

]
(large r). (B.25)

Therefore, for large r, we have the original plane wave in the propagation direction k plus
an outgoing spherical wave with amplitude f(k′,k)

f(k′,k) = − 1
4π

2m
~2 (2π)3

∫
d3x′

e−ik
′·x′

(2π)3/2V (x′)〈x′|ψ(+)〉 = − 1
4π

2m
~2 (2π)3〈k′|V |ψ(+)〉.

(B.26)
Similarly for 〈x|ψ(−)〉 we have the original plane wave plus an incoming spherical wave.

〈x|ψ(−)〉 = 1
(2π)3/2

[
eik·x + e−ikr

r
f(k′,k)

]
, (B.27)

f(k′,k) = − 1
4π

2m
~2 (2π)3〈−k′|V |ψ(−)〉. (B.28)

The differential cross section dσ/dΩ is related to the amplitude f(k′,k)

dσ

dΩ = |f(k′,k)|2. (B.29)

B.2 Transition operator
Eq. (B.26) contains the unknown |ψ(+)〉. The transition operator T is defined such that

V |ψ(+)〉 = T |φ〉. (B.30)

Multiplying the Lippmann-Schwinger equation, Eq. (B.5) , by V yields

T |φ〉 = V |φ〉+ V
1

E −H0 + iε
T |φ〉. (B.31)

The |φ〉 are plane-wave states, which are a complete set. Therefore, the following equation
must be satisfied

T = V + V
1

E −H0 + iε
T. (B.32)
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We rewrite Eq. (B.26) as

f(k′,k) = − 1
4π

2m
~2 (2π)3〈k′|T |k〉. (B.33)

Hence, to determine f(k′,k) it is sufficient to know the transition operator T . We can
obtain an iterative solution

T = V + V
1

E −H0 + iε
V + V

1
E −H0 + iε

V
1

E −H0 + iε
V + · · · (B.34)

We expand f(k′,k) as

f(k′,k) =
∞∑
n=1

f (n)(k′,k), (B.35)

where n is the number of times the V operator appears

f (1)(k′,k) = − 1
4π

2m
~2 (2π)3〈k′|V |k〉,

f (2)(k′,k) = − 1
4π

2m
~2 (2π)3〈k′|V 1

E −H0 + iε
V |k〉,

... (B.36)

A physical interpretation is that f (2) is viewed as a two-step process, f (3) is a three-step
process, and so on.

B.3 Partial waves method
In the previous discussions we have considered the free-particle states as plane-waves,
however the free-particle Hamiltonian H0 also commutes with L2 and Lz. It is useful to
introduce the spherical-wave states |E, l,m〉, such that

H0|E, l,m〉 = E|E, l,m〉,
L2|E, l,m〉 = ~2l(l + 1)|E, l,m〉,
Lz|E, l,m〉 = ~m|E, l,m〉. (B.37)

These states are

〈k|E, l,m〉 = ~√
mk

δ

(
E − ~2k2

2m

)
Y m
l (k̂),

〈x|E, l,m〉 = il

~

√
2mk
π

jl(kr)Y m
l (r̂), (B.38)
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in the momentum and position basis, respectively. The Y m
l are the spherical harmonics

and jl is the spherical Bessel function of order l.
Let us assume that the potential is spherically symmetric, that is, invariant under

rotations in three dimensions. Then the T operator, Eq. (B.34), commutes with L2 and
L. In other words, T is a scalar operator. It is now useful to use the spherical-wave basis,
because the Wigner-Eckart theorem applied to a scalar operator yields

〈E ′, l′,m′|T |E, l,m〉 = Tl(E)δll′δmm′ . (B.39)

Thus, T is diagonal both in l and m. Furthermore, the diagonal non-vanishing element
depends on E and l, but not m.

Let us look again at the scattering amplitude, Eq. (B.33),

f(k′,k) = − 1
4π

2m
~2 (2π)3〈k′|T |k〉

= − 1
4π

2m
~2 (2π)3 ∑

l,m,l′,m′

∫
dE

∫
dE ′〈k′|E ′l′m′〉〈E ′l′m′|T |Elm〉〈Elm|k〉

= −4π2

k

∑
l,m

Tl(E)

∣∣∣∣∣∣
E=~2k2/(2m)

Y m
l (k̂′)Y m∗

l (k̂). (B.40)

We define the partial-wave amplitude

fl(k) ≡ −πTl(E)
k

, (B.41)

choose k in the positive z-direction, and θ the angle between k′ and k. The result is

f(k′,k) = f(θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ), (B.42)

where the Pl are Legendre polynomials. For large r we have

〈x|ψ(+)〉 large r−−−→ 1
(2π)3/2

∑
l

(2l + 1) Pl2ik

[
[1 + 2ikfl(k)]e

ikr

r
− e−i(kr−lπ)

r

]
. (B.43)

The physics behind scattering is now clear: in the absence of a scatterer, the plane-wave
behaves as a sum of a spherically outgoing wave plus a spherically incoming wave (for
each l). The presence of the scatterer changes the coefficient of the outgoing wave

1→ 1 + 2ikfl(k). (B.44)

As for the incoming wave, it is completely unaffected.
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B.3.1 Unitarity and phase shifts
We now examine the consequences of unitarity. The current density j must satisfy

∇ · j = −∂|ψ|
2

∂t
= 0. (B.45)

Let us consider a spherical surface of very large radius; by Gauss’s theorem we have∫
spherical surface

j · dS = 0. (B.46)

Physically this means that there is no source or sink of particles. Because of angular
momentum conservation, this must hold for each partial wave separately. We define

Sl(k) ≡ 1 + 2ikfl(k), (B.47)

with
|Sl(k)| = 1, (B.48)

consequence of Eq. (B.44). Thus, the most that can happen is a change in the phase of
the outgoing wave. Eq. (B.48) is know as the unitary relation for the l-th partial wave.
Calling this phase 2δl 1, we write

Sl = e2iδl , (B.49)

with real δl, which is a function of k. From Eq. (B.47),

fl = (Sl − 1)
2ik = (e2iδl − 1)

2ik = eiδl sin δl
k

= 1
k cot δl − ik

. (B.50)

The full scattering amplitude is

f(θ) = 1
k

∑
l=0

(2l + 1)eiδl sin δlPl(cos θ). (B.51)

B.3.2 Determination of phase shifts
Let us consider how we may actually determine the phase shifts given a potential V . We
assume that the potential vanishes for r > R, R being the range of the potential. Outside,
the wavefunction must be a free spherical wave, a linear combination of jl(kr)Pl(cos θ)
and nl(kr)Pl(cos θ), where nl is the spherical Bessel function of second kind of order l.
Alternatively, we may use the spherical Hankel functions

h
(1)
l = jl + inl,

h
(2)
l = jl − inl, (B.52)

1The factor of 2 is conventional.
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with asymptotic behavior

h
(1)
l

large r−−−→ ei(kr−(lπ/2))

ikr
,

h
(2)
l

large r−−−→ −e
−i(kr−(lπ/2))

ikr
. (B.53)

The full wavefunction may be written as

〈x|ψ(+)〉 = 1
(2π)3/2

∑
l

il(2l + 1)Al(r)Pl(cos θ) (r > R), (B.54)

with the radial wavefunction

Al = c
(1)
l h

(1)
l (kr) + c

(2)
l h

(2)
l (kr). (B.55)

The coefficients are chosen such that, for V = 0, Al coincides with jl(kr) everywhere;
furthermore, the coefficients must reproduce the expected behavior for large r. The
coefficients are c(1)

l = e2iδl/2 and c
(2)
l = 1/2, so that

Al(r) = eiδl [cos δljl(kr)− sin δlnl(kr)]. (B.56)

Now we can evaluate the logarithmic derivative at r = R,

βl ≡
(
r

Al

dAl
dr

)
r=R

= kR

[
j′l(kR) cos δl − n′l(kR) sin δl
jl(kR) cos δl − nl(kR) sin δl

]
. (B.57)

Conversely,

tan δl = kRj′l(kR)− βljl(kR)
kRn′l(kR)− βlnl(kR) , (B.58)

and the problem of obtaining the phase shift is reduced to obtaining βl.
Now we look at the solution of Schrodinger’s equation for r < R. For a spherically

symmetric potential, it is equivalent to the unidimensional equation

d2ul
dr2 +

(
k2 − 2m

~2 V −
l(l + 1)
r2

)
ul = 0, (B.59)

with ul = rAl(r). The boundary condition is ul|r=0 = 0. We obtain the logarithmic
derivative and match the inside and outside solutions at r = R,

βl|inside = βl|outside. (B.60)
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B.4 Low-energy scattering and bound states
At low energies, precisely when λ̄ = 1/k is comparable to or larger than R, partial waves
for large l are unimportant. The effective potential for the l-th partial wave is given by

Veff = V (r) + ~2

2m
l(l + 1)
r2 . (B.61)

Unless the potential is strong enough to accommodate l 6= 0 bound states, the behavior
of the wavefunction is largely determined by the centrifugal barrier term, so it should
resemble jl(kr). Qualitatively, the integral equation for the partial wave is

eiδl sin δl

k
= −2m

~2

∫ ∞
0

jl(kr)V (r)Al(r)r2dr. (B.62)

If Al(r) ∼ jl(kr) and 1/k is much larger than R, the right-hand side varies as ∼ k2l,
and for small δl the left-hand side goes with δl/k. Hence, the phase shift goes to zero as
δl ∼ k2l+1 (for small k). It is clear that at low energies and finite range potential, s-wave
scattering is very important.

B.4.1 Rectangular well or barrier
Let us consider the s-wave scattering by the potential

V =
{
V0 = constant if r < R

0 otherwise. (B.63)

For V0 > 0 it is repulsive and for V0 < 0 it is attractive. Many of the features obtained in
this simple model are common to more complicate finite range potentials.

The outside wavefunction must behave like

eiδ0 [j0(kr) cos δ0 − n0(kr) sin δ0] ' eiδ0 sin(kr + δ0)
kr

. (B.64)

The inside solution is
ul=0(r) ∝ sin(k′r), (B.65)

with k′ satisfying
E − V0 = ~2k′2

2m . (B.66)

We used the boundary condition u(r = 0) = 0, so that the inside wavefunction is sinusoidal
as long E > V0 holds. The curvature of the sinusoidal wave changes from the V = 0 case;
it can be pushed in for δ0 > 0, or pulled out for δ0 < 0, depending if V0 < 0 or V0 > 0,
Fig. B.3. For V0 > E we have to change the inside solution to

u(r) ∝ sinh[κr], (B.67)
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with
V0 − E = ~2κ2

2m . (B.68)

Figure B.3: Figures from [24] showing u(r) × r for V = 0 (a); V0 < 0 and δ0 > 0 (b);
V0 > 0 and δ0 < 0 (c).

B.4.2 Zero-energy scattering and bound states
Let us consider scattering at extremely low energies, k ' 0. The outside wavefunction,
r > R, for l = 0 satisfies

d2u

dr2 = 0. (B.69)

The solution is
u(r) = constant(r − a). (B.70)

The physical meaning of the solution is an infinitely long wavelength limit of the outside
wavefunction. We have

lim
k→0

sin(kr + δ0) = lim
k→0

sin
[
k

(
r + δ0

k

)]
, (B.71)
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hence
u′

u
= k cot

[
k

(
r + δ0

k

)]
k→0−−→ 1

r − a
. (B.72)

Setting r = 0,

lim
k→0

k cot δ0
k→0−−→ −1

a
. (B.73)

The quantity a is known as the scattering length.
Both a and R have the same dimensions, but they can differ by orders of magnitude. To

see the physical meaning of a, we note that a is the intercept of the outside wavefunction.
For an attractive potential, the intercept is on the negative side, Fig. B.4 (a). If we
increase the attraction, the outside wavefunction can again cross the r-axis on the positive
side, Fig. B.4 (b).

(a) (b)

Figure B.4: Figures from [24] showing u(r)× r for an attractive potential (a) and deeper
attraction (b). For each case the intercept a of the zero-energy outside wavefunction with
the r-axis is shown.

The sign change with increasing attraction is result of the appearance of a bound state.
If a is very large and positive, the wavefunction is flat for r > R, Fig. B.4 (b). However,
from Eq. (B.70), a very large is not too different from e−κr with κ ' 0. Now e−κr with
κ essentially zero is a bound-state for r > R with energy infinitesimally negative. The
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inside wavefunction, r < R, for the E = 0+ case, and the E = 0− case are essentially the
same; in both cases k′ is given by

~2k′2

2m = E − V0 ' |V0|, (B.74)

with infinitesimal E (positive or negative).
The inside wavefunctions are the same for E = 0+ and E = 0−, so we calculate the

logarithmic derivative of the bound-state wavefunction and equate it with the logarithmic
derivative of the zero kinetic energy scattering,

−κe
−κr

e−κr

∣∣∣∣∣∣
r=R

=
( 1
r − a

) ∣∣∣∣∣∣
r=R

. (B.75)

If R� a, then
κ ' 1

a
. (B.76)

The binding energy is

EBE = −Ebound state = ~2κ2

2m ' ~2

2ma2 . (B.77)

We have a relation between the scattering length and the bound-state energy!

B.5 Identical particles and scattering
Let us consider the scattering of identical particles. The wavefunction must be symmetric
under interchange of the coordinates of two particles if they are bosons, and antisymmetric
if they are fermions. Interchanging two particles corresponds to changing the sign of the
relative coordinate, that is r→ −r. In terms of the spherical coordinates

r → r,

θ → π − θ,
ϕ → π + ϕ. (B.78)

The symmetrized wavefunction corresponding to Eq. (B.25) is

〈x|ψ(+)〉 = 1
(2π)3/2

[{
eik·x ± e−ik·x

}
+ eikr

r
{f(θ)± f(π − θ)}

]
. (B.79)

Thus, the differential cross section is

dσ

dΩ = |f(θ)± f(π − θ)|2, (B.80)
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with the plus sign for bosons and the minus sign for fermions. Considering the problem
of zero-energy scattering, Sec. B.4.2, the total cross section is

σ =
{

8πa2 for bosons
0 for fermions. (B.81)



Appendix C

Superfluid Fermi gases

In this Appendix we review some aspects of superfluidity in Fermi gases. In the next
section, Sec. C.1, we review some equilibrium properties of Fermi gases; we study the
effects of interactions between the components of the gas in Sec. C.2; and we briefly
introduce properties of the condensed phase, Sec. C.3.

C.1 Equilibrium properties of Fermi gases
Let us consider N fermions of mass m in the same internal state. The density of states
of particles in a box of volume V is

g(ε) = V (2m)3/2

4π2~3 ε1/2. (C.1)

We define a function G(ε) which is the number of states with energy less than ε. Thus,
g(ε) = dG(ε)

dε
and we find

G(ε) = V (2mε)3/2

6π2~3 . (C.2)

In the ground state, all states with energy less than the zero-temperature chemical po-
tential µ are occupied, hence G(µ) = N . Also, the Fermi energy is equal to the chemical
potential at T = 0, thus

G(µ = εF ) = V (2mεF )3/2

6π2~3 = N. (C.3)

Accordingly,
g(µ) = 3N

2µ . (C.4)

The Fermi temperature is defined as TF = εF/kB, hence

kTF = (6π2)2/3

2
~2

m
n2/3 ≈ 7.596~

2

m
n2/3. (C.5)
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We also introduce the density of states per unit of volume

N(ε) = g(ε)
V

= m3/2

21/2π2~3 ε
1/2. (C.6)

This function evaluated at the Fermi energy is

N(εF ) = 3n
2εF

, (C.7)

in accordance with Eq. (C.4).
In order to study the thermodynamical properties, we consider the Fermi function

f = 1
e(ε−µ)/kBT + 1 , (C.8)

where µ = µ(T ). The total energy is given by

E(T ) =
∫ ∞

0
dε ε g(ε)f(ε). (C.9)

At T = 0 the distribution function reduces to a step function, hence

E(T = 0) = 3
5Nµ. (C.10)

For temperatures lower than TF , a low-temperature expansion may be carried out. The
expansion for the energy is [113]

E ' E(T = 0) + π2

6 g(µ)(kBT )2, (C.11)

with the chemical potential given by Eq. (C.4). High-temperatures expansions are also
possible. The energy E tends toward its classical value (3/2)NkBT .

C.2 Effects of interactions
Interactions can play a very important role in mixtures of two kinds of fermions. For
example, let us consider a uniform gas of equal densities of two kinds of fermions, with
same mass. The kinetic energy per particle is ∼ εF = (~kF )2/2m, and the interaction
energy per particle is ∼ nU0, where U0 = 4π~2a/m is the effective interaction between two
unlike fermions [113], a being the scattering length. The ratio of the interaction energy
to the Fermi energy is

nU0

εF
= 4

3πkFa, (C.12)

which is of the order of the scattering length divided by the interparticle spacing; a typical
value for this quantity is 10−2. Therefore, we expect particle interactions to have little
influence of thermodynamical quantities of the gas, except when the magnitude of the
scattering length is comparable to, or larger than, the interparticle separation.
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C.2.1 Superfluidity
As we have seen, the effects of interactions can be quite small, but they can be significant
if the effective interaction is attractive. The gas undergoes a transition to a superfluid
state in which atoms are paired analogously to electrons in superconductors as predicted
by Bardeen, Cooper and Schrieffer (BCS) [144].

The properties of mixtures of dilute Fermi gases with attractive interactions are of
interest in a wide number of contexts other than cold atoms. One of these is nuclear
physics and astrophysics, where dilute mixtures of neutrons and protons (with two spin
states each) are encountered in the outer parts of atomic nuclei and in the crust of neutron
stars. Another example is the BCS-BEC crossover, as discussed in Chapter 6, which is
related to the change in the regime when the interaction strength is varied.

A rough estimate of the transition temperature may be obtained by considering a
simplified model, where the interaction between fermions is a constant −|U | for states
with energies within Ec of the Fermi energy, and zero otherwise. The prediction of this
model is [113]

kTc ∼ Ece
− 1
N(εF )|U| . (C.13)

For electrons in metals, the attractive interaction arises from the exchange of phonons, and
the cutoff energy Ec is comparable with the maximum energy of an acoustic phonon ~ωD,
where ωD is the Debye frequency. In dilute gases, the dominant part of the interaction is
the direct interaction between atoms. We take U = U0, the usual low-energy result, and
the cutoff energy to be an energy scale over which the density of states varies, namely εF .
This leads to [113]

kTc ∼ εce
− 1
N(εF )|U0| . (C.14)

In the following sections we describe the quantitative theory of the condensed state.
We follow closely the approach of [113]. First, we calculate the transition temperature.
We show the existence of a bound state considering two-body scattering in vacuo, which
causes a divergence in the T matrix at the energy of the state. Similarly, for two-particles
in a medium, the pairing is signalled by a divergence in the two-body scattering, as shown
in [145]. The transition temperature is determined by analyzing when the scattering of
two fermions becomes singular.

C.2.2 Transition temperature
Let us begin with the scattering of two fermions in a uniform Fermi gas, which differs
from two-particle scattering in vacuo due to the effects of other fermions. Since there is
no scattering at low energies for fermions in the same internal state, we consider a mixture
of two kinds of fermions ‘a’ and ‘b’, which can be different internal states of the same
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isotope with same mass and equal densities. The common Fermi wave number will be
denoted by kF .

The fact that two-body scattering takes place in a medium has a number of effects on
the scattering process. For example, the energies of the particles are shifted by the mean
field of the other particles and, in a dilute gas, this effect is independent of the momentum
of a particle. Thus, the equation for the T matrix will be unaltered, provided that we
consider the constant energy shift. A second effect is that some states are occupied,
hence they are unavailable as intermediate scattering states. In the Lippmann-Schwinger
equation, Eq. (B.5), the intermediate state is an a-particle with momentum p′′ and a
b-particle with momentum −p′′, represented in Fig. C.1 (a). The probabilities that these
states are unoccupied are 1 − fp′′ and 1 − f−p′′ , therefore the contributions from these
intermediate states must be accounted for in the blocking factors. We omit the hyperfine
state labels ‘a’ and ‘b’ because the distribution functions, in this case, are the same.
Modifying the Lippmann-Schwinger equation with the previous arguments yields

T (p′,p;E) = U(p′,p) + 1
V

∑
p′′
U(p′,p′′)(1− fp′′)(1− f−p′′)

E − 2ε0p′′ + iδ
T (p′′,p;E), (C.15)

where ε0p = p2/(2m) is the free-particle energy.

−p −p
′′

−p
′

p p
′′

p
′

(a)

−p

p

p
′′

−p
′′

p
′

−p
′

(b)

Figure C.1: Diagrams representing two-particle (a) and two-hole (b) intermediate states
in two-particle scattering. Solid lines represent the two kinds of fermions, and dashed
lines correspond to the bare interactions. Time advances from left to right, thus arrows
to the right stand for particles and arrows to the left are holes.

A third effect of the medium is that interactions can excite two fermions from the
Fermi sea to states outside, that is, two particles and two holes are created. The two
holes then annihilate with the two incoming particles, Fig. C.1 (b). The contribution
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to the Lippmann-Schwinger equation from this process differs much from that of two-
particles. First, holes can only be created in occupied states, with probability f±p′′ for
the two states. Hence, the thermal factors are f±p′′ (opposed to 1 − f±p′′). Second, the
energy to create a hole is the negative of the energy for a particle. Also, the intermediate
state contains the pairs of particles in the initial and final states, each of energy E, thus
the energy of the intermediate state is 2E−2εp′′ . The difference between E and the energy
of the intermediate state is, in the hole-hole case, the negative of that for particle-particle
one. The equation including both types of intermediate states is

T (p′,p;E) = U(p′,p) + 1
V

∑
p′′
U(p′,p′′)(1− fp′′)(1− f−p′′)− fp′′f−p′′

E − 2ε0p′′ + iδ
T (p′′,p;E)

= U(p′,p) + 1
V

∑
p′′
U(p′,p′′)1− fp′′ − f−p′′

E − 2ε0p′′ + iδ
T (p′′,p;E). (C.16)

The greatest effect of intermediate states is achieved when E = 2µ = p2
F/m, since the

sign of 1−fp′′−f−p′′ is the opposite of the sign of the energy denominator, thus all terms
of the sum have the same sign.

When the T matrix diverges, the first term on the right-hand side of Eq. (C.16) may
be neglected, and the resulting expression is

T (p′,p; 2µ) = − 1
V

∑
p′′
U(p′,p′′)1− 2fp′′

2ξp′′
T (p′′,p; 2µ), (C.17)

with ξp = p2/(2m) − µ. We did not include the infinitesimal imaginary part since the
numerator vanishes at the Fermi surface. The temperature is present in the right-hand side
of the equation through the Fermi function, and this equation determines the temperature
at which the scattering diverges.

C.2.3 Eliminating the bare interaction
Replacing the bare interaction by a constant, the sum on the right-hand side of Eq. (C.17)
for momenta less than some cutoff pc, diverges as pc →∞. To remove the high-momenta
dependence, we eliminate the bare potential in favor of U0. We write Eq. (C.17) as

T = UGMT, (C.18)

where GM is the propagator for two particles and the subscript M refers to the presence
of the medium. We denote by T0 the T matrix in free space and for E = 0,

T (p′,p; 0) = U(p′,p)− 1
V

∑
p′′
U(p′,p′′) 1

2ε0p′′ − iδ
T0(p′′,p; 0), (C.19)
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formally written as
T0 = U + UG0T0, (C.20)

where G0 is the propagator of two free particles in vacuo. The infinitesimal imaginary
part accounts for intermediate states having the same energy as the initial state. Its
contributions are proportional to the density of states, which varies as ∼ pF . These are
small at low densities, thus we neglect them and use the principal-value of the integrals.
Solving for U ,

U = T0(1 +G0T0)−1 = (1 +G0T0)−1T0. (C.21)

Eq. (C.18) can be rewritten as

T = (1 + T0G0)−1T0GMT. (C.22)

Multiplying on the left by (1 + T0G0) yields

T = T0(GM −G0)T, (C.23)

or
T (p′,p; 2µ) = 1

V

∑
p′′
T0(p′,p′′; 0)

[
2fp′′ − 1

2ξp′′
+ 1

2ε0p′′

]
T (p′′,p; 2µ). (C.24)

The quantity inside the square bracket is appreciable only for momenta less than
or approximately pF , because high-momenta contributions are now incorporated in the
effective interaction. Hence, we may replace T0 by its zero-energy and zero-momentum,
U0 = 4π~2a/m. T also depends weakly on momentum for momenta of order of pF ,
Eq. (C.24) is then

U0

V

∑
p′′

[
2fp′′ − 1

2ξp′′
+ 1

2ε0p′′

]
= U0

∫ ∞
0

dεN(ε)
(
f(ε)
ε− µ

− 1
2(ε− µ) + 1

2ε

)
= 1, (C.25)

where f(ε) = {exp[(ε − µ)/(kBT )] + 1}−1 and N(ε) is the single hyperfine state density
of states per unit volume, Eq. (C.6). We take µ to be positive1 so the integration over ε
should be understood as the principal value. For positive µ∫ ∞

0
dε ε1/2

(
− 1
ε− µ

+ 1
ε

)
= 0, (C.26)

then Eq. (C.25) reduces to

U0

∫ ∞
0

dεN(ε) f(ε)
ε− µ

= 1. (C.27)

In the following we solve this equation for an attractive interaction U0 < 0 in the weak-
coupling limit, N(εF )|U0| � 1.

1For strong interactions the chemical potential can be negative.
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C.2.4 Analytical results
At T = 0 the integral in Eq. (C.27) diverges as ε→ µ, whereas at non-zero temperatures
it is cutoff by the Fermi function at |ξp| ∼ kBT . Hence, there is always a temperature Tc
satisfying Eq. (C.27). We set T = Tc and introduce dimensionless quantities x = ε/µ and
y = µ/(kBTc), thus we may write Eq. (C.27) as

1
N(εF )|U0|

= −
∫ ∞

0
dx

x1/2

x− 1
1

e(x−1)y + 1 . (C.28)

In the weak-coupling limit, Tc � TF , so we evaluate Eq. (C.28) at low-temperatures,
kBTc � µ, which implies µ ' εF . We also use the identity

x1/2

x− 1 = 1
x1/2 + 1 + 1

x− 1 . (C.29)

The first term on the right-hand side of Eq. (C.29) does not diverge at the Fermi surface in
the zero-temperature limit. Hence, we replace the integral by its value at T = 0 (y →∞),
which is ∫ 1

0

dx

x1/2 + 1 = 2(1− ln 2). (C.30)

The second term on the right-hand side of Eq. (C.29) has a singularity at the Fermi
surface, thus the integral must be interpreted as a principal value one. We split the range
of integration from 0 to 1− δ, and from 1 + δ to ∞, where δ is a small quantity and we
will take the limit δ → 0 afterwards. Integrating by parts, and changing the lower limit
of integration to −∞ (because Tc � TF ), yields∫ ∞

0

dx

x− 1
1

e(x−1)y + 1 =
∫ ∞

0
dz ln

(
z

y

)
1

2 cosh2
(
z
2

) = − ln
(2γy
π

)
, (C.31)

where γ = eC ≈ 1.781 and C is the Euler-Mascheroni constant 2. The transition temper-
ature is found by adding the contributions from Eqs. (C.30) and (C.31), which is [146]

kTc = 8γ
πe2 εF e

− 1
N(εF )|U0| ≈ 0.61εF e−

1
N(εF )|U0| . (C.32)

This result confirms the qualitative estimate of Eq. (C.14), although it is not a final answer
because it neglects the influence of the medium on the interactions between atoms. We
now analyze the effects of induced interactions in mixtures of fermions and show that
they significantly reduce the transition temperature.

2The Euler-Mascheroni constant arises in many integrals, one of them is

C = −
∫ ∞

0
e−u ln u du ≈ 0.577.
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C.2.5 Induced interactions

The interaction between two fermions in a medium differs from the interaction between
two fermions in vacuo, as we have already mentioned. Surprisingly, the net effect of the
influence of the medium is changing the prefactor of Eq. (C.32), as shown in [147].

Consider an a-fermion with momentum p and a b-fermion with momentum −p that
scatter to states with momenta p′ and −p′, respectively. The previous assumption was
that only the bare two-body interaction could accomplish this momentum transfer. How-
ever, in the presence of a medium, it is possible that the incoming a-fermion interacts
with a b-fermion in the medium with momentum p′′ and scatters to a state with an a-
fermion with momentum p + p′ + p′′ and a b-fermion with momentum −p′. Then, the
a-fermion interacts with the other incoming b-fermion with momentum −p to give an
a-fermion with momentum −p′ and a b-fermion with momentum p′′. The overall result
is the same as the original process, since the particle from the medium that participated
in the process returned to its original state. An illustration of this process is shown in
Fig. C.2 (a); a related process is shown in Fig. C.2 (b), where the b-fermion interacts
first with an a-particle in the Fermi sea.

−p

p
′′

−p
′

p p + p
′
+ p

′′
p
′

(a)

−p p
′′

−p
′

p

p + p
′
+ p

′′ p
′

(b)

Figure C.2: Diagrams representing two-particle interactions in the presence of a medium.
The notation is the same of Fig. C.1.

To calculate the change in the effective interaction due to the medium we consider only
interactions between particles close to the Fermi surface, because of the factor 1/(ε− µ)
in Eq. (C.25). Thus we set the momentum equal to the Fermi momentum and the energy
equal to the chemical potential. We use second-order perturbation theory alongside with
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the appropriate thermal factors, so that the induced interaction is given by

Uind(p,p′) = − 1
V

∑
p′′
U2

0

[
fp′′(1− fp+p′+p′′)
εp′′ − εp+p′+p′′

+ fp+p′+p′′(1− fp′′)
εp+p′+p′′ − εp′′

]

=
∫ dp′′

(2π~)3U
2
0
fp′′ − fp+p′+p′′

εp+p′+p′′ − εp′′

= U2
0L(|p′ + p|). (C.33)

The minus sign in the first equation arises from the anticommutation relations of fermionic
creation and annihilation operators. If we consider the creation and annihilation operators
â†, â, b̂† and b̂ for the two states, the combination â†p′ b̂−pb̂

†
−p′ âp corresponds to Fig. C.2

(a) and the operators b̂†−p′ âpâ
†
p′ b̂−p to Fig. C.2 (b). If we arrange the operators in the

standard order â†p′ b̂
†
−p′ b̂−pâp, we get a minus sign in both cases. The quantity L(q) is the

static Lindhard screening function,

L(q) =
∫ dp

(2π~)3
fp − fp+q

εp+q − εp
' N(εF )

1
2 + (1− w2)

4w ln

∣∣∣∣∣∣1 + w

1− w

∣∣∣∣∣∣
 , (C.34)

with w = q/(2pF ). The temperatures of interest are much less than the Fermi tempera-
ture, and the second expression is at T = 0. The Lindhard function is the negative of the
density-density response function χ(q) for an one-component Fermi gas, L(q) = −χ(q).
The sign of Uind is positive, corresponding to a repulsive interaction, thus pairing is not
favored.

Solving Eq. (C.17) with Uind as a perturbation yields Tc of Eq. (C.32) with U0 replaced
by U0 + 〈Uind〉, where

〈Uind〉 = 1
2

∫ 1

−1
Uindd(cos θ), (C.35)

denoting an average over the Fermi surface. The angle θ is measured between p and p′.
From Eq. (C.33) we have

U0 + 〈Uind〉 ' U0 − U2
0 〈χ(q)〉. (C.36)

Therefore,
1

U0 + 〈Uind〉
' 1
U0

+ 〈χ(q)〉. (C.37)

Since p = p′ = pF , q2 = 2p2
F (1 + cos θ). The integral of the Lindhard function over the

Fermi surface is proportional to∫ 1

0
dw 2w

[1
2 + 1

4w (1− w2) ln
(1 + w

1− w

)]
= 2

3 ln 2 + 1
3 = ln(4e)1/3. (C.38)
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Hence, the induced interaction lowers the transition temperature by a factor of (4e)1/3 ≈
2.22,

kBTc =
(2
e

)7/3 γ

π
εF e

− 1
N(εF )|U0| ≈ 0.28εF e−

1
N(εF )|U0| . (C.39)

C.3 The condensed phase
At Tc the fermionic system is unstable with respect to pair formation, and below the
critical temperature there is a condensate of pairs in a zero-momentum state. This is
intrinsically a many-body process, not simply the formation of two-fermions molecules.
We introduce a quantitative theory of the condensated state supposing a uniform gas with
equal densities of the two different internal states of the fermionic species. Because of the
Pauli exclusion principle, interactions between particles in the same state are suppressed
and we neglect them. The Hamiltonian we consider is

Ĥ =
∑

p
ε0p(â†pâp + b̂†pb̂p) + 1

V

∑
pp′q

U(p,p′,q)â†p+qb̂
†
p′−qb̂

†
p′ â
†
p, (C.40)

where the operators â†, â, b̂† and b̂ are creation and annihilation for the two kinds of
fermions. There is no 1/2 factor in the interaction term because the two particles belong
to different internal states. The operators obey the Fermi anticommutation rules

{âp, â
†
p′} = {b̂p, b̂

†
p′} = δp,p′ ;

{âp, b̂p′} = {â†p, b̂p′} = {âp, b̂
†
p′} = {â†p, b̂

†
p′} = 0. (C.41)

It is convenient to work with the operator K̂ = Ĥ − µN̂ , where µ is the chemical
potential chosen to keep the average number of particles fixed. It is given by

K̂ =
∑

p
(ε0p − µ)(â†pâp + b̂†pb̂p) + 1

V

∑
pp′q

U(p,p′,q)â†p+qb̂
†
p′−qb̂

†
p′ â
†
p. (C.42)

Elementary excitations

We use the Bogoliubov approach to calculate properties of the Fermi gas. For a Bose gas,
it amounts to assuming that the creation and annihilation operators may be written as a
classical part, a c number, plus a fluctuation term. For the fermionic case, the condensate
consists of pairs of fermions, so that we substitute the c number for pair creation and
pair annihilation operators. For a condensate with total momentum zero, the two paired
fermions must have equal and opposite momenta. They also must be in different internal
states, as discussed previously. We write

b̂−pâp = Cp + (b̂−pâp − Cp), (C.43)
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where Cp is a c number. The relative phases of states with particle number differing by
two can be chosen so that Cp is real. We substitute this expression into Eq. (C.42) and
retain terms with two or fewer creation or annihilation operators, leading to

K̂ =
∑

p
(ε0p − µ)(â†pâp + b̂†−pb̂−p) +

∑
p

∆p(â†pb̂
†
−p + b̂−pâp)− 1

V

∑
pp′

U(p,p′)CpCp′ ,(C.44)

Here,
∆p = 1

V

∑
p′
U(p,p′)Cp′ . (C.45)

For simplicity, we have omitted the final argument in the interaction U(p,−p,p′− p)→
U(p,p′). The Cp must be determined self-consistently, hence

Cp = 〈b̂−pâp〉 = 〈â†pb̂
†
−p〉, (C.46)

where 〈·〉 denotes an expectation value.
The Hamiltonian is now a sum of independent terms of the type

ĥ = ε0(â†â + b̂†b̂) + ε1(â†b̂† + b̂â), (C.47)

where â = âp and b̂ = b̂−p. We introduce new operators α̂ and β̂ defined by the transfor-
mation

α̂ = uâ+ vb̂†,

β̂ = ub̂− vâ†, (C.48)

with u and v real, and we impose that they satisfy the Fermi commutation rules,

{α̂, α̂†} = {β̂, β̂†} = 1
{α̂, β̂†} = {β̂, α̂†} = {α̂, β̂} = {α̂†, β̂†} = 0. (C.49)

These restrictions are satisfied if
u2 + v2 = 1. (C.50)

Inverting the Eqs. (C.48) we find

â = uα̂− vβ̂†,
b̂ = uβ̂ + vα̂†. (C.51)

Inserting Eqs. (C.51) into Eq. (C.47) yields

ĥ = 2v2ε0 − 2uvε1 + [ε0(u2 − v2) + 2uvε1](α̂†α̂ + β̂†β̂)
− [ε1(u2 − v2)− 2uvε0](α̂β̂ + β̂†α̂†). (C.52)
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We choose u and v so that
ε1(u2 − v2)− 2uvε0 = 0, (C.53)

thus eliminating the term proportional to α̂β̂+β̂†α̂†. We write, in accordance to Eq. (C.50),

u = cos t,
v = sin t, (C.54)

where t is a parameter to be determined. This amounts to

ε1(cos2 t− sin2 t)− 2ε0 sin t cos t = 0, (C.55)

or alternatively,
tan(2t) = ε1

ε0
. (C.56)

Hence,

u2 − v2 = ε0√
ε20 + ε21

,

2uv = ε1√
ε20 + ε21

. (C.57)

Substituting this result into Eq. (C.52),

ĥ = ε(α̂†α̂ + β̂†β̂) + ε0 − ε, (C.58)

where ε ≡
√
ε20 + ε21. We chose the positive sign for the square root in order to guarantee

that the excitations have positive energy.
In order to diagonalize K̂ from Eq. (C.42) we introduce the operators

α̂p = upâp + vpb̂
†
−p,

β̂−p = upb̂−p − vpâ
†
p. (C.59)

The normalization requires
u2

p + v2
p = 1, (C.60)

and if we choose
upvp = ∆p

2εp
, (C.61)

the terms in Hamiltonian proportional to α̂β̂ or β̂†α̂† vanish. The excitation energy εp is
given by

ε2p = ∆2
p + ξ2

p, (C.62)
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with
ξp = ε0p − µ. (C.63)

Near the Fermi surface, ξp ≈ (p − pF )vF , where vF = pF/m is the Fermi velocity, and
the spectrum exhibits a gap ∆p for p = pF . Excitations exhibit free particle behavior for
p− pF � ∆/vF . The characteristic length, which is the healing distance for disturbances
in the Fermi gas, is given by

ξBCS ≡
~vF
∆ . (C.64)

In the BCS theory, its zero-temperature value is ξ0 = ~vF/(π∆(0)), where ∆(0) is the
gap at T = 0.

The coefficients u and v are

u2
p = 1

2

(
1 + ξp

εp

)
,

v2
p = 1

2

(
1− ξp

εp

)
. (C.65)

Substituting in the Hamiltonian Eq. (C.44) yields

K̂ =
∑

p
εp(α̂†pα̂p + β̂†pβ̂p)−

∑
p

(εp − ε0p + µ)− 1
V

∑
pp′

U(p,p′)CpCp′ , (C.66)

thus describing non-interacting excitations with energy εp.

The gap equation

The gap ∆p is determined by Eq. (C.45) when we know Cp, Eq. (C.46), given by

Cp = 〈(upβ̂−p + vpα̂
†
p)(upα̂p − vpβ̂

†
−p)〉 = −[1− 2f(εp)]∆p

2εp
. (C.67)

The thermal averages of the operators for the numbers of excitations are

〈α̂†pα̂p〉 = 〈β̂†pβ̂p〉 = f(εp) = 1
exp[εp/(kBT )] + 1 , (C.68)

hence the gap is given by

∆p = − 1
V

∑
p′
U(p,p′)

1− 2f(ε′p)
2εp′

∆p′ . (C.69)
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At the transition temperature the gap vanishes ∆p = 0, thus the excitation energy
may be replaced by εp = |ε0p − µ|. The gap equation becomes

∆p = − 1
V

∑
p′
U(p,p′)

1− 2f(|ε0p′ − µ|)
2|ε0p′ − µ|

∆p′

= − 1
V

∑
p′
U(p,p′)

1− 2f(ε0p′ − µ)
2(ε0p′ − µ) ∆p′ . (C.70)

The last equation follows from the even parity of [1 − 2f(ε)]/ε. This equation contains
the same information as Eq. (C.17), which gives the temperature at which two-body
scattering becomes singular.

In order to solve the gap equation, we eliminate the bare interaction U in favor of T0,
the T matrix in free space. We formally write ∆ = UGM∆ and repeat the steps described
in Sec. C.2.3. The result is

∆p = −U0

V

∑
p′

[
1− 2f(εp′)

2εp′
− 1

2ε0p′

]
∆p′ . (C.71)

An equivalent form for µ > 0, using the identity from Eq. (C.26), is

∆p = −U0

V

∑
p′

[
1− 2f(εp′)

2εp′
− 1

2(ε0p′ − µ)

]
∆p′ . (C.72)

The gap at T=0

We now determine the gap at T = 0. Neglecting the induced interactions, Eq. (C.72)
reduces to

∆p = −U0

V

∑
p′

[
1

2εp′
− 1

2(ε0p′ − µ)

]
∆p′ . (C.73)

We notice that the gap corresponds to an s-wave pairing, because ∆p is independent of
the direction of p. Since the main contributions to the integral come from momenta of
order pF , we replace the gap by its value at the Fermi surface, ∆. The result is

1 = − U0

2V
∑

p

[
1

(ξ2
p + ∆2)1/2 −

1
ξp

]

= −U0N(εF )
2

∫ ∞
0

dx x1/2
[

1
[(x− 1)2 + (∆/εF )2]1/2 −

1
x− 1

]
. (C.74)

Similar to what we did when evaluating the integrals for Tc, we split this integral into
two, using x1/2 = (x1/2 − 1) + 1. The integral with the first term may be evaluated with
∆ = 0, and the second may be evaluated directly, since ∆/εF � 1. The result is

∆ = 8
e2 εF e

−1/(N(εF )|U0|). (C.75)
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Including induced interactions reduces the gap by a factor of (4e)−1/3, as it was for the
transition temperature, hence

∆ =
(2
e

)7/3
εF e

−1/(N(εF )|U0|). (C.76)

The ratio between the gap at T = 0 and the transition temperature is given by

∆(T = 0)
kTc

= π

γ
≈ 1.76. (C.77)

Pairing in dilute gases differs much from phonon-exchange interaction in metals. The
former presents interactions of importance in excess of the Fermi energy, whereas in metals
they are significant only over an interval of ~ωD about the Fermi surface.
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Appendix D

Classical hydrodynamics

The main reason that vortices have been an important branch of fluid dynamics is the
belief that turbulence may be represented as a superposition of interacting vortices. We
begin by reviewing some concepts of fluid dynamics, which will be useful when dealing
with quantized vortices [134].

The equation of conservation of mass for a fluid of density ρ and velocity v is
∂ρ

∂t
+∇ · (ρv) = 0. (D.1)

If the fluid is incompressible then
∇ · v = 0. (D.2)

The equation of motion for an incompressible viscous fluid, known as the Navier-Stokes
equation, is

dv
dt

= ∂v
∂t

+ (v · ∇)v = −1
ρ
∇p+ ν∇2v, (D.3)

where v is the velocity, p is the pressure and ν = η/ρ is the ratio of the dynamic viscosity
η to density ρ. The Navier-Stokes equation is usually very difficult to solve, even numer-
ically. For the flow of an incompressible, adiabatic and inviscid (without viscosity) fluid,
we have

dv
dt

= ∂v
∂t

+ (v · ∇)v = −1
ρ
∇p, (D.4)

which is known as Euler’s equation. Defining w ≡ p/ρ and using the vector identity
1
2∇v

2 = v× (∇× v) + (v · ∇)v, Euler’s equation takes the form

∂v
∂t
− v× (∇× v) = −∇

(
w + 1

2v
2
)
. (D.5)

Realistic approaches can be obtained by considering a boundary layer. At high
Reynolds numbers, the flow near a boundary is described by Eq. (D.3); and the remainder
of the flow can be described by Eq. (D.5), with appropriate joining of solutions.
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We proceed to include in the flow of the inviscid fluid such features as circulation and
vortices, whose generation depends on viscosity. The curl of the velocity field,

ω = ∇× v, (D.6)

is known as vorticity and may be thought of as the circulation per unit area. A curve drawn
from point to point in the fluid, so that its direction is always the instantaneous direction
of ω, is called vortex line. The differential equation describing the line is ω × dl = 0.
Because of Eq. (D.6), we have

∇ · ω = 0. (D.7)

If we draw a closed curve C in the fluid and include every vortex line passing through
this curve, we have a vortex tube. It follows from Gauss’ theorem that the integral of the
normal component of ω over any closed surface vanishes,∫

S
ω · dS = 0. (D.8)

If we apply this result to two cross-sections dS1 and dS2 of the tube, the sides do not
contribute, and we have ∫

S1
ω · dS1 =

∫
S2
ω · dS2. (D.9)

Thus the flux of vorticity across any section of the tube is conserved and it is a charac-
teristic of the tube. Vortex tubes cannot terminate in the fluid; they must be closed or
terminate on the boundaries.

The Navier-Stokes equation, Eq. (D.3), can be written as

∂ω

∂t
= ∇× (v× ω) + ν∇2ω = (ω · ∇)v− (v · ∇)ω + ω∇2ω. (D.10)

We introduce a characteristic length L and velocity V , and we make Eq. (D.10) dimen-
sionless with the following transformations:

ω → ωV

L
,

t → tL

V
,

v → vV, (D.11)

which yield
∂ω

∂t
= (ω · ∇)v− (v · ∇)ω + 1

Re
∇2ω, (D.12)

with the Reynolds number Re = V L/ν. For an ideal fluid, Eq. (D.12) is reduced to

∂ω

∂t
−∇× (v× ω) = 0. (D.13)
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Consider a surface S enclosed by a contour C. Let dS be an infinitesimal element of this
surface. Multiplying scalarly by dS and integrating over the surface yields∫

S

∂ω

∂t
· dS−

∫
S
∇× (v× ω) · dS = 0. (D.14)

Using Stokes’ theorem for the second integral, we have∫
S

∂ω

∂t
· dS +

∫
C
ω · (v× dl) = 0, (D.15)

where dl is an element along the contour C defining the vortex tube at a particular
cross-section. A careful argument in [134] shows that

d

dt

∫
S
ω · dS = 0. (D.16)

Thus, the integral of the normal component of ω over any surface bound by a closed curve
remains constant as we follow the surface S,∫

S
ω · dS = constant. (D.17)

We can use Eq. (D.17) together with Stokes’ theorem to write

Γ =
∫
S
ω · dS =

∫
C

v · dl = constant, (D.18)

where Γ is the circulation. This definition shows why the vorticity is the circulation per
unit area. Furthermore, Eq. (D.18) can be rewritten as

dΓ
dt

= d

dt

∫
C

v · dl = 0 or∫
C

v · dl = constant, (D.19)

which is known as the law of conservation of circulation.
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Appendix E

Stochastic reconfiguration method

The Stochastic Reconfiguration (SR) method [139] allows us to minimize the energy ex-
pectation value of a variational wavefunction containing many variational parameters in
an arbitrary functional form. We assume that the wavefunction Ψ has p variational pa-
rameters {α0

k}k=1,··· ,p and we seek the solution of the linear system

p∑
k=0

sj,k∆αk = 〈Ψ|Ok(ΛI −H)|Ψ〉, (E.1)

where the operators Ok are defined on each N particle configuration x = {r1, · · · , rN} as
the logarithmic derivatives with respect to the parameters αk

Ok(x) = ∂

∂αk
ln Ψ(x) for k > 0. (E.2)

The operator Ok=0 is the identity, equal to one independent on the configuration. The
(p+ 1)× (p+ 1) matrix sk,j is given by

sj,k = 〈Ψ|OjOk|Ψ〉
〈Ψ|Ψ〉 , (E.3)

and is calculated at each iteration through standard variational Monte Carlo sampling;
the single iteration constitutes a small simulation referred hereafter as bin. After each
bin, the wavefunction parameters are iteratively updated

αk → αk + ∆αk
∆α0

. (E.4)

The method is convergent to an energy minimum for large enough Λ.
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SR is similar to a standard steepest descent (SD) calculation, where the expectation
value of the energy

E(αk) = 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (E.5)

is optimized by iteratively changing αi according to the derivatives of the energy (gener-
alized forces fk)

fk = − ∂E
∂αk

= − 〈Ψ|OkH+HOk+(∂αkH)|Ψ〉
〈Ψ|Ψ〉 + 2 〈Ψ|Ok|Ψ〉〈Ψ|H|Ψ〉〈Ψ|Ψ〉2

αk → αk + ∆tfk. (E.6)

The small time step ∆t can be taken as a suitable fixed value or determined at each
iteration by minimizing the energy expectation value. Notice that we have assumed that
the variational parameters may also appear in the Hamiltonian. The variation of the total
energy ∆E at each step is negative for small enough ∆t

∆E = −∆t
∑
i

f 2
i +O(∆t2), (E.7)

thus the method certainly converges at the minimum when all the forces vanish.
In the following we will show that similar considerations hold for the SR method.

Indeed, by eliminating the equation with k = 0 from the linear system (Eq. E.1), the SR
iteration can be written in a form similar to SD

αi → αi + ∆t
∑
k

s−1
i,kfk, (E.8)

where s is the reduced p× p matrix

sj,k = sj,k − sj,0s0,k (E.9)

and ∆t is given by
∆t = 1

2
(

Λ− 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 −
∑
k>0

∆αksk,0
) . (E.10)

Thus the value of ∆t changes during the simulation and remains small for large enough
energy shift Λ. However, analogy with the SD shows that an energy minimum is reached
when ∆t is sufficiently small and constant between iterations. The energy variation for a
small change of the parameters is

∆E = −∆t
∑
i,j

s−1
i,j fifj. (E.11)
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The above term is always negative because s and s−1 are positive definite; s being an
overlap matrix with all positive eigenvalues.

A condition for the stability of the SR, or SD, is that at each iteration the new
parameters α′ are close to the old α according to a distance. The most important difference
between SR and SD is the definition of this distance. For SD we use the Cartesian metric

∆α =
∑
k

|α′k − αk|2. (E.12)

Instead the SR uses the physical Hilbert space metric of the wavefunction Ψ

∆α =
∑
i,j

si,j(α′i − αi)(α′j − αj), (E.13)

namely the square distance between the two normalized wavefunctions corresponding
to two different sets of parameters {α′k} and {αk}. The most convenient change of the
variational parameters minimizes the functional ∆E+Λ∆α, where ∆E is the linear change
in the energy ∆E = −∑i fi(α′i − αi); and Λ is a Lagrange multiplier that allows a stable
minimization of Ψ (with small change ∆α). Finally, the iteration is obtained from Eq.
(E.8).

The advantage of SR over SD is that sometimes a small change of the variational
parameters correspond to a large change of the wavefunction, and SD takes into account
this effect by using the Hilbert space metric of the wavefunction Ψ. A weak tolerance
criterion ε ' 10−3 provides a very stable algorithm even when the dimension of the
variational space is large.

Instead of setting the constant Λ, we choose to determine ∆t by verifying the stability
and convergence of the algorithm at fixed ∆t. The simulation is stable whenever 1/∆t >
Λcut, where Λcut is strongly dependent on the wavefunction. A rough estimate of the
number of iterations P is P∆t� 1/G, where G is the typical energy gap of the system.

Our aim is to conduct simulations with small bins, so many iterations can be per-
formed. However, in the Monte Carlo framework the forces fk are determined with some
statistical noise, and there is an optimal value for the bin length which guarantees fast
convergence and unbiased forces.
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