
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Isaías Bittencourt Felzmann

A framework for modeling and simulation of
approximate computing in hardware

Uma ferramenta para modelagem e simulação de
computação aproximada em hardware

CAMPINAS
2019

Isaías Bittencourt Felzmann

A framework for modeling and simulation of approximate
computing in hardware

Uma ferramenta para modelagem e simulação de computação
aproximada em hardware

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Lucas Francisco Wanner

Este exemplar corresponde à versão final
da Dissertação defendida por Isaías
Bittencourt Felzmann e orientada pelo
Prof. Dr. Lucas Francisco Wanner.

CAMPINAS
2019

Agência(s) de fomento e nº(s) de processo(s): FAPESP, 2017/08015-8
ORCID: https://orcid.org/0000-0003-3048-8310

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Felzmann, Isaías Bittencourt, 1992-
 F349f FelA framework for modeling and simulation of approximate computing in

hardware / Isaías Bittencourt Felzmann. – Campinas, SP : [s.n.], 2019.

 FelOrientador: Lucas Francisco Wanner.
 FelDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Fel1. Computação aproximada. 2. Computação consciente de energia. 3.

Arquitetura de computador. 4. Hardware - Linguagens descritivas - Métodos de
simulação. I. Wanner, Lucas Francisco, 1981-. II. Universidade Estadual de
Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Uma ferramenta para modelagem e simulação de computação
aproximada em hardware
Palavras-chave em inglês:
Approximate computing
Energy-aware computing
Computer architecture
Computer hardware description languages - Simulation methods
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Lucas Francisco Wanner [Orientador]
Antonio Carlos Schneider Beck Filho
Rodolfo Jardim de Azevedo
Data de defesa: 28-02-2019
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Isaías Bittencourt Felzmann

A framework for modeling and simulation of approximate
computing in hardware

Uma ferramenta para modelagem e simulação de computação
aproximada em hardware

Banca Examinadora:

• Prof. Dr. Lucas Francisco Wanner
IC/UNICAMP

• Prof. Dr. Antonio Carlos Schneider Beck Filho
INF/UFRGS

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 28 de fevereiro de 2019

Acknowledgements

The author greets and thanks everyone who somehow contributed and allowed this
work to be completed: Lucas Wanner, Rodolfo Azevedo, Andressa Marchesan, Matheus
Susin, João Fabrício Filho, Jonathas Evangelista, Marcelo Jara, Liana Duenha and every
colleague at the Computer Systems Laboratory, family member or friend for their help,
advice or company.

In particular, thanks to São Paulo Research Foundation (FAPESP) for the financial
support (grant #2017/08015-8). Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author and do not necessarily reflect
the views of the Foundation.

Resumo

Pesquisas recentes têm introduzido unidades de hardware que produzem resulta-
dos incorretos de maneira determinística ou probabilística para um pequeno conjunto
de entradas. Por outro lado, permitem um maior desempenho ou um consumo de
energia significativamente menor em comparação com versões precisas das mesmas
unidades. Como integrar, validar e avaliar essas alternativas em uma arquitetura ou
processador, porém, permanece um desafio. A falta de ferramentas para represen-
tar e avaliar hardware aproximado leva desenvolvedores a verificar suas soluções de
maneira independente, sem considerar interações com outros componentes, exigindo
um grande esforço em modelagem e simulação. Neste trabalho, introduzimos ADeLe,
uma linguagem de alto nível para descrever, configurar e integrar unidades de hard-
ware aproximado em um processador. ADeLe reduz o esforço de desenvolvimento de
hardware aproximado por modelar aproximações em um alto nível de abstração e
injetá-las automaticamente em um modelo de processador para simulação arquitetu-
ral. Na ferramenta relacionada a ADeLe, aproximações podem modificar ou substituir
completamente o comportamento de instruções de hardware através de políticas de-
finidas pelo usuário. As instruções podem ser modificadas deterministicamente ou
probabilisticamente (por exemplo, baseado em tensão de operação e frequência). Para
proporcionar um ambiente de teste controlado, as aproximações podem ser ligadas e
desligadas a partir do software em execução. O consumo de energia é automaticamente
computado com base em modelos customizáveis no sistema. Assim, a ferramenta pro-
porciona um método de verificação genérico e flexível, permitindo uma fácil avaliação
da troca entre energia e qualidade de aplicações sujeitadas a hardware aproximado.
Demonstramos a ferramenta pela introdução de variadas técnicas de aproximação em
um modelo de processador, com o qual aplicações selecionadas foram executadas. Ao
modelar módulos de hardware aproximado dedicados, mostramos como ADeLe repre-
senta unidades aritméticas aproximadas e unidades funcionais de precisão reduzida
executando 4 aplicações de processamento de imagens e 2 de computação de ponto
flutuante. Com outro método de aproximação, também mostramos como a ferramenta
é utilizada para estudar o impacto de memórias alimentadas por tensão ajustável so-
bre 9 aplicações. Nossos experimentos demonstram as capacidades da ferramenta e
como ela pode ser utilizada para gerar processadores virtuais aproximados e avaliar o
equilíbrio entre energia e qualidade para diferentes aplicações com esforço reduzido.

Abstract

Recent research has introduced approximate hardware units that produce incorrect out-
puts deterministically or probabilistically for some small subset of inputs. On the other
hand, they allow significantly higher throughput or lower power than their error-free
counterparts. The integration, validation, and evaluation of these approximate units
in architectures and processors, however, remains challenging. The lack of tools to
represent and evaluate approximate hardware leads designers to verify their solu-
tions independently, not considering interactions with other components, demanding
high-effort modeling and simulation. In this work, we introduce ADeLe, a high-level
language for the description, configuration, and integration of approximate hardware
units into processors. ADeLe reduces the design effort for approximate hardware by
modeling approximations at a high level of abstraction and automatically injecting
them into a processor model for architectural simulation. In the ADeLe framework, ap-
proximations may modify or completely replace the functional behavior of instructions
according to user-defined policies. Instructions may be approximated deterministically
or probabilistically (e.g., based on operating voltage and frequency). To allow for con-
trolled testing, approximations may be enabled and disabled from software. Energy is
automatically accounted for based on customizable models that consider the potential
power savings of the approximations that are enabled in the system. Thus, the frame-
work provides a generic and flexible verification method, allowing for easy evaluation
of the energy-quality trade-off of applications subjected to approximate hardware. We
demonstrate the framework by introducing different approximation techniques into a
processor model, on top of which we run selected applications. Modeling dedicated
hardware modules, we show how ADeLe can represent approximate arithmetic and
reduced precision computation units executing 4 image processing and 2 floating point
applications. Using a different method of approximation, we also show how the frame-
work is used to study the impact of voltage-overscaled memories over 9 applications.
Our experiments show the framework capabilities and how it may be used to gener-
ate approximate virtual CPUs and to evaluate energy-quality trade-offs for different
applications with reduced effort.

List of Figures

3.1 ADeLe design flow showing how it affects the CPU simulator 18
3.2 Sample implementation of RandomBitFlip data modifier. 18
3.3 ADeLe description of an adjustable supply voltage register bank. 19
3.4 Simulation control interface. 20
3.5 ADeLe description of half-precision FPU. 21
3.6 Example of a data modifier. 23
3.7 ADeLe description of Kulkarni’s multiplier. 24
3.8 Simplified class diagram of ArchC extension. 27

4.1 ADeLe description of one EvoApprox8B instance. 30
4.2 Percentage of kernel multiplications approximated. 31
4.3 Percentage of kernel floating point operations approximated. 32
4.4 Energy-quality trade-off of 32-bit multipliers. 33
4.5 Peak Signal-to-Noise Ratio of computed images. 34
4.6 Image Processing applications: Accurate and inaccurate multiplications. 34
4.7 Black-Scholes: Average relative error. 35
4.8 Fast Fourier Transform: Average relative error. 35
4.9 Effect of approximations on average energy per instruction. 36
4.10 Relation between memory errors and energy. 37
4.11 ADeLe description of one EvoApprox8B instance. 38
4.12 Resilience analysis. 40
4.13 Quality of results. 42
4.14 Re-execution probability. 43
4.15 Energy trade-off. 44

Contents

1 Introduction 10

2 Related Work: Approximate Computing in the Dark Silicon era 12
2.1 Hardware-level approximation techniques 13

2.1.1 Memory access approximation . 13
2.1.2 Inexact hardware . 14
2.1.3 Voltage overscaling . 14

2.2 Modeling techniques for Approximate Computing 15

3 A Framework for Approximate Computing 17
3.1 The ADeLe Language . 20

3.1.1 Approximation modeling . 21
3.1.2 Probability models (PM) . 23
3.1.3 Energy models (EM) . 25
3.1.4 Operating parameters (OP) . 26

3.2 ADeLe implementation into a CPU simulator 26
3.2.1 Software interface . 27

4 Demonstration and results 29
4.1 Underdesigned hardware . 29

4.1.1 Implemented approximations . 29
4.1.2 Selected benchmarks . 31
4.1.3 Results . 32

4.2 Voltage-overscaled memories . 37
4.2.1 Implemented approximations . 38
4.2.2 Selected benchmarks . 38
4.2.3 Results . 39

5 Conclusion 45
5.1 Production . 46

10

Chapter 1

Introduction

Approximate computing has emerged as a promising solution to design issues in the
Dark Silicon era [Esmaeilzadeh et al., 2011]. As power dissipation becomes the lim-
iting factor for further increasing clock frequency on integrated circuits [Borkar and
Chien, 2011], the exploration of an energy-quality trade-off can potentially allow fur-
ther energy downscaling in comparison to traditional techniques. In addition to diverse
software-based approximation approaches, the design of approximated hardware mod-
ules has attracted attention [Mittal, 2016; Xu et al., 2016]. The lack of specific tools for
approximate-hardware development, however, increases the effort of validating and
evaluating such hardware.

The common hardware design approach to develop approximate hardware mod-
ules typically consists in running input- and output-constrained circuit-level simulation
to obtain energy and time metrics, followed by modeling the module behavior using
a higher-level language or tool to estimate the quality of results. The results are then
validated in a benchmark application substituting parts of the code for the behavioral
model [Mittal, 2016]. In this method, the target application is explicitly changed to
introduce the approximations, which lacks generality, given that applying the approx-
imation in a different application may require extensive modification. Furthermore,
architecture-level interactions between hardware modules may not be captured by
modeling the behavior of approximate hardware at the application level.

Alternatives to higher-level software modeling include software instrumentation
and architecture simulation. The latter has the advantage of generically representing
the interaction between components in the target hardware and being transparent to
the final application. Full-CPU simulators or emulators such as Wattch [Brooks et al.,
2000], gem5 [Binkert et al., 2011], MARSS [Patel et al., 2011] and ArchC [Rigo et al.,
2004] can model the process behavioral execution at varied detail levels, but lack a
design framework to aid in the injection of hardware approximations.

In order to offer a reduced-effort method to model approximate architectures, we
propose ADeLe – The Approximation Description Language – a high-level descriptive
modeling language for hardware approximation, and demonstrate its use by injecting
approximations into an off-the-shelf CPU model [Rigo et al., 2004]. The ADeLe abstrac-
tion focuses on representing approximations in a set of generic self-contained models
designed to be automatically consumed by a CPU simulator, according to a high-level

11

description. Thus, the effort of validating a new approximation design is reduced to
designing the models and the description file. ADeLe eliminates the effort of modifying
a CPU simulator directly, and the models allow reuse in multiple target architectures.
The method also embeds customizable energy models to estimate energy consumption,
at the designer discretion, using abstractions of physical parameters that may influence
in the simulation flow, and a flexible control structure to isolate resilient areas of the
test application to be subjected to approximations.

In this work, ADeLe was implemented as an extension to the ArchC framework [Rigo
et al., 2004] to show how it translates into simulation tools, allowing the execution of
benchmark applications with minimal modification to the original source code, and
the generation of comprehensive quality and energy consumption results. The ADeLe
framework generates verifiable, uniform, reproducible, and reusable energy-quality
results, and we show that by expanding known results to a set of different target
applications. Moreover, the generic standardization herein proposed allows a fair and
easier comparison of different approximation techniques, currently limited by the usage
of incompatible or undisclosed modeling details and energy metrics [Mittal, 2016; Xu
et al., 2016].

Thus, in this work, we summarize the following contributions:

• A high-level modeling language to describe how approximations affect an appli-
cation at the architecture level;

• A framework to compile and translate the language in a simulation tool;

• A set of software models to represent common hardware approximations;

• A demonstration of how different applications behave when subjected to approx-
imations.

The remainder of this text is organized as follows: In Chapter 2, we introduce the
Approximate Computing paradigm and summarize related work on simulation tech-
niques. The ADeLe language and its design flow is presented in Chapter 3, describing
how to use it to model approximations. Our experiments demonstrating the language
and the implementation applicability to model approximate hardware are described
in Chapter 4, which includes descriptions of the selected hardware approximations
modeled and benchmarks executed, as well as the results obtained. We conclude in
Chapter 5.

12

Chapter 2

Related Work: Approximate Computing
in the Dark Silicon era

For decades since the first microprocessor was conceived, the forecast exponential
growth on the number of transistors [Moore, 1998] within a chip has been sustained
by miniaturization [Dennard et al., 1974]. A smaller transistor can achieve a higher fre-
quency which, when associated to microarchitecture developments and better memory
systems, led to the exponential improvement in performance of computing systems
overall [Borkar and Chien, 2011]. The Dennard model [Dennard et al., 1974] also de-
fines a lower supply voltage in the scaling procedure. Although this resulted in better
energy efficiency at first, the open-circuit leakage current increases exponentially the
lower is the supply voltage [Borkar and Chien, 2011]. As a result, the power dissipated
by the circuit increases to a point at which packaging and cooling techniques cannot
handle [Shafique et al., 2014b].

This limitation in power dissipation forbids a chip to be used at its full capabili-
ties for a long period of time. Thus, a significant part of the system runs at a lower
frequency, or is even left powered off, in a situation often referred in the literature as
Dark Silicon [Shafique et al., 2014a]. In a 22 nm architecture, the area affected by Dark
Silicon exceeded in up to two times earlier forecasts [Esmaeilzadeh et al., 2011; Kapa-
dia and Pasricha, 2017], and this amount is going towards 80% of the chip for recent
manufacturing processes [Shafique et al., 2014b].

Despite being a waste of resources, leaving silicon dark does not necessarily im-
proves power efficiency. Especially in many-core architectures, active computing cores
should be kept at a distance from each other to maintain the temperature distribution
within the chip and reduce their influence in one another. However, the longer the
distance between the nodes, the further away data need to propagate, which increases
latency, reduces performance, and negatively affects efficiency. Moreover, a longer and
slower dataflow requires faster computation nodes to maintain throughput, resulting
in more power dissipation [Yang et al., 2017; Kapadia and Pasricha, 2017].

Approximate Computing has been studied as an alternative design to improve
power efficiency without negative effects in performance. Instead, Approximate Com-
puting explores a trade-off between energy and quality, since many applications do not
require computation to be exact and precise all the time [Kugler, 2015]. Recent studies

13

have shown how Approximate Computing techniques can achieve energy savings and
improve power efficiency both in the software and hardware levels [Xu et al., 2016;
Mittal, 2016].

Software-level Approximate Computing techniques include precision scaling, loop
perforation, memoization, task skipping, and function replacement [Mittal, 2016]. They
all have in common the intent of reducing computation time, thus reducing energy
consumption but not power dissipation. These software techniques are usually specific
to a target application and need to be redesigned to others. As a result, they achieve
better controlled quality results and limited energy savings [Chippa et al., 2014].

The hardware-level techniques, on the other hand, affect a wider range of applica-
tions. These include replacing functional units by simpler ones or adjusting operating
parameters, mainly supply voltage, below the nominal level. These modifications have
direct impact on power dissipation and usually allow extended impact on the hardware
by fine tuning the operating parameters, thus the energy savings are significant and
extensible throughout the project [Chippa et al., 2014]. Their impact on quality, since
they are not specific, however, can even be unpredictable in advance, thus requiring
further evaluation and simulation for validation. The following sections present an
overview of hardware-level approximation techniques (Sec. 2.1) and existing tools that
allow such validation (Sec. 2.2).

2.1 Hardware-level approximation techniques

2.1.1 Memory access approximation

Load value prediction is a well known technique to minimize the cache miss penalty
on a memory access. Miguel et al. [2014] followed this idea to create a load value
approximation, a technique that augments prediction by not rolling back the application
execution if a value is incorrectly predicted. Instead, the actual value read is only used to
train the system and improve prediction quality. Furthermore, the data are not fetched
from memory at every cache miss, but at a determined rate, saving energy on memory
fetch. The study shows up to 8.5% better performance and 12.6% energy savings on
average.

Similarly, Yazdanbakhsh et al. [2016b] also propose rollback-free value approxima-
tion, breaking the memory fetch process for each cache miss. The system is optimized
for graphic processors, maintaining data consistency for all processing cores. The au-
thors report 36% better performance and average 27% energy savings. Both Miguel
et al. [2014] and Yazdanbakhsh et al. [2016b] used adapted simulation software to eval-
uate their designs. The former considers every memory read within a code region as
a cache miss, computing the approximation, while the latter relates the memory reads
with hot memory regions.

14

2.1.2 Inexact hardware

Inexact hardware are modules developed, in logic level, to produce incorrect results at
some determined input conditions, trading quality for energy and performance [Kahng
and Kang, 2012]. The circuit is usually designed to reduce the critical path, allowing
better performance and reducing energy consumption.

Kulkarni et al. [2011] propose an approximate multiplier hardware. The authors
take advantage of the fact that there are only 8 possible products of 2-bit integers to
create a module that outputs a 3-bit integer, instead of 4. In this concept, the result of
the operation 3 × 3 is 7, not 9. All the other possible products can be represented in a
3-bit integer, so the output is correct in 15 out of 16 possible input patterns. Besides, the
multiplier can be connected to others, in a Wallace Tree topology, offering larger number
multiplication. Moreover, the system was designed with a error correction mechanism
to be used if the application demands. The statistical analysis shows that the multiplier
can save up to 45% energy at an average calculation error in the order of 3%.

Kahng and Kang [2012] present the design of an approximate adder. In the project,
the adder carry chain is sliced to reduce the circuit critical path, allowing it to operate
in a higher frequency and use less area, thus reducing power dissipation. The authors
describe how to set up the adder precision and a possible auxiliary circuit for error
correction, if necessary. The results show up to 24.6% throughput and 37% energy
savings in comparison with a regular exact adder.

EvoApprox8b [Mrazek et al., 2017] is a library of approximate hardware adders and
multipliers evolved by genetic programming. The objective is to offer a common point
of comparison for benchmarking approximate circuits, a library containing almost a
thousand approximate implementations of commonly used hardware. The authors
report energy and quality metrics, obtained individually, for each of the alternatives,
and disclose high-level software and hardware description models for them.

The design projects of inexact hardware modules commonly use computer aided
design to validate timing and power characteristics. This method, although necessary
and very precise, limits the validation to a narrow set of operations, making it unlikely
the test of a full application, let alone real-world applications. As alternatives, Kulkarni
et al. [2011] and Mrazek et al. [2017] remodeled their designs in high level software,
which allows for timely feasible verification but limits the representation of the designs
in association with other modules in the architecture level.

2.1.3 Voltage overscaling

The Dennard model [Dennard et al., 1974] describes the relation between a transistor
size, threshold and supply voltage and maximum operating frequency. As power is
proportional to voltage, it is possible to reduce power dissipation by voltage reduc-
tion. The voltage is said “overscaled” when it is adjusted below the operating point,
which causes timing and switching failures [Chippa et al., 2014]. Depending on the
consequences of such failures and the resiliency of the application, in the context of
Approximate Computing, they could be referred as approximations.

15

Voltage overscaling is the technique used by Chippa et al. [2014] and Rahimi et al.
[2015]. The former uses the technique to approximate the adders in a multiply-and-
accumulate (MAC) system, causing timing constraint violation and output errors. The
authors employ overscaling in association with other techniques, and results show that
the energy savings achieved by voltage overscaling alone are very similar to those
perceived when other techniques are used together for smaller error tolerances. The
larger the tolerance, however, the worse it performs when compared with the other,
still achieving 50% energy savings over precise computation.

Rahimi et al. [2015] also use voltage overscaling in association with other techniques.
They propose an auxiliary memory module at each Floating Point Unit of a graphics
processor. This module stores data from common computations, avoiding them to be
recomputed, a memoization technique. The auxiliary unit itself has the supply voltage
overscaled, reporting average energy savings of 32%.

Both works by Chippa et al. [2014] and Rahimi et al. [2015] use integrated circuits
design software to obtain the power characteristics of their propositions. To allow real-
world simulation, Chippa et al. [2014] wrote their own dedicated system simulator,
while [Rahimi et al., 2015] modified an existing GPU simulator to extract input pat-
terns, without including simulation features of the designed module. In both cases,
an architectural simulator would allow the modules to be integrated in the system,
offering results validation in real conditions.

2.2 Modeling techniques for Approximate Computing

Modeling abstractions and methodologies have been proposed in both software [Samp-
son et al., 2011; Carbin et al., 2013; Sampson et al., 2015; Barbareschi et al., 2017] and
hardware [Rahimi et al., 2013; Nepal et al., 2014; Yazdanbakhsh et al., 2015] levels. They
enhance the design flow of a technique identifying target code or circuit areas that may
benefit from approximation and providing a model of modifications. However, such
methodologies, particularly the hardware-level ones, are focused on representing the
approximations themselves in a self-contained fashion, with limited modeling of their
integration in a target system. Their validation uses the typical methodology to val-
idate custom-design hardware modules, which involves high-effort time-consuming
Register Transfer Level simulation in ABACUS [Nepal et al., 2014] and Axilog [Yazdan-
bakhsh et al., 2015] or customization of a high-level simulation tool to represent the
system [Rahimi et al., 2013].

Simulation or instrumentation can be used to estimate the final behavior of an ap-
plication, when a hardware module is modified, in association with the rest of the
system. Fault injection simulators are tools of consolidated research interest to repre-
sent possible modifications in a system [Hsueh et al., 1997; Kooli and Natale, 2014;
Kooli et al., 2015]. In the context of Approximate Computing, consolidated simulators
such as FERRARI [Kanawati et al., 1992], DOCTOR [Han et al., 1995], FTAPE [Tsai et al.,
1996], Xception [Carreira et al., 1998], FAUmachine [Potyra et al., 2007] and LIFTING [Bo-
sio and Natale, 2008] are some of the options to simulate approximations injection.

16

Application-directed fault injection simulators, however, typically work at application
level. Thus, the injection is limited to each use-case application, sometimes requiring it
to be individually modified, and the scope is usually limited to hardware regions di-
rectly accessed by the software, such as memory and storage locations. Moreover, such
tools provide information of the computation result, but do not provide an interface to
extract measurements such as energy, limiting the approximation analysis to quality of
results.

Instrumentation tools such as Pin [Luk et al., 2005] can be used to inject approxima-
tions at the application level, usually for the same platform that runs the software. The
React framework [Wyse et al., 2015] uses Pin to introduce approximations into multiple
applications, some of them representing approximate hardware, and to account energy
using a simplified linear model. The framework, however, does not provide a generic
or flexible modeling method to represent approximations, limiting its coverage mostly
to the provided models.

System simulators such as Wattch [Brooks et al., 2000], gem5 [Binkert et al., 2011] and
MARSS [Patel et al., 2011] were already used by researchers to validate approximation
techniques, although they do not offer a mechanism to directly modify the simulated
hardware to inject approximations and are limited to a specific target architecture. The
emulator QEMU [Bellard, 2005] has been used, in association with SystemC, as a virtual
platform to represent a full system in hardware-software co-design [Monton et al., 2007;
Yeh and Chiang, 2010; Chiang et al., 2011; Kleinert et al., 2016]. Thus, SystemC augments
QEMU emulation capabilities adding customized hardware modules and creating a
communication interface which allows high-performance emulation of fault-injected
systems [Geissler et al., 2014; Ferraretto and Pravadelli, 2015; Höller et al., 2015]. The
framework VarEMU [Wanner et al., 2013] extends QEMU with fault and power models
to evaluate variability-aware software and supports the injection of faults into the
emulated hardware. VarEMU and other QEMU-based techniques take advantage of
binary translation to achieve high-performance verification. On the other hand, QEMU
limits the representation of details in the architecture, such as multiple cores, thus the
high performance comes at the expense of generality and control.

ArchC [Rigo et al., 2004], despite not performing as well as QEMU does to their tar-
get architectures, is an Architecture Description Language that can virtually represent any
target system, allowing custom ISA extensions independently of any approximation in-
jection mechanism. In association with SystemC Hardware Description Language sup-
port, ArchC can be expanded with custom functional units or peripherals at the designer
discretion. The composition of ADeLe and ArchC as a framework provides a complete
and general verification system, where ArchC represents a customized target CPU and
its peripherals, and ADeLe handles approximation injection and approximation-aware
simulation control, allowing full control and complete representation of the system in
the verification process to designers.

17

Chapter 3

A Framework for Approximate
Computing

The ADeLe language describes how approximations, associated with their energy mod-
els and probabilities, are injected into instructions in a CPU model. In this section, we
describe a use case introducing the concepts and the approximation design flow using
ADeLe. Our example targets a designer who wants to evaluate the impact of a new
register bank design, powered by an adjustable supply voltage.

In the typical hardware development flow, the designer would model the hardware
using a Hardware Description Language (HDL), evaluate it in a Register Transfer Level
(RTL) simulator and synthesize it to obtain power and timing data, back annotating
this information to the netlist for further simulation [Mittal, 2016]. At this point, the
designer has data on how the register bank behaves under different voltage levels and
characterization of soft errors when reading and writing data to certain locations, as
well as their occurrence distribution [Tagliavini et al., 2017; Slayman, 2011; Calhoun
and Chandrakasan, 2005]. In the context of Approximate Computing, errors under
overscaled supply voltages may be seen as approximations that trade accuracy for
energy savings in the computation [Chippa et al., 2014].

The HDL model and RTL simulation data alone cannot provide any information
about how the new design impacts real applications. A CPU simulator may help in
evaluating and validating the design, and its integration in a system. Nevertheless,
extensive effort would be required to adapt the simulator in order to inject code that
represents the faulty register bank, to develop a control mechanism that parameterizes
it according to the supply voltage, and to aggregate the results of RTL simulation to
represent energy metrics.

ADeLe proposes an enhanced design flow, summarized in Fig. 3.1, that eliminates
the effort of modifying the CPU simulator source code directly. Taking, as inputs,
a generic model of the approximation and a high-level description of how it interacts
with the target CPU model, an ADele-compatible CPU simulator automatically modifies
its execution flow to represent the approximated behavior.

The ADeLe design flow requires three models: the approximation model (Sec. 3.1.1)
describes the black-box behavior of the approximation at instruction-level, in terms
of its input data and output results; the probability model (Sec. 3.1.2) defines whether

18

common design flow

HDL model RTL
Simulation

Synthesis

Approximation
model

Probability
model

Energy model

ADeLe Description File

CPU simulator

Figure 3.1: ADeLe design flow showing how it affects the CPU simulator

1 void RandomBitFlip(source_t source, word &data) {
2 int bit = rand() % (8 * sizeof data);
3 data = data ^ (0x1 << bit);
4 }

Figure 3.2: Sample implementation of RandomBitFlip data modifier.

the described behavior should happen instead of the default execution behavior in the
simulator; and the energy model (Sec. 3.1.3) computes how much energy was spent to
execute the instruction, defined at the designer discretion.

In our use-case scenario described at the beginning of this Section, the designer
would implement the approximation model as a method that takes as input the handled
data and outputs it with some random modification, modeling the unexpected bit
flips perceived during RTL simulation when the register bank is powered by a lower
supply voltage [Calhoun and Chandrakasan, 2005] – in the ADeLe language, such an
approximation model is called data modifier (Sec. 3.1.1). The sample in Fig. 3.2 illustrates
the C++ implementation of a data modifier that flips a random bit in the data.

Similarly, the probability model uses the statistical fault occurrence distribution
to determine whether an approximation is supposed to happen, given the applied
supply voltage. Finally, the designer uses consolidated dynamic and static power mod-
els [Rabaey et al., 2002; Kim et al., 2003] to determine, in the energy model, the energy
cost of each single instruction.

These models are generic and self-contained in the sense that they should not require
nor use, by definition, any information specific to the target simulator or even to the
target architecture. However, to represent the architecture and integrate all three models
together, they share information encoded in a set of operating parameters (Sec. 3.1.4) that
represent, for example, the current supply voltage, frequency and temperature of the
system.

19

1 DM RandomBitFlip();
2 PM LowVddProbability();
3 EM DefaultEM();
4
5 OP default_op = {voltage = 1.0, // V
6 frequency = 400.0}; // MHz
7 OP low_vdd_op = {voltage = 0.8}; // V
8
9 energy = DefaultEM();

10 parameters = default_op;
11
12 approximation LOW_VDD_REGBANK {
13 initial = off;
14 parameters = low_vdd_op;
15 regbank_read = RandomBitFlip();
16 regbank_write = RandomBitFlip();
17 probability = LowVddProbability();
18 }

Figure 3.3: ADeLe description of an adjustable supply voltage register bank.

All models and operating parameters are related to each other and to the target ar-
chitecture, at instruction level, using the ADeLe Description File. Being a bridge between
the generic, self-contained models and the target simulator, this description file is the
only part of the design flow that is written specifically for a target.

Fig. 3.3 exemplifies the ADeLe Description File that represents the adjustable supply
voltage register bank as an approximation that affects all instructions in the ISA. Lines
1-3 declare the methods that implement the three required models: the approximation
model, as a data modifier (DM), the probability model (PM) and the energy model
(EM). Lines 5-7 define two sets of operating parameters that represent the regular
CPU execution and a lower voltage – and low-power – state. The energy model and
parameters that should be used to compute the energy cost in non-modified executions
are set in lines 9,10. Finally, lines 12-18 define how the approximation itself is composed:
all instructions are injected with the data modifier implementation when reading or
writing to the register bank with the probability defined by the probability model.
Moreover, when the execution is approximated, the target processor uses the lower
voltage set of operating parameters, which affects energy computation, as well as the
other models.

To enhance control of the final application execution, ADeLe defines that the ap-
proximations may be activated or deactivated at execution time, avoiding that non-
error-resilient sections of the application are submitted to approximation. An ADeLe-
compatible CPU simulator generates, after processing the description file, a library
containing code to be included into the test application. This library defines a set of
constants representing each approximation defined in the ADeLe Description File and
control functions to interface with the CPU simulator control mechanism. Fig. 3.4 il-

20

1 data_t *data;
2
3 data = acquire_data();
4
5 adele_activate(ADELE_APPROX_LOW_VDD_REGBANK);
6 data = computation_kernel(data);
7 adele_deactivate(ADELE_APPROX_LOW_VDD_REGBANK);
8
9 store_data(data);

Figure 3.4: Simulation control interface.

lustrates how a resilient computation kernel may be isolated from non-resilient data
acquisition and storage operations, allowing just the kernel to be affected by approxi-
mations.

3.1 The ADeLe Language

The approximation representation proposed by ADeLe is composed of a set of models
and a description file that relates them. The ADeLe Description File declares all the
models to be injected into a CPU design, defines sets of operating parameters, groups
instructions in the ISA to support approximation injection, and describes the approxi-
mations themselves. The model declarations (Fig. 3.3, lines 1-3) contain the signatures
of the method implementations, prefixed with an identifier to classify them in approx-
imation (DM or IM – Sec. 3.1.1), probability (PM – Sec. 3.1.2), or energy models (EM –
Sec. 3.1.3).

The definition of operating parameters (Fig. 3.3, lines 5-7), identified by the OP
keyword, is the main integration mechanism between models. Not all operating pa-
rameters in a set need to be explicitly defined, in which case ADeLe keeps the previous
value of the given parameter unchanged. Sec. 3.1.4 details the operating parameters
structure and its integration with the other models defined by ADeLe.

Regardless of whether approximations are activated in the final simulation, ADeLe
requires the definition of a method to compute the energy spent by the simulated
CPU regular operation. Thus, a default energy model and a default set of operating
parameters need to be defined, such as exemplified in Fig. 3.3 in lines 9 and 10. These
defaults are used at the beginning of the simulation and overwritten whenever an
approximation that uses different configurations is activated.

Finally, the ADeLe Description File defines two types of groups: instruction groups
and approximation groups. The instruction groups are arbitrary sets of instructions
in the ISA that share some features in the description, for example, all floating-point
instructions that deal with single-precision data may be subject to a different set of
operating parameters that indicates that their energy cost is higher [Tong et al., 2000].
The example in Fig. 3.5 introduces the description of another approximation in which
the CPU includes a Floating-Point Unit that adjusts itself to a lower-precision (IEEE

21

1 DM Float2HalfPrecision();
2 EM DefaultEM();
3
4 OP default_op = {voltage = 1.0, // V
5 frequency = 400.0}; // MHz
6 OP fpu_op = {scaling = 1.2}; // Scalar
7 OP half_fpu_op = {scaling = 0.6}; // Scalar
8
9 energy = DefaultEM();

10 parameters = default_op;
11
12 group SINGLE_FP { // Single-Precision Floating -Point
13 parameters = fpu_op;
14 instruction = {add.s, sub.s, ...}; // List instructions
15 }
16
17 approximation HALF_PRECISION {
18 initial = off;
19 group SINGLE_FP {
20 regbank_read = Float2HalfPrecision();
21 regbank_write = Float2HalfPrecision();
22 parameters = half_fpu_op;
23 }
24 }

Figure 3.5: ADeLe description of half-precision FPU.

754-2008 Half Precision [IEEE, 2008]) low-power state, in which an instruction group
(lines 12-15) defines that floating point instructions spend more energy than the other
ones in the ISA, using a scaling factor [Tong et al., 2000; Ho et al., 2017].

The approximation groups – or simply approximations – define and name the ap-
proximations injected in the CPU simulator themselves. Each approximation has a
default state (Fig. 3.3, line 13 and Fig. 3.5, line 18) that indicates whether the given
approximation is activated or not at the simulator startup. This state may be changed
by the final application at simulation execution time, thus selecting areas of the appli-
cation that are resilient to approximations. The defined approximations can be injected
into all instructions in the ISA (Fig. 3.3), one or more of the previously defined in-
struction groups (Fig. 3.5), or to specific instructions, at each case all the models and
operating parameters applied to the instructions are selected. This configuration tells
the simulator at which point the execution flow needs to deviate to an approximated
behavior.

3.1.1 Approximation modeling

The methods that define approximation models are divided into two categories: data
modifiers, that model alterations in the data used by an instruction, and implementation

22

modifiers, that change the execution behavior of the affected instruction. Data and
implementation modifiers are identified by the keywords DM and IM, respectively,
and can receive arbitrary data as parameters to model the approximation.

Data modifiers (DM)

These are methods that receive data accessed by an instruction and can apply some
modification in the data. Data modifiers can be applied to read or write operations on
any data source in the target architecture. When using data modifiers, the instruction is
executed without any knowledge that the data was modified. These approximations are
injected into instructions using the set of keywords <source>_<operation>, where source
is the data source and operation is the data-handling operation. Fig. 3.5 exemplifies the
inclusion of data modifiers in register bank read and write operations (lines 20 and
21). This approach can be used to model, for example, incorrect reads in the register
bank due to voltage overscaling [Tagliavini et al., 2017; Slayman, 2011; Calhoun and
Chandrakasan, 2005], data precision tuning [Ho et al., 2017; Sampson et al., 2011] and
other memory access approximations [Miguel et al., 2014; Yazdanbakhsh et al., 2016b;
Ganapathy et al., 2015].

The ADeLe description example in Fig. 3.5 declares the data modifier
Float2HalfPrecision and then associates it with a group of instructions that contains all
single-precision floating-point operations (lines 19-23), provided that the respective ap-
proximations are activated at execution time. The implementation of Float2HalfPrecision
(Fig. 3.6) uses bitwise operations on floating-point values to read and write single-
precision data as half-precision [IEEE, 2008]. Thus, the floating-point operations can be
executed by the original models defined in the CPU modeling, but the results are taken
as if the model had a half-precision floating-point unit.

A data modifier method implicitly receives a data structure containing information
about the source of the data it is modifying and a reference to the data itself. The source
of the data is encoded in a data structure containing the type of the data source (memory,
register bank, special registers), the name of the data source (in case of multiple sources
of the same type), the address of the data (in case of memory or register bank) and the
operation being performed (read or write). This information may be used to determine
whether the approximation should be applied to the data or not. In the data modifier
illustrated in Fig. 3.6, for example, the data modifier is only targeted at the register
bank called “RBF”, representing a register bank dedicated to storing floating-point
data. Thus, although all instructions that deal with floating-point data are affected
by the approximation, only operations in the floating-point register bank are actually
modified.

Implementation modifiers (IM)

Instructions in the CPU model are usually represented as methods that implement
their behavior, performing the action that the operation would execute on hardware.
Implementation modifiers augment this behavioral description by adding code before

23

1 void Float2HalfPrecision(source_t source, word &data) {
2 if (source.type == REGBANK && source.name == "RBF") {
3 // Bitwise operations to convert data
4 data = BitwiseOps(data);
5 }
6 }

Figure 3.6: Example of a data modifier.

the original model (pre-behavior), after (post-behavior), or replacing completely the be-
havior by another function (alt-behavior). AdeLe associates implementation modifiers
to instructions using the keywords pre_behavior, post_behavior and alt_behavior, indicat-
ing the model that implements the approximation and its parameters, which are data
objects available in the processor model scope, such as registers and register bank.

Alt-behavior models apply to dedicated hardware approximation techniques, such
as approximate arithmetic [Lau et al., 2009; Kahng and Kang, 2012; Kulkarni et al.,
2011; Camus et al., 2015; Mrazek et al., 2017], and floating-point [Lee et al., 2009; Camus
et al., 2016b,a; Yin et al., 2016] modules, that replace (or replicate) functional units in the
architecture by approximate counterparts, thus generating, in a modeling perspective,
behaviors that are similar but cannot be represented solely by modifications in the
data. Pre- and post-behavior models can be applied combined with alt-behavior, when
some common procedure needs to take place before or after the approximation to
better represent the results and support code maintainability, or individually, when
the approximation affects operands or results and the instruction itself is executed
following its original behavior, similar to a data modifier, but more specific to a single
instruction.

The example in Fig. 3.7 injects Kulkarni’s multiplier [Kulkarni et al., 2011] into
integer multiplication instructions. The multiplier implementation receives the operand
data from the register bank and references to the target registers where the product is
written to. We took advantage of C++ method overloading to represent Kulkarni’s
method for both 32-bit and 64-bit (divided into halves) results, according to the MIPS
ISA specification. Considering that Kulkarni’s multiplier is unsigned, sign extension
needs to be performed in order to correctly represent signed multiplication with signed
operands, which is modeled as a post-behavior for the signed multiplication instruction
(line 21).

3.1.2 Probability models (PM)

The method that implements a probability model, identified by the keyword PM,
should return a boolean defining whether or not the approximation, at an instruction
level, should take place. Probability models, as all other methods defined by ADeLe,
have access to the operating parameters data structure, that can be used to determine
the probability. For example, consider the function LowVddProbability in Fig. 3.3 (line 2):
a lower supply voltage may increase the probability of a data-modifier approximation

24

1 IM Kulkarni(word a, word b, word &hi, word &lo);
2 IM Kulkarni(word a, word b, word &r);
3 IM SignExtend(word a, word b, word &hi, word &lo);
4 EM DefaultEM();
5
6 OP default_op = {voltage = 1.0, // V
7 frequency = 400.0}; // MHz
8 OP kulkarni_op = {scaling = 0.7}; // Scalar
9

10 energy = DefaultEM();
11 parameters = default_op;
12
13 approximation KULKARNI_MUL {
14 initial = on;
15 instruction multu {
16 alt_behavior = Kulkarni(RB[rs], RB[rt], hi, lo);
17 parameters = kulkarni_op;
18 }
19 instruction mult {
20 alt_behavior = Kulkarni(RB[rs], RB[rt], hi, lo);
21 post_behavior = SignExtend(RB[rs], RB[rt], hi, lo);
22 parameters = kulkarni_op;
23 }
24 instruction mul {
25 alt_behavior = Kulkarni(RB[rs], RB[rt], RB[rd]);
26 parameters = kulkarni_op;
27 }
28 }

Figure 3.7: ADeLe description of Kulkarni’s multiplier.

25

affecting the register bank [Calhoun and Chandrakasan, 2005; Tagliavini et al., 2017],
thus a function that accounts for supply voltage when rolling the dice to determine the
occurrence may be implemented as the probability model for this approximation.

The probability model is coupled to an approximation using the keyword probability,
which may be included either within the approximation group, when the same proba-
bility applies to all instructions that receive the approximation, or within an instruction
block. Considering that probability models represent the likelihood of an approxima-
tion, they are not always required. While in the example of the adjustable voltage
register bank (Fig. 3.3, line 17) the model decides if the lower supply voltage should
affect the register bank operation at a given time, in the following half-precision FPU
(Fig. 3.5) and Kulkarni multiplier (Fig. 3.7) examples, the occurrences are deterministic
– the results are always approximated – and the probability model is not required.

3.1.3 Energy models (EM)

The methods that implement energy models, as defined by ADeLe, can take arbitrary pa-
rameters (such as a functional unit input operands), as well as the operating parameters,
and return a number that represents, in Joules, how much energy one single instruction
execution uses. Such flexible approach when computing energy allows designers to
model their approximate circuits consumption at various levels of simplification. That
is, the energy model abstraction can accommodate, but not be limited to, simplified
models that assume every instruction to contribute equally and proportionally to the
energy consumption [Tiwari et al., 1996; Guedes et al., 2013; Gupta et al., 2010; Jaianti-
lal et al., 2010], consolidated models that take into account physical variables such as
voltage and frequency [Rabaey et al., 2002; Kim et al., 2003], common assumptions that
energy is determined by the functional units involved in computation, disregarding
control structures [Kulkarni et al., 2011; Camus et al., 2015; Kahng and Kang, 2012], or
even fully customized models targeted at specific scenarios to represent precisely the
energy consumption of a real system [Isci and Martonosi, 2003; Bertran et al., 2012].

Regardless of the chosen modeling approach, the reliability of the computed energy
consumption resides on the model, and not in the abstraction proposed by ADeLe, and
thus care must be taken to adequate and evaluate the model for the targeted scenario.
At this point, ADeLe still contributes as a powerful tool, in a sense that models can be
easily replaced at a high-level description and tested against multiple scenarios, at the
designer discretion.

Energy models are declared using the EM keyword within the ADeLe description
file. Models can be associated with instruction groups (where they are used for those
instructions regardless of an active approximation), approximation groups, or approx-
imated instructions, using the energy keyword. Considering that the simulator needs
to compute energy for the whole execution, an energy model needs to be associated
outside any groups, approximations or instructions in the description, and it is taken
as the default energy model when no other is set.

26

3.1.4 Operating parameters (OP)

The operating parameters structure represent a collection of physical conditions in
which the simulated processor is running, such as supply voltage, operating frequency,
and temperature. The operating parameters represent the primary integration mech-
anism between all three types of models defined by ADeLe. For example, the voltage
at which the CPU is running can be used to determine whether an approximation
should happen, in the probability model, compute the energy used by the operation,
in the energy model, and define what parts of the execution are affected and how,
in the approximation model, affecting multiple implemented approximations at the
same time [Mineo et al., 2016; Gautschi et al., 2016; Tagliavini et al., 2017; Calhoun and
Chandrakasan, 2005].

Considering that operating parameters are dependent on the implemented approx-
imations, they can also be changed at execution time. This can, for example, represent
dynamic voltage-frequency scaling (DVFS) features in the simulated CPU and trigger,
using probability and approximation models, different behaviors in the functional units
due to overscaling [Chippa et al., 2014].

The operating parameters are declared using the OP keyword, and associated with
groups of instructions (Fig. 3.5, line 13), approximations (Fig. 3.3, line 14), instructions
(Fig. 3.7, lines 17, 22, 26), or as the default parameters using the parameters keyword.

3.2 ADeLe implementation into a CPU simulator

ADeLe was designed to represent approximations according to their behavior in the
target architecture, resembling a functional simulator. To implement these concepts,
we extended the simulation tools in the ArchC framework [Rigo et al., 2004] with the
VArchC module, that allows the generation of ADeLe-compatible simulators. Based on
the SystemC Hardware Description Language, the ArchC language generates processor
models written in C++ by describing the behavior of each instruction in a customized
software method, and thus ADeLe is a good fit for these models. Moreover, the integra-
tion with the ArchC framework allows the representation of other target architectures,
by modeling them in the ArchC abstraction, and associated peripherals, in their Sys-
temC description, creating an extensible and generic framework. Although ArchC is a
convenient framework to represent a generic simulator, the proposed extension modi-
fies common structures in functional simulators – the instruction decoder and storage
accesses – and could similarly by applied to other simulators. Fig. 3.8 shows a simplified
class diagram of a original ArchC CPU model and, highlighted, the VArchC extensions.

The ArchC Language describes processor models according to their structure and
the behavior of the instructions. The structural information contains declarations for
higher-level architecture characteristics, such as word size, number of words fetched
from memory at each instruction, instruction formats, register bank size and memory
connectivity. These provide the required information for a behavioral description of
the instructions [Rigo et al., 2004]. Each instruction in the ISA is represented by a C++

27

arch

VArchC::control

VArchC::arch

cpu

memory

register

regbank

VArchC::memory

VArchC::register

VArchC::regbank

VArchC::cpu

Figure 3.8: Simplified class diagram of ArchC extension.

method describing the operations executed, which the simulator instruction decoder
calls when the corresponding instruction is executed.

This model has a straight-forward relation with the modeling of implementation
modifiers using ADeLe. The instruction decoder was modified to deviate from the in-
struction default behavior. It verifies whether an implementation modifier is activated
for the given instruction, using internal control structures, and runs the probability
model. If an approximation is activated for the given instruction, it dispatches function
calls to pre-behavior, the default behavior, alt-behavior, and/or post-behavior accord-
ingly, as well as to the energy model.

Storage structures, such as memories, register banks and dedicated-purpose regis-
ters in the architecture, are modeled, in ArchC, using specific C++ classes that imple-
ment their function. Then, each storage structure in the CPU model is represented as
an instance of the class that models the respective structure. To inject data modifiers,
we use approximation-enabled C++ classes that interface with the original storage
classes, and use method and operator overloading to produce approximate reads and
writes, calling the selected data modifier implementation method for each operation.
This modeling approach is transparent to the original instruction behavior descrip-
tion, in a sense that data accesses are still performed the same way, not requiring any
modification.

3.2.1 Software interface

ADeLe defines that approximation groups may be enabled or disabled at execution time,
to isolate, in the application, regions that are resilient and more likely to benefit from the
energy-quality trade-off. However, to allow such feature, a communication interface

28

was defined between the final application and the CPU model, controlling the internal
structures that define which approximations are enabled for which instructions.

In the current ArchC-based implementation, this interface is defined through a
memory-mapped hardware register. In the application side, an auto-generated library
header defines a pointer to the hardware register and methods that allow control over
the simulation, activating and deactivating approximations. The simulator recognizes
that the application uses the hardware register and triggers the control subroutines
whenever an instruction accesses the pointer.

The memory-mapped hardware register alternative has the advantages of being
transparent to the final application and independent of architectural characteristics.
However, since the control relies on memory operations in the application side, the
control subroutine may be affected by approximations applied to memory operations.
To avoid such unlikely situation, the ADeLe framework offers the alternatives of creating
a dedicated instruction for control or using a set of existing instructions with pre-defined
operands. These alternatives improve the simulation control, but may require further
architectural modeling and compiler support in the application level.

29

Chapter 4

Demonstration and results

To demonstrate how the ADeLe framework can be employed in the validation of Ap-
proximate Computing techniques, we built two simulation scenarios. In the first one,
underdesigned hardware (Sec. 4.1), we show how to model modified functional units
in a processor, and how such modified hardware affects common applications [Felz-
mann et al., 2018b]. The second scenario, voltage-overscaled memories (Sec. 4.2), brings a
adjustable-voltage memory architecture in which we show how various supply volt-
age levels affect the execution of multiple applications from various computing do-
mains [Felzmann et al., 2018a].

We executed our experiments on an ArchC-generated MIPS processor model. The
MIPS model (v. 2.4.0) and ArchC software (v. 2.4.1), both compiled with GCC 4.9.2,
are available at the ArchC webpage. Benchmarks were cross-compiled using ELLCC v.
0.1.34, with target set to big-endian, hard-float 32-bit MIPS.

4.1 Underdesigned hardware

In underdesigned hardware, we use the ADeLe framework to simulate a processor that had
two functional units, the hardware multiplier and the Floating Point Unit, replaced by
approximate counterparts. The multiplier replacements were five selected alternatives
from the EvoApprox8B library [Mrazek et al., 2017], over which we executed four image
processing applications. The FPU was configured to operate in Half Precision [IEEE,
2008] to run two floating point applications. The results show significant error saving
with negligible quality degradation for most individual cases.

4.1.1 Implemented approximations

Approximation techniques were selected to cover both integer and floating-point ap-
plications and model instruction and data modifiers. Due to their energy consumption,
time restrictions and perceived resiliency to approximations we target multiplication
and floating-point instructions [Kulkarni et al., 2011; Mrazek et al., 2017; Camus et al.,
2016b; Yin et al., 2016].

30

1 IM Evo479(word a, word b, word hi, word lo, bool sign);
2 IM Evo479(word a, word b, word r);
3 EM SimpleEM();
4
5 OP default_op = {scaling = 1.0000};
6 OP evo479_op = {scaling = 0.7005};
7
8 energy = SimpleEM();
9 parameters = default_op;

10
11 approximation EVOAPPROX_479 {
12 initial = off;
13 instruction multu {
14 alt_behavior = Evo479(RB[rs], RB[rt], hi, lo, false);
15 parameters = evo479_op;
16 }
17 instruction mult {
18 alt_behavior = Evo479(RB[rs], RB[rt], hi, lo, true);
19 parameters = evo479_op;
20 }
21 instruction mul {
22 alt_behavior = Evo479(RB[rs], RB[rt], RB[rd]);
23 parameters = evo479_op;
24 }
25 }

Figure 4.1: ADeLe description of one EvoApprox8B instance.

EvoApprox8b multipliers

EvoApprox8b [Mrazek et al., 2017] is a benchmarking library of approximate 8-bit
adders and multipliers evolved by genetic programming. The authors provide Verilog
HDL descriptions and C models for all units in the library. We consider only the ap-
proximate multipliers, and built 32-bit modules from partial products using a Wallace
Tree architecture. Energy savings were estimated using Cadence RTL Compiler over
a baseline multiplier built completely from the tool optimization of a Verilog regular
multiplication operation. The approximated multiplication instruction was represented
as an implementation modifier, as illustrated in Fig. 4.1, which shows the representa-
tion of one multiplier instance in the library (479). The overloaded methods Evo479()
build the Wallace Tree from multiple copies of multiplier instance 479 to allow 32-bit
multiplication. The Energy Model SimpleEM() returns the scaling operating parameter
as the instruction energy cost, thus providing a relative energy counter.

Single- to half-precision floating-point

Both operands and results of single-precision operations are converted to half-precision
according to the IEEE 754 pattern [IEEE, 2008]. Tong et al. [2000] analyzed the energy

31

Sobel Sharpening Smoothing JPEG
0%

2%

4%

6%

8%

10%

12%

14%

K
e
rn
e
l
co

v
e
ra
g
e
 [
%
]

Figure 4.2: Percentage of kernel multiplications approximated.

consumption of multiple bitwidth floating-point architectures and reported 30% energy
savings when using 16-bit operands and half-precision compatible significand fields.
The approximated half-precision floating-point operations were represented as a data
modifier, as described in the example in Sec. 3.1.1, Fig. 3.5.

4.1.2 Selected benchmarks

To represent the selected classes of approximations, applications on Image Process-
ing – that usually rely on integer arithmetic, multiplication included – and floating
point computation were selected and adapted from the AxBench [Yazdanbakhsh et al.,
2016a] benchmark suite, as well as other freely distributed software. Image Processing
applications were executed on 26 images from the USC-SIPI image database [SIP, 1997].

Image Processing

The selected Image Processing applications were the Sobel edge detection algorithm, as
employed in [Wanner et al., 2013], the Gauss filter implementation for Image Sharpening
and Image Smoothing, as described in [Lau et al., 2009] and [Kulkarni et al., 2011], and
the JPEG compression algorithm from AxBench [Yazdanbakhsh et al., 2016a]. In the
convolution-based algorithms (Sobel, Sharpening, and Smoothing), we replaced the
multiplication in the convolution for selected approximate multipliers from EvoAp-
prox8b [Mrazek et al., 2017]. For JPEG, AxBench provides additional information, in
the source code, about which data structures are resilient to approximations, so we
approximate all the multiplication operations where products were written to these
structures. Fig. 4.2 shows the number of approximate operations relative to the appli-
cation kernel. The resulting images for all approximate applications were compared
with accurate executions using a usual Peak Signal-to-Noise Ratio (PSNR) metric.

32

Black-Scholes FFT
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

K
e
rn
e
l
co

v
e
ra
g
e
 [
%
]

Figure 4.3: Percentage of kernel floating point operations approximated.

Floating-point

Two applications were selected from the AxBench [Yazdanbakhsh et al., 2016a] bench-
mark suite: Black-Scholes option price computing and Fast Fourier Transform. In both ap-
plications, we replaced all single-precision floating-point operations with half-precision
operations (Fig. 4.3), truncating the operands with a data modifier as discussed in
Sec. 3.1.1. Black-Scholes was executed over one thousand options, generated using the
input generator from PARSEC [Bienia, 2011] suite, and results were evaluated accord-
ing to the absolute error. The FFT execution was repeated 50 times over vectors of length
1K to 64K random values each, and results compared using the average relative error
between the accurate (single-precision) and inaccurate (half-precision) computations.

4.1.3 Results

Applications were executed in the simulator in order to obtain the quality of results
and relative energy consumption, comparing accurate and inaccurate computations.
Except for the JPEG application, Image Processing applications showed resiliency to
relative error rates on integer multiplication from 2% to 5%, allowing energy savings at
a visually indistinguishable loss in quality. The floating-point approximation achieved
higher instruction coverage than the integer one in the tested applications and thus
exhibited a higher potential to save energy at low error rates.

Quality – Image Processing

EvoApprox8b [Mrazek et al., 2017] is an extensive library, thus we selected a subset of
the multipliers based on their theoretical, non-specific, energy-quality trade-off. After
expanding the original 8-bit modules to 32-bit ones in a Wallace Tree organization, we
used the software models distributed in the library to describe the same multiplier
organization in software and evaluate the mean relative error for all multipliers, using
an extensive uniform dataset. Fig. 4.4 shows the energy-quality trade-off for the mul-

33

0 2 4 6 8 10
Mean relative error [%]

0.4

0.6

0.8

1.0

1.2

En
er
gy

/o
pe

ra
tio

n
(n
or
m
al
ize

d)

Figure 4.4: Energy-quality trade-off of 32-bit multipliers.

Table 4.1: Selected EvoApprox8b multipliers.

Multiplier Mean relative error Relative energy per operation
Accurate 0.00% 100.0%
mul8_303 0.22% 95.68%
mul8_469 0.93% 79.19%
mul8_479 2.00% 70.05%
mul8_423 5.23% 49.97%
mul8_279 9.39% 39.30%

tipliers, where energy per operation is normalized at the consumption of a multiplier
fully optimized by the synthesis tool from the regular HDL multiplication operator.

At higher quality metrics, the approximate multipliers tend to have higher energy
consumption than the baseline. This shows the energy overhead of associating multiple
smaller multipliers to build larger ones. However, as quality decreases, it is clear that
the architectures consume less energy, achieving savings of up to 60%. In addition
to the baseline accurate multiplier, we selected the five multipliers that achieve the
lowest energy consumption at given maximum error metrics, and ran the benchmark
applications after modeling their behavioral description in our processor model. The
selected multipliers are summarized on Table 4.1.

Fig. 4.5 shows the resulting image quality after computation. Except for the JPEG
application, PSNR was calculated between the accurately computed image and the
approximated one. For JPEG, the images were compared directly with the original
uncompressed image. Fig. 4.6 demonstrates the image outputs.

The approximate multipliers performed particularly well in the algorithms based
on the Gauss filter – Sharpening and Smoothing. Using mul8_303, 10 out of 26 are
identical to the accurately computed ones for Image Sharpening. For Image Smoothing,
the results show that up to 1% mean relative error in multiplication has no effect on
the resulting image. Higher error rates, despite lowering the PSNR, are still visually
indistinguishable (Figs. 4.6b and 4.6c).

34

0

10

20

30

40

50
PS
NR
 [d
B]

Sobel Sharpening Smoothing JPEG
Ac
cur
ate

Ac
cur
ate

Ac
cur
ate

Ac
cur
ate

∞ ∞ ∞

mu
l8_
30
3

mu
l8_
30
3

mu
l8_
30
3

mu
l8_
30
3

∞

mu
l8_
46
9

mu
l8_
46
9

mu
l8_
46
9

mu
l8_
46
9

∞

mu
l8_
47
9

mu
l8_
47
9

mu
l8_
47
9

mu
l8_
47
9

mu
l8_
42
3

mu
l8_
42
3

mu
l8_
42
3

mu
l8_
42
3

mu
l8_
27
9

mu
l8_
27
9

mu
l8_
27
9

mu
l8_
27
9

Figure 4.5: Peak Signal-to-Noise Ratio of computed images.

(a) Sobel

(b) Sharpening

(c) Smoothing

(d) JPEG

Figure 4.6: Image Processing applications: Accurate and inaccurate multiplications.

The other convolution-based algorithm, Sobel edge detection, despite presenting
smaller Signal-to-Noise ratio than the Gauss-based ones, also showed some visual
resiliency to approximations, as demonstrated in Fig. 4.6a. JPEG compression was the
least resilient application (Fig. 4.6d), even though multiplication represents only 1.1%
of the computation kernel (Fig. 4.2).

35

0 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Magnitude of absolute error
0

10
20
30
40
50
60
70

%
 o
f o

pt
io
ns

2.4% 0.1% 0.2% 0.0% 1.6%

22.5%

67.6%

5.6%

Figure 4.7: Black-Scholes: Average relative error.

1K 2K 4K 8K 16K 32K 64K
Input vector length

0.6

0.7

0.8

0.9

1.0

1.1

Av
er
ag

e
Re

la
tiv

e
Er
ro
r (
%
)

0.69

0.77

0.85

0.93

1.01

1.09

Figure 4.8: Fast Fourier Transform: Average relative error.

Quality – Floating-point

For Black-Scholes, approximations in floating-point instructions covered 44.6% of the
instructions in the applications kernel (Fig. 4.3). The maximum absolute error observed
was in the order of 10−2, and 2.4% of the options resulted in a value identical to the
accurately computed ones. The majority (90.1%) was in an error range from 10−5 to 10−3

(Fig. 4.7). PARSEC’s input generator [Bienia, 2011] just replicates the default 1000 op-
tions input set to generate larger ones and the modeled approximation is deterministic.
Therefore, increasing the size of the input set has no effect on the quality of results.

In the Fast Fourier Transform application, the approximated floating-point instruc-
tions represent 24.8% of the application kernel (Fig. 4.3). All the approximate computa-
tions are in a range ±1% relative to the accurately computed equivalents. Fig. 4.8 also
shows that the relative error increases logarithmically with the size of the input set. The
small relative error demonstrates the resiliency of FFT to this kind of approximation.

36

86
88
90
92
94
96
98

100
Av

er
ag

e
en

er
gy

 p
er

 in
st

ru
ct

io
n

[%
]

Sobel Sharpening Smoothing JPEG Black-Scholes FFT
Accu

rate

Accu
rate

Accu
rate

Accu
rate

mul8_303

mul8_303

mul8_303

mul8_303

mul8_469

mul8_469

mul8_469

mul8_469

mul8_479

mul8_479

mul8_479

mul8_479

mul8_423

mul8_423

mul8_423

mul8_423

mul8_279

mul8_279

mul8_279

mul8_279

Single FP

Single FP

Half F
P

Half F
P

Figure 4.9: Effect of approximations on average energy per instruction.

Energy consumption

To compute energy, we use a simplified energy model that defines the energy consump-
tion of all instructions as uniformly spent by the functional units used on computa-
tion, as an approximation for a scalar in-order microarchitecture [Guedes et al., 2013].
Thus, the energy savings in a single instruction is proportional to the savings in the
executed operation, so the approximation lowers the average energy-per-instruction
consumption of the application as a whole according to the approximation coverage in
the computation kernel. Using ADeLe, this behavior is easily reproduced by changing
the scaling operating parameter (Section 3.1.4). Although ADeLe can represent more
complex and accurate energy models, we adopt such a simplified alternative for a
plain comparison, considering it is commonly used in approximate hardware verifica-
tion [Kulkarni et al., 2011; Camus et al., 2015; Kahng and Kang, 2012].

Fig. 4.9 shows how approximations affect the average energy per instruction relative
to the accurate computation. As expected, the applications in which approximated
instructions present higher coverages in the application kernel benefit more on energy
savings, particularly the floating-point applications.

The Image Processing applications presented lower energy savings mostly due to
the low coverage that multiplication instructions represent in the computation kernel.
The convolutions nested loops impose a control overhead, lowering the relative number
of calculations executed in the kernel. The multiplication operation itself, however, can
potentially save up to 30% energy at a 2% mean relative error (Table 4.1). This suggests
that more multiplication intensive applications can potentially benefit more from such
approximations.

Furthermore, simpler hardware for both integer and floating-point approxima-
tions can potentially use a lower voltage supply, which lowers the energy consump-
tion [Borkar, 2016; Chippa et al., 2014]. Considering that both the integer multiplication
hardware and the floating-point unit may be in the processor critical path, the lower
supply voltage could be applied not only to the particular module, but to the CPU as
a whole, allowing even lower energy consumption [George et al., 2006]. Using ADeLe,
this situation can be easily modeled with the proper energy model by changing the

37

1.0
e-9

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

500

600

700

800

900

Vo
lta

ge
 [m

V]

(a) Operating voltage

1.0
e-9

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

20%

30%

40%

50%

60%

70%

Re
la
tiv

e
en

er
gy

 c
on

su
m
pt
io
n
[%

]

(b) Energy

A

B

C

D

Error rate

E
x
p
e
c
te

d
 e

n
e
rg

y
 [

%
]

(c) Energy trade-off

Figure 4.10: Relation between memory errors and energy.

value of the voltage operating parameter (Sec. 3.1.4), making straight-forward energy
estimations possible.

4.2 Voltage-overscaled memories

In our second scenario, voltage-overscaled memories, we use the ADeLe framework to
demonstrate the energy-quality trade-off in multiple applications when their executions
are subjected to error-susceptible memories. We injected three different types of errors
– BitFlip, StuckAt(0) and StuckAt(1) – in memory read and write operations at given
error rates and estimated a supply-voltage level according to a statistical model in the
literature [Wang and Calhoun, 2011]. Figs. 4.10a and 4.10b show the relation between
the error rate and operating voltage and energy.

The occurrence of memory errors can cause the application to crash, in which case
that no output is computed, or to produce low-quality results. To recover unusable
results we define a mechanism based on error-free re-execution, such as in [Carlisle
and George, 2018] and [Khudia et al., 2015]. Fig. 4.10c shows the average expected
energy cost of computation, considering that some results may require re-execution.
At the start point A, the error rate is so low that it compares to an error-free, precise,
computation, with equivalent energy consumption. As the error rate rises, some energy
is saved until the equilibrium point B, where the most energy is saved and few re-
executions are needed. The more re-executions, the more energy is spent with them,
until the maximum point C, where many approximate executions complete in a lower
than acceptable quality. Finally, execution crashes cause the premature end of some
execution instances, reducing the energy cost until point D, where re-execution is
dominant.

Our experiments show the optimal equilibrium point between error rate and energy
for 5 out of 9 test applications that represent common tasks in computing systems. The
results demonstrate the energy profile of each application and the energy-quality trade-
off, with up to 30% energy savings for a 80% quality threshold.

38

1 DM BitFlip();
2 EM OverscaledEM();
3 PM OverscaledPM();
4
5 energy = OverscaledEM();
6
7 approximation BITFLIP_MEM {
8 initial = on;
9 probability = OverscaledPM();

10 mem_read = BitFlip();
11 mem_write = BitFlip();
12 }
13
14 approximation BITFLIP_REG {
15 initial = on;
16 probability = OverscaledPM();
17 regbank_read = BitFlip();
18 regbank_write = BitFlip();
19 }

Figure 4.11: ADeLe description of one EvoApprox8B instance.

4.2.1 Implemented approximations

This scenario is based in a hypothetical low-power embedded processor. This con-
ceptual model implements a set of “approximation states” that directly influence the
supply voltage of both the register bank and data memory. Each approximation state
is associated with an error rate, or probability of occurrence of one error during a read
or write operation [Wang and Calhoun, 2011].

To represent the approximation states, all read and write operations in both register
bank and memory were replaced by an augmented software model using an ADeLe
data modifier (Sec. 3.1.1). The software model select one random bit in the data word
and applies one of three modifications: a bit flip, a stuck at zero, or a stuck at one fault.
Fig. 4.11 shows a sample ADeLe Description File that injects bit flips in both memory
and register bank operations. The sample abstracts the Energy and Probability models,
that are implementations of the method in [Wang and Calhoun, 2011].

4.2.2 Selected benchmarks

Nine different applications were selected to represent a set of common elements in
embedded systems. For each application, the code in the execution kernel was isolated,
using the ADeLe software control interface, and the errors were applied only to this
region. Thus, the input and output operations, which are part of the simulation en-
vironment, were executed in a non-approximated state. The selected applications and
their quality metrics are:

39

• Typical applications: Typically, related work on Approximate Computing use
multimedia processing algorithms to demonstrate results, mostly due to their per-
ceived resiliency to approximations [Mittal, 2016]. To represent these, we selected
the JPEG compression algorithm from AxBench [Yazdanbakhsh et al., 2016a] and
Fast Fourier Transform from MiBench [Guthaus et al., 2001]. JPEG quality was es-
timated by comparing accurate- and approximate-computed using the Structural
Similarity Index [Wang et al., 2004; Avanaki, 2009]. For FFT, we accounted for the
number of samples out of a tolerance margin of 10−9 after reconstruction.

• CPU-Bound applications Mandelbrot, N-Body e SpectralNorm were selected
from [Gouy, 2004?]. These applications have in common their higher use of CPU
and less access to memory, potentially demonstrating higher resiliency to memory
approximations. The bitmaps generated by Mandelbrot were compared using the
Structural Similarity Index [Wang et al., 2004; Avanaki, 2009], and we computed
the Mean Relative Error of the N-Body and SpectralNorm numeric outputs.

• Memory-Bound applications: Since these present higher memory usage, the ap-
plications Dijkstra, QSort and bzip compression and decompression (bunzip),
selected from MiBench [Guthaus et al., 2001] e cBench [Fursin, 2010?], are more
susceptible to memory approximations. Quality for QSort was computed account-
ing for the number of correctly ordered elements. For Dijkstra, the output was
modeled in the form of a routing table, in which each element in line i and column
j is the next hop to destination j from i. Thus, quality is the fraction of correctly
computed hops. The bzip algorithms were used to compress and decompress text
files, and quality computed by the similarity of their contents – length of similar
substrings.

4.2.3 Results

Each application was run 100 times at 10 different error rates. For each execution, we
analyzed the application resilience – or the probability of an error to make the applica-
tion crash – and the final quality of results. From resilience and quality, we estimated
the likelihood of an instance to require a re-execution, and energy was accounted using
the method in [Wang and Calhoun, 2011].

Resilience analysis

In the resilience analysis, the occurrence of a crash means that an execution was inter-
rupted before the computation produced a valid result. The crashes were classified in
three categories:

• Flow crash: occurs when a branch target is incorrectly read, causing the program
to be deviated to an invalid address.

• Data crash: occurs when data is fetched from an invalid memory address (Seg-
mentation Fault).

40

0%

50%

100%

Bi
tF
lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut
io
ns

 [%
]

(a) JPEG

0%

50%

100%

Bi
tF
lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut
io
ns

 [%
]

(b) FFT

0%

50%

100%

Bi
tF
lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut
io
ns

 [%
]

(c) N-Body

0%

50%

100%

Bi
tF

lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-9

6.0
e-9

3.6
e-8

2.2
e-7

1.3
e-6

7.7
e-6

4.6
e-5

2.8
e-4

1.7
e-3

1.0
e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut

io
ns

 [%
]

(d) Mandelbrot

0%

50%

100%

Bi
tF

lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-9

6.0
e-9

3.6
e-8

2.2
e-7

1.3
e-6

7.7
e-6

4.6
e-5

2.8
e-4

1.7
e-3

1.0
e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut

io
ns

 [%
]

(e) SpectralNorm

0%

50%

100%

Bi
tF

lip
0%

50%

100%

St
uc

kA
t(0

)

1.0
e-9

6.0
e-9

3.6
e-8

2.2
e-7

1.3
e-6

7.7
e-6

4.6
e-5

2.8
e-4

1.7
e-3

1.0
e-2

Error rate

0%

50%

100%
St

uc
kA

t(1
)

Ex
ec

ut
io

ns
 [%

]

(f) Dijkstra

0%

50%

100%

Bi
tF

lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-9

6.0
e-9

3.6
e-8

2.2
e-7

1.3
e-6

7.7
e-6

4.6
e-5

2.8
e-4

1.7
e-3

1.0
e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut

io
ns

 [%
]

(g) bzip2

0%

50%

100%

Bi
tF
lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut
io
ns

 [%
]

(h) bunzip2

0%

50%

100%

Bi
tF
lip

0%

50%

100%

St
uc

kA
t(0

)

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

50%

100%

St
uc

kA
t(1

)
Ex

ec
ut
io
ns

 [%
]

(i) QSort

Figure 4.12: Resilience analysis.

• Timeout: occurs when a valid result is not computed within the time limits.
The maximum time an approximate execution can take was fixed in 5 times the
accurate execution of the same instance.

41

Fig. 4.12 shows the resilience analysis. In general, errors in the register bank provoke
more crashes in the control flow. The register bank stores, additionally to local values,
memory addresses, loop control variables, and function return addresses. Also, the
timeout crashes concentrate mainly in situations where errors are applied to the register
bank, demonstrating the low resilience of control structures to approximations.

The stuck at zero errors are perceived easily masked by the applications in terms of
execution crashes. This kind of error, when affecting memory addresses, tends to change
the datum to an address that is part of the same program, possibly in the same memory
page, mitigating data and flow crashes. On the other hand, this same behavior, when
applied to branch target addresses or loop control variables, increases the application
execution time, possibly creating endless loops, increasing timeout crashes, especially
in convergence-based applications such as N-Body (Fig. 4.12c) and Dijkstra (Fig. 4.12f).

Application resilience is a limiting factor in the energy-quality trade-off, since an
execution crash results in useless computation and, consequently, waste of energy
budget. Additionally, even when a crash does not occur, control flow issues may lead
to a higher execution time, which also negatively affects the energy cost.

Most crashes caused by the errors injected in memory are data crashes. This kind of
crash may be masked by isolating critical data regions containing pointers and branch
targets, such as the application stack. Thus, applications would potentially show better
resilience, since the errors would affect only memory words representing general data.
On the other hand, this critical memory region should be kept in error-free mode, which
impacts the final energy cost of operation.

Quality of results

Fig. 4.13 shows the average quality of results for each application, in comparison with
accurate executions. The averages were taken considering all 100 executions for each
error rate with a confidence interval of 95%. Executions that resulted in an execution
crash were considered as 0% quality, meaning no result was obtained.

Execution crashes are dominant factors in final quality. The isolation of control
structures may avoid such crashes, directing the impact of memory errors to the final
results. The analysis of the initial points in each plot of Fig. 4.13 shows that the loss in
quality is smoother in executions successfully completed, what indicates that higher
energy savings could be achieved.

Another effect of low resilience of applications is the higher impact on quality caused
by approximations in registers. Yet, not considering crashes, they cause higher quality
degradation. Since any application would operate much more times in registers than
in memory, these end up being more affected by errors. This indicates a drawback on
the approximation technique when applied to the register bank.

Energy

Although approximated memory structures offer power savings, the occurrence of ex-
ecution crashes and the quality degradation may require the re-execution of certain

42

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(a) JPEG

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(b) FFT

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(c) N-Body

1.0
e-9
6.0

e-9
3.6

e-8
2.2

e-7
1.3

e-6
7.7

e-6
4.6

e-5
2.8

e-4
1.7

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(d) Mandelbrot

1.0
e-9
6.0

e-9
3.6

e-8
2.2

e-7
1.3

e-6
7.7

e-6
4.6

e-5
2.8

e-4
1.7

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%
Qu

al
ity

 [%
]

(e) SpectralNorm

1.0
e-9
6.0

e-9
3.6

e-8
2.2

e-7
1.3

e-6
7.7

e-6
4.6

e-5
2.8

e-4
1.7

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(f) Dijkstra

1.0
e-9
6.0

e-9
3.6

e-8
2.2

e-7
1.3

e-6
7.7

e-6
4.6

e-5
2.8

e-4
1.7

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(g) bzip2

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%

Qu
al
ity

 [%
]

(h) bunzip2

1.0
e-8
4.6

e-8
2.2

e-7
1.0

e-6
4.6

e-6
2.2

e-5
1.0

e-4
4.6

e-4
2.2

e-3
1.0

e-2

Error rate

0%

20%

40%

60%

80%

100%
Qu

al
ity

 [%
]

(i) QSort

Figure 4.13: Quality of results.

instances. When a re-execution in accurate more is needed, it impacts the energy con-
sumption. Based on the quality of results (Fig. 4.13), we estimate the probability of an
execution to result in lower than acceptable quality, triggering a re-execution. Fig. 4.14
shows this probability for different quality thresholds, considering errors applied to
memory and registers.

An accurate-mode re-execution results in a fixed energy penalty for each application.
On the other hand, an approximate-mode execution energy depends on the elapsed
time before obtaining a result or occurrence of a crash. This, the expected relative energy
was computed according to the number of instructions executed in both accurate and
approximate modes.

Fig. 4.15 relates the error rate to the energy cost for each application in a 95%
confidence interval. Generally, all applications show energy savings by lowering the
acceptable quality threshold, considering errors applied to memory. For the registers,

43

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%

Re
ex

ec
ut
io
n
pr
ob

ab
ilit

y
[%

]

(a) Memory, Q > 50%

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%

Re
ex

ec
ut
io
n
pr
ob

ab
ilit

y
[%

]

(b) Memory, Q > 70%

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%

Re
ex

ec
ut
io
n
pr
ob

ab
ilit

y
[%

]

(c) Memory, Q > 90%

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%

Re
ex

ec
ut
io
n
pr
ob

ab
ilit

y
[%

]

(d) RegBank, Q > 50%

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%
Re

ex
ec

ut
io
n
pr
ob

ab
ilit

y
[%

]

(e) RegBank, Q > 70%

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

20%

40%

60%

80%

100%

Re
ex

ec
ut
io
n
pr
ob

ab
ilit

y
[%

]

(f) RegBank, Q > 90%

Figure 4.14: Re-execution probability.

however, most results do not even demonstrate any savings, mostly due to the low
resilience of applications.

Particularly, including errors in registers for the FFT application caused a great
fluctuation on the number of executed instructions in approximate mode between
executions. A similar behavior is observed analyzing the large number of timeout
crashed for this applications (Fig. 4.12b). The nested loops in the FFT algorithm does
not favor errors affecting control structures, such as registers.

The energy results show a behavior similar to the expected one (Fig. 4.10c), in which
the energy cost is reduced up to a point where quality losses are dominant, requiring
re-execution. This inflection point in energy consumption – point B in Fig. 4.10c – is
visible for 5 out of the 9 applications in our test case. The other applications present
a positive bias in the initial points, indicating that an equilibrium point exists, even if
smoother, in a lower error rate. Lower rates, however, attenuate energy savings and
the potential benefits of approximations.

44

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(a) JPEG

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%
Ex

pe
ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(b) FFT

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(c) N-Body

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(d) Mandelbrot

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(e) SpectralNorm

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(f) Dijkstra

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(g) bzip2

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(h) bunzip2

1.0
e-8

1.0
e-7

1.0
e-6

1.0
e-5

1.0
e-4

1.0
e-3

1.0
e-2

Error rate

0%

50%

100%

150%

200%

Ex
pe

ct
ed

 re
la
tiv

e
en

er
gy

 [%
]

(i) QSort

Figure 4.15: Energy trade-off.

45

Chapter 5

Conclusion

We presented ADeLe, a high-level descriptive language for hardware approximations.
Our language translates user-defined models of hardware approximations into higher-
level structures and injects them into CPU models for architectural simulations. The
modeling abstraction offered by ADeLe can represent both data- and operation-based
approximations, which include a large subset of approximation techniques available
in the literature. Furthermore, it supports the representation of energy models and
operating parameters, which allows for straight-forward energy consumption analysis.

ADeLe, as a verification tool, is complementary to design abstractions such as ABA-
CUS [Nepal et al., 2014] and Axilog [Yazdanbakhsh et al., 2015]. These are focused
on designing or representing approximations as self-contained features and leave val-
idation to expensive simulation processes, while the ADeLe framework represents the
approximations while in interaction with a real system. The generality of our language
abstraction also makes it an extension to existing CPU and fault injection simulators.
Thus, an approximation designer could take advantage of a high-level tool to explore
possible hardware approximations, and then use ADeLe to validate its behavior over
a range of target architectures and applications. Even when in comparison with ex-
isting approximation-aware frameworks such as VarEMU [Wanner et al., 2013] and
React [Wyse et al., 2015], ADeLe proposes a higher-level comprehensive abstraction to
represent the approximations and their interactions with the system, offering flexibility
and full control to the designer on the verification process.

To demonstrate the applicability of our method on modeling approximations, we
adapted an existing CPU simulator based on an ADeLe description, injecting approxi-
mations, and ran multiple test-cases, obtaining quality and energy metrics. Our results,
in addition to demonstrating how each approximation trades quality for energy for
selected applications, show that the simulations produced using our language frame-
work can generate comprehensive results with reduced design effort. We further argue
that other simulation configurations would be easily represented, thus extending our
language capability.

The execution of this work made clear that the feasibility of Approximate Com-
puting techniques depends on architecture-level integration. Although the literature
presents work on developing approximate hardware modules and hardware-level tech-
niques to generate approximations, their interaction with a complete system is still

46

uncertain. Particularly, a real-world “approximatable” processor would require a ded-
icated control mechanism to allow isolation of critical areas on target applications,
while introducing low overhead to allow energy savings. While ADeLe represents a
powerful framework to simulate such a system executing applications, we foresee, as
future work, the proposition and evaluation of architecture-level alternatives that allow
integration of Approximate Computing in a real system.

5.1 Production

This work originated the production of the following articles:

• ADeLe: Rapid Architectural Simulation for Approximate Hardware
Isaías Felzmann, Matheus Susin, Liana Duenha, Rodolfo Azevedo and Lucas
Wanner.
Presented at the 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD 2018), Lyon, France, September 2018.
Best Paper Award.

• Impact of memory approximation on energy efficiency (In Portuguese)
Isaías Felzmann, João Fabrício Filho, Rodolfo Azevedo and Lucas Wanner.
Presented at XIX Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD
2018), São Paulo, October 2018.
Original title: Impacto de memórias aproximadas na eficiência energética.

• ADeLe: A Description Language for Approximate Hardware
Isaías Felzmann, Matheus Susin, Liana Duenha, Rodolfo Azevedo and Lucas
Wanner.
Submitted to Future Generation Computer Systems – Best of SBAC-PAD 2018
(Special Issue).

47

Bibliography

SIPI Image Database, 1997. URL http://sipi.usc.edu/database/database.php.

Alireza Nasiri Avanaki. Exact histogram specification optimized for structural similar-
ity. CoRR, 2009.

Mario Barbareschi, Antonino Mazzeo, Domenico Amelino, Alberto Bosio, and Antonio
Tammaro. Implementing Approximate Computing Techniques by Automatic Code
Mutation. In 3rd Workshop On Approximate Computing (WAPCO), 2017, 2017.

Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC ’05, page 41,
Berkeley, CA, USA, 2005. USENIX Association.

Ramon Bertran, Yolanda Becerra, David Carrera, Vicenç Beltran, Marc Gonzàlez, Xavier
Martorell, Nacho Navarro, Jordi Torres, and Eduard Ayguadé. Energy accounting
for shared virtualized environments under DVFS using PMC-based power models.
Future Generation Computer Systems, 28(2):457–468, 2012. ISSN 0167-739X. doi: 10.
1016/j.future.2011.03.007.

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, 2011.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D Hill,
and David A Wood. The Gem5 Simulator. ACM SIGARCH Computer Architecture
News, 39(2):1–7, 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718.

Shekhar Borkar. Extreme Energy Efficiency by Near Threshold Voltage Operation. In
Michael Hübner and Cristina Silvano, editors, Near Threshold Computing: Technology,
Methods and Applications, pages 3–18. Springer International Publishing, Cham, 2016.
ISBN 978-3-319-23389-5. doi: 10.1007/978-3-319-23389-5_1.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications
of the ACM, 54(5):67, may 2011. ISSN 00010782. doi: 10.1145/1941487.1941507.

A Bosio and G D Natale. LIFTING: A Flexible Open-Source Fault Simulator. In 2008
17th Asian Test Symposium, pages 35–40, nov 2008. doi: 10.1109/ATS.2008.17.

http://sipi.usc.edu/database/database.php

48

D Brooks, V Tiwari, and M Martonosi. Wattch: a framework for architectural-level
power analysis and optimizations. In Proceedings of 27th International Symposium on
Computer Architecture - ISCA’00, pages 83–94, 2000.

B H Calhoun and A Chandrakasan. Analyzing static noise margin for sub-threshold
SRAM in 65nm CMOS. In Proceedings of the 31st European Solid-State Circuits Confer-
ence, 2005. ESSCIRC 2005., pages 363–366, 2005. doi: 10.1109/ESSCIR.2005.1541635.

V Camus, J Schlachter, and C Enz. Energy-efficient inexact speculative adder with high
performance and accuracy control. In 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 45–48, 2015. doi: 10.1109/ISCAS.2015.7168566.

V Camus, J Schlachter, C Enz, M Gautschi, and F K Gurkaynak. Approximate 32-
bit floating-point unit design with 53% power-area product reduction. In ESSCIRC
Conference 2016: 42nd European Solid-State Circuits Conference, pages 465–468, 2016a.
doi: 10.1109/ESSCIRC.2016.7598342.

Vincent Camus, Jeremy Schlachter, and Christian Enz. A Low-power Carry Cut-back
Approximate Adder with Fixed-point Implementation and Floating-point Precision.
In Proceedings of the 53rd Annual Design Automation Conference, DAC ’16, pages 127:1—
-127:6, New York, NY, USA, 2016b. ACM. ISBN 978-1-4503-4236-0. doi: 10.1145/

2897937.2897964.

Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying Quantitative Reliabil-
ity for Programs That Execute on Unreliable Hardware. SIGPLAN Not., 48(10):33–52,
2013. ISSN 0362-1340. doi: 10.1145/2544173.2509546.

E. Carlisle and A. D. George. Cache fault injection with DrSEUs. In IEEE Aerospace
Conference, March 2018.

J Carreira, H Madeira, and J G Silva. Xception: a technique for the experimental
evaluation of dependability in modern computers. IEEE Transactions on Software
Engineering, 24(2):125–136, 1998. ISSN 0098-5589. doi: 10.1109/32.666826.

M C Chiang, T C Yeh, and G F Tseng. A QEMU and SystemC-Based Cycle-Accurate
ISS for Performance Estimation on SoC Development. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 30(4):593–606, 2011. ISSN 0278-0070.
doi: 10.1109/TCAD.2010.2095631.

V K Chippa, D Mohapatra, K Roy, S T Chakradhar, and A Raghunathan. Scalable Effort
Hardware Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22
(9):2004–2016, 2014. ISSN 1063-8210. doi: 10.1109/TVLSI.2013.2276759.

R H Dennard, F H Gaensslen, V L Rideout, E Bassous, and A R LeBlanc. Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 9(5):256–268, 1974. ISSN 0018-9200. doi: 10.1109/JSSC.1974.1050511.

49

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th
annual international symposium on Computer architecture - ISCA ’11, volume 39, page
365, New York, 2011. ACM Press. ISBN 9781450304726. doi: 10.1145/2000064.2000108.

I B Felzmann, J Fabrício Filho, R Azevedo, and L F Wanner. Impacto de memórias
aproximadas na eficiência energética. In Anais do Simpósio em Sistemas Computacionais
de Alto Desempenho (WSCAD), pages 111–122, 2018a.

I B Felzmann, M M Susin, L Duenha, R Azevedo, and L F Wanner. ADeLe: Rapid Archi-
tectural Simulation for Approximate Hardware. In 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pages 9–16,
2018b. doi: 10.1109/CAHPC.2018.8645875.

D Ferraretto and G Pravadelli. Efficient fault injection in QEMU. In 2015 16th Latin-
American Test Symposium (LATS), pages 1–6, 2015. doi: 10.1109/LATW.2015.7102401.

Grigori Fursin. Collective Benchmark, 2010? URL https://ctuning.org/cbench/.

Shrikanth Ganapathy, Georgios Karakonstantis, Adam Teman, and Andreas Burg.
Mitigating the Impact of Faults in Unreliable Memories for Error-resilient Appli-
cations. In Proceedings of the 52Nd Annual Design Automation Conference, DAC ’15,
pages 102:1—-102:6, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3520-1. doi:
10.1145/2744769.2744871.

M Gautschi, M Schaffner, F K Gürkaynak, and L Benini. 4.6 A 65nm CMOS 6.4-to-
29.2pJ/FLOP@0.8V shared logarithmic floating point unit for acceleration of nonlinear
function kernels in a tightly coupled processor cluster. In 2016 IEEE International
Solid-State Circuits Conference (ISSCC), pages 82–83, jan 2016. doi: 10.1109/ISSCC.
2016.7417917.

F A Geissler, F L Kastensmidt, and J E P Souza. Soft error injection methodology based
on QEMU software platform. In 2014 15th Latin American Test Workshop - LATW,
pages 1–5, 2014. doi: 10.1109/LATW.2014.6841910.

J George, B Marr, B E S Akgul, and K V Palem. Probabilistic Arithmetic and Energy Effi-
cient Embedded Signal Processing. In Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, CASES ’06, pages 158–168,
New York, NY, USA, 2006. ACM. ISBN 1-59593-543-6. doi: 10.1145/1176760.1176781.

Isaac Gouy. The Computer Language Benchmarks Game, 2004? URL https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/.

Marcelo Guedes, Rafael Auler, Liana Duenha, Edson Borin, and Rodolfo Azevedo. An
automatic energy consumption characterization of processors using ArchC. Journal
of Systems Architecture, 59(8):603–614, 2013. ISSN 1383-7621. doi: 10.1016/j.sysarc.
2013.05.025.

https://ctuning.org/cbench/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

50

T Gupta, C Bertolini, O Heron, N Ventroux, T Zimmer, and F Marc. High Level
Power and Energy Exploration Using ArchC. In 2010 22nd International Symposium
on Computer Architecture and High Performance Computing, pages 25–32, 2010. doi:
10.1109/SBAC-PAD.2010.13.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In IEEE
WWC, 2001.

Seungjae Han, K G Shin, and H A Rosenberg. DOCTOR: an integrated software fault
injection environment for distributed real-time systems. In Proceedings of 1995 IEEE
International Computer Performance and Dependability Symposium, pages 204–213, 1995.
doi: 10.1109/IPDS.1995.395831.

N M Ho, E Manogaran, W F Wong, and A Anoosheh. Efficient floating point precision
tuning for approximate computing. In 2017 22nd Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), pages 63–68, jan 2017. doi: 10.1109/ASPDAC.2017.
7858297.

A Höller, A Krieg, T Rauter, J Iber, and C Kreiner. QEMU-Based Fault Injection for a
System-Level Analysis of Software Countermeasures Against Fault Attacks. In 2015
Euromicro Conference on Digital System Design, pages 530–533, 2015. doi: 10.1109/DSD.
2015.79.

Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques
and tools. Computer, 30(4):75–82, 1997.

IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70,
2008. doi: 10.1109/IEEESTD.2008.4610935.

C Isci and M Martonosi. Runtime power monitoring in high-end processors:
methodology and empirical data. In Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36., pages 93–104, 2003. doi:
10.1109/MICRO.2003.1253186.

Abhishek Jaiantilal, Yifei Jiang, and Shivakant Mishra. Modeling CPU Energy Con-
sumption for Energy Efficient Scheduling. In Proceedings of the 1st Workshop on Green
Computing, GCM ’10, pages 10–15, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0450-4. doi: 10.1145/1925013.1925015.

Andrew B Kahng and Seokhyeong Kang. Accuracy-configurable Adder for Approxi-
mate Arithmetic Designs. In Proceedings of the 49th Annual Design Automation Confer-
ence - DAC’12, pages 820–825, New York, 2012. ACM. ISBN 978-1-4503-1199-1. doi:
10.1145/2228360.2228509.

G A Kanawati, N A Kanawati, and J A Abraham. FERRARI: a tool for the validation
of system dependability properties. In Digest of Papers. FTCS-22: The Twenty-Second
International Symposium on Fault-Tolerant Computing, pages 336–344, 1992. doi: 10.
1109/FTCS.1992.243567.

51

N Kapadia and S Pasricha. A Runtime Framework for Robust Application Scheduling
With Adaptive Parallelism in the Dark-Silicon Era. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(2):534–546, 2017. ISSN 1063-8210. doi: 10.1109/

TVLSI.2016.2594238.

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An online quality man-
agement system for approximate computing. In ISCA, 2015.

N S Kim, T Austin, D Baauw, T Mudge, K Flautner, J S Hu, M J Irwin, M Kandemir, and
V Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):
68–75, 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1250885.

Bruno Kleinert, Simone Weiß, Franziska Schäfer, Jupiter Bakakeu, and Dietmar Fey.
Adaptive Synchronization Interface for Hardware-Software Co-Simulation Based on
SystemC and QEMU. In Proceedings of the 9th EAI International Conference on Simulation
Tools and Techniques, SIMUTOOLS’16, pages 28–36, Brussels, Belgium, 2016. ICST.
ISBN 978-1-63190-120-1.

M Kooli and G Di Natale. A survey on simulation-based fault injection tools for complex
systems. In 2014 9th IEEE International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–6, 2014. doi: 10.1109/DTIS.2014.6850649.

M Kooli, A Bosio, P Benoit, and L Torres. Software testing and software fault injection. In
2015 10th International Conference on Design Technology of Integrated Systems in Nanoscale
Era (DTIS), pages 1–6, 2015. doi: 10.1109/DTIS.2015.7127370.

Logan Kugler. Is "Good Enough" Computing Good Enough? Communications of the
ACM ACM, 58(5):12–14, 2015. ISSN 0001-0782. doi: 10.1145/2742482.

Parag Kulkarni, Puneet Gupta, and Miloš D Ercegovac. Trading accuracy for power in
a multiplier architecture. Journal of Low Power Electronics, 7(4):490–501, 2011.

Mark S K Lau, Keck-Voon Ling, and Yun-Chung Chu. Energy-aware Probabilistic
Multiplier: Design and Analysis. In Proceedings of the 2009 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’09, pages 281–290,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-626-7. doi: 10.1145/1629395.
1629434.

Yongsoon Lee, Younhee Choi, Seok Bum Ko, and Moon Ho Lee. Performance analysis
of bit-width reduced floating-point arithmetic units in FPGAs: A case study of neural
network-based face detector. Eurasip Journal on Embedded Systems, 2009(1):258921, jul
2009. ISSN 16873955. doi: 10.1155/2009/258921.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. ACM SIGPLAN Notices, 40
(6):190–200, 2005. ISSN 0362-1340. doi: 10.1145/1064978.1065034.

52

J S Miguel, M Badr, and N E Jerger. Load Value Approximation. In Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture - MICRO-47,
pages 127–139, 2014. doi: 10.1109/MICRO.2014.22.

A Mineo, M Palesi, G Ascia, P P Pande, and V Catania. On-Chip Communication
Energy Reduction Through Reliability Aware Adaptive Voltage Swing Scaling. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(11):1769–
1782, nov 2016. ISSN 0278-0070. doi: 10.1109/TCAD.2016.2524556.

Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Computing
Surveys - CSUR, 48(4):62:1—-62:33, 2016. ISSN 0360-0300. doi: 10.1145/2893356.

M Monton, A Portero, M Moreno, B Martinez, and J Carrabina. Mixed SW/SystemC SoC
Emulation Framework. In 2007 IEEE International Symposium on Industrial Electronics,
pages 2338–2341, 2007. doi: 10.1109/ISIE.2007.4374971.

G E Moore. Cramming More Components Onto Integrated Circuits. Proceedings of the
IEEE, 86(1):82–85, jan 1998. ISSN 0018-9219. doi: 10.1109/JPROC.1998.658762.

V Mrazek, R Hrbacek, Z Vasicek, and L Sekanina. EvoApprox8b: Library of approxi-
mate adders and multipliers for circuit design and benchmarking of approximation
methods. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pages 258–261, 2017. doi: 10.23919/DATE.2017.7926993.

K Nepal, Y Li, R I Bahar, and S Reda. ABACUS: A technique for automated behavioral
synthesis of approximate computing circuits. In 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1–6, 2014. doi: 10.7873/DATE.2014.374.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS: A Full System
Simulator for Multicore x86 CPUs. Proceedings of the 48th Annual Design Automation
Conference - DAC’11, pages 1050–1055, 2011. ISSN 0738100x. doi: 10.1145/2024724.
2024954.

S Potyra, V Sieh, and M Dal Cin. Evaluating Fault-tolerant System Designs Using
FAUmachine. In Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems,
EFTS ’07, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-725-4. doi: 10.1145/

1316550.1316559.

Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. Digital integrated circuits,
volume 2. Prentice hall Englewood Cliffs, 2002.

A Rahimi, A Marongiu, R K Gupta, and L Benini. A variability-aware OpenMP envi-
ronment for efficient execution of accuracy-configurable computation on shared-FPU
processor clusters. In 2013 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pages 1–10, 2013. doi: 10.1109/CODES-ISSS.2013.
6659022.

53

Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K Gupta.
Approximate Associative Memristive Memory for Energy-efficient GPUs. In Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition - DATE ’15,
pages 1497–1502, San Jose, CA, USA, 2015. EDA Consortium. ISBN 978-3-9815370-
4-8.

S Rigo, G Araujo, M Bartholomeu, and R Azevedo. ArchC: a systemC-based architecture
description language. In Proceedings of the 16th Symposium on Computer Architecture
and High Performance Computing - SBAC-PAD’04, pages 66–73, 2004. doi: 10.1109/

SBAC-PAD.2004.8.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,
and Dan Grossman. EnerJ: Approximate Data Types for Safe and General Low-
power Computation. SIGPLAN Not., 46(6):164–174, 2011. ISSN 0362-1340. doi:
10.1145/1993316.1993518.

Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip, Luis
Ceze, and Mark Oskin. ACCEPT: A Programmer-Guided Compiler Framework for
Practical Approximate Computing. 2015.

Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. The
EDA Challenges in the Dark Silicon Era: Temperature, Reliability, and Variability
Perspectives. In Proceedings of the 51st Annual Design Automation Conference, DAC
’14, pages 185:1—-185:6, New York, 2014a. ACM. ISBN 978-1-4503-2730-5. doi:
10.1145/2593069.2593229.

Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg
Henkel. Dark Silicon As a Challenge for Hardware/Software Co-design: Invited
Special Session Paper. In Proceedings of the 2014 International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES ’14, pages 13:1–13:10, New York,
2014b. ACM. ISBN 978-1-4503-3051-0. doi: 10.1145/2656075.2661645.

C Slayman. Soft error trends and mitigation techniques in memory devices. In 2011
Proceedings - Annual Reliability and Maintainability Symposium, pages 1–5, jan 2011.
doi: 10.1109/RAMS.2011.5754515.

G Tagliavini, D Rossi, A Marongiu, and L Benini. Synergistic HW/SW Approximation
Techniques for Ultra-Low-Power Parallel Computing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, page 1, 2017. ISSN 0278-0070. doi:
10.1109/TCAD.2016.2633474.

V Tiwari, S Malik, A Wolfe, and M T C Lee. Instruction level power analysis and
optimization of software. In Proceedings of 9th International Conference on VLSI Design,
pages 326–328, jan 1996. doi: 10.1109/ICVD.1996.489624.

J Tong, D Nagle, and R Rutenbar. Reducing power by optimizing the necessary pre-
cision/range of floating-point arithmetic. IEEE Transactions on VLSI Systems, 8, 2000.
doi: 10.1109/92.845894.

54

T K Tsai, R K Iyer, and D Jewitt. An approach towards benchmarking of fault-tolerant
commercial systems. In Proceedings of Annual Symposium on Fault Tolerant Computing,
pages 314–323, jun 1996. doi: 10.1109/FTCS.1996.534616.

J Wang and B H Calhoun. Minimum Supply Voltage and Yield Estimation for Large
SRAMs Under Parametric Variations. TVLSI, 2011.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE TIP, 2004.

L Wanner, S Elmalaki, L Lai, P Gupta, and M Srivastava. VarEMU: An Emulation
Testbed for Variability-aware Software. In Proceedings of the Ninth IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). IEEE Press, 2013. ISBN 978-1-4799-1417-3. doi: 10.1109/CODES-ISSS.
2013.6659014.

Mark Wyse, Andre Baixo, Thierry Moreau, Bill Zorn, James Bornholt, Adrian Sampson,
Luis Ceze, and Mark Oskin. React: A framework for rapid exploration of approximate
computing techniques. In Workshop on Approximate Computing Across the Stack -
WAX’2015, 2015.

Q Xu, T Mytkowicz, and N S Kim. Approximate Computing: A Survey. IEEE Design
Test, 33(1):8–22, 2016. ISSN 2168-2356. doi: 10.1109/MDAT.2015.2505723.

Lei Yang, Weichen Liu, Weiwen Jiang, Chao Chen, Mengquan Li, Peng Chen, and Edwin
H M Sha. Hardware-software collaboration for dark silicon heterogeneous many-
core systems. Future Generation Computer Systems, 68:234–247, 2017. ISSN 0167-739X.
doi: http://dx.doi.org/10.1016/j.future.2016.09.012.

A Yazdanbakhsh, D Mahajan, B Thwaites, J Park, A Nagendrakumar, S Sethura-
man, K Ramkrishnan, N Ravindran, R Jariwala, A Rahimi, H Esmaeilzadeh, and
K Bazargan. Axilog: Language support for approximate hardware design. In 2015
Design, Automation Test in Europe Conference Exhibition (DATE), pages 812–817, 2015.
doi: 10.7873/DATE.2015.0513.

A Yazdanbakhsh, D Mahajan, P Lotfi-Kamran, and H Esmaeilzadeh. AXBENCH: A
Multi-Platform Benchmark Suite for Approximate Computing. IEEE Design and Test,
special issue on Computing in the Dark Silicon Era, pages 1–7, 2016a.

Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Esmaeilzadeh,
Onur Mutlu, and Todd C Mowry. RFVP: Rollback-Free Value Prediction with Safe-
to-Approximate Loads. ACM Transactions on Architecture and Code Optimization -
TACO, 12(4):62:1—-62:26, 2016b. ISSN 1544-3566. doi: 10.1145/2836168.

T C Yeh and M C Chiang. On the interface between QEMU and SystemC for hardware
modeling. In 2010 International Symposium on Next Generation Electronics, pages 73–76,
nov 2010. doi: 10.1109/ISNE.2010.5669197.

55

P Yin, C Wang, W Liu, and F Lombardi. Design and Performance Evaluation of Approx-
imate Floating-Point Multipliers. In 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 296–301, 2016. doi: 10.1109/ISVLSI.2016.15.

	Introduction
	Related Work: Approximate Computing in the Dark Silicon era
	Hardware-level approximation techniques
	Memory access approximation
	Inexact hardware
	Voltage overscaling

	Modeling techniques for Approximate Computing

	A Framework for Approximate Computing
	The ADeLe Language
	Approximation modeling
	Probability models (PM)
	Energy models (EM)
	Operating parameters (OP)

	ADeLe implementation into a CPU simulator
	Software interface

	Demonstration and results
	Underdesigned hardware
	Implemented approximations
	Selected benchmarks
	Results

	Voltage-overscaled memories
	Implemented approximations
	Selected benchmarks
	Results

	Conclusion
	Production

