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“Till now, madness has been thought a small
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Resumo

A necessidade de investigar regiões formadas por estruturas geológicas complexas
tem motivado o desenvolvimento de métodos de imageamento que atuem no domínio
da profundidade. Exemplos notáveis são as técnicas de migração pré-empilhamento
em profundidade (PSDM, do inglês “prestack depth migration”) e a tomografia
de onda completa (FWT, do inglês “full-waveform tomography”). No entanto, a
aplicação desses métodos enfrenta ao menos dois desafios: eles requerem (1) um
modelo de velocidade (inicial) preciso, e (2) elevado poder computacional. Por
outro lado, a migração em tempo provou ser um processo robusto e muito rápido,
tornando-se rotineiramente empregado para o imageamento sísmico. Além disso, a
construção de modelos de velocidade em tempo é um processo bem compreendido.
Portanto, é altamente desejável usar as técnicas de conversão tempo-profundidade
para construir, a partir desses modelos de velocidade no domínio do tempo, modelos
de velocidade iniciais para técnicas que operam em profundidade. Neste trabalho,
investigamos a aplicabilidade de um fluxo de trabalho formado por alguns recém-
desenvolvidos métodos (semi-) automáticos de análise de velocidade de migração
em tempo (MVA, do inglês “migration velocity analysis”), capazes de gerar modelos
de velocidade e imagens migradas no tempo sem precisar de informações a priori,
seguido por uma técnica robusta de conversão tempo-profundidade. Discutimos as
vantagens e limitações desse fluxo de trabalho e suas perspectivas para se tornar uma
ferramenta plenamente automática, capaz de gerar modelos de velocidade sísmica
para o uso subsequente em métodos de FWT. Nos nossos testes em diferentes versões
dos dados Marmousi, o procedimento proposto produziu modelos de velocidade inici-
ais suficientemente precisos para uma FWT sob condições quase ideais. Começando
no modelo de velocidade do domínio do tempo convertido para profundidade, a FWT
convergiu para um modelo final com qualidade comparável a quando feito a partir de
uma versão suavizada do modelo de velocidade verdadeiro. Isso indica que a correta
informação sobre a velocidade de fundo pode ser extraída com sucesso pela MVA
automática no domínio do tempo mesmo em meios onde a migração em tempo
não pode fornecer imagens sísmicas satisfatórias. Como resultado, esta tese não



só contribui para o desenvolvimento de um fluxo de trabalho para a construção de
modelos de velocidade iniciais para a FWT, mas também apresenta várias aplicações
inovadoras.

Palavras-chave: Geofísica; Método sísmico de reflexão; Propagação de ondas.



Abstract

The need to investigate regions with complex geology has encouraged the devel-
opment of imaging methods that act in the depth domain. Notable examples are
prestack depth migration (PSDM) and full-waveform tomography (FWT). However,
the application of these techniques faces at least two challenges: they require (1) an
accurate (initial) velocity model and (2) massive computation power. In contrast,
time migration has proven to be a fast and robust process, making it routinely
used for seismic imaging. Moreover, time-domain velocity-model building is a well-
understood process. Therefore, it is highly desirable to use time-to-depth conversion
to construct starting models for depth-imaging techniques from these time-domain
velocity models. In this work, we investigate the applicability of a workflow
consisting of some recent (semi-) automatic time migration-velocity-analysis (MVA)
methods, which can generate a velocity model and a time-migrated image without
a priori information, followed by a robust time-to-depth conversion technique. We
discuss advantages and limitations of this workflow and its perspectives to become
a fully automatic tool, capable of generating initial seismic depth velocity models
for subsequent FWT methods. In our tests on different versions of the Marmousi
data, the proposed procedure produced sufficiently accurate initial models for an
FWT under nearly ideal conditions. Starting at the depth-converted time-domain
model, FWT converged to a final model of comparable quality as when starting at a
smoothed version of the true velocity model. This indicates that correct background
velocity information can be successfully extracted from automatic time-domain MVA
even in media where time-migration cannot provide satisfactory seismic images. In
effect, this thesis not only contributes to the development of a workflow for the
construction of initial velocity-models for FWT but also presents several innovative
applications thereof.

Keywords: Geophysics; Seismic reflection method; Wave propagation;
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dmod Seismic data recorded at receivers on a medium represented by a

set of model parameters m.
dobs Seismic data recorded at receivers on a medium represented by a

set of model parameters m.
E (m) Object function.
exp Exponential function.
f Frequency; nonlinear forward operator.
fmax Maximum frequency of the wavefield.



fmin minimum frequency of the wavefield.
fpeak Peak frequency.
H Hessian matrix of dimensions M ×M .
Ha Approximate Hessian matrix.
h Half-offset.
h0 Zero-offset.
i Numbering.
J Jacobian matrix also called the Fréchet derivate matrix.
JT Transpose of the Jacobian matrix.
j Numbering.
K Bulk modulus.
k Numbering.
k0 Single wavenumber component of a single source-receiver pair.
kx Horizontal wavenumber.
ky Horizontal component.
kz Vertical wavenumber.
L Propagation distance.
M Indicate the model space.
m Model vector of dimension M .
m0 Starting model.
max Maximum.
min Minimum/optimization.
Nλ Propagation distance in wavelengths.
Nt Total number of times steps.
Nx Number of the grid points in x.
Nz Number of the grid points in z.
n Direction of the gradient at each point (xj , zj).
n Number of grid points per minimum wavelength λmin.
P A quantity describing the dynamic property along the ray;

preconditioning operator.
P n
j Denotes the value of P at the jth image-ray at γj and at the nth

time sample τn.
p Slowness vector.
pn Gradient.
p Pressure data.
p
′ Backpropagated residual wavefield.



p(x) Two-dimensional function incorporated along the image-
wavefront. See also P and x.

p(x, z, t) Pressure field.
Q A quantity describing the dynamic property along the ray.
q(x) Two-dimensional function incorporated along the image-

wavefront. See also Q and x.
R Half offset-to-depth ratio.
r̂ Unit tangent vector for the propagation direction of the receiver.
S(t) Source time function.
ŝ Unit tangent vector for the propagation direction of the source.
s Scaling factor.
T Time coordinate; total arrival time of a event.
T (h, x) Time coordinate.
t̂ Unit tangent vector to the wavefront.
t Time coordinate.
t0 Vertical time at zero-offset (h0).
th Source-receiver traveltime.
th0

Source-receiver traveltime.
tr Residual time displacement.
VP P-wave velocity.
VPmax

Maximum P-wave velocity.
VPmin

Minimum P-wave velocity.
VS S-wave velocity.
v True average medium velocity, i.e., the “ideal” time-migration

velocity that would correctly position the image.
v0 Constant initial velocity.
vDix Dix velocity at (γ, τ).
vint Pseudo-time interval velocity in pseudo-time from the strati-

graphic velocity.
vm (incorrect) time migration velocity.
vn NMO velocity.
vp P-wave velocity.
vrms Root-mean-square velocity model in pseudo-time from the strati-

graphic velocity using vertical conversion only.
vs S-wave velocity.
vu Updated (time) migration velocity for (xm, τh0

) that minimizes the
variation of τr in the offset direction.



v(x) Depth velocity field at x.
v(x(γ, τ)) Velocity field in depth along the image rays trajectories.
v(x, z) Depth velocity model.
w Particle velocity.
wx(x, z, t) Particle velocity in x direction.
wz(x, z, t) Particle velocity in z direction.
x Spatial position vector.
xr Receiver locations.
xs Source locations.
x Horizontal spatial coordinate; Spatial (image) position.
xm Spatial coordinate of the image point in the time-migrated CIG.
xr Residual lateral displacement.
xu Updated (corrected) spatial position of the selected image point.
ẑ Unit vector in the vertical direction.
z Vertical (depth) coordinate; depth of the scattering layers.

Greek letters

α Branch-cut rotation angle.
β Scalar (factor) computed through Polak-Ribiere method.
∆ Specifies a difference quantity; difference operator; difference in

the quantity that follows this symbol.
∆h Grid spacing.
∆t Time step.
∆τ Time interval.
δd Data misfit vector of dimension N .
δm Perturbed model.
δmn Steepest descent gradient.
δt Travel time error.
δx Dirac delta function.
η Coordinate direction perpendicular to the ray.
γ Spacial coordinate for a image point in a time migrated section.
γ(x) Spatial coordinate of a image-ray at x.
λ Dominant wavelength.
λmin Minimum wavelength.
µ Step length.
ν Dix interval velocity.
νn
j Dix interval velocity ν(γj, τn).



φ(x) Image-wavefront represented as a zero-level set of a two-
dimensional function.

ρ Density.
σ Standard deviation.
τ Time coordinate.
τ0 Time coordinate.
τh Time coordinate at half-offset h of the image point within the CIG

at image position xm.
τh0

Time coordinate.
τn nth time sample coordinate of a image-ray.
τr 3D residual moveout.
τu Updated (corrected) temporal position of the selected image point.
τ(x) Time field at x.
ξ Midpoint between source and receiver.

Math symbols

≈ Approximately equal.
∗ Denotes the time convolution.
· Symbolizes the scalar (or inner) product of two vectors.
≡ Symbolizes the relation of equivalence.
∈ Indicates that a variable is an element of a set.
‖. . .‖ Euclidian distance; norm.
‖. . .‖2 Quadratic norm.
|. . .| Absolute value; modulus.
· · · Indicates omitted values from a pattern.
→ From . . . to.
∞ Infinity; an element of the extended number line that is greater

than all real numbers; it often occurs in limits.
∇ Gradient; differential operator given in a Cartesian coordinates

{x, y, z}.
∇x Gradient; differential operator at x.
∂ Partial derivative.
∑

i Summation (operator).
∑

i

Summation (operator).

× Symbolizes the vector product of two vectors.



Indices

Subscripts

a Approximate.

i Numbering indices; ith.

init Initial.

j Numbering indices; specify quantity of P belonging to the jth
image-ray at γj.

m Numbering indices; mth.

max Maximum.

min Minimum.

n Numbering indices; nth.

r Residual.

rms Root-mean-square.

st Steps (sampling theorem).

u Updated.

v Velocity.

Superscripts

© Copyright.
® Registered.
™ Trademark.
∗ Denotes the adjoint of the operator ∂d(D)

∂m
.

Dix Dix (velocity).
n Numbering indices; indicates a time step of τn.
PR Polak-Ribiere (method).
T Denotes the matrix transpose.
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Is it a wave that looks like a mountain or a

mountain that looks like a wave?

The Great Wave off Kanagawa (Hokusai, 1830).

Being the best-known print in the series Thirty-six Views of Mount Fuji, Kat-
sushika Hokusai’s The Great Wave off Kanagawa has become one of the most famous
work of art in the world and has inspired from music to poetry.

Some of the main elements which compose this two-dimensional image are: the
sea and waves, which dominates the composition; three fishermen’s boats, that may
be used as reference to estimate the magnitude of the wave; a mountain, at the right
of the image’s center with a snow-capped peak, which represents the Mount Fuji,
the highest mountain in Japan; the author’s signature in the upper left-hand corner
(it has two inscriptions); the sky in the background; the mesmerizing set of colors;
and such more elements that should themselves deserve a whole book.

That said, let’s disregard the many interpretations that the image may have and
focus on the following: once we already know where we are and once we already
know the elements mentioned above, the process for identifying them within the
image can be done more easily. So, in few words, we need a priori information to
be able to interpret the image. A quite simple representation of the reality. Just a
two-dimensional image, but there is so much we can extract from a 2D image.
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Chapter 1

Introduction

“Begin at the beginning,” the King said

gravely, “and go on till you come to the end:

then stop.”

— Carroll (1865), Alice in Wonderland

1.1 What is Geophysics?

Geophysics is a field of science focused on the investigation of the Earth with a
multidisciplinary nature, e.g., knowledge of Physics, Mathematics, Chemistry, and
Geology. Usually, it is subdivided into three major groups: Spatial Geophysics,
which develops studies of terrestrial atmosphere and its interaction with environ-
ment; Solid Earth Geophysics, which investigates the structure and composition of
Earth’s interior; and Applied Geophysics, associated with the study of the structure
and composition of the subsurface at lower depths (Telford et al., 1990).

Inside the field of Applied Geophysics, magnetic, electrical, electromagnetic,
gravimetric and seismic methods are used mainly in studies for minerals and
hydrocarbons exploration. They can be applied individually or together depending
on the objective and necessity of the study, like regions of complex geology as the
sedimentary basins.

Understanding sedimentary basins is critical to assessing oil potential. The
knowledge of the distribution and evolution of the depositional sequences and
its facies allow rational and realistic diagnostics about the localization of the
oil-producing, oil-reservoir, and oil-bearing rocks, establishing, in this way, the
fundamental elements of an oil system (Milani et al., 2000; Ribeiro, 2001; Pedreira
et al., 2008; Allen and Allen, 2013).
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Among all the geophysical tools applied to the hydrocarbons exploration, it is
essential to highlight the importance of so-called seismic methods. Seismic investi-
gations have a long history of use in the exploration, monitoring and management
of the oil reservoirs, being the primary tool to delineate the subsoil structures and
to detect the presence of hydrocarbons before drilling, which contributes to the
economic evaluation and the exploratory risks (Telford et al., 1990; Sheriff and
Geldart, 1995; Ribeiro, 2001).

We can say that the development of scientific and technological research re-
lated to seismic methods contributed significantly to Brazil’s success in deepwater
exploration and production, leading to the exploratory framework called Brazilian
Pre-Salt (Mohriak et al., 2008).

Therefore, for the development of this study, two lines of research are vital:

• Reservoir geophysics: It is based on the study of the reservoir characteri-
zation and behavior through geophysical methods, especially those that refer
to the modeling (simulation) of the propagation of acoustic and elastic waves,
and the imaging of synthetic and real seismic data. The approach seeks to
integrate the quantitative (analytical or numerical) study with geological and
geophysical observations.

• Seismic imaging: Consists of the development and application of new seismic
imaging methods. Being an inherent part of the seismic data processing
sequence, seismic imaging aims to produce sharp and accurate images of the
subsurface of the Earth, with direct application in reservoir studies. Following
this line of research, we highlight some relevant topics for assessment of
reservoirs:

– Seismic data processing;

– Seismic migration methods;

– Migration velocity analysis;

– Inversion and estimation of petroleum parameters;

– Wave propagation;

– Reservoir management through exploration/exploitation simulations.

In the next section, we present a brief overview of the early history of the
geophysical development, focusing on the principles of seismic imaging, the subject
of this thesis.
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1.2 Early geophysics and the seismic underpinnings

1.2.1 In the beginning, everything was dark

Although geophysics is currently a sophisticated, multidisciplinary, and con-
stantly evolving science, it was born in ancient times to meet humankind’s needs
in comprehending Earth’s physical structures and processes. Throughout history,
Earth’s investigations were commonly made without physically consistent methods,
in a form that was almost purely observational and based on natural philosophy, a
mixture of divine speculations and explanations.

Magnetism can be considered one of the oldest observations, and it dates
to the prehistoric development of iron smelting, although the knowledge of the
Earth’s magnetic field (the geomagnetic field) has developed slowly. The magnetite
attraction properties were known in China and Europe, from about 500 BCE. On
the other hand, the orientation properties of magnetite appear subtly in Europe at
the end of the 12th century (Mitchell, 1946; Needham, 1962; Kono, 2015)1.

In the Western world, the properties of attraction were observed by Thales in the
sixth century BCE, according to a quote from Aristotle from the fourth century BCE
(Chapman and Bartels, 1940). Orientation and polarity properties were discovered
in China but were not widely used in navigations, in part because the country’s
civilization throughout the Middle Ages was agrarian and terrestrial with navigation
only in rivers and canals. The first clear and complete description of the magnetic
compass was made by Shen Kua in 1088, before any European reference (Harradon,
1943). In Europe, the first reference is due to the English monk Alexander Neckham,
around 1190, when he describes that the sailors touched the magnet with a needle,
which was later used for orientation2.

The extensive overseas exploration, between the centuries 15th-18th, defined the
period in European history named Age of Exploration (or Age of Discovery). During
this period, a cultural, technical and scientific movement promoted, among other
things, the improvement of nautical and the development of physical geography,
and cartography, revealing with more precision the size of the Earth. The Italian
Christopher Columbus (1451-1506), with the support of the Spanish crown, was the
pioneer of transatlantic travel. He bet on the theory that the Earth was round and
intended to find a way for the Indies always sailing west. He reached America in
1492.

1Needham (1962) is the most comprehensive work about Chinese contributions in the early
history.

2A detailed description of the seamen’s procedure is given by Guyot de Provins of France
(1184-1210) in his satirical poem “La Bible” in 1205 (Kono, 2015).
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It is interesting to see how knowledge was acquired and fragmented over the
centuries. The spherical Earth paradigm appeared in Greek philosophy in the around
500 BCE with Pythagoras, though most pre-Socratic philosophers defended the flat
Earth model. Aristotle accepted the sphericity of the Earth by empirical bases in
330 BCE. Years later, in 240 BCE, the Greek mathematician Eratosthenes of Cyrene
was the first to estimates the size of the Earth using a simple scheme that combined
geometric calculations with physical observations.

1.2.2 The beginning of the modern geophysics exploration

Historically, gravity method was the first geophysical technique to be used in
geophysical exploration. More precisely, gravity gradiometry was the first potential
field to be widely measured in oil and mining applications (Blakely, 1995; Bell et al.,
1997; While et al., 2006). This, thanks to the Hungarian scientist Baron Roland von
Eötvös (Loránd Eötvös) who created the torsion balance, which is mostly a gravity
gradiometer, at the end of the 19th century with the initial aim of determining
some physical constants (Shaw and Lancaster-Jones, 1922; Barton, 1932; Gillies and
Ritter, 1993; Szabó, 2015). However, it did not take long to arouse the interest of
exploration geophysicists, who made this instrument an essential ally in the search
for oil fields. Unfortunately, the robustness of the torsion balance, coupled with
the difficulty in obtaining and interpreting the data made this method excessively
expensive, and with the emergence of gravimeters in the 1930s, gravity gradiometers
fell into disuse (Telford et al., 1990; Bell et al., 1997; de Oliveira Lyrio et al., 2004;
Mikhailov et al., 2007; Pajot et al., 2008).

Moreover, by measuring only the vertical gravity component, interpretation
of data occurred much more simply and directly (Mikhailov et al., 2007). This
impacted on gradiometers being left aside until the 1970s, when the U.S. Navy,
interested in developing an instrument capable of assisting with navigation and
detection of missiles, invested in the development of mobile platforms of high
performance, which gave rise to the first gradiometers capable of measuring all
components of the gravity gradient tensor (GGT). Only after the end of the Cold War
in the 1980s, the technology developed by the military was applied to geophysical
exploration and other fields (Bell et al., 1997). Since then, ways of improving
these instruments, with respect primarily to mobility and precision, have begun
to be studied. Eventually, it pushed researchers to look for forms of numerical
processing and simulations (Parker, 1973; Oldenburg, 1974; Bell et al., 1997; Mickus
and Hinojosa, 2001; de Oliveira Lyrio et al., 2004; Nabighian et al., 2005; While et al.,
2006; Mikhailov et al., 2007; Pajot et al., 2008, among others). A detailed account
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of the early history of the gravity method can be found in Nabighian et al. (2005).
Even today, the gravity method continues to be an essential and sometimes crucial
constraint in many exploration areas. Nevertheless, it was undoubtedly eclipsed by
seismology.

The foundation of seismology dates from the 17th century. In 1678, the English
physicist Robert Hooke (1635–1703) enunciated his law, known as Hooke’s law,
which expresses the linear relationships existing between strains and stresses, when
strains are small. However, only in 1822, the modern theory of elasticity started to
be developed, when Augustin Louis Cauchy (1789–1857), a French mathematician
and military engineer, generalized Hooke’s law to three-dimensional forces and
elastic bodies. In the following years, numerous discoveries were made. Siméon
Poisson (1828) showed the separated existence of P- and S-waves, Cargill Gilston
Knott (1899) demonstrated the reflection and refraction concepts in the seismic
wave propagation. Lord Rayleigh (1885) and Augustus Edward Hough Love (1911)
developed the theories of their eponymous surface waves.

We have now essentially sketched the development of the mother lodes of seismic
wave propagation. At the same time that the theoretical development occurred,
numerous advances happened in instrumental development and different empirical
works emerged. The first “seismograph”, an instrument used to detect and record
earthquakes, was developed by L. Palmiere in 1855. A few years early, Robert Mallet
(1848, 1851) began experimental seismology by measuring the velocity of seismic
waves in sand and granite using gunpowder. Similarly, Henry Larcom Abbot (1878)
used massive explosions to measured P-wave velocities. Years later, John Milne
(1885) introduced the drop-weight as an energy source (as well as explosives).

According to DeGolyer (1935)3, L. P. Garret was the first to suggest the use
of seismic refraction to find salt domes, but suitable instruments had not yet been
developed. The first discovery by the seismic method was the Orange salt dome in
Gulf Coast Texas. It happened thanks to Ludger Mintrop’s pioneer work, which
developed the first mechanical seismograph (Domenico, 1996). As mentioned by
Keppner (1991), Mintrop laid the foundations of applied seismic, making it not only
technically but also economically attractive. A revolution started in the exploration
of oil and gas, significantly increasing the number of geophysical companies in the
U.S. This drove the continuous search for better and more accurate equipment. The

3Everette DeGolyer (1886-1956) was a renowned geophysicist, petroleum geologist, and
successful petroleum industry leader. DeGolyer is often called “the father of (American)
Geophysical Exploration” (or “the father of Applied Geophysics”) (Robertson, 1986). DeGolyer
accompanied by Donald C. Barton (1889-1939), another famous petroleum geoscientists, introduced
the torsion balance into the U.S. (Robertson, 2000).
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mechanical seismographs were then replaced by electronic seismometers (electronic
recorders and electromagnetic transducers) in the 1930’s. As the seismometers
are several times more sensitive, they boosted the initiation of seismic exploration
worldwide after having proven the seismic reflection are much more useful than the
refraction method in the search for petroliferous subsurface structures.

The reader interested in learning more about the historical development of
seismic wave propagation, the seismic reflection method, and the history of the first
geophysical companies should consult the excellent book “Exploration Seismology”
by Sheriff and Geldart (1995).

1.2.3 Early seismic imaging

This thesis contributes to the literature of seismic imaging, and we review much
of the concepts regarding this subject in the following chapters. It is not within the
scope of this section to go into too much detail, but there are many works on this
topic, so we reserve the chance to mention those most relevant researchers and their
ideas which have been contributed with geophysical history.

The term imaging can be found in different disciplines such as medical imaging,
oil exploration, non-destructive evaluation, and remote sensing. In what concerns
the geophysical exploration, seismic imaging can be read as the whole set of imaging
methods (Schleicher et al., 2007).

Among the imaging methods, migration, in particular, are used to reconstructing
of the best possible undistorted depth image of the subsurface structures. In
parallel to the geophysical exploration and instrumental development reviewed in
Section 1.2.2, migration had already been recognized as an important imaging
method by 1920’s.

It is not clear when the term “migrating” was first used neither where it came
from, but it is often thought that it came from the geologic conception of how oil
migrates updip. Also, both theoretical and practical aspects of migration can be
seen easily as a map-migration (Bednar, 2005; Schleicher et al., 2007).

In the mid-1930s, the new reflection-seismic method started to be primarily
applied by the leading oil companies. The routinely use of seismic reflection raised
challenging questions. It was not yet known why it produced sufficient seismic
records in some regions and not in others.

The earliest advance of seismic imaging appears to be that of Frank Rieber in
1936. He was a man of vision. In two articles, “A new reflection system with
controlled directional sensitivity” (Rieber, 1936a) and “Visual presentation of elastic
wave patterns under various structural conditions” (Rieber, 1936b), he explained
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why the seismic reflection method produced inferior seismic records in many places
and he designed and constructed an analog device (named Geosonograph) for
modeling waves from realistic but straightforward geologically styled models.

The idealized reflection system would be one in which a simple impulse

could be generated at the earth’s surface, and thereafter would travel

downwards in the earth until it encountered a succession of simple strata

from each of which a reflection would be returned to the surface. In this

ideal system, the direct wave from the explosion would pass the receiving

system before any reflected waves had arrived – and hence no disturbance

or interference with the reflections would be occasioned by the direct wave.

(Rieber, 1936a)

It is therefore natural to think that the concepts described by Rieber were em-
ployed in geophysics since then. However, they were not pursued until technological
developments made it more practical. It remains true, however, that the description
by Rieber greatly influenced the works which came in the following decades.

When we talk about the earliest methods of the seismic imaging, we should be
careful and remember that many strategies came before the digital computers era.
The first seismic migration method was done manually. Known as the Hagedoorn’s
“ruler and compass” method, it was proposed in 1954 and emerged inspired by the
Huygens’ principle. In the Hagedoorn’s method, the reflections are found as an
envelope of equal traveltime curves (Hagedoorn, 1954).

Another big leap in seismic imaging happened in the early-1960s when Mayne
(1962) showed what came to be the first stacking technique, the common-midpoint
(CMP) method.

About a decade later, it was Claerbout (1970, 1971) who contributed innovative
work. Noting how a wavefield propagates through the subsurface, the interaction
of downgoing and upgoing wavefields inside the earth, he developed the first “wave-
equation migration” method. For purposes of convenience, however, the “one-way”
wave equation migration dominated migration practices until approximately 2000.
In addition, the pioneering work of Claerbout introduced the basis of so-called
migration “imaging condition”.

Another valuable contribution was the “migration by Fourier transform” de-
veloped by Stolt (1978), which expressed a seismic wavefield in the frequency-
wavenumber domain. Indeed, comparing with Claerbout’s work, we could see the
“Stolt’s migration” like an alternative approach to the same problem (Bednar, 2005).
However, since it was developed to operate in the frequency domain, for a constant-
velocity assumption, the Stolt’s method is the fastest one.
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Shortly after, Gazdag (1978) adapted the Stolt’s original algorithm. Sometimes
called “phase shift” or “Gazdag migration”, it is a frequency-domain phase-shifting
step-by-step downward continuation algorithm. In addition, it was initially designed
to handle only a vertically varying velocity. Gazdag and Sguazzero (1984) improved
the method to handle mildly lateral velocity variations by creating the “phase-shift-
plus interpolation” or “PSPI migration”.

In addition to these major implementations, Kelly et al. (1976) showed full acous-
tic and elastic wavefield simulations by a suitable finite-difference representation.
Also, Schneider (1978) provided the wave-equation basis for Kirchhoff migration
through the application of the Green’s third identity to the recorded data to produce
a seismic wavefield at depth. Bleistein (1987) showed how to solve for reflectivity.

The late 1970s continued to bear fruit. Hemon (1978) presented the reverse-time
migration (RTM). It showed promise in imaging steeply dipping structures, using the
full acoustic wave equation, i.e., two-way, thus eliminating the dip limitations of one-
way equations. Besides its precision, the RTM is, unfortunately, computationally
expensive even for the computers of today.

Yilmaz and Claerbout (1980) presented the dip-moveout (DMO) correction. This
method mitigates the problem with attenuation of steeply dipping events present
in the CMP stack because of the flat-earth assumption. On the other hand, such
strategy addressed a new issue. To apply the DMO correction, one needs either to
perform first the normal-moveout (NMO) correction and its corresponding velocity
analysis. For a comprehensive discussion of the DMO and NMO application in
imaging, see Hale (1984) and Forel and Gardner (1988).

The migration velocity is of key importance for almost all the methods briefly
reviewed above. To provide appropriate information for the investigated geologic
area, the reference velocity model needs to be vertically or laterally inhomogeneous,
elastic isotropic, or anisotropic.

Those readers wishing to understand from the basic principles of seismic imaging
to imaging algorithms, we recommend the books of Schleicher et al. (2007), Jones
(2010), and Stolt and Weglein (2011), as well as the papers by Gray et al. (2001),
Bednar (2005), Etgen et al. (2009), and references therein.

1.3 Modern seismic imaging and the present state

of the art

Some of the greatest scientific and technological inventions in human history
occurred in the 1990s and 2000s. The computational advances enabled most of the
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scientific breakthroughs of that time and allowed the application of methods that
until then were computationally impossible.

With larger and larger computations becoming possible, advances in seismic have
been occurring from the planning of the acquisition survey, through the search for
more accurate data, software development, and the most frontend steps of seismic
processing. In what follows, we point some of the most relevant advances concerning
the seismic imaging, which can be placed in two categories, namely, standard and
nonstandard seismic imaging. By standard seismic imaging, we refer to those
contextualized on the Huygens’ principle, the Born approximation, and the like,
whereas, nonstandard imaging rely on interferometric imaging, Marchenko imaging,
and representation theorems applied to vector acoustic or elastic data (Gray et al.,
2001).

1.3.1 Standard seismic imaging

As seen previously, most efforts of seismic imaging relying on image regions with
complex geology and in the presence of a significant amount of noise, where the use
of the classical flow (NMO, stacking, and migration) may be insufficient. Among
others, this has boosted the development of:

• methods of seismic-velocity assessments. Two of the most important are the
seismic reflection tomography, and the full-waveform inversion (FWI) (Lailly,
1983; Tarantola, 1984; Bishop et al., 1985; Stork, 1992; Virieux and Operto,
2009; Biondi and Almomin, 2014);

• three-dimensional seismic acquisition and migration (Cordsen et al., 2000;
Biondi, 2006);

• wide-azimuth procedures for acquisition and migration, and the choice between
a narrow-azimuth and a wide-azimuth acquisition design. It is a strategic
decision depending on the survey’s purpose. For example, wide-azimuth
procedures have proved themselves successful in imaging deepwater structures,
but, on the other hand, they are costlier than narrow-azimuth surveys. For
economy, it is a common practice to have larger source and receiver spacings
which unfortunately implies in a spatial-sampling issue which, in addition,
shows behaving differently with land and marine data (Pratt et al., 1996; Sir-
gue, 2003; Sirgue and Pratt, 2004; Malinowski and Operto, 2008; Bleibinhaus
et al., 2009; Etgen et al., 2009; Prieux et al., 2012);
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• enhanced bandwidth mainly those at low frequencies. The benefits with a
broadband acquisition are many but briefly, we could mention the better con-
ditioning for an inverse problem. Even today, and even for a robust procedure
like an FWI application, the frequency content is crucial to ensure an accurate
velocity estimation. Moreover, the search for enhanced bandwidth has shown
useful to improve the seismic response at high frequencies (Alkhalifah, 2014;
Biondi and Almomin, 2014);

• rock-property analysis through seismic amplitude analysis, which can be
performed using the amplitude variation with offset (AVO), or using the
amplitude variation with angle (AVA). Both of them have been employed to
reduce the exploratory risk, primarily in less-complex areas (Berkhout, 1997);

• rock-property analysis for the estimation of azimuthal properties, which can be
estimated from amplitude-variation-with-azimuth (AVAZ) or velocity-variation-
with-azimuth (VVAZ) investigations (Castagna and Backus, 1993);

• methods which emphasize coherency and continuity of reflectors. Two distin-
guish techniques are common-reflection-surface (CRS) stacking and multifo-
cusing stacking (Jäger et al., 2001; Hertweck et al., 2007).

1.3.2 Nonstandard seismic imaging

By nonstandard seismic imaging, we refer to any alternative that, one way or
another, seems to break the paradigm presented in the majority of the technologies of
imaging the earth’s interior developed since the early days of mechanical migration.
Examples of particular importance are:

• the use of multiple reflections which can increase the accuracy in the velocity
models and seismic images (Verschuur, 2006; Vasconcelos et al., 2008; Malcolm
et al., 2009);

• the multiple-migration method, or “mirror-migration method”, which provides
a much broader illumination of the subsurface than is possible for conventional
imaging using the primaries, especially for the very shallow reflections and
sparse ocean-bottom seismometer (OBS) spacing (Dash et al., 2009);

• the concepts and applications based on the inverse scattering theory, like the
inverse-scattering series proposed by Weglein et al. (1997) that allows removing
internal multiples without knowledge of subsurface reflectors (Ramírez and
Weglein, 2009; Behura et al., 2014);
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• full-wavefield migration (Berkhout, 2012) to migrate internal multiples;

• interferometric imaging (Schuster et al., 2004; Schuster, 2009), that inverts
correlated seismic data for the reflectivity or source distributions, and can
be used to migrate first-order free-surface multiples or peg-leg multiples in
CDP data (see, also, Vasconcelos et al., 2008; Ramírez and Weglein, 2009;
Vasconcelos et al., 2010);

• Marchenko imaging. A new inverse-scattering theory based on the Marchenko
equation (Marchenko, 1955; Agranovich and Marchenko, 1963), presented by
Rose (1989, 2001, 2002) under the name of “autofocusing”, and then adapted
to the seismic concepts for acoustic (Broggini and Snieder, 2012; Wapenaar
et al., 2013) and also elastodynamic (da Costa Filho et al., 2014; Wapenaar
et al., 2014) wavefields;

• least-squares migration (Nemeth et al., 1999);

• joint migration inversion (JMI) (Verschuur and Berkhout, 2011; Berkhout,
2012; Staal and Verschuur, 2012b,a);

• the development of theorems and methodologies applied to vector acoustic
(Vasconcelos and Snieder, 2008a; Vasconcelos et al., 2009; Fleury and Vas-
concelos, 2013; Vasconcelos, 2013) or elastic data (Shapiro and Hubral, 1999;
Vasconcelos and Snieder, 2008b);

• incorporating non-seismic data like marine electromagnetic (EM), controlled-
source EM (CSEM), magnetotelluric (MT), and gravity gradiometry (GG).
The use of multi-physics datasets may reduce the ambiguity of the seismic data,
which is, for example, particularly important for velocity model building in a
complex area dominated by salt tectonics. The topic is also subject of active
ongoing research. For example, recent papers on the subject of joint inversion
of seismic and EM, CSEM, MT, and GG include those of Hoversten et al.
(2006); Commer and Newman (2008); Chen and Hoversten (2012); Colombo
et al. (2014).

1.4 Problem statement

In the previous section, we have revisited essential concepts and approaches of
seismic imaging. Generally, a common feature of these methods is that their success
depends on the accuracy of a priori reference velocity model, typically a smooth
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model — also called macrovelocity model — which plays the role of an initial guess
of the actual velocity model to be constructed in time or depth domain depending
on the need. However, how to establish the macrovelocity model is a complicated
problem on its own. In the last decades, many authors have played a central role in
the development of methods for the construction of macrovelocity models, and the
improvements concerning their resolution to the image purpose under consideration
(see, e.g., Jannane et al., 1989; Versteeg, 1993; Liu, 1997; Billette and Lambaré,
1998; Sacchi, 1998; Zhu et al., 1998; Chauris and Noble, 2001; Billette et al., 2003;
Sirgue, 2003; Schleicher et al., 2007; Jones, 2010).

As critical as the velocity model accuracy is knowing how to retrieve information
from the data set and understand its limitations. In this subject, important
assertions were made by Jannane et al. (1989). Motivated initially to clear up
the convergence problem occurred when starting earth model is far from the true
earth (Kolb et al., 1986; Mora, 1987b; Pica et al., 1990), Jannane et al. (1989)
determined which wavelengths of earth structures that can be resolved from seismic
reflection data. The investigation showed there exists a gap in resolution between
short and long wavelength. That is, the intermediate wavenumbers are invisible to
the data (Sirgue, 2003; Biondi and Almomin, 2014). Another important work was
that provided by Mora (1989). He proposed that a nonlinear iterative inversion that
updates a varying background velocity obtains all wavenumbers that are resolvable
separately by migration and tomography. In other words, Mora (1989) recognized
that FWI has a migration component and a tomographic component.

The decomposition by spatial scale is, therefore, a topic of fundamental interest.
Though a variety of methods for velocity model construction methods exist, for
acoustic data (the assumption of this thesis), they can be classified in two cate-
gories: those devoted to inverting the long-wavelength (smooth) components of the
velocity model and those dedicated to resolving the short-wavelength components
(Claerbout, 1985).

They accomplish this because of two independent attributes of seismic wavefields
used in the inversion. One of these attributes, the geometrical behavior of the
wavefield, it is described mainly by its kinematics and is particularly successful at
stores/provides mostly smooth (long-wavelength) elements of the velocity field. Var-
ious methods are suitable for this, providing background velocity information of the
subsurface structures unless sharp discontinuities are imposed on the model. Possible
seismic approaches for initial-models building rely on traveltime tomography, wave
equation tomography, and migration-based velocity analysis (Prieux et al., 2012;
Biondi and Almomin, 2014). The second attribute, amplitude or phase behavior
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of the wavefield, however, can contain sharp (short-wavelength) components of the
model represented as scattering. Moreover, depending on the frequency, it may be
reasonably insensitive to an equivalent cycle-induced change in the long-wavelength
component of the velocity model (Alkhalifah, 2014).

Geophysical exploration seeks to characterize the subsurface as much as possible.
Thus, low frequencies are required to understand the geological properties of rocks,
while high frequencies are required to address structural challenges. Therefore,
imaging methods that exploit the full information contained in seismograms are
desired. These needs also together with the increase of the computational power
occurred in the last decades have contributed to FWI became a favorite imaging
technique able to reveal arbitrary complex subsurface models despite its ill-posedness
(e.g., Tarantola, 1987; Pratt, 1999; Virieux and Operto, 2009). However, regardless
of any technological advances, FWI is a strong nonlinear inverse problem and
requires an accurate initial guess and sufficient data to succeed (a consequence of the
strong nonlinear relationship between the seismic data and the model parameters).

Therefore, the frequency content in seismic data plays a key role in the converging
of the inversion processing. FWI is most successful when applied to the low
frequencies in the data. Unfortunately, however, low-frequency data are rarely
available due to acquisition limitations faced even by the industry of today. Such
limitation (the lack of information of the long wavelengths) can be attenuated by
the wide-aperture arrivals recorded by long-offset acquisition geometries (Pratt and
Worthington, 1990; Sirgue and Pratt, 2004). If in one hand diving waves and super-
critical reflections contribute for improvement of the wave illumination in challenge
environments (e.g., sub-salt and sub-basalt targets; Planke et al., 1999), on the
other there are more wavelengths propagating in the subsurface. In this fashion,
long-offset data increase the ill-posedness of FWI. This fact has motivated further
development of multiscale strategies in the time domain (Bunks et al., 1995), and
in the frequency domain (Pratt and Worthington, 1990; Pratt, 1999).

All the comments presented in this section are just a few examples to stress
the importance of the velocity model to guarantee both quality and performance
in the most diverse seismic imaging techniques and inversion approaches. More
examples can be seen in reviews that show the state-of-the-art of full waveform
inversion, e.g., Virieux and Operto (2009), and Fichtner (2011) for those interested
in a seismological point of view. Furthermore, the reader is referred to the works of
Sirgue (2003); Sirgue and Pratt (2004) for details concerning to produce a velocity
model which contains the lowest wavenumbers of the velocity field. This is an
important subject also discussed in the present work. This thesis first seeks to
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develop a workflow for the construction of initial velocity-models for FWI methods.
Therefore, we investigate new methods for seismic imaging and velocity model
building. The purpose of this thesis and the parts that compose it are detailed
in the following sections.

1.5 The purpose of this work

In spite of the great number of geophysical imaging methods created in the last
decades to study the coupling between the physical and geometric properties of the
Earth’s subsurface, there is a lack of methods that are able to process a significant
amount of information, with high computation efficiency. Furthermore, it is usual
that a geophysical method and/or processing strategy focus in a few, even only
one, specific characteristic/property of the investigated geology. Basically because
adding information usually means to make the problem more complex.

Aiming to further contribute on the study of seismic imaging, this work presents
some methods that try to construct the best possible undistorted image in time-
and in depth-domain from the acquired seismic data. Another aim of this work
is to confront the newly proposed techniques with classical and frontend other
ones, providing a more in-depth look at the motivation and inner workings of these
methods.

However, the aim of this thesis is not only to develop new methods to estimate
the velocity of the subsurface. More than this, the primary purpose of this work
is to study how the combination of these methods allow a complete processing
workflow, incorporating different pieces of information, always taking into account
the computational efficiency and prioritizing fully automatic alternatives. Thus, we
present a workflow for the construction of starting velocity-models for FWI methods
consisting of automated time-migration velocity analysis, followed by time-to-depth
conversion. Figure 1.1 shows a sketch representing this workflow. The dark gray
rectangles represent the three main blocks of the processing workflow, which, in
turn, compose the three fronts researched in this thesis.

In general, the methods proposed here are means to build improved velocity
models for simple and complex geology structures, being their final images a by-
product obtained, in most cases, by time- or depth-migration of the dataset with
this extracted velocity model.

Since it is known that methods which act in the time-domain are usually faster
than those in the depth-domain, most of the project time was devoted to the study
and development of algorithms to construct starting velocity models for time-domain
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migration-velocity-analysis. Thus the first chapters of this thesis are dedicated to
describe, evaluate and propose time-domain approaches (Chapters 2 and 3). Their
results can be better assessed in the second part of this work when they are converted
from time to depth domain (Chapter 4). The third part of this thesis is devoted to
discuss and study methods that work in the depth-domain (Chapter 5).

The chapters in this thesis also contribute to the body of literature and can
be read independently depending on the reader’s interest. The following section
presents a detailed summary of the thesis structure.

Seismic data

Time migration-velocity-analysis

Time-to-depth conversion

Full-waveform inversion

End of process

Figure 1.1: Velocity model building flowchart.

1.6 Outline of this thesis

This thesis is divided in two parts, thesis body and appendices. The former is
composed by six chapters, of which this Introduction is the first. The others are
described as follows.

Chapter 2 discusses two recent time MVA methods, being common-image-gather
image-wave propagation (Schleicher et al., 2008) and double multi-stack mi-
gration (Schleicher and Costa, 2009), and compare their potential for the
construction of initial models for more sophisticated MVA techniques. In the
example of the Marmousoft dataset, we show that both methods can be used in
a fully automated procedure to produce a velocity model and a time-migrated
image without a-priori information at comparable cost.

Chapter 3 presents a prestack time-migration tool for local improvement of the
seismic migration-velocity model, based on time-remigration trajectories. Kine-
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matic parameters from local-slope information of seismic reflection events
are used to locally correct the velocity model. The main advantage of this
technique is that it allows to carry out a residual-moveout correction for all
offsets of a common-image gather (CIG), taking into account the reflection-
point displacement in the midpoint direction. Tests on synthetic data from
four simple models, the Marmousoft data (Billette et al., 2003) and SMAART-
Sigsbee2B data demonstrated the feasibility of the method in more realistic
situations with strong velocity variations in different directions.

Chapter 4 presents an improved derivation of a new strategy for time-to-depth
conversion and velocity estimation based only on image-wavefront propagation.
This method was initially proposed by Valente (2013). In particular, it makes
use of a geometric manipulation to directly compute both the velocity field
and the traveltime, avoiding a previous ray-tracing step. Moreover, it requires
only the knowledge of the image-wavefront of the previous time step. Its
robustness is proved with its application on a simple synthetic example and
on the Marmousi model. The quality of the results are evaluated by depth
migrated images from the Marmousi data set with the extracted velocity
models. We use a two-dimensional Fourier finite-difference (FFD) migration
with the complex Padé approximation as discussed in Amazonas et al. (2007).
One of the reasons that led us to choose this method is that it was proven to
be fast and robust. Another important point is that Amazonas et al. (2007)
performed several depth migrations with different migration methods for the
Marmousi data set using the true velocity mode. The use of their migration
method allows us to compare our results to their migrated images, in this way
increasing our information database.

Chapter 5 presents a workflow for the construction of initial velocity-models for
full-waveform tomography (FWT) methods consisting of automatic time-
migration velocity analysis by means of double multi-stack migration (Chap-
ter 2), followed by time-to-depth conversion by image-ray wavefront propa-
gation (Chapter 4). Evaluation of the converted velocity model as an initial
velocity model in an acoustic FWT process indicates the potential to achieve
a fully automatic tool for initial-model building in a FWT workflow.

Chapter 6 reviews the work accomplished in this thesis, the advantages and
limitations of the methods as well as perspectives for a fully automatic tool,
capable of generating seismic velocity models and images in time and/or in
depth domain.
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Chapter 2

Initial-model construction for MVA

techniques

The beauty of the multipath summation

method is that it eliminates the need to

construct a migration velocity model before

imaging.

— Schleicher and Costa (2009)

2.1 Summary

For iterative migration-velocity-analysis (MVA) methods, accurate starting mod-
els are required. We discuss the parameterization of two recent time MVA methods,
namely common-image-gather image-wave propagation and double multi-stack mi-
gration, and compare their potential for the construction of initial models for more
sophisticated MVA techniques. Both approaches generate a velocity model and
a time-migrated image without a priori information. While multi-stack MVA is
already fully automatic by design, we eliminate human intervention from image-
wave MVA by introducing automated picking of the involved flattening velocities.
In the example of the Marmousoft data set, we show that both methods can produce
equivalent results at comparable cost.

2.2 Introduction

A major challenge both in seismic exploration and in seismological investigations
is the construction of the best possible undistorted image in depth from the acquired
data. For this purpose, imaging methods that rely on the knowledge of a subsurface
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velocity model are employed. Most present-day model-building techniques are
iterative procedures that improve a starting model based on intermediate results.
Among these, the most important are model-building methods based directly on
migration itself, so-called migration velocity analysis (MVA). All of these techniques
strongly depend on the accuracy of the starting model.

Conventionally, techniques for constructing a starting model are based on an
analysis of the traveltime of seismic waves. Among the most commonly used methods
are the common-midpoint (CMP) and common reflection surface (CRS) stacks (see,
e.g., Hertweck et al., 2007).

Both these methods operate in the data-acquisition time domain. Thus, there
is a need for transforming such a velocity model to the migration domain, be it
in time or depth. This conversion is problematic in that it depends on the actual
values of the velocity model to be converted (Hubral, 1977). Therefore, alternative
velocity-analysis methods are desirable that work directly in the desired migration
domain, so that there is no need for a conversion of the model domain.

Motivated by the importance of the subject, MVA methods have been proposed
by many authors. Because of its conceptual clarity and simplicity, residual moveout
(RMO) analysis has become the favorite tool for MVA. In recent years, many
improvements have been proposed. However, few authors have studied the problem
of how to construct the best possible starting model. Schleicher et al. (2008) and
Schleicher and Costa (2009) proposed two MVA methods for time migration that
can fill this gap. The first one treats the events in common-image gathers (CIGs)
similar to wavefronts and lets them propagate until they are flat, updating the
migration velocity model from the flattening velocities (Schleicher et al., 2008). The
second method stacks twice over migrated images for many models with different
weights in order to extract stationary migration velocities from the ratio of the
images (Schleicher and Costa, 2009). Both MVA methods’ purpose is to begin the
analysis from scratch, without the need to specify an initial velocity model that
has already certain features of the searched model. Thus, they differ fundamentally
from tomographic methods (Billette et al., 2003; Clapp et al., 2004) or full waveform
inversion (FWI, see, e.g., Virieux and Operto, 2009), which require a good initial
model to ensure convergence.

After the application of an adequate time-to-depth conversion algorithm (Cameron
et al., 2007, 2008; Iversen and Tygel, 2008), a high-quality time-migration initial
model may even provide sufficient quality to serve for subsequent depth MVA or
FWI methods.
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Schleicher et al. (2008) and Schleicher and Costa (2009) tested their time-
migration MVA methods on the synthetic Marmousoft data set (Billette et al.,
2003). These synthetic data were obtained by Born modeling in a smoothed version
of the original Marmousi model, using the original reflectivity. However, although
these authors applied both methods to the same data set, they did not compare
their performance or try to combine them.

In this work, we deliver this comparison using the Marmousoft model, not only
concerning the quality of the resulting velocity models and migrated images, but also
regarding the human and computational effort required to achieve a certain quality.
Another goal of our research is to study the setting of the parameters involved in
the methods, in order to optimize their performance. Parameter to be cited in this
respect are the measure of nonflatness of the events in the common image gather
(CIG) or the number of CIGs necessary for a successful analysis.

2.3 MVA techniques

We start with a brief review of the MVA techniques under consideration.

2.3.1 MVA by image-wave propagation of CIGs

Theoretical description

Schleicher et al. (2008) started from the position of a horizontal reflector below
a homogeneous medium with constant-velocity v as a function of vertical time τ ,
half-offset h, and migration velocity vm, as derived by Al-Yahya (1989). It reads

τ =

√

τ 20 + h2

(

1

v2
− 1

vm2

)

, (2.1)

where τ0 is vertical time at zero offset, i.e., the true migrated position of the
reflector’s image. They arrived at the image-wave equation for the continuation
of a CIG,

∂p̃

∂τ
+

v3τ

h2

∂p̃

∂v
= 0 . (2.2)

Note that equation (2.2) does not depend on the medium velocity v nor the correct
zero-offset vertical time τ0 of the reflector. This equation was independently derived
by Fomel (2003a), who called it the kinematic RMO equation.
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Schleicher and Biloti (2007) presented the equivalent of equation (2.1) for depth
migration

z =

√

v2m
v2

z20 +

(

v2m
v2

− 1

)

h2 , (2.3)

where z0 is the true depth of the supposedly horizontal reflector and z is the migrated
pseudodepth.

Based on equation (2.3) and in analogy to the procedure in time, Schleicher
et al. (2008) showed that the equation for continuation of the CIGs in depth can be
written as

∂p

∂z
+

vmz

h2 + z2
∂p

∂vm
= 0 . (2.4)

Because of the initial hypothesis of a horizontal reflector, equations (2.2) and
(2.4) do not describe a dislocation of the image along the half-offset axis. The
complete equation for dipping reflectors, which includes a derivative with respect to
h, can be found in Fomel (2003a). However, since the dislocation in the h direction
is the smaller, the closer the model is to the true one, equations (2.2) and (2.4) are
sufficient for an iterative procedure (see also Al-Yahya, 1989).

Iterative model building

For a velocity model construction using the continuation of a single CIG,
Schleicher et al. (2008) proposed the following iterative procedure (Figure 2.1):

1. Migrate data with inhomogeneous velocity model vj.

2. Organize data into CIGs.

If CIGs are not flat:

3. Let CIGs propagate as if obtained with constant velocity vc.

4. For each event, determine the flattening velocity vf .

5. Use vf to update the velocity model vj to vj+1.

6. Go to 1.

A flowchart of this algorithm is depicted in Figure 2.2.
In this way, we can update the velocity model using the concepts of residual

migration (Rocca and Salvador, 1982; Rothman et al., 1985; Larner and Beasley,
1987). Residual migration is based on the fact that migrating a time-migrated image
a second time yields a time-migrated image as if it was directly obtained with an
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v = vj(x, z)

v = vc

v = vj+1(x, z)

v = vf

Figure 2.1: Iterative velocity model construction by image-wave propagation of
CIGs. Here vj represents the present velocity model at the jth iteration; vj+1 is the
updated velocity model; vc is the constant velocity to begin the image continuation
(e.g., water velocity v0 = 1500 m/s for marine data or near-surface velocity for land
data); and vf is the constant velocity that flattens an event.

effective migration velocity (please, see the supplementary text in Appendix D). If
the first migration uses velocity v1 and the second migration velocity v2, then the
effective migration velocity vef can be expressed as

vef =
√

v21 + v22 . (2.5)

Equation (2.5) can be called the Pythagoras theorem of time migration as illustrated
in Figure 2.3. Rewriting it as

v2 =
√

v2ef − v21 , (2.6)

it allows determining the necessary residual migration velocity v2 that will transform
an image after migration with velocity v1 into an image for the desired effective
migration velocity vef .

In our image continuation procedure, the initial image was obtained by migration
with model vj , which thus is our v1. The desired velocity model flattens events,
hopefully, achieved at the next iteration, i.e.,

vj+1 = vef . (2.7)

Thus, we need a residual velocity

v2 =
√

v2j+1 − v2j . (2.8)

On the other hand, we have treated the image as it was migrated with vc, which
thus may also assume the role of v1 in equation (2.6). The event is approximately
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Seismic data

Prestack time migration

CIG sorting

Are the CIG’s
events flattened?

Let CIGs propagate
using vc

Compute the
velocity spectra

Velocity picking (vf )

Use vf to updated the
velocity model vj to vj+1

Interpolate the new
velocity points

End of process
Final migrated image

No

Yes

Figure 2.2: Image-wave propagation process flowchart.
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Data Image 1

Image 2

migration
v1

migrationv2
migration vf

Figure 2.3: Pythagoras theorem of time migration.

flattened at vf , which thus also represents vef , implying that the residual velocity
should be approximated by

v2 ≈
√

v2f − v2c . (2.9)

Equating these two expressions for the residual-migration velocity v2, the velocity
updating formula reads (Schleicher et al., 2008)

vj+1 ≈
√

v2j + v2f − v2c . (2.10)

This formula allows obtaining an updated velocity model (vj+1) as a function of
the present velocity model (vj), the constant velocity that flattens an event (vf)
and the constant velocity used to start the image continuation (vc). The model
should be smoothed between iterations (see again Figure 2.2) to avoid a so-called
Deregowski loop (Deregowski, 1990), with velocity improvements only at the CIG
positions without achieving overall improvement between the CIGs. Further details
on the design of velocity models are discussed in Section 2.5.

2.3.2 MVA by double multi-stack migration

Theoretical description

Based on the principles of the Feynman path integral (Feynman and Hibbs,
1965). The path-summation method renewed attention in seismics in the last two
decades after its application in seismic wave modeling (Lomax, 1999; Schlottmann,
1999). Shortly afterward, Keydar (2004), Landa (2004), Keydar and Shtivelman
(2005), Landa et al. (2005), Shtivelman and Keydar (2005), and Landa et al. (2006)
shown that path integral can be used to obtain a subsurface image without any
velocity information.
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Here, we compare the procedure and result of the above technique (Section 2.3.1)
to the one of Schleicher and Costa (2009), which is based on the multipath-
summation imaging process of Landa et al. (2006). The fundamental idea is to
stack the migration results for “all possible” velocities, or at least as much models as
practically reasonable. Since only “good” models yield flat events in common-image
gathers, these will prevail in the overall stacked image, which thus will show the
geologic structure without the need for a migration-velocity model. Below, we will
refer to this technique as multi-stack migration.

Using the notation of Landa et al. (2006), the multi-stack time-migration oper-
ator can be written as

VW (x) =

∫

dα w(x, α)

∫

dξ

∫

dt U(t, ξ)δ(t− td(ξ,x;α)) , (2.11)

where VW is the resulting time-migrated image at an image point with coordinates
x = (x, τ), x being the lateral distance, τ vertical time, U(t, ξ) a seismic trace
at coordinate ξ in the seismic data, td(ξ,x;α) is a stacking surface corresponding
to a set of possible velocity models that are parameterized using variable α, and
w(x, α) is a weight function, which serves to attenuate contributions from unlikely
trajectories and emphasize contributions from trajectories close to the optimal.

There are several possible choices for the weight function (see, e.g., Moser et al.,
2008; Shtivelman and Keydar, 2008, which present a related idea). In the application
of Schleicher and Costa (2009), α directly represented the time-migration velocity
and the weight w(x, α) was given by a bell-shaped exponential formula with peak
value at zero dip in the common-image gather at x. That is,

w(x, α) = exp

[−P (x;α)

σ2

]

, (2.12)

where P (x;α) is the squared average of the absolute value of the local event slopes in
the CIG at x. The local event slopes are estimated using the corrected least-squares
plane-wave filters (Schleicher et al., 2009). Parameter σ adjusts the half-width of
the Gaussian bell function away from the desired events with P = 0. Here, we follow
Schleicher and Costa (2009), who chose σ = 0.1∆τ/∆x, where ∆τ and ∆x are the
intervals of the migration grid.

Through Laplace’s method and an asymptotic evaluation of the integral (2.11),

VW (x) ≈
√

2πσ2

P ′′(α0)
Q0(x;α0) , (2.13)
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Schleicher and Costa (2009) showed that the result of a multipath summation
produces a migrated image that is, at each image point x, proportional to the
migration with stationary velocity value α0, i.e., the one for which the weight
function in integral (2.11) takes its maximum value at P = 0, and to the weight
factor calculated for this velocity. In equation (2.13), P ′′(α0) denotes the second
derivate of the squared local slope mean P as a function of the varying migration
velocity α. Furthermore, Q0(x;α0) denotes the desired migration result with the
stationary migration velocity α0,

Q0(x;α0) =

∫

dξ

∫

dt U(t, ξ)δ(t− td(ξ,x;α0)) . (2.14)

This analysis implies that the use of a slightly modified weight function,

w̃(x, α) = αw(x, α) , (2.15)

provides, at each point x, a second migration result,

ṼW (x) ≈ α0

√

2πσ2

P ′′(α0)
Q0(x, α0) , (2.16)

that is proportional to the first one, the factor being the stationary value of the
velocity at point x. Thus, the ratio between the migration results provides this
velocity value

α0(x) ≈
ṼW (x)

VW (x)
. (2.17)

This property allows for the determination of a velocity value for all points with a
nonzero multi-stack image. This idea of extracting quantities from multiple stacks
has already been previously discussed in the framework of Kirchhoff migration
(Bleistein, 1987; Tygel et al., 1993).

Caution should be taken to avoid division by zero since the image in the
denominator will disappear from the actual reflector images. We need to keep in
mind that velocity values outside the range of velocities used in the path-integral
summation should be discarded. According to Costa and Schleicher (2011), possible
modifications of weight function 2.15 can be thought of,

w̃(x, α) = αq exp

[−P (x;α)

σ2

]

, (2.18)

with exponents q of α other than q = 1. Moreover, for the sake of convenience, we
cannot consider values q > 1, which will imply raising the amplitude variation of the
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integral 2.11, diminishing the applicability of Laplace’s method. Future research,
not addressed in this thesis, can verify if the values 0 < q < 1 improve the resulting
velocity model. A complete velocity model can then be constructed by intelligent
regularization which is further discussed in Section 2.5 and Appendix C.

Automatic model building

For the velocity model extraction using the multipath summation, Schleicher and
Costa (2009) proposed the following automatic approach:

1. Organize data into CIGs, U(t, ξ).

2. Define a set of velocity models α.

3. Migrate data U(t, ξ) with each (constant) velocity models withing α.

4. Define a weight function w(x, α).

5. Compute the resulting time-migrated image VW (x) using the stacking operator
w(x, α).

6. Define a slightly modified weight function w̃(x, α).

7. Compute the resulting time-migrated image ṼW (x) using the stacking operator
w̃(x, α).

8. Extract the migration velocity α0 by simply dividing the two migration results
ṼW (x) (item 7) and VW (x) (item 5).

A flowchart of this algorithm is depicted in Figure 2.4.

2.4 Numerical examples

We use the Marmousoft data (Billette et al., 2003) to evaluate the above
techniques of velocity model building. These synthetic data were constructed by
Born modeling in a smoothed version of the original Marmousi model (Versteeg,
1994) (Figure 2.5). The smoothing is done using a Gaussian filter with correlation
length τ = 240 m (Billette et al., 2003). The smoothed velocity model is depicted
in Figure 2.6.

For comparison with results of the presented techniques, we computed the
interval (vint) and the root-mean-square (vrms) velocity models in pseudotime from
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Seismic data

Define a set of
velocity models α

Prestack time migration

Define the weight
function w(x, α)
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migrate image VW (x)

Change the weight
function w̃(x, α)
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stacked time-

migrate image ṼW (x)
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migration velocity α0

Choose a B-spline
regularization

Interpolate the new
velocity points

Prestack time migration

QC
approved?

End of process
Final migrated image

Yes

No

Figure 2.4: Double multi-stack migration process flowchart.
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Figure 2.5: Stratigraphic Marmousi depth velocity model.
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Figure 2.6: Marmousoft depth velocity model.
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Figure 2.7: Marmousoft vertical pseudotime interval velocity model (vint) computed
from Figure 2.6 by vertical depth-to-time conversion.
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Figure 2.8: Marmousoft vertical pseudotime root-mean-square velocity model (vrms)
computed from Figure 2.6 by vertical depth-to-time conversion.
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Figure 2.6, both using vertical conversion only. Figures 2.7 and 2.8 show the
pseudotime interval velocity model and rms velocity respectively.

The Marmousoft data contain 261 shots with 96 receivers in each shot. Both
shots and receivers at every 25m with source-receiver offsets between 100m and
2475m. The first shot located at 2600m and the last at 9100m. The registration
time of 3.6 s with a sampling rate of 4ms (two-way traveltime). Figure 2.9 shows the
near-offset section. Table 2.1 summarizes the acquisition parameters of Marmousi
data set.

Table 2.1: Acquisition parameters of Marmousoft data set

Acquisition parameters of Marmousoft

Number of shots 261
Shot spacing 25 m
Shot depth 10 m
Hydrophone spacing 25 m
Hydrophone depth 10 m
Minimum offset 100 m
Maximum offset 2475 m
Offset interval 12.5 m
Number of offsets 96
Minimum midpoint 1387.5 m
Maximum midpoint 9050 m
Midpoint interval 25 m
Number of time samples 900
Time samples 4 ms

We then contaminated those data with random white noise at a level of 30% of
the maximum amplitude (see Figure 2.10 for a near-offset section).

For better comparison with our results, we thus time-migrated the zero-noise
Marmousoft data using the rms velocity (Figure 2.8). Figure 2.11a depicts the
migrated image, along with the coherence panel (Figure 2.11b) associated with the
CIGs of the migrated image, which can be seen as an indicator of the reliability
of different reflectors. Figures 2.11c to 2.11h show six selected CIGs at different
locations, useful for assessing the quality of the velocity model and migration.
Finally, Figure 2.12 brings the resulting time migration to the noise-contaminated
Marmousoft data.

One natural constraint for ray-based methods is a smooth velocity model. Both
MVA methods by image-wave propagation (Schleicher et al., 2008) and double multi-
stack migration (Schleicher and Costa, 2009) provide such a smooth model. Since
in the original works, both methods were tested for the Marmousoft model, we
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Figure 2.9: Near-offset section with source-receiver offset 100m of the Marmousoft
data.
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Figure 2.10: Noise-corrupted near-offset section with a signal-to-noise ratio equal
30%.
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Figure 2.11: Time-migration (a) of Marmousoft data with the vrms velocity model
(Figure 2.8), its corresponding coherence panel (b), and the common-image gathers
from time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m
and (h) 8000 m.
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Figure 2.12: Time-migration (a) of noise-corrupted Marmousoft data with the vrms

velocity model (Figure 2.8), its corresponding coherence panel (b), and the common-
image gathers from time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m,
(g) 7000 m and (h) 8000 m.
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can directly compare the results. Comparing the best velocity models obtained by
image-wave (Figure 2.13a) and double multi-stack (Figure 2.14a) MVA methods,
we can see that both produce similar models in the geologically simple parts of
the model. However, they yield some visible differences in the geologically complex
central part, probably due to the limitations of time migration in such a situation.
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Figure 2.13: (a) Best time-migration velocity model obtained from MVA after five
iterations of image-wave RMO correction and (b) corresponding final time-migrated
image (from Schleicher et al., 2008).
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Figure 2.14: (a) Best time-migration velocity model obtained using the multi-stack
migration process and (b) corresponding final time-migrated image (from Schleicher
and Costa, 2009).

While there is a notable difference between the velocity models (Figures 2.13a
and 2.14a), it is not easy to detect significant differences in the images resulting from
time-migration with these models (Figures 2.13b and 2.14b). This illustrates the
ambiguity in the determination of a starting model for more sophisticated iterative
methods. Further investigations will need to decide which of the models is better
suited for this purpose. This subject is discussed in Appendix E.



77

2.5 Results

To perform a qualitative and quantitative analysis comparing the results obtained
by image-wave propagation of CIGs and double multi-stack migration, we have
considered in our analysis:

• the interpolation method applied;

• the influence of noise in the data set;

• the number of iterations and computer time required to complete the process;

• the necessity and duration of human intervention;

• and the quality of the time-migrated image produced.

Table 2.2 summarizes the numerical experiments presented in this chapter which
will be detailed in the next sections.

2.5.1 Velocity interpolation

One natural constraint for ray-based methods is a smooth velocity model.
Consequently, a time-migration velocity model must not present abrupt variations.
So, when an MVA method generates a grid with blank points, it is necessary to
complete these gaps and smooth this velocity model before the migration process
can be executed (Costa et al., 2008; Schleicher and Costa, 2009). In this regard,
linear interpolation can be useful but requires input be filtered (e.g., by a moving
average) to avoid discontinuities in the velocity derivatives. In our experiments, the
B-splines smoothing was constrained by requiring the first and second Cartesian
derivatives to be minimum. A Lagrangian multiplier defines the relative weight of
each constraint in the cost function. In Appendix C, Table C.1 summarizes all the
seven different sets of Lagrangian multipliers categorized from “very hard” to “very
soft” regularization, utilized during the experiments.

In our tests, B-splines interpolation turned out to be the best way to interpolate
the data, since it smoothed the velocity models even in edge regions. Therefore, all
results presented in this chapter were obtained using B-splines interpolation.

An important parameter in this process is the number of B-splines nodes for
the velocity interpolation. However, it is often not clear how to choose the number
of nodes, and the bigger the number of nodes the costlier is the process. We can
think that the more nodes are used, the more detail of the original function will be
presented by the smoothed function. Schleicher and Biloti (2008) shown that more
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nodes mean a better approximation of Fourier coefficients for higher frequencies.
That is, the number of nodes can be determined by specifying a frequency up to
which all Fourier coefficients must be preserved and increased the number of nodes
until this criterion is met.

We have tested different grid sizes (not present here). In most tests performed
with Marmousoft, we did not find any significant influence on the quality of the
results, due to the lack of high frequencies in the original data. Furthermore, our
tests point to a similar discussion as Costa et al. (2008), which proposed a reflection-
angle-based kind of smoothness constraint as regularization in slope tomography.
They found an evident effect of the smoothness constrains on the estimated velocity
model but a weaker effect on the seismic images. We note similar conclusion even
with the data contaminated with noise. The influence of noise will be discussed
in the upcoming sections 2.5.2 and 2.5.3. In the following examples, the number
of B-splines nodes along the vertical axis (in vertical time) was 14 and along the
horizontal axis (in horizontal distance) 52. The nodes are spaced at 0.1 s vertically
and 200m laterally.

Table 2.2: Experiments gallery.

Method Experiment
Semblance
(picking)

Noise
(%)

Time
(s)

Image propagation

1 original - 5551

2 smoothed - 10523

3 original 30 9612

4 smoothed 30 9148

Multi-stack migration
5 - - 4431

6 - 30 4331

2.5.2 Image continuation

Parameter setup

For the image-wave propagation of CIGs, we started in all the tests from a
v0 = 1500m/s (water velocity) constant velocity model. Velocities ranged from
1500m/s to 4500m/s. Moreover, to use the migration velocity as the propagation
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Table 2.3: General setup of the MVA by image-wave propagation of CIGs.

Image continuation - Parameter setup

Initial constant migration velocity 1500 m/s
Initial time for migration 0 s
Final time for migration 1.2 s
Initial x for migration 2500 m
Final x for migration 8500 m
Sampling rate in t for migration 0.002 s
Sampling rate in x for migration 12 m
Number of B-spline nodes in t direction 14
Number of B-spline nodes in x direction 52
Distance between nodes of B-splines in t direction 0.1 s
Distance between nodes of B-splines in x direction 200 m
Coordinate of first CIG for velocity analysis 2500 m
Distance between CIGs for velocity analysis 12 m
Number of CIGs for velocity analysis 501
Minimum velocity for 1st continuation 1400 m/s
Maximum velocity for 1st continuation 3500 m/s
Velocity interval for 1st continuation 25 m/s
Reference velocity for subsequent iterations of continuation 2000 m/s
Velocity variation for subsequent iterations of continuation 1000 m/s
Velocity interval for subsequent iterations of continuation 10 m/s
Regularization for first two iterations very hard
Regularization for later iterations intermediate
Minimum velocity allowed in the model 1500 m/s
Maximum velocity allowed in the model 4500 m/s
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variable in the image continuation, we have to treat the CIGs as if they were obtained
with a constant velocity vc (see equation 2.10). The choice of vc is rather arbitrary
because the principle does not depend on its actual value. In practice, it is helpful
to avoid too large velocity differences to the background model. Given the range
of true velocities in the Marmousoft model, we chose vc = 2000m/s. From this
reference velocity, we continued CIGs to larger velocities up to 4500m/s and to lower
velocities down to 1500m/s in steps of ∆v = 25m/s. In contrast with previous tests
presented in Santos et al. (2013f,g), here we used a smaller range of velocity values
with a bigger velocity step (∆v) in the CIG continuation. Such parametrization
implies in a straight decrease in the computational cost without any loss of quality.
Table 2.3 summarizes the parameter setup used in the image continuation tests.

The following tests were done twice, first considering the original Marmousoft
data set and after for a noise-corrupted version with a signal-to-noise ratio equal
30% (see Figures 2.9 and 2.10). For simplicity, we split the tests in four different
experiments, where Experiments 1 and 2 treat the true Marmousoft data set and
Experiments 3 and 4 the noise-corrupted one (see Table 2.2). Furthermore, we set
different regularizations to the B-splines interpolation depending on the iteration
number. We used a very hard regularization for the first two iterations and an
intermediate regularization for the next three ones (see Tables 2.3 and C.1).

Automated velocity picking from propagated CIGs

Schleicher et al. (2008) showed that MVA in time by image-wave propagation
of CIGs allows determining a meaningful velocity model and a migrated image of
acceptable quality (Figure 2.13). However, to do so, they had to manually pick the
flattening velocities, which made the process rather cumbersome.

In this work, we perform the process without any human intervention using two
automatic picking procedures. Both consider the semblance values along horizontal
lines in the propagated CIGs. The first procedure picks the velocities for all maxima
in the semblance panel while the second procedure picks the velocities for all maxima
in the semblance panel after a least-square smoothing.

In Figure 2.15a, we show the semblance panel computed in the first iteration
for the original Marmousoft data (Experiments 1 and 2), and in Figure 2.15b the
noise-contaminated one (Experiments 3 and 4). The profiles in pink and white
color represent the picks for all maxima in the semblance (first procedure) and the
picks for the maxima after smoothing (second procedure) respectively. Here, we
differentiate Experiment 1 from 2, and Experiment 3 from 4, depending on the
procedure chosen from the first iteration (see Table 2.2). Figures 2.16a and 2.16b
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depict the semblance panel and the pink profile extracted in Experiments 1 and 3
for the third iteration, and Figures 2.17a and 2.17b depict the semblance panel and
the white profile extracted (after smoothing) in Experiments 2 and 4 for the third
iteration. Although we used the same automatic-picking procedure in each of the
experiments, we emphasize that the choice between these procedures can be made
at each iteration.

These velocity values are corrected with equation 2.10 to provide the new
velocity-time function for the subsequent iteration. Both panels in Figure 2.15
show that with only one iteration, the highest velocity values are still close to
the initial value v0 = 1500m/s, especially in the shallowest parts. Analyzing
Figures 2.16 and 2.17, we observed an increase in velocity values in contrast with
Figure 2.15, as well as an increase in the coherence. Further, the profiles depicted
in Figures 2.16 and 2.17 suggest a good correlation between them in the shallower
regions of Marmousoft. In other words, the models become more different as the
depth increases. Compare the profiles to times after 0.8 s.

Figure 2.18 shows the extracted velocity points for Experiments 1 to 4 for the
third and fifth iterations. Just for illustration, we use linear interpolation to make
the grid regular. The extracted velocity points are interpolated with B-splines as
mentioned in section 2.5.1. The velocity model and its respective migrated image
for the third iteration are depicted in Figures 2.19, 2.23, 2.21 and 2.25, and for
the fifth iteration in Figures 2.20, 2.24, 2.22 and 2.26. The accuracy of the results
can be confirmed, for example, by comparing with the Marmousoft rms velocity
model (Figure 2.8), as well as the time-migrated images and the CIGs located
at different positions (Figures 2.11 and 2.12). Also, a significant correlation was
observed between our results and those obtained by Schleicher et al. (2008) and
Schleicher and Costa (2009) shown in Figures 2.13 and 2.14.

Reliability

Figure 2.27 shows the horizontal semblance in the corresponding CIG at each
point of the migrated images mentioned above. In these panels, low coherence values
indicate regions where further improvements are required, while high values indicate
where the obtained velocity model can already be trusted.

Our results indicate that already after the third iteration we can produce an
acceptable velocity model in the vicinity of the geologically complex regions. In
the more complex central part of the model, additional improvement is achieved up
to the fifth iteration (even in the presence of noise corrupted data set). Through
the analysis of the migrated images, the CIGs, and the panels of coherence, we see
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that the MVA method employed produces similar results to those obtained using
the rms velocity model (Figures 2.8, 2.11 and 2.12). A more detailed comparison
of the coherence panels obtained after five iterations (Figures 2.27b, 2.27d, 2.27f
and 2.27h), even suggests that the image-wave propagation of CIGs produced better
results than those using the rms velocity model. More iterations of the process led
to no significant improvement, indicating that time migration cannot resolve the
remaining inaccuracies.
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Figure 2.15: Velocity spectrum obtained from the set of continued CIGs. Semblance
plot of CIG at 6000m, iteration 1, for the (a) Experiments 1 and 2, and (b)
Experiments 3 and 4. The velocity profiles interpreted at this location also is shown.
The pink profile presents the picked velocities for all maxima in the semblance panel
while the white profile shows the picked velocities for all maxima in the semblance
after smoothing.

Computational Cost

The largest part of the computation cost of image-wave remigration resides in
the migrations necessary at each iteration. The image-wave propagation of the
CIGs is about two orders of magnitude faster. In the original implementation of
Schleicher et al. (2008), a severe human interaction was required. They picked
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Figure 2.16: Velocity spectrum obtained from the set of continued CIGs. Semblance
plot of CIG at 6000m, iteration 3, for the (a) Experiment 1, and (b) Experiment 3.
The velocity profile interpreted at this location also is shown (pink line). It presents
the picked velocities for all maxima in the semblance panel.
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Figure 2.17: Velocity spectrum obtained from the set of continued CIGs. Semblance
plot of CIG at 6000m, iteration 3, for the (a) Experiment 2, and (b) Experiment 4,
The velocity profile interpreted at this location also is shown (white line). It presents
the picked velocities for all maxima in the semblance panel after smoothing.
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Figure 2.18: Velocity extracted by the image-wave propagation method after three
(left) and five (right) iterations for the Experiments 1 (a)-(b), 2 (c)-(d), 3 (e)-(f),
and 4 (g)-(h).
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Figure 2.19: Experiment 1. Third iteration of the image-wave propagation method
using auto-picks at the maxima of horizontal semblance. Shown are the velocity
model (a), the final migrated image (b), and common-image gathers from time
migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and (h)
8000 m.
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Figure 2.20: Experiment 1. Fifth iteration of the image-wave propagation method
using auto-picks at the maxima of horizontal semblance. Shown are the velocity
model (a), the final migrated image (b), and common-image gathers from time
migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and (h)
8000 m.
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Figure 2.21: Experiment 2. Third iteration of the image-wave propagation method
using auto-picks at the maxima of smoothed horizontal semblance. Shown are the
velocity model (a), the final migrated image (b), and common-image gathers from
time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and
(h) 8000 m.
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Figure 2.22: Experiment 2. Fifth iteration of the image-wave propagation method
using auto-picks at the maxima of smoothed horizontal semblance. Shown are the
velocity model (a), the final migrated image (b), and common-image gathers from
time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and
(h) 8000 m.
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Figure 2.23: Experiment 3. Third iteration of the image-wave propagation method
using auto-picks at the maxima of horizontal semblance. Shown are the velocity
model (a), the final migrated image (b), and common-image gathers from time
migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and (h)
8000 m.
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Figure 2.24: Experiment 3. Fifth iteration of the image-wave propagation method
using auto-picks at the maxima of horizontal semblance. Shown are the velocity
model (a), the final migrated image (b), and common-image gathers from time
migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and (h)
8000 m.
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Figure 2.25: Experiment 4. Third iteration of the image-wave propagation method
using auto-picks at the maxima of smoothed horizontal semblance. Shown are the
velocity model (a), the final migrated image (b), and common-image gathers from
time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and
(h) 8000 m.
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Figure 2.26: Experiment 4. Fifth iteration of the image-wave propagation method
using auto-picks at the maxima of smoothed horizontal semblance. Shown are the
velocity model (a), the final migrated image (b), and common-image gathers from
time migration at (c) 3000 m, (d) 4000 m, (e) 5000 m, (f) 6000 m, (g) 7000 m and
(h) 8000 m.
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Figure 2.27: Coherence panels after the third (left) and fifth (right) iterations of the
image-wave propagation method for the Experiments 1 (a)-(b), 2 (c)-(d), 3 (e)-(f),
and 4 (g)-(h).
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flattening velocities at 95 CIGs in 5 iterations (Figure 2.13). Here, we tested how
automatic picking could be used to accelerate the procedure. The experience was
quite positive. Although the automatic picking provides slightly less quality in the
extracted velocities, there was no need for more iterations in the automatic process
than in the interactive process to achieve a final model of about the same quality.

We also investigated the computational time spent in each experiment of this
MVA processing. The results presented in Table 2.2 show that the time spent on
the image-wavefront propagation accounts for approximately the same even for the
noise-contaminated data. The processing was performed on a workstation with a
Intel®, Xeon® E5-2450, 2.10GHz processor, running a serial Fortran source code.
Appendix B presents detailed information regarding the hardware and software used.

2.5.3 Multi-stack migration

Parameter setup

The most fundamental parameter in multi-stack migration velocity analysis is
the quantity used to measure the flatness of an event in a CIG. We use the same
parameter as in the original work of Schleicher and Costa (2009), namely the sum
over the squares of the local slopes along a horizontal line in the CIG. Please, see
the theoretical description in Section 2.3.2.

We separated the multi-stack migration into two experiments (Table 2.2). The
Experiments 5 and 6 show the double multi-stack migration applied respectively to
the true Marmousoft data set and the noise-corrupted one (Section 2.4). Table 2.4
summarizes the parameter setup considered in these experiments.

As in the image-wave propagation of CIGs, the double multi-stack migration
needs to scan between a minimum (vmin) and maximum (vmax) velocity values.
The results presented here were obtained setting up vmin = 1400m/s and vmax =

4200m/s, with a velocity sampling interval ∆v = 25m/s. These values can be
chosen almost arbitrarily as long as the velocity range is large enough to ensure the
properties and limitations of the method. It is possible to use a priori information to
reduce the number of migrations, for example, discarding unrealistic velocity values.

Figures 2.28 and 2.29 show the results of Experiments 5 and 6 respectively.
Figures 2.28a and 2.29a show the resulting stacked migrated images (VW , Equa-
tion 2.11). The results show that the method used produces accurate images.
The primary structures of the Marmousi model (Figure 2.5) are noted, even with
the presence of noise in the data. Figures 2.28b and 2.29b depict the second
multipath-summation computed by the use of the migration velocity as an additional
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Table 2.4: General setup of the MVA by doble multi-stack migration.

Multi-stack migration - Parameter setup

Initial time for migration 0 s
Final time for migration 1.2 s
Initial x for migration 2500 m
Final x for migration 8500 m
Sampling rate in t for migration 0.002 s
Sampling rate in x for migration 12 m
Number of B-spline nodes in t direction 14
Number of B-spline nodes in x direction 52
Distance between nodes of B-splines in t direction 0.1 s
Distance between nodes of B-splines in x direction 200 m
Coordinate of first CIG for velocity analysis 2500 m
Distance between CIGs for velocity analysis 12 m
Number of CIGs for velocity analysis 501
Minimum velocity to be scanned 1400 m/s
Maximum velocity to be scanned 4200 m/s
Velocity sampling interval 25 m/s
Regularization for B-splines interpolation See Table C.1

weight factor in the stack (ṼW , Equation 2.16). They look quite similar to their
corresponding unweighted stack results (Figures 2.28a and 2.29a), except for their
amplitudes which increases with depth. The division (Equation 2.17) of the images
of Figures 2.28a and 2.28b, and Figures 2.29a and 2.29b, result in the migration
velocity models presented in Figures 2.28c and 2.29c respectively. A fraction of
the maximum amplitude was added to the denominator to make the division more
stable. However, there are many image points with unreliable (nongeological) values,
indicating the needs to postprocess these velocity models.

A simple way to avoid the nonrealistic velocity values is to remove velocities from
outside the range of the velocities that were used for the multi-path migration and
to avoid division where the absolute value of the denominator is too small, setting
all these velocities to zero. Figures 2.28d and 2.29d show the extracted velocity
by masked division obtained in Experiments 5 and 6, where linear interpolation
was applied to create each one of the illustrations. Therefore, we can use this
masked division to eliminates the incorrect velocity values, but a smoothing and
interpolation step becomes necessary.
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Figure 2.28: Experiment 5. Shown are the multipath-summation time imaging
(a), and the one resulting with additional velocity weight (b), the velocity extracted
by stabilized division (c), and the velocity extracted by masked division (d).
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Figure 2.29: Experiment 6. Shown are the multipath-summation time imaging
(a), and the one resulting with additional velocity weight (b), the velocity extracted
by stabilized division (c), and the velocity extracted by masked division (d).
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Regularization

Since the method extracts velocity values only at points where the image is
nonzero, the B-splines interpolation needs some regularization. Such regularization
is achieved by a relative weight of each constraint in the cost function (Costa
and Schleicher, 2011). The resulting model is rather sensitive to the choice of
the regularization parameter (see, Appendix C). Here, we tested how to chose
this parameter in order to arrive at a comparable model to the one from CIG
continuation. Figures 2.30 to 2.32 and Figures 2.33 to 2.35 show the results of
the velocity extraction using double multi-stack migration velocity analysis under
three different forms of regularization. Note that the resulting velocity models are
considerably different.

Parts (a) of Figures 2.30, 2.31 and 2.32 show the velocity model computed by
a very hard, intermediate, and very soft regularization, respectively (the same for
the Figures 2.33 to 2.35 for the Experiment 6). In comparison with the models of
Figures 2.19 to 2.26, it is easy to see that the velocity model obtained with a very
hard regularization (Figures 2.30 and 2.33) is much smoother but still maintains a
long-wavelengths feature of true model (see the Marmousoft rms velocity model in
Figure 2.8). In turn, after very soft regularization the model presents too much detail
for a time-migration model. Also, boundary effects of the B-splines interpolation
start affecting the resulting model. Note the high-velocity values in the upper part
and low values in the bottom part of the velocity model (Figures 2.32 and 2.35). The
velocity model obtained from an intermediate regularization (Figures 2.31 and 2.34)
seems to be more compatible with the ones obtained by the image-wave propagation
of CIGs (Figures 2.19 to 2.26), as well as those ones obtained by Schleicher et al.
(2008) and Schleicher and Costa (2009) depicted in Figures 2.13 and 2.14.

On the other hand, when we compare the migrated images obtained with these
models (parts (b) of Figures 2.30 to 2.35), we see that they are virtually identical
(also, compare with the examples depicted in Figures 2.11 and 2.12). Even in the
image gathers (parts (c) to (h)), it is hard to spot significant differences. Thus, from
an imaging point of view, there is a broad range of regularization (Table C.1) that
can provide suitable velocity models for an acceptable time-migrated image. Future
investigations with subsequent depth conversion will be necessary to decide which
level of regularization is most suited to find a suitable initial model for depth MVA.
This topic will be covered in Chapters 4 and 5 and Appendix E.
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Reliability

Our results show that the multipath-summation approach improved the posi-
tioning of key reflectors in the time-migrated images. All the images obtained in the
Experiments 5 and 6 exhibit the main structures of the Marmousi model (Figure 2.6).

Following the control tests presented in Figures 2.11 and 2.12 and the previous
discussion made in section 2.5.2, we calculated the coherence panels for each one of
the final migrated images obtained by the multi-stack migration (Figures 2.30b,
2.31b, 2.32b, 2.33b, 2.34b and 2.35b). All the coherence panels are plotted in
Figure 2.36. Those panels spot where the obtained velocity models can or cannot
be trusted.

Comparing the panels in Figure 2.36 with those shown in Figure 2.27, we see
a positive correlation between the two MVA approaches evaluated in this chapter.
Also, the high coherence values presented in Figure 2.36 match with those obtained
when using the rms velocity model (Figures 2.11 and 2.12), mainly in the vicinity of
less-complex geology, mostly located in the shallower regions and at the portion of
the center-left side. On the other hand, the central part of the images is not perfectly
recovered. We believe this is because the limitations of time migration rather than
those of the method applied. Thus, we expect smaller values of coherence where
time migration could not flatten the image gathers. Such assumption can be easily
confirmed with the coherence panels shown in Figure 2.36.

From the analysis of the coherence panels of Experiment 5 (Figures 2.36a
to 2.36c) and Experiment 6 (Figures 2.36d to 2.36f), we observe the influence
in the results originated by the noise present in the data. The semblances of
Experiment 6 have lower values of coherence. Furthermore, a visual inspection of
Figures 2.36a to 2.36c (Experiment 5), suggests better results in the region located
approximately at 4 and 5 km and below 0.6 s, when applied the intermediate and
very soft regularization instead of the very hard regularization. However, the same
observation cannot be made for the contaminated data (Experiment 6) shown in
Figures 2.36d to 2.36f. Although perceptible with a very meticulous analysis, mainly
in Figure 2.36f (very soft regularization).

Computational Cost

The computational cost of double multi-stack migration is only slightly higher
than for a single multi-stack migration. All that is needed is the multiplication of
the migrated image by the present velocity, a summation into a second, velocity-
weighted image, and a division of the final results at each point in the image.
The computationally most expensive part, the time migration for each of the
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chosen velocities, is done only once. The computational cost of a single multi-
stack migration is, of course, Nv times the cost of a single time migration, where
Nv is the number of velocities used. However, constant-velocity time migrations
are the cheapest possible migrations. Moreover, these time migrations are entirely
independent, making the process fully parallelizable.

The total cost of the proposed velocity analysis is just the one of double
multi-stack migration. The velocity extraction, interpolation, and smoothing can
be done fully automatically, without the need for human interpretation or other
intervention. Such automatization makes it highly advantageous over conventional
velocity-analysis techniques which strongly rely on human interaction.

Table 2.2 shows the computational time spent on the Experiments 5 and 6. There
is no significant variation concerning the presence of noise in the data. However,
the computational cost of Experiments 5 and 6 are considerably lower than those
measured in Experiments 1 and 4. Although part of this reduction is due to the
parallelization of processing. Description of the computational codes and resources
can be found in Appendix B.

2.6 Conclusions

We have studied two different time migration-velocity-analysis methods: image-
wave common-image-gather continuation (Schleicher et al., 2008) and multi-stack
migration (Schleicher and Costa, 2009). Our comparison of the velocity models
obtained with both methods revealed that rather different models are obtained
depending on the parameterization. However, the associated time-migrated images
exhibit fairly much the same quality, indicating that for time-migration, all velocity
models are equivalent.

In the original version of (Schleicher et al., 2008), the strongly interactive
character of CIG-continuation MVA is a significant drawback. In this work, we
have demonstrated that an automatic implementation of the picking of flattening
velocities does not degrade the final image or lead to additional iterations. In this
way, the technique becomes competitive regarding the computational cost to multi-
stack migration MVA, which is entirely automatic and exclusively relies on constant-
velocity migrations.

We have seen that multi-stack migration MVA can provide a broad range
of differently smoothed velocity models. Since in our implementation of CIG-
continuation MVA, the velocity model is represented in an identical way, the same
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should be possible for that method. How a smoother or more detailed model affects
the result of the image-wave propagation is a topic of ongoing research.

One difference between the methods is that multi-stack migration allows extract-
ing a velocity model without any a priori information whatsoever, while the velocity
continuation method needs an (fairly arbitrary) initial model. In our applications,
starting from a constant-velocity model (e.g., water velocity) was always sufficient
to reach a reasonable time-migration velocity model. A fairly intuitive extension of
the present research is to use the velocity model generated by multi-stack imaging
as an initial model in velocity continuation.

Our evaluation demonstrates that both methods are equivalent regarding the
final result, i.e., the time-migrated image. In summary, the methods were shown to
be qualitatively and quantitatively consistent. Both of them proved to be capable
of calculating a representative velocity model, with their results depending on the
choice of some fundamental parameters.

The broad range of obtainable models that produce equivalent image quality
in time migration is a reliable indicator that the investigated techniques can be
employed to construct initial models for a subsequent more sophisticated depth
migration-velocity analysis. In order to evaluate which parameterization will lead
to the best-suited starting models, a time-to-depth conversion will be necessary to
compare the attainable model quality. This subject is discussed further in Chapters 4
and 5 and Appendix E.
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Figure 2.30: Experiment 5. Results of multi-stack MVA with very hard
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.31: Experiment 5. Results of multi-stack MVA with intermediate
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.32: Experiment 5. Results of multi-stack MVA with very soft
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.33: Experiment 6. Results of multi-stack MVA with very hard
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.34: Experiment 6. Results of multi-stack MVA with intermediate
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.35: Experiment 6. Results of multi-stack MVA with very soft
regularization. Shown are the velocity model (a), the final migrated image (b),
and common-image gathers from time migration at (c) 3000 m, (d) 4000 m, (e)
5000 m, (f) 6000 m, (g) 7000 m and (h) 8000 m.
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Figure 2.36: Coherence panels of the multi-stack MVA corresponding to the time
migrations obtained in Experiments 5 and 6 respectively depicted in Figures 2.30
to 2.35.
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Chapter 3

Prestack time-migration velocity

analysis using remigration

trajectories

3.1 Summary

We have developed a prestack time-migration tool for local improvement of the
seismic migration-velocity model. The method is based on remigration trajectories
that describe the position of an image point in the image domain for different source-
receiver offsets as a function of the migration velocity. It determines kinematic
migration parameters using local-slope information of migrated seismic reflection
events. These parameters, in turn, are used to locally correct the velocity model.
The main advantage of this technique is that it allows to carry out a moveout
correction not just at a fixed point in a zero-offset (post-stack) time-migrated gather,
but varying through all offsets of a common image gather (CIG), taking into account
the reflection-point displacement in the midpoint direction. In other words, it
provides for time-migration velocity analysis (MVA) from prestack data. We have
tested the feasibility of the method on synthetic data from four simple models,
and the Sigsbee2B data. Our tests determined that the proposed tool increases the
velocity-model resolution and provides a plausible time-migrated image. The quality
of the initial model is not critical. The procedure is quite efficient. Significant effort
was spent on manual event picking.
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3.2 Introduction

Migration velocity analysis (MVA) is an important seismic processing step in
prestack time-imaging. Basically, MVA exploits the redundancy of seismic data to
improve an a-priori velocity model. As first observed by Sattlegger (1975), seismic
data from different offsets need to migrate to the same positions when using the
correct velocity model. Hence, these images must be horizontally aligned, regardless
of structure. However, the use of too-low or too-high migration velocities leads to
offset-dependent mispositioning, known as migration smiles or frowns (Al-Yahya,
1989; Zhu et al., 1998).

Over the years, substantial effort has been directed towards the development
of new MVA methods. Because of its conceptual clarity and simplicity, residual-
moveout (RMO) analysis has become one of the favorite tools for MVA (Liu and
Bleistein, 1995). Many algorithms are based on the moveout formula for a horizontal
reflector (Al-Yahya, 1989). However, in the case of strongly dipping reflectors, this
correction does not take into account the lateral displacement of the reflector image
that is caused by a change in migration velocity, thus requiring iterative procedures.
Schleicher and Biloti (2007) try to improved Al-Yahya’s process and achieve higher
accuracy in the updated velocity by inclusion of the reflector dip as an additional
parameter.

Another MVA principle is to follow migrated reflection events through the image
domain under variation of the migration velocity (Fomel, 1994; Liptow and Hubral,
1995). Hubral et al. (1996b) use the term image waves to describe such a process of
transforming time-migrated images according to the changes in migration velocity.
Schleicher et al. (1997) derive equations for remigration trajectories in the zero-offset
case and connected the concept to of residual migration. In a related way, Adler
(2002) describes the change in the superposition of seismic data along isochrons
at a predicted image point as a function of the velocity perturbation, a process
he calls Kirchhoff image propagation. Fomel (2003a,b) further develops and tests
the velocity-continuation or image-wave concept for the prestack situation. Iversen
(2006) describes the position of a migrated image point as a function of migration
velocity by velocity rays.

Velocity continuation can also be used on migrated diffractions (Sava et al., 2005;
Fomel et al., 2007; Novais et al., 2008) for MVA. Based on velocity continuation,
Coimbra et al. (2011, 2012, 2013b) recently introduce a new process of extracting
velocity updates for depth migration from the moveout of incorrectly migrated
diffraction events by tracing so-called remigration trajectories to their focus point
in post-stack migrated images, and Coimbra et al. (2013a) extend their work to the
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a) b)

Figure 3.1: Sketch of: (a) A single reflection event in the time domain and (b) its
time migrated images for four different migration velocities.

prestack case. This technique makes use of local-slope information extracted from
the data with the help of stacks along local trial surfaces. In this work, we modify
this remigration-trajectory MVA method to make it suitable for an application to
time-migration of reflection events in prestack data. Tests on synthetic data from
four simple models, on the Marmousoft data and on the Sigsbee2B data confirm
the potential of our method to produce a plausible velocity model in a region with
strong dip variations. At this point, the technique is a 2D procedure. An extension
to 3D is conceptually straightforward.

3.3 Theoretical description

Prestack migration methods are useful to reconstruct an image of the subsurface
from seismic reflection data. In general, prestack migration is considered a robust
method due to the fact that it focuses energy that conventional data processing
based on normal-moveout (NMO) correction and stacking of the common-midpoint
(CMP) gathers cannot focus. In addition, the kinematics of prestack data considers
the distance between the source and receiver, where the source-receiver offset defines
a prestack volume (Bancroft et al., 1998).

It is well known that a single reflection event in a CMP stacked zero-offset
section leads to different reflector images when migrated with different migration
velocities (Figure 3.1). That is, the image can be thought of as “propagating” as
a function of migration velocity (Fomel, 1994), forming a so-called “image wave”
(Hubral et al., 1996b). In an attempt to achieve more realistic velocity models
and migrated images, many methods have been proposed (Rothman et al., 1985;
Liptow and Hubral, 1995; Hubral et al., 1996a; Schleicher et al., 1997; Adler, 2002;
Fomel, 2003a,b; Schleicher et al., 2008). Such image-wave remigration procedures
can even be extended to anisotropic media (Schleicher and Aleixo, 2007; Schleicher
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Figure 3.2: The residual moveout of a dipping reflector in a single CIG at xm after
migration with a wrong velocity is described by curve τh (fine line). However, the
image of a unique reflection point moves out of the CIG through the whole migrated
data volume along a 3D moveout curve τr(h) (bold solid line). This curve can be
approximated from information found at point (h0, xm, τh0

). For details, see text.

et al., 2008). These methods have been named residual (or cascaded) migration,
remigration, or velocity continuation. Their purpose is to construct a seismic image
for a refined velocity model, starting at a previous image that was obtained by
migration with a different velocity model (Hubral et al., 1996a; Tygel et al., 1996).

3.3.1 Remigration trajectory

Residual-moveout (RMO) analysis is generally carried out in a single common-
image gather (CIG) (Liu and Bleistein, 1995). However, in the case of dipping
reflectors, the image of a single reflection point is displaced laterally, i.e., out of the
CIG (see Figure 3.2).

We are looking for an expression for the remigration trajectory, that is, a formula
that describes the position of a reflection point in the prestack-migrated data volume
as a function of migration velocity, keeping the half-offset fixed, but considering the
reflection-point displacement in the midpoint direction. Repositioning the event
along remigration trajectories brings it back into the CIG under consideration in
order to flatten it (see Figure 3.3).

As mentioned above, if the migration velocity is incorrect, the images for different
offsets of a single point on a dipping reflector will be positioned in different CIGs
(Figure 3.2). For the mathematical derivation of the remigration trajectory, we need
a quantification of this observation. Based on the kinematic analysis of velocity
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Figure 3.3: Remigration trajectories (dash-dotted lines) for selected points on the 3D
moveout curve (bold solid line) of an incorrectly migrated reflector point (xm, τh0

).
Also shown is the flattened position of the event at (xu, τu).

continuation, Fomel (2003b) approximated the positioning of the displaced image
point up to second order in half-offset h as

τr(h, x) =

√

τ 2h − 4(x− xm)2

v2m − v2
+ 4h2

(

1

v2m
− 1

v2

)

, (3.1)

where v is the true average medium velocity (i.e., the “ideal” time-migration velocity
that would correctly position the image) and vm is the (incorrect) migration velocity.
Moreover, τh is the time coordinate at half-offset h of the image point within the
CIG at image position xm, and x − xm denotes the relative lateral coordinate, i.e.,
the distance to the original CIG at xm (see again Figure 3.2).

The envelope of these curves at all x determines the lateral displacement xr as
a function of h. This envelope can be determined by setting the derivative with
respect to x equal to zero, i.e.,

∂τr(h, x)

∂x

∣

∣

∣

∣

xr

= 0 . (3.2)

We find
xr(h) = xm +

1

4

(

v2m − v2
)

τhDh , (3.3)
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where Dh denotes the event dip in the off-CIG or common-offset direction at lateral
coordinate xm and half-offset h. In other words, Dh is given at any h by

Dh =
∂τh
∂x

∣

∣

∣

∣

xm

. (3.4)

For h = 0, equations (3.1) and (3.3) reduce to the zero-offset equations derived by
Schleicher et al. (1997).

Combining equations (3.1) and (3.3), we arrive at the residual-moveout expres-
sion as a function of the event dip,

τr(h) =

√

τ 2h

(

1 +
v2m − v2

4
D2

h

)

+ 4h2

(

1

v2m
− 1

v2

)

. (3.5)

Expressions (3.3) and (3.5) together approximately describe the residual moveout
of the image of a reflection point in the migrated data volume for a given migration
velocity vm at a given half-offset h (see again Figure 3.3), if the position τh at that
offset is known. For not too large offsets, the approximation is valid to the same
extend as time migration, i.e., as long as the medium is acceptably described by a
locally constant average velocity (which may vary from CIG to CIG). The derivation
of more general expressions can be conceived of by using improved approximations
for the out-of-CIG displacement (equation 3.1).

However, for the use in velocity analysis, equations (3.3) and (3.5) together
are still insufficient, since they do not allow to predict the continuation from an
image point at some half-offset h0 to the corresponding point at another half-offset
h without additional information. For this purpose, we need a relationship between
the image-time coordinates τh0

and τh.
To find such a relationship, we start at considering a CMP section for a

single reflector below an isotropic constant-velocity overburden with (true) average
medium velocity v. At a given reflection point, the conventional NMO traveltimes
for two different half-offsets h0 and h read

t2h0
= t20 +

4h2
0

v2n
, (3.6)

t2h = t20 +
4h2

v2n
, (3.7)

where th0
and th are the source-receiver traveltimes, t0 is the vertical time at zero

offset, which is independent of the half-offset h, and vn is the NMO velocity, found
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by means of a coherence analysis during the processing in a tentative to flatten the
events present in the CMP section.

Taking the difference between equations (3.6) and (3.7), we find a direct relation
between th0

and th that is independent of t0,

t2h = t2h0
+

4

v2n
(h2 − h2

0) . (3.8)

Now, consider time migration using an (incorrect) migration velocity vm. The
traveltime for a source-receiver pair with a half-offset h is defined by the usual
double-square-root (DSR) equation,

th =

√

τ 2h
4

+
(xm − ξ + h)2

v2m
+

√

τ 2h
4

+
(xm − ξ − h)2

v2m
, (3.9)

where ξ is the midpoint between source and receiver and, as before, xm and τh are
the coordinates of the image point in the time-migrated CIG (Figure 3.2).

To simplify this expression, we use the fact that for small h, the square roots in
equation (3.9) can be approximated as

√

τ 2h
4

+
(xm − ξ ± h)2

v2m
≈

√

τ 2h
4

+
(xm − ξ)2 + h2

v2m
± h(xm − ξ)

v2m

√

τ2
h

4
+ (xm−ξ)2+h2

v2m

. (3.10)

With this approximation, equation (3.9) can be written for two different half-offsets
h and h0 as

th0
=

√

τ 2h0
+ 4

(xm − ξ)2 + h2
0

v2m
, (3.11)

th =

√

τ 2h + 4
(xm − ξ)2 + h2

v2m
. (3.12)

Substituting equations (3.11) and (3.12) in equation (3.8) yields the relationship
between migrated times τh0

at h0 and τh at h as

τh =

√

τ 2h0
+ 4 (h2 − h2

0)

(

1

v2n
− 1

v2m

)

. (3.13)

Another way to reach this relation is to solve the classical expression of Al-Yahya
(1989) describing the position of the image of a horizontal reflector in a time-
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migrated image, viz.,

τh =

√

τ 20 + 4h2

(

1

v2
− 1

v2m

)

, (3.14)

for τ0 at two half-offsets h and h0 and equal the results. The advantage of our
derivation is that it demonstrates that equation (3.13) remains valid for a dipping
reflector up to first order in h.

It is important to notice that equation (3.13) is used exclusively to estimate
the event position τh within the CIG at xm. The provisional NMO velocity vn is
not needed for any other purpose than fitting the event. Therefore, any expression
that reasonably approximates the event can be used instead of equation (3.13), even
without any physical justification.

Equation (3.13) allows us to estimate the vertical time τh at h as a function of
τh0

at h0 without the need for any information of the zero-offset section. However,
we still need the values of the event dip Dh in the migrated volume in the midpoint
direction (see equation 3.4) at all offsets h. To avoid the necessary dip estimations
in all involved common-offset migrated sections, we use that the event dip Dh at h

is approximately related to the one at h0 as

Dh = Dh0

τh0

τh
. (3.15)

This relationship is obtained from the derivative of equation (3.13) with respect to
x under the assumption that the variation of vn can be neglected. It can also be
inferred from equation (3.3) upon noticing that at a fixed h the dislocation xr(h)−xm

out of the CIG must be the same independently of the initial point of the moveout
curve. Note that in agreement with the physics involved, Dh → 0 when τh → ∞.

The set of expressions (3.3), (3.5), (3.13), and (3.15) describes the so-called
remigration trajectory, i.e., the variation of the position of each point on the 3D
residual moveout in the 3D migrated data volume as a function of the migration
velocity vm (see Figure 3.3). With this trajectory, we can estimate whereto in the
data volume a point (h0, τh0

) in a CIG will move when the migration velocity is
changed. When applying this equation to all points in a CIG at a chosen image
point, we can estimate the velocity value for which the resulting set of moved points
becomes closest to a horizontal line.

To calculate the image-point positions with this set of equations, we need an
estimate of all image times τh in the initial CIG and all event dips Dh in the direction
perpendicular to the CIG. For the estimation of τh, we fit a curve of the form of
equation (3.13) to the migrated event within the CIG at xm. The local slopes
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Dh in all migrated common-offset sections are calculated from the dip Dh0
in the

initial migrated common-offset section according to equation (3.15). To estimate
this local slope Dh0

, we use a generalization of local slant stacks. Upon the use of
equation (3.15), we define a surface T = T (h, x) as

T (h, x) = τh + (x− xm)Dh = τh + (x− xm)
τh0

τh
Dh0

. (3.16)

This surface is composed of all tangent lines to the event surface in the migrated
data volume, if the correct value of Dh0

is used. This fact can be used to estimate
this parameter from the data by semblance maximization using trial surfaces of the
form of equation (3.16). Since the estimate employs a surface rather than a line
stack, it provides more reliable results.

3.3.2 Velocity analysis

With the remigration trajectory established, we can now devise a migration-
velocity-analysis algorithm based on the local-slope estimation and approximate
image-wave propagation of the CIG. For the purpose of velocity analysis, the residual
moveout of the remigration trajectory must be minimized, since at the correct
velocity, the event in the CIG must be horizontal. Therefore, we can choose the
derivative of τr(h) as the objective function. Thus, the optimization condition is

min
v

∥

∥

∥

∥

∂τr
∂h

∥

∥

∥

∥

≈ min
v

∑

i

|τr(hi)− τr(hi−1)| . (3.17)

In this paper, we minimize this derivative analytically using an exhaustive search.
For this purpose, we use the time position τh0

, slope parameter Dh0
, and NMO

velocity vn extracted from the data to calculate the remigration trajectory according
to equation (3.5) with the help of equation (3.13). Doing so for a reasonable set of
migration velocities allows us to look for the velocity value that produces the lowest
variation of τr as a function of h. This procedure turned out to be equally successful
but much faster than trying to flatten event in the data by means of an optimization
process using Newton’s method.

The minimum value of the variation of τr as a function of h defines the desired
updated time-migration velocity vu associated with the image point at (xm, τh0

).
For velocity building, vu is attributed to its updated position (xu, τu), determined
equations (3.3) and (3.5) upon the use of vu instead of v (see again Figure 3.3).
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3.3.3 Model building algorithm

To construct the final velocity model, we propose to use the above corrections
in an iterative process. The information contained in a CIG at a selected migrated
reflection point allows to construct the approximate time-remigration trajectory,
which then provides an update for the velocity value and the spacial and time
coordinates of that point. The algorithm for this procedure consists of the following
steps:

1. Time migrate the data with a given initial velocity model vm = vm(x, τ). In
our numerical tests, a constant-velocity migration was sufficient to start the
process.

2. Select an image point (xm, τh0
) in the shortest-offset migrated section or

stacked migrated image. Normally, it is useful to choose points on already
visible reflector images. In our numerical examples, we chose the points by
visual inspection. Automatic picking might be an option, but weak reflector
amplitudes, usually discarded by automatic picking procedures, often indicate
the need for velocity improvements.

3. Perform a coherence analysis in the CIG at (xm, τh0
) using equation (3.13)

for a consistent range of NMO velocities vn. The maximum coherence value
defines a (temporary) NMO velocity vn that best describes the event at all
half-offsets h.

4. Compute τh for all h using equation (3.13) with the so-determined vn and the
current migration velocity vm.

5. Estimate the off-CIG dip Dh0
by means of a coherence analysis along the

surface defined by equation (3.16).

6. Compute Dh for all h using equation (3.15).

7. Calculate a set of remigration trajectories using equations (3.3) and (3.5) for a
range of velocities v. In our numerical tests, this range had to be finer sampled
than the above one for vn.

8. Determine the updated migration velocity vu for (xm, τh0
) that minimizes the

variation of τr in the offset direction, according to equation (3.17).

9. Calculate the corrected position (xu, τu) of the selected image point.
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10. Loop over steps (2) to (8) until a sufficient number of image points are
processed.

11. Interpolate the set of new velocity values.

12. Smooth the resulting model, if necessary. In some of our numerical tests,
a moving average filter turned out to be useful to improve the correlation
between adjacent image points.

13. Time migrate the original data with the new velocity model.

14. Loop over steps (2) to (13) until the events in all CIGs are satisfactorily
flattened.

A flowchart of this algorithm is depicted in Figure 3.4.
Let us emphasize again that velocity vn (equation (3.13); step (3)) is a provisional

velocity estimate that is used only to determine the values of τh in the current CIG
at point (xm, τh0

). In turn, these values of τh are used to flatten the event along the
remigration trajectory (equation (3.3) and (3.5); step (7)) by minimization of the
residual moveout (equation (3.17); step (8)), which then determines the updated
migration velocity v.

By its principle, the proposed MVA algorithm is a local procedure, updating the
velocity at a single image point at a time. If sufficient image points are available
in a certain region, a smooth model can be interpolated for that region. In the
interpolation stage, a-priori information or constraints can be taken into account.
In our numerical tests on synthetic data, reported below, the method was able
to build time-migration velocity models without an initial model, starting with a
constant-velocity migration, as long as the model complexity lies within the validity
range of time migration.

3.4 Numerical examples

We have applied our time remigration technique to one constant-velocity model
with a curved reflector, three constant-gradient velocity models with sets of dipping
reflectors, and the more complex Sigsbee2B data set.
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Figure 3.4: Remigration trajectory process flowchart.
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Figure 3.5: 2D sketch of a simple synthetic model and ray family. The model consist
of two homogeneous halfspaces, separated by a reflector consisting of a straight
segment with small dip in the left portion, an edge diffractor caused by an abrupt
change of dip, followed by a syncline and a horizontal reflector segment on the
right-hand side.

3.4.1 Application to a synthetic data set from a simple constant-

velocity model

As a first test, we applied the MVA technique using time-remigration trajectories
as outlined above on a synthetic data set from a simple constant-velocity model (Fig-
ure 3.5). It consists of a single trough-shaped reflector separating two homogeneous
half-spaces with velocities 1.7 km/s and 1.9 km/s. Note that the reflector has a slight
dip on the left side of the trough and is horizontal on the right side. Moreover, there
is an edge diffractor caused by an abrupt change of direction on the left shoulder of
the syncline, indicated by the set of diffraction rays plotted in Figure 3.5.

We used Kirchhoff modeling to generate synthetic seismic data for 25 half-offsets
between h = 100 m and h = 580 m. Each common-offset section consists of 151 data
traces (see Figure 3.6 for a near-offset section) at every 20 m with a sampling rate of
4 ms. We then contaminated those data with white random noise at a level of 10%
of the maximum amplitude. The trough-shaped reflector causes a caustic, evidenced
by the distorted bow-tie structure in the data (Figure 3.6). The diffraction event
has much smaller amplitude than the reflection event.

Supposing the true velocity of the upper layer to be unknown, we time-migrated
these data with a constant initial velocity v0 = 1.5 km/s (water velocity). In our
tests, the range of possible values of the initial velocity was fairly large and not vital
to the method. Figure 3.7 shows the time-migrated version of the near-offset section
of Figure 3.6. It is easy to recognize in this migrated image that the employed
migration velocity is not correct, because the bow-tie structure from the synclinal
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Figure 3.6: Noisy seismic near-offset section of the synthetic model presented in
Figure 3.5. It was generated by Kirchhoff modeling with 151 traces at every
20 meters and a sampling rate of 4 ms and contaminated with white random noise
at a level of 10% of the maximum amplitude.
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Figure 3.7: Time-migrated image of the seismic near-offset section of Figure 3.6
using a constant velocity v0 = 1.5 km/s (water velocity) and a migration aperture
of 101 traces.

reflector is not completely resolved. Also note that the edge diffractor is incorrectly
imaged, with a spatial separation between the two reflector segments.

In this migrated section, we select specific points on the images of reflection
events. As mentioned earlier, automatic picking might be an option, but weak re-
flector amplitudes, usually discarded by automatic picking procedures, may indicate
the need for velocity improvements. Such points are more easily selected by an
interpreter. Fortunately, the method is not very sensitive to the picks’ location and
density (Santos et al., 2014b). Because time migration requires a smooth velocity
model, usually the number of required picks to define the velocity in a certain region
of the model is not too large. For example, a region reasonably well described by a
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Figure 3.8: Updated velocity model using image point correction from constant
velocity migration (one iteration). The 20 black crosses represent the initial picked
points in the migrated image (Figure 3.7), and the pink plusses indicate the corrected
coordinates for the new velocity. The overall model was obtained by B-spline
interpolation, fixing the velocity at the top of the model at a constant 1.5 km/s.

constant velocity gradient can be represented by three picks. For these reasons, we
restricted ourselves to manual event picking.

The coordinates of each of these selected points define the present values of τh0

and xm. At xm, we automatically determine the off-CIG event slope Dh0
at h0

as indicated in the context of equation (3.16). This slope value allows to apply an
improved moveout correction to the migrated data at xm according to equation (3.5).
Moveout minimization according to equation (3.17) yields an improved velocity value
vu and a corrected position (xu, τu) for the chosen point in the image.

From this information, we construct an updated velocity model by attributing the
so-obtained improved velocity values to these corrected positions, and then applying
a B-splines interpolation to determine the velocity values at a regular grid. Figure 3.8
shows the so-obtained velocity model after a single iteration of the described MVA
procedure. The black crosses represent the 20 points initially picked in the migrated
image of Figure 3.7, and the pink plusses indicate their corrected coordinates in the
improved velocity model. Note that the determined velocity in the region of the
picks closely approximates the true velocity of 1.7 km/s, with a maximum error of
about 2%. Values outside the region of the picks are artifacts of the interpolation
and carry no meaning.

Figure 3.9 compares the stack of all common-offset migrated images using the
model of Figure 3.8 to the corresponding stack using the true velocity model. We
see that MVA by time-remigration trajectories nicely positioned all parts of the
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Figure 3.9: Final migrated image stack after time migration with a migration
aperture of 101 traces using (a) the extracted velocity model using one iteration
of image point correction; (b) the true velocity model.

reflector very closely to their true positions, confirming the good estimates for the
time-migration velocities in the reflector region.

3.4.2 Application to constant-gradient models

For a more meaningful test, we applied the method to three constant-gradient
models that can be thought of as representing subregions of a larger model. To
verify the feasibility of our method, which was derived under the assumption of
constant average velocities, in more realistic situations, we chose rather strong
velocity gradients in the vertical, horizontal, and diagonal directions. The true
interval velocity models are given by

v(z) = 2000 + 0.5z m/s , (3.18)

v(x) = 2000 + 0.5x m/s , (3.19)

v(x, z) = 2000 + 0.5x+ 0.5z m/s , (3.20)

respectively.
All three models contain six interfaces with, from top to bottom, initial depths

at the origin of 400 m, 500 m, 600 m, 700 m, 800 m, and 900 m, and dips of 0◦, 4.8◦,
10◦, 15◦, 23.6◦, 39.5◦, respectively. Moreover, they contain seven diffraction points
in different parts of the models. The diffraction events were not used for velocity
analysis. Their only purpose is the quality control of the extracted velocity models.
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Figure 3.10: Vertical-gradient model: (a) Velocity model with reflectors and control
diffractors. (b) Time-migrated image using v0 = 3.0 km/s.

We generated the corresponding synthetic data sets using a Kirchhoff-modeling
algorithm of Seismic Unix (Cohen and Stockwell, 2014). We simulated 25 common-
offset sections for offsets between 200 m and 680 m spaced at 20 m, with a sampling
rate of 2 ms up to a maximum time of 2.5 s, each with 400 source-receivers pairs
spaced at 10 m between CMP coordinates 500 m and 4500 m, thus covering an
extension of 4000 m. We used a symmetric Ricker wavelet with 20 Hz peak frequency,
and contaminated the data with pseudorandom Gaussian noise with zero mean and
at level of 5% of the maximum amplitude.

We then applied the present remigration-trajectory MVA method to these data.
The first step was a constant-velocity time migration. For these examples, we used
an intermediate velocity of v0 = 3.0 km/s.

Figure 3.10 to Figure 3.12 summarize the results for the vertical-gradient model.
Figure 3.10a depicts the true velocity model with reflectors and control diffractors,
and Figure 3.10b shows the time-migrated zero-offset section using a constant
migration velocity of 3000 m/s.

From this initial migration, we started the remigration-trajectory velocity anal-
ysis. To investigate the quality of the result as a function of the number of points
picked, we performed the analysis twice, once with 21 image points and once with
100 image points. Figure 3.11a shows the 21 image points picked in the first run
(black crosses) together with their updated positions (pink plusses) superimposed
over the obtained updated velocity model after one iteration. This model results
from a B-splines interpolation (Matlab implementation, see Sandwell, 1987) of the
updated velocities at the 21 updated image-point locations. Figure 3.11b shows the
corresponding time-migrated stacked section. In the velocity model, we recognize
some undulations, indicating that the velocity estimate is better at the chosen image
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Figure 3.11: Vertical-gradient model: (a) Extracted velocity model after one
iteration with 21 image points and (b) corresponding final time-migrated image.
(c) Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).

points than in their vicinity. Nonetheless, the control diffractors in the image are
reasonably focused and the reflectors only slightly curved. This indicates that the
model in Figure 3.11a already is an acceptable time-migration velocity model. For
further improvement, we applied two passes of moving-average smoothing with a
1 km × 0.4 s (100 by 100 points) window. The idea is to carry the velocity
information at the chosen image points over to their vicinities where no updated
velocity values are available. Figure 3.11c and d show the so-obtained model and
the corresponding image. While the model has improved and resembles the true
model of Figure 3.10a more closely, the time-migrated image of Figure 3.11d is
almost identical to that of Figure 3.11b.

Figure 3.12a shows the 100 image points picked in the second test (black crosses),
also together with their updated positions (pink plusses) and superimposed over the
obtained updated velocity model after one iteration. Again, Figure 3.12b shows
the corresponding time-migrated stacked section. In comparison to Figure 3.11a,
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Figure 3.12: Vertical-gradient model: (a) Extracted velocity model after one
iteration with 100 image points and (b) corresponding final time-migrated image.
(c) Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).

we observe that the velocity undulations in Figure 3.12a are reduced in amplitude
and wavelength. The migrated image in Figure 3.12b has slightly improved as
compared to Figure 3.11b, particularly regarding the positioning of the deepest
reflector and the focusing of the deepest diffractor. Moving-average smoothing
further improves the model (Figure 3.12c), but again has little effect on the resulting
image (Figure 3.12d).

Similar conclusions can be drawn from the corresponding experiments with the
horizontal (Figures 3.13, 3.14, and 3.15) and diagonal (Figures 3.16, 3.17, and 3.18)
gradients. While the models extracted with 100 image points (Figures 3.15a and
3.18a) are slightly better than the ones extracted with 21 image points (Figures 3.14a
and 3.17a), it is doubtful that the improvements warrant fivefold picking expense.
The smoothed models using 21 points (Figures 3.14c and 3.17c) almost reach the
same quality as the ones obtained with 100 points (Figures 3.15c and 3.18c).
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Figure 3.13: Vertical-gradient model: (a) Velocity model with reflectors and control
diffractors. (b) Time-migrated image using v0 = 3.0 km/s.
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Figure 3.14: Horizontal-gradient model: (a) Extracted velocity model after one
iteration with 21 image points and (b) corresponding final time-migrated image. (c)
Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).

These tests demonstrate that even in the presence of a strong velocity gradient,
the method is capable of extracting meaningful time-migration velocity models using
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Figure 3.15: Horizontal-gradient model: (a) Extracted velocity model after one
iteration with 100 image points and (b) corresponding final time-migrated image.
(c) Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).
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Figure 3.16: Diagonal-gradient model: (a) Velocity model with reflectors and control
diffractors. (b) Time-migrated image using v0 = 3.0 km/s.

a not too large number of image points where reflector images can be picked in the
incorrectly migrated image.
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Figure 3.17: Diagonal-gradient model: (a) Extracted velocity model after one
iteration with 21 image points and (b) corresponding final time-migrated image.
(c) Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).

3.4.3 Application to the Marmousoft data

Encouraged by these results, we set out for a more realistic test. We applied
the described MVA technique to the Marmousoft data (Billette et al., 2003). These
data were constructed by Born modeling in a smoothed version of the Marmousi
model. The true (depth) Marmousoft velocity model is depicted in Figure 3.19a.
We chose this model so as to analyze the behaviour of our MVA method in a complex
sedimentary geology. We did not expect the method to work in the central part of
the model because of the limits of time migration.

In order to simulate a time-migration velocity model we computed the root-
mean-square (vrms) velocity model in pseudo-time from the stratigraphic velocity
using vertical conversion only. The resulting time-velocity model is depicted in
Figure 3.19b. It indicates acceptable migration velocity values, though probably
laterally mispositioned.
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Figure 3.18: Diagonal-gradient model: (a) Extracted velocity model after one
iteration with 100 image points and (b) corresponding final time-migrated image.
(c) Extracted velocity model after moving-average smoothing and (d) corresponding
final time-migrated image. Also shown in parts (a) and (c) are the picked image
points (black crosses) and their updated positions (pink plusses).

The Marmousoft data contain traces at every 25 meters with a sampling rate of
4 ms. We used 96 common-offset sections with source-receiver offsets between 100 m
and 2475 m. Figure 3.20a shows a short-offset section with a total source-receiver
offset of 100 m.

To these data, we applied the remigration-trajectory MVA method. For the
first migration, we chose v0 = 2.0 km/s. Figure 3.20b depicts the migrated image
obtained from the short-offset data of Figure 3.20a. The migration aperture used
was 241 traces.

Next, we picked 70 points on some of the most prominent migrated events in the
image of Figure 3.20b. At the positions of these picks, we extracted local slopes in
the migrated common-offset section and then minimized the residual moveouts along
the remigration trajectories as described above. Figure 3.20c shows the locations
of our picks (black crosses) and their corrected positions after velocity updating
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Figure 3.19: Marmousoft velocity models. (a) Depth velocity model (Billette
et al., 2003). (b) Time-velocity model computed from (a) by vertical depth-to-time
conversion.

(pink plusses) overlain on the resulting updated velocity model. As before, we used
B-splines to interpolate the velocity model in the complete region.

We then used the velocity model of Figure 3.20c for a second migration. The
result is depicted in Figure 3.20d. We recognize that the updated velocity model
leads to an improved migrated image, particularly regarding the upper parts of the
fault lines and the reflectors in the sedimentary regions on both sides of the model.

To eliminate the unrealistic oscillations in the velocity model, we smoothed it
(Figure 3.20c) by two passes of a moving average with a 2.5 km×0.4 s (100 by 100
points) window (see Figure 3.20e). The Kirchhoff-migrated image corresponding to
this velocity model is depicted in Figure 3.20f.

Although the velocity models of Figures 3.20c and 3.20e are rather different, the
corresponding migrated images (Figures 3.20d and 3.20f) are quite similar, indicating
that both velocity models are equivalent regarding the final time-migration result.
These results are in agreement with those produced by common-image gather image-
wave propagation and double multi-stack migration (see Santos et al., 2013f and
Santos et al., 2013g for a parameterization discussion). For further evaluation of
the model quality, a time-to-depth conversion will be necessary to compare the
attainable model quality as well as to check its application as an initial model for
tomographic or depth MVA methods.

3.4.4 Application to the Sigsbee2B data

Encouraged by these results, we set out for a more realistic test. We applied the
described MVA technique to a subset of the Sigsbee2B NFS (no free surface) data
set. We chose this model so as to analyze the behavior of our MVA method in the
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Figure 3.20: Single iteration of remigration-trajectory MVA on the Marmousoft
data. (a) Seismic near-offset section. (b) Time-migrated image of the seismic near-
offset section using a constant velocity v0 = 2 km/s and migration aperture equal to
141 traces. (c) Extracted velocity model after one iteration. Also shown are the 70
picked image points (black crosses) and their updated positions (pink plusses). (d)
Final time-migrated image by a migration aperture equal to 241 traces. (e) and (f)
show the results after moving-average smoothing by two passes with a 2.5 km×0.4 s
(100 by 100 points) window.

sedimentary region to the right of the salt body, in the more complex structures
like the syncline segments above the salt body, and in the salt body itself. We did
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Figure 3.21: Complete Sigsbee2B stratigraphic velocity model.

not expect the method to work below the salt body because of the limits of time
migration.

The Sigsbee2B data contains traces at every 45.7 meters with a sampling rate
of 8 ms. We used 100 common-offset sections with source-receiver offsets between
183 m and 4709 m. Figures 3.21 and 3.22 show the Sigsbee2B stratigraphic velocity
model and a short-offset section with a source-receiver offset of 183 m, respectively.
This was the nearest offset used in our numerical test. Shorter offsets are present in
the distribution of the Sigsbee2B data, but were discarded.

Reference images

In order to simulate a time-migration velocity model and its respective migrated
image, we computed the interval (vint) and the root-mean-square (vrms) velocity
models in pseudo-time from the stratigraphic velocity, both using vertical conversion
only. The pseudo-time interval velocity model (Figure 3.23) gives us an approximate
idea of where to look for reflector images in the migrated image.

The RMS velocity vrms (Figure 3.24) is an average velocity that indicates accept-
able migration velocity values, though probably laterally mispositioned. Therefore,
rather than using the RMS velocity model of Figure 3.24 for comparisons to the
models to be obtained with our method, we use vrms to migrate the Sigsbee2B data
set. Figure 3.25 shows the time-migrated image of the seismic near-offset section
using the average velocity vrms and migration aperture equal to 241 traces. This
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Figure 3.22: Seismic near-offset section (2h = 183 m) of the complete Sigsbee2B
data.
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Figure 3.23: Sigsbee2B vertical pseudo-time interval velocity model (vint).

figure will play the role of a benchmark for the migrated images using the velocity
models obtained from our method.

By correlating the time-migrated image of Figure 3.25 with the pseudo-time
interval velocity model of Figure 3.23, we can easily identify the positions of most
reflectors. We note that the shallow events and most sedimentary parts are well
focused, including the shallow diffraction events. However, the salt bottom and
deepest parts are out of focus, indicating that the model of Figure 3.24 is only
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Figure 3.24: Sigsbee2B vertical pseudo-time root-mean-square velocity model (vrms).
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Figure 3.25: Time-migrated image of the seismic near-offset section using the average
velocity vrms (Figure 3.24) and migration aperture equal to 241 traces.

acceptable down to a certain depth. This can be understood as an indication for
the validity limit of time migration in this model.

Velocity analysis

Since the Sigsbee2B data simulate a marine data set, we know the velocity of the
first layer to be constant water velocity v0 = 1.5 km/s. Thus, we choose this velocity
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Figure 3.26: Time-migrated image of the seismic near-offset section using a constant
velocity v0 = 1.5 km/s (water velocity) and migration aperture equal to 141 traces.

for the first migration. Figure 3.26 depicts the migrated image obtained from the
short-offset data of Figure 3.22. The migration aperture used was 141 traces. As
expected, this first migration is not able to resolve the structures below the water
bottom or focus the reflection energy.

Next, in order to apply our remigration-trajectory MVA as discussed above, we
picked 254 points on some of the most prominent migrated events in the image
of Figure 3.26. At the positions of these picks, we extract local slopes in the
migrated common-offset section and then minimize the residual moveouts along the
remigration trajectories. Figure 3.27 shows the locations of our picks (black crosses)
and their corrected positions after velocity updating (pink plusses) overlain on the
resulting updated velocity model. As before, we used B-splines to interpolate the
velocity model in the complete region. It is easy to see that the picked image points
are moved the furthest away from their original positions in the (large) syncline
region between 16 and 22 km. In this part of the model, the difference between the
initial and true migration velocities is larger than in the upper part of the model.

We then used the velocity model of Figure 3.27 for a second migration. The
result is depicted in Figure 3.28. We immediately recognize that the shallower parts
of the salt top have been nicely improved in this image, indicating that the velocity
model in this region has reached already acceptable quality. Certainly, the same
cannot be said of the salt flanks. Therefore, we repeated the procedure of reflector
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Figure 3.27: Velocity model extracted using image-point correction with remigration
trajectories after constant-velocity migration (first iteration). The 254 black crosses
represent the initial picked points in the migrated image of Figure 3.26, and the pink
plusses indicate their corrected coordinates for the updated velocity. The overall
model was obtained by B-spline interpolation.
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Figure 3.28: Migrated image after velocity extraction using one iteration of image
point correction. The migration aperture used was 141 traces.

picking and velocity updating for a second set of points picked in this new migrated
image.
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Figure 3.29: Velocity model after second iteration. The 322 black crosses represent
the picked points in the migrated image of Figure 3.28, and the pink plusses indicate
their corrected coordinates.

Figure 3.29 shows the velocity model after this second iteration together with the
322 picked points (black crosses) used in this iteration and their updated positions
(pink plusses). We note that the displacements are smaller than in Figure 3.27,
indicating convergence of the method. Note that the deeper events in the central
part of the model are still not focused in the image and could therefore not be picked.
The velocity model in this region is thus just obtained from B-splines extrapolation
and must not be trusted.

The migrated image corresponding to this velocity model is depicted in Fig-
ure 3.30. For this migration, we used a migration aperture of 241 traces. In
comparison to Figure 3.28, the flanks of the (large) synclinal structure are much
better focused and the bottom of the trough is correctly positioned. Furthermore, we
have also achieved an improvement in the left portion of the salt base. Actually, the
image of Figure 3.30 is already visibly better than the one of Figure 3.25, obtained
with the vertically converted RMS velocities. Not only is the top-salt reflector better
focused, but also some of the events in the sedimentary parts show better continuity.
This indicates that the velocities in the model of Figure 3.29 are already better time-
migration velocities than those of Figure 3.24. In the central region of the model,
the quality remains poor. No reflectors come into focus that could be picked to allow
for another iteration. This is a strong indication that the strong velocity contrast
at the salt border delimits the validity region of the method.
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Figure 3.30: Final migrated image stack after two iterations of velocity extraction
using remigration trajectories. The migration aperture was 241 traces.

To evaluate the quality of the final velocity model in more detail, let us look
at six selected CIGs (Figure 3.31). On the whole, it is easy to observe that the
strongest events, mainly the shallow ones, were completely flattened. The first
CIG at 7.65 km (Figure 3.31a) lies in the most simple region where there are no
abrupt velocity variation. In this CIG, all major events were flattened, including the
diffraction event below 6 seconds, and the deepest flat salt layer at about 9 seconds
(see also Figure 3.30). In the CIG at 13.68 km (Figure 3.31b), we can observe that
the salt top (∼3.6 s) and the diffraction event (∼5.2 s) were well flattened, but the
salt bottom (∼4.2 seconds) still needs improvement at larger offsets. The third CIG
at 16.56 km (Figure 3.31c) allow to analyze the edge diffraction at the salt bottom
at about 4.2 seconds (see also the model in Figure 3.21). It shows that our method
flattened this diffraction event, too. The fourth CIG at 18.85 km (Figure 3.31d)
represents the central part of the Sigsbee2B syncline. Here, we call attention to
the high amplitudes below 5 seconds due to multiple reflections in this syncline.
Nevertheless, it is possible to observe the nearly flattened event of the bottom of the
trough at about 5.6 seconds. The fifth CIG at 20.54 km (Figure 3.31e) shows the
right portion of the syncline, where the salt structure is thicker and where shallow
diffractors are present. We note that down to the salt top, all events are nicely
flattened. The last CIG at 22.32 km (Figure 3.31f) enables us to evaluate the right
portion of the salt structure, with a thinning of the salt body and a greater dip
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Figure 3.31: Common-image gathers at (a) 7.65 km, (b) 13.68 km, (c) 16.56 km, (d)
18.84 km, (e) 20.54 km, and (f) 22.32 km.

variation of its top. As expected, the deeper events below the salt are not well
imaged with the present velocity model.

Reliability

As a direct indicator of the reliability at different reflectors of the updated
velocity model, we can study the coherence panel associated with the CIGs of the
migrated image. Figure 3.32 shows the horizontal semblance in the corresponding
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Figure 3.32: Coherence panel after the second iteration.

CIG at each point of the migrated image of Figure 3.30. High coherence values in
this panel provide an indication of where the obtained velocity model can already be
trusted, while low values indicate regions where further improvement is required. We
see in Figure 3.32 that all main events down to the salt top are reliably imaged, and
even the edge diffractor at the salt bottom is clearly visible. The residual moveout
of the bottom-of-the-trough reflection in the CIG of Figure 3.31d results in its poor
visibility in the coherence panel.

From the analysis of the final migrated image (Figure 3.30), the CIGs (Fig-
ure 3.31), and the coherence panel (Figure 3.32), we conclude that MVA using time-
remigration trajectories constitutes a powerful tool to improve the positioning of key
reflectors in a time-migrated image and update the velocity model correspondingly,
at least in sedimentary regions. The focused edge diffraction event at the salt bottom
gives rise to hopes that the method may even work in more complex areas. The
computational cost of the technique is determined by the cost of prestack time
migration in each iteration. Intermediate computations are negligible. Further
investigations will have to show whether the picking of selected reflection event
points can be carried out in an automated way.

When testing our method, we noted that the resulting velocity models were
strongly dependent on the method chosen to interpolate the velocity between the
positions of the picks. However, the resulting images were rather similar to each
other, providing yet another confirmation for the robustness of time migration with
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respect to velocity errors. For the presentation in this work, we chose the models
obtained by B-splines interpolation of Matlab (Sandwell, 1987).

3.5 Conclusions

We have developed a tool that uses the estimation of local kinematic attributes
of selected events in seismic data to locally update a previous velocity model
and improve the positioning of key reflectors. The method is based on image-
wave propagation in the CIG domain described by the means of time-remigration
trajectories in the prestack time-migrated domain. Such a trajectory is defined as
the set of points at which a certain point on a reflection event is migrated to as a
function of migration velocity.

The methods consist of analyzing the local slope of selected key reflections
and determining the velocity value for which an approximate RMO expression is
minimized. The advantage of this procedure over conventional MVA methods is
that the RMO expression follows the events outside a fixed CIG. In this way, more
accurate velocity information can be extracted from the data.

We have demonstrated by means of our numerical examples that the method
is capable of extracting local time-migration velocity information from the data
to improve a given velocity model. By relying on constant-velocity initial models,
we have demonstrated that the quality of the initial model is not critical to our
technique. In our numerical tests, the procedure led to acceptable velocity models
in very few iterations, even if the starting model was constant water velocity. The
sedimentary shallow part of the Marmousoft model was satisfactorily resolved in
one iteration. The computational cost of the technique is determined by the cost of
prestack time migration in each iteration. Intermediate computations are negligible.
The most processing time was spent on the event picking. However, tests with
different numbers of picked event points demonstrated that the number of points
does not need to be very large. Future research will have to show if this picking
process can be automatized. Our results indicated that a step of smoothing the data
can be helpful, especially for deeper and/or steeper events.

By its principle, the proposed MVA algorithm is a local procedure, updating the
velocity at a single image point at a time. If sufficient image points are available in
a certain model region, a smooth velocity distribution can be interpolated for that
region. In the interpolation stage, a priori information or constraints can be taken
into account. In our numerical tests on synthetic data, we applied the method to
simple models consisting of a single region and to multiple regions of the Sigsbee
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model to study its behavior under different conditions. The simple models could
be inverted in a single iteration. In the sedimentary regions of the Sigsbee model,
two iterations where sufficient to build an acceptable model. The salt body in this
model marked the method’s validity limit. We believe that its main application will
be in the local improvement of previously existing velocity models to enhance the
focusing of selected key horizons. Further research will be necessary to extend the
method to depth MVA.
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Chapter 4

Time-to-depth conversion and

velocity estimation by

image-wavefront propagation

4.1 Summary

A new strategy for time-to-depth conversion and interval-velocity estimation is
based entirely on image-wavefront propagation without the need to follow individual
image rays. The procedure has three main features: (1) it computes the velocity
field and the traveltime directly, allowing to dispense with dynamic ray tracing; (2)
it requires only the knowledge of the image-wavefront at the previous time step; and
(3) it inherently smoothes the image-wavefront, inhibiting the formation of caustics.
As a consequence, the method tends to be faster than usual techniques and does
not carry the constraints and limitations inherent to common ray-tracing strategies.
Synthetic tests using a Gaussian velocity anomaly as well as the Marmousi velocity
model and two smoothed versions of it show the feasibility of the method. A field
data example demonstrates the use of different numerical procedures. Our results
indicate that the present strategy can be used to construct reasonable depth velocity
models that can be used as reliable starting models for velocity-model building in
depth migration or for tomographic methods.

4.2 Introduction

The need to investigate regions with complex geology has encouraged the de-
velopment of imaging methods that act in the depth domain. Notable examples
are prestack depth migration (PSDM) and full-waveform tomography (FWT) tech-
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niques. However, the application of these methods faces at least two problems: they
require (1) an accurate (initial) velocity model and (2) massive computation power.

In contrast, time migration has proved to be a fast and robust process, making
it routinely employed for seismic imaging. Moreover, time-domain velocity-model
building is a well-understood process. Therefore, it is highly desirable to employ
time-to-depth conversion in order to construct starting models for depth imaging
techniques from these time-domain velocity models.

Therefore, vertical conversion from time to depth has been routinely employed
for a long time, Hubral (1977) was the first to recognize the need for taking
lateral displacements into account. He demonstrated that time and depth-domain
coordinates are interconnected by the so-called image ray.

More recently, Cameron et al. (2007, 2008) derived the theoretical relation
between the time-migration velocity and seismic velocity using image-ray theory
and paraxial ray-tracing theory (Popov et al., 1978; Červeny, 2001; Popov, 2002).
Their algorithm consists of image-ray tracing to convert time Dix velocities into ray
coordinates velocities and then time-to-depth convert them based on Dijkstra-like
fast marching methods (Sethian, 1999a,b). Iversen and Tygel (2008) proposed a
similar but more efficient technique that even in 3D requires only a single-azimuth
time-migration velocity field as an input to construct the depth velocity field.

Despite being an attractive method, time-to-depth conversion is an ill-posed
problem (Cameron et al., 2007). It aggregates the limitations of all involved steps,
that is, the constraints involved in time migration, ray-tracing, and Dix-based
velocity conversion (Iversen and Tygel, 2008). Thus, regularization is essential for an
adequate time-to-depth conversion. Such a regularization can be added in two phases
of the process: (1) during the estimation of the Dix velocity field from an estimated
time-migration velocity field, and (2) during the image-ray tracing. Valente et al.
(2009) compared the three conversion techniques of Cameron et al. (2007), Cameron
et al. (2008), and Iversen and Tygel (2008). They demonstrated that the different
procedures react differently to different kinds of regularization. However, although
the image-ray trajectories and the resulting depth velocity models depended on the
regularization employed, the corresponding final depth images were very similar.

The objective of the present work is to present an alternative algorithm for the
time-to-depth conversion, which does not require the tracing of individual image
rays. Instead, it simulates the propagation of an image wavefront in the subsurface.
In isotropic media, this image wavefront is perpendicular to a set of image rays.
This approach has the advantage of directly computing the velocity field and the
traveltime. We test the approach on a synthetic Gaussian example and on the
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Marmousi data set. For the latter, we use Fourier Finite-difference (FFD) migration
based on complex Padé approximations (Amazonas et al., 2007) to evaluate the
quality of the depth-migrated images. Finally, we apply our method to the same
field data example of the North Sea used by Cameron et al. (2008).

4.3 Time-to-depth conversion algorithms

We start with the formulation of the time-to-depth-conversion inverse problem
based on image-ray theory and a brief description of some of the proposed newer
algorithms.

4.3.1 Two-dimensional inverse problem

Consider an image point at coordinates (γ, τ) in a time-migrated section, with
γmin ≤ γ ≤ γmax and 0 ≤ τ ≤ τmax. This image point can be associated with an
image-ray that has reached the acquisition surface at the position γ in time τ . The
problem of time-to-depth conversion consists of tracing this image-ray back into
the medium, associated with a plane wave tangent to the acquisition surface at γ,
until the time τ is consumed and the ray has reached its position x = (x, z) in the
subsurface.

In other words, we want to simultaneously solve the set of equations for kinematic
and dynamic ray tracing with plane-wave initial conditions. This set can be
represented in two dimensions as

dx

dτ
= v2(x)p ,

dp

dτ
= − 1

v(x)
∇xv(x) , (4.1)

dQ

dτ
= v2(x)P ,

dP

dτ
= − 1

v(x)

∂2v

∂η2
Q ,

where η denotes the coordinate direction perpendicular to the ray. Moreover, p and
v(x) are the slowness vector and the wave speed at x, and P and Q are quantities
describing the dynamic properties along the ray. The initial conditions for image-ray
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tracing read

x(τ = 0) = (γ, 0) ,

p(τ = 0) =
ẑ

vDix
, (4.2)

Q(τ = 0) = 1 ,

P (τ = 0) = 0 ,

where ẑ is the unit vector in the vertical direction and vDix denotes the Dix velocity
at (γ, τ).

4.3.2 Inversion algorithms

As an alternative, particularly to simplify the computation of the derivatives
along the image-rays, Cameron et al. (2007) proposed an image-ray tracing algorithm
which fits the image-wavefront by polynomial curves. Based on this algorithm,
Valente (2013) proposed an additional regularization to the fitting, which increases
the choice of the degree of the polynomial.

Based on their previous work, Cameron et al. (2008) presented a new ray tracing
algorithm, in which the last two equations of system (4.1) are integrated based on
the Lax-Friedrichs method (Lax, 1954). This results in the finite-difference (FD)
scheme

P n+1
j =

P n
j+1 + P n

j−1

2
− ∆τ

4∆γ2νn
j Q

n
j

(

νn
j+2Q

n
j+2 − νn

j Q
n
j

Qn
j+1

−
νn
j Q

n
j − νn

j−2Q
n
j−2

Qn
j−1

)

,

1

Qn+1
j

=
1

Qn
j

− ∆τ

2

[

(νn
j )

2P n
j + (νn+1

j )2P n+1
j

]

, (4.3)

where P n
j denotes the value of P at the jth image-ray at γj and at the nth time

sample τn. Moreover, νn
j denotes the Dix interval velocity ν(γj , τn) (Dix, 1955). In

this method, there is no need for additional regularization. The regularization is
intrinsically performed by the P -averages that are computed along the wavefront
of the image-wave, in this way avoiding instabilities in the FD scheme by damping
high frequencies.

After the application of any of the cited inversion algorithms, the results are the
image-rays and/or image-wavefronts and, above all, the velocity field v(x(γ, τ)) in
depth along the image rays trajectories. Therefore, this velocity field is given on
a non-regular grid. One way to transfer this field onto a regular grid is a direct
fit at the regular grid points and an extrapolation in the border regions. Cameron
et al. (2007) describe an efficient algorithm to solve this problem, using the eikonal
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equation based on the fast-marching method (Sethian, 1999a,b). This provides not
only the depth velocity field v(x), but also τ(x) and γ(x) on a regular grid. The
latter two fields can be used in the conversion of time-migrated images to depth-
migrated images.

Cameron et al. (2007) also describe another way to approach the problem using
the level-set method (Sethian, 1999b). This approach boils down to propagating
the image-wavefront tangent to the acquisition surface in time τ = 0 back into the
subsurface. To do so, the image-wavefront is represented as a zero-level set of a
two-dimensional function φ(x). Two two-dimensional functions p(x) and q(x) are
also incorporated along the image-wavefront, defined in such a way that, for each
time interval ∆τ , they are equivalent to the values of P and Q, respectively. These
functions satisfy the equation system

dφ

dτ
= v(x) ‖∇φ‖ ,

dq(x)

dτ
= v2(x)p(x) , (4.4)

dp(x)

dτ
= − 1

v(x)

∂2v

∂η2
q(x) ,

where the second derivative of v in the direction perpendicular to the ray can be
represented as

∂2v

∂η2
=

(

1

‖∇φ‖
∂φ

∂z

)2
∂2v

∂x2 − 2

(

1

‖∇φ‖
∂φ

∂x
· 1

‖∇φ‖
∂φ

∂z

)

∂2v

∂x∂z
+

(

1

‖∇φ‖
∂φ

∂x

)2
∂2v

∂z2
.

(4.5)

The first equation implies that φ is monotonically increasing with τ . If, as chosen
here, φ is traveltime, the first subequation reduces to dφ/dτ = 1.

From equation system (4.2), we find the initial conditions for the auxiliary
functions p and q as

q(x(τ = 0)) = 1 , p(x(τ = 0)) = 0 . (4.6)

This scheme inherently uses the fast-marching conversion algorithm to calculate the
velocity field v(x).

4.3.3 Image-wavefront propagation

Based on the algorithm of the level-set method, we propose an alternative
strategy to perform the time-to-depth conversion. In this new image-wavefront
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propagation strategy, instead of tracing individual rays for all positions γ of interest,
we start with a family of rays, associated with a plane wave at the acquisition surface
at γ. This procedure has the advantage of directly obtaining the velocity field
v(x) and the traveltime τ(x), avoiding to calculate the auxiliary functions p(x) and
q(x). By means of a modified fast-marching conversion algorithm, we can directly
determine the set γ(x) of image-ray emergence points from the already known values
of v(x) and τ(x). For details, see Valente (2013).

The wavefront-construction algorithm proposed in this work is slightly different
from other algorithms discussed in previous works. For example, Vinje et al.
(1993) construct the wavefront checking neighboring rays for significant deviation or
crossing, adding new rays in the first case and removing one of the crossing rays in
the second one. The new rays start at the midpoint between two known rays with ray
quantities obtained by linear interpolation. Furthermore, the authors also use linear
interpolation to output the involved ray quantities on a regular grid. In a different
strategy, Silva et al. (2009) use a finite-difference scheme to evolve the wavefront
along the image ray. This scheme makes use of the information at two points on the
previous wavefront to determine the ray quantities at the new wavefront.

In this work, we proceed in yet another way. The principal advantage of our
algorithm is that it immediately interpolates the ray quantities at the horizontal
coordinates of the given grid, determining the vertical coordinate of the wavefront
accordingly. In this way, it avoids the need to add or remove points on the wavefront.
Moreover, this procedure requires the final interpolation of the output quantities in
the vertical direction only. For the propagation, it needs only the knowledge of the
image-wavefront at the previous time step.

At each time step, the first part of our algorithm is to determine the direction
n = ∇φ/ ‖∇φ‖ of the gradient at each point (xj , zj) along the wavefront. At the
first time step, it is given by the vertical direction. At all later time steps, we first
estimate an approximation to the the unit tangent vector t̂ to the wavefront,

t̂ =
(xj+1 − xj , zj+1 − zj)

√

(xj+1 − xj)2 + (zj+1 − zj)2
, (4.7)

which is then rotated by −90◦.
We then propagate the image-wavefront φ(x) along this normal direction n,

integrating the system

x
n+1/2
j = xn

j + vnj (n · x̂)nj ∆τ ,

z
n+1/2
j = znj + vnj (n · ẑ)nj ∆τ . (4.8)
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Figure 4.1: Sketch of the image-wavefront propagation algorithm. The ray quantities
are not computed where the image-ray paths intersect the desired wavefront (red
dots), but rather along vertical lines coincident with the lateral positions of the grid
(blue dots). The next step starts from these new base points using tangent vector t̂
and the traveltime gradient ∇φ.

In this way, we obtain the coordinates (red points in Figure 4.1) of the image rays
on new wavefront φn+1(x(γ)) from those of the previous one, φn(x(γ)), where j

indicates the number of the image ray and n indicates the time step, as before.
From the set of points xn+1/2, we can find the points on the wavefront xn+1

that intersect the vertical grid lines (blue points in Figure 4.1). They are given by
xn+1 = γ and zn+1 = z(xn+1, τn+1), where the vertical coordinate is determined by
means of linear interpolation. In other words, we redefine the calculation points
so that they fall exactly on the lateral positions where the wavefront intersects the
grid (see Figure 4.1). At the next time step, the algorithm starts over at the image-
wavefront at these new coordinates. In this way, the sampling along the wavefront
always remains regular, avoiding the need to add or remove rays.

We refer to this wavefront-construction strategy as image-wavefront propagation,
because it does not follow any single image-rays through the model, but resamples
the wavefront at each step. In this way, the sampling remains regular at all times. It
is important to observe that, by construction, this procedure automatically inhibits
the formation of caustics because the resampling inherently carries out a smoothing
of the wavefront. This behavior is desired, because image rays must not have
caustics.
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In our implementation, we assume that the depth velocity v(x) in system 4.7 is
sufficiently well approximated by the Dix interval velocity ν(γ = x, τ(x)), i.e.,

v(x) ≡ ν(γ = x, τ(x)) . (4.9)

This is equivalent to setting Q = 1 in the scheme of Cameron et al. (2008). Note
that this is not a necessary assumption for the procedure. If desired, system 4.3
can be integrated together with system 4.7 to improve the estimation of the depth
velocity.

4.4 Numerical examples

We tested our new wavefront-propagation strategy by applying it to different
synthetic data sets. We start with presenting the results for a simple smooth
Gaussian model. Next, we show its application to data from various versions of
the Marmousi model. In all cases, we compare the determined depth velocity model
to those estimated by image-ray tracing according to Cameron et al. (2008). Finally,
we complement our numerical evaluation with a comparison of the depth-migrated
sections obtained using the complex Padé Fourier finite-difference technique of
Amazonas et al. (2007).

4.4.1 Gaussian model

As a first test, we applied time-to-depth conversion using our new wavefront-
construction strategy to the same smooth Gaussian velocity model used in Cameron
et al. (2007). The velocity distribution in this model (see Figure 4.2a) is given by

v(x, z) = 2 + 2 exp{−(x2 + (z − 2)2)} , (4.10)

where x ∈ [-3, 3] and z ∈ [0, 2].
As the input to the conversion, we computed the Dix velocity depicted in

Figure 4.2b with a time sampling of 4 ms (two-way travel time). We start by
mapping it from time to depth using image-ray tracing and fast marching conversion
as proposed by Cameron et al. (2008). The result is presented in Figure 4.2c. We
then converted the same time velocity model using the image-wavefront propagation
strategy proposed here. The result can be seen in Figure 4.2d. There are notable
differences between the converted depth models in Figures 4.2c and 4.2d. These
differences are highlighted in Figures 4.2e and 4.2f, which show the relative error
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Figure 4.2: Synthetic test of time-to-depth conversion for a Gaussian-anomaly
velocity model. True interval velocity model in (a) depth and (b) time. Time-to-
depth conversion by (c) image-ray tracing and (d) image-wavefront propagation.
Relative error of (f) image-ray tracing and (e) image-wavefront propagation.
Wavefronts from (g) image-ray tracing (blue lines) and (h) image-wavefront
propagation (blue lines), compared to wavefronts in the true model (black lines).
Numbers indicate traveltimes in seconds.
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of the converted models as compared to the true one (Figure 4.2a). We observe
that the errors of both methods are relatively small in the shallow part, above 1 km
depth. However, while the image-ray procedure then accumulates larger errors the
wavefront-propagation technique remains fairly accurate. Figure 4.2e shows that
the extracted velocity using image-ray tracing gets worse as the depth increases,
reaching error values around 12%. This happens because the curvature of the rays
increases with depth. In contrast, the maximum relative error of the image-wavefront
propagation (Figure 4.2f) is about 0.6%, indicating that our method is quite accurate
even being a first-order approximation.

Figures 4.2g and 4.2h represent an alternative way to evaluate the quality of the
two procedures. They show the wavefronts as constructed by the two techniques for
the models of Figures 4.2c and 4.2d in blue, over the corresponding wavefronts for
the true model (Figure 4.2a) in black. The number at each line corresponds to the
traveltime of the current wavefront. Again, we can see that both methods are quite
similar in the shallow part, but the image-wavefront propagation provides better
results at larger depths.

4.4.2 Marmousi model

Since our wavefront-propagation strategy does not require smooth input veloc-
ities, we could test it directly on the Marmousi velocity model (Versteeg, 1994),
representing a more realistic geological setting. For a comparison to the conventional
conversion procedures, we applied them to two differently smoothed versions.

Original Marmousi model without smoothing

Paraxial ray theory needs a smooth velocity field without strong velocity vari-
ations. Otherwise, the ray field becomes irregular and cannot be trusted. As a
consequence, the time-to-depth conversion methods based on paraxial ray tracing
can be applied only if the input model is smooth. In contrast, our new wavefront-
propagation strategy can be applied to velocity models with hard interfaces. The
reason is it is an adaptation of the level-set method (Cameron et al., 2007, 2008)
that does not rely on the ray-tracing step. Therefore, we can evaluate its behavior
in the original Marmousi model without smoothing. This example highlights an
important feature of our method: It does not require any previous regularization.
Thus, it can be applied directly in high-frequency or noise-corrupted models, i.e., the
kind of models frequently obtained by automatic velocity-model-building methods.
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Figure 4.3: Test on the stratigraphic Marmousi velocity model without smoothing.
(a) True Marmousi depth model. (b) Time interval velocity. (c) Time-to-
depth conversion by image-wavefront propagation. (d) Relative model error. (e)
Wavefronts in converted (blue lines) and true (black lines) models. Numbers indicate
traveltimes in seconds.

Figure 4.3a shows the original Marmousi velocity model in depth without
smoothing. As before, we compute the Dix velocity (Figure 4.3b) and use it as
the input for the time-to-depth conversion by image-wavefront propagation. The
resulting converted depth model is depicted in Figure 4.3c.

We observe that time-to-depth conversion by image-wavefront propagation re-
covers a high-quality version of the original model in the central part down to a
depth of about 1.5 km and in the sedimentary parts on the sides of the model down
to the salt intrusions. Even the intrusions themselves and sediments below them are
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quite reasonably recovered. The high velocity of these salts does not seem to have
a strong influence on the sediments below them.

The faults present in the central part of the Marmousi model bring out another
interesting feature. Apparently, our technique does not suffer from the strong dip
variation present in that area. However, below the strong lateral velocity variations
in the central part of the model, where the time velocity model shows some high-
frequency irregularities, these are amplified in the converted depth model.

The quality of the converted model is confirmed in Figure 4.3d, which shows the
relative error between the extracted (Figure 4.3c) and original (Figure 4.3a) velocity
models. The error accumulates in the regions of strong lateral velocity variations,
where the image-ray principle is known to become problematic. Particularly at
misplaced velocity contrasts, the error can locally reach almost 100%.

Finally, Figure 4.3e presents the superposition of the wavefronts. This figure
confirms the previous observations, showing a better fit of the wavefronts in the
upper and lateral parts of the model. Moreover, we see in Figure 4.3e that even
in the central areas of the model, the long wavelengths of the wavefronts in the
extracted model adjust to those of the wavefronts in the true model.

Smoothed versions of the Marmousi model

To allow for a comparison between the ray-tracing-based time-to-depth conver-
sion techniques of Cameron et al. (2007, 2008) with our image-wavefront propaga-
tion, we need a smooth input velocity model. For this reason, we smoothed the
original Marmousi velocity model (Figure 4.3a) by a single pass of a moving-average
filter. In the first test, we used a 600 m×600 m (50 by 50 points) window. The
resulting reference model is depicted in Figure 4.4a.

Figures 4.4c and 4.4d show the depth velocity models obtained, respectively, by
image-ray and wavefront-propagation conversion of the Dix velocities in Figure 4.4b,
and Figures 4.4e and 4.4f show the corresponding errors. As a first observation, we
notice that both models resemble the original model quite closely. The errors of the
conversion of the smooth model are much smaller than the ones from the conversion
of the hard model (compare Figure 4.4f to Figure 4.3d). We conclude that, though
not a requirement, conversion of a smooth model is advantageous for the wavefront-
propagation method. As in the case of the Gaussian velocity anomaly, image-ray
conversion produces, below a certain depth, significantly larger errors (up to 20%)
than wavefront-propagation conversion (up to 7%), even in the sedimentary part
of the model. In the image-ray converted model (Figure 4.4c), there are two near-
vertical lines at distances of about 5 km and 7 km, where the converted velocities
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Figure 4.4: Test on a smoothed version of the Marmousi model of Figure 4.3a. One
pass of a moving average with a 600 m×600 m (50 by 50 points) window. (a) True
depth model. (b) Time interval velocity. Time-to-depth conversion by (c) image ray-
tracing and (d) image-wavefront propagation. (e) Relative error of (c). (f) Relative
error of (d). (g) Wavefronts (blue lines) in (c) and (h) wavefronts (blue lines) in (d),
as compared to the wavefronts in the true model (black lines). Numbers indicate
traveltimes in seconds.
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change rather abrupt. These are caused by crossing image rays. This effect is not
observable in the wavefront-propagation converted model (Figure 4.4d). The better
quality of the latter model is also reflected in the better match of the wavefronts in
Figure 4.4h than in the corresponding image-ray Figure 4.4g.

The second test confirms these findings. Here, we used a 1200 m×1200 m (100
by 100 points) window for the moving-average filter. The resulting reference model
is depicted in Figure 4.5a. For this even smoother model, the converted models
(Figures 4.5c and 4.5d) are even closer to the reference model, and the errors of
both methods (Figures 4.5e and 4.5f) are smaller than in the previous case (up to 9%
for image-ray conversion, 1.2% for wavefront-propagation conversion). The result of
wavefront-propagation conversion (Figure 4.5d) is still superior to the one of image-
ray conversion (Figure 4.5c), which is clearly visible in the error plots (Figures 4.5e
and 4.5f) and also reflected in the better match of the wavefronts (Figures 4.5g and
4.5h). Though weaker, the abrupt velocity changes due to image-ray crossing are
still visible in Figure 4.5c.

4.4.3 Migration results

We have seen above that time-to-depth converted velocity models depend on the
technique employed for the conversion. Moreover, it is known that depth migration
is more susceptible to velocity variations than time migration. Thus, an important
means to evaluate the quality of the constructed depth velocity models is to use them
for depth migration. In this work, we employed a two-dimensional Fourier finite-
difference (FFD) migration with the complex Padé approximation as discussed in
Amazonas et al. (2007). One of the reasons that led us to choose this method is that
it was proven to be fast and robust. Another important point is that Amazonas et al.
(2007) performed several depth migrations with different migration methods for the
Marmousi data set and velocity model we use here. The use of their migration
method allows us to compare our results to their migrated images, in this way
increasing our information database.

For better comparison, all models presented in the last section were used to depth
migrate the Marmousi data set with the same setup of Amazonas et al. (2007). We
used a branch-cut rotation angle of α = 45◦, a depth extrapolation step size of 6 m,
and the source wavefield was computed using a Ricker wavelet with a 25-Hz peak
frequency. Figures 4.6, 4.7, and 4.8 show the migrated images obtained with the
models presented in Figures 4.3, 4.4, and 4.5, respectively.

Figure 4.6 compares the migrated images of the Marmousi dataset using the
true Marmousi model (part (a)) and using the wavefront-propagation converted
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Figure 4.5: Test on a smoothed version of the Marmousi model of Figure 4.3a. One
pass of a moving average with a 1200 m×1200 m (100 by 100 points) window. (a)
Reference depth model. (b) Time interval velocity. Time-to-depth conversion by (c)
image ray-tracing and (d) image-wavefront propagation. (e) Relative error of (c).
(f) Relative error of (d). (g) Wavefronts (blue lines) in (c) and (h) wavefronts (blue
lines) in (d), as compared to the wavefronts in the reference model (black lines).
Numbers indicate traveltimes in seconds.
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Figure 4.6: Prestack depth migrated sections of Marmousi data set using the velocity
models of Figure 4.3a and (c), respectively.

unsmoothed model (part (b)). While we recognize a little bit of deterioration of the
image in Figure 4.6b, particular in the lowermost part, the overall result is quite
acceptable, indicating that the time-to-depth conversion has worked as expected.

Figure 4.7a shows the reference image for the second test, obtained using the
first smoothed model of Figure 4.4a. We note that this image is already of a poorer
quality than both images of Figure 4.6. The corresponding images obtained using
the converted models (Figures 4.7b and 4.7c) are quite similar to Figure 4.7a.
As expected from the velocity models, the image obtained with the wavefront-
propagation model (Figure 4.7c) is a little closer to the one from the true smoothed
model (Figure 4.7a), with the deviations in the image-ray image (Figure 4.7b)
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being located at and below the regions where the model errors are the largest (see
Figure 4.4e).

The migrated images in Figure 4.8 are even more similar to each other. Closer
inspection reveals that again, the strongest deviations from the reference image
in Figure 4.8a, obtained with the true smoothed model, occur in the image-ray
image (Figure 4.8b) at those parts where the model errors are the largest (see
Figure 4.5e), while the image-wavefront propagation image (Figure 4.8c) is now
virtually indistinguishable from Figure 4.8a.

4.4.4 Field data example

For a better comparison to the results of Cameron et al. (2008), we evaluate
our time-to-depth strategy in a prestack time-migrated image from their North Sea
data and corresponding time-migration velocity obtained by velocity continuation
(Figure 4.9, adapted from Fomel, 2003a). This model has a significant lateral
variation, mainly caused by a salt body.

We compare three different results. Figure 4.10 presents the depth velocity
model obtained from conventional Dix inversion and the corresponding poststack
depth migrated image. Figure 4.11 depicts the estimated velocity model, the
corresponding poststack depth migrated image, and the prestack time migrated
image of Figure 4.9b converted to depth using the image-ray tracing of Cameron
et al. (2008). Finally, in Figure 4.12 we show the corresponding results using image-
wavefront propagation.

While the time-to-depth converted velocity models are quite similar, the velocity
model converted by the image-ray tracing differs from the others due to the geometric
spreading of image rays (Figure 4.11a). This also affects the migrated images, mainly
in the deeper parts close to the salt structure (Figure 4.11c).

Closer inspection reveals that both image ray-tracing and image-wavefront prop-
agation improved the quality of the prestack time-migration image converted to
depth, in particular near the salt flanks.

4.5 Conclusion

We have presented a new strategy to perform wavefront-construction in image-
ray-based time-to-depth conversion of velocity models. We make use of geometric
considerations on a rectangular grid to move the base points to vertical lines instead
of following individual image rays. In this way, we can reduce the computation time
without any loss in accuracy. Our method calculates the velocity and traveltime
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fields directly. By approximating the depth velocity with the Dix interval velocity, it
allows to omit the computation of dynamic-ray-tracing quantities that are used in the
image-ray-tracing method. In this way, the procedure requires only the knowledge
of the image-wavefront at the previous time step.

We have tested our new procedure on a simple Gaussian velocity anomaly and in
a more complex settings using smoothed and unsmoothed versions of the Marmousi
model. We have found that our time-to-depth conversion provides satisfactory
depth models. Since it does not rely on paraxial ray tracing, it even works in the
presence of sharp velocity contrasts. In the smoothed models, it was able to provide
remarkably accurate results down to greater depths than conventional methods that
trace individual image rays.

Results of depth migration of the synthetic Marmousi data using the depth-
converted models indicate that these models preserve the quality of the time-domain
models used as their input. The application in a field data reinforces the applicability
of this method in regions with a strong lateral variation including salt structures. In
first tests (Santos et al., 2016d), the method has been successfully applied as a linker
step to connect time-velocity models computed by automatic time-migration velocity
analysis techniques (see, e.g., Schleicher and Costa, 2009), with more sophisticated
tomographic or migration-velocity-analysis methods in depth.
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Figure 4.7: Prestack depth migrated sections of Marmousi data set using the velocity
models of Figure 4.4a, (c), and (d), respectively.
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Figure 4.8: Prestack depth migrated sections of Marmousi data set using the velocity
models of Figure 4.5a, (c), and (d), respectively.
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a)

b)

Figure 4.9: North Sea. (a) Time-migration velocity computed by velocity
continuation (Fomel, 2003a). (b) Corresponding prestack time migration.
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a)

b)

Figure 4.10: North Sea. (a) Dix velocity converted to depth. (b) Corresponding
poststack depth migration.



168

a)

b)

c)

Figure 4.11: North Sea. (a) Estimated velocity model and the corresponding image
rays. (b) Corresponding poststack depth migration. (c) Prestack time migration
converted to depth (from Cameron et al., 2008).
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a)

b)

c)

Figure 4.12: North Sea. (a) Estimated velocity model by image-wavefront
propagation. (b) Corresponding poststack depth migration. (c) Prestack time
migration converted to depth using our algorithm.
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Chapter 5

Acoustic full waveform inversion

We call two problems inverses of one

another if the formulation of each involves

all or part of the solution of the other.

Often, for historical reasons, one of the two

problems has been studied extensively for

some time, while the other is newer and not

so well understood. In such cases, the former

problem is called the direct problem, while

the latter is called the inverse problem.

— Keller (1976), Inverse problems.

5.1 Summary

Full-waveform tomography1 (FWT) is notorious for its strong dependence on the
initial model. In this chapter, we present a workflow for the construction of initial
velocity-models for FWT methods consisting of automatic time-migration velocity
analysis by means of double multi-stack migration (Chapter 2), followed by time-
to-depth conversion by image-ray wavefront propagation (Chapter 4). Evaluation
of the converted velocity model as an initial velocity model in an acoustic FWT
process indicates the potential of using a combination of these methods to achieve a
fully automatic tool for initial-model building in an FWT workflow. Our tests on a
modified version of the Marmousi-2 model have shown that correct background
velocity information can be successfully extracted from automatic time-domain

1The word tomography is derived from the Greek tomē (“cut”) or tomos (“part” or “section”)
and graphein (“to write”). Although the text does not semantically differentiate the words inversion
and tomography, using them almost synonyms, we believe that the use of the word tomography is
the most correct in the context of the present work.
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migration velocity analysis even in media where time-migration cannot provide
satisfactory seismic images.

5.2 Introduction

In 1984, Tarantola presented the basic idea of acoustic full waveform inversion
(FWI) as a local optimization method that aims to minimize the least-squares
misfit between observed and modeled seismograms. In other words, the aim of
FWI is to find a subsurface model which explains the recorded seismic data (Symes,
2008). Toward the end of the 80’s, Mora (1987a,b) and Tarantola (1986) extended
the theory to the elastic case. Shortly after, Pratt and Worthington (1990) and
Pratt (1990) introduced the frequency-domain version of FWI. While its high
computational cost retarded its adoption for almost two decades, the advance of
computing technology allowed to develop multiscale inversion, which became an
area of very busy and active research, and it provided a hierarchical framework for
robust inversion (Yang et al., 2015).

FWI proved to be an efficient tool for the determination of high-resolution details
in multi-parameter models of complex subsurface structures, and it has been applied
in different geophysical problem scales, ranging from ultrasonic data (Pratt, 1999)
to seismological imaging (Fichtner et al., 2009).

However, being a highly nonlinear problem, FWI techniques face drawbacks
other than their elevated computational cost. They are notorious for depending
strongly on the choice of a good starting model for convergence at a geologically
meaningful result (please, see Section 1.4 for further information). Particularly, the
long-wavelength components are crucial in this respect. Analyzing this dependence,
Mora (1989) recognized that FWI has a migration component and a tomographic
component. To ensure convergence of the tomographic component, a possible
strategy is to start the inversion processing from the low frequencies, but this
does not avoid the need of accurate initial velocity models (Biondi and Almomin,
2014). A 1D graphical representation of the separation of scales concept is shown
in Figure 5.1. The figure shows the trends on how industry is tightening the gap
between the estimation of long and short wavelengths.

For this reason, quite some effort has been made to come up with initial models
for FWI. Traveltime tomography, Laplace-domain inversion, and migration-based
velocity analysis (MVA) are some examples of seismic techniques that have been
investigated for this purpose (Prieux et al., 2012).
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Figure 5.1: Simplified 1D graphical representation of the separation of scales in
seismic imaging (black line) and the approach used by current industry to narrow
the gap between the estimation of long wavelengths and short wavelengths (blue
and green lines). (Adapted from “Imaging the Earth’s Interior” of Claerbout, 1985;
extracted and adapted from Biondi and Almomin, 2014).

In this Chapter, we investigate another possible strategy with potential to help
the construction of initial velocity models for the FWT. We apply the double
multi-stack technique of Schleicher and Costa (2009), adapted and discussed in
Chapter 2, to perform a time-domain MVA. This is a fully automatic tool that is
useful to obtain a time migrated image and its corresponding migration velocity
model in a computationally effective way. We then convert the background part
of the time-migration velocity model to the depth domain by means of the time-
to-depth conversion strategy based on image-wavefront propagation of (Chapter 4).
We evaluate the converted velocity model as an initial velocity model in an acoustic
FWT process (Kurzmann et al., 2013). For comparison, in all the experiments, we
carry out the same FWT using a smoothed version of the true velocity model.

Before presenting the numerical experiments, we will first review some of the
fundamental aspects concerning the inversion theory and applications in seismic.
In addition to the works mentioned before, the reader is referred to the treatises
by Bohlen (1998), Kurzmann (2012), and Przebindowska (2013), for more in-depth
accounts of the FWI theory and applications in high-performance computers which
inspired most of the content of the upcoming sections.

5.3 Theory overview

In 1902, the French mathematician Hadamard realized that there was a certain
relation between mathematical models and the reality they depict. According to
Hadamard (1902), a problem is called well-posed if:

1. there exists a solution to the problem (existence);
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2. there is at most one solution to the problem (uniqueness);

3. the solution depends continuously on the data (stability).

A problem which any of these properties are not satisfied is called an ill-posed

problem. The concept of an ill-posed problem was introduced to distinguish between
the forward or direct problem and the inverse problem (Keller, 1976).

The forward modeling is a well-posed problem. During the step of forwarding
modeling, the use of a priori knowledge of some physical laws and mathematical
models allow predicting the data. Furthermore, the forward modeling plays a crucial
role in inversion process, which can be pictured as being a process of successive
modeling steps. Besides the inversion process is related closely to forward modeling,
this does not prevent inversion problems from being ill-posed ones. For example,
there is more than one model that can fit the observed data (non-uniqueness).

Bringing to the context of seismic methods, where dmod is the seismic data
recorded at receivers on a medium represented by a set of model parameters m,
and f is the nonlinear forward operator, we can write

dmod = f (m) . (5.1)

Inversion problem is the process of estimating the model parameters from the
observed data dobs while ensuring a good fit between dobs and the data predicted by
the forward modeling dmod for a given model of the subsurface m.

The seismic inverse problem is complicated because seismic waves are nonlinearly
related to the unknown parameters of the medium. Furthermore, the existence of
data and theoretical uncertainties make it virtually impossible to have the predicted
data to be identical to the observed values. Thus, the forward problem is an
approximation, and the predicted model is a simplified representation of the real
system.

5.3.1 Inversion of non-linear problems

Several methods can be used to solve non-linear inverse problems. Usually, most
of them can be divided into two main categories which are the global methods and
the local methods. Global methods aim to search the model space to find the best
solution. They can solve strongly non-linear problems however the numbers of
parameters they can take into account is limited. The local methods are based
on using local information about the gradient of the objective function to improve
the initial model iteratively. Unlike the global methods, they can only be applied to
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solve weakly non-linear problems, but allow the use of a large number of parameters.
Consequently, its solution has a strong dependency on the choice of starting models
which is the case of the FWI. We will cover some of the local methods on the
subsequent section.

5.3.2 Local optimization methods

The seismic inversion aims to find a set of model parameters m, that provides
the best fit between the observed data dobs and the data predicted by the forward
problem for a given model of the subsurface dmod(m). So, to guarantee a good
predicted model it is important to evaluate the data misfit, which can be defined as

δd = dmod − dobs = f (m)− dobs , (5.2)

where δd is the data misfit vector of dimension N , and m is the model vector of
dimension M . With the data misfit in hands, it is necessary to choose good criteria
to fit the observed and predicted data. One of the most common criteria is to
minimize the objective function described by the vector norm of the misfit between
the predicted and observed data

E (m) =
1

2
δdT δd =

1

2

N
∑

i=1

δd2i , (5.3)

where E(m) is the objective function, and the superscript T denotes the matrix
transpose.

Since the non-linearity, in the case of the seismic inversion, between the data
and the model is weak, it is possible to linearize the inverse problem.

The most popular approach is the Born approximation, which consists in search-
ing the best fitting model m in the vicinity of the starting model m0 such that

m = m0 + δm , (5.4)

where δm is a perturbed model. It means that we consider our medium m as a
perturbation of a reference medium m0.

So, it is possible to use the first-order Taylor series expansion for the objective
function around the starting model to linearize the inverse problem

E (m0 + δm) = E(m) = E(m0) +
∂E(m0)

∂m
δm+O(m2) , (5.5)
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the residuals of higher orders, O(m2), are neglected. Thus, to minimize the objective
function E(m) its derivative needs to be equal to zero

∂E(m)

∂m
=

∂E(m0)

∂m
+

∂2E(m0)

∂m2
δm = 0 , (5.6)

which leads to

δm = −
[

∂2E(m0)

∂m2

]−1
∂E(m0)

∂m
, (5.7)

as the perturbation model.
From equation 5.3 it is possible to obtain the derivative of the objective function

concerning the model parameters which is given by

∂E(m0)

∂m
=

(

∂dmod(m0)

∂m

)T

(dmod(m0)− dobs) = JT
0 δd , (5.8)

where JT is the transpose of the Jacobian matrix J also called the Fréchet derivate
matrix, and the elements of the matrix can be written as

Jij =
∂dmod

∂mj
(i = 1, 2, . . . , N), (j = 1, 2, . . . ,M) . (5.9)

From equation 5.8 we can calculate the second derivative of the objective function
as

∂2E(m0)

∂m2
= H0 = JT

0 J0 +

(

∂J0

∂m

)T

δd , (5.10)

where H is the Hessian matrix of dimension M ×M . With equations 5.8 and 5.10
we can then rewrite equation 5.7 as

δm = −H−1
0 JT

0 δd . (5.11)

If equation 5.3 is not quadratic, the Newton method: will not converge in one
iteration. However, it is possible to use an iterative process, and the model update
at iteration n is given by

mn+1 = mn −H−1
n

(

∂E

∂m

)

n

. (5.12)

However, the Newton Method requires a high computing cost and is not used very
often. Commonly, the Gauss-Newton method: is used. This method applies an
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approximate Hessian matrix Ha for the updating model parameters

mn+1 = mn − (H−1
a )n

(

∂E

∂m

)

n

, (5.13)

where the approximate Hessian matrix is derived from equation 5.10 neglecting the
second term of the equation, which leads to

Ha = JTJ . (5.14)

The Gradient method: is another method that can be used to minimize the
objective function and can be expressed as

∂E

∂m
= JT δd . (5.15)

This method consists of using the negative gradient of the objective function which
will point toward a minimum of the function. Thus, the model is updated as

mn+1 = mn − µn

(

∂E

∂m

)

n

, (5.16)

where µ is the step length, which replaces the inverse of the Hessian in equation 5.12.
Although this method requires less computational effort than the Newton method,
it has a slow convergence rate and has a dependency on a reliable estimation for the
step length (Virieux and Operto, 2009).

5.4 Time domain full waveform inversion

In this work, we use an acoustic time-domain full-waveform inversion code
presented in Kurzmann (2012). This code was based on a general approach which
was used in previous works (Tarantola, 1984; Mora, 1987b) and the algorithm will
be presented in more details in Section 5.5.

The FWI aims to find a model for the subsurface while trying to minimize the
residuals between the predicted and observed data. The minimization is achieved
through the use of an iterative process using the gradient method. As we had seen
before, the gradient method does not require the calculating of the inverse Hessian
matrix, although it is still necessary to calculate the Fréchet derivative matrix J.
To calculate this partial derivative explicit, it is necessary a perturbation for each
model parameter separately, and to model the wavefield. So, for a single shot this
would require as much as forward modeling as the number of unknown parameters.
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Thus, to avoid the explicit calculation of the Fréchet matrix, the full waveform
inversion calculates the gradient of the objective function ∇Em using the adjoint
approach (Tarantola, 1984; Mora, 1987b; Plessix, 2006). This method uses the cross-
correlation of the forward propagated wavefield and the backpropagated residual
wavefield to calculate the gradient direction. The number of forward simulations
required by this method is drastically inferior to the gradient methods, requiring
only two times the number of shots of forward simulations. With that in mind,
it is easy to see that this is an essential feature for the implementation of the full
waveform inversion method.

5.4.1 The adjoint approach

As seen in previous sections, to solve the inverse problem, it is necessary to
linearize the initial non-linear forward problem in the vicinity of the background
model m0. So 5.1 can be rewritten as

dmod = f(m) = f(m0 + δm) , (5.17)

where δm is the perturbed model. As shown in equation 5.5, we can then
approximate f using the Taylor series expansion of first order which yields to the
expression

f(m0 + δm) = f(m) = f(m0) +
∂f(m0)

∂m
δm , (5.18)

here the O(m2) of equation 5.5 was omitted since it is neglected in the approxima-
tion. From the equation above, we can then define a small perturbation in the data
space δd derived from the small one of the model parameters δm as

δd = f(m0 + δm)− f(m0) . (5.19)

Substituting equation 5.18 into equation 5.19 gives

δd = f(m0) +
∂f(m0)

∂m
δm− f(m0) =

∂f(m0)

∂m
δm = J0δm (5.20)

From equation 5.20 it is possible to see that the data residuals δd has a linear
dependency with the model perturbation δm.

We can then rewrite equation 5.20 in the continuous form (Mora, 1987b) as

δd(D) =

∫

M

dM
∂d(D)

∂m
δm(M) , (5.21)
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where M and D indicate the model and the data space. So, if the Fréchet derivative
matrix is known it is possible to calculate small perturbations in the wavefield
resulting from a small perturbation in the model parameters. Analogously, equation
5.15 can also be written in the continuous form

∇Em(M) =

∫

D

dD

[

∂d(D)

∂m

]∗

δd(D) , (5.22)

where, the superscript (∗) denotes the adjoint of the operator ∂d(D)
∂m

.

5.4.2 The adjoint problem in the acoustic approximation

Now that we defined a relation to calculate the gradient of the objective function
from the data residuals, we can now apply the adjoint approach to the acoustic
approximation.

Therefore, the acoustic wave equation for a 2D inhomogeneous medium and a
variable density is given by

1

K(x, z)

∂2p(x, z, t)

∂t2
−∇ ·

(

1

ρ(x, z)
∇p(x, z, t)

)

= s(x, z, t) , (5.23)

where K = ρV 2
P is the bulk modulus, ρ is the density, VP is the P-wave velocity,

and s is the source term. The pressure data p for a given model m is defined as
di = f(m) = p(xr, t;xs) which is the pressure observed at the receiver locations xr

due to the source xs

s(x, t;xs) = δ(x− xs)S(t) , (5.24)

where δ(x) is the well-known Dirac delta function, and S(t) is the source time
function.

We can then apply this formulation for an acoustic wave in the equation 5.21
which gives

δdi(xr,xs, t) =

∫

V

dV (x)
∂di(xr,xs, t)

∂m(x)
δm(x) , (5.25)

which defines the perturbations of the pressure δdi corresponding to perturbations
in the model parameters δm. In the same way, we can express its adjoint problem
equation given in equation 5.22 in the continuous form as

∇Em(x) =
∑

s

∫

dt
∑

r

∂di(xr,xs, t)

∂m(x)
δdi(xr,xs, t) , (5.26)
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which describes the gradient of the objective function in terms of the Fréchet
derivative and the data residuals δdi. The integrals of booth equations above are
solved by using the Green’s function theory.

The wavefield p(x, t;xs) is defined as

p(x, t;xs) =

∫

V

dV G(x, t;xs, 0) ∗ s(x, t;xs) , (5.27)

where G(x, t;xs, 0) is the Green’s function associated with equation 5.23, and the
(∗) denotes the time convolution. It is possible to calculate the backpropagated
wavefield p

′

(x, t;xs) by propagating the data residuals backward in time, which
leads to

p
′

(x, t;xs) =
∑

r

G(x,−t;xr, 0) ∗ δdi(xr,xs, t) , (5.28)

where the residuals are backpropagated from all receiver locations that correspond
to a given source xs.

From equation 5.23 it is possible to see that the forward and adjoint problem are
parameterized to the bulk modulus, density, and source term. The entire derivation
of the acoustic approximation can be seen in Tarantola (1984). So, the final model
corrections for the bulk modulus K and density ρ can be calculated from the
following equations

δK(x) =
1

K2(x)
=

∑

s

∫

t

dt
∂p(x, t;xs)

∂t

∂p
′

(x, t;xs)

∂t
,

δρ(x) =
1

ρ2(x)

∑

s

∫

t

dt∇p(x, t;xs) · ∇p
′

(x, t;xs) , (5.29)

where p(x, t;xs) and p
′

(x, t;xs) are the pressure wavefield an the backpropagated
residual wavefield describe above.

5.5 Full waveform inversion algorithm

The inversion code used in this work is originated from the work of Kurzmann
(2012). Here we will present a brief overview of the algorithm for the full waveform
inversion for a 2D acoustic mean in the time-domain.
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5.5.1 Forward modeling

The acoustic wave equation can be expressed in the form of first-order partial
differential equations in the pressure-velocity formulation

∂p

∂t
= K∇w , (5.30)

∂w

∂t
=

1

ρ
∇ρ ,

where w the particle velocity, p is the pressure field, K is the bulk modulus, and ρ is
the density. These equations are also known as the continuity equation (conservation
of mass) and the conservation of momentum. So, we have

∂p(x, z, t)

∂t
= K(x, z)

(

∂wx(x, z, t)

∂x
+

∂wz(x, z, t)

∂z

)

,

∂wx(x, z, t)

∂t
=

1

ρ(x, z)

∂p(x, z, t)

∂x
,

∂wz(x, z, t)

∂t
=

1

ρ(x, z)

∂p(x, z, t)

∂z
. (5.31)

Thus, to solve the 2D acoustic wave equation given by equation 5.31, it was used a
second-order finite-difference approximation, a common technique in the numerical
modeling for seismic wave propagation. To, apply the finite difference method it is
necessary to discretize the space and time domain, which can be done as

x = i∆h i = (1, 2, . . . , Nx) ,

z = j∆h j = (1, 2, . . . , Nz) ,

t = k∆h k = (1, 2, . . . , Nt) , (5.32)

where ∆h is the grid spacing, Nx, Nz are the number of grid points in x and z

directions, and Nt is the total number of time steps.
To apply the discretization to the wave equation, it is necessary to substitute

the partial derivatives by the finite-difference operators, which leads to

∂wx(x, z, t)

∂t
≈

w
n+1/2
x|j,i+1/2 − w

n−1/2
x|j,i+1/2

∆t
=

1

ρj,i+1/2

pnj,i+1 − pnj,i
∆h

,

∂wz(x, z, t)

∂t
≈

w
n+1/2
z|j+1/2,i − w

n−1/2
z|j+1/2,i

∆t
=

1

ρj+1/2,i

pnj+1,i − pnj,i
∆h

,
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∂p(x, z, t)

∂t
≈

pn+1
j,i − pnj,i

∆t
= Kj,i

w
n+1/2
x|j,i+1/2 − w

n+1/2
x|j,i−1/2 + w

n+1/2
z|j+1/2,i − w

n+1/2
z|j−1/2,i

∆h
.

(5.33)

Initial and boundary conditions

To find the solution of a differential equation, it is necessary to specify the initial
and boundary conditions. Assuming a medium at rest before the application of the
excitation can be written as

p(x, z, t = 0) = ∂tp(x, z, t = 0) = 0 . (5.34)

As for the boundary conditions, two different types were used, the free surface

boundary and the absorbing boundary.
The free surface boundary can be modeled using the vacuum formalism (Zahrad-

ník et al., 1993; Bohlen and Saenger, 2006), which consist of considering the medium
above the free surface as a vacuum. Another way to implement the free surface is the
mirroring technique (Levander, 1988). However, this method has some differences in
the implementation for various forward modeling codes, which are due to the location
of the free surface on the standard staggered grid and leads to some discrepancies
in the modeling.

The absorbing boundary is used when it is needed to attenuate the unwanted
reflections from the computation edges of the model. Its approach is based on the
application of the complex coordinate stretching (Berenger, 1994; Chew and Weedon,
1994) and includes the perfectly matched layers (PML). Thus, the pressure wavefield
with the PML implementation requires additional equations to compute auxiliary
PML variables (Kurzmann, 2012).

Accuracy and stability

When accounting for numerical modeling one must concern about artifacts and
instabilities. Since we used a truncated Taylor series to approximate the spatial
derivatives, it is necessary to verify if the condition to avoid grid dispersion is
satisfied. So, the following expression must be satisfied

∆h ≤ λmin

n
=

VPmin

nfmax
, (5.35)

where fmax is the maximum frequency of the wavefield, and VPmin
is the minimum

P-wave velocity, n the number of grid points per minimum wavelength λmin.
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Furthermore, to guarantee the stability of the finite-difference modeling, it is
necessary to ensure that the sampling criteria is satisfied. Therefore, the following
expression must be satisfied

∆t ≤ ∆h√
2VPmax

, (5.36)

where vPmax
is the maximum P-wave velocity of the model. It is possible to see

that to ensure the stability of the method the time step ∆t must be less than the
propagation time between two neighboring grid points.

5.5.2 Inversion

Conjugate gradient method

It is possible to improve the convergence rate of the gradient method by using
the conjugate gradient (Mora, 1987b). In this method, the conjugate direction is
given by a linear combination of the previous and the current descent direction, thus

δcn = δmn + βnδcn−1 , (5.37)

where cn is the conjugate gradient, δmn is the steepest descent gradient, and β is
the scalar that ensures that δcn and δcn−1 are conjugate. The β factor is computed
through Polak-Ribiere method (Nocedal and Wright, 2006)

βPR
n =

δmT
n (δmn − δmn−1)

δmT
n−1

δmn−1 , (5.38)

moreover the β parameter is defined as

βn = max {βPR
n , 0} . (5.39)

Step length estimation

To guarantee the convergence of the method, it is necessary to use a good step
length. The estimation of an optimal step length µn can be made by following the
steps below.
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First, we have to define the test step lengths. So, we can assume three test step
lengths at iteration n as

µ1,n = sµinit,n ,

µ2,n = µinit,n ,

µ3,n =
µinit,n

s
, (5.40)

where s is the scaling factor. So, in this approach, it is required to define a test
step length at the first iteration, and for the subsequent iterations, n > 1, the best
optimal step length from the previous iteration becomes the initial for the next one.

After, we must update the current model using the cn and the test step length
we obtained such that we obtain three different model updates

mµ1,n = mn − µ1,nδcn , (5.41)

mµ2,n = mn − µ2,nδcn , (5.42)

mµ3,n = mn − µ3,nδcn . (5.43)

Then, the test forward simulations are performed to obtain the predicted data
for different model updates: dmod(µ1,n), dmod(µ2,n), dmod(µ3,n), and then we calculate
the corresponding objective function (misfit): E(mµ1,n), E(mµ2,n), E(mµ3,n).

After this, we must calculate the true misfit function by fitting a parabola
through the three points (µi,n, E(mµi,n)), where i ∈ {1, 2, 3}, which leads us to
the system

E(mµ1,n) = aµ2
1,n + bµ1,n + c , (5.44)

E(mµ2,n) = aµ2
2,n + bµ2,n + c , (5.45)

E(mµ3,n) = aµ2
3,n + bµ3,n + c , (5.46)

where a, b, c are the unknowns, and the minimum of the parabola defines the optimal
step length for the iteration n as

µn =
−b

2a
. (5.47)

In this approach, we are assuming that the data objective function has a parabolic
shape.
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Algorithm 5.1 FWI algorithm
1: procedure FWI(dobs,m0,S(0)) ⊲ Start by calculating the FWD
2: for n = ni until nf do
3: Calculate p(x, t,xs)
4: Calculate dmod,n

5: δdn = dmod,n − dobs

6: E(mn) =
1
2
δdT

nδdn

7: Calculate p′(x, t;xs) from δdn−1

8: δcn = δmn + βnδcn−1 for each δmn,s

9: end for
10: Calculate δm =

∑Ns

s=1 δmn,s

11: Apply P to the gradient pn = Pδmn

12: if n > 1 then calculate cn direction
13: end if
14: Estimate µn

15: mn+1 = mn − µnδcn
16: end procedure

Model update

The model update used in the code was based on the work of Pica et al. (1990).
However, an additional factor was used to scale the gradient to the maximum of the
model parameter. Then, we have

µnδcn = µn
max(mn)

max(cn)
cn , (5.48)

from this expression, it is possible to see that the gradient of each model parameter
is normalized to its maximum value and the optimal step length is related to the
maximum of the actual model. A detailed description can be found in Kurzmann
et al. (2009) and Kurzmann (2012).

5.6 FWI algorithm

The full waveform inversion algorithm requires some external input to start.
These inputs are the observed pressure data dobs, the starting model m0 and an
initial source time function. Given these inputs, the code can start the process. For
each iteration n, the acoustic FWI will start by solving the forward problem given in
equation 5.23 for the current model mn to generate the pressure wavefield p(x, t,xs)

and the predicted data for the nth iteration dmod,n. Then, the data residuals given
by δdn = dmod,n − dobs are calculated as well as the objective function (misfit)
E(mn) =

1
2
δdT

nδdn. The next step is to calculate the residual wavefield p
′

(x, t;xs)
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by backpropagating the data residuals obtained in the previous step from the receiver
positions. After this, the code calculates the gradient for each material parameter
δmn,s. The steps above are done for each of the source located at xs. For all sources,
it will calculate the sum of the gradient over all shots δm =

∑Ns

s=1 δmn,s. Then, the
preconditioning operator P is applied to the gradient pn = Pδmn. If n > 1 the
conjugate gradient direction cn must be calculated. Lastly, the code will estimate
the step length µn by a parabolic fit and use it to update the model parameters
mn+1 = mn − µnδcn. The Algorithm 5.1 summarizes the procedure.

5.7 FWI requirements

The FWI is based on a local optimization method; thus, we are looking for
a solution that is only locally optimal and has no guarantee that we found the
global minimum of the objective function. This implies in need of a good starting
model for the method to succeed since a good starting model should be enough
to guarantee that the algorithm will converge to the global minimum. That being
said, a good starting model can be acquired by verifying if the data generated
by the starting model correspond to the observed data within half a cycle of the
minimum considered frequency (Sun and McMechan, 1992). If the traveltime does
not respect this, a cycle-skipping will occur, which will result in the inversion fitting
the calculated data to the wrong cycle of the observed data as shown in Figure 5.2
making it converge to a local minimum.

Given that, it would be useful to express a relation of the convergence regarding
the travel time error δt and the propagation distances. Thus, for a given seismic
event the following expression must be satisfied

δt

T
<

λ

2cT
or

δt

T
<

1

2Nλ
, (5.49)

where T is the total arrival time of the event, Nλ is the propagation distance in
wavelengths, and c is the background velocity. This strict condition can be relaxed
if the number of wavelengths Nλ between the source and receiver is reduced.

Knowing that we can see that there are three different ways to reduce the travel
time error δt to improve the convergence: Improving the accuracy of the starting
model, reducing the data offsets and using lower starting frequencies. However, due
to the absence of very low frequencies in real data, this step has limited use. As
shown by Sirgue (2003), the use of long offset data is useful, because the information
they provide on the low wavenumber. This means that it is possible to obtain a
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better estimation of the velocity, but on the other hand, it increases the risk of
cycle-skipping.

Therefore, the minimum frequency present in the data will determine the
requirement for the starting model of the FWI. If low frequencies are absent, the
starting model needs to have higher accuracy and must include the long-wavelength
structures. The initial model for the FWI can be obtained in some different ways.
Here we will describe some of these methods.

The first-arrival traveltime tomography (FATT) is a standard method to estimate
the starting model (see, e.g., Pratt, 1999; Dessa, 2004; Ravaut et al., 2004; Brenders
and Pratt, 2007; Malinowski and Operto, 2008; Bleibinhaus et al., 2009). The image
supplied by this method is robust but has a low-resolution (Pratt, 1999). The
spatial resolution of FATT is limited to the width of the first Fresnel zone, which
is approximately given by

√
λL, where λ is the dominant wavelength, and L is the

propagation distance.
Another method used to obtain the initial model is the reflection traveltime

tomography (RTT). This method implies in using the reflection traveltimes to build
the velocity model. The resolution it provides is higher than the one from the FATT
method; however, the fit between the direct arrivals of the predicted and observed
data may be insufficient to allow the use of the FWI (Prieux et al., 2012).

Also, the stereotomography can be used to in the generation of the starting
model. Here the initial velocity model is obtained from the inversion of traveltimes
and slops of locally-coherent events in the prestack data. This method has the
advantage of being a semi-automatic picking procedure, which is more comfortable
than picking continuous events.

Lastly, we have the Laplace domain inversion, which considers the waveform
in the Laplace domain as a zero frequency component for a damped wavefield in
the time domain (Shin and Cha, 2008, 2009). The main advantage of this method
is that it is capable of recovering a smooth, long-wavelength starting model from
data that lacks low-frequency components. However, it has the disadvantage of the
penetration depth being limited by the maximum offset of the data and on the choice
of the Laplace domain constants.

5.8 Multi-scale inversion strategy

5.8.1 Selection of frequency bands

The contribution to the gradient image of a single source-receiver pair has only
a single wavenumber component, given by k0(ŝ + r̂). For a 1D earth, the incident
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Figure 5.2: Schematic of cycle-skipping artifacts in FWI. Original image extracted
from Przebindowska (2013) after Virieux and Operto (2009).

and scattering angles are symmetric, and can be expressed as

k0ŝ = (k0 sin θ, k0 cos θ) ,

k0r̂ = (−k0 sin θ, k0 cos θ) , (5.50)

where the angles θ and −θ are the propagation directions of the source and receiver
wave vectors, concerning the vertical axis. Then, we have

cos θ =
z√

h2 + z2
,

sin θ =
h√

h2 + z2
, (5.51)

where h is the half-offset and z is the depth of the scattering layer. Substituting
5.50 into equation 5.51, we obtain

kx = 0 ,

kz = 2k0α , (5.52)

which are the components of the vector k0(ŝ+ r̂). With

αmin = cos θ =
1

√

1 +R2
max

, (5.53)
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Figure 5.3: Frequency discretization strategy (after Sirgue and Pratt, 2004).

where R = h/z is the half offset-to-depth ratio. We can then use the equations
5.52 and 5.53 to obtain the wavenumber coverage for a given offset. Considering
a surface seismic acquisition with an offset range of [0, xmax], we can estimate that
the vertical wavenumber coverage kz for a given frequency is limited to the range
[kzmin, kzmax], where

kzmin = 2k0αmin ,

kzmax = 2k0 , (5.54)

with
αmin =

1
√

1 +R2
max

, (5.55)

where Rmax = hmax/z is the half offset-to-depth ratio at the maximum half-offset
hmax, and z is the depth of the target layer. Thus, it is possible to rewrite the
equation 5.54 regarding the frequency f as

kzmin = 4πfαmin/c0 ,

kzmax = 4πf/c0 , (5.56)

where f is given in hertz and c0 is the velocity in the background medium. With the
expression above it is possible to define the wavenumber coverage of a multi-offset
acquisition as

∆kz ≡ |kzmax − kzmin| = 4π (1− αmin) f/c0 , (5.57)
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while the bandwidth
kzmax

kzmin
=

1

αmin
=

√

1 +R2
max . (5.58)

So, we can see that the wavenumber coverage has a linear dependency on frequency,
while the bandwidth is a function of the offset-to-depth ratio.

The strategy to choose frequencies is defined in a way that each frequency has
a limited, finite-band contribution to the image spectrum. In order to recover
the target accurately over a broad range of wavenumbers, the continuity of the
coverage of the object in the wavenumber domain must be preserved as the imaging
frequencies are selected. We choose

kzmin(fn+1) = kzmax(fn) , (5.59)

where fn+1 is the next frequency to be chosen following the frequency fn. In
other words, the maximum wavenumber of the smaller frequency must be equal the
minimum wavenumber of the larger frequency (Figure 5.3). With the expressions
5.59 and 5.56 in hands, we obtain the following relation

fn+1 =
fn

αmin

, (5.60)

which lead us to a discretization law where the frequency increment ∆fn+1 is given
by

∆fn+1 = fn+1 − fn =

(

1− αmin

αmin

)

fn = (1− αmin) fn+1 . (5.61)

The equation above shows that the optimum-frequency increment is not constant
and has a linear dependency on frequency. This is an interesting result as the
commonly used frequency-domain sampling theorem sets the frequency increment
to be constant and equal to

∆fst =
2

Tmax

, (5.62)

where Tmax is the maximum recorded time.

5.9 Methodology

The attentive reader may observe that the flowchart (Figure 1.1) depicted in
the Chapter 1 — the focus of this thesis — points out the main stages which
constitutes the processing workflow itself, but it does not address (compel) which
technique should be used in each of them. For example, the first workflow step “Time
migration-velocity-analysis” could consider the MVA by image-wave propagation of
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Seismic data

Double multipath time migration-
velocity analysis (Chapter 2)

Time-to-depth conversion
by image-wavefront

propagation (Chapter 4)

Acoustic full-waveform
inversion (Chapter 5)

End of process

Figure 5.4: Velocity model building flowchart. In addition to the flowchart depicted
in Figure 1.1, here we mention the methods used in numerical experiments.

CIGs, or MVA by double multi-stack migration (Chapter 2), or MVA using the
remigration trajectories (Chapter 3), or even for any of the techniques we have
revisited in Chapters 2 and 3. The same could apply to the second step of the
workflow “Time-to-depth conversion” and the strategies discussed in Chapter 4.
In this section, we provide a more in-depth description of the workflow for the
construction of initial velocity-models for FWT methods. Our workflow (Figure 5.4)
for initial-velocity model building and FWT is built upon the following techniques.

5.9.1 Step 1: MVA by double multi-stack migration

The workflow starts with the double multipath time migration-velocity analysis
of Schleicher and Costa (2009) detailed in Chapter 2. This MVA technique is
based on the multipath-summation imaging process of Landa et al. (2006). The
fundamental idea of the latter is to stack the migration results for “all possible”
velocities, or at least as many models as practically reasonable. Since only “good”
models yield flat events in common-image gathers, these will prevail in the overall
stacked image, which thus will show the geologic structure without the need for
a migration-velocity model. A weighted double stack allows to determine the
associated velocity values. Below, we will refer to this technique as multi-stack
migration.
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5.9.2 Step 2: Time-to-depth conversion

With this procedure (Section 5.9.1), we can automatically construct a time-
migration velocity model. However, FWI requires an initial model in depth (Sec-
tion 5.7). Therefore, we need to convert the multi-stack model to depth. For
this objective, we chose the time-to-depth conversion of Valente (2013). First
performance tests of that conversion procedure were reported by Valente et al.
(2014).

The time-to-depth conversion of Valente (2013) is based on the algorithm of the
level-set method. It pursues the construction of wavefronts instead of individual
image rays. This strategy has the advantage of directly obtaining the velocity
field v(x) and the traveltime τ(x), avoiding to calculate the auxiliary functions
p(x) and q(x) like in concurrent schemes (Cameron et al., 2007, 2008; Iversen and
Tygel, 2008). By means of a modified fast-marching conversion algorithm, it directly
determines the matrix γ(x) of image-ray emergence points from the already known
values of v(x) and τ(x). For further details, please see Chapter 4.

5.9.3 Step 3: Acoustic full waveform tomography

Parallelize or perish

To test whether the so-obtained depth model has sufficient quality for FWI,
we used a modified version of the 2D acoustic time-domain FWT code initially
implemented by Kurzmann (2012) and Kurzmann et al. (2013). Here, we briefly
summarize the underlying concepts already detailed in Sections 5.3 to 5.5. For
those readers interested in the program used, we have included a brief description
of the software named PROTEUS in Appendix B.2.

Forward modeling. The FWT implementation of Kurzmann et al. (2013) solves
the homogeneous acoustic wave equation in the time domain by means of a time-
domain finite-difference time-stepping method (Alford et al., 1974) with perfectly
matched layer (PML) boundary condition (Berenger, 1994) and massive paral-
lelization comprising domain decomposition (Bohlen, 2002) and shot parallelization
(Kurzmann et al., 2009). Since most of the computational efforts of time-domain
FWT account for seismic modeling — caused by the FD modeling (Section 5.5)
—, the distribution of shots on different computers provides a reduction of network
traffic and consequently a speedup of the inversion algorithm. Figure 5.5 represents
the domain decomposition on a cluster computer which consists of two quad-
core computers (nodes). It provides a fast computation of the wavefields but
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requires a high rate of data exchanges which slows down the entire computation
when the network capacity is exceeded. On the other hand, the combination of
domain decomposition and shot parallelization (Figure 5.6) provide computational
improvements. The drawback is the huge memory consumption which would need
the use of HPCs. In Appendix B.1, we present a list of all the computers used for
the experiments.

Inversion. The objective of the code is the reconstruction of an acoustic velocity
model. For simplicity, the density is considered constant and not a subject of the
inversion. The solution of the inverse problem is based on the time-domain FWT
of Tarantola (1984) and Mora (1987a). It comprises the adjoint method and the
conjugate gradient method using a least-squares misfit function. For further details,
please refer to Sections 5.4 and 5.5, and Kurzmann et al. (2013).

5.10 Numerical experiment I - proof of concepts

To test our initial-model construction, we apply it to one modified version of the
original 2D Marmousi-2 model, namely Experiment I. For comparison and for the
sake of completeness, in Appendix F we present the original vp, vs, and ρ of the
Marmousi-2 model created by Martin et al. (2002) based on Versteeg (1994).

5.10.1 Model description and acquisition geometry

We modified a section of the Marmousi-2 model (Figure 5.7) based on Versteeg
(1994) and Martin et al. (2002). The velocities are clipped to the range of 1500m/s

to 4000m/s to reduce computational efforts. The acquisition geometry simulates
a marine streamer geometry with length of 5980m, consisting of 187 shots and
a maximum number of 300 receivers per source. Receiver spacing as 20m and
the nearest offset was 45m. The source time function is a Ricker wavelet with
peak frequency fpeak = 9Hz represented by the blue line in Figure 5.8. The model
size is 3 km× 10 km which, using a grid spacing of 5m, resulting in a grid size of
600× 2000 grid points. We set a PML of 150m width to avoid artificial boundary
reflections in finite-difference modeling. The recording time of the seismic data
was 5.6 s with a time discretization of 7× 10−4 s. We chose these parameters to
make the conditions for the FWT nearly ideal (please, see the comments of initial
and boundary conditions and accuracy and stability in Section 5.5). Table 5.1
summarizes the general setup for the modeling, acquisition, and inversion for the
Experiment I.
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Figure 5.5: Computation of one shot using the domain decomposition, assuming we
are using a cluster computer which consists of 2 nodes with 4 cores per node. The
model is divided into 8 subdomains (yellow). The corresponding padding layers are
colored in red. The exchange of the wavefield requires core communication and node
communication(arrows) which is done by MPI (after Kurzmann, 2012).
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Figure 5.6: Computational of two shots using the shot parallelization on a cluster
computer. Assuming the same computer architecture of Figure 5.5, we can compute
each shot in one node, and use the domain decomposition internally for each node
dividing the shot in 4 subdomains. The exchange of the wavefield at the model
boundaries is then reduced to intra-node communication done with MPI (after
Kurzmann, 2012).

5.10.2 Initial velocity models

To decrease the computational time for the migration velocity analysis, and to
work under more realistic conditions, we resampled the seismic data to 4ms and
windowed the offsets processing only half of them. From these data we extracted
a time-migration velocity model using the double multi-stack MVA with velocities
between 1400m/s and 4200m/s at every 100m/s. Based on the results presented
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in Chapter 2 and on the discussion in Appendix E, a B-spline interpolation with
strong regularization Appendix C was used to construct a smoothed velocity model.
The resulting model is depicted in Figure 5.10. It is important to note that the
time-migration velocity model is less then perfect for a subsequent time migration
(see Figure 5.11). This is to be expected because the central region of the Marmousi
model has to strong lateral variations for a time migration to work.

We then converted the velocity model to depth using image-ray wavefronts as
described above. To avoid the presence of possible artifacts created during the
conversion step, we smoothed the depth-domain velocity model by one pass of a
moving average with a 500m× 500m (100 by 100 points) window. The so-obtained
model is depicted in Figure 5.12d.

For our evaluation, we compare the results of FWT with different initial velocity
models. Figure 5.12a depicts a smooth initial velocity model, generated by applica-
tion of a 2D Gaussian filter (size 1250m× 1250m, σ=51) to the sub-seafloor area of
the true velocity model (Figure 5.7). This is the same P-wave velocity model used
by Kurzmann et al. (2013) in their sensitivity analysis of attenuation. Our other
FWT tests used a constant velocity of 3 km/s (Figure 5.12b) or a constant gradient
below the see floor which ranges from 1.6 km/s on the upper part to 4 km/s on the
bottom (Figure 5.12c).

5.10.3 Practical aspects and inversion workflow

As Kurzmann et al. (2013), we have considered 32 shots to perform the inversion
(Figure 5.9b). Also, we set up a specific workflow, summarized in Table 5.2. The first
column of the table shows how many steps the FWI workflow has. In other words,
the first column is the number of rows that the table has. The second column of the
table presents the number of iterations a row of the input file should be applied to.
In case of using a stop criterion, this number is the minimum number of iterations
per input line. The third column gives the threshold value — relative change of the
misfit over three iterations (Sections 5.5 and 5.6) — used to switch to the next line
automatically. Two conditions have to be fulfilled: (1) the number of iterations in
the second column has to be completed and (2) the stop criterion in column three.
Column four shows the total time (or the time-window if minimum and maximum
values are specified) which will be taken into account. Similarly, column five shows
offset-windowing. Finally, column six show the frequencies numbers to be considered
to apply the time-domain filtering. This workflow is one of many possible approaches
when we plan a multi-scale inversion strategy (Section 5.8). Different strategies will
be explored in the future (Section 5.11).
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All modeling and inversion tests showed here were performed with a 2D acoustic
FWI tool developed by Kurzmann et al. (2013) (Section 5.9.3). The parallelization
process is based on domain decomposition where the model is decomposed in
subgrids (e.g., Bohlen, 2002) (Figure 5.5). Moreover, the acoustic code has a shot
parallelization implemented (Figure 5.6). The distribution of shots on different
computers provides a reduction of network traffic and consequently a speedup of
inversion algorithm (Kurzmann et al., 2009).

5.10.4 FWT results

We then executed the FWT code on the original undecimated (i.e., almost ideal)
data using the starting models of Figure 5.12. For better evaluation, we saved
intermediate FWT processing results after 100 and 200 iterations of the inversion
process. Figures 5.13 and 5.14 depict the recovered velocity models and their
differences to the true one after 100 iterations, and Figures 5.15 and 5.16 show
the corresponding results after 200 iterations. The final inverted models, after the
FWT code reached convergence at the end of the workflow (Table 5.2), are shown
in Figure 5.17 and their differences to the true one in Figure 5.18.

We see that the results using the depth-converted multi-stack model are compa-
rable in quality to the ones obtained with the smoothed model or the true vertical
gradient and clearly superior to the ones obtained with the constant starting model.
Except for the boundary region, where the data are insufficient, the model inverted
when starting at the converted time model is, at some places, even superior to the
one obtained from the true vertical gradient and reaches the same quality as the one
obtained from the smoothed model (compare difference images in Figure 5.18).
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Table 5.1: Experiment I. General setup for the modeling, acquisition, and
inversion for the modified version of the Marmousi-2 model.

Attributes Experiment I

Model

Figure 5.7
Size (lateral x depth) 10 km x 3 km
Average Vp 2479.3 m/s
Minimum Vp 1500 m/s
Maximum Vp 4000 m/s
Water layer thickness 460 m
Density (constant) 2260 kg/m3

Acquisition
geometry

Location on top of half-space, sea surface
Configuration marine reflection geometry
Number of shots 187
Shot spacing 20 m
Shot depth 5 m
Max. no. of hydrophones 300 (in a streamer)
Hydrophone spacing 20 m
Hydrophone depth 5 m
Minimum offset 45 m
Maximum offset 5980 m

Modeling
parameters

Grid size 2000 x 600
Grid spacing 5 m
Time sampling 7e-4 s
Number of time samples 8000
Recording time 5.6 s
Source wavelet Ricker
Peak frequency 9 Hz
Time delay 0.45 s
PML boundary 150 m (free surface)

General
inversion
parameters

Initial models Figure 5.12

Preconditioning
wave-field based
user-defined: water layer is known

Model update hard constraint: Vp limit [1500, 4000] m/s
max. deviation from the initial model: 50%

Table 5.2: Time-domain FWI workflow.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 15 0.005 5.6 45 - 5980 0.5 - 4
2 15 0.005 5.6 45 - 5980 1 - 6
3 15 0.005 5.6 45 - 5980 3 - 9
4 15 0.005 5.6 45 - 5980 5 - 15
5 200 0.005 5.6 45 - 5980 full content
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Figure 5.7: True velocity of the modified Marmousi-2 model.
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Figure 5.8: Ricker source wavelet and its spectrum. Original Ricker wavelet
waveform with the central frequency of 9Hz (blue line) and the wavelet after
applying the band-pass filter with a cut-off frequency of 5Hz (orange line). (a)
Time domain representation, (b) amplitude spectrum.
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Figure 5.9: Marine streamer acquisition geometry with a maximum number of 300
hydrophones per receiver line: (a) 25m shot spacing (373 shots), (b) 300m shot
spacing (32 shots). Red stars denote shot location and points represent hydrophones.
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Figure 5.10: Time-migration velocity model obtained by the multi-stack MVA with
strong regularization.
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with strong regularization.
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Figure 5.12: Initial models: (a) smoothed version obtained after low-pass filtering
of the true model (Figure 5.7); (b) homogeneous velocity model (v = 3km/s); (c)
constant vertical gradient; (d) velocity model obtained by the double multi-stack
MVA converted from time-to-depth using the image-wavefront propagation.
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Figure 5.13: (a) to (d) show the recovered velocity models after 100 iterations for
the acoustic FWI starting with the velocity model in Figure 5.12.
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Figure 5.14: (a) to (d) show the difference of the results in Figure 5.13 with respect
to the true model in Figure 5.7.
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Figure 5.15: (a) to (d) show the recovered velocity models after 200 iterations for
the acoustic FWI starting with the velocity model in Figure 5.12.
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Figure 5.16: (a) to (d) show the difference of the results in Figure 5.15 with respect
to the true model in Figure 5.7.
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c) 330 iterations (38485 seconds)
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d) 329 iterations (36081 seconds)
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Figure 5.17: (a) to (d) show the recovered velocity models when they complete
the inversion workflow for the acoustic FWI starting with the velocity model in
Figure 5.12. The individual amount of required iterations differs from each other.
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Figure 5.18: (a) to (d) show the difference of the results in Figure 5.17 with respect
to the true model in Figure 5.7.
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5.11 Numerical experiment II

5.11.1 Model description and acquisition geometry

Encouraged by the numerical results on Experiment I (Section 5.10), we set
out for a more realistic test, namely Experiment II. Here, the data was modeled
and preprocessed similarly to the previous experiment, using the modified version
of the Marmousi-2 model (Figure 5.7). To clarify the differences between the two
tests, Table 5.3 summarizes the general setup for the modeling, acquisition, and
inversion for Experiment II. In the modeling, the main differences between the two
experiments are in the number of shots and the frequency content of the source
wavelet. The acquisition geometry simulates a marine streamer geometry with the
length of 5980m, consisting of 373 shots and a maximum number of 300 receivers
per source (Figure 5.9a). Receiver spacing as 20m and the nearest offset was 45m.
The source time function is a Ricker wavelet waveform with the peak frequency
of fpeak = 9Hz. It is known that seismic data are generally missing information
below 5Hz. To simulate the actual situation, we applied a band-pass filter with
a cut-off frequency of 5Hz (the corner frequencies of the band-pass filtering were
5Hz, 7Hz, 20Hz, and 25Hz; and on both ends, no taper was applied). The orange
line in Figure 5.8 represents the filtered waveform and its spectrum. The purpose
of using this wavelet is to eliminate unrealistic low frequencies in the data. From
Figure 5.8, we can see that the filtering step produced “fake peaks” in the waveform
(compare the orange line with the blue one), which contributes to the nonlinearity
of the inversion.

5.11.2 Initial velocity models

We then contaminate those data with white random noise at a level of 30% of the
maximum amplitude. To decrease the computational time for the migration velocity
analysis, and to work under more realistic conditions, we resampled the seismic data
to 4ms and limited the maximum of time in 3.6 s. From these data, we extracted
a time-migration velocity model using the double multi-stack MVA with velocities
between 1400m/s and 2500m/s at every 25m/s. B-spline interpolation with strong
regularization Appendix C was used to construct a smoothed velocity model. We
then converted the velocity model to depth using image-ray wavefronts, smoothed it
by 100 passes of a moving average with a 50m× 50m (10 by 10 points) window, and
fixed the water layer (1500m/s). Figure 5.19d shows the resulting velocity model
that is quite similar to a constant vertical gradient.
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For our evaluation, we compare the results of FWT with different initial velocity
models previously described in Section 5.10.2 and shown once again in Figures 5.19a
to 5.19c to facilitate the comparison of the images.

5.11.3 Inversion tests

It is known that low-frequency information is vital for making the FWT more
stable and for recovering the macrostructure of velocity models, as well as, the
quality of the initial velocity model used in the inversion is imperative to decrease
computation time. It is also known that FWT can benefit depending on the strategy
chosen to carry it out (Section 5.8). The previous experiment (Section 5.10) has
shown us that, at least under almost ideal conditions, our approach can provide an
initial velocity model which is sufficient to perform the inversion. Here, the primary
objective is to evaluate if our method can reconstruct the low frequency for seismic
data without energy below 5Hz.

We have proceeded in a similar way to that of Experiment I, therefore, the
reader is referred to Section 5.10.3 for similar comments concerning the practical
aspects of the FWT application. We have considered 32 shots to perform the FWT
(Figure 5.9b). Because inversion is an expensive procedure, we started with a one-
step workflow which limits the maximum number of iterations in the FWT to 100
(Tests 1 and 2 and Table 5.4). To evaluate our velocity model building workflow
more deeply, we perform different inversion tests that are decomposed into multiple
stages to reduce the non-linearity of the inverse problem and to mitigate the cycle-
skipping phenomenon. Tables 5.4 to 5.8 summarizes all these tests.

We can subdivide our tests according to the source signature applied and the
maximum offset of the data to be considered in the inversion. In Tests 1 and 3,
the source signature is a Ricker wavelet with a central frequency of 9Hz (blue line
in Figure 5.8), and no frequency filtering is applied. Tests 2 and 4 to 7, however,
consider a band-passed Ricker wavelet waveform with the central frequency of 9Hz
with a cut-off frequency of 5Hz (orange line in Figure 5.8). Tests 1 to 4 and 7 use
the full-offset of the data while in Tests 5 and 6 an offset windowing limited the
maximum offset to 3 km, approximately the half of the full-offset.

We then executed the FWT code on the data using the starting models of Fig-
ure 5.19. Figure 5.20 to 5.33 depict the final inverted models and their corresponding
differences to the true one (Figure 5.7) obtained from Test 1 to Test 7 respectively
and detailed in the following.
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Test 1 considers the original Ricker wavelet waveform with the central frequency
of 9Hz (blue line in Figure 5.8), the maximum number of iterations is 100, the
threshold value is 0.005, and no filtering or windowing is applied. Figures 5.20
and 5.21 depict the recovered velocity models and their differences to the true
one (Figure 5.7) after the FWT code reached convergence at the end of the
workflow (Table 5.4).

Test 2 considers a band-passed Ricker wavelet waveform with the central frequency
of 9Hz with a cut-off frequency of 5Hz (orange line in Figure 5.8), the
maximum number of iterations is 100, the threshold value is 0.005, and no
filtering or windowing is applied Figures 5.22 and 5.23 depict the recovered
velocity models and their differences to the true one (Figure 5.7) after the
FWT code reached convergence at the end of the workflow (Table 5.4).

Test 3 considers the original Ricker wavelet waveform with the central frequency
of 9Hz (blue line in Figure 5.8), and no filtering or windowing is applied.
Figures 5.24 and 5.25 depict the recovered velocity models and their differences
to the true one (Figure 5.7) after the FWT code reached convergence at the
end of the workflow (Table 5.5). It is the same workflow used in Experiment I.

Test 4 considers a band-passed Ricker wavelet waveform with the central frequency
of 9Hz with a cut-off frequency of 5Hz (orange line in Figure 5.8). Figures 5.26
and 5.27 depict the recovered velocity models and their differences to the true
one (Figure 5.7) after the FWT code reached convergence at the end of the
workflow (Table 5.5). It is the same workflow used in Experiment I.

Test 5 considers a band-passed Ricker wavelet waveform with the central frequency
of 9Hz with a cut-off frequency of 5Hz (orange line in Figure 5.8), with a
maximum offset of 3 km (approximately the half of the full-offset). Figures 5.28
and 5.29 depict the recovered velocity models and their differences to the true
one (Figure 5.7) after the FWT code reached convergence at the end of the
workflow (Table 5.6).

Test 6 considers a band-passed Ricker wavelet waveform with the central frequency
of 9Hz with a cut-off frequency of 5Hz (orange line in Figure 5.8), with a
maximum offset of 3 km (approximately the half of the full-offset). Figures 5.30
and 5.31 depict the recovered velocity models and their differences to the true
one (Figure 5.7) after the FWT code reached convergence at the end of the
workflow (Table 5.7).
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Test 7 considers a band-passed Ricker wavelet waveform with the central frequency
of 9Hz with a cut-off frequency of 5Hz (orange line in Figure 5.8), Figures 5.32
and 5.33 depict the recovered velocity models and their differences to the true
one (Figure 5.7) after the FWT code reached convergence at the end of the
workflow (Table 5.8).

While in Experiment I all the initial velocity models were able to recover
the desired vp model, in Experiment II only the smoothed model (Figure 5.19a)
produced satisfactory results for all tests. As expected, the constant starting model
(Figure 5.19b) is unable to invert vp. Test 3 is an exception because it allows the
low-frequency information in data, source signature, and in the frequency-filtering
band, therefore is an ideal scenario (similar to FWT of Experiment I).

Numerous possibilities of workflow schemes can be considered. In Tests 6 and 7,
we apply the multi-scale approaches shown in Tables 5.7 and 5.8 in order to reduce
the non-linearity of the inverse problem, and through comparison, illustrate the
effect of the starting frequency band. The maximum frequency for each frequency
band was calculated using equation 5.60 (please, see Section 5.8). The depth to the
target (z = 3000m) is the maximum depth of the model and the maximum half-offset
hmax = 3012.5m, which results in αmin ≈ 0.70. The frequency bands are applied
sequentially with the following maximum frequencies fpeak = (5.0, 7.1, 10.0)Hz in
Test 6, and fpeak = (3.0, 4.3, 6.0, 8.5)Hz in Test 7. By application of low-pass filters,
the inversion is performed moving from low to high frequencies. Moreover, the peak
frequencies of low-pass-filtered data are not equidistantly spaced, as suggested by
Sirgue and Pratt (2004).

Although still inferior, we see that the results using the depth-converted multi-
stack model (Figure 5.19d) are comparable in quality to the ones obtained with the
true vertical gradient (Figure 5.19c). Both models seem to benefit on the multi-scale
inversion strategy, mitigating the ambiguity of the inverse problem especially by
taking advantage of the frequency-filtering method within the scope of the workflow
implementation.
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Table 5.3: Experiment II. General setup for the modeling, acquisition, and
inversion for the modified version of the Marmousi-2 model.

Attributes Experiment II

Model

Figure 5.7
Size (lateral x depth) 10 km x 3 km
Average Vp 2479.3 m/s
Minimum Vp 1500 m/s
Maximum Vp 4000 m/s
Water layer thickness 460 m
Density (constant) 2260 kg/m3

Acquisition
geometry

Location on top of half-space, sea surface
Configuration marine reflection geometry
Number of shots 373
Shot spacing 25 m
Shot depth 5 m
Max. no. of hydrophones 300 (in a streamer)
Hydrophone spacing 20 m
Hydrophone depth 5 m
Minimum offset 45 m
Maximum offset 5980 m

Modeling
parameters

Grid size 2000 x 600
Grid spacing 5 m
Time sampling 7e-4 s
Number of time samples 8000
Recording time 5.6 s
Source wavelet Ricker
Peak frequency 9 Hz
Time delay 0.45 s
PML boundary 150 m (free surface)

General
inversion
parameters

Initial models Figure 5.12

Preconditioning wave-field based
user-defined: water layer is known

Model update hard constraint: Vp limit [1500, 4000] m/s
max. deviation from the initial model: 50%
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Table 5.4: Time-domain FWI workflow of Tests 1 and 2.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 100 0.0050 5.6 45 - 5980 full content

Table 5.5: Time-domain FWI workflow of Tests 3 and 4.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 15 0.005 5.6 45 - 5980 0.5 - 4
2 15 0.005 5.6 45 - 5980 1 - 6
3 15 0.005 5.6 45 - 5980 3 - 9
4 15 0.005 5.6 45 - 5980 5 - 15
5 200 0.005 5.6 45 - 5980 full content

Table 5.6: Time-domain FWI workflow of Test 5.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 15 0.005 5.6 45 - 3000 0.5 - 4
2 15 0.005 5.6 45 - 3000 1 - 6
3 15 0.005 5.6 45 - 3000 3 - 9
4 15 0.005 5.6 45 - 3000 5 - 15
5 200 0.005 5.6 45 - 3000 full content

Table 5.7: Time-domain FWI workflow of Test 6.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 15 0.005 5.6 45 - 3000 5 - 11
2 15 0.005 5.6 45 - 3000 7.1 - 15
3 15 0.005 5.6 45 - 3000 10 - 20
4 200 0.005 5.6 45 - 3000 full content

Table 5.8: Time-domain FWI workflow of Test 7.

# Iterations Threshold Time (s) Offset (m) Frequency (Hz)

1 15 0.005 5.6 45 - 5980 3 - 7
2 15 0.005 5.6 45 - 5980 4.3 - 9.5
3 15 0.005 5.6 45 - 5980 6 - 13
4 15 0.005 5.6 45 - 5980 8.5 - 18
5 200 0.005 5.6 45 - 5980 full content
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Figure 5.19: Initial models: (a) smoothed version obtained after low-pass filtering
of the true model (Figure 5.7); (b) homogeneous velocity model (v = 3km/s); (c)
constant vertical gradient; (d) velocity model obtained by the double multi-stack
MVA converted from time-to-depth using the image-wavefront propagation.
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Figure 5.20: Test 1. Recovered velocity models from the initial models in Figure 5.19.



214

a)

0 1 2 3 4 5 6 7 8 9

Distance (km)

0

0.5

1

1.5

2

2.5

D
e

p
th

 (
k

m
)

-1

-0.5

0

0.5

1

km/s

b)

0 1 2 3 4 5 6 7 8 9

Distance (km)

0

0.5

1

1.5

2

2.5

D
e

p
th

 (
k

m
)

-1

-0.5

0

0.5

1

km/s

c)

0 1 2 3 4 5 6 7 8 9

Distance (km)

0

0.5

1

1.5

2

2.5

D
e

p
th

 (
k

m
)

-1

-0.5

0

0.5

1

km/s

d)

0 1 2 3 4 5 6 7 8 9

Distance (km)

0

0.5

1

1.5

2

2.5

D
e

p
th

 (
k

m
)

-1

-0.5

0

0.5

1

km/s

Figure 5.21: Test 1. Differences of the results in Figure 5.20 to the true model in
Figure 5.19.
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Figure 5.22: Test 2. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.23: Test 2. Differences of the results in Figure 5.22 to the true model in
Figure 5.19.
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Figure 5.24: Test 3. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.25: Test 3. Differences of the results in Figure 5.24 to the true model in
Figure 5.19.
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Figure 5.26: Test 4. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.27: Test 4. Differences of the results in Figure 5.26 to the true model in
Figure 5.19.
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Figure 5.28: Test 5. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.29: Test 5. Differences of the results in Figure 5.28 to the true model in
Figure 5.19.
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Figure 5.30: Test 6. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.31: Test 6. Differences of the results in Figure 5.30 to the true model in
Figure 5.19.
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Figure 5.32: Test 7. Recovered velocity models from the initial models in Figure 5.19.
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Figure 5.33: Test 7. Differences of the results in Figure 5.32 to the true model in
Figure 5.19.
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5.12 Conclusion

In this work, we have presented a workflow for the construction of initial velocity-
models for FWT methods. In an attempt to aid the search for more efficient model-
building tools, we investigate the applicability of a recent automatic time MVA
method. This method stacks twice over migrated images for many models with
different weights in order to extract stationary migration velocities from the ratio of
the images. Thus, it is able to generate a velocity model and a time-migrated image
without a priori information.

For the use of such a velocity model in FWT methods, the result needs to be
converted from time to depth. For this purpose, we chose a strategy based only on
image-ray wavefront propagation. The results confirmed the method’s efficiency in
very complex geology structures, i.e., models with strong velocity variations.

Our first numerical results indicate the potential of using a combination of these
methods to achieve a fully automatic tool for initial-model building in an FWT
workflow. In our tests, the method was able to produce a sufficiently accurate
initial model for an FWT under nearly ideal conditions converges to a model of
comparable quality as when starting at a smoothed version of the true model. This
indicates that correct background velocity information can be successfully extracted
from automatic time-domain migration velocity analysis even in media where time-
migration cannot provide satisfactory seismic images.

Future investigations will have to show whether some model detail can be already
introduced in the time domain or added in an additional depth-domain MVA step
in order to reduce the number of necessary FWT iterations and if the inversion can
still be successful from such initial models if the data are less than ideal.
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Chapter 6

Final remarks

Learn from yesterday, live for today, hope

for tomorrow. The important thing is not to

stop questioning.

— Albert Einstein

We have presented methods for initial velocity-model building for seismic migra-
tion in the time- and depth-domains. They proved to be useful tools for automatic
or semi-automatic processing of seismic data in various geology scenarios. Through
the way we discussed and presented each method, we suggested intuitively to start
the processing by means of those methods that are faster and require less human
intervention, adding other tools and information as needed.

The time-domain methods, presented in Chapters 2 and 3, confirmed their ability
to recover the most part of the sedimentary areas even in the presence of strong
velocity variation.

The resulting MVA processing of the Marmousoft data by image-wave common-
image-gather continuation, multi-stack migration, and remigration trajectory MVA
revealed that even though rather different models are obtained, the associated time-
migrated images exhibit fairly much the same quality, indicating that for the purpose
of time-migration, all models are equivalent. On the other hand, the combination of
some of these methods may be useful to decrease, for example, the influence of the
noise in the data which will increase the coherence of the results. Further studies
will combine all these methods, or at least, part of them or their results trying to
achieve better velocity models.

For a better evaluation, the results need to be converted from the time to the
depth domain, because methods in the depth-domain are more sensitive to velocity
variations. Most conversion techniques are based on ray theory, which unfortunately
suffers from quality decay in the presence of strong velocity variations. Chapter 4
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demonstrates the application of a new strategy based only on image-wavefront
propagation. The results confirmed the efficiency of the method in very complex
geology structures, i.e., models with strong velocity variations.

It is important to emphasize that velocity building of salt structures and sub-
salt sediments is a hard work even for imaging methods in the depth domain as well
as for full waveform inversion (FWI). In Chapter 5, we presented the preliminary
results for a (semi) automatic and high computationally efficient workflow, useful to
build initial velocity models applicable to FWI.

Certainly, there are a huge number of models, strategies and workflows to be
tested with the tools presented here, aiming at better estimating velocity models and
images of the subsurface. Future research will serve to combine some of the methods
discussed here, in attempt to achieve some hybrid method and/or a workflow more
computationally efficient or capable to provided more precise information. Other
possible applications to be investigated include the assessment of model ambiguity
and uncertainty.
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Appendix A

Summary of publications

In this appendix, I provide a short appreciation of all publications that originated
from the work developed during this Ph.D. thesis, some of which are included in
this thesis.

In essence, my doctoral studies concentrated on three segments, being the MVA
methods in time; the techniques for converting velocity models (or its corresponding
migrated image) in the time domain to depth; and FWI methods.

I started my research by comparing new MVA techniques with conventional ones.
In Chapter 2, I discussed two recent time MVA methods, being common-image-
gather image-wave propagation and double multi-stack migration, and compared
their potential for the construction of initial models for more sophisticated MVA
techniques. I analyzed the practical aspects of their applications, such as computa-
tional cost, quality of the obtained model, human interaction required, to evaluate
the methods quantitatively and qualitatively. The experiments showed that both
methods could be used in a fully automated procedure to produce a velocity model
and a time-migrated image without a-priori information at a comparable cost. In
2013, my initial results were published in one expanded abstract in the proceedings
of an international conference (Santos et al., 2013f). I also produced a technical
report (Santos et al., 2013g).

The work on migration-velocity analysis using remigration trajectories presented
in Chapter 3 was published in five expanded abstracts in the proceedings of
international conferences (Coimbra et al., 2013c, 2014; Santos et al., 2015c,d,a),
two reports (Coimbra et al., 2013d; Santos et al., 2014b), and in one journal article
(Santos et al., 2015b).

In the intermediate stage of my doctoral thesis, I investigated the quality of the
velocity models converted from the time domain to the depth. Despite being an
attractive method, time-to-depth conversion is an ill-posed problem, aggregating
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the limitations of all involved steps (e.g., the constraints involved in time migration,
ray-tracing, and Dix-based velocity conversion). This motivated me to seek a more
stable technique, an alternative algorithm for the time-to-depth conversion, which
does not require the tracing of individual image rays. Instead, it simulates the
propagation of an image wavefront in the subsurface as discussed in Chapter 4. The
content of this chapter was published in three expanded abstracts in the proceedings
of international conferences (Valente et al., 2015b,a; Santos et al., 2015h), one report
(Valente et al., 2014), and was accepted in a journal article (Valente et al., 2017).

The third and last segment that makes up my thesis was discussed in Chapter 5,
in which my studies focused on the FWT applications, attempting to achieve a
fully automatic tool for initial-model building in an FWT workflow. I presented a
workflow for the construction of initial velocity-models for FWT methods consisting
of automatic time-migration velocity analysis employing double multi-stack migra-
tion, followed by time-to-depth conversion by image-ray wavefront propagation. The
content of this chapter as published in one scientific report (Santos et al., 2015g),
and will be presented as expanded abstracts in the proceedings of upcomming
international conferences (Santos et al., 2016b,a,c), and a manuscript is under
preparation.

In addition to the results presented in this thesis, Santos et al. (2013e, 2014a,c,
2015e,f) develop a 3D depth-velocity model building based on 3D gravity inversion.
The method consists in determine the density distribution of specific bodies (tar-
gets), and replace them by coherent velocity values. This initial velocity model can
be used together with migration velocity analysis tools, which in turn, can provide
sufficient information to updated the initial geometric parameters for a recent gravity
inversion. The main advantage of this technique is that it provide an iterative and
robust algorithm that does not require the solution of an equation system. This
joint processing and interpretation shows to be a fast alternative to improve the
knowledge of complex structures like salt structures and sub-salt sediments.

Santos et al. (2013b,c,a) present the resulting Paraná Basin lithospheric model,
obtained from processing and inversion of broadband and long-period magnetotel-
luric soundings along an E-W profile across the central part of the basin. The results
are complemented by a qualitative joint interpretation of gravimetric data, in order
to obtain a more precise geoelectric model of the deep structure of the region.

Santos et al. (2013d,h): present the gravity gradient tensor (GGT) of the residual
Bouguer anomaly over the Dome Vargeão area. Since the GGT is more sensitivity
to density variation, it can be a useful tool to understand the crater’s geology.
The results show that the center of the crater has a predominant negative density-
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contrast, characteristic of a region with sediments. However, the heterogeneities in
this region are best observed in GGT. Furthermore, the crater is not symmetric
mainly on east-west direction, suggesting that the eastern part of Vargeão’s edge is
more extensive and deep.

I have also contributed to other open-source projects, all of which can be accessed
through my Github profile (https:/github.com/hbueno).

The full list of my publications can be found on Currículo Lattes (Brazilian
online resume; http://lattes.cnpq.br/4062685231290581).

https:/github.com/hbueno
http://lattes.cnpq.br/4062685231290581
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Appendix B

Used hard- and software

Computers are useless. They can only give

you answers.

— Pablo Picasso

Throughout the course of the doctorate I used, adapted and developed several
software packages. Moreover, I utilized different hardware resources for diverse tasks
and needs. In this appendix, I provide detailed information for the most relevant
requirements for the development of this Ph.D. thesis.

B.1 Hardware

Within the scope of this work, I employed several computers, workstations,
or high-performance computers (HPCs) to develop, test or obtain the preliminary
results or those shown in this thesis.

For the development and testing of computational codes, preparation and ad-
justment of experiments, elaboration of this thesis and other ordinary tasks, the
following computers were used:

• Notebook MacBook Pro®: Processor 2.9 GHz Intel® Core i7™; Memory 8 GB
1600 MHz DDR; System OS X® 10.9.5.

• Desktop Dell™ OptiPlex™ 780: Processor Intel® Core™2 Quad (4 Cores)
Q9650, 12 MB L2 Cache, 3.00 GHz, 1333 MHz FSB; Memory 8 GB RAM;
System Linux Ubuntu 12.04 LTS.

The work on migration-velocity analysis using the common-image-gather image-
wave propagation and double multi-stack migration in Chapter 2, and the depth
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migrations shown in Chapter 4, were performed in the workstations at LGC (for
more information, see http://www.lgc.ime.unicamp.br/?page_id=1517):

• Workstation Dell™ Precision™ R5500: Processor 2 × 6-cores (12 threads)
Intel®, Xeon® X5675, 12 MB SmartCache, 3.06 GHz, 6.40 GT/s Intel® QPI;
Memory 192 GB RAM 1333 MHz DDR; System Linux Ubuntu 12.04 LTS.

• Workstation Dell™ PowerEdge™ R420: Processor 2 × 8-cores (16 threads)
Intel®, Xeon® E5-2450, 20 MB SmartCache, 2.10 GHz, 8.00 GT/s Intel®

QPI; Memory 192 GB RAM 1333 MHz DDR; System Linux Ubuntu 12.04
LTS.

The following list includes all the HPCs required to perform the full waveform
inversions results shown in Chapter 5. Their configurations are omitted for the sake
of simplicity, but relevant addresses for on-line information are provided:

• Jülich Research on Petaflop Architectures (JUROPA) at Jülich Supercomput-
ing Centre (JSC). More information:
http://www.fz-juelich.de/portal/EN/Research/ITBrain/Supercomputer/

JUROPA.html

• Universal HPC cluster of Baden-Württemberg’s universities (bwUniCluster) at
Steinbuch Centre for Computing (SCC) at Karlsruhe Institute of Technology
(KIT). More information:
http://www.bwhpc-c5.de/wiki/index.php/Category:BwUniCluster

• InstitutsCluster II (IC2) at SCC at KIT. More information:
http://www.scc.kit.edu/dienste/ic2.php

• ForHLR at SCC at KIT, funded by Ministry of Science, Research and the Arts
Baden-Württemberg and the German Research Foundation (DFG, “Deutsche
Forschungsgemeinschaft”). More information:
https://wiki.scc.kit.edu/hpc/index.php/Category:ForHLR

B.2 Software

We used computers with the following operating systems: OS X® 10.9.5, Linux

Ubuntu 12.4 LST, Linux OpenSUSE 13.1, and SUSE Linux Enterprise

Server (SLES) 11 Service Pack 4 (SP4) as the basic operating system on
HPCs. We list below the most relevant programs (in alphabetical order):

http://www.lgc.ime.unicamp.br/?page_id=1517
http://www.fz-juelich.de/portal/EN/Research/ITBrain/Supercomputer/JUROPA.html
http://www.fz-juelich.de/portal/EN/Research/ITBrain/Supercomputer/JUROPA.html
http://www.bwhpc-c5.de/wiki/index.php/Category:BwUniCluster
http://www.scc.kit.edu/dienste/ic2.php
https://wiki.scc.kit.edu/hpc/index.php/Category:ForHLR
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CIGCONT Fortran 90 code for velocity analysis by velocity continuation of
common-image gathers, based on the theory proposed by Schleicher et al.
(2008). The program package consists of programs in Fortran 90 and Shell
scripts. The execution of the procedure also depends on some programs of
SU, which must be accessible via the search path. In Chapter 2, we presented
the theory and tested the use of an automatic picking avoiding the human
interaction. To get it, one must contact the authors.

CWP/SU: Seismic Un∗x Also known as SU, it is an open-source software pack-
age for seismic research and processing, developed and distributed by Center
for Wave Phenomena (CWP), Colorado School of Mines (CSM), United States,
under a FreeBSD-style license. More information can be found Stockwell Jr.
(1999) and http://www.cwp.mines.edu/cwpcodes/.

FDVEPS 2D viscoelastic FD modeling implementation (now SOFI2D) by Bohlen
(1998, 2002). Their domain decomposition is the basis for the parallel code
of PROTEUS. To get it, one must contact the author (thomas.bohlen@kit.
edu).

FVELAN Parallel Fortran 90 code for multi-stack migration velocity analysis
based on the theory proposed by Schleicher and Costa (2009). To get it,
one must contact the authors.

GCC Produced by the GNU Project and distributed by the Free Software Founda-
tion (FSF, https://www.fsf.org/) under the GNU General Public License
Version 3 (GNU GPLv3), the GNU Compiler Collection (GCC) is a compiler
system which supports various programming languages. Among the different
tools (and versions) used to develop this thesis, we highlight the compilers,
debuggers, and some libraries for C/C++ and FORTRAN. More information:
https://gcc.gnu.org/.

Inkscape Free and open-source software for vector graphics creation and edition,
developed by The Inkscape Project (Team) licensed under GPL. The vector
graphics shown in this thesis were drawn in Inkscape 0.91 (Inkscape, 2015).
For more information https://inkscape.org.

Intel Composer XE Suite Developed and distributed by Intel® Corporation un-
der commercial license, the Intel® Parallel Studio is a software development
product that consists of tools to compile and debug C/C++ and FORTRAN
(parallel) programs. The choice of compilers can influence processing time

http://www.cwp.mines.edu/cwpcodes/
thomas.bohlen@kit.edu
thomas.bohlen@kit.edu
https://www.fsf.org/
https://gcc.gnu.org/
https://inkscape.org
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(Kurzmann et al., 2009; Kurzmann, 2012). We compiled FVELAN with
Intel® Fortran Compiler (ifort version 15.0.3). Moreover, to speed up the FWI
calculation presented in Chapter 5, we used the Intel® C/C++ Compiler (icc)
version 15.0.3 (gcc version 4.8.5 compatibility) and the Intel® MPI Library
5.0. More information: https://www.intel.com.

LATEX Shortening of Lamport TEX, originally developed by Lamport (1986). LATEX
is a document preparation system, working as macro package for the type-
setting system TEX (Patashnik, 1988). It is free software, distributed under
the LATEX Project Public License (LPPL). This thesis was written using the
version LATEX2ε together with several extensions. The bibliography was
generated with BIBTEX. Detailed information can be found at The LATEX
Project website: https://www.latex-project.org/.

Lustre Lustre® file system is a parallel distributed file system employed for HPCs
simulation environments. This open-source software is available under the
GNU GPL Version 2 only (GPLv2). More details can be seen in http://

lustre.org/.

Madagascar Open-source research-software project designed for analysis of large-
scale multidimensional data (Fomel et al., 2013). It is distributed in the online
GitHub repository (https://github.com/ahay/src) under the terms of the
GPLv2. More information can be found in the Madagascar website: http://
www.ahay.org/.

MATLAB MATLAB® (MATrix LABoratory) is a high-level numerical computing
system developed by MathWorks®, Inc., Natick, Massachusetts, United States.
Different versions and releases were used during the development of this thesis,
being, the newest one, the Release 2015b (MATLAB, 2015). More information
can be found at https://www.mathworks.com/.

MPICH High-performance portable implementation of the Message Passing Inter-
face (MPI) standard (MPIF, 1994) distributed under a BSD-like license. More
information: http://www.mpich.org/.

MVATRAJ A set of MATLAB scripts to perform the prestack time-migration
velocity analysis using remigration trajectories, based on the theory proposed
by Santos et al. (2015b), which is the origin to the content seen in Chapter 3.
To get it, one must contact the authors.

https://www.intel.com
https://www.latex-project.org/
http://lustre.org/
http://lustre.org/
https://github.com/ahay/src
http://www.ahay.org/
http://www.ahay.org/
https://www.mathworks.com/
http://www.mpich.org/
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OpenMP The Open Multi-Processing (OpenMP) is an Application Programming
Interface (API) that allows one to parallelize code over multi-platform shared-
memory system (Dagum and Menon, 1998). More information: http://www.
openmp.org/.

Open MPI The Open MPI Project is an open source MPI implementation (Gabriel
et al., 2004) developed by the Open MPI Team under the New BSD Li-
cense (https://opensource.org/licenses/BSD-3-Clause). More informa-
tion: https://www.open-mpi.org/.

PROTEUS Parallel 2D acoustic time-domain FWT program based on FD model-
ing. Originally developed by Kurzmann (2012), is based, among other things,
on the theories presented by Tarantola (1984) and Mora (1987b). Other
aspects of seismic waves modeling are based on the massive parallelization
comprising domain decomposition (Bohlen, 1998) and shot parallelization
(Kurzmann et al., 2009). It is written in C and can be freely redistributed
or modified under the terms of the GNU GPLv2 (https://www.gnu.org/
licenses/gpl-2.0.html). The FWT results of Chapter 5 were obtained using
an updated and adapted version of PROTEUS.

Python Created by Rossum (1995), Python is a free, high-level programming
language currently maintained by the Python Software Foundation (PSF),
Delaware, United States, under the terms of the Python Software Founda-
tion License (PSFL). https://docs.python.org/3/license.html. Official
website: https://www.python.org.

Scons Open-source software construction tool (Knight, 2005) maintained by The
SCons Foundation and distributed under the MIT license. It is a Python-
based make-like utility used here to assemble data analysis workflows from
Madagascar programs, through the use of Scons configuration files, also known
as SConstruct scripts. The primary source of information is the website:
http://www.scons.org/.

Slurm Workload Manager Formerly known as Simple Linux Utility for Resource
Management (SLURM), it is an open-source cluster resource management
and job scheduling system for Linux and Unix-like kernels. This software is
distributed under the GNU GPL in the online repository (https://github.
com/SchedMD/slurm). For more information: https://slurm.schedmd.com/.

http://www.openmp.org/
http://www.openmp.org/
https://opensource.org/licenses/BSD-3-Clause
https://www.open-mpi.org/
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
https://docs.python.org/3/license.html
https://www.python.org
http://www.scons.org/
https://github.com/SchedMD/slurm
https://github.com/SchedMD/slurm
https://slurm.schedmd.com/
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SOFI2D 2D viscoelastic time-domain FD seismic modeling. Written in C, it is
a massive parallel modeling code for P- and SV-waves. It is free software
under the terms of the GNU GPLv2 (https://www.gnu.org/licenses/gpl-
2.0.html). SOFI2D is published and distributed on a GitLab (https://
about.gitlab.com/) server located at the KIT. The following link leads
to the latest release: https://git.scc.kit.edu/GPIAG-Software/SOFI2D/

tree/Release.

https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
https://about.gitlab.com/
https://about.gitlab.com/
https://git.scc.kit.edu/GPIAG-Software/SOFI2D/tree/Release
https://git.scc.kit.edu/GPIAG-Software/SOFI2D/tree/Release
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Appendix C

B-splines regularization

When in doubt, smooth.

— Sir Harold Jeffreys

The purpose of this appendix it to present detailed information of the regular-
ization used in the B-spline smoothing discussed in Chapter 2. We derived the
expressions of a smoothness constraint for slope tomography proposed by Costa
et al. (2008). The approach minimizes the velocity gradient in the dip direction of
a possibly present reflector at an image point.

C.1 Slope tomographic inversion

Following the notation of Costa et al. (2008), let us start defining the data space
by

d = [(xs,xr, ss, sr,Tsr)n] (n = 1, ..., N) , (C.1)

where xs and xr are the source and receiver positions, ss and sr are the slowness-
vector projections into the source and receiver lines, Tsr are the traveltimes, and N

is the number of selected events.
The model vector in two dimensions is

m = {p, (X, θs, θr, τs, τs)n} (n = 1, ..., N) , (C.2)

where p is the parameters describing the velocity model, X is the scattering-
point coordinates, θs and θr, are the emergence angles, and τs and τr, are the ray
traveltimes.
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We define the difference δd = do − dc, where do is the observed data, and dc is
the synthetic data computed (equation C.1) by ray tracing in the reference model.
Thus, we need to define an initial reference model m0 to solve the inverse problem
using linear iterations. However, in the kth iteration, we have

δdk = DF (mk)δmk , (C.3)

where δdk is the deviation in the kth iteration, and the operator DF (mk) is the
Fréchet derivative (Menke, 1989). The solution of the linear system (equation C.3)
determines a new reference model,

mk+1 = mk + δmk . (C.4)

This procedure is repeated iteratively until a minimum of the norm of the deviation
‖δdk‖ is reached or until a maximum number of steps. As in the work of Costa
et al. (2008), in this thesis (Chapter 2), we use the Euclidian norm, also known as
L2 norm (Menke, 1989).

Costa et al. (2008) construct a model for the square of the medium velocity,
which is represented using the tensor product of third-order B-splines as

p (x1, x3) =

N1
∑

k=1

N3
∑

l=1

pklBk(x1)Bl(x3) , (C.5)

where pkl are the interpolation coefficients to be estimated by slope tomography,
Bk(xj) are the base functions of the interpolator along xj , and Nj are the number
of B-splines nodes in that direction.

C.2 Regularization

The data are incomplete, so it is necessary to include conditions that reinforce
those properties of the result that are desired. In other words, seismic tomographic
inversions are ill-posed and require additional constraints in the form of regulariza-
tion to impose smoothness on the solution.

The regularization parameter controls how much smoothness is applied to the
inversion result. Applied in a least-squares sense at each node of the B-splines mesh,
these constraints require the evaluation of first and second partial derivatives of the
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velocity model with respect to the spatial coordinates

∂n

∂xn
1

p(x1, x3) =

N1
∑

k=1

N2
∑

l=1

pkl
∂nBk(x1)

∂xn
1

Bl(x3) , (C.6)

and correspondingly for the derivatives with respect to coordinate x3.
Costa et al. (2008) discussed alternatives to enforce a geologically meaningful

smoothing that does not rely on a priori information. For example, the distribution
of the scattering points in depth when we assume that all the events to be used in
the tomography are reflections. At each iteration of slope tomography, we take the
angle α between the normal to the potential reflector and the vertical direction

α =
θs + θr

2
. (C.7)

Note that from equation C.7, the regularization is a little more data consistent.
Moreover, it is not difficult to observe that the extracted dip field is smooth (a direct
consequence of the ray-tracing in a smooth velocity background).

Now, let us add the regularization constraint

n(α;X)×∇p(X) = 0 , (C.8)

which computes the velocity gradient at the scattering point X to smooth the
velocity model along the potential reflectors.

In the dip regularization proposed by Costa et al. (2008), the dip information
is obtained from ray tracing in the reference model during the inversion. Thus, it
differs from other previous assumptions in the literature (see, e.g., Clapp et al., 2004,
who applied reflection tomography to better flatten post-tomography common-image
gathers).

Denoting the smoothing operator of equation C.8 by DR, and combining these
regularizations, leads to the objective function

Φ(m) = ||d− F (m)||22 + λ2
D||m−mr||22 + λ2

Lap||(D2
1

+D2
3)(m−mr)||22 + λ2

C1||D2
1(m−mr)||22

+ λ2
C3||D2

3(m−mr)||22 + λ2
G1||D1(m−mr)||22

+ λ2
G3||D3(m−mr)||22 + λ2

R||DR(m−mr)||22 , (C.9)

where mr is a background model, and where the factors λ are Lagrangian multipliers
that weight the contributions of regularization in the objective function.
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Here, λD determines the damping applied to all model parameter updates. The
factors λLap, λC1, λC3, λG1, and λG3 determine the smoothing weight applied to the
isotropic curvature (Laplacian), as well as curvature (second derivative) and gradient
(first derivative) in the x1 and x3 directions, respectively. These six constraints are
applied only to the velocity parameters. The value of λR controls the degree of
smoothing of the velocity along potential reflectors.

At each iteration, we need to solve the linear system
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(C.10)

where mr is a background model that can be chosen in different ways. For example,
through the updating procedure known as creeping (Shaw and Orcutt, 1985). We
can choose mr = mk, the current model from the previous iteration, which allows
to tie the model to the initial model mr = m0, or some a priori model mr = mp.

C.3 Lagrange Multipliers

We test different constraints for the velocity model in the objective function
(equation C.9). The Lagrange multipliers for the B-splines regularization used on
this thesis are given in the table below.

Here we have λd as the weight applied to adjust the whole data, λτ and λx

the gradient and λττ and λxx the curvature in time and in the horizontal direction
respectively.
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Table C.1: Regularization setup formed by seven different sets of Lagrangian
multipliers where λd is the weight used to adjust the data, λτ for the time derivative,
λx for the horizontal derivative, and λττ and λxx for the second derivatives.

Regularization
Lagrangian multipliers

λd λτ λx λττ λxx

very hard 1 10−3 2 · 10−3 10−4 10−4

hard 1 10−4 2 · 10−4 10−5 10−5

strong 1 10−5 2 · 10−5 2.5 · 10−6 2.5 · 10−6

intermediate 1 10−6 2 · 10−6 2.5 · 10−7 2.5 · 10−7

weak 1 10−7 10−7 2.5 · 10−8 2.5 · 10−8

soft 1 10−8 10−8 2.5 · 10−9 2.5 · 10−9

very soft 1 10−9 10−9 2.5 · 10−10 2.5 · 10−10
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Appendix D

Residual migration

In the main text (Chapter 2), we discuss the concepts of residual migration
primary stated by Rocca and Salvador (1982). In this appendix, we summarize
the mathematical deduction to residual migration as presented by Rothman et al.
(1985). We describe the process of migration as mapping the apparent dip dt/dx to
the correct dip dτ/dx using the following expressions:

sin θ =
v

2

dt

dx
, (D.1)

and
tan θ =

v

2

dτ

dx
, (D.2)

resolving the system for θ,

dτ

dx
=

dt

dx

[

1−
(

v

2

dt

dx

)2
]−1/2

. (D.3)

This equation gives a relation between the time dip on the migrated section in
regarding time dip on the unmigrated data. If the migrated dip described by
equation D.3 is used as input to another migration using velocity v′, the new
migrated slope can be expressed as

dτ ′

dx
=

dτ

dx

[

1−
(

v′

2

dt

dx

)2
]−1/2

=
dt

dx

[

1− v2 + v′2

4

(

dt

dx

)2
]−1/2

, (D.4)

which is equation D.3 with v replaced by
√
v2 + v′2.

Supposing that the initial migration velocity vm is wrong and that the true
velocity is v, it is necessary to correct the migrated data. This can be done by
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making a migration with a new residual velocity vε given by

vε = v

[

1−
(vm

v

)2
]1/2

, when vm < v , (D.5)

or modeling, i.e., unmigrating with

vε = v

[

(vm
v

)2

− 1

]1/2

, when vm > v . (D.6)
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Appendix E

Initial depth velocity model building

In Chapter 2 we discuss the application of two recent time MVA techniques, being
common-image-gather image-wave propagation and double multi-stack migration.
We have seen that both methods can provide a broad range of differently smoothed
velocity models that produce equivalent image quality in time migration.

In attempt to evaluate which one of the used parameterization can lead to a
best-suited starting model, we converted from time-to-depth domain all the time
migration velocity models and their corresponding images produced by these two
techniques using different regularizations (Table C.1). Some of our results can be
see in Figures E.2 to E.5. For comparison, we depth migrated the Marmousoft data
(Billette et al., 2003) using its true depth velocity model depicted in Figure E.1. In
general, our results present a good match in the sedimentary parts of the model but
yield some visible differences in the geologically complex central part.

Figures E.2 and E.3 show the time-to-depth conversion of the velocity models and
images obtained after five iteration of the image-wave propagation method using,
respectively, the auto-picks at the maxima of horizontal semblance (Figure 2.20, Ex-

periment 1) and the auto-picks at the maxima of smoothed horizontal semblance
(Figure 2.22, Experiment 2). Both velocity models present boundary effects of
the B-splines interpolation and the produced images looks quite similar.

Figures E.4 and E.5 depict the time-to-depth conversion of the results ob-
tained by the multi-stack MVA using a very hard regularization (Figure 2.30,
Experiment 5) and a intermediate regularization (Figure 2.31, Experiment 5)
respectively. We note the intermediate regularization produced results more similar
those ones depicted in Figures E.2 and E.3. On the other hand, the smoothed
velocity model (Figure E.4) has no clear evidence of boundary effects caused by
the B-splines interpolation. Moreover, their corresponding time-to-depth converted
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Figure E.1: (a) Marmousoft depth velocity model (Billette et al., 2003) and (b)
depth migration.
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Figure E.2: Time-to-depth conversion of the velocity model (a) and image (b)
obtained after five iteration of the image-wave propagation method discussed in
Chapter 2, Figure 2.20 (Experiment 1).

image in Figure E.4 shows to be more similar with the depth migration using the
true depth velocity model (Figure E.1).

These preliminary results suggest that specially in the depth domain, smoothed
velocity models are able to produce better migrated images. Further research will
evaluate if a smoothing step after the domain-conversion leads to better results.
Furthermore, a prestack depth-migration velocity analysis should contribute with
more informations. Anyway, the results presented here indicate that the direct
connection of the time-MVA techniques with time-to-depth conversion strategies
can be used as an efficient first step in seismic velocity model building.
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Figure E.3: Time-to-depth conversion of the velocity model (a) and image (b)
obtained after five iteration of the image-wave propagation method discussed in
Chapter 2, Figure 2.22 (Experiment 2).
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Figure E.4: Time-to-depth conversion of the velocity model (a) and image
(b) obtained by a multi-stack MVA with very hard regularization, discussed in
Chapter 2, Figure 2.30 (Experiment 5).
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Figure E.5: Time-to-depth conversion of the velocity model (a) and image (b)
obtained by a multi-stack MVA with intermediate regularization, discussed in
Chapter 2, Figure 2.31 (Experiment 5).
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Appendix F

The original Marmousi-2 model

In the main text, we show numerical experiments using modified versions of the
2D Marmousi model. For comparison and for the sake of completeness, we present
the original vp, vs, and ρ Marmousi-2 model created by Martin et al. (2002) based on
Versteeg (1994). Whilst we have not used the S-wave velocity model in our analysis,
the density model and the P-wave velocity model were the starting points for the
forward modeling and inversion tests we have shown in Chapter 5. The model size
is 3.5 km× 17 km which, using a grid spacing of 1.25m, resulting in a grid size of
13 601× 2801 grid points. In the vp model, values range from 1028m/s to 4700m/s.
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Figure F.1: The original Marmousi-2 model: (a) P-wave velocity (vp), (b) S-wave
velocity (vs), and (c) density (ρ).
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