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Resumo
Estatísticas da taxa-soma dos decodificadores Integer Forcing (IF) e outros decodificadores

baseados em reticulados para sistemas de Múltipla Entrada e Múltipla Saída (MIMO) são

analisadas. Duas aproximações para a taxa-soma de decodificadores lineares são derivadas.

A primeira aproximação é baseada no algoritimo Gauss-Lagrange para sistemas com duas

antenas no transmissor e receptor (arranjo 2× 2) e canais descorrelacionados. A segunda

aproximação considera um sistema com um arranjo n× n de antenas, para o caso correla-

cionado e descorrelacionado e é baseado no segundo teorema de Minkowiski.

O desempenho de decodificadores IF e Compute and Forward Transform (CFT)

são analisados na presença de erro de estimação de canal. Uma aproximação para a taxa-

soma média na presença de erros de estimação de canal e canais com realização fixa é

derivada. Uma aproximação para a taxa-soma ergódica dos decodificadores IF na presença

de canais correlacionados e descorrelacionados também é derivada.

Decodificadores lineares IF atraíram atenção significativa devido ao seu poten-

cial de atingir melhor desempenho do que outros decodificadores lineares, especialmente

quando as matrizes de canal são aproximadamente singulares. No entanto, uma análise

mais profunda de seu desempenho na presença de canais não determinísticos é necessária

para que se possa quantificar sua vantagem em relação a decodificadores lineares clássicos

e para que se possa corretamente projetar sistemas baseados nestes decodificadores.

Uma outra contribuição deste trabalho envolve decodificadores cegos em siste-

mas MIMO Massivos. Uma variação para o algoritmo Fast Independent Component Analysis

(fastICA) que leva em consideração o formato das constelações para obter melhor desem-

penho é proposta.

Palavras-chaves: MIMO; MIMO Massivo; Decodificadores Lineares, Decodificadores Integer

Forcing; Decodificador Cego; Erro de estimação do canal.



Abstract
The statistics of the sum-rate of Integer Forcing (IF) and other lattice-based Multiple In-

put Multiple Output (MIMO) systems are analyzed. Two approximations to the achievable

sum-rate of the IF linear receiver and their respective analytical probability density functi-

ons (PDF) are derived. The first approximation is based on the Gauss-Lagrange algorithm

for systems with two antennas at the transmitter and receiver (2× 2 arrays) and uncorre-

lated channels. The second approximation considers an n× n array for both correlated and

uncorrelated channels and its derivation is based on Minkowiski’s second theorem.

The performance of IF and Compute and Forward Transform (CFT) receivers is also analy-

zed under the presence of channel estimation errors. An approximation to their average

sum-rate in the presence of these errors for fixed channel realizations is derived. An ap-

proximation to the Ergodic IF sum-rate for correlated and uncorrelated channels is also

derived.

IF linear receiver has attracted significant attention recently due to their potential to perform

better than other linear receivers, especially in the presence of channel matrices that are

close to singular. However, a more in-depth analysis of its performance in the presence of

non-deterministic channels is necessary in order to quantify its advantage over classical

linear receivers and to correctly design systems that rely on these decoders.

Another contribution of this work involves blind decoding in Massive MIMO systems. We

propose a variation to the fast Independent Component Analysis (fastICA) which takes into

consideration the shape of the constellations to obtain better performance.

Keywords: MIMO; Massive MIMO; Linear Receivers; Integer Forcing Receivers; Blind De-

coding; Channel Estimation Error.



“A man’s errors are his portals of discovery.”

James Joyce
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Chapter 1

Introduction
The use of wireless communication has become commonplace in our lives. The

flexibility of installation and use that arises from the lack of physical elements interconnect-

ing communicating devices has led to the popularization of many applications which rely

on it. In recent years, wireless data traffic has increased exponentially due to the increas-

ing number of devices such as smartphones, laptops, tablets, and others. Mobile data traffic

worldwide is expected to attain 49 exabytes per month by 2021 which is close to 2.9 times

our current values [1]. However, this increase brings many challenges to future wireless sys-

tems, one of the major being the limited availability of frequency spectrum. Among several

techniques studied to remedy this issue, multiple input multiple output (MIMO) is regarded

as one of the most promising. By exploring the inherent spatial diversity of the MIMO chan-

nel it is possible to reliably multiplex different data streams over the same frequencies. This

significantly increases the overall wireless channel capacity, as shown by the seminar papers

by Foschini [2] and Telatar [3].

One of the key problems with MIMO systems lies on the receiver architecture.

Joint maximum likelihood (ML) receivers are known to be optimal. However its implemen-

tation becomes prohibitively complex as the number of antennas increases and capacity-

achieving channel codes are used. Linear receivers such as zero-forcing (ZF) or minimum

mean square error (MMSE) receivers are widely used due to their reduced complexity, even

though their performance is highly suboptimal when channel matrices are close to singular.

In [4] the authors introduced a method of using interference to obtain higher

transmission rates on networks called Compute-and-Forward. Based on it, Integer-Forcing

(IF) linear receivers have been introduced in [5], [6] and [7]. In the IF framework, each

transmitter encodes an independent data stream and all transmitters are required to use

identical lattice codes. This framework could correspond to an uplink scenario in a cellular

transmission system, in which the transmitters are independent and send simultaneous data

streams at the same frequency. It was shown that IF linear receivers perform better than

other linear receivers, especially as channel matrices become close to singular. Moreover,

using the results of [8] concerning the first successive minimum of a lattice induced by an

i.i.d. Rayleigh channel matrix, it was proven that full diversity-multiplexing tradeoff (DMT)

is attained.
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Massive MIMO has also been a key research subject for next-generation wireless

communications in recent years [9], [10]. Comprising a base station (BS) equipped with a

large number of antennas which is several times greater than the number of active users.

Its main appeal resides on the favorable propagation characteristic, which implies that dif-

ferent users channels are mutually orthogonal. In such conditions, simple linear precoding

multiplexing is employed on the downlink and simple linear receivers on the uplink with

almost no penalty to transmission rates.

These systems require channel state information (CSI) at the BS to achieve a

high spectral efficiency. Usually, the system estimates the CSI making use of uplink training

symbols. Users at the same cell send mutually orthogonal pilot sequences to ensure data

stream separation at the BS. The accuracy of the estimation relates to the length of the

pilot sequence but limits the number of users being served since the channel estimation

process has to be repeated at every coherence period. Moreover, co-channel cells reusing the

same pilot sequences in a multi-cell environment interfere in the channel estimation process.

Therefore, the interference results in pilot contamination and reduces the performance of

the system.

A great number of studies have explored the potential of blind and semi-blind

decoding techniques to circumvent the issues regarding pilot based CSI estimation. In [11],

the authors exploit the sparsity of the massive MIMO channel a blind decoding algorithm

for systems with prior knowledge of channel and message distribution. In [12], the authors

present a semi-blind algorithm that uses space-alternating generalized expectation maxi-

mization (SAGE) to decontaminate pilots. In [13], the authors propose a blind decoding

method that uses an estimate of the aggregate out-of-cell channel covariance to remove

interference.

Independent component analysis (ICA) based algorithms have gained significant

attention among the several existing blind decoding algorithms. They are interesting due

to the small amount of information necessary and the few restrictions on applications. It

requires that the different sources of data be independent and not Gaussian distributed,

and requires knowledge of the shape and average power of the constellation used by each

user.

1.1 Summary of Contributions

Our work is divided into two parts. In Chapters 3, 4 we analyze the statistics

of the sum-rate of IF and related receivers. In chapter 3, we derive two approximations to

the achievable sum-rate of the IF linear receiver and their respective analytical probability
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density functions (PDF) . The first approximation is based on the Gauss-Lagrange algorithm

for systems with two antennas at the transmitter and receiver (2× 2 arrays) and uncorre-

lated channels. The second approximation considers an n× n array for both correlated and

uncorrelated channels and its derivation is based on Minkowiski’s second theorem. In order

to validate our approximations, three metrics were evaluated, the mean value, the outage

probability, and the outage rate.

In chapter 4, we analyze the effect of channel estimation error to the perfor-

mance of IF and Compute and Forward Transform (CFT) receivers. We propose an approx-

imation for the mean achievable sum rate of IF and CFT receivers with imperfect CSI. For

IF receivers, we also derive the PDF of the approximation and present the expression of

the ergodic IF achievable sum rate for uncorrelated and correlated channels. First, in the

presence of complete CSI (chapter 3), and incomplete CSI (chapter 4) at the receiver.

In the second part of this work, we investigate blind decoding for Massive MIMO

systems. In chapter 5, we propose a modified version of the fastICA algorithm called Phase

Corrected ICA (PCICA). Exploring the format of commonly used constellations, it increases

the performance of blind decoders based on ICA by iteratively selecting vectors that lead to

estimated constellations that are more aligned with the axis.

1.2 Related Work

IF and other lattice based decoders have been extensively discussed in the spe-

cialized literature. Two important variations to the IF linear receivers are the CFT and Suc-

cessive IF. CFT presented in [14] and [15] consists of adding an algebraic successive in-

terference cancellation (SIC) method to the IF framework, increasing its attainable sum

rate. Successive IF [16] uses noise predictor and is known to attain MIMO capacity with

uniform power allocation. In [17] and [18], the performance of IF linear receivers was ana-

lyzed when Complex Lenstra–Lenstra–Lovász (LLL) , Hermite-Korkine-Zolotareff (HKZ) and

Minkowski lattice basis reduction algorithms were used. In [19] an efficient algorithm to

solve the successive minima problem (SMP) applied to IF linear Receivers was presented.

In [20], the impact of channel variation on the IF linear receiver was studied and it was

shown that it still presents an advantage over conventional linear receivers. In [21] and [22]

precoders to the IF framework were introduced, and in [23] the uplink-downlink duality for

Integer Forcing is discussed. The first precoder achieves the MIMO Capacity to within a con-

stant gap, and the second precoder attains full diversity. Integer Forcing and Forward [24],

a transceiver design for MIMO two way relay is introduced by the authors, with a variant

suitable for channels with imperfect CSI.
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Regarding receivers with imperfect CSI, in [25], the effects of channel estimation

errors are analyzed and approximated bit error rates are derived for ZF receivers. In [26], the

distribution of an approximation of the transmission rate for compute and forward systems

with imperfect CSI is derived [24]. In [27], the effects of imperfect channel reciprocity and

channel estimation errors for massive MIMO systems is analyzed.

As for ICA based blind decoders, in [28] the authors use a reduced number of

pilots to remove the ambiguities inherent to ICA. In [29], statistics of the channel are used

in order to remove permutation ambiguities in ICA. In [30], the authors use a modified ICA

algorithm which reduces complexity with a small penalty to performance.

1.3 List of Publications

• A. S. Guerreiro , G. Fraidenraich, S. Kumar, "Approximate Sum Rate for Integer-Forcing

Receiver," in IEEE Transactions on Communications, vol. 65, no. 11, pp. 4899 - 4910,
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• A. S. Guerreiro , G. Fraidenraich, L. L. Mendes, "Approximate Sum Rate for Integer-

Forcing Receiver with Imperfect Channel Estimation", in IEEE Transactions on Vehic-

ular Technology, vol. 67, no. 12, pp. 11767 - 11775, Dec 2018.

• A. S. Guerreiro , G. Fraidenraich, "Phase Corrected ICA for Uplink Massive MIMO" in

IEEE Signal Processing Letters, vol. 25, no. 12, pp. 1810 - 1814, Dec 2018.
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Chapter 2

Preliminaries
In this chapter, we review some concepts that are essential to the derivation

of our work. We review basic lattice theory focusing on results that are important for the

comprehension of IF receivers. We also introduce the channel and system model that are

commonly used to describe MIMO linear receivers. The same model is used throughout

chapters 3 and 4. Finally, we present the operation of linear receivers, also detailing the

operation of IF linear receivers.

2.1 Lattices

A lattice is a discrete subgroup of Rn. It is formed by a set of points which is

closed under reflection and real addition. Therefore, if a point p1 is in the lattice, then so

is its reflection −p1. And if two points p1 and p2 are in the lattice, so is their vector sum

p1 + p2. These properties imply that all lattices also contain the origin, as the sum of p1

and −p1 (which are elements of the lattice due to reflection) is 0. It also imply that lattices

are countably infinite sets, as they must contain all integer combinations of ap1 + bp2 for

a, b ∈ Z. Having established the basic properties of lattices, we can provide a more formal

and constructive definition as,

Definition 2.1.1. A n-dimensional lattice Λ is defined by a set of n linearly independent set

of column vectors (basis) g1, . . . ,gn in Rk. The lattice is constructed by the infinite set of

points in Rk of the form {x = Gu |u ∈ Zn}, where G is the generator matrix of Λ such that

its columns are gm (m= 1, . . . , n). We denote the lattice as Λ(G).

Figure 2.1 presents an example of a lattice and shows the two vectors of the

generator matrix.

2.1.1 Lattice Reduction

For a given lattice Λ(G), any matrix Ḡ = GU also generates the same lattice

(Λ(G) = Λ(Ḡ)) as long as U is a unimodular matrix. An unimodular matrix has integer

elements and |det(U)| = 1. Since the basis are not unique, it is possible to search for the
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Figure 2.1 – Example of a lattice. Here g1 =
�p

3,1
�

and g2 =
�

−1,
p

3
�

a generator matrix that is better in some sense. Although not a very precise definition,

according to [31] a good rule of thumb for a good basis is,

• Basis vectors (ḡ1, . . . , ḡn) are shortest possible,

• Basis vectors are nearly orthogonal.

The first criterion is related to numerical stability and the second is useful for reducing com-

plexity in some problems, such as searching for the closest lattice point to a given point in

space. This problem is closely linked to coding and decoding of lattice points. Figure 2.2

presents the same lattice of Figure 2.1 with two different basis. Its is clear that one repre-

sentation has shorter and more orthogonal vectors. There is a great number of algorithms

that attempt to find shorter basis that satisfy some near-orthogonality criterion. The LLL

algorithm, HKZ, and Minkowski [32] algorithms are some of the most used for communi-

cations.

2.1.2 Voronoi partition

Using lattices, it is possible the divide the Euclidean space into congruent cells.

Although many partitions are possible, one of the most used is the Voronoi partitions which

uses nearest-neighboor rule. The distance from a point x to Λ is,

‖x−Λ‖¬min
p∈Λ
‖x− p‖ (2.1)
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Figure 2.2 – Example of two different representations of the same lattice. The doted lines
present the basis v1 =

�

−1+ 2
p

3,2+
p

3
�

and v2 =
�p

3− 1,−1+
p

3
�

. The
solid lines g1 =

�p
3,1

�

and g2 =
�

−1,
p

3
�

. It is clear that both basis span the
same lattice, however (g1,g2) has smaller vectors and is closer to orthogonality.

Here the norm operator ‖.‖ calculates the Euclidean distance. The nearest-neighbor quan-

tizer maps the point x to its closest lattice point is defined as,

QNN
Λ
(x) = arg min

p∈Λ
‖x− p‖. (2.2)

Finally the Voronoi cell Vp is the set of all points which are quantized to p,

Vp = {x : QNN
Λ
(x) = p} (2.3)

The volume of any Voronoi cell of Λ(G) can be calculated as,

Volume(Vp) = det(Λ) =
Æ

det (G′G). (2.4)

Figure 2.3 presents the Voronoi partition of the lattice presented in the previous figures.

2.1.3 Successive Minima and Shortest Independent Vector Problem

A parameter of great interest in lattice theory is the first Minkowski minima λ1.

It is defined as the smallest Euclidean distance r such that the lattice points inside a ball of

radius r span a space of dimension 1. This definition is generalized, leading to the definition

of successive minima.
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Figure 2.3 – Voronoi partition of the lattice spanned from the basis g1 =
�p

3,1
�

and g2 =
�

−1,
p

3
�

.

Definition 2.1.2. Given a lattice Λ in which its generator matrix has rank n, the i-th suc-

cessive minima (1≤ 1≥ n) is defined as,

λi(Λ) = inf{r|dim (span (Λ∪B(0, r)))≥ i}. (2.5)

Here B(0, r) = {x ∈ Rk,‖x‖ ≤ r}, which represents the closed ball of radius r around 0.

Given the same lattice Λ, the shortest independent vector problem (SIVP) con-

sists on the search for the n linearly independent vectors (ḡ1, . . . , ḡn) with the following

constraint to its length,

max
i
‖ḡi‖ ≤ λn(Λ). (2.6)

Figure 2.4 presents an example of a lattice and its successive minima. For the two-dimensional

real lattices, the Gauss-Lagrange algorithm is known to solve the SIVP. Algorithm 1 presents

a slightly modified version of the Gauss-Lagrange algorithm that is also suitable for two-

dimensional complex lattices. Overall the SIVP is considered to be NP-complete, therefore it

is useful to present a bound to the successive minima using the second Minkowski theorem.

Definition 2.1.3. For any full-rank lattice Λ of rank n,

p

γn det(Λ)1/n ≥

�

n
∏

i=1

λi(Λ)

�
1
n

. (2.7)



Chapter 2. Preliminaries 28

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

Figure 2.4 – Successive minima of the lattice T = (1.5,0.7) ; (1.8,0, 6). We have ‖r1‖ = λ1,
‖r2‖= λ2.

The constant γv is the Hermite constant in dimension v is defined as,

γ= sup
Λ

�

λ1(Λ)
det(Λ)1/v

�2

, (2.8)

where Λ ranges over all v-dimensional lattices. Its values are known for v ∈ [1,8] and

v = 24 [33]. Table 2.1 presents these values. There is also an important upper bound which

Data: Column vectors (g1,g2) ∈ R2 or C2 forming a base for lattice G.
Result: Column vectors (g1,g2) forming a base for Ḡ.
initialization;
if ||g2||< ||g1|| then

Swap g1 and g2

end
G1 = ||g1||2;
µ=

�

�g′1.g2

�

�/G1;
g2 = g2 − dµcg1;
G2 = ||g2||2;
while G2 < G1 do

Swap g1 and g2;
G1 = G2;
µ=

�

�g′1.g2

�

�/G1;
g2 = g2 − dµcg1;
G2 = ||g2||2;

end
Return (g1,g2);

Algorithm 1: Gauss-Lagrange Algorithm
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Table 2.1 – γv values

v γv

2
p

4/3

3 21/3

4 41/4

5 81/5

6 (64/3)1/6

7 641/7

8 2
24 4

is asymptotic on v given by,

γv ≤
1.744v

2πe
. (2.9)

2.2 Channel and System Model

We consider the existence of n independent data streams (or messages), w1, ..., wnt

drawn from the same alphabet Zk
p, p being a prime number and k the message length. The

m-th data stream wm is mapped onto a length l channel input xm by the m-th encoder.

Uniform power allocation is considered across transmit antennas, i.e.,

1
l
‖xm‖2 ≤ s, (2.10)

where s represents the average signal to noise ratio (SNR) per antenna considering the noise

is normalized to unit variance. Also, each of the encoders transmits at the same rate

RT X =
k
l

log(p). (2.11)

It is considered that the system has nt transmitting and nr receiving antennas. The nt × l

matrix X represents the transmitted signals where the m-th row of this matrix represents the

signals from the m-th data stream. Channel gains are represented by the nr × nt matrix H

and the additive white noise is represented by the nr × l matrix Z, its entries are considered

to be i.i.d as CN (0,1). The received signal Y observed across the nr receiving antennas is

written as,

Y= HX+ Z, (2.12)

It is important to note that the elements of X,Y,Z and H may be real or complex depend-

ing on whether the transmitter chooses to map its codewords into real or complex field.
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We assume that the elements of H are i.i.d. Gaussian distributed (with Rayleigh distributed

envelope for the complex case) and remains constant through the transmission block l. The

knowledge of each of its realizations is only available at the receiver side. Under open loop

operation, it is considered that the statistics of H are available at all transmitters. This is

necessary to ensure that the transmitters use a transmission rate that leads to small out-

age probability. If a limited feedback is available, the receiver informs all transmitters the

appropriate transmission rate, ensuring that sum-rate is attained [16].

In some sections, we consider two different scenarios concerning channel cor-

relation. In the uncorrelated scenario, the entries of H are independent with zero mean

and unit variance. When the correlation among the transmitting antennas exists, the rows

of H are independent random vectors, but the elements of each row are correlated with

zero mean and same covariance matrix Σ. Each element of this covariance matrix can be

expressed as,

Σ(i, j) = E
�

(hi −E (hi))
�

h′j −E
�

h′j
���

, (2.13)

where i 6= j, i = 1, . . . , nt and hm represents the m-th column of H. The correlation matrix

(Σ) is normalized and thus all its diagonal elements are unity.

Throughout this work, one of the main parameters of analysis is the achievable

rate defined as,

Definition 2.2.1. (Achievable Rate) A sum-rate R(H) is achievable if for any ε > 0 and l

large enough, there exists an encoder and decoder such that reliable communication decod-

ing is possible,

P ((ŵ1, . . . , ŵn) 6= ((w1, . . . ,wn))< ε, (2.14)

so long as the total rate does not exceed R(H),

nt ∗ RT X ≤ R(H). (2.15)

2.2.1 Conventional Linear Receivers

Rather than jointly processing the observed signals from all the antennas through

l channel usages, as the ML linear receiver, conventional linear receivers first attempt to

decorrelate the transmitters data streams that are spatially coupled by the MIMO channel

and then recover each individual data streams using parallel single input, single output

(SISO) decoders. Upon receiving Y, they apply an nr × nr equalization matrix B,

Ȳ= BY= BHX+BZ. (2.16)

Figure 2.5 illustrates the operation of these decoders. The aspect that differentiates ZF linear
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Figure 2.5 – Operation of conventional MIMO linear receivers.

Table 2.2 – Equalization matrix for the ZF and MMSE linear receivers

Equalization matrix (B)

ZF H†

MMSE sH′
�

Int
+ sHH′

�−1

receivers from MMSE linear receivers is the choice of the equalizing matrix B. Table 2.2

presents these equalization matrices. The achievable rate for the m-th data stream of these

conventional receivers is expressed as,

Rconventional,m(H,bm) =
1
2

log

 

s
�

b′mhm

�2

‖bm‖2 + s
∑

i 6=m

�

b′mhi

�2

!

(2.17)

It is possible to observe from (2.16), that upon using these linear receivers the

effective noise becomes BZ. As matrix B elements can have any value, the noise on each data

stream may be unevenly amplified, resulting in reduced system efficiency. As an example,

lets consider the following 2× 2 system,

�

y1

y2

�

=

�

2 1

1 1

��

x1

x2

�

+

�

z1

z2

�

(2.18)

Applying the ZF equalization matrix to the received signals,

�

1 −1

−1 2

��

y1

y2

�

=

�

x1

x2

�

+

�

z1 − z2

−z1 + 2z2

�

. (2.19)

The effective noise variance that affects the first and second data streams are 2 and 5 re-

spectively.
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2.2.2 Integer-Forcing Linear Receivers

The effects of uneven noise amplification are particularly harmful when channel

matrices are close to singular. IF linear receivers significantly outperform conventional linear

receivers in this scenario, while still having small complexity.

In the IF framework, each transmitter encodes its messages using the same linear

lattice codes. Due to this structure, any integer combination of codewords is also a code-

word, allowing the receiver to decode these integer combinations with SISO decoders. After

decoding a suitable number integer combinations of codewords, it solves a linear system to

obtain each individual message. Figure 2.6 illustrates the operation described. Each mes-

Figure 2.6 – Operation of IF linear receivers.

sage is encoded by a nested lattice code C , producing nt row vectors in C ⊂ R1×l . Random

dithers dm ∈ R1×l and the encoded messages tm are used to calculate the signal vectors xm

as,

xm = [tm − dm] mod Λc. (2.20)

Dither dm is a uniformly distributed and independent of tm, and is known by the transmitters

and receiver. It is used to remove dependency between the signal vector and the effective

noise. The operator [r] mod Λc represents the quantization error of r with respect to the

lattice ΛC ,

[r] mod Λc = r− arg min
t∈Λc

‖r− t‖. (2.21)

Due to the crypto lemma [34], the signals xm are statistically independent of tm.

Upon receiving Y an equalization matrix B is applied. This matrix attempts to

project the equalized channel BH onto a non-singular integer (or Gaussian integer if complex

modulation is taken into account) matrix A with nt × nt dimensions. Matrix A represents

the linear combinations of codewords that will be decoded. Furthermore, the receiver also
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removes combinations of dithers from the desired signal,

Ȳ= [BY+AD] mod Λc (2.22)

= [BHX+BZ+AD] mod Λc (2.23)

= [AX+ (BH−A)X+BZ+AD] mod Λc (2.24)

= [AT+ (BH−A)X+BZ] mod Λc (2.25)

Here D is a matrix in which each row represents the dither sequences dm. Each row of T

represents the encoded messages tm. The effective noise is [(BH−A)X+BZ] mod Λc, and

the desired signal component is calculated as [AT] mod Λc. Due to the use of dither, it

is possible to observe that these components of the received signal are independent. Is is

also important to note that the effective noise is the summation of two undesired effects,

noise amplification and the mismatch between the equalized channel BH and its integer

approximation A. Matrices A and B have to be carefully chosen in order to minimize both

effects. In particular, along the m-th data stream the effective noise variance is expressed

as,

gm(am,bm) = s‖H′bm − am‖2 + ‖bm‖2, (2.26)

where am and bm denote the m-th rows of matrices A and B, respectively. The transmission

rate of any single data streams, denoted computational rate, can be calculated as [5] 1,

Rcomp,m (H,A,B) = log+
�

s
s‖H′bm − am‖2 + ‖bm‖2

�

. (2.27)

The achievable sum-rate of IF linear receivers is obtained as,

RI F = nt max
A

Rank(A)=nt

max
B

min
m=1,...,nt

Rcomp,m (H,A,B) . (2.28)

The optimal equalization matrix Bopt , that solves a part of problem (2.28), can be derived

as a function of the integer matrix A and is expressed as [5]

Bopt = sAH′
�

Int
+ sHH′

�−1
. (2.29)

Given the eigendecomposition and Cholesky decomposition,

VDV′ = Int
+ sH′H, (2.30)

L′L=
�

Int
+ sH′H

�−1
, (2.31)

1 The transmission rate equations presented are suited for complex channels. For real channels, these equa-
tions should be multiplied by a factor of 1/2.
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We define matrix Q in two different ways,

Q=







L, or

D−1/2V′.
(2.32)

We use each definition of Q in different subsection of this work. The freedom to choose

between these representations greatly simplifies our analysis. The achievable sum rate can

be simplified to,

RI F = nt max
A

Rank(A)=nt

min
m=1,...,nt

Rcomp,m(H,A), (2.33)

in which Rcomp,m(H,am) is expressed as,

Rcomp,m(H,A) = log+
�

‖Qa′m‖
−2
�

. (2.34)

The optimization problem from (2.33) can be written as,

Aopt = ar g min
A

Rank(A)=nt

max
m=1,...,nt

‖Qa′m‖
2, (2.35)

The search for the optimal A in (2.35) is equivalent to the search for the shortest set of n

linearly independent vectors (SIVP) in the lattice generated by Q in any of its two forms.

Although SIVP is considered to be an NP-hard problem, lattice reduction algorithms such

as LLL and BKZ can be used to obtain an approximate answer in polynomial time with a

small penalty to capacity. In [18] and [17], an in-depth analysis on the performance of IF

receivers with the use of lattice reduction techniques was performed by the authors.

2.2.2.1 Compute and Forward Transform (CFT)

In [35] the authors present a variation to the IF framework in which the receiver

uses successive interference cancellation (SIC) to increase the achievable sum rate. By de-

coding the combination of codewords in order of decreasing computational rate and using

SIC, the receiver can remove the combinations with higher computational rates from the

combinations with lower computational rates. By doing so, the different streams of data

are no longer limited by the worst computational rate as in the traditional IF framework,

which allows each transmitter to encode its messages with different rates. The sum rate of

the C-FT is,

RsumC−F T
=

nt
∑

m=1

Rcomp,opt,m (H,A) . (2.36)

Here Rcomp,opt,m (H,A) represents the maximum computational rate with respect to A. Over-

all C-FT is more complex than IF due to the use of SIC. However its attainable sum rate is

equal or greater than IF receiver’s sum rate
�

RsumC−F T
≤ RI F

�

as,

nt min
m=1,...,nt

Rcomp,opt,m(H,A)≤
nt
∑

m=1

Rcomp,opt,m (H,A) . (2.37)
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2.2.2.2 Successive IF

More recently in [16] by using receivers that perform noise prediction, the au-

thors introduced the Successive Integer-Forcing (SIF) which was proven to attain MIMO

capacity for uniform power allocation systems,

RsumSI F
= log

�

det
�

Int
+ sH′H

��

. (2.38)

It is important to note that, even though CFT and SIF outperform the traditional

IF linear receiver, both systems require that each of its transmitters allocate different trans-

mission rates. This is only possible if either the receiver feedbacks this information to the

transmitters or if all transmitters have complete channel state information (CSI).
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Chapter 3

Approximate Sum Rate for Integer-Forcing

Receiver

3.1 Introduction

In this chapter we start presenting our contributions. The contents of it were

published in [36]. For simplicity, only systems with an equal number of transmitting and

receiving antennas (n) are considered in this chapter. We derived two approximations to

the achievable sum-rate of the IF linear receiver and their respective analytical probability

density functions (PDF). The first approximation is based on the Gauss-Lagrange algorithm

for real or complex systems with two antennas at the transmitter and receiver (2×2 arrays)

and uncorrelated channels. The second approximation considers an n × n array for both

correlated and uncorrelated channels and its derivation is based on Minkowiski’s second

theorem. In order to validate our approximations, three metrics were evaluated, the sum-

rate’s mean value, the outage probability, and the outage rate.

It is interesting to note that the IF subject inherits many concepts from MIMO

theory subject to Rayleigh fading, which has been fully analyzed using random matrix the-

ory. Unfortunately, there is a scarcity of results joining the areas of random matrix and

lattice theory. Although there are several famous random ensembles of lattices, such as the

Minkowski-Hlawka-Siegel (MHS) ensemble, the Rogers ensemble, and random construc-

tion A (Loeliger’s ensemble) [37], none of them are useful for this analysis. Since IF linear

receivers rely on lattices whose generator matrix is a function of independent and identical

distributed channel gains, these lattices do not satisfy the criteria (such as fixed cell volume)

to belong to any of these ensembles. As a consequence, there is no closed-form expression

to obtain the ergodic achievable sum-rate of the IF linear receiver and therefore, it is neces-

sary to compute it through a series of Monte-Carlo simulations, requiring an NP-complete

optimization procedure at every iteration. Our approximations are computable more easily

since the PDF for the approximation to the n × n array are given as one fold integral and

its mean value can be computed as a simple function of the derivative of the characteristic

function.
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The remainder of the chapter is organized as follows. We begin Section 2.2 by

presenting our approximations. In section 2.3, the PDFs of our approximations are derived.

In Section 2.4, we compare simulation results to those obtained from numerical calculation

of our approximations. Finally, Section 2.5 concludes the chapter.

3.2 Proposed Approximations

In this section, we present the largest Minkowski Minima, λn, for the IF linear

receiver and then the approximation for the 2× 2 and n× n arrays.

3.2.1 IF and the Minkowski Minima

It is possible to observe, from equations (2.33) and (2.35), that the calculation of

the IF achievable sum rate involves a complex optimization problem. Since there is no closed

form expression to determine the optimal matrix A, it is difficult to obtain the distribution of

RI F in (2.33). Given Q, as the basis for a lattice Λ(Q), the calculation of the optimal matrix

A in problem (2.33) can also be viewed as the search for the unimodular matrix that will

result in a new lattice basis Q̄ = QA with smallest possible vector norms. The computable

IF rate (2.34) can then be expressed as a function of Q̄,

Rcomp,m = log+
�

‖Qa′m‖
2
�

(3.1)

= log+
�

‖q̄m‖−2
�

, (3.2)

in which q̄m is the m-th column of Q̄. The vector q̄m that minimizes (3.2) is the one with the

largest norm. Since Q̄ is the representation of Λ(Q) with the smallest possible basis norms,

the vector q̄m with largest norm is equivalent to the n-th successive lattice minima (λn(Q))

of Λ(Q). Therefore the IF achievable sum rate can also be expressed as,

RI F = n log+
�

λn(Q)
−2
�

. (3.3)

In the next subsections, we derive approximations to λn (Q). For each approximation, we

are able to obtain their distribution. These are used to derive the approximations to the IF

sum rate.

3.2.2 The Approximation for 2× 2 array

For a real two-dimensional lattice, its reduction problem (2.35) can be solved

by the Gauss-Lagrange algorithm. However, obtaining the distribution of the output of the
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algorithm is excessively complex. Fortunately, if the lattice basis Q= L is used for the chan-

nels considered in this section, that is, real or complex uncorrelated Gaussian distributed,

it has been observed that 98% of the channel realizations requires only one iteration of the

Gauss-Lagrange algorithm to obtain λ2(L), as will be shown in section 3.4. Therefore, our

approximation is based on the output of one iteration of algorithm 1.

3.2.2.1 Analysis of the Gauss-Lagrange Algorithm

Given matrix L defined in (2.31) as input of the algorithm, consider lm as the
m-th column and lab as the element at position (a, b). The result (L̄1) of one iteration of the
Gauss-Lagrange lattice reduction is,

L̄1 =



























(l1, t1) , if ||l1||< ||l2||&||l1||< ||t1||,

(t1, l1 − dµ(t1, l1)ct1) , if ||l1||< ||l2||&||l1||> ||t1||,

(l2, t2) , if ||l2||< ||l1||&||l2||< ||t2||,

(t2, l2 − dµ(t2, l2)ct2) , if ||l2||< ||l1||&||l2||> ||t2||.

(3.4)

In which,

µ(a, t) =
a′ · t
||a||2

, (3.5)

t1 =l2 − dµ(l1, l2)cl1, (3.6)

t2 =l1 − dµ(l2, l1)cl2. (3.7)

Since all possible outcomes of L̄1 are also representations ofΛ(L), we use the minimum value

among the largest column norm of each possible outcome of L̄1 in order to approximate

λ2 (L). To further simplify the analysis, the rounding operation is removed, so that,

dµ (l1, l2)c ≈ µ (l1, l2) = l12/l11,

dµ (l2, l1)c ≈ µ (l2, l1) =
l11l∗12

|l12|2 + l2
22

. (3.8)

Notice that since L is the result of a Cholesky decomposition, l21 = 0, l11 and l22 are real

and positive, l12 may be real or complex following the format of the elements of H. Using

(3.8), t1 and t2 are approximated as,

t1 ≈ t̄1 = l2 −µ(l1, l2)l1 = (0, l22)
T

t2 ≈ t̄2 = l1 −µ(l2, l1)l2 =

�

l11l2
22

l2
22 + |l12|2

,−
l11l22l∗12

l2
22 + |l12, |2

�T

. (3.9)

Removing the rounding operations and using (3.9), we have,

dµ (t1, l1)c ≈ µ (̄t1, l1) = 0,

dµ (t2, l2)c ≈ µ (̄t2, l2) = 0. (3.10)
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Considering the possible outcomes of L̄1 and their respective restrictions, along with the

equations (3.8), (3.9), (3.10), the proposed approximation to λ2 (L) is expressed as,

λ2 (L)≈ λ̂2 (L) =min (τ1,τ2) , (3.11)

in which

τ1 =max (l11, l22) ,

τ2 =max

�

||l2||,
l11l22

Æ

|l12|2 + l2
22

�

. (3.12)

The approximation to the 2× 2 IF sum rate is defined as,

R̂I F2
= 4 log+

�

λ̂−1
2

�

L′
��

. (3.13)

3.2.3 The Approximation for n× n Array

Algorithms that perform lattice reduction on dimensions greater then two are

significantly more complex than the Gauss-Lagrange algorithm, and therefore, we are un-

able to replicate the same reasoning to obtain a good approximation to the IF sum rate for

arrays with an arbitrary number of antennas. Using a different approach to the problem, we

present, in this subsection, an approximation to the n× n array IF sum rate that is tight at

high SNR.

We begin proposing an approximation to λn(Q) expressed as,

λn(Q)≈
p

γn det(Q′Q)1/2n. (3.14)

It is important to note that the values of the Hermite constant γq in table 2.1 are for real

valued lattices. For complex valued lattices, n= 2q should be considered.

The rationale for the approximation comes from the upper bound to the geo-

metrical mean of Minkowski minima, given by,

p

γn det(Q′Q)1/2n ≥

�

n
∏

i=1

λi(Q)

�
1
n

. (3.15)

Since the geometrical mean of a set is always smaller than its largest element,

λn(Q)≥

�

n
∏

i=1

λi(Q)

�
1
n

, (3.16)

using (3.15) and (3.16), we will suppose that (3.14) is valid. Unfortunately, given the order

of the inequalities, we do not have a bound, and that is the reason to propose an approx-

imation. The tighnesss of this approximation will be shown by the analysis of the gap and

also by simulations. Using (3.14), our approximation R̂I Fn
, to the achievable sum rate RI F

will be given by,

R̂I Fn
= n log+

�

�

γn det(Q′Q)1/n
�−1�

. (3.17)
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3.2.3.1 Lower Bound to Compute and Forward Transform

Given (2.36), it is possible to express the achievable C-FT sum rate as,

RsumC−F T
= log+

�

n
∏

m=1

λ−2
m (Q)

�

. (3.18)

Due to (3.15), it is possible to observe that R̂I Fn
≤ RsumC−F T

, and therefore our approximation

to the n× n array IF sum rate also serves as a lower bound to the C-FT sum rate.

3.2.4 The Error of the n× n Array Approximation

In order to assess the n× n array approximation error as the SNR grows, let us

compute the coefficient of variation defined as,

cv(s) =
σe

µe
=

r

E
�

�

RI F(s)− R̂I F(s)
�2�

E [RI F(s)]
. (3.19)

In whichσe represents the standard deviation of the error. The coefficient of variation shows

the extent of variability of the error in relation to the mean sum rate, and therefore is a metric

that allows the comparison of the approximation error between different arrays. Using the

definition of Q= D(s)−1/2V′, σ2
e can be expressed as,

σ2
e = E

�

�

n log

�

γn det(D(s)−1)1/n

λ2
n (D(s)−1/2V′)

��2�

. (3.20)

At high SNR, (2.30) can be written as VDV′ ≈ sH′H, and therefore,

σ2
e ≈ E





�

n log

�

γn det(s−1∆−1)1/n

λ2
n

�

s−1/2∆−1/2V′
�

��2


 , (3.21)

where the matrix ∆ is the eigenvalue matrix of H′H. Now using the property that λn (cL) =

cλn (L) and det (cL) = cn det (L) we finally have,

σ2
e ≈ E





�

n log

�

γn det(∆−1)1/n

λ2
n

�

∆−1/2V′
�

��2


 . (3.22)

When SNR is large, it is possible to observe that error variance σ2
e is constant. Since µe

increases as the SNR grows, it is possible to conclude that,

lim
s→∞

cv(s) = 0. (3.23)

In section 3.4, we will show through a series of numerical simulations how cv behaves for

a limited SNR as the number of antennas increases.
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3.2.5 Approximate Degrees of Freedom of the n× n Array Approximation

The approximate degrees of freedom (η) of a certain coding scheme is defined

as [38],

η= lim
s→∞

R̂sum

log(s)
, (3.24)

in which R̂sum(s) represents its approximate sum transmission rate. In this subsection we

prove that our n× n array approximation attains n degrees of freedom, the same number

as the IF linear receiver (proved in [5]).

As shown in subsection 3.2.4, the approximation can be expressed as,

R̂I Fn
= n log+

�

�

γn det(Q′Q)1/n
�−1�

= −n log
�

γn det(s−1∆−1)1/n
�

. (3.25)

Therefore, the approximate degrees of freedom for n× n array approximation is

η= lim
s→∞

−n log
�

γn det(s−1∆−1)1/n
�

log(s)

= lim
s→∞

− log
�

γn det (∆)−1
�

− log(s−n)

log(s)
= n.

3.3 Distribution of the Approximations

In order to derive the ergodic achievable sum rate, outage probability, and out-

age sum rate, we will investigate the distribution of the approximations of the 2×2 and n×n

arrays in the following subsections. For the 2×2 array approximation, we will analyze sce-

narios with real and complex uncorrelated channel gains. For the n×n array approximation,

complex correlated and uncorrelated channel gains will be considered.

3.3.1 Distribution of the 2× 2 Array Approximation

First, we derive the joint PDF of the elements of matrix L and with this result, we

obtain the distribution of the 2×2 array approximation. We will work with n×n arrays and

eventually set n = 2. We will use β = 1 to represent the real case, and β = 2 to represent

the complex case.
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Fλ̂2r
(u) =

ˆ 1

0

ˆ 1

−1

ˆ 1

0
p joint r (l11, l12, l22)×

�

H (u− l11)H (u− l22) +H
�

u−
q

l2
12 + l2

22

�

H

�

u−
l11l22

Æ

l2
12 + l2

22

�

−

H (u− l11)H
�

u−
q

l2
12 + l2

22

�

H

�

u−
l11l22

Æ

l2
12 + l2

22

�

H (u− l22)

�

dl22dl12dl11. (3.27)

Theorem 3.1. The joint PDF of the elements of matrix L or L′ defined in (2.31) for an n× n

array is,

PL(L) =
2nCβ ,n

s
βn2

2

exp
�

−
β

2s
tr((L′L)−1 − In)

�

× det((L′L)−1 − In)
β
2−1 det(L′L)−β(n−1)−2×

n
∏

j=1

lβ(n− j)+1
j j H((L′L)−1 − In). (3.26)

The proof of Theorem 3.1 is presented in Appendix A.1.

Setting n = 2, we now separate the analysis of the real and complex cases in

order to obtain the cumulative distribution function (CDF) of λ̂2 for both scenarios.

3.3.1.1 Real Case

Theorem 3.2. The joint CDF of the approximation of the second Minkowski minima for the

2× 2 real array λ̂2r is expressed in (3.27).

The proof of Theorem 3.2 is presented in Appendix A.2.

3.3.1.2 Complex Case

Theorem 3.3. The joint CDF of the approximation of the second Minkowski minima for the

2× 2 complex array λ̂2c is presented in (3.28). Here the constant R is defined as,

R=
q

1− l2
11 − l2

22 + l2
11l2

22. (3.29)

The proof of Theorem 3.3 is presented in Appendix A.3.

3.3.1.3 PDF of R̂I F2

The PDF pλ̂2
(u) for both cases is obtained as the derivative of the appropriate

CDF (Fλ̂2r
(u) for the real case or Fλ̂2c

(u) for the complex case). Finally the PDF of R̂I F2
given
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Fλ̂2c
(u) =

ˆ 1

0

ˆ 1

−1

ˆ 1

0

ˆ R

−R
p jointc (l11, l12, l22, k12)×

�

H
�

u−
q

l2
12 + l2

22 + k2
12

�

H

�

u−
l11l22

Æ

l2
12 + l2

22 + k2
12

�

+H (u− l22)H (u− l11)−

H
�

u−
q

l2
12 + l2

22 + k2
12

�

H

�

u−
l11l22

Æ

l2
12 + l2

22 + k2
12

�

H (u− l11)H (u− l22)

�

dk12dl22dl12dl11. (3.28)

in (3.13) can be obtained as,

pR̂I F2
(r) =







0, if r < 0,

K2δdirac(r)−
2−r/4

4 log(e)pλ̂2

�

2−r/4
�

, otherwise,
(3.30)

in which δdirac(.) is the dirac delta function and the constant K2 is given by,

K2 =
ˆ 0

−∞
−

2−r/4

4 log(e)
pλ̂2

�

2−r/4
�

dr. (3.31)

3.3.2 Distribution of the n× n Array Approximation

Since

Q′Q= VD−1V′, (3.32)

then applying (2.30) in (3.17), the following can be written

R̂I Fn
= n log+

�
�

γn det
�

In + sH′H
�−1/n�−1�

. (3.33)

This can be expanded as

R̂I Fn
=max

�

0, log(γ−n
n ) + log

�

det
�

In + sH′H
���

(3.34)

=max
�

0, log(γ−n
n ) + CMIMO

�

, (3.35)

where we define

CMIMO = log
�

det
�

In + sH′H
��

. (3.36)

Note that the approximate achievable sum rate is the classical MIMO capacity with uniform

power allocation [39] plus a constant. Moreover, the distribution of (3.36) is given as a

function of the characteristic function as [40],

pMIMO(r) =
1

2π

ˆ
R

eıωrΦ(ω)dω. (3.37)
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Here the characteristic function Φ(ω), for the uncorrelated channel, is given as [40],

Φun(ω) = K det(hu j,k) j,k=1,...,n, (3.38)

with

K−1 =
1
n!

n
∏

j=1

Γ ( j + 1)Γ ( j + 2n), (3.39)

hu j,k = s−ıωΓ ( j + k− 1)U(ıω, ıω− j − k+ 2; s−1), (3.40)

where U(a, b; c) is the Tricomi confluent hypergeometric function, and Γ (.) defines the

gamma function.

In the same way, Φ(ω) is given, for the correlated channel, as

Φcor(ω) = KΣ det(hc j,k) j,k=1,...,n, (3.41)

in which,

KΣ =
−n!

Γ (n+ 1)
∏

j>k(σ j −σk)

n
∏

j=1

σ−n
j

Γ ( j)
(3.42)

hc j,k = σ
k−ıω
j s−ıωΓ (k)U

�

ıω, ıω− k+ 1; s−1σ−1
j

�

. (3.43)

The variablesσi are the eigenvalues of the covariance matrixΣ. Now, since the approximate

achievable sum rate is a linear function of CMIMO, the PDF of the approximation can be

calculated as,

pR̂I Fn
(r) =







0, if r < 0,

Knδdirac(r) + pMIMO

�

r + log(γn
n)
�

, otherwise.
(3.44)

Here Kn is given by,

Kn =
ˆ 0

−∞
pMIMO

�

r + log(γn
n)
�

dr. (3.45)

3.3.2.1 Successive Integer Forcing Distribution

As mentioned in 2.2.2.2, SIF receivers are proven to attain MIMO capacity. There-

fore the PDF of its achievable sum rate can be calculated through (3.37), using the charac-

teristic functions (3.38) and (3.41) for uncorrelated and correlated channels respectively.

3.3.3 Ergodic Capacity, Outage and Outage Rate of the Approximations

Considering R̂I F a general notation which represents either R̂I F2
or R̂I Fn

, the mean

value of the approximations can be calculated with the following integral,

CR̂I F
¬ E

�

R̂I F

�

=
ˆ ∞
−∞

rpR̂I F
(r)dr. (3.46)
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However for RI Fn
, when the characteristic function of CMIMO exists around 0, it is simpler to

obtain the mean value as a function of the derivative of its characteristic function,

CR̂I Fn
= log

�

γn
n

�

− ı
dΦ(ω)

dω

�

�

�

�

ω=0

. (3.47)

The ergodic capacity is important for the case in which limited feedback from the receiver is

possible and when blocklength is much larger than the coherence period. Under this opera-

tion, the system attains sum-rate and the ergodic capacity represents the average transmis-

sion rate over different channel realizations. In the absence of feedback the figure of merit

is the outage rate, defined as,

Routage(ρ) = sup
�

R : poutage(R)≤ ρ
�

, (3.48)

in which poutage is the outage probability defined as,

poutage(R) = P
�

R̂I F (H)≤ R
�

. (3.49)

The parameter R̂I F (H) represents the approximate achievable rate of the receiver for a given

channel realization H. Having the CDF PR̂I F
(R) =

´ R
−∞ pR̂I F

(r)dr, the outage rate is obtained

as the inverse function of the CDF

Outrate(ρ) = P−1
R̂I F
(ρ). (3.50)

The outage rate is important for transmitters in an open-loop operation. In this case, each

transmitter calculates its transmission rate, ensuring that the outage probability will be no

larger than a value previously set.

3.4 Simulations

In this section, we present several simulations in order to show the accuracy

of the proposed approximations. For all numerical simulations, we have considered 104

repetitions of the system model described in section 2.2. In order to obtain the matrix A,

which maximizes (2.34), the BKZ algorithm presented and implemented in the number

theory library (NTL) was used with block size n [41].

3.4.1 Gauss-Lagrange and second Minkowski Minima.

In this simulation, we analyze the frequency of channel realizations in which

one iteration of the Gauss-Lagrange attains the optimal output. The results are presented

in Figure 3.1 considering real and complex uncorrelated channel gains. It is possible to

observe that, for over 98% of channel realizations, only one iteration of the Gauss-Lagrange

is needed to obtain λ2.
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Figure 3.1 – Frequency of channel realizations in which the output of one iteration of Gauss-
Lagrange is optimal versus Total SNR (dB)

3.4.2 Mean Root Squared Error per Antenna

In order to investigate the error associated with R̂I Fn
as the number of antennas

grows, we have performed numerical simulations of the coefficient of variation of the n× n

complex array approximation (3.19) considering s = 40dB. Note that, the error was com-

puted using the exact known values of γn (as present in Table 2.1) for n = {2,3, 4,12} and

the bound (2.9) for n = [21,40]. Figure 3.2 presents these results. It is possible to observe

that for all arrays tested, the coefficient of variation is smaller than 3.5%, and for large

arrays it approaches 2.3%.

3.4.3 Ergodic Rate CR̂I F

In this subsection, we have compared the ergodic sum-rate defined in (3.46),

as a function of the total SNR (SNRt = ns). Curves representing the ergodic sum-rate for

the IF approximation, IF linear receiver, ZF linear receiver, and also the MIMO capacity are

presented in all figures.
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Figure 3.2 – Coefficient of Variation vs Number of antennas

3.4.3.1 Uncorrelated Channels

In Figure 3.3, we analyze the tightness of R̂I F2
for uncorrelated channels with

real and complex gains. As can be observed, the simulated RI F and R̂I F2
curves are close for

all values of SNR. The performance of R̂I Fn
for uncorrelated complex channels is analyzed

in Figure 3.4 for setups with 2×2 and 4×4 arrays and in Figure 3.5, for 40×40 array setup

(black curves). It is possible to note that the approximation is indeed very tight at high SNR

for all the cases.

-

3.4.3.2 Correlated Channels

In Figure 3.5 (blue curves) and 3.6, the simulations consider the existence of

correlation among transmitting antennas with covariance matrices Σ1, Σ4 and Σ40 for the

2×2, 4×4 and 40×40 arrays, respectively. All covariance matrices follow the same construc-

tion method, in which all elements are equal to 0.8 with the exception of the elements in

the diagonal, which are unit. These matrices were chosen because they represent channels

that are highly correlated, contrasting with the previous simulations done for uncorrelated

channels. For high SNR values, the curves RI F and R̂I Fn
are very close regardless of the num-

ber of antennas or correlation among transmitting antennas. We find that, as correlation

among antennas grows, the ergodic rate degrades, as expected. However, it is interesting to



Chapter 3. Approximate Sum Rate for Integer-Forcing Receiver 48

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Figure 3.3 – Ergodic Sum Rate versus Total SNR (dB) for 2 × 2 array with uncorrelated
channels.
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Figure 3.4 – Ergodic Sum Rate versus Total SNR (dB) for the 2 × 2 and 4 × 4 array with
uncorrelated channels.

note that the degradation is more severe for the zero forcing linear receiver, showing that

IF linear receivers are not only more efficient than ZF linear receiver but also more robust

to channel correlation. As the correlation between columns of matrix H becomes stronger,

the probability of ill-conditioned matrices increases. As ZF linear receivers are significantly
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Figure 3.5 – Ergodic Sum Rate versus Total SNR (dB) for the 40×40 array. Black curves and
blue curves are for uncorrelated and correlated channels respectively.
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Figure 3.6 – Ergodic Sum Rate versus Total SNR (dB) for the 2 × 2 array and 4 × 4 with
correlated channels.

suboptimal in these situations, the difference in performance to IF linear becomes clearer.
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3.4.4 Outage Probability

In Figures 3.7 we present the outage probability for the 2×2 array for s = 7dB,

comparing the tightness of both R̂I F2
and R̂I Fn

approximations. Both approximations are

close to RI F however, R̂I F2
outperforms R̂I Fn

which is usually the case for low SNR. For the

region of small outage, which is usually the region of interest we can see in Figure 3.8 a

more significant difference between the two approximations. It becomes clear that at low

SNR, is is better to use the 2× 2 array approximation.
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Figure 3.7 – Outage Probability versus Sum Rate for the 2× 2 complex array with uncorre-
lated channels at s = 7dB.

3.4.5 Outage Sum Rate

For the same setup as in 3.4.3, we compare the 5% outage sum rate, that is

Routage(0.05). Once again, uncorrelated and correlated channels are analyzed.

3.4.5.1 Uncorrelated channels

In Figure 3.9 and 3.10 (black curves) we show the 5% outage rate associated

with R̂I Fn
for 2× 2, 4× 4 and 40× 40 complex arrays. It is interesting to note that the 5%

outage sum rate curves are farther away from each other than the ergodic sum rate curves,
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Figure 3.8 – Zoom of the low outage probability region versus Sum Rate for the 2× 2 com-
plex array with uncorrelated channels at s = 7dB.
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Figure 3.9 – Outage Sum Rate 5% versus Total SNR (dB) for 2 × 2 and 4 × 4 arrays with
uncorrelated complex channels

showing that for strict outage rate conditions the penalty for using simpler transmission

methods is greater.
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Figure 3.10 – Outage Sum Rate 5% versus Total SNR (dB) for the 40×40 array. Black curves
and blue curves are for uncorrelated and correlated channels respectively.

3.4.6 Correlated channels

In Figure 3.11, the outage rate has been plotted using the covariance matrices

Σ2 and Σ4. In the same way, the blue curves of Figure 3.10 illustrates the outage rate for the

case 40× 40 with covariance matrix Σ40 . In all the cases, a perfect agreement is observed

between our proposed approximations and the exact values.

3.5 Chapter conclusions

In this chapter, we have introduced two new approximations to the achievable

sum rate of the IF linear receiver in the presence of Rayleigh distributed fading. We have

shown, through a series of simulations, that for the 2×2 array, over 98% of channel realiza-

tions require only one iteration of the Gauss-Lagrange algorithm to obtain λ2. We have also

shown, that our approximation for the 2× 2 array, which is based on the Gauss-Lagrange

algorithm, is very tight for all SNR values for both real and complex channels.

We have analytically shown that the n× n approximation attains the same de-

grees of freedom as the IF linear receiver and that the coefficient of variation is null for

asymptotically high SNR. Through numerical simulations, we have also shown that this

approximation is tight for high SNR, and its coefficient of variation is small even for lim-
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Figure 3.11 – Outage Sum Rate 5% versus Total SNR (dB) for 2× 2 and 4× 4 arrays with
correlated complex channels.

ited SNR. Observing the relation of the simulations and analytical results, it is possible to

state that the approximation is close to the performance of IF linear receivers regardless of

channel correlation and number of antennas. From the simulations, it was also possible to

observe how the IF linear receiver is more efficient and more robust to channel correlation

than the zero forcing linear receiver.
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Chapter 4

Approximate Sum Rate for Integer-Forcing

Receiver with Imperfect Channel Estima-

tion

4.1 Introduction

In the previous chapter, it is considered that the receiver has perfect channel

state information (CSIR). In reality, the channel state has to be estimated and therefore

may contain errors. In this chapter, we propose an approximation for the mean achievable

sum rate of IF and CFT receivers with imperfect CSI. For IF receivers, we also derive the PDF

of the approximation and present the expression of the ergodic IF achievable sum rate for

uncorrelated and correlated channels. Only complex channels are taken into consideration.

We show the tightness of our approximations through a series of simulations.

The remainder of the chapter is organized as follows. In Section 4.2, we present

our approximations and derive its PDF. In Section 4.3, we compare simulation results to

those obtained with our approximation. Finally, Section 4.4 concludes the chapter.

4.1.1 Effects of Imperfect CSI

In the traditional framework of the receivers addressed in 2.2, perfect CSI is

considered to be available at the receiver. However, in reality, each realization of the channel

has to be estimated and therefore it is not perfect. We express the estimated channel gains

to be,

He = H+ eΩ, (4.1)

in which, eΩ is the estimation error. The matrixΩ ∈ Cnr×nt is uncorrelated to H and its entries

are i.i.d zero mean complex Gaussian with unitary variance. The constant e is a measure of

the accuracy of the estimation. In the presence of this kind of channel estimation error, the
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Gaussian integer matrix Ae and the equalization matrix Be are calculated respectively as,

Ae = arg min
Ae∈Z[i]nt×nt

Rank(Ae)=nt

max
m=1,...,nt

‖Qea
′
m‖

2, (4.2)

Be = sAeH
′
e

�

Int
+ sHeH

′
e

�†
. (4.3)

Given the singular value decomposition VeDeV
′
e = Int

+ sH′eHe, matrix Qe can be calculated

as,

Qe = D−1/2
e V′e. (4.4)

It is important to note that matrices Ae and Be might not be optimal for (2.33), therefore

resulting in an increase of the effective noise. The achievable sum rates for IF and CFT

receivers with imperfect CSI are expressed respectively as,

RI Fe = nt min
m

Rcomp,m (He,Ae,Be) , (4.5)

RC F Te =
nt
∑

m=1

Rcomp,m (He,Ae,Be) , (4.6)

4.2 Approximation to the Average Achievable sum rate

In this section, we first derive an approximation to the average achievable sum

rate of both IF and CFT receivers. Next, we analyze the rate-loss associated with the imper-

fect channel estimation. In the third subsection, we derive an approximation to the IF sum

rate PDF for uncorrelated and correlated random channel matrices. In the last subsection,

we define and present an approximation for the ergodic IF sum rate.

4.2.1 Average Achievable sum rate of IF and CFT receivers

We start by defining our parameter of analysis.

Definition 4.2.1. Considering the channel matrix H to be fixed and the other system pa-

rameters to be distributed according to 2.2, the average achievable sum rate is defined as,

R̄F = EΩ,Z,X [RF (Ω,Z,X)] , (4.7)

in which RF is a general notation representing either RI Fe
or RC F Te

.

In order to obtain the expectation of the achievable sum rates, it is simpler to first

obtain the expectation of the effective noise variance for the m-th stream and then calculate

R̄F .



Chapter 4. Approximate Sum Rate for Integer-Forcing Receiver with Imperfect Channel Estimation 56

We begin the analysis by obtaining an approximation to the inverse of the esti-

mated channel matrix He. Considering e << 1, the linear part of a Taylor series is used to

approximate He as,

H†
e = (H+ eΩ)† ≈ H†

�

In − eΩH†
�

. (4.8)

At high SNR, Be is approximated as B̂e ≈ AeH
†
e, and using (4.8), it is possible to obtain,

B̂e ≈ AeH
†
�

In − eΩH†
�

. (4.9)

The effective noise under imperfect CSI is approximated as,

Ze f ≈ (̂BeH−Ae)X+ B̂eZ

≈AeH
†Z− eAeH

†ΩX− eAeH
†ΩH†Z. (4.10)

The effective noise variance of the m-th data stream in the presence of imperfect

CSI is calculated asσ2
e,m = E

�

ze f ,mz′e f ,m

�

Z,X,Ω
. Here, z′e f ,m is the m-th row of Ze f . The equation

for the squared effective noise is,

Ze f Z
′
e f = AeH

†ZZ′
�

H′
�†

A′e − eAeH
†ZX′Ω′

�

H′
�†

A′e − eAeH
†ΩXZ′

�

H′
�†

A′e

+ e2AeH
†ΩXX′Ω′

�

H′
�†

A′e − eAeH
†ZZ′

�

H′
�†
Ω′
�

H′
�†

A′e − eAeH
†ΩH†ZZ′

�

H′
�†

A′e

+ e2AeH
†ΩXZ′

�

H′
�†
Ω′
�

H′
�†

A′e + e2AeH
†ΩH†ZX′Ω′

�

H′
�†

A′e

+ e2AeH
†ΩH†ZZ′

�

H′
�†
Ω′
�

H′
�†

A′e. (4.11)

We first calculate the expected value with respect to Z and X using the following identities,

EX [X] = 0n×l , (4.12)

EX

�

XX′
�

= sIn, (4.13)

EZ [Z] = 0q×l (4.14)

EZ

�

ZZ′
�

= N0Iq. (4.15)

Here 0a×b represents the matrix with all entries equal to 0 with a rows and b columns. The

result of this calculation is given as,

E
�

Ze f Z
′
e f

�

Z,X
= N0AeH

†
�

H′
�†

A′e + e2sAeH
†ΩΩ′

�

H′
�†

A′e − eN0AeH
†
�

H′
�†
Ω′
�

H′
�†

A′e

+ e2N0AeH
†ΩH†

�

H′
�†
Ω′
�

H′
�†

A′e − eN0AeH
†ΩH†

�

H′
�†

A′e. (4.16)

Here, N0 represents the noise spectral density.

4.2.1.1 Relation of Ae and Ω

According to (4.2) and (4.4) it is possible to observe that,

Ae =arg min
Ae∈Z[i]n×n

Rank(Ae)=n

max
m=1,...,n

a′e,m

�

In + s (H+ eΩ)′ (H+ eΩ)
�−1

ae,m. (4.17)
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Here ae,m represents the m-th row of Ae. As can be seen in (4.17), matrix Ae is a function

of Ω, and therefore, it is complex to obtain the expected value of (4.16) with respect to Ω.

However, if e is small the dependency between these two random matrices can be considered

negligible for the calculation of σ2
e . In the next paragraphs, we present the motivations for

this assumption.

At high SNR, the optimization (4.17) can be simplified to,

Ae = arg min
Ae∈Z[i]n×n

Rank(Ae)=n

max
m=1,...,n

‖
�

(H+ eΩ)′
�†

ae,m‖2. (4.18)

As stated in section II.B, the optimization (4.18) can be viewed as a SIVP of a lattice with

basis G =
�

(H+ eΩ)′
�†

. Analogously, for perfect CSI and high SNR the optimization (4.2)

can be performed by solving a SIVP of Λ((H′)†).

From (4.18) it is possible to observe that as the quantity e decreases, latticeΛ (G)

approximates Λ
�

(H′)†
�

, and thus, the points of both lattices converge. Therefore solving the

SIVP for Λ (G) in this scenario, likely results in an unimodular matrix A which is also optimal

for Λ
�

(H′)†
�

. In Figure 4.1 we present an example to illustrate this effect using the following

parameters,

H=

�

1.80 −1.36

−2.71 3.88

�

(4.19)

He =

�

1.63 −1.24

−2.71 3.81

�

, (4.20)

and e = 0.2. For both lattices the optimal integer matrix is,

A=

�

−1 −2

1 3

�

. (4.21)

This is the reason for the low dependency between matrices Ω and Ae when e is small. In

section 4.3 we present simulations that measure the dependency between the elements of

Ω and Ae for e = 0.2 and various antenna arrays.

4.2.1.2 Average achievable sum rate approximation

We continue the derivation of the approximations by applying the following

identities to 4.16,

EΩ [Ω] = 0q×n, (4.22)

EΩ
�

ΩΩ′
�

= nIq, (4.23)

EΩ
�

Ω
�

H′H
�†
Ω′
�

= Tr
�

�

H′H
�†�

Iq, (4.24)
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Figure 4.1 – Lattice points for Λ((H′)†) and Λ (G). The solid arrows represent the vector
basis before lattice reduction and the dotted arrows present the reduced vector
basis.

ignoring the dependency of Ae and Ω we obtain,

σ2
e,m =E

�

ze f ,mz′e f ,m

�

Z,X,Ω
≈ ‖

�

H′
�†

a′e,m‖
2
�

N0 + se2n+ N0e2Tr
�

�

H′H
�†��

, (4.25)

As we are analyzing the system at high SNR, it is possible to observe that,

‖
�

H′
�†

a′e,m‖
2 ≈ s‖Qa′e,m‖

2 ≈ sλ2
m (Qe) (4.26)

Therefore the effective noise variance of the m-th stream is approximated as

σ2
e,m ≈ sλ−2

m (Qe)
�

N0 + se2n+ N0e2Tr
�

�

H′H
�†��

. (4.27)

Finally the approximations to the average achievable sum rate of IF and CFT receivers in

the presence of imperfect CSI, R̄I Fe and R̄C F Te respectively, are expressed as

R̄I Fe = n log+
�

λ−2
n (Qe)

�

N0 + se2n+ N0e2Tr
�

�

H′H
�†��−1�

, (4.28)

R̄C F Te =
n
∑

i=1

log+
�

λ−2
i (Qe)

�

N0 + se2n+ N0e2Tr
�

�

H′H
�†��−1�

. (4.29)

4.2.2 Distribution of the Approximation of the Achievable IF sum rate under
Imperfect CSI

In this subsection we derive the distribution of an approximation of R̄I Fe and,

with this result, we also derive an approximation to the ergodic IF sum rate. We assume that
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the elements of the channel matrix H are complex Gaussian distributed random variables

(with Rayleigh distributed envelope). Concerning channel correlation, we consider the two

scenarios presented in 2.2. For both scenarios, we are able to derive an approximation to

the PDF of R̄I Fe for a system with nr = nt = n antennas. This restriction is necessary as we

use the approximation derived in the previous chapter. The largest successive minima of a

lattice with basis Qe can be approximated as,

λn(Qe)≈
p

γn det(Q′eQe)
1/2n. (4.30)

Therefore R̄I Fe can be approximated as,

R̄I Fe ≈RI Fap
=max

�

0,−n log
�

γn det(Q′eQe)
1/n
�

N0 + se2n+ N0e2Tr
�

�

H′H
�†����

. (4.31)

Since Q′eQe = In + sH′eHe, it is possible to express RI Fap
as,

RI Fap
=max

�

0,− log(γn
n) + CMIMOe

− log
��

N0 + se2n+ N0e2Tr
�

�

H′H
�†��n��

, (4.32)

where we define CMIMOe
as,

CMIMOe
= log

�

det
�

In + sH′eHe

��

. (4.33)

The covariance matrix of He is calculated as,

Σe,i, j =







1+ e2, if i = j

Σi, j, otherwise.
(4.34)

Without loss of generality the covariance matrix is normalized to have unit diagonal ele-

ments, and thus the constant se = s(1 + e2) and covariance matrix Σ f = Σe/(1 + e2) are

used to describe the correlated distributions of CMIMOe
. The approximation to the average

achievable IF sum rate is expressed as the classical MIMO capacity, with uniform power

allocation [39], plus a constant. The distribution of (4.33) is given as [40],

pMIMOe
(r) =

1
2π

ˆ
R

eıωrΦe(ω)dω. (4.35)

Here Φ(ω) represents the appropriate characteristic function. We now divide our analysis

into the correlated and uncorrelated scenarios.

4.2.2.1 Uncorrelated channels

For uncorrelated channels the characteristic function is given as [40],

Φun,e(ω) = K det(hu j,k) j,k=1,...,n, (4.36)
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with

K† =
1
n!

n
∏

j=1

Γ ( j + 1)Γ ( j + 2n), (4.37)

hu j,k = s−ıω
e Γ ( j + k− 1)U(ıω, ıω− j − k+ 2; s−1

e ), (4.38)

Furthermore according to [25], for practical number of antennas, the quantity

T = N0e2Tr
�

�

H′H
�†�

, (4.39)

is considered to be small, and therefore can be neglected.

4.2.2.2 Correlated channels

Considering the Kronecker model with only transmit-side spatial correlation, the

channel matrix can be expressed as,

H= HwΣ
′1/2. (4.40)

The matrix Hw is considered to be uncorrelated Rayleigh distributed and is post-multiplied

by the transmit-side spatial correlation matrix Σ. Analyzing the quantity T , we have the

following,

T =N0e2Tr
�

�

H′H
�†�

(4.41)

=N0e2Tr
�

�

Σ1/2H′wHwΣ
′1/2
�†�

(4.42)

=N0e2
n
∑

i=1

ρ−1
i

�

Σ1/2H′wHwΣ
′1/2
�

(4.43)

≤N0e2
n
∑

i=1

ρ−1
i

�

Σ1/2Σ′1/2
�

ρ−1
i

�

HwH′w
�

(4.44)

≤nρ−1
min

�

Σ1/2Σ′1/2
�

N0e2Tr
�

�

H′wHw

�†�

. (4.45)

Here the operators ρi (M) and ρmin (M) represent the i-th and the minimum eigenvalues of

matrix M, respectively. Since N0e2Tr
�

�

H′wHw

�†�

is known to be small [25] for a practical

number of antennas, it is possible to observe from (4.45) that if nρ−1
min

�

Σ1/2Σ′1/2
�

is not too

large, the quantity T can be neglected. Throughout the chapter, only channels with small T

will be considered due to the complexity of a more general analysis.

The characteristic function of (4.33) for correlated channels is expressed as [40],

Φcor,e(ω) = KΣ f
det(hc j,k) j,k=1,...,n, (4.46)

in which,
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KΣ f
=

−n!
Γ (n+ 1)

∏

j>k(σ j −σk)

n
∏

j=1

ρ−n
j

�

Σ f

�

Γ ( j)
(4.47)

hc j,k = ρ
k−ıω
j

�

Σ f

�

s−ıω
e Γ (k)U

�

ıω, ıω− k+ 1; s−1
e ρ

−1
j

�

Σ f

�

�

. (4.48)

4.2.2.3 Distribution of RI Fap

Now, since RI Fap
is a linear function of CMIMO, the PDF of the approximation can

be expressed as,

pRI Fap
(r) =







0, if r < 0

Knδ(r) + pMIMOe

�

r + log(γn
n(N0 + see

2n)n)
�

, otherwise
(4.49)

in which δ(.) represents the dirac delta and Kn is given by,

Kn =
ˆ 0

−∞
pMIMOe

�

r + log(γn
n(N0 + see

2n)n))
�

dr. (4.50)

It is important to note that pMIMOe
is obtained from the appropriate characteristic function

(Φun,e for uncorrelated and Φcor,e for correlated channels).

4.2.3 Ergodic sum rate of IF receivers with imperfect CSI

In this subsection, we define and provide an approximation to the the ergodic IF

sum rate.

Definition 4.2.2. The ergodic sum rate is the average transmission rate with respect to the

channel realizations as,

RI Fa = EH

�

R̄I F

�

(4.51)

Using (4.49), we approximate RI Fa as the mean value of RI Fap
with respect to H,

which can be obtained as,

RI Fa = E
�

RI Fap

�

H
=
ˆ ∞
−∞

rpRI Fap
(r)dr. (4.52)

However, when the characteristic function of CMIMO exists around 0, it is simpler to obtain

the mean value RI Fap
as a function of the derivative of Φ(ω),

RI Fa = log
�

γn
n(N0 + se2n)n

�

− ı
dΦe(ω)

dω

�

�

�

�

ω=0

. (4.53)
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4.3 Simulations

In this section, we present a series of simulations in order to show the accuracy

of our approximations. For all simulations it is considered that the system variables are

distributed according to the system model described in 2.2 and 4.1.1.

4.3.1 Ae and Ω dependency

In this subsection, we analyze the dependency between Ae and Ω through a

series of simulations. The parameters used in all simulations are the same, channel gains

are distributed as described in 2.2, 4.1.1 and 104 repetitions of a Monte-Carlo simulation

were performed for each antenna array. Arrays with n receiving and transmitting antennas

(n × n) were used, with n = 2 . . . 15 and quantity e = 0.2. In Figure 4.2 the maximum

Pearson correlation coefficient [42] between all pairs of elements from matrices Ae and Ω

were calculated. It is possible to see that, as the number of antennas grows, the maximum

correlation coefficient saturates at 0.015, indicating a very small correlation between the

variables of each matrix.

Although widely used, the Pearson correlation coefficient is unable to indicate

2 4 6 8 10 12 14 16
10

-3

10
-2

10
-1

Figure 4.2 – Number of antennas in each array vs Maximum correlation coefficient between
elements of Ω and Ae

.

independence between variables. Therefore in our second simulation, we analyzed the bias-

corrected distance correlation [43]. It is known that if the distance correlation is null, the two
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random variables are independent. The implementation of the algorithm described in [43]

allows us to derive the distance correlation between random vectors and also performs a t-

test of independence. The t-test provides the p-value, a measure of how likely it is to obtain

a distance correlation equal to or larger than the test result if the experiment is repeated,

assuming that the variables are indeed independent. The maximum distance correlation

obtained through our simulations was 1.38× 10−4 and the minimum p-value obtained was

0.16, indicating that there is no significant statistical dependency between the realizations

of matrices Ω and Ae for small e.

4.3.2 Average achievable IF and CFT sum rate

In this subsection, we compare the simulated average achievable sum rates of

the IF and CFT receivers with their proposed approximations (4.28) and (4.29), in Fig. 4.3

and Fig. 4.4, respectively. The channel matrix

Hs =

�

0.9+ 0.9i 1.1+ 1.1i

0.6+ 0.6i 1.4+ 1.4i

�

(4.54)

is considered to be fixed while other system variables are distributed according to the system

model described in 2.2 and 4.1.1. This specific channel matrix was chosen as it has a large

condition number and under this condition IF receivers significantly outperform simpler

linear receivers such as ZF and MMSE. For all scenarios, the corresponding curves for R̄I Fe
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Figure 4.3 – SNR vs Mean achievable IF sum rate
�

R̄I Fe

�

for channel matrix Hs.

and R̄C F Te
are very close to the simulations, although the difference becomes larger as the
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Figure 4.4 – SNR vs Mean achievable CFT sum rate
�

R̄C F Te

�

for channel matrix Hs.

value of e increases. It is interesting to note that for all cases, MMSE receivers performed

worse than IF and CFT receivers.

4.3.3 Ergodic IF achievable sum rate

In this subsection we consider that the elements of channel matrix H are dis-

tributed as described in 4.2.2. We compare curves for the simulated ergodic achievable IF

and MMSE sum rates with the approximation RI Fa. In Figure 4.5 and 4.6 we variate the

quantity e and the number of antennas, respectively, in the array for the uncorrelated chan-

nel scenario. For the correlated scenario, presented in Figures 4.7 and 4.8 all covariance

matrices follow the same construction method, in which all elements are equal to 0.7 with

the exception of the elements in the diagonal, which are unit. Once again we variate the

quantity e and the number of antennas in the arrays. It is possible to observe that for all

cases, the simulation is very close to our approximation at high SNR. It is also interesting to

see that the difference in performance between the IF and MMSE receivers greatly increases

as correlation becomes larger.

4.3.4 Variable e

So far, we considered e as a constant. However, in more realistic models it is con-

sidered to be a function of several other system parameters and variables. In this subsection,

we use one of the models presented in [44]which considers the channel as block fading and
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Figure 4.5 – Signal to noise ratio versus Ergodic achievable IF sum rate for uncorrelated
channels
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Figure 4.6 – Signal to noise ratio versus Ergodic achievable IF sum rate for uncorrelated
channels. Black curves are for n= 4, red for n= 3 and blue for n= 2 in a n×n
array. The quantity e = 0.1 is used for all curves.

.

the estimation is implemented via averaging over L noisy pilot symbols. Moreover, we con-

sider the scenario where the power allocated to pilot symbols (sp), is not necessarily equal

to the power allocated to data transmission. If perfect orthogonality between the pilot se-
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Figure 4.7 – Signal to noise ratio versus Ergodic achievable IF sum rate for correlated chan-
nels
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Figure 4.8 – Signal to noise ratio versus Ergodic achievable IF sum rate for correlated chan-
nels. Black curves are for n = 4, red for n = 3 and blue for n = 2 in a n × n
array. The quantity e = 0.1 is used for all curves

.

quences is assumed, e is calculated as,

e =
s−4(α+1)

�

2β Ls2(α+1) + 1
�

β2 L2
. (4.55)
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Here α and β are system parameters which relate signal to noise ratio of the pilots and data

symbols as sp = βs−αs. In Figure 4.9, we compare the simulated ergodic IF and MMSE sum

rate with our approximation with e calculated as (4.55), for various n×n antenna arrays. We

used L = n, as this represents the smallest possible pilot length size that maintains orthog-

onality among pilot sequences. It is interesting to note that since the value of e decreases as
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Figure 4.9 – Signal to noise ratio versus Ergodic achievable IF sum rate for uncorrelated
channels with variable e. Parameters α= 0.2, β = 0.2 and L = n.

.

the s becomes larger, there is no saturation in the transmitted sum rate.

4.4 Chapter Conclusion

In this chapter, we have presented an approximation to the IF and CFT receivers

average sum rate in the presence of channel estimation error for fixed channel realizations.

We have also derived an approximation to the Ergodic IF sum rate for correlated and un-

correlated channels. Through a series of simulations, it was shown that the approximations

presented are tight for all SNR values and small channel estimation error coefficient e val-

ues. Most important is the fact that even for small values of e, the system suffers a serious

degradation of its sum rate.
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Chapter 5

Phase Corrected ICA for Uplink Massive

MIMO

5.1 Introduction

In this chapter, we work with the uplink of a Massive MIMO system. We propose

a modified version of the fastICA algorithm called Phase Corrected ICA (PCICA). Exploring

the format of commonly used constellations, it increases the performance of blind decoders

based on ICA by iteratively selecting vectors that lead to estimated constellations that are

more aligned with the axis. In section II we introduce a slightly different system model,

more suitable to describe a multi-cell scenario. In section III fastICA is reviewed and section

IV introduces the PCICA. Finally, in sections V and VI we present the simulations conclusions

to the chapter, respectively.

5.2 System Model

We consider the uplink channel of a multicell system with L cells, each containing

a single base station (BS) with nr antennas servingτ single antenna users, through k channel

uses. All users attempt to communicate with their BS at the same time/frequency. Due to

interference from neighboring cells, the signals received by a one of the BS can be expressed

as,

Y=
p
γHBX+ Z, (5.1)

in which Y ∈ Rnr×k. Matrix B ∈ RLτ×Lτ is a diagonal matrix with elements βl for l = 1, . . . , Lτ

representing both path-loss and shadowing effects. The largest element β1 is normalized as

one in this chapter. Matrices H ∈ Rnr×Lτ and Z ∈ Rnr×k represent the fast fading gains and the

independent identically distributed (i.i.d.) zero-mean circularly symmetric Gaussian noise,

respectively. The channel gains are assumed to be slow block fading and remain constant

through k channel uses. The matrix X ∈ Rl×k represents the transmitted signals. Each row of

X is drawn from X k in which X = {2i − 1−M : i = 1 . . . M}. The constant γ is the average

received signal to noise rate (SNR).
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We use real values for the representation of constellations and baseband instead

of complex numbers to reduce complexity of the algorithm. It is important to note that any

equation of the form Yc = HcXc + Zc over the complex field can be expressed through its

real-valued representation as,
�

Re(Yc)

Im(Yc)

�

=

�

Re(Hc) −Im(Hc)

Im(Hc) Re(Hc)

��

Re(Xc)

Im(Xc)

�

+

�

Re(Zc)

Im(Zc)

�

. (5.2)

Therefore if the increase in the matrices and vectors dimensions are taken into account,

then (5.2) allows us to use complex channels and M-QAM modulations in this framework.

We consider that the BS has no knowledge of the channel state information (CSI) and the

algorithm estimates it from the received signals Y. The only information available to the BS

is the shape and average power of the constellations
�

ρ = E[x2
l ]
�

and the total number of

users.

Due to the inherent ambiguities of the fastICA and the shape of the constellations

which are invariant under sign flips and permutations, it is impossible to recover the exact

matrix X. Our goal is to retrieve X̂ ≈ TX in which T is the product of a permutation matrix

and a diagonal matrix with elements (−1, 1) representing the possible permutation and sign

flips of the data streams. Sign ambiguities can then be solved making use of a single pilot

symbol [28], [29], or using differential modulation. Permutation ambiguities can be solved

through the use of a small number of pilots [28], through some knowledge of the channel

statistics [29] or in some cases it can be neglected if the source of the messages can be

identified in upper layers of the transmission protocol.

5.3 FastICA for blind communication systems

5.3.1 PCA Whitening

The goal of this preprocessing algorithm is two-fold. First, it is necessary to

whiten the received data, that is, remove correlation among the components and normalize

the variance to unity. The second goal is to reduce the complexity of the fastICA by extracting

the main components of Y.

Given the sample covariance matrix Σ = 1
k YYT we calculate its singular value

decomposition as, Σ = UDUT in which U ∈ Rnr×nr is an orthogonal matrix and D ∈ Rnr×nr

is a diagonal matrix containing the singular values. If nr > l, it is possible to divide U

into a signal
�

Us ∈ Rnr×l
�

and noise
�

Uz ∈ Rnr×nr−l
�

subspaces. Similarly, we can divide the

singular value matrix into a signal subspace (Ds, with the l highest singular values) and a

noise subspace (Dz, with the nr − l lowest singular values). Therefore, we can express the
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singular value decomposition as,

Σ=
�

Us Uz

�

�

Ds 0

0 Dz

��

UT
s

UT
z

�

. (5.3)

The received signal Y is whitened and projected onto the signal subspace through the fol-

lowing expression,

Yw = D
− 1

2
s UT

s Y. (5.4)

The whitened signal Yw is an l×k matrix, whereas the received data Y presented dimension

nr × k. This reduction in dimensions significantly decreases the complexity of fastICA if

nr >> l.

5.3.2 FastICA

Given a whitened linear combinations of statistically independent non-Gaussian

sources, ICA searches for an orthogonal matrix W such that,

Xe =
p
ρWT Yw, (5.5)

in which X̂ ≈ TX is obtained after passing the data Xe through a slicer. Matrix W is ob-

tained by minimizing the statistical dependency between the components of Xe. The fas-

tICA estimates one independent component (column of W) at a time. Following [45] the

p-th (p = 1 . . . , l) orthogonal vector is obtained as follows,

1. Randomly choose a unit norm vector wp

2. Let w+p =
1
k

∑k
j=1

�

yw, j g
�

wT
p yw, j

��

− 1
k

∑k
j=1

�

ġ
�

wT
p yw, j

��

wT
p .

Here g (.) represents a function that measures the nongaussianity of the estimated

data (wT
p Yw). In the framework of this problem, it has been proven [46] that max-

imizing nongaussianity equates to minimizing dependency of the data streams. The

function ġ (.) is the derivative of g and yw, j the j-th column of Yw.

3. Let w+p =w+p /‖w
+
p ‖

4. If w+p does not converges, go back to step 2.

Note that convergence here implies that the values of w+p and wp point to the same

direction, i.e, their dot product is approximately unitary.

5. w+p =w+p −
∑p−1

i=1 wT
i wiw

+
p .

This step performs a Gram-Schmidt like decorrelation. This is done to assure that the

columns of W are orthogonal.
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6. wp =w+p /‖w
+
p ‖

If p = l the algorithm finishes and outputs W. Otherwise p = p + 1 and returns to 1. The

channel is estimated as,

Ĝ† = ρ
1
2 WT D

− 1
2

s UT
s . (5.6)

Assuming the use of a zero forcing (ZF) linear receiver, channel decoupling is performed as,

Xe = Ĝ†Y. (5.7)

Finally, using a simple slicer that rounds real number to the nearest odd integer

we obtain the data estimate,

X̂= 2bXe/2c − 1. (5.8)

5.4 Phase Corrected ICA (PCICA)

5.4.1 FastICA and Constellation Rotation

Several factors interfere in the performance of fastICA in the system model as-

sumed. A small SNR, a high condition number of G and a small symbol block (k) can de-

crease the accuracy of the demixing matrix (W). Since W is orthogonal, performing the

inner product WT Yw equates to rotating the whitened data. If W is not accurate, then Xe

results in a phase rotated noisy constellation.

PCICA consists in using a metric to evaluate if this estimated noisy constellation is

rotated, replacing demixing vectors wp if necessary. As fastICA performs local optimizations,

it may generate different demixing vector each time it is used. We reduce phase rotation and

thus achieve better performance iterating steps 1 to 6 until vectors that meet our criterion

are found.

5.4.2 Mean Value Criterion

In our method, after a demixing vector is estimated in step 6 of fastICA, we

decouple the data streams by calculating xe,p = ρ1/2wT
p Yw. From xe,p we select the elements

that are at a unitary distance to M − 1, the largest symbol. These points are chosen for

our analysis because they are the most susceptible to rotation issues. We name the vector

containing these elements xt r,p and proceed to calculate its sample mean value,

µs,p =
1
n

n
∑

r=1

xt r,p. (5.9)
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If the demixing vector is accurate and the SNR is high, µs,p is supposed to approximate

µe,p, the statistical mean value of the random variable (RV) X t r,p. This RV represents the

decoupled symbols at unitary distance from M − 1 considering perfectly accurate channel

acquisition
�

Ĝ= T†G
�

. To analyze µs,p, we perform a Z-test [42] with the following hypoth-

esis,

H0 :µs,p = µe,p (5.10)

H1 :µs,p 6= µe,p. (5.11)

For a set significance value α, if H0 is unlikely to be true we reject the demixing vector wp.

5.4.3 Performing the Z-Test

To perform the Z-test, we first have to obtain the probability density function

(PDF) of X t r,p. Considering perfect CSI at the receiver, from (5.7) we have the following

equation,

Xe = TX+ρ
1
2 WT D

− 1
2

s UT
s Z, (5.12)

in which Ze f = ρ
1
2 WT D

− 1
2

s UT
s Z is the effective noise. The noise value for a specific symbol of

the p-th data stream at the i-th channel use is calculated as,

ze f ,p,i = ρ
1
2

nr
∑

l=1

l
∑

q=1

�

wp,qD−
1
2

s,q U T
s,l,q

�

Zl,i (5.13)

in which wa,b, U T
s,a,b, Za,b, represents the element on the a-th row and b-th column of matrices

W,UT
s ,Z respectively. Constant Ds,q is the q-th diagonal element of Ds. As zi, j ∼N (0,1), ze f ,p,i

are also normal r.v with zero mean and variance expressed as,

var(ze f ,p,i) = σ
2
p = ρ

nr
∑

l=1

�

l
∑

q=1

�

wp,qD−
1
2

s,q U T
s,l,q

�

�2

. (5.14)

Therefore the elements of Xe are normally distributed around X k with variance defined in

(5.14).

The RV X t r,p can thus be seen as a truncated normal distribution. It is derived

from a normal RV with M −1 mean, σ2
p variance that is bound at [M −2, M]. The bounding

occurs due to the selection of elements at unitary distance from M − 1. The PDF of X t r is

given as

fX t r,p
(x) =















e
− (−M+x+1)2

2σ2
p

p
2πσperf

�

1p
2σp

� , M − 2< x < M

0, otherwise

(5.15)
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From (5.15), we calculate the mean of X t r,p as,

X̄ t r,p =
ˆ ∞
−∞

fX t r,p
(x)xd x = M − 1. (5.16)

The second moment can be calculated as,

E
�

X 2
t r,p

�

=
ˆ ∞
−∞

fX t r,p
(x)x2d x = −

q

2
π e
− 1

2σ2
pσp

erf
�

1p
2σp

� + (M − 1)2 +σ2
p, (5.17)

therefore the variance is given as,

σ2
t r,p = E

�

X 2
t r,p

�

− X̄ 2
t r,p = σ

2
p −

q

2
π e
− 1

2σ2
pσp

erf
�

1p
2σp

� . (5.18)

Due to the central limit theorem, if the number of elements (n) in xt r,p is large,

then µs,p converges to a random variable with Gaussian distribution with mean M − 1 and

variance σ2
t r,p/n. Since α= P

�

µs,p > th

�

it can be calculated as,

α= 2
ˆ ∞

th

e
− (−M+x+1)2

2σ2
t r,p

p
2πσt r,p

d x = erfc

�p
n(th −M + 1)
p

2σt r,p

�

. (5.19)

Here th represents the critical value. Fixing α we obtain the expression,

th =

p
2 erfc−1(α)σt r,p

p
n

+M − 1 (5.20)

Finally, substituting (5.14) into (5.20) we have the critical value expressed as,

th =
p

2erfc−1(α)

√

√

√

√

√

√

σp

 

σp −
q

2
π e
− 1

2σ2
p

erf
�

1p
2σp

�

!

n
+M − 1, (5.21)

with σp defined in (5.14). We analyze wp using the inequality,

|M − 1−µs,p|> th −M + 1. (5.22)

If the inequality is satisfied, it means that it is unlikely that H0 is true and therefore we reject

wp. It is important to note that the assumption of CSI at the receiver is only used to derive

the statistics necessary to perform the Z-test. PCICA only requires knowledge of the shape

and average power of the constellation used by each user.
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5.4.4 Phase Corrected ICA

Algorithm 2 presents the PCICA. The parameter cmax represents the maximum

number of rejected demixing vectors allowed. If cmax is reached, the algorithm goes through

all the rejected demixing vectors and keeps the one that generates the smallest |M−1−µs,p|.
This is performed to limit the complexity of the algorithm, as in some cases many iterations

are needed to find a demixing vectors that satisfies our mean restriction. Low SNR and chan-

nel matrices with high condition number usually increase the number of rejected demixing

vectors.

Data: Whitened data matrix Yw, significance level α, whitening matrices Ds and UT
s ,

average SNR ρ, maximum number of rejected vectors cmax.
Result: Demixing matrix W.
for p = 1 : l do

Counter= 0;
µmin =∞;
while True do

Estimate wp using fastICA;
xe,p =

p
ρwT

p Yw;
Select all elements of xe,p which are at unitary distance from M − 1 and store
them in xt r,p;

n= length(xt r,p);
µs,p =

1
n

∑n
r=1 xt r,p;

σp =
s

ρ
∑nr

l=1

�

∑l
q=1

�

wp,qD
− 1

2
s,q UT

s,l,q

��2
;

th =
q

2
nerfc−1(p)

√

√

√

√σp

 

σp −
q

2
π e
− 1

2σ2
p

erf
�

1p
2σp

�

!

+M − 1;

if
�

�M − 1−µs,p

�

�< th −M + 1 then
Break;

else
if |M − 1−µs,p|< µmin then
µmin = |M − 1−µs,p|
wmin =wp

end
Counter= Counter+ 1;
if Counter≥ cmax then

wp =wmin

Break;
end

end
end

end
Algorithm 2: Phase Corrected ICA
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5.5 Simulations

In this section, we present the result of simulations performed with PCICA. We

consider two scenarios in which the number of cells L and the number of users in each cell

τ variates. We analyze the performance of the BS in the center cell, considering all users

located outside of it as interferers. We also consider a 4 − QAM modulation, nr = 128,

cmax = 20, βa = 1 (a = 1 . . . L) and βi = 0.8 (i = L + 1 . . .τL). High βi were chosen to

represent a scenario with high interference. As cell sizes become smaller in next-generation

wireless systems, interference will become inevitable. For ICA based methods the BS de-

codes messages from all τL users even though only messages from the users in the same

cell are of interest. For MMSE it was considered that the BS has perfect CSI of the users

in its cell, while treating all interference as noise. Channel gains hi, j are complex Gaussian

with zero mean and unit variance. The contrast function used is g(u) = tanh(u). Figure

5.1 shows the symbol error rate (SER) curves. It is possible to observe that PCICA signifi-

-7 -6 -5 -4 -3 -2 -1 0 1 2
10

-6

10
-4

10
-2

10
-1

Figure 5.1 – SNR vs Symbol error rate. Scenario 1 (black curves) L = 1,τ = 7. Scenario 2
(red curves) L = 2,τ= 4

cantly outperforms fastICA for all considered SNR. It also outperforms MMSE at high SNR

in scenario 1 and is very close in scenario 2. This occurs due to the high interference of the

simulated scenarios. As we consider MMSE with only CSI of the user on its own cell, it is

unable to remove extra-cell interference. For PCICA on the other hand, high interference is

beneficial as it attempts to decode all data streams. If extra-cell users have high SNR, the

probability that PCICA makes decoding errors of their data streams decreases. In Figure 5.2

we analyze the added complexity of PCICA compared to fastICA by showing the percentage
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of rejected demixing vectors for different SNR. At high SNR, the algorithm rejects around

12% of demixing vectors for scenario 1 and around 19% for scenario 2. Thus, the PCICA

consumes only a few extra iterations.
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Figure 5.2 – SNR vs Average number of rejected demixing vectors. Scenario 1 (red curves)
L = 1,τ= 7. Scenario 2 (red curves) L = 2,τ= 4.

5.6 Chapter Conclusion

In this chapter, we proposed a new algorithm to perform blind decoding. We

have shown through simulations that our algorithm outperforms the traditional fastICA.

For the high SNR region, we have shown that the added complexity is small.
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Conclusions
This work is divided into two parts. In the first part the statistics of the sum-rate

of IF and other lattice based decoders for MIMO systems is analyzed. In the second part we

present contributions to blind decoders for Massive MIMO systems.

In chapter 3, we have introduced two new approximations to the achievable sum

rate of the IF linear receiver in the presence of Rayleigh distributed fading. We have shown,

through a series of simulations, that for the 2×2 array, over 98% of channel realizations re-

quire only one iteration of the Gauss-Lagrange algorithm to obtain λ2. We have also shown,

that our approximation for the 2×2 array, which is based on the Gauss-Lagrange algorithm,

is very tight for all SNR values for both real and complex channels.

We have analytically shown that the n× n approximation attains the same de-

grees of freedom as the IF linear receiver and that the coefficient of variation is null for

asymptotically high SNR. Through numerical simulations, we have also shown that this

approximation is tight for high SNR, and its coefficient of variation is small even for lim-

ited SNR. Observing the relation of the simulations and analytical results, it is possible to

state that the approximation is close to the performance of IF linear receivers regardless of

channel correlation and number of antennas. From the simulations, it was also possible to

observe how the IF linear receiver is more efficient and more robust to channel correlation

than the zero forcing linear receiver.

In chapter 4, we have presented an approximation to the IF and CFT receivers

average sum rate in the presence of channel estimation error for fixed channel realizations.

We have also derived an approximation to the Ergodic IF sum rate for correlated and un-

correlated channels. Through a series of simulations, it was shown that the approximations

presented are tight for all SNR values and small channel estimation error coefficient e val-

ues. Most important is the fact that even for small values of e, the system suffers a serious

degradation of its sum rate.

In chapter 5, we proposed a new algorithm to perform blind decoding. The algo-

rithm is a variation to fastICA which takes into consideration the shape of the constellation

being used to iteratively select demixing vectors that lead to smaller bit error rates. We have

shown through simulations that our algorithm outperforms the traditional fastICA. For the

high SNR region, we have shown that the added complexity is small.
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Future Work

Opportunities for future investigation are summarized below:

1. An extension to the second approximation of the IF sum-rate which is also suitable to

n×m array systems.

2. In [47] the authors analyze an uplink channel where each base station (BS) is equipped

with a large but finite number of antennas. It analyzes matched filer (MF) and MMSE

receivers to derive how many antennas per BS are needed to achieve η% of the ulti-

mate performance. A similar analysis could be performed to IF decoders.

3. In simulations we performed, we observed that fastICA or PCICA used jointly with IF

decoders perform worse than with ZF and MMSE decoders. The reasons for this are

still not well understood.

4. Instead of iteratively selecting vectors in PCICA, a new version of PCICA in which the

mean value criterion is used as a restriction into the optimization problem could be

researched.
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APPENDIX A

Appendix

A.1 Proof of Theorem 3.1

The matrix W= H′H is governed by the Wishart density,

PW(W) = Cβ ,n exp
�

−
β

2
trW

�

det(W)β/2−1H(W). (A.1)

Here Cβ ,n is the normalization factor,

C−1
β ,n = 2(2−β)nπβn(n−1)/4

n
∏

j=1

Γ
�β j

2

�

, (A.2)

and the step function H(W) enforces the positive-definiteness condition for the matrix W.

Now, the matrix X= In + sW will be distributed according to the density,

PX(X) =
Cβ ,n

s
βn2

2

exp
�

−
β

2s
tr(X− In)

�

×

det(X− In)
β
2−1H(X− In). (A.3)

The inverse Y of X will be distributed according to,

PY(Y) =
Cβ ,n

sβn2/2
exp

�

−
β

2s
tr(Y−1 − In)

�

×

det(Y−1 − In)
β/2−1 det(Y)−β(n−1)−2×

H(Y−1 − In). (A.4)

The factor det(Y)−β(n−1)−2 is the Jacobian of the inversion of a real-symmetric/complex-

Hermitian matrix [48]. Finally, applying Cholesky decomposition, Y= L′L, we get the prob-

ability density of L or L′ as presented in (3.26). The factor 2n
∏n

j=1 lβ(n− j)+1
j j is the Jacobian

associated with Cholesky decomposition, where l j j represents the diagonal elements of L or

L′ [48], [49].

A.2 Proof of theorem 3.2

Since l11, l22 > 0, we find that

C1,2 = 1/(4π),
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tr((L′L)−1 − I2)) =
l2
11 + l2

12 + l2
22 − 2l2

11l2
22

l2
11l2

22

,

det((L′L)−1 − I2)) =
1− l2

11 − l2
12 − l2

22 + l2
11l2

22

l2
11l2

22

,

det(L′L) = l2
11l2

22.

Also, since a 2 × 2 matrix is positive definite if its trace and determinant are positive, it

follows that the positive-definiteness condition H((L′L)−1− In) requires tr(L′L− I2)> 0 and

det(L′L− I2) > 0. These two conditions combined with l11, l22 > 0, are equivalent to fixing

the domain of the matrix elements as,

0<l11, l22 < 1,

−
q

1− l2
11 − l2

22 + l2
11l2

22 <l12 <
q

1− l2
11 − l2

22 + l2
11l2

22. (A.5)

The joint PDF, p joint r(l11, l12, l22), of the elements of matrix L for the real case is therefore

expressed as,

p joint r(l11, l12, l22) =
1

πs2 l3
11l4

22

q

1− l2
11 − l2

12 − l2
22 + l2

11l2
22

exp

�

−
l2
11 + l2

12 + l2
22 − 2l2

11l2
22

2s l2
11l2

22

�

, (A.6)

subject to the restrictions (A.5). The cumulative density function (CDF) of τ1 and τ2 given

in (3.12) and the joint CDF of τ1,τ2 for the real case are expressed respectively as,

Fτ1
(T1) =

ˆ 1

0

ˆ 1

−1

ˆ 1

0
p joint r (l11, l12, l22)H (T1 − l11)H (T1 − l22)dl22dl12dl11. (A.7)

Fτ2
(T2) =

ˆ 1

0

ˆ 1

−1

ˆ 1

0
p joint r (l11, l12, l22)H

�

T2 −
q

l2
12 + l2

22

�

×

H

 

T2 −
l11l22

q

l2
12 + l2

22

!

dl22dl12dl11. (A.8)

Fτ1,τ2
(T1, T2) =

ˆ 1

0

ˆ 1

−1

ˆ 1

0
p joint r (l11, l12, l22)H (T1 − l11)H

�

T2 −
q

l2
12 + l2

22

�

H

 

T2 −
l11l22

q

l2
12 + l2

22

!

H (T1 − l22)dl22dl12dl11. (A.9)

The CDF of λ̂2 (3.11) for the real case can be expressed as a function of the CDFs above,

Fλ̂2r
(u) = Fτ1

(u) + Fτ2
(u)− Fτ1,τ2

(u), (A.10)

or directly as presented in (3.27).
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A.3 Proof of Theorem 3.3

Defining the complex matrix L as

L=

�

l11 l12 + i k12

0 l22

�

, (A.11)

with l11, l22 > 0, we find that,

C2,2 = 1/π,

tr((L′L)−1 − I2)) =
l2
11 + l2

12 + k2
12 + l2

22 − 2l2
11l2

22

l2
11l2

22

,

det((L′L)−1 − I2)) =
1− l2

11 − l2
12 − k2

12 − l2
22 + l2

11l2
22

l2
11l2

22

,

det(L′L) = l2
11l2

22.

In order to force the trace and determinant to be positive to ensure positive definiteness of

L, we fix the domain of the matrix elements as,

0< l11, l22 < 1,

−
q

1− l2
11 − l2

22 + l2
11l2

22 < l12 <
q

1− l2
11 − l2

22 + l2
11l2

22,

−
q

1− l2
11 − l2

12 − l2
22 + l2

11l2
22 < k12 <

q

1− l2
11 − l2

12 − l2
22 + l2

11l2
22. (A.12)

The joint PDF, p jointc(l11, l12, l22, k2,1), of the elements of matrix L for the complex case is

therefore expressed as,

p jointc(l11, l12, l22, k2,1) =
1

πs4 l5
11l7

22

exp

�

−
l2
11 + l2

12 + k2
12 + l2

22 − 2l2
11l2

22

s l2
11l2

22

�

, (A.13)

subject to restrictions (A.12).

Having p jointc, it is possible to derive the CDF of λ̂2 for the complex case using

the same reasoning as in the previous subsection and therefore it can be expressed as (3.28).
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