
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ulysses Alessandro Couto Rocha

Heuristic Techniques for Large-Scale Instances of the
Cable-Trench Problem

Técnicas Heurísticas para Instâncias de Grande Porte
do Problema Cabo-Trincheira

CAMPINAS
2018

Ulysses Alessandro Couto Rocha

Heuristic Techniques for Large-Scale Instances of the
Cable-Trench Problem

Técnicas Heurísticas para Instâncias de Grande Porte do
Problema Cabo-Trincheira

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Flávio Keidi Miyazawa
Co-supervisor/Coorientador: Prof. Dr. Eduardo Candido Xavier

Este exemplar corresponde à versão final da
Dissertação defendida por Ulysses
Alessandro Couto Rocha e orientada pelo
Prof. Dr. Flávio Keidi Miyazawa.

CAMPINAS
2018

Agência(s) de fomento e nº(s) de processo(s): CNPq, 133323/2018-8; CNPq,
131175/2017-3

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Rocha, Ulysses Alessandro Couto, 1992-
 R582h RocHeuristic techniques for large-scale instances of the cable-trench problem /

Ulysses Alessandro Couto Rocha. – Campinas, SP : [s.n.], 2018.

 RocOrientador: Flávio Keidi Miyazawa.
 RocCoorientador: Eduardo Candido Xavier.
 RocDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Roc1. Programação heurística. 2. Otimização combinatória. 3. GRASP (Meta-

heurística). I. Miyazawa, Flávio Keidi, 1970-. II. Xavier, Eduardo Candido,
1979-. III. Universidade Estadual de Campinas. Instituto de Computação. IV.
Título.

Informações para Biblioteca Digital

Título em outro idioma: Técnicas heurísticas para instâncias de grande porte do problema
cabo-trincheira
Palavras-chave em inglês:
Heuristic programming
Combinatorial optimization
GRASP (Metaheuristic)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Flávio Keidi Miyazawa [Orientador]
Pedro Augusto Munari Junior
Fábio Luiz Usberti
Data de defesa: 10-12-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ulysses Alessandro Couto Rocha

Heuristic Techniques for Large-Scale Instances of the
Cable-Trench Problem

Técnicas Heurísticas para Instâncias de Grande Porte do
Problema Cabo-Trincheira

Banca Examinadora:

• Prof. Dr. Flávio Keidi Miyazawa
IC/UNICAMP

• Prof. Dra. Pedro Augusto Munari Junior
UFSCar

• Prof Dr. Fábio Luiz Usberti
IC/UNICAMP

Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema
de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade

Campinas, 10 de dezembro de 2018

Agradecimentos

Agradeço aos meus pais e à minha irmã, que foram sempre meus grandes apoiadores e
incentivadores durante toda minha vida.

Aos contribuintes brasileiros, que através do CNPq, CAPES, Instituto Federal do
Ceará, UNICAMP e outros órgãos de fomento e instituições de ensino, financiaram direta
e indiretamente meus estudos.

Aos professores e demais funcionários do Instituto de Computação da UNICAMP, em
especial aos meus orientadores Flávio Miyazawa e Eduardo Xavier, pela paciência, apoio
e orientação durante o mestrado.

Aos colegas do Laboratório de Otimização e Combinatória, pelo convívio, ideias e
excelentes conversas durante todos esses anos de curso.

À minha esposa, Raphaela, pela incondicional paciência, apoio e revisões desse e de
diversos outros trabalhos.

Aos amigos, que sempre apoiaram e incentivaram meus estudos.

Aos demais professores que tive ao longo da vida e a todos que direta ou indiretamente
fizeram parte da minha formação, meu muito obrigado!

Resumo

O problema cabo trincheira foi apresentado em 2002 para modelar redes cabeadas. Esse
problema pode ser visto como a união do problema de caminhos mínimos com o problema
da árvore geradora mínima. Como entrada do problema temos um grafo G = (V,E)
com pesos nas arestas que indicam a distância entre os vértices incidentes na mesma. Há
um vértice especial que representa uma instalação e demais vértices representam clientes.
Uma solução para o problema é uma árvore geradora enraizada na instalação. O custo
da solução é o custo da árvore geradora multiplicado por um fator de custo de trincheira
mais os custos de cabos. Para cada cliente, o seu custo de cabo é dado pelo custo do
caminho do cliente até a instalação multiplicado por um fator de custo de cabo. Esse
problema modela cenários onde cada cliente deve ser conectado a uma instalação central
através de um cabo dedicado. Cada cabo deve estar acomodado em uma trincheira e
cada trincheira pode conter um número ilimitado de cabos. Sabendo que o custo dos
cabos e trincheiras é proporcional a seu comprimento multiplicado por um fator de custo,
o problema é encontrar uma rede com custo mínimo. Trabalhos anteriores utilizaram
o problema cabo trincheira para modelar problemas em telecomunicações, distribuição
de energia, redes ferroviárias e até para reconstrução de vasos sanguíneos em exames de
tomografia computadorizada.

O trabalho foca na resolução do problema em instâncias de grande porte (superiores
a 10 mil vértices). Foram desenvolvidas várias heurísticas para o problema. Na busca por
simplificações de instâncias, foram demonstradas regras seguras, ou seja, que não com-
prometem nenhuma solução ótima, e heurísticas para a remoção de arestas eliminando
aquelas que dificilmente estariam em “boas soluções” de uma instância. Foi apresentado
um algoritmo rápido para busca local capaz de ser executado mesmo em instâncias de
grande porte. Foram desenvolvidos também algoritmos baseados em Greedy Randomized
Adaptive Search Procedure (GRASP) e formulada uma heurística que contrai vértices.
Com a contração de vértices, foram criadas instâncias do problema Cabo Trincheira com
Demandas nos Vértices (CTDV). Essa versão com demandas tem um número menor de
vértices que o problema original, o que viabiliza o uso de algoritmos baseados em progra-
mação linear para resolvê-lo. Foi demonstrado como é possível, ao resolver essa versão
reduzida com demandas, remontar uma solução viável para o problema cabo trincheira
original.

Foram obtidos, com essas heurísticas, resultados melhores do que trabalhos anteriores
encontrados na literatura do problema. Para além disso, foi demonstrado como essa
técnica de contração de vértices tem o potencial para resolver instâncias de tamanhos
ainda maior para o problema cabo trincheira.

Abstract

The Cable Trench Problem (CTP) was presented in 2002 to model wired networks. This
problem can be seen as the combination of the shortest path problem with the minimum
spanning tree problem. An instance of the problem is composed by a graph G = (V,E)
with weigths, representing the distance between a pair of vertices. A special vertex rep-
resents a facility, and all others are clients. A solution to the problem is a spanning tree
rooted in the facility.

The solution’s cost is given by the spanning tree cost multiplied by a trench cost
factor, added by the cables cost reaching the root from each vertex in the graph. For
each client, its cable cost is given by the path in the spanning tree, from the client to
the root, multiplied by a cable cost factor. The CTP models a scenario where each client
must be connected through a dedicated cable to a central facility. Each cable must be
laying on a trench and a trench may hold an unlimited number of cables. Knowing that
the cost of cables and trenches are proportional to its lengths multiplied by a cost factor,
the problem is to find a network of minimum cost. Previous works in the literature used
the CTP to model telecommunication problems, power distribution, rail networks, and
even a blood vessel networks for computed tomography exams.

In this research, we focused on large-scale instances of the problem (above 10 thou-
sand vertices), achieving better results than previous works found in the literature. We
developed a series of heuristics for the problem. Searching for a simplification for those in-
stances, we present safe reductions, that do not affect any optimal solution, and heuristic
reduction rules that are capable of removing edges unlikely to be part of “good” solutions
in an instance. We present a fast local search algorithm, capable of improving even solu-
tions for large-scale instances. We developed an algorithm based on a Greedy Randomized
Adaptive Search Procedure (GRASP) and formulated a heuristic to cluster vertices. By
clustering vertices, we represent a CTP instance as an instance of the Cable Trench Prob-
lem with Demands (CTPD). We represent the large-scale CTP instance into a vertex-wise
smaller one adding demands to its vertices. Dealing with smaller instances, we enable a
new range of techniques such as linear programming based algorithms to solve it. We
demonstrate how this instances with demands can be used to build a feasible solution for
the original CTP instance. We also demonstrate how this vertex clustering technique has
the potential to solve even larger scale instances for the CTP.

List of Figures

1.1 Instances of CTP. 15

2.1 SSSP (red) + MST (black) lower bound on instance 20
2.2 Reduction Rule 1 . 21
2.3 Reduction Rule 2 decision step . 22
2.4 Reduction 3 . 23
2.5 Reduction 4 . 24
2.6 Single Edge Neighborhood . 25

3.1 Example of CTP instance into CTPD instance 37
3.2 CTP Instance . 38
3.3 Step 1 . 38
3.4 Step 2 . 38
3.5 Step 3 . 38
3.6 Step 4 . 38
3.7 Step 5 . 38
3.8 K-Clustering algorithm adapted to CTP clustering 38

4.1 Algorithms for the complete instance set 45
4.2 Algorithms + LS for the complete instance set 46
4.3 Spiral Instance Examples - 100 vertices . 49
4.4 Spiral Instance Set - Algorithms + LS . 49
4.5 Vasko Instance Set - Algorithms + LS . 51
4.6 Maps Instance Set - Algorithms + LS . 52
4.7 All Instances besides Reduced Set - Algorithms + LS 53
4.8 All Instances - γ = 1.0, τ = 0.01 - Algorithms + LS 55
4.9 All Instances - γ = 1.0, τ = 1.0 - Algorithms + LS 56
4.10 All Instances - γ = 1.0, τ = 5.0 - Algorithms + LS 57
4.11 All Instances - γ = 1.0, τ = 10.0 - Algorithms + LS 58
4.12 All Instances - γ = 1.0, τ = 100.0 - Algorithms + LS 59
4.13 All Instances - Local Search improvement over time 60
4.14 Spiral Instance Set - Local Search improvement over time [0, 200] 61
4.15 Spiral Instance Set - Local Search improvement over time [0, 25] 61
4.16 Vasko Instance Set - Local Search improvement over time [0, 25] 62
4.17 Maps Instance Set - Local Search improvement over time [0, 25] 62
4.18 Reduced Instance Set - R1 . 64
4.19 Reduced Instance Set - R1 + R2 . 65
4.20 Reduced Instance Set - R1 + R3 . 66
4.21 Reduced Instance Set - R1 - Local Search improvement over time 67
4.22 Reduced Instance Set - R1 + R2 - Local Search improvement over time . . 68

4.23 Reduced Instance Set - R1 + R3 - Local Search improvement over time . . 68

List of Tables

4.1 Table of results, (%) to lower bound . 47
4.2 Table of results, execution time in seconds 48
4.3 Spiral Instance Set - Table of results, (%) to lower bound 50
4.4 Vasko Instance Set - Table of results, (%) to lower bound 51
4.5 Maps Instance Set - Table of results, (%) to lower bound 52
4.6 All Instances besides Reduced Set - Table of results, (%) to lower bound . 54
4.7 All Instances - γ = 1.0, τ = 0.01 - Table of results, (%) to lower bound . . . 55
4.8 All Instances - γ = 1.0, τ = 1.0 - Table of results, (%) to lower bound . . . 56
4.9 All Instances - γ = 1.0, τ = 5.0 - Table of results, (%) to lower bound . . . 57
4.10 All Instances - γ = 1.0, τ = 10.0 - Table of results, (%) to lower bound . . . 58
4.11 All Instances - γ = 1.0, τ = 100.0 - Table of results, (%) to lower bound . . 59
4.12 (%) to lower bound for Mod Prim in the RIS for different cable/trench ratios 60
4.13 Number of edges with edge reduction rules for the reduced instance set . . 63
4.14 Vertex degree with edge reduction rules for the reduced instance set 63
4.15 Reduced Instance Set - R1 - Table of results, (%) to lower bound 64
4.16 Reduced Instance Set - R1 + R2 - Table of results, (%) to lower bound . . 65
4.17 Reduced Instance Set - R1 + R3 - Table of results, (%) to lower bound . . 66
4.18 Lower Bound to OPT - Instances of 100 vertices 69

List of Algorithms

1 Local Search - Single Edge Improvement Search Algorithm 26
2 Local Search Procedure Algorithm . 27
3 Mod Prim Algorithm . 28
4 Semi-Greedy ModPrim . 30
5 CTP PathRelink Algorithm . 31
6 GRASP based heuristic . 32
7 Reduce and Solve Heuristic Algorithm . 40

Contents

1 Introduction 14

2 The Cable Trench Problem 17
2.1 CTP Formulations . 17

2.1.1 Vasko Formulation . 18
2.1.2 Multi-Commodity Formulation . 18

2.2 Lower Bound . 19
2.2.1 SSSP + MST Lower Bound . 20
2.2.2 Alternative Lower Bounds . 20

2.3 Edge Reduction Rules . 21
2.3.1 Reduction rule 1 . 21
2.3.2 Reduction rule 2 . 22
2.3.3 Reduction rule 3 . 23
2.3.4 Reduction rule 4 . 24

2.4 Local Search . 24
2.4.1 Single Edge Neighborhood . 25
2.4.2 Local Search Procedure . 27

2.5 Heuristics . 27
2.5.1 Mod-Prim . 27
2.5.2 GRASP and Path Re-link . 28

3 The Cable Trench Problem with Demands 33
3.1 CTPD Formulations . 33

3.1.1 Single-Commodity Formulation . 33
3.1.2 Multi-Commodity Formulation . 34

3.2 Mod-Prim with Demands . 35
3.3 CTPD applied to large-scale instances of the CTP 36

3.3.1 Representing Large-Scale CTP instances as CTPD instances 37
3.3.2 Reduce and Solve - CTPD based Heuristic 39

4 Computational Experiments 42
4.1 Methodology . 42

4.1.1 Graph Classes . 42
4.1.2 Instances . 43
4.1.3 Edge Reduction Rules . 44
4.1.4 Lower Bound . 44
4.1.5 Time limits . 44
4.1.6 Heuristics . 44

4.2 Experimental Results . 45

4.2.1 Heuristics Results by Graph Classes 48
4.2.2 Heuristics Results by Cable and Trench Cost 54
4.2.3 Local Search . 60
4.2.4 Edge Reduction Rules . 63
4.2.5 Lower Bound . 69

5 Conclusions 70
5.1 Future work . 70

14

Chapter 1

Introduction

In large wired-network systems, such as telecommunications and power distribution, build-
ing or upgrading the infrastructure demands high investment and a huge load of work
considering several different aspects. Planning the network and building the infrastruc-
ture is a major cost component of those systems. Given the project requirements, it is
desirable to find the best network arrangement to minimize its cost. To achieve this goal,
computational models can be used to assist in the planning process and find the best
possible configuration, reducing the final price of the infrastructure and the time required
to build the system.

The Cable-Trench Problem (CTP) can model and be used to solve different optimiza-
tion scenarios arising in the design of wired networks. It is an NP-Hard problem, first
presented by Vasko et al. [2002], combining the Minimum Spanning Tree (MST) problem
and the Single Source Shortest Path (SSSP) problem. The CTP can be described as a
problem that aims at minimizing the costs of digging trenches and laying cables to connect
nodes to a central hub through a network.

The following scenario can be used to illustrate its application. Consider that in a
hypothetical university, with many buildings, each building must be connected to a central
computer through a dedicated cable, where each cable must be laying on a trench, and
each trench can carry an unlimited number of cables at once. Cables and trenches have
different costs: a cost factor of γ for the cable, and τ for the trench, proportional to their
length. The problem is to find a network connecting every building to the server with
minimum cost.

In Figure 1.1, considering the previous example scenario, the vertex r would represent
the central computer, and all the other vertices would represent the buildings from the
university. Note that different pairs of values of τ and γ may influence the optimal solution
layout obtained. Observing the special cases, if γ = 0 and τ > 0, as presented in Figure
1.1b, to minimize the network cost, as the cables have no cost, the goal becomes to “dig”
as little trenches as possible, this special case reduces the CTP to a Minimum Spanning
Tree (MST) problem. In the opposite case, if γ > 0, τ = 0, as each vertex need to get
a cable from the root, the problem turns into minimizing the value spend in cables, as
shown in Figure 1.1f, we reduce to a Single Source Shortest Path (SSSP) problem.

15

r

(a) Instance Example

r

(b) γ = 0, τ = 1.0, (MST)

r

(c) γ = 0.1, τ = 1.0

r

(d) γ = 1.0, τ = 1.0

r

(e) γ = 1.0, τ = 0.1

r

(f) γ = 1.0, τ = 0, (SSSP)

Figure 1.1: Instances of CTP.

In previous works found in the literature, Nielsen et al. [2008] showed the practical
relevance of CTP for telecommunication problems, analyzing the winnings of solving the
CTP for a scenario of communications access networks. They presented, for a large-scale
data access network, an analysis of cost reduction in the order of 8% comparing to the
most efficient previous approach of network design.

Jamili and Ramezankhani [2015] presented a Mixed Integer Linear Programming
model (MILP) to find the best routes between power substations and buildings, applied
to model power transmission on a metro depot scenario. They also used the proposed so-
lution to a real case study at the metro depot in Iran and analyzed the results comparing
to previous formulations.

Girard et al. [2011] used the CTP to find the optimal layout for cables and trenches
connecting the 96 low-frequency radio astronomy antennas at the LOFAR Super Station
in Nançay, France.

For medical applications of blood vessel networks, Vasko et al. [2016] presented a
model to use in image correction scenarios, where trenches represent blood vessels, ca-
bles represent blood volume and cost coefficients come from physical properties. They
presented a variant to the CTP called, the Generalized Cable-Trench Problem, giving a
MILP formulation and very fast heuristics for large-scale instances, been tested for graphs
with up to 25.001 vertices.

Other variants of the CTP were also presented. One of them is the p-Cable Trench
Problem, introduced by Marianov et al. [2012]. They proposed scenarios to optimize the
construction of logging roads and sawmills and for building canals and wells for irrigation.
An Integer Linear Programming formulation was provided and a heuristic algorithm based
on Lagrangian relaxation was used for instances up to 300 nodes.

Schwarze [2015] introduced the Multi-Commodity Cable-Trench Problem (MC-CTP)
with the possibility of modeling scenarios where different network operators can share

16

the infrastructural costs of the system. This work highlights applications not limited to
telecommunications or power distribution networks. They described how one can use the
MC-CTP in transportation scenarios, like in the railroad design, modeling rail tracks as
trenches and considering the cables commodity as train lines, looking for minimizing the
time of the travels and the cost of the infrastructure.

Calik et al. [2017] presented a variant called the Capacitated p-Cable Trench Problem
with Covering, which can be used to model problems in wireless networks, and also can be
applied in most previous variants of the CTP. They proposed an algorithmic framework
based on Benders decomposition, solving instances up to 900 vertices.

Another variant, the p-Cable-Trench Problem with Facility Location, presented by
Rocha et al. [2017] model scenarios where one has to decide the placement of cable-
sources to serve clients in a cable-trench network by paying an opening cost. They used
two heuristics, one based on Relax-and-Fix (Wolsey [1998]) and another based on BRKGA
(Gonçalves and Resende [2011]), with numerical experiments on instances up to 614 ver-
tices.

In this work, we developed a range of techniques to solve large-scale instances of the
Cable Trench Problem. As results, we defined a set of edge reduction rules capable of
removing a significant number of edges on large-scale instances. In our main instance set,
with 310 instances, containing graphs with up to 33.708 vertices, we achieved an average
of 98.65% of the edges being removed. Two of this reduction rules are safe, and therefore
can also be used in exact algorithms. We also presented a series of heuristics and a local
search algorithm that achieved an average gap to the lower bound of 6.149%. The largest
gap found for our best algorithm was of 37.898%. All algorithms were executed in our
experiments with a time limit of 10 minutes.

This research is organized as follows, Section 2 presents the CTP. Section 2.2 present
lower bounds for the problem. Section 2.3 shows how reductions can be applied to remove
safely and heuristically edges of an instance. In Section 2.4, we present a fast Local Search
algorithm that can significantly improve the quality of heuristic solutions. Heuristics are
presented in Section 2.5. In Section 3 we present a new variant of the CTP adding
demands on the vertices. We use this new variant in Section 3.3 to introduce a new
heuristic framework to solve large-scale instances of the CTP. Computational experiments
are presented in Section 4.2, and in Section 5 we present our conclusions and summarise
future work.

17

Chapter 2

The Cable Trench Problem

The CTP was introduced by Vasko et al. [2002], with the potential of finding the cost-
optimal layout of telecommunication networks. Proven to be NP-Hard in general, but
polynomially solvable in special cases, CTP is a combination of the Minimum Spanning
Tree Problem and the Single Source Shortest Path Problem.

Given a set of instances ICTP , a function `T (r, v) that gives the distance from a vertex
r to a vertex v in a tree T , and a function l : E → R+ which gives the length of each edge
on a given graph G = (V,E), the CTP can be formally described as:

Cable-Trench Problem: An instance (G, r, l, τ, γ) ∈ ICTP consists of a
graph G = (V,E), a root vertex r ∈ V , a function l : E → R+, and cost
factors τ and γ for trench and cables. The problem is to find a spanning tree
T = (V,ET) of G in which τ

∑
e∈ET

le + γ
∑
v∈V

`T (r, v) is minimum.

Note that the cost function can be splitted in a trench cost function and a cable cost
function. For the trenches, the trench cost factor τ is multiplied by the sum of the length
of the trenches in the solution,

∑
e∈ET

le. For the cables, the cable cost factor γ is multiplied

by the sum of the distance of every vertex to the root in T ,
∑
v∈V

`T (r, v).

2.1 CTP Formulations

To formulate the CTP in mathematical terms, we present Mixed Integer Linear Program-
ming models (MILP). The following models consider graphs with directed arcs, where we
denote the pair (i, j) or ij as the arc leaving from vertex i and reaching vertex j.

We denote by A(E) the set of arcs obtained from the edges in E, i.e for each edge
{i, j} ∈ E we include both arcs (i, j) and (j, i) in A(E). Let us also denote δ(i) = {e ∈ E :

e is incident to i }, δ+(i) = {ij ∈ A(E)} and δ−(i) = {ji ∈ A(E)}.

18

2.1.1 Vasko Formulation

This model was firstly defined in Vasko et al. [2002]. Let (G, r, l, τ, γ) ∈ ICTP be an
instance of the problem, where lij gives the length of arc ij. We use integer variables xij
for the number of cables in the arc ij ∈ A(E), and binary variable yij to indicates the
existence of a trench in arc ij ∈ A(E).

The formulation is presented below.

Minimize τ [
∑

a∈A(E)

laya] + γ[
∑

a∈A(E)

laxa], (2.1)

subject to:

∑
a∈δ+(r)

xa = n− 1, (2.2)

∑
a∈δ+(i)

xa −
∑

a∈δ−(i)

xa = −1 ∀i ∈ (V \ r), (2.3)

∑
a∈A(E)

ya = n− 1, (2.4)

xa ≤ (n− 1)ya ∀a ∈ A(E), (2.5)

xa ≥ 0 ∀a ∈ A(E), (2.6)

ya ∈ {0, 1} ∀a ∈ A(E). (2.7)

The objective function in (2.1) minimizes the overall cost of the spanning tree. Con-
straint (2.2) ensures that n− 1 cables leaves the root. Constraint (2.3) ensures that each
one of the nodes is connected by one cable. Note that the solution is a spanning tree,
so constraint (2.4) ensures that n− 1 trenches are in the solution. This constraint is not
required, but it strengthens the formulation by reducing the solution space to be searched.
Constraint (2.5) ensures a cable is not laid in an arc unless a trench is dug on it.

2.1.2 Multi-Commodity Formulation

Marianov et al. [2012] presented a multi-commodity flow formulation for a variant of the
CTP, called the p-Cable-Trench problem. In this variant, an instance is similar to the
CTP, a tuple (G, r, l, p, τ, γ), where p is an integer that defines the number of roots in
the solution network. The p-Cable-Trench problem aims to find a minimum cost network
with at most p cable sources. Each cable source will be a root in the spanning-forest that
connects every node in the Graph, with the same rules of the CTP.

We adapted this model for the simple version of CTP. In the following formulation,
variable fkij indicates if the cable that reach vertex k passes in arc ij ∈ A(E). The binary
variable yij indicates the existence of a trench on arc ij ∈ A(E).

19

Minimize γ[
∑
k∈V

∑
a∈A(E)

laf
k
a] + τ [

∑
a∈A(E)

laya], (2.8)

subject to:

∑
a∈δ+(r)

fka = 1 ∀k ∈ V, (2.9)

∑
a∈δ−(k)

fka = 1 ∀k ∈ V, (2.10)

∑
a∈δ+(i)

fka −
∑

a∈δ−(i)

fka = 0 ∀k ∈ V, i ∈ V \ k, (2.11)

∑
a∈δ−(i)

ya = 1 ∀i ∈ V, (2.12)

fka ≤ ya ∀a ∈ A(E) \ δ−(k), (2.13)

fka ≥ 0 ∀a ∈ A(E), k ∈ V, (2.14)

ya ∈ {0, 1} ∀a ∈ A(E). (2.15)

The objective function (2.8) aims to minimize the overall cost of the spanning tree.
Constraints (2.9), (2.10) and (2.11) are related to flow conservation, stating that for
each vertex, a unit of flow should origin from the root, that each node should receive
its respective unit of flow, and that every unit of flow received that is destined to others
vertices should exit it. Constraint (2.12) states that every vertex should be reached by
one trench. Constraint (2.13) sets that if a cable uses some arc, then a trench must exist
in that arc.

2.2 Lower Bound

For a minimization problem such as the CTP, lower bounds can be used to estimate, how
far from an optimal network each heuristic solution is. Especially for instances where it
is intractable to find an optimal solution, the use of lower bounds makes it possible to
evaluate the quality of our heuristics.

We present a simple lower bound method for the problem using solutions for the Single
Source Shortest-Path (SSSP) and the Minimum Spanning Tree (MST) problems. We also
briefly introduce other lower bound methods found in previous works on the literature,
but not suitable for our scale requirements.

20

2.2.1 SSSP + MST Lower Bound

r

v1

v2

v3

v4
v5

v6

v7

v8

v9

Figure 2.1: SSSP (red) + MST (black) lower bound on instance

This basic lower bound was introduced by Vasko et al. [2002] when presenting the problem.
In the CTP we have two cost factors: cables and trenches. Individually calculating the
optimal cost for each of those cost factors result in a valid lower bound for an instance.

As illustrated by Figure 2.1, for the cables cost, as our goal is to connect each vertex
to the root. The cheapest connection is given by the shortest path from the source to
each vertex in the graph. That can be calculated using the Dijkstra’s Algorithm for the
Single Source Shortest-Path (SSSP) problem (Dijkstra [1959]).

For the trench costs, the Minimum Spanning Tree (MST) will result in the lowest
network cost design that connects every vertex in the graph, resulting in the lowest possible
trench cost design. To calculate the MST, we can use Prim’s Algorithm (Prim [1957]).

Therefore, we have by the SSSP a cable cost lower bound, and by the MST the trench
cost lower bound. Adding those factors results in a lower bound to the CTP problem.
Both algorithms are polynomial and suitable to be executed in large-scale instances, as
demonstrated in our experiments.

2.2.2 Alternative Lower Bounds

Alternative lower bounds were present in previous works about the CTP. We will not dive
in depth about them, mostly because they are not suitable for large-scale instances due
to memory and computational power constraints.

Relaxed Linear Programming Solving an Integer Linear Programming model, like
the ones in Section 2.1 provide an optimal solution. But when their variables have the
integrality constraint relaxed, we have a new, and an easier problem that can be solved
in polynomial time and that provides a valid lower bound for the problem.

21

Lagrange Relaxation Marianov et al. [2012] presented a Lagrangian relaxation algo-
rithm derived from the multi-commodity flow formulation for the CTP. Following the idea
of relaxing constraints, the Lagrangian relaxation takes a subset of constraints and moves
them to the objective function, what makes to problem easier to solve and also provides a
valid lower bound for an instance of the problem. More information about the Lagrangian
relaxation can be found on (Wolsey [1998]) and on the paper of Marianov et al. [2012].

2.3 Edge Reduction Rules

We propose safe and heuristic edge reduction rules for metric instances, i.e instances
where the distance function l satisfies the triangle inequality. By safe reduction rules we
mean reduction that do not remove edges used in any optimal solution, and by heuristic
reduction rules, one that are capable of removing edges that will unlikely be a part of
“good” solutions, but may eventually remove edges used in an optimal solution.

As a result, we can reduce an instance size, substantially simplifying it. Therefore,
these reductions enable heuristics, local search procedures and algorithmic techniques
otherwise infeasible due to memory and computational-power limitations.

Due to some of our heuristic’s requirements, we state that for every reduction below,
we must keep the arc between the root and each vertex in the instance. More information
about how these rules are used in our experiments, and the results achieved can be found
in Section 4.2.

2.3.1 Reduction rule 1

r

(a) Longest Edge (LE)

r

(b) Edges ≤ 50% of LE

r

(c) Reduction 1, α = 0.5

Figure 2.2: Reduction Rule 1

The first reduction ever proposed for the CTP, to the best of our knowledge, was presented
by Vasko et al. [2016] in their computational experiments using complete graphs of size
up to 25.001 vertices. They only consider edges with a length smaller than 10% of the
diameter of the input graph. They argue that, in practice, this reduction was consistent
with their vascular dataset, reducing their complete graphs into a more memory-wise
manageable instance. Notice that this reduction rule is not safe, that is, it may remove
edges that would be used in an optimal solution. We can apply this rule for any factor
of the instance diameter, removing edges that are greater than a factor λ value from the

22

longest edge length. We slightly modify this reduction rule for our experiments, keeping
the root directly connected to every node in the graph.

We can formalize it as:

Reduction Rule 1: Let an instance (G, r, l, τ, γ) ∈ ICTP , where G = (V,A),
and reduction parameter λ ∈ [0, 1]. The reduced graph is G∗ = (V,A∗), where
A∗ = {a ∈ A : la ≤ λ · lmax} ∪ {(r, i) : i ∈ V }, where lmax = max{la : a ∈ A}

2.3.2 Reduction rule 2

r

i

j

(a) costmin(i, j)

r

i

j

(b) cost(r, j)

r

i

j

(c) cost(r, j) ≤ costmin(i, j)

Figure 2.3: Reduction Rule 2 decision step

We present a safe reduction rule that can remove edges without compromising any optimal
solution. Let us first calculate the lowest possible cost that a vertex i can reach a vertex
j by using edge (i, j). As illustrated in Figure 2.3a, the lowest possible cost that i can
reach j by (i, j) is by paying the cable and trench cost between i and j, plus the cable of
the shortest path from r to i,

costmin(i, j) = γ(sp(r, i) + lij) + τ(lij) (2.16)

Let us now consider that we connect the root vertex r to a vertex j by their shortest
path on the graph, paying the cable and trench prices for the whole length of this con-
nection. The shortest path of r to j gives an upper bound to the connection cost of j in
the solution. Figure 2.3b show an example of the shortest-path-connection of the root r
to a vertex j, sp(r, j), where cost(r, j) = sp(r, j)(τ + γ).

By knowing an upper bound for connecting j, for any i ∈ δ−(j), we can remove all
edges (i, j) that cannot lead to a lower connection cost.

Note that by connecting r to j by their shortest path, we have a upper bound for the
cost of reaching j of minimal cable distance, that is, we have a feasible path from r to
j that cannot reach the root by a lower distance. It implies that in a solution, replacing
(i, j) by sp(r, j) would not increase the cable distance of any vertex in the sub-tree rooted
by j, and therefore, would not increase the cost for any other vertex.

Let us formally define the reduction rule 2 as:

Reduction Rule 2: Let an instance (G, r, l, τ, γ) ∈ ICTP , where G = (V,A).
The reduced graph is G∗ = (V,A∗), where A∗ = {(i, j) ∈ A : cost(r, j) ≥
costmin(i, j)} ∪ {(r, i) : i ∈ V }.

23

Lemma 2.3.1 Reduction Rule 2 is safe.

Proof. To prove the Reduction Rule 2, let us assume, with the aim of obtaining a
contradiction, that there exists an optimal solution tree T ∗ where (i, j) ∈ T ∗, and
cost(r, j) < costmin(i, j). By replacing (i, j) by sp(r, j) we would obtain a new solu-
tion with lower cost, since we would not increase the cost of connecting any vertex in the
sub-tree rooted by j, as the cable distance to every node on its sub-tree would be at most
the same as in the current solution, given the fact that the graph is metric and sp(r, j)
will provide the shortest cable-distance to j. We can conclude that the cost of T ∗ could
be reduced by replacing (i, j) by the path sp(r, j), which contradicts the fact that T ∗ is
an optimal solution.

2.3.3 Reduction rule 3

r

j

i

(a) Heuristic solution T

r

j

i

(b) costT (j) < costmin(i, j)

Figure 2.4: Reduction 3

This is a heuristic reduction that, in our experiments, was capable of removing a large
number of edges, and did not compromise the quality of the solutions found. The idea of
this heuristic reduction rule is to remove edges that will not locally produce better results
than a given start solution.

In Figure 2.4a, we have a solution tree T . Figure 2.4b, shows the lowest possible cost
that vertex i can reach j, with the same calculation as in (2.16). Knowing the cost that
j is connected in the solution T , we decide if the edge ij should be kept.

Let costT (r, j) be the cost of connecting j in T . By connection cost, we mean, the
cable from r to j in T , which its distance is given by `T (r, j), plus the trench of the arc
δ−(j) ∈ T , costT (r, j) = (γ · `T (r, j)) + (τ · lδ−(j)). The reduction rule removes every (i, j)

where costmin(i, j) > β · costT (r, j).
Formally, we can define rule 3 as:

Reduction Rule 3: Let an instance (G, r, l, τ, γ) ∈ ICTP , where G = (V,A),
a reduction parameter β ∈ [0,∞], and a solution tree T . The reduced graph is
G∗ = (V,A∗), where A∗ = {(i, j) ∈ A : costmin(i, j) ≤ β · costT (r, j)} ∪ {(r, i) :

i ∈ V }.

24

2.3.4 Reduction rule 4

r

j

i

(a) Lower Bound

r

j

i

(b) Heuristic solution T

r

j

i

(c) LB + edge {i, j}

Figure 2.5: Reduction 4

We present a new safe reduction rule where, given a feasible solution, we remove all edges
that cannot be part of a solution with a lower cost than it. To decide if an edge can
be part of a better solution, we calculate the lower bound of the instance, forcing the
existence of this edge on the solution. If this lower bound cost, added with the edge have
a higher cost than the given solution, we can prove that this edge cannot not be part of
any optimal solution, and therefore, can be safely removed.

Let an arc a ∈ A, a function LB(a) that calculates a lower bound where a belongs to
the solution, and a feasible solution T for the problem. If LB(a) > cost(T), we can safely
remove arc a from the instance as it cannot be part of any solution with a lower value
than the one found in T .

Note that for a graph G = (V,A), where a ∈ A, given a function LB(G) that calculate
a lower bound of a graph, we can create a subgraph G′ of G where arc a is contracted,
and calculate LB(a) as LB(a) = LB(G′) + (τ + γ) · la.

Formally, we can define rule 4 as:

Reduction Rule 4: Let an instance (G, r, l, τ, γ) ∈ ICTP , where G = (V,A),
and a solution tree T . The reduced graph is G∗ = (V,A∗), where A∗ = {(i, j) ∈
A : cost(T) ≥ LB(i, j)} ∪ {(r, i) : i ∈ V }.

Lema 2.3.1 Reduction Rule 4 is safe.

Proof. Let us assume, with the aim of obtaining a contradiction, a feasible
solution tree T , and an optimal solution tree T ∗, where for an edge a ∈ T ∗,
cost(T) < LB(a). We have that, since LB(a) gives a valid lower bound,
LB(a) ≤ cost(T ∗), which implies cost(T) < cost(T ∗), which is a contradiction
to the fact that T ∗ is optimal.

2.4 Local Search

Working with heuristics, we can explore the local neighbourhood of a solution looking
for improvements. We present a fast local search procedure capable of searching for local
improvements on any solution.

25

2.4.1 Single Edge Neighborhood

r

i

j

v

(a) Heuristic solution T

r

i

j

v

(b) Single edge exchange

r

i

j

v

(c) Solution T ′

Figure 2.6: Single Edge Neighborhood

Marianov et al. [2012] discussed on their paper about exploring the local neighbourhood
of a heuristic solution, searching for improvements for the p-Cable Trench Problem. Based
on it, we focused on designing an algorithm able to quickly calculate local improvements
for large scale instances of the CTP.

We are looking for a fast algorithm, able to calculate the cost of replacing an edge in
a solution tree T . For every vertex v ∈ T , the algorithm checks if changing v’s parent
would improve the solution, as illustrated in Figure 2.6.

Given an instance (G, r, l, τ, γ) ∈ ICTP and a solution tree T , let us assume, that a
vertex v ∈ T has a vertex i ∈ T as its parent. Our goal is to calculate the cost of replacing
the current parent of v to a vertex j ∈ T by removing the edge (i, v) ∈ T and adding the
edge (j, v). For the moment, let us assume that it results in a feasible solution, that is, it
will not lead to cycles.

To calculate the cost of disconnecting v from T , we need the distance of v to the root
in T , let us denote this distance by `T (r, v). The size of the sub-tree where v is the root
gives how many cables passes through v, let us call the number of vertices on v’s sub-tree
(with v included) as |Tv|.

Removing edge (i, v) from T , reduce its cost by,

rem(i, v) = (γ · `T (r, v) · |Tv|) + τ · liv (2.17)

Let cost(T) be the function that calculates the cost of a solution. Removing edge
(i, v) from T would result in a spanning forest F , the cost of F is given by, cost(F) =

cost(T)− rem(i, v).
In F , the cost of adding (j, v) have a similar structure, we need the distance of j to

the root, lT (j). The increase in cost is given by,

add(j, v) = (γ · (`T (r, j) + ljv) · |Tv|) + τ · ljv, (2.18)

resulting in a spanning tree T ′ where cost(T ′) = cost(F)+add(j, v). Therefore, ∆(T, T ′) =

add(j, v)− rem(i, v).
In every scenario where ∆ is negative, we have a local improvement. Notice that after

pre-processing and storing those initial pieces of information regarding the distance of

26

every node to the root, and the size of each vertex’s sub-tree, we can calculate in constant
time each parent change, and in linear time on the number of edges of the original graph
G all local improvements.

Algorithm 1 Local Search - Single Edge Improvement Search Algorithm
1: procedure SingleEdgeImprovementSearch(G, T, `T , TSize, γ, τ)

2: localImprovements← [] . Solution Vector

3: for each v ∈ T do

4: vParent← T [v] . T [v] gives v’s parent

5: subTreeSize← TSize[v] . TSize[v] gives v’s sub-tree size

6: currCableDist← `T [v] . `T [v] gives v’s distance to Root in T

7: remCost← γ(currCableDist ∗ subTreeSize) + τ(edge(vParent, v))

8: for each j where edge(j, v) ∈ G \ Tv do . j is not in v’s sub-tree

9: newCableDist← `T [j] + edge(j, v)

10: addCost← γ(newCableDist ∗ subTreeSize) + τ(edge(j, v))

11: ∆← addCost− remCost

12: if ∆ < 0 then . This change improve the solution cost

13: localImprovements(∆, j, v)

14: return localImprovements

In the loop of line 3 of the Algorithm 1, it iterates over each vertex of the solution tree
T , it stores in remCost the cost of disconnecting its current parent. In line 8 it looks for
a new parent for the vertex, searching in every other vertex that have a connection to v
and is not in v’s sub-tree. For each edge replacement candidate, it calculates the cost of
this new connection and store in addCost. If it achieves a local improvement by finding
a negative value of ∆, that is, if the cost of adding this new edge is lower than the cost
of removing the current one, it appends it in the localImprovements list.

Considering that the algorithm know the size of the sub-tree of each vertex in T , and
its distance to the root vertex, it can calculate each edge replacement in constant time.
Representing the graph as an adjacency list, we can achieve a time complexity of O(|E|).

Parallelization

In the Algorithm 1, notice that lines 3 and 8 are data independent loops, therefore, we
can perform them in parallel. The only critical point is when inserting an item on the
localImprovements’ list. Aware of this, a set of vertices can be simultaneously verified,
speeding up the local search procedure.

27

2.4.2 Local Search Procedure

We use the Single Edge Neighborhood in a local search procedure, described bellow.

Algorithm 2 Local Search Procedure Algorithm
1: procedure LocalSearch(G, T, r, γ, τ, timeLimit)

2: while changes.empty 6= true ∧ didReachT imeLimit(timeLimit) 6= true do

3: dT ← calculateDistanceToRoot(T)

4: Tsize ← getSizeOfSubtrees(T)

5: changes← SingleEdgeImprovementSearch(G, T, dT , Tsize, γ, τ)

6: changes← Sort(changes)

7: ApplyToTree(changes.getF irst, T,G, γ, τ)

8: return T

The Algorithm 2 iterates over our solution tree T until it reaches the time limit or it
could not find more local improvements. An auxiliary function calculateDistanceToRoot(T)

returns a vector with the distance of every vertex in T to the root. Another function
getSizeOfSubtrees(T) returns the number of vertices on each vertex sub-tree. The algo-
rithm calculates the number of local improvements, sort all the possible changes by its ∆

value, and apply the most significant change to the solution tree T , repeating the process.

2.5 Heuristics

2.5.1 Mod-Prim

Presented by Vasko et al. [2016], Mod-Prim is a greedy heuristic, based on the Prim’s
Algorithm for Minimum Spanning-Tree (Prim [1957]). Mod-Prim can quickly generate a
feasible solution even for large-scale instances of the CTP.

Starting with a CTP instance (G, r, l, τ, γ) ∈ ICTP , the algorithm initializes a vector
of the distances to every node in G to the root r as infinite. It starts a solution tree T
with the root. Them, calculates the cost of reaching each node from the root, accounting
for the cable and trench costs. It them connects the “cheapest” node to the solution tree.
For each node inserted in T , it updates if needed, the lowest connection cost known to
every other node that is not in T . The algorithm keeps inserting the node with the lowest
connection cost that is not in T until every node of G is connected to T .

The pseudocode is presented as follows in Algorithm 3,

28

Algorithm 3 Mod Prim Algorithm
1: procedure ModPrim(G, r, γ, τ)

2: distanceToRoot ← {∞0,∞1,. . . ,∞|V |}

3: bestCost ← {∞0,∞1,. . .∞|V |}

4: parent ← {}

5: T ← {}

6: bestCost[r] ← 0

7: distanceToRoot[r] ← 0

8: while |T | 6= |V | do

9: nextNode ← argmin(bestCost[i]) . i ∈ (G \ T)

10: for v ∈ neighborhood(nextNode) do

11: edgeLength ← l(nextNode, v)

12: cost ← τ · edgeLength+ γ · (distanceToRoot[nextNode] + edgeLength)

13: if cost < bestCost[v] then

14: parent[v] ← nextNode

15: distanceToRoot[v] ← distanceToRoot[nextNode] + edgeLength

16: bestCost[v] ← cost

17: T ← {nextNode} ∪ T

18: return parent

In lines 2 to 7, we initialize variables that store the distance to the root, and the best-
known connection cost to the solution tree. We also set the connection cost and cable
distance of the root as 0. The loop in line 8 iterates until every vertex in the graph is in
the solution tree. In line 9 it searches the vertex with the lowest connection cost that is
not in T yet. Line 10, from this nextNode, we update the distance to all vertex not in T ,
changing in line 13 if finding a better connection cost.

Using a heap to make the search for the vertex with lowest connection cost, we can
achieve time complexity of O(|E| log(|V |)) for the Mod Prim algorithm.

2.5.2 GRASP and Path Re-link

In this section, we present a new heuristic based on Greedy Randomized Adaptive Search
Procedure (GRASP). It consists of an iterative meta-heuristic, that is based on a con-
structive phase and local search phase (Resende and Ribeiro [2003]).

The constructive phase generates greedily randomized solutions, looking for a set of
diverse and feasible solutions to the instance. The local search phase looks for local
improvements over the given solutions. This process is repeated for many iterations and

29

is demonstrated by previous works on the literature to be a good heuristic approach for
many hard problems.

Constructive Phase

For the constructive phase, the algorithm builds a feasible solution by using a greedly-
randomized function. The algorithm is based on the Mod Prim algorithm, presented in
Section (2.5.1). When building a solution tree, instead of greedily selecting the vertex
of minimum cost that is not yet on the solution tree, it build a list of candidate choices
that can be incorporated in the solution, which is called by GRASP’s literature as the
Restricted Candidate List(RCL), and randomly selects one of them to be incorporated
to the solution.

We will set an α factor that, based on the best “greedy choice”, will limit the candidates
that could be selected. From the RCL the algorithm will randomly pick a vertex that will
be added to the solution, and repeat this process until it reaches a feasible solution tree.

This randomized algorithm is presented in Algorithm 4.

30

Algorithm 4 Semi-Greedy ModPrim
1: procedure RandomizedModPrim(G,α, γ, τ)

2: distanceToRoot ← {∞0,∞1,. . .∞|V |}

3: bestCost ← {∞0,∞1,. . .∞|V |}

4: bestCost[root] ← 0

5: distanceToRoot[root] ← 0

6: parent ← {}

7: T ← {}

8: while |T | 6= |V |) do

9: RCL← {}

10: repeat

11: RCL ← RCL ∪argmin(bestCost[v]) . v ∈ G \ (T ∪RCL)

12: maxCostToRCL ← α · (max(bestCost)− cost(RCL.first))

13: costOfNextRCLCandidate ← (cost(RCL.last)− cost(RCL.first)

14: until |V | = |T ∪RCL| ∨ (costOfNextRCLCandidate > maxCostToRCL)

15: nextNode ← randomElementAt(RCL) . Randomly selects from RCL

16: for v ∈ neighborhood(nextNode) do

17: edgeLength ← l(nextNode,v)

18: cost ← τ · edgeLength+ γ · (distanceToRoot[nextNode] + edgeLength)

19: if cost < bestCost[v] then

20: parent[v] ← nextNode

21: distanceToRoot[v] ← distanceToRoot[nextNode] + edgeLength

22: bestCost[v] ← cost

23: T ← {nextNode} ∪ T

24: return parent

The algorithm randomly select the next vertex to be added to the solution tree from
the RCL set. In the loops from line 10 to 14, it will add to the RCL the cheapest vertex
that is not in the RCL and not in the solution tree until the condition on line 14 is reached.
In line 15, it randomly pick an item from the RCL, and connects it to the tree in a similar
manner as in the Mod Prim algorithm.

31

Local-Search Phase

The Local-Search phase looks for improvements on the greedy solutions found in the con-
structive phase. Our GRASP based heuristic uses the Local Search procedure presented
in Section 2.4.

Path-Relinking

Path-Relinking is another meta-heuristic used to find improved solutions in the neigh-
bourhood of “high-quality solutions”. Given two solution trees, a base solution Tb and a
target solution Tt, we calculate the “distance” of the base solution to the target solution.
By distance, we mean the number of vertices with a different parent in the base solution,
when compared to the target solution.

The goal of our path relinking algorithm is to search for the best solution in the
neighbourhood of both given solutions, by moving the base solution towards the target
solution, changing its parents, until it closes its distance.

Given the set of best solutions found, it considers every pair of solutions as a base and
target solutions. For each pair it does iterative changes until it converts the base solution
into the target solution. In each iteration, it evaluates the solution cost, retaining the
best one found in the process.

If the resulting solution tree of an iteration is infeasible, we consider the solution
with an infinite cost and keep changing the vertices’ parents until we reach a feasible
solution again (considering the target solution is feasible, we know that this will eventually
happen).

Algorithm 5 CTP PathRelink Algorithm
1: procedure PathRelink (G, Tb, Tt, γ, τ)

2: TBest ← Tb

3: TLocal ← Tb

4: for each v ∈ Tb do

5: if Tb[v] 6= Tt[v] then

6: changeParents(TLocal, v, Tt[v])

7: if calcCost(TLocal, γ, τ) < calcCost(TBest, γ, τ) then

8: TBest ← TLocal

9: return TBest

We present the pseudocode of this path relinking in Algorithm 5. Path relinking
algorithm receives two solution trees: Tb and Tt. It starts with Tb as a base solution, and
change, in sequence, each different parent vertex until it reaches the same solution as Tt.
Note that this changes can lead to an invalid solution (e.g with loops). In this case, the
cost of the infeasible solution is infinity. We repeat this process until there is no more
vertices to change.

32

GRASP + Path-Relinking Applied to the CTP

Combining these algorithms, we have our final heuristic. It runs for a number of iterations
the greedy randomized algorithm, apply a local search on it, and at the end, in the best
solutions found, it uses a path relinking to search for improvements, returning the best
solution found in the process. The final GRASP heuristic is presented in Algorithm 6.

Algorithm 6 GRASP based heuristic
1: procedure GRASP(G, iterations, eliteSize, α, γ, τ)

2: solutions ← {}

3: while i < iterations do

4: Tsolution ← RandomizedModPrim(G,α, γ, τ)

5: {solutionV alue, TlocalSearchSolution} ← LocalSearch(G, Tsolution, γ, τ, false)

6: solutions← solutions ∪ {solutionV alue, TlocalSearchSolution}

7: elite ← getEliteFromSolutions(solutions, eliteSize)

8: Tbest ← PathRelink (elite)

9: return Tbest

The loop in line 3 defines the number of iterations that will be executed. For each
iteration we generate a solution, apply the local search and append it to the solutions set.
After generating those solutions, we get the elite set with the best results found. In line
8 we apply the path-relinking in the elite set and return the best solution found.

Parallel GRASP

It is worth mentioning that the constructive, local search and path-relinking phases are
data independent. So, each of those steps could run in parallel. We could generate
multiple solutions at once, using a local search with multiple cores, and path-relinking
multiple pairs at the same time.

33

Chapter 3

The Cable Trench Problem with

Demands

We present a variant for the Cable Trench Problem, that we call the Cable Trench Problem
with Demands (CTPD), which add a cable demand to the set of vertices. This variant
is used in a new technique to solve large-scale instances of the CTP, presented in Section
3.3.

In the Cable-Trench Problem with Demands each vertex in the graph has a positive
demand, as if each client is requesting a certain number of cables from the root.

We can formally define the Cable-Trench Problem with Demands as:

Cable-Trench Problem with Demands: An instance (G, r, l,D, τ, γ) ∈
ICTPD consists of a graph G = (V,E), a root vertex r ∈ V , a function l : E →
R+ which gives the length of each edge, cost factors τ and γ for trench and
cables, and a positive demand factor di ∈ D for each i ∈ V . The problem is
to find a spanning tree T = (V,ET) of G in which τ

∑
e∈ET

le + γ
∑
v∈V

`T (r, v) · dv
is minimum.

3.1 CTPD Formulations

We can adapt the CTP linear programming models presented in Section 2.1 to the CTPD
problem. We denote by D the vector of demands of every vertex in G.

3.1.1 Single-Commodity Formulation

We present below, a MILP formulation for the CTPD. Given an instance (G, r, l,D, τ, γ)
∈ ICTPD, where G = (V,A), for each arc ij ∈ A, we create an integer variable xij, that
gives the number of cables on arc ij, and a binary variable yij, that indicates the existence
of a trench on edge ij.

34

Minimize γ[
∑

a∈A(E)

laxa] + τ [
∑

a∈A(E)

laya], (3.1)

subject to:

∑
a∈δ+(r)

xa =
∑
i∈(v\r)

di (3.2)

∑
a∈δ+(i)

xa −
∑

a∈δ−(i)

xa = −di ∀i ∈ (V \ r), (3.3)

∑
a∈A(E)

ya = n− 1, (3.4)

xa ≤ (
∑

(i∈v\r)

di)ya ∀a ∈ A(E), (3.5)

xa ≥ 0 ∀a ∈ A(E), (3.6)

ya ∈ {0, 1} ∀a ∈ A(E). (3.7)

Constraint (3.2) sets the sum of all cables demands in the instance as the amount of
cables that should be provided by the root. In constraints (3.3), it sets that node i ∈ V
should receive di units of cable. Constraints (3.5) sets that if a trench is dug, it can hold
all cable demanded in the graph. All other constraints remains the same as the ones
presented for the CTP, in Section 2.1.1

3.1.2 Multi-Commodity Formulation

We present a CTPD formulation, based on the one in Section 2.1.2. Given an instance
(G, r, l,D, τ, γ) ∈ ICTPD, where G = (V,A), for each arc ij ∈ A, we create a variable fkij
that indicates if the cable that reach vertex k passes in arc ij, and a boolean variable yij
that indicates the existence of a trench on arc ij.

Minimize γ[
∑
k∈V

∑
a∈A(E)

laf
k
a] + τ [

∑
a∈A(E)

laya], (3.8)

35

subject to:

∑
a∈δ+(r)

fka = dk ∀k ∈ V, (3.9)

∑
a∈δ−(k)

fka = dk ∀k ∈ V, (3.10)

∑
a∈δ+(i)

fka −
∑

a∈δ−(i)

fka = 0 ∀k ∈ V, i ∈ V \ k, (3.11)

∑
a∈δ−(i)

ya = 1 ∀i ∈ V, (3.12)

fka ≤ ya ·
∑

(i∈v\r)

di ∀a ∈ A(E) \ δ−(k), (3.13)

fka ≥ 0 ∀a ∈ A(E), k ∈ V, (3.14)

ya ∈ {0, 1} ∀a ∈ A(E). (3.15)

Constraint (3.9) sets the number of cables leaving the root equals to the vertex demand.
Constraint (3.10) states the number of cable units to be received for each vertex.

In constraint (3.13), it adds the sum of demands in D, in order to allow a trench to
hold, at most, all cables on it. All other constraints remains the same as the one presented
for the CTP, in Section 2.1.2

Thanks to a comment made by Professor Usberti, we later notice that considering the
cable cost factor of a vertex k as γ · dk, it is possible to model its demand as the cable
price that should reach k, that is, if a vertex have a demand of 10 cables, it is equivalent
to state its cable price factor as 10γ.

Therefore, we could take advantage of the Multi-Commodity Formulation and model
the CTPD as a Multi-Commodity Cable Trench Problem, setting a different cable cost
factor for each cable commodity based on its demand. As consequence, the model could
be much similar to the one presented in Section 2.1.2, requiring only the addition of an
specific cable cost factor for each vertex. Notice that this new formulation would not even
require modification in the constraints. Even so, this was not explored in this research
and is left as future work discussed in Section 5.

3.2 Mod-Prim with Demands

We can modify the Mod Prim algorithm presented in Section 3 to solve the version of the
problem with demands.

In the Mod Prim algorithm, to calculate the connection cost from nextNode to v, we
have:

cost← τ · edgeLength+ γ · (distanceToRoot[nextNode] + edgeLength) (3.16)

36

To solve the version with demands, we have to account for the number of cables that
should reach a vertex v. So, to calculate the cost delivering dv cables to v, we modify the
cost equation to:

cost← τ · edgeLength+ γ · dv · (distanceToRoot[nextNode] + edgeLength) (3.17)

Keeping the same pseudocode presented in Section 3, and only modifying the cost
formula, we have a version of Mod Prim algorithm for the Cable Trench Problem with
Demands.

3.3 CTPD applied to large-scale instances of the CTP

We present a new technique to solve large-scale instances of the Cable Trench Problem by
reducing them into vertex-wise “smaller” instances of the CTPD. We start by partitioning
the set of vertices of the CTP instance into clusters. For each of those clusters, we create
a vertex in a CTPD instance. We define the demand of each vertex equal to the size of
its correspondent cluster. We demonstrate that a solution of this CTPD instance can be
used to build a feasible network design for the original CTP instance.

Dealing with those “smaller” CTPD instances enables the use of a new range of tech-
niques, such as linear programming based heuristics, and we also demonstrate that it can
even improve results on greedy algorithms such as Mod-Prim.

We present in Section 3.3.1 details on how to reduce a CTP instance into a CTPD
instance. Section 3.3.2 show details about how the algorithmic framework works.

37

3.3.1 Representing Large-Scale CTP instances as CTPD instances

(a) CTP - 151 vertices (b) CTPD - 23 vertices

Figure 3.1: Example of CTP instance into CTPD instance

To solve large-scale instances, we aim to represent, as best as possible, a large scale
CTP instance as a vertex-wise “smaller” instance. Figure 3.1 shows an example where we
represent an instance with 151 vertices as an instance with demands of 23 vertices.

Given a graph G = (V,E), we start by choosing k partitions, {C0 ⊂ V,C1 ⊂

V, . . . , Ck ⊂ V }, where
k⋃
i=0

Ci = V . We call each of these partitions, a cluster of ver-

tices.
We create a CTPD instance where for each cluster Ci we create a vertex i′. To better

represent the original CTP instance, we set a demand to each vertex equal to the size of
its cluster, |Ci|. The position of each vertex is given by the position of the vertex closest
to the correspondent geometric centroid of its cluster. We add an edge between any pair
of vertices, if exist a pair of vertices in the correspondent clusters that also have an edge
between them. The root of this new instance is defined by the cluster that have the root
vertex of the CTP instance. Cable and trench prices remains the same as the original
instance.

It is worth mentioning that alternative representations may use different rules or met-
rics to represent a CTP instance as a CTPD instance, but due to time limitations we did
not explored it on this research.

Details on the algorithm used in this research to compress the graph into clusters is
presented in the following section.

38

K-Clustering

Looking for a representative way to segment our graph into clusters, we use an iterative
process similar to the one used in the k-means clustering algorithm (MacQueen [1967]).

Figure 3.2: CTP Instance Figure 3.3: Step 1 Figure 3.4: Step 2

Figure 3.5: Step 3 Figure 3.6: Step 4 Figure 3.7: Step 5

Figure 3.8: K-Clustering algorithm adapted to CTP clustering

Let us denote by center-vertex, a vertex that represent the center of a cluster. The
K-Clustering algorithm adapted to CTP instance clustering can be summarised by the
following steps, illustrated in Figure 3.8:

1. Randomly choose a set of vertices of size k which are the initial center-vertices.

2. Add each vertex to the cluster correspondent to its closest center-vertex.

3. Calculate the geometric centroid of each cluster

4. For each cluster, update the center-vertex as the one closest to its centroid.

5. Repeat steps 2, 3 and 4 until it converges, or reach a limit number of iterations.

At the end, it results in all vertices of a CTP instance divided into k clusters.

39

3.3.2 Reduce and Solve - CTPD based Heuristic

We present an algorithmic framework to solve large-scale CTP instances. It requires an
algorithm capable of solving a CTPD instance, that we call CTPD_Solver, an algorithm
to reduce a CTP instance into a CTPD instance, CTP_Reducer, and an integer k that is
the number of vertices (or clusters) that will be created for the CTPD instance.

The algorithm, from a top-down perspective, solves the problem in “levels”, diving into
each cluster, and building a solution tree that reaches every vertex on it.

It first applies the reduction algorithm on the input instance, to create a CTPD
instance of size at most k. It solves it, building a solution that we call T0. For each
vertex of T0, starting from the root, it “opens” the correspondent cluster, getting the
vertices that it contains, and solving it. By solve it, we mean that, based on the set of
vertices, and on the solution tree T0, it builds a new CTPD instance, adjust its demands,
and recursively solve it.

Going in depth on each vertex, eventually, the algorithm will hit a unitary cluster. A
unitary cluster is our base case, when the cluster represent only one vertex of the original
CTP instance. At this point, a path in the solution tree to this vertex will already be
created. At the end, we have a valid network that connects every vertex in the graph,
and that is a valid solution tree for the CTP instance.

Algorithm 7 presents the pseudocode for the heuristic.

40

Algorithm 7 Reduce and Solve Heuristic Algorithm
1: procedure ReduceAndSolve(G, r,D, γ, τ, k, CTPDSolver, CTPReducer)

2: if |V | = 1 then

3: return [] . The set of edges for one vertex is empty

4: else

5: CTPDInstance ← CTPReducer(G, r, τ ,γ, k)

6: CTPDInstance.D ← SumDemands(CTPDInstance, D)

7: T0 ← CTPDSolver(CTPDInstance)

8: clusterToBeSolved ← {CTPDInstance.root} . queue of vertices

9: SolutionTree ← []

10: while clusterToBeSolved.isEmpty = false do . Building a solution

11: currentCluster ← clusterToBeSolved.pop()

12: clusterParentVertex ← GetClosestVertex(T0[currentCluster], currentCluster)

13: r′ ← getRootFrom(currentCluster)

14: SolutionTree.insert({clusterParentVertex, r′})

15: G’ ← getGraphOfCluster(currentCluster)

16: D’ ← [1, 1, ..., 1] . D′ receives a vector of size |V ′| of 1

17: for i ∈ δT0(currentCluster) do

18: closestVertexToCluster ← GetClosestVertex(i, currentCluster)

19: D′[closestVertexToCluster] ← getACMSizeOfCluster(i)

20: ClusterSol ← ReduceAndSolve(G′, r′, D′, γ, τ, k, CTPDSolver, CTPReducer)

21: SolutionTree.insert(ClusterSol)

22: for i ∈ δT0(currentCluster) do

23: clusterToBeSolved.insert(i)

24: return SolutionTree

The input of Algorithm 7, is a CTPD instance. Note that we can trivially reduce a
CTP instance into a CTPD instance where each vertex have its demand equal to one unit.

As a recursive algorithm, our base case, in line 2, is when the number of vertices of
an instance is equal to one. At this point, the solution, that is composed by the edges in
the solution tree, is trivially empty.

If the instance is vertex-wise bigger than k, the algorithm must reduce its size. The
algorithm uses the CTP_Reducer algorithm to create, from the input graphG, an instance
with size at most k.

As our input is also a CTPD instance, only representing this graph is not enough,

41

due to the fact that each vertex may have a previous demand. So the algorithm must
also account from previous demands bigger than one unit. In line 6, it calls a function
SumDemands that will sum the demands of D, bigger than 1, to the respective vertices
in CTPDInstance.

In line 7, it solves CTPDInstance. In line 8 it creates a clusterToBeSolved queue,
that will be used to go through every cluster in T0 to, sequentially, “open” and solve each
cluster vertex.

The loop on line 10 goes until there is no other vertex to visit, starting from the root,
it goes through all vertices in T0.

Line 12 gets the current cluster parent. First, T0[currentCluster] returns the cluster
that is the parent of currentCluster in T0. The function GetClosestVertex gets the vertex
that is the closest in the parent cluster, to the current one.

In line 13 it gets the current parent root, if this cluster is the root cluster of T0, the
original root is chosen, if not, it selects the closest vertex in the current cluster to the
parent cluster as root.

In line 14 it adds the edge that connects the parent’s closest vertex to the current root
r′, to the solution.

At this point on, the algorithm starts to create a new instance based on the current
cluster, aiming to recursively build a feasible CTP solution for the currentCluster.

In Line 15 it gets the graph correspondent to the vertices in the currentCluster. Line
16 it creates a new demand vector, at first, with demand equal to one to each vertex.

In the loop of lines 17 to 19, it iterates over every cluster adjacent to the currentClus-
ter in T0, the goal is to add as demand to the currentCluster the size correspondent to
all neighbours. First, in line 18, it calls the function GetClosestVertex, that returns the
closest vertex in the current cluster to the cluster i, storing in the variable closestVertex-
ToCluster. The idea is to add to this closest vertex, the demands correspondent to the
subtree of clusters rooted by i in T0.

That is what happens in line 19, where the demand vector, in the position of the
vertex represented by the variable closestVertexToCluster, gets the accumulated demand
of subtree rooted by i, given by the function getACMSizeOfCluster(i).

At this point, in line 20, it can recursively call itself with an instance correspondent
to the current cluster. In line 21 we add the returning result to the current SolutionTree,
and in lines 22 and 23 it adds the adjacent clusters to the clusterToBeSolved queue.

When every vertex of T0 is solved, a valid CTP solution for this tree is stored in
variable SolutionTree, and returned in line 24.

42

Chapter 4

Computational Experiments

We run our experiments on a 8 Cores-Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz,
with 32GB of RAM, running Ubuntu 16.04.1 LTS. An instance for the Cable Trench
Problem is composed of a graph, a root vertex and a cost factor for cables and trenches.
We have 11 classes of Euclidean graphs based on 2D and 3D points, all graphs used in
this research can be found on (Rocha [2018]). For each graph, we create an instance with
a cable value γ = 1.0, and trench value equals to τ = {0.01, 1.0, 5.0, 10.0, 100.0}, same
values as used by Vasko et al. [2016].

Our main instance set, with 310 instances, contain graphs of size ranging from 8.000

to 33.708 vertices. All algorithms presented on this research were run with a time limit
of 10 minutes, followed by a local search algorithm limited to 35 seconds.

4.1 Methodology

4.1.1 Graph Classes

Vasko We used the same set of graphs presented by Vasko et al. [2016], with vertices
set size of 10.001, 15.001, 20.001, 25.001. This instance is based on points of a vascular
image exam where each vertex is mapped as a point in a 3D-space.

Maps Based on the National Traveling Salesman Problems set, we used 6 country maps:
Greece with 9.882 vertices, Morocco with 14.185 vertices, Italy with 16.862 vertices, Viet-
nam with 22.775 vertices, Sweden with 24.978 vertices, and Burma with 33.708 vertices.
Each vertex in this class is mapped as a point in a 2D-space.

Spiral We generated 6 graphs with vertices set size of 10.000, 15.000, 15.000, 20.000,
25.000, 30.000, that form a spiral shape in a 2D-space.

Grid2D We generated 5 graphs with vertices set size of 10.000, 19.600, 19.600, 19,600,
28.900, that forms a equally spaced grid in a 2D-space.

43

01Cluster2D and SparseCluster2D We generated 6 graphs with vertices set size of
10.000, 15.000, 15.000, 20.000, 25.000, 30.000. Each vertex is mapped as a point in a 2D-
space. Each of these graphs have a number of clusters between [1,

√
n], where a cluster

is a dense area of vertices. 01Cluster2D limit its coordinates between between x = [0, 1]

and y = [0, 1], while SparseCluster2D limit it to x = [0, n] and y = [0, n].

01Random2D and SparseRandom2D We generated 6 graphs with vertices set size
of 10.000, 15.000, 15.000, 20.000, 25.000, 30.000. Each vertex is a point in a 2D-space. All
vertices follow a uniform random distribution in between the limit coordinates. 01Ran-
dom2D limit its coordinates between x = [0, 1] and y = [0, 1], while SparseRandom2D
limit it to x = [0, n] and y = [0, n].

01Cluster3D, 01Random3D and Grid3D We generated graphs where each vertex
is a point in a 3D-space. Each of these classes is analog to the correspondent 2D-space
classes, with the addition of a z-axis. With the exception of Grid3D, the vertices size are
the same as in the 2D version. For Grid3D, to keep equally spaced vertices, we generated
graphs with the vertices set size of 8.000, 8.000, 15.625, 27.000, 27.000.

4.1.2 Instances

For each graph we build a set of 5 instances with cable value equal to 1.0, and trench
values equals to {0.01, 1.0, 5.0, 10.0, 100.0}. The root is chosen as the first vertex of each
graph.

Due to the fact that we were not able to store the complete graph on memory, we
build our instances using reduction rule 1 with an λ = 0.1. We discarded every edge
longer than 10% of the longest edge, but keep the root directly connected to every node
in the graph

We use two instance sets on this research, presented as follows.

Main Instance Set

The main instance set contains all 11 graph classes: Vasko, Maps, Spiral, Grid2D, 01Clus-
ter2D, SparseCluster2D, 01Random2D, SparseRandom2D, 01Cluster3D, 01Random3D
and Grid3D. The Main Instance Set have, in total, 310 instances.

Reduced Instance Set

For the reduced instance set, we focus on 3 graph classes Vasko, Maps and Spiral. We
chose it because instances of the Spiral set presented the highest average gap to the lower
bound, being the most difficult ones for our heuristics. Instances of the Vasko set were
presented in a previous work on the literature. The instances of the Maps set are based on
a practical scenario for the CTP. The Reduced Instance Set have, in total, 80 instances.

44

4.1.3 Edge Reduction Rules

We used in our research reduction rules 1, 2 and 3. Reduction rule 1 was used when
building our instances, we used factor λ of 10%, the same used in (Vasko et al. [2016]).
Reduction rule 2 has no parameters. For reduction rule 3 we chose factor β = 1.0,
discarding edges that did not result in an improvement over our greedy solution given by
the Mod Prim algorithm. We leave as future work experiments on reduction rule 4.

4.1.4 Lower Bound

The lower bound, discussed in Section 2.2.1 was taken using a Minimum Spanning Tree
+ Single Source Shortest Path from the root to every other vertex in the instance.

4.1.5 Time limits

Every algorithm runs with a time limit of 10 minutes, this time was chosen after we
run our heuristics on the Reduced Instance Set and notice that after it, no considerable
improvement was found. The same idea applies to the time limit of 35 seconds imposed
on the local search algorithm.

4.1.6 Heuristics

GRASP and Parallel GRASP

We present the GRASP based heuristic in our experiments in two different modes.
GRASP, where the constructive phase used a single core, and the local search phase,

for each solution, used all 8 available cores. This version generated a single solution at a
time and parallelized the local search procedure.

In the Parallel GRASP, the constructive phase used all 8 available cores, and the
local search phase, for each solution, uses a single core. The parallel GRASP generated 8
simultaneous solutions for each iteration.

In the constructive phase of GRASP the size of the RCL list depends on a parameter
α, which dictates the cost of elements being considered. We randomly chose an α value for
each iteration. It chooses with uniform probability an α in following list: [0.5, 0.25, 0.125,
0.075, 0.03, 0.03, 0.01, 0.01, 0.01, 0.005]. The values on the list were chosen due to previous
experiments showing that lower α values presented better results for our instances, but we
also added higher values with a lower probability to increase the diversity of the solutions
found.

We divided the 10 minutes of the time limit in 6 minutes for the constructive and local
search phases, and 4 minutes for path relinking phase (executed in parallel for both of
them), where the elite size used was of 5 instances. For both, we also limited the time of
the local search to 35 seconds.

45

Reduce and Solve Heuristic

For the Reduce and Solve heuristic, it uses the K-Clustering as the CTP_Reducer. As
CTPD_Solver we use two algorithms, Mod Prim with Demands and a PLI algorithm
based on the model of Section 3.1.2. To solve the PLI algorithm we used the Gurobi
Optimizer 8.0.

For the parameter k, we used for the Mod Prim algorithm: {50, 100, 250, 400, 600},
and for the PLI algorithm, values in {50, 100}. In both cases, we account the time for
running all sizes of k and get the best solution value found. In the experimental results,
these algorithms are presented, respectively, as (CMP) Mod Prim and (CMP) PLI.

4.2 Experimental Results

In this Section we evaluate the results of our experiments.
The following image presents our results regarding, for our main instance set, the

percentage of instances solved with a particular gap to the lower bound for each of the
researched algorithms.

Figure 4.1: Algorithms for the complete instance set

In Figure 4.1, we have in the vertical axis, the percentage of solved instances [0,1]. In
the horizontal axis, we have the gap of the solutions to the lower bound.

In Figure 4.1, we can state that GRASP and Parallel GRASP solved close to 70% of
instances below the 10% gap and almost 95% of instances below 15% gap. It is also worth
highlighting how (CMP) Mod Prim performed better than Mod Prim, while Mod Prim
solved only around 40% of instances below the 20% gap, (CMP) Mod Prim solved almost
75% of instances below the same mark.

46

As stated in Section 4.1.5, we applied a 35 seconds local search after each heuristic.
The figure below presents the result, for our main instance set, of the gap to the lower
bound of each heuristic after the local search algorithm.

Figure 4.2: Algorithms + LS for the complete instance set

Notice how significant was the improvement after the local search algorithm, specially
for Mod Prim. Mod Prim was solving less than 30% of the instances below the 10% gap
mark, and after the local search, it jumps to over 70% of the instances solved below 10%

gap to the lower bound.
We can summarize our heuristics’ results in a table:

47

avg stdev Q1 median Q3 max

GRASP 6.418 6.866 1.501 4.812 10.588 41.777

Parallel GRASP 6.933 7.485 1.705 5.580 11.089 63.998

(CMP) PLI 17.742 16.202 7.889 13.219 22.653 111.460

(CMP) Mod Prim 14.525 11.593 4.299 11.992 22.199 42.703

Mod Prim 50.771 140.386 9.102 28.487 44.296 1946.668

GRASP + LS 6.149 6.446 1.469 4.596 10.181 40.544

Parallel GRASP + LS 6.424 7.059 1.561 5.008 10.409 61.384

(CMP) PLI + LS 7.369 6.353 2.651 5.986 11.542 37.898

(CMP) Mod Prim + LS 7.646 6.981 2.136 6.134 12.456 38.167

Mod Prim + LS 12.882 40.337 1.801 5.668 11.347 393.450

Table 4.1: Table of results, (%) to lower bound

(1) avg is the average, (2) stdev is the standard deviation, (3) Q1 is the first quartile,
(4) is the median, (5), Q3 is the third quartile, and max is the maximum value found.

We can see that GRASP had a better performance among the algorithms without
local search, although, is worth mentioning that GRASP itself already has a local search
procedure. If we consider only algorithms that do not have any local search procedure, we
have our heuristics based on the CTPD framework with Mod Prim and PLI, presenting
a significantly better solution quality over Mod Prim.

Looking at Figure 4.2, after the local search, we have a considerable improvement in
every algorithm besides GRASP, (CMP) Mod Prim jumps from 22.199% over the lower
bound on its third quartile, to 12.456%. The same for (CMP) PLI, from 22.653% to
11.542%.

Comparing by the average result, we have the algorithm GRASP + LS, with the best
results, and also as the one with the best solution for most of the instances. Comparing by
the farthest solution from the lower bound, (CMP) PLI + LS presented at most 37.898%
gap, compared to 40.544% of GRASP+LS.

We can also take into account the time required to run each heuristic:

48

avg stdev Q1 median Q3 max

GRASP + LS 579.9 53.0 531.5 560.6 635.3 635.9

Parallel GRASP + LS 605.4 38.8 578.6 635.1 635.4 635.7

(CMP) PLI + LS 493.4 183.4 340.8 635.0 635.5 635.9

(CMP) Mod Prim + LS 116.4 57.9 75.4 98.3 146.6 333.5

Mod Prim + LS 33.7 7.8 35.2 36.1 36.1 73.4

Table 4.2: Table of results, execution time in seconds

We see that Mod Prim after using the local search is a fast heuristic that has a
competitive solution quality using only, on average, 33.7 seconds to solve each instance.
It is also worth mentioning (CMP) Mod Prim + LS, that in our experiments solves 5
times the problem, each time with a different value of k, and still runs, on average, below
the 2 minutes mark.

(CMP) PLI + LS also provides an interesting result, once infeasible for instances of
this size, our heuristic framework enables a PLI algorithm to solve this set of very large
scale instances. Solving at each time, instances of the CTPD of sizes of 50 and 100
vertices, we were capable of building a valid solution tree for the CTP, on average, in
around 8 minutes.

The following sections present details about some results found on this research.

4.2.1 Heuristics Results by Graph Classes

Spiral

Starting with the graph set where every algorithm presented, on average, its higher gap
to the lower bound, we present Figure 4.4 with the lower bound gap followed by a Table
4.3 summarizing its results.

As presented in Figure 4.3, this instance set is composed of instances where the vertices
in the graph present a spiral form. Based on its greedy nature, it biases our heuristics to
“follow” the spiral, which may lead to bad solutions.

49

Figure 4.3: Spiral Instance Examples - 100 vertices

Figure 4.4: Spiral Instance Set - Algorithms + LS

50

avg stdev Q1 median Q3 max

GRASP 12.965 14.270 3.623 8.578 12.745 41.777

Parallel GRASP 14.416 16.262 3.931 9.088 14.419 63.998

(CMP) PLI 24.140 15.411 11.977 20.339 31.849 57.734

(CMP) Mod Prim 13.771 13.304 4.571 9.610 14.905 42.703

Mod Prim 278.662 382.689 50.266 225.644 289.677 1946.668

GRASP + LS 12.147 13.003 3.575 8.414 12.471 40.544

Parallel GRASP + LS 13.542 15.426 3.729 8.745 13.514 61.384

(CMP) PLI + LS 13.402 11.868 4.424 10.444 18.059 37.898

(CMP) Mod Prim + LS 11.554 11.833 3.750 8.552 12.156 38.167

Mod Prim + LS 76.553 111.598 9.917 34.795 68.085 393.450

Table 4.3: Spiral Instance Set - Table of results, (%) to lower bound

Notice that Mod Prim + LS presented in the main instance set an average of 12.882%

gap to the lower bound. But viewing only Spiral instances, its average gap is over 76%.
Note how (CMP) Mod Prim in this instance set have the best solution among all

heuristics. We speculate that, due to the fact of “compressing” the graph, it allows the
greedy algorithm to have more information about the instance, assisting the heuristic to
avoid bad greedy choices.

Vasko

Vasko set present a graph based on 3D-points of a vascular image exam. We present an
image with the lower bound gap followed by a table summarizing its results.

51

Figure 4.5: Vasko Instance Set - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 10.257 8.158 4.536 9.267 14.388 25.520

Parallel GRASP 10.800 8.238 5.432 10.346 14.669 26.148

(CMP) PLI 20.170 5.655 15.811 20.586 25.408 28.360

(CMP) Mod Prim 16.656 10.081 7.671 14.756 21.520 33.863

Mod Prim 43.857 29.184 23.862 51.879 63.810 92.728

GRASP + LS 9.889 7.838 4.330 9.055 13.946 25.516

Parallel GRASP + LS 10.131 7.759 5.056 9.515 14.110 25.301

(CMP) PLI + LS 10.464 6.946 6.640 9.994 14.226 23.280

(CMP) Mod Prim + LS 11.991 9.610 5.263 10.668 15.957 29.256

Mod Prim + LS 10.591 7.314 6.018 10.596 14.223 25.072

Table 4.4: Vasko Instance Set - Table of results, (%) to lower bound

Notice that for this set, after running the local search, all heuristics presented results,
on average, around the 10% gap to the lower bound.

Also worth mentioning that even for a 3D-based instance set, our (CMP) heuristics
did not lose performance, still competitive among the other presented heuristics.

52

Maps

Maps set represents maps of countries, where each vertex represents a city. We present a
figure with the lower bound gap followed by a table summarizing its results.

Figure 4.6: Maps Instance Set - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 4.474 4.633 1.336 3.319 5.390 15.867

Parallel GRASP 4.833 4.546 1.705 4.027 5.947 15.734

(CMP) PLI 7.192 5.194 3.587 5.140 9.007 21.921

(CMP) Mod Prim 8.294 9.573 1.835 4.512 9.018 32.467

Mod Prim 32.161 25.017 10.575 31.626 49.915 86.769

GRASP + LS 4.155 4.185 1.248 3.165 5.232 14.059

Parallel GRASP + LS 4.384 4.145 1.561 3.746 5.520 13.881

(CMP) PLI + LS 4.048 3.486 1.780 3.074 5.293 12.155

(CMP) Mod Prim + LS 5.056 5.258 1.266 3.364 6.074 17.647

Mod Prim + LS 4.830 3.865 1.875 4.679 6.634 14.949

Table 4.5: Maps Instance Set - Table of results, (%) to lower bound

Our heuristics found on average, a gap below 5% to the lower bound, highlighting how
these heuristics are suitable for real map-related applications.

53

Another interesting aspect to notice is how significant was the improvement of the
local search procedure for Mod Prim. The average result goes from 32.161% to 4.830%,
lowering over 8 times the gap to the lower bound.

Other Graph classes

As the other graph classes have not presented a high individual variability in the results,
we are presenting them combined.

Figure 4.7: All Instances besides Reduced Set - Algorithms + LS

54

avg stdev Q1 median Q3 max

GRASP 5.483 4.615 1.210 4.826 10.038 14.325

Parallel GRASP 5.894 4.854 1.378 5.548 10.613 15.893

(CMP) PLI 18.072 17.248 8.077 12.839 23.076 111.460

(CMP) Mod Prim 15.251 11.525 4.303 13.605 24.266 42.329

Mod Prim 24.075 18.111 8.842 26.799 36.537 105.731

GRASP + LS 5.302 4.490 1.147 4.596 9.897 14.253

Parallel GRASP + LS 5.439 4.535 1.277 4.912 9.973 14.255

(CMP) PLI + LS 6.746 4.863 2.677 5.920 11.484 18.176

(CMP) Mod Prim + LS 7.096 5.660 2.242 6.214 12.331 19.455

Mod Prim + LS 5.827 4.684 1.752 5.255 10.672 15.130

Table 4.6: All Instances besides Reduced Set - Table of results, (%) to lower bound

For all other instances besides the ones on the reduced set, we achieved an average
result between 5% and 7%, with an at most 19.455% gap to the lower bound. We can
highlight that before the local search, we had instances with a gap over 111%, and after
the local search, all gaps of this 230 instances are below 20%.

4.2.2 Heuristics Results by Cable and Trench Cost

We present the results of our main instance set segmented by cable and trench cost. We
briefly comment on the results at the end of this subsection. For each value of cable and
trench, we present an image with the lower bound gap, followed by a table summarizing
its results.

55

γ = 1.0, τ = 0.01

Figure 4.8: All Instances - γ = 1.0, τ = 0.01 - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 0.169 0.147 0.050 0.075 0.338 0.499

Parallel GRASP 0.174 0.148 0.057 0.076 0.339 0.501

(CMP) PLI 24.997 29.636 6.569 11.407 38.481 111.460

(CMP) Mod Prim 8.265 11.311 1.201 2.356 13.733 40.479

Mod Prim 0.297 0.177 0.138 0.236 0.474 0.573

GRASP + LS 0.167 0.146 0.048 0.073 0.338 0.499

Parallel GRASP + LS 0.170 0.146 0.052 0.075 0.338 0.499

(CMP) PLI + LS 1.542 2.531 0.189 0.478 0.993 9.775

(CMP) Mod Prim + LS 0.583 0.950 0.114 0.226 0.511 3.794

Mod Prim + LS 0.179 0.148 0.057 0.084 0.332 0.498

Table 4.7: All Instances - γ = 1.0, τ = 0.01 - Table of results, (%) to lower bound

56

γ = 1.0, τ = 1.0

Figure 4.9: All Instances - γ = 1.0, τ = 1.0 - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 2.886 1.875 1.585 2.008 4.536 6.438

Parallel GRASP 3.369 2.128 1.814 2.491 5.364 7.513

(CMP) PLI 11.251 8.163 5.895 8.575 15.102 48.571

(CMP) Mod Prim 6.061 4.143 3.119 4.568 9.796 14.926

Mod Prim 15.803 11.619 9.211 13.692 15.020 52.349

GRASP + LS 2.769 1.807 1.513 1.908 4.330 6.169

Parallel GRASP + LS 3.005 1.907 1.625 2.105 5.007 6.534

(CMP) PLI + LS 5.053 3.628 2.417 3.440 7.641 14.364

(CMP) Mod Prim + LS 4.064 2.730 2.014 2.946 6.524 9.905

Mod Prim + LS 5.230 6.620 1.978 2.773 5.944 35.221

Table 4.8: All Instances - γ = 1.0, τ = 1.0 - Table of results, (%) to lower bound

57

γ = 1.0, τ = 5.0

Figure 4.10: All Instances - γ = 1.0, τ = 5.0 - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 6.367 3.429 3.895 5.082 9.544 12.431

Parallel GRASP 7.206 3.827 4.539 5.887 10.625 14.369

(CMP) PLI 13.201 7.583 7.683 11.760 17.779 48.164

(CMP) Mod Prim 12.682 7.406 8.425 10.168 15.730 27.821

Mod Prim 54.836 65.094 27.210 34.594 42.752 290.084

GRASP + LS 6.121 3.315 3.729 4.839 9.245 12.039

Parallel GRASP + LS 6.487 3.458 4.053 5.055 9.852 12.990

(CMP) PLI + LS 7.506 4.467 4.300 5.675 11.233 19.453

(CMP) Mod Prim + LS 7.760 4.197 5.012 6.314 10.482 16.316

Mod Prim + LS 15.204 31.341 4.602 5.662 10.935 190.920

Table 4.9: All Instances - γ = 1.0, τ = 5.0 - Table of results, (%) to lower bound

58

γ = 1.0, τ = 10.0

Figure 4.11: All Instances - γ = 1.0, τ = 10.0 - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 8.194 4.053 5.560 7.131 12.245 17.174

Parallel GRASP 8.863 4.372 6.110 7.726 12.808 20.315

(CMP) PLI 15.480 8.611 9.353 12.810 22.085 49.432

(CMP) Mod Prim 17.682 9.391 11.677 16.590 20.836 37.407

Mod Prim 75.095 115.688 34.291 40.638 49.925 630.626

GRASP + LS 7.898 3.935 5.293 6.804 11.905 16.538

Parallel GRASP + LS 8.173 4.076 5.658 6.862 12.226 18.624

(CMP) PLI + LS 8.921 4.820 5.633 7.198 13.372 18.738

(CMP) Mod Prim + LS 9.902 4.795 6.537 8.470 12.666 19.280

Mod Prim + LS 19.139 51.132 5.989 7.146 12.918 364.468

Table 4.10: All Instances - γ = 1.0, τ = 10.0 - Table of results, (%) to lower bound

59

γ = 1.0, τ = 100.0

Figure 4.12: All Instances - γ = 1.0, τ = 100.0 - Algorithms + LS

avg stdev Q1 median Q3 max

GRASP 14.470 9.251 10.800 12.082 13.854 41.777

Parallel GRASP 15.050 10.740 11.017 12.639 13.954 63.998

(CMP) PLI 23.780 9.677 15.038 25.193 28.634 57.734

(CMP) Mod Prim 27.938 9.142 19.110 29.264 33.900 42.703

Mod Prim 107.825 272.614 33.276 44.468 59.791 1946.668

GRASP + LS 13.789 8.385 10.426 11.730 13.229 40.544

Parallel GRASP + LS 14.284 10.130 10.468 11.792 13.051 61.384

(CMP) PLI + LS 13.821 7.549 10.401 12.168 13.135 37.898

(CMP) Mod Prim + LS 15.922 7.705 13.165 14.512 16.568 38.167

Mod Prim + LS 24.659 64.743 10.617 12.078 13.324 393.450

Table 4.11: All Instances - γ = 1.0, τ = 100.0 - Table of results, (%) to lower bound

Looking at the above images and tables, we can notice how different values of cables and
tranches have a significant impact on the results.

60

At first, with τ = 0.01, most heuristics solve the instances near to 0% gap to the lower
bound. As the τ value increases, the problem becomes more difficult, rising the average
gap found by the heuristics. Its worth mentioning that the problem will not become
indefinitely hard as the value of τ increases. For larger values of τ , the problem will be
closer to the MST problem and therefore will, again, become easy to solve. To show it,
we run in the RIS, the Mod Prim algorithm, and we present the average gap (%) to the
lower bound in the Table 4.12.

τ 0.001 0.01 1 5 10 100 1,000 10,000 100,000 1,000,000 10,000,000

avg 0.04 0.32 27.64 112.84 167.04 308.08 136.43 21.05 2.24 0.22 0.02

stdev 0.03 0.20 15.36 98.11 177.76 493.53 199.46 28.55 3.03 0.30 0.03

Table 4.12: (%) to lower bound for Mod Prim in the RIS for different cable/trench ratios

4.2.3 Local Search

We have already presented some results related to the local search algorithm. The goal of
this Section is to show how the local search improves the solution quality over the time.

First, let us present a figure of the local search when applied to the main instance set.
We are tracking the average solution value of each algorithm over 35 seconds where the
local search algorithm is running.

Figure 4.13: All Instances - Local Search improvement over time

Following, we present the same graph for the instances of the reduced instance set,
respectively, Spiral, Vasko, and Maps.

61

As the gap of Mod Prim algorithm is too high for this instance set, we present the
gap from [0, 200].

Figure 4.14: Spiral Instance Set - Local Search improvement over time [0, 200]

The average gap for the Spiral set in the range of [0, 25].

Figure 4.15: Spiral Instance Set - Local Search improvement over time [0, 25]

The average gap for the Vasko set in the range of [0, 25].

62

Figure 4.16: Vasko Instance Set - Local Search improvement over time [0, 25]

The average gap for the Maps set in the range of [0, 25].

Figure 4.17: Maps Instance Set - Local Search improvement over time [0, 25]

For all instance sets, the most significant changes occur before the 10 seconds of
running time. This show how fast this heuristic is, even when applied to large-scale
instances.

63

4.2.4 Edge Reduction Rules

We study the number of edges in our reduced instance set when applying each of these
reduction rules. Let us start by presenting a table summarizing the number of edges of
each instance.

avg Q1 median Q3 max

R1 + R2 + R3 5673971 477282 2235660 6813934 51152078

R1 + R3 5673971 477282 2235660 6813934 51152078

R1 + R2 29446974 5480550 15512797 31763918 180115074

R1 39725632 13305512 22955939 43255897 180178346

none 417919886 219038760 342145091 624150380 1136195556

Table 4.13: Number of edges with edge reduction rules for the reduced instance set

We can also analyse this data using the average degree of each vertex.

avg stdev Q1 median Q3 max

R1 + R2 + R3 266.051 381.987 27.135 118.157 392.418 2245.975

R1 + R3 266.051 381.987 27.135 118.157 392.418 2245.975

R1 + R2 1315.113 1357.569 351.937 836.719 1566.077 5343.392

R1 1775.586 1346.844 885.822 1446.066 2206.442 5345.270

none 19210.000 7032.867 14795.250 18430.000 24982.500 33707.000

Table 4.14: Vertex degree with edge reduction rules for the reduced instance set

Notice that after applying all reduction rules, we are only considering, on average,
1.35% edges of the complete graph.

Here we can also comment that for our instance set (and the values of β chosen for
reduction rule 3), we had no difference between applying reductions R1 + R2 + R3 or
just R1 + R3.

An important aspect to be evaluated is how this reduction rules impact our heuristics
solutions. Keeping the 10 minutes of the time limit, we executed our reduced instance set
with each of those combinations of edge reduction rules.

64

Reduction rule 1 (λ = 10%)

Figure 4.18: Reduced Instance Set - R1

avg stdev Q1 median Q3 max

GRASP 10.872 12.285 2.002 6.853 14.261 61.850

Parallel GRASP 13.175 13.490 3.430 9.703 17.705 65.163

(CMP) PLI 43.910 106.359 9.421 14.418 24.184 474.184

(CMP) Mod Prim 39.486 107.432 3.520 9.096 20.191 474.184

Mod Prim 127.546 260.944 16.341 50.395 83.529 1946.668

GRASP + LS 10.395 11.969 1.801 6.383 13.887 60.882

Parallel GRASP + LS 11.564 12.623 2.772 8.325 14.324 62.645

(CMP) PLI + LS 39.598 107.285 5.163 10.221 18.920 474.184

(CMP) Mod Prim + LS 37.337 107.802 2.988 7.630 14.543 474.184

Mod Prim + LS 46.482 90.173 4.434 13.882 32.025 463.638

Table 4.15: Reduced Instance Set - R1 - Table of results, (%) to lower bound

Reduction rule 1 (λ = 10%) and Reduction Rule 2

Another experiment, applying the Reduction rule 1, with an λ = 10% and the Reduction
Rule 2.

65

Figure 4.19: Reduced Instance Set - R1 + R2

avg stdev Q1 median Q3 max

GRASP 10.420 11.976 2.064 6.368 13.676 60.343

Parallel GRASP 12.606 12.936 3.275 9.559 17.230 63.633

(CMP) PLI 32.561 80.779 9.405 14.180 21.892 467.700

(CMP) Mod Prim 33.724 95.501 4.235 8.976 18.929 472.886

Mod Prim 127.546 260.944 16.341 50.395 83.529 1946.668

GRASP + LS 10.056 11.747 1.841 5.998 13.275 59.590

Parallel GRASP + LS 11.147 12.164 2.800 7.457 14.641 61.576

(CMP) PLI + LS 26.484 81.612 3.564 8.492 14.741 467.700

(CMP) Mod Prim + LS 31.290 95.876 2.899 6.763 14.173 472.886

Mod Prim + LS 43.952 85.883 5.077 14.408 30.820 463.638

Table 4.16: Reduced Instance Set - R1 + R2 - Table of results, (%) to lower bound

66

Reduction rule 1 (λ = 10%) and Reduction Rule 3 (β = 1.0)

Figure 4.20: Reduced Instance Set - R1 + R3

avg stdev Q1 median Q3 max

GRASP 9.237 10.807 1.574 4.866 12.196 44.880

Parallel GRASP 10.172 11.902 2.020 6.192 12.780 65.047

(CMP) PLI 16.792 12.774 7.114 13.617 21.905 57.734

(CMP) Mod Prim 12.438 11.608 3.787 7.733 18.405 42.703

Mod Prim 127.523 260.950 16.341 50.287 83.529 1946.668

GRASP + LS 8.713 9.974 1.498 4.648 11.457 40.758

Parallel GRASP + LS 9.399 11.271 1.744 5.367 11.874 61.850

(CMP) PLI + LS 9.158 9.214 2.112 6.996 12.289 37.900

(CMP) Mod Prim + LS 9.222 9.709 1.774 5.820 12.542 38.157

Mod Prim + LS 32.886 75.683 2.888 8.959 22.793 393.450

Table 4.17: Reduced Instance Set - R1 + R3 - Table of results, (%) to lower bound

Notice that even considering only an average of 1.35% of the edges, we had better results
than without the reduction rules. One reason is the considerably smaller number of edges
and the resulting speedup on the heuristics.

67

We can also consider the impact of the number of edges, on how fast the local search
improves, on average, each solution.

In the images below we have the average result of lower bound over time, for each set
of reduction rules.

Reduction rule 1 (λ = 10%)

Figure 4.21: Reduced Instance Set - R1 - Local Search improvement over time

68

Reduction rule 1 (λ = 10%) and Reduction Rule 2

Figure 4.22: Reduced Instance Set - R1 + R2 - Local Search improvement over time

Reduction rule 1 (λ = 10%) and Reduction Rule 3 (β = 1.0)

Figure 4.23: Reduced Instance Set - R1 + R3 - Local Search improvement over time

69

From these graphs, we can notice how the smaller number of edges allow the local search
to find better results in a shorter period of time.

4.2.5 Lower Bound

In our research, we use the lower bound to compare our heuristic results. To present,
at least a superficial understanding on the quality of our lower bounds, we generated an
instance set following the same rule of the instances used in our main experiment, but
limiting it to a size of 100 vertices (due to the fact that this is the limit which we are
capable of finding the optimal value on a reasonable amount of time).

We calculate the optimal value running the multi-commodity model presented on
Section 2.1.2, which we are calling Model 2. We are also calling the MILP Model found
on Section 2.1.1 as Model 1.

This table shows the gap between the optimal value and each of these lower bound
methods.

avg stdev Q1 median Q3 max

Model 1 - LP 10.158 12.581 0.743 7.029 12.438 72.456

Model 2 - LP 0.000 0.000 0.000 0.000 0.000 0.000

Lower Bound (MST + SSSP) 7.076 7.028 1.794 5.663 9.804 28.875

Lagrangian Relaxation 3.809 14.594 0.000 0.000 0.069 97.875

Table 4.18: Lower Bound to OPT - Instances of 100 vertices

The lower bound used on this research achieved an average of 7% distance to the
optimal solution.

Notice that, there is almost no gap between Model 2 and the optimal value. We double
check this, and it is really the results for the relaxed Model 2. Unfortunately, it is too
computational expensive, and we cannot run instances larger than 100 vertices to test
the limits of this relaxation. The surprise was Model 1 giving a worst lower bound than
the lower bound (MST + SSSP). Also, we can see that the Lagrangian Relaxation, on
average, provides a good bound, hitting, in some cases, the optimal value. But it also
worth mentioning that it is not suitable for large-scale instances, due to its computational
constraints.

70

Chapter 5

Conclusions

Summarizing the achievements of this research, we presented a set of edge reduction rules.
These rules removed in our experiments, on average, 98.65% of the edges. As consequence,
we were able to run fast heuristics and achieve better results on our local search algorithms.
We can also highlight that two of those reduction rules are safe, therefore can be used to
achieve exact results as it does not remove any edge used in optimal solutions.

We also presented a fast local search algorithm, suitable for large-scale instances,
capable of significantly improving a heuristic solution. In our experiments, the local
search achieved improvements of over 8x in the gap to the lower bound.

We developed new heuristics, such as a new GRASP based heuristic for the problem.
We also presented a new variant, called the Cable Trench Problem with Demands. We
used it on a new heuristic that has shown good experimental results and the potential to
solve even larger scale instances.

We performed a comprehensive experiment on a time limit of 10 minutes for each
instance, running our main instance set of 310 instances. Our solutions had an average
gap to the lower bound of 6.149%, solving 75% of the instances below 10.2% gap. The
largest gap of the best algorithm stays at 37.898%.

We have also performed an experiment to compare different lower bound algorithms
for small size instances, in this research, we found that one of the MILP models when
relaxed achieved a near 0% gap to the optimal solution, opening questions for further
investigations.

5.1 Future work

We expect further experimental investigations to analyze the lower bound quality for the
problem, aiming to study how the lower bound gap is compared to optimal solutions. We
would also like to expand the instance-scale limitations for other lower bound methods,
especially for MILP related lower bounds that have presented near 0% gap as result on
small instances.

This research has also raised the benefits of applying edge reduction rules on CTP

71

instances for heuristics and exact algorithms. We believe that further investigations should
be carried out to look for new edge reduction rules and kernelization techniques in general,
especially regarding safe reduction rules.

Our local search procedure demonstrates a considerable improvement in our heuristic
solutions. We expect that in a future research, new local search neighborhoods could be
explored. Alternatively, techniques such as a Variable Neighbourhood Search could also
be applied to look for local improvements.

Our results on the Reduce and Solve Framework are encouraging, especially due to the
potential of solving instances of a larger size, and should be validated by an even larger-
scale instances experiment. Other heuristics could also be tested to the CTPD, including
genetic algorithms, and other linear programming based heuristics. Another fundamental
issue for a future research is to explore new ways to represent a CTP instance as a CTPD
instance, such as a k-minimal spanning forest, dividing into grids, and others.

72

Bibliography

Hatice Calik, Markus Leitner, and Martin Luipersbeck. A benders decomposition based
framework for solving cable trench problems. Computers Operations Research, 81:128
– 140, 2017. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2016.12.015. URL
http://www.sciencedirect.com/science/article/pii/S0305054816303124.

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, pages 269–271, 1959.

J. N. Girard, P. Zarka, M. Tagger, L. Denis, D. Charrier, and A. Konovalenko. Antenna
design and distribution for a lofar super station in nançy. In General Assembly and
Scientific Symposium, 2011 XXXth URSI, pages 1–4, 2011. doi: 10.1109/URSIGASS.
2011.6051277.

José Fernando Gonçalves and Mauricio G. C. Resende. Biased random-key genetic algo-
rithms for combinatorial optimization. Journal of Heuristics, 17(5):487–525, Oct 2011.
ISSN 1572-9397. doi: 10.1007/s10732-010-9143-1. URL https://doi.org/10.1007/
s10732-010-9143-1.

Amin Jamili and Farshad Ramezankhani. An extended mathematical programming model
to optimize the cable trench route of power transmission in a metro depot. International
Journal of Transportation Engineereing, 3(2):109–123, 2015. ISSN 2322-259X.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-
ity, Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California
Press. URL https://projecteuclid.org/euclid.bsmsp/1200512992.

Vladimir Marianov, Gabriel Gutiérrez-Jarpa, Carlos Obreque, and Oscar Cornejo. La-
grangean relaxation heuristics for the p-cable-trench problem. Comp. Oper. Res.,
39(3):620–628, 2012. ISSN 0305-0548. doi: 10.1016/j.cor.2011.05.015. URL http:
//dx.doi.org/10.1016/j.cor.2011.05.015.

R. H. Nielsen, M. T. Riaz, J. M. Pedersen, and O. B. Madsen. On the potential of using
the cable trench problem in planning of ict access networks. In ELMAR, 2008. 50th
International Symposium, volume 2, pages 585–588, 2008.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

http://www.sciencedirect.com/science/article/pii/S0305054816303124
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1007/s10732-010-9143-1
https://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1016/j.cor.2011.05.015
http://dx.doi.org/10.1016/j.cor.2011.05.015

73

M. G. C. Resende and C. C. Ribeiro. GRASP and path-relinking: Recent advances
and applications. In T. Ibaraki and Y. Yoshitomi, editors, Proceedings of the Fifth
Metaheuristics International Conference (MIC2003), pages T6–1 – T6–6, 2003.

U. Rocha, N. Ramos, L. Melo, M. Benedito, A. Silva, R. Cano, F. Miyazawa, and
E. Xavier. Abordagens heurísticas para o p-cabo-trincheira com localização de in-
stalações. Encontro de Teoria da Computação, 2(1/2017), 2017. ISSN 2595-6116. URL
http://portaldeconteudo.sbc.org.br/index.php/etc/article/view/3196.

Ulysses Rocha. Ulyssesrocha/ctpinstances: Instances, October 2018. URL https://doi.
org/10.5281/zenodo.1467759.

Silvia Schwarze. The multi-commodity cable trench problem. In Proceedings of the
Twenty-third European Conference on Information Systems, ECIS 2015 Completed Re-
search Papers, 2015.

Francis J. Vasko, Robert S. Barbieri, Brian Q. Rieksts, Kenneth L. Reitmeyer, and Ken-
neth L. Stott Jr. The cable trench problem: combining the shortest path and minimum
spanning tree problems. Computers & Operations Research, 29(5):441 – 458, 2002. doi:
http://dx.doi.org/10.1016/S0305-0548(00)00083-6.

Francis J. Vasko, Eric Landquist, Gregory Kresge, Adam Tal, Yifeng Jiang, and Xenophon
Papademetris. A simple and efficient strategy for solving very large-scale generalized
cable-trench problems. Networks, 67(3):199–208, 2016. ISSN 1097-0037. doi: 10.1002/
net.21614. URL http://dx.doi.org/10.1002/net.21614.

Laurence A. Wolsey. Integer Programming. Wiley-Interscience publication, 1998.

http://portaldeconteudo.sbc.org.br/index.php/etc/article/view/3196
https://doi.org/10.5281/zenodo.1467759
https://doi.org/10.5281/zenodo.1467759
http://dx.doi.org/10.1002/net.21614

	Introduction
	The Cable Trench Problem
	CTP Formulations
	Vasko Formulation
	Multi-Commodity Formulation

	Lower Bound
	SSSP + MST Lower Bound
	Alternative Lower Bounds

	Edge Reduction Rules
	Reduction rule 1
	Reduction rule 2
	Reduction rule 3
	Reduction rule 4

	Local Search
	Single Edge Neighborhood
	Local Search Procedure

	Heuristics
	Mod-Prim
	GRASP and Path Re-link

	The Cable Trench Problem with Demands
	CTPD Formulations
	Single-Commodity Formulation
	Multi-Commodity Formulation

	Mod-Prim with Demands
	CTPD applied to large-scale instances of the CTP
	Representing Large-Scale CTP instances as CTPD instances
	Reduce and Solve - CTPD based Heuristic

	Computational Experiments
	Methodology
	Graph Classes
	Instances
	Edge Reduction Rules
	Lower Bound
	Time limits
	Heuristics

	Experimental Results
	Heuristics Results by Graph Classes
	Heuristics Results by Cable and Trench Cost
	Local Search
	Edge Reduction Rules
	Lower Bound

	Conclusions
	Future work

