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Resumo

A paralelização de laços é usada para se obter melhor desempenho em algoritmos inten-
sivos, entretando, não são todos os laços que podem ser facilmente paralelizados.

Os laços chamados de DOACROSS possuem dependências entre iterações, i.e. uma
iteração calcula um dado que é usado por outra iteração futura. Este tipo de dependência
é chamada de loop-carried e não pode ser paralelizada trivialmente porque a ordem de
execução das iterações deve ser respeitada.

Algumas técnicas podem ser usadas para paralelizar este tipo de laço, porém o progra-
mador deve entender como funciona o algoritmo e deve escolher quais instruções podem
ser executadas em paralelo e quais instruções devem ser executadas sequencialmente.
Estas componentes sequenciais e paralelas precisam ser separadas manualmente pelo pro-
gramador e a comunicação entre as componentes deve ser incluída, a �m de respeitar as
dependências entre componentes e as dependências entre iterações.

Implementar essas técnicas é um trabalho laborioso que requer uma certa experiência
do programador para separar as componentes e encontrar as dependências para imple-
mentar a comunicação entre as componentes/threads. Esta comunicação pode ser feita
através de �las ou bu�ers, dependendo do algoritmo de paralelização escolhido.

Uma das técnicas de paralelização é o algoritmo mais tradicional, chamado de DOA-
CROSS [9] que foi implementado no OpenMP 4.5 através da cláusula depend da diretiva
ordered. Este pragma deve ser usado dentro da região de um laço paralelo do OpenMP a
�m de separar as componentes que devem ser sequenciais. A comunicação e a sincroniza-
ção são implementadas automaticamente utilizando a biblioteca de runtime do OpenMP.
Este método remove do programador o trabalho de programação, entretando, ainda é
necessário delimitar explicitamente as componentes sequenciais.

Outro algoritmo de paralelização estudado foi o Batched DoAcross (BDX) [1]. Este
algoritmo pode ser usado para reduzir o overhead da comunicação entre componentes,
entretanto, a implementação deve ser feita manualmente pelo programador e requer que o
programador separe as componentes sequenciais e paralelas, crie barreiras de sincronização
para as componentes sequenciais, crie bu�ers para a comunicação entre componentes e
crie variáveis compartilhadas para a comunicação entre as threads (dependências entre
iterações).

Nos experimentos, foi percebido que a escolha do algoritmo de paralelização depende
de alguns fatores, i.e. a estrutura do algoritmo, a proporção das dependências entre
iterações, o número de iterações do laço e o tamanho do laço.

Foi criada então uma nova cláusula para o OpenMP que, quando usada juntamente
com a diretiva ordered, consegue separar as componentes sequenciais e paralelas e imple-
mentar essas técnicas de forma automática. Esta cláusula, chamada de use, deve receber
um parâmetro que especi�ca qual técnica o programador quer utilizar para paralelizar o
laço.



Abstract

Loop parallelization can be used to achieve better performance on intensive algorithms,
however, not all loops can be easily parallelized.

The called 'DOACROSS' loops have dependences between di�erent iterations, i.e.
some iteration computes a data which is used in a later iteration. This kind of dependence
is called loop-carried dependence and cannot be simply parallelized because iterations
execution order must be respected.

Some techniques can be used to parallelize this kind of loop, however, the programmer
must understand how the algorithm works and choose which instructions can be executed
in parallel and which instructions need to be serialized. These serial and parallel compo-
nents need to be manually separated by programmer and communication between com-
ponents must be included to respect dependences inside loop body and between threads
to respect loop-carried dependences.

Implementing these techniques is a laborious work that requires a certain expertise
from programmer to separate loop components and �nd dependences to implement com-
munication between components/threads. This communication can be done by using a
queue or a bu�er, depending on the algorithm used to parallelize.

One of these parallelization techniques is the traditional DOACROSS [9], which was
implemented by using depend clause for the ordered directive in OpenMP 4.5. This
OpenMP construct is used within OpenMP loop region to separate serial and parallel
components, then, communication and synchronization are automatically implemented
by OpenMP Runtime. This method removes most of the programming work from the
programmer, however still requires to explicitly delimit serial region.

Another studied parallelization technique is the Batched DoAcross (BDX) [1]. This
algorithm can be used to reduce the communication overhead of synchronization between
components, however, the implementation must be done manually by programmer, which
requires for the programmer to separate serial and parallel components, create barriers
to synchronization in serial components, create bu�ers for communication between com-
ponents and create the shared variables for communication between threads (loop-carried
dependences).

In our experiments, we noticed that some factors must be taken for the choice of
parallelization technique, i.e. algorithm structure, loop-carried ratio, number of loop
iterations and loop size.

We created a new OpenMP clause that, used together with the ordered directive, can
separate these components and implement these techniques automatically. This clause,
is called use, receive a parameter for specifying which parallelization technique the pro-
grammer want to be implemented.
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Chapter 1

Introduction

1.1 Parallel Computation

Parallelism is a great technique used to improve algorithms performance, especially algo-

rithms that require a great number of operations. These intensive algorithms usually have

loops that are responsible for most of the program's execution time. Despite the growth

of multicore architectures, programmers still struggle to extract the optimal parallelism

of algorithms.

Automatic parallelization is already a feature present in some compilers, which analyze

the source code during the compilation process, select which loops can be parallelized

and inserts appropriate code for the parallelization of these loops. However, there is

some kind of loops that are not easily parallelized, and for these loops, the compilers do

not attempt to do parallelization automatically. These kind of loops must be manually

parallelized by the programmer, and generally require modi�cations in the algorithm to

achieve performance gains when parallelized.

Even with the modi�cations, it is not guaranteed that all loops will have a performance

improvement. These loops have some instructions in the body of the loop that can not

be parallelized. Because of this, the other instructions in the body of the loop will be

responsible for the performance gain, when parallelized. However, there is an overhead to

be able to control the parallelization and synchronization of this loop, and to achieve a

performance gain, the parallelism of the parallelizable instructions must compensate for

this overhead, in addition to the execution time of the sequential instructions.

This dissertation is organized as follows.

Chapter 1 presents an introduction to this work and explains researched concepts.

Section 1.1 gives a brief introduction to parallel computation. Section 1.2 describes the

types of studied loops and how to obtain parallelism from them. Section 1.3 details the

parallelization algorithms. Section 1.4 explains the concept of loop-carried ratio.

Chapter 2 details the work of implementing proposed clause and is organized in sections

as follows. Section 2.1 details code transformations of use(doax) clause. Section 2.2 details

code transformations of use(bdx, ...) clause and is separated into two subsections: 2.2.1

details AST level transformations and 2.2.2 details LLVM IR level transformations.

Chapter 3 presents some related work.

Chapter 4 presents experiments results on well-known benchmark suites and results
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analysis.

Chapter 5 presents some conclusions made based on experimental results.

1.2 Loops Classi�cation and Parallelism

Based on data dependency analysis, the loops are divided into two categories: DOALL

loops and DOACROSS loops.

Present in most scienti�c applications, DOALL loops have no dependency between iter-

ations and can be parallelized using various techniques, for example: PThreads, OpenMP,

MPI, OpenCL and CUDA. Because there are no dependencies between iterations, they

can be executed in any order, and in this case, the output data will have the same output

expected from a serial version. The parallelization of this type of loop is very simple,

usually distributing the iterations between the available threads or cores.

Unlike DOALL loops, DOACROSS loops have dependencies between iterations. These

dependencies, called loop-carried dependencies, occur when an iteration uses a calculated

data in a previous iteration. Because of this dependence, the loop needs to be executed

in the correct order of iterations so that the output data matches the expected output

when the loop is executed serially.

For this reason, this kind of loop has established an important area of research within

the �eld of loop parallelism. The optimization of these loops is a di�cult task, since there

must be a synchronization between threads/cores that execute the iterations of the loop.

In addition, these loops can not be simply parallelized with the traditional techniques

mentioned above and can not simply have distributed iterations in threads/cores. This is

because threads do not have a guaranteed execution order.

Figure 1.1 shows an example of a DOACROSS loop. The instruction in line 2 calculates

the value of A[i], but the value of A[i− 1], calculated on the previous iteration, is needed.

Also, at instruction in line 3, j value is updated every iteration, using value of previous

iteration too. However, instruction in line 4, do not have a dependence on previous

iterations of the loop, thus, can be executed in parallel once the value of A[i] and k are

calculated in the same iteration.

Using this information about the loop, we can separate the loop body into two compo-

nents: a serial component, with instructions from lines 2 and 3 and a parallel component,

with instruction from line 4.

1 For ( i = 1 ; i < N; i++) {

2 A[ i ] = A[ i − 1 ] ∗ i ;

3 k = f (A, j++) ;

4 B[ i ] = A[ i ] + k ;

5 }

6

Figure 1.1: Sequential example of DOACROSS loop

The dependence graph on Figure 1.2 shows the two components and its dependences.

The component C1, with instructions of line 2 and 3, has a self-dependence with previous
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iteration, and component C2 with instruction of line 4 has an input dependence from

component C1 (values of A[i] and k).

Component C1 must be serialized for correct data output, however, component C2

can be executed in parallel after the values of A[i] and k are calculated for that iteration.

The DOACROSS parallelization techniques use these components to extract parallelism.

Depending on the choice of parallelization technique, while iteration i of component C1 is

executed, other threads/cores can execute the iteration i−1 of component C2 or iteration

i + 1 of component C1.

Figure 1.2: Data dependence graph for the example on Figure 1.1

The naive parallelization of this loop has no performance gain when compared to serial

version since the whole iteration is serialized. In fact, in most cases, there is a performance

loss because of the overhead introduced by synchronization between threads/cores.

This serialization is shown in Figure 1.3 for 2 threads/cores. Each iteration (made

of components C1 and C2) is executed entirely before the other thread execute the next

iteration and there is a communication arrow to indicate the end of computation for each

iteration. This example can easily be implemented with a barrier or a mutual exclusion

with an additional feature to control the iterations order.
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Figure 1.3: DOACROSS loop serialized for execution on 2 threads/cores

1.3 Loop-Carried Ratio

Loop-carried ratio (LCR) represents the percentage of loop iterations that has some de-

pendence from a previous iteration of the loop, because of that, some loops cannot be

simply paralelized because of these dependences. However, depending on loop structure,

the loop can be classi�ed based on loop-carried ratio type.

Figure 1.4 shows how loops are categorized using the dependence analysis, this analysis

can be done during compile time (static) or during execution time (dynamic).

To ease notation understanding, when a loop can be statically analyzed, loop-carried

ratio is called loop-carried frequency (LCF), because every execution of loop will ma-

terialize the same dependences. Then, we can categorize loops that can be statically

analyzed into two categories: DOALL and DOACROSS. DOALL are loops without any

loop-carried dependence, this happens when LCF = 0%. Otherwise, when a loop has

a loop-carried dependence is called DOACROSS, in other words, a loop is DOACROSS

when LCF 6= 0%

On the other hand, when a loop cannot be statically analyzed, compiler cannot assure

that dependences will occur or not. In these cases, loop-carried ratio is called loop-carried

probability (LCP) because some iterations may have dependences or not, depending on

several factors, including program input. We can also categorize these loops into two

categories: D-DOALL and D-DOACROSS. D-DOALL or Dynamic DOALL are loops

that does not materialize any loop-carried dependence given an execution instance, when
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LCP = 0%. However, when a dependence occurs at runtime, loop is categorized as

D-DOACROSS or Dynamic DOACROSS. This happens when LCP 6= 0%

Figure 1.4: BDX Loop Execution

This dissertation will use the following notation:

1. DOALL: Loop can be statically analyzed and LCF = 0%

2. DOACROSS: Loop can be statically analyzed and LCF 6= 0%

3. MAY DOACROSS: Loop cannot be statically analyzed

Case 1© is trivial and parallelization is a direct process. Iterations are simply dis-

tributed between threads and there is no control or synchronization between them because

there is no dependence. Is this case, execution order does not change output generated

by loop. For example:

1 For ( i = 1 ; i < N; i++) {

2 A[ i ] = A[ i ] ∗ i ;

3 B[ i ] = A[ i ] + k ;

4 }

5

Figure 1.5: Example of DOALL loop

In case 2©, most compilers do not automatically attempt to parallelize the loop because

there are dependencies between iterations. In order to parallelize this type of loop, we must

use one of the mentioned algorithms (DOAX, BDX or DSWP) to obtain performance and,

due to the dependencies between iterations, at least part of the loop must be serialized.

So the idea of separating the loop into components, inserting the synchronization only
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into serial components, and executing the other components in parallel can be a good way

of extracting the parallelism of those loops. For example:

1 For ( i = 1 ; i < N; i++) {

2 A[ i ] = A[ i − 1 ] ∗ i ;

3 B[ i ] = A[ i ] + k ;

4 }

5

Figure 1.6: Example of DOACROSS loop

In this case, on line 2, A[i] depends on value of A[i-1], which was calculated by

previous iteration and by induction, every iteration depends on data calculated by pre-

vious iteration. Because of this, 100% of iterations have dependence, making this loop a

DOACROSS loop with 100% of loop-carried frequency.

Case 3© is more complicated because, depending on the input instance, this can be

a D-DOALL loop or a D-DOACROSS loop. The use of the algorithms mentioned in

this type of loop may not be able to extract the best parallelism of the loop, since the

synchronization will be done for each iteration, even if this iteration does not have a loop-

carried dependency. For this case, the best solution is to speculate the iterations of the

loop using transactions. An algorithm called TLS [2] can be used in these loops because

the iterations are executed in parallel and, if there is a dependency violation caused by an

iteration, the transaction manager causes that transaction to be aborted and, after some

time, this iteration is executed again. For example:

1 For ( i = 1 ; i < N; i++) {

2 i f ( cond i t i on )

3 A[ i ] = A[ i − 1 ] ∗ i ;

4 e l s e

5 A[ i ] = A[ i ] ∗ i ;

6 B[ i ] = A[ i ] + k ;

7 }

8

Figure 1.7: Example of MAY DOACROSS loop

In this case, on line 3, A[i] depends on value of A[i-1], which was calculated by

previous iteration but on line 5 only depends on A[i] and there is an if surrounding

these instructions, which means that sometimes line 3 will be executed otherwise line 5

will be executed, depending on condition. Because of this, some iterations have loop-

carried dependence and others do not, the proportion of iterations with dependence is the

loop-carried probability for that input instance.
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1.4 Parallelization Techniques

1.4.1 DOAX

The DOAX parallelization proposed by R. Cytron [9] distribute the loop iterations into

threads and each thread need to communicate with the other threads to respect the data

dependences order. Each thread executes the whole iteration instead of breaking the loop

into serial and parallel components. The idea is trying to execute the maximum number of

iterations in di�erent threads at the same time. This method is very similar to a pipeline.

Figure 1.8 shows the iterations distributed to the threads and the communication between

them. This example shows the dependence of the A[i] variable, which is updated every

iteration of the loop in the component C1 and is read in the component C1 of the next

iteration.

This method has some limitations and introduces communication overhead for each

iteration. Each arrow in Figure 1.8 is a communication between threads. As mentioned

before, these communications have a high latency and there is an overhead for managing

this synchronization between the threads.

There is a DOACROSS based technique called Post/Wait, proposed by P. Unnikrish-

nan and J. Shirako [22] which uses two functions to specify the dependences for a serial

component. These functions act as a barrier to synchronize the threads execution order.

The Wait function, located at the beginning of the serial component, receives an argu-

ment with the iteration indexes of the loop-carried dependence in the serial component.

This function has a busy waiting loop and waits for the iteration dependences to be

ful�lled before the execution of the program continues.

The Post function, located at the end of the serial component, receives the current

iteration indexes as an argument and updates the dependences array to indicate that the

current iteration has �nished the serial component.

The execution is similar to that shown in Figure 1.8, where each thread executes a

whole iteration. However, each thread waits only for the component C1 of the previous

iteration to be completed to start the computation of the component C1 of the current

iteration. Moreover, as soon as thread �nishes the execution of component C1, it continues

the execution of the component C2 of the same iteration.
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Figure 1.8: DOAX Loop Execution

The Post/Wait technique was also proposed as an OpenMP extension [23] by the same

authors and was incorporated in OpenMP 4.1 [3] as the ordered directive with the depend

clause to specify the loop-carried dependences. Figure 1.9 shows an example of this new

OpenMP construct. The serial component are the instructions of lines 4 and 5, delimited

by the ordered directives on lines 3 and 6. The parallel component is the instruction on

line 7 since it is not delimited by any ordered directive.

1 #pragma omp p a r a l l e l f o r ordered (1 )

2 For ( i = 1 ; i < N; i++) {

3 #pragma omp ordered depend ( s ink : i −1)
4 A[ i ] = A[ i − 1 ] ∗ i ;

5 k = f (A, j++) ;

6 #pragma omp ordered depend ( source )

7 B[ i ] = A[ i ] + k ;

8 }

9

Figure 1.9: Example of DOACROSS loop with the ordered directive

In this example, the depend clause with the sink dependence type indicates an input

dependence, so the threads can only execute the instruction on line 4 only if the iteration

i − 1 has already been executed. The depend clause with the source dependence type

indicates the end of the serialized region and is used to update the dependence vector,

which is used to control the execution between the threads. The ordered clause in the

parallel for construct must have a parameter. This parameter is the number of nested

loops associated with the parallel for, this information is needed to create the dependence

vectors and knows how many iteration indexes are expected on the depend clause with

the sink dependence type.
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1.4.2 DSWP

Proposed by Ram Rangan [21], the DSWP (Decoupled Software Pipeline) breaks the

sequential and the parallel components of the loop and distribute the components between

the threads instead of distributing the iterations. Each thread executes all the iterations

of each component, removing the need for synchronizing the loop-carried dependences.

However, there must be a synchronization for the dependences between the components.

Figure 1.10 shows the same example in Figure 1.1 using the DSWP method.

In DSWP, the parallelism gain comes from the pipelined execution of the components

and the fact that each thread executes only one component of the loop, which causes a

better caching and less false sharing problems. However, there is a communication queue

used for every iteration of the loop and this causes a great overhead.

Figure 1.10: DSWP Loop Execution

In this example, each iteration has the component C1 generating the data for A[i]

and then using the queue between the threads for communicating this data to the other

threads. When the other threads detect that the queue has a job �nished, get this data

from the queue and execute the component C2.

There is another version of the DSWP called PS-DSWP. This version tries to spread

the parallel regions between the threads/cores, to have even more parallelism than the

simple pipeline idea from the original DSWP.
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1.4.3 BDX

The BDX, proposed by Divino César S. Lucas [1], is a generalization of the DOACROSS

method. It uses a bu�er to execute several iterations of the loop at once before doing

the inter-thread communication. This bu�ering process reduces the number of commu-

nications between the threads and consequently reduces the number of communications

between the iterations. The example on Figure 1.11 shows the same loop of Figure 1.1,

however, when compared with the DOACROSS and DSWP methods, there are fewer

arrows of inter-thread communication.

Figure 1.11: BDX Loop Execution

The BDX algorithm creates a bu�er for storing the local results. In the example, the

values of A[1] and A[2] are bu�ered by the component C1 and used by the component

C2. For the inter-thread communication, there is a queue between the threads, in the

example, the values of A[2] and A[4] are passed by this queue because di�erent threads

are executing di�erent iterations of the same component.

Just like the DSWP, there is the parallel version of the BDX, called PS-BDX. This

parallel version tries to spread the parallel regions between the threads/cores, to have

even more parallelism than the original BDX.

1.4.4 TLS

The technique that we call TLS for easier identi�cation, was proposed by Salamanca et

al. [2] and uses coarse-grained thread-level speculation (TLS) in order to try to obtain

parallelism from MAY DOACROSS loops. This technique creates hardware transactional

memory (HTM) transactions with the whole loop body and try to execute them in parallel.
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Loop-carried dependences in this case will cause to transactions to con�ict with each

other and the iteration which such dependence happens has a transaction abort and is

re-executed.

Intuition tells that this technique must be better when the number of iterations with

loop-carried dependences is low, because transaction aborts have a high overhead.

Figure 1.12: TLS Loop Execution

Figure 1.12 shows execution �ow for loop of Figure 1.1, which is a DOACROSS loop

with LCF = 100%, which means that this technique will try to execute several iterations

at same time but there is a dependence for every iteration. Because of this dependence,

lots of con�icts will occur, causing transactions to abort at every iteration.

In Figure 1.12, these aborts are represented by red components blocks, while thread

0 executes statement with A[1], thread 1 tries to execute statement with A[2]. However,

a con�ict occurs because thread 1 needs the value of A[1] before and thread 0 writes its

value after, causing a transaction abort of whole iteration for thread 1. Then, transaction

has a rollback and try to execute again, but this time, thread 0 �nished executing its

iteration and dependence is completed, allowing for thread 1 to continue executing.
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Chapter 2

Hypotheses

The idea of implementing this new clause use is to have an easy way for the programmer

to simply annotate loop components using ordered directive and transparently transform

the original source code into a new one using the selected parallelization technique. This

new clause is responsible for these transformations during code generation compilation

step.

2.1 The 'use' clause

The proposed clause must be used along with ordered clause to separate sequential and

parallel components of the loop body. The idea of using this clause is to improve or-

dered funcionality to expand parallelization techniques possibilities for the programmer

to choose. The implemented clause use receives two arguments: parallelization technique

and strip size.

Parallelization technique argument can either be DOAX, BDX or PSBDX and strip size

is used only by BDX or PSBDX to adjust batch size. If DOAX is chosen as parallelization

technique, then strip size value is ignored.

Another clause was expanded to implement a needed feature in OpenMP, parameter

'var' in depend clause. This implementation is needed to programmer be able to mark

which scalar variables are loop-carried. This clause will be explained in Section 2.5.

1 #pragma omp p a r a l l e l f o r ordered (1 ) use ( doax | bdx | psbdx , s t r i p )

2 For ( i = 1 ; i < N; i++) {

3 #pragma omp ordered depend ( s ink : i −1) depend ( var : j )

4 A[ i ] = A[ i − 1 ] ∗ i ;

5 k = f (A, j++) ;

6 #pragma omp ordered depend ( source )

7 B[ i ] = A[ i ] + k ;

8 }

9

Figure 2.1: Example of DOACROSS loop with the use clause
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2.2 The 'depend(var:...)' clause

2.3 Clause Limitations

The use clause is very versatile and programmers can parallelize loops using speci�ed

techniques easily than implementing them manually. However, this clause have some

limitations that prevent from using it to parallelize all types of loops by simply adding

the clause in OpenMP pragma. Most limitations are because OpenMP ordered is used to

separate loop components, since OpenMP ordered has its limitations by itself. Limitations

for using this clause are show in list below:

• Loop Exit Point: limitation imposed by OpenMP, any statement that is able to

jump to another statement outside the loop violates OpenMP rules and does not

even compile correctly. For example when there is a break statement inside loop with

OpenMP pragma. Even using cancel OpenMP pragma does not compile, because it

cannot be used along with ordered clause

• Conditional Dependence: another limitation from ordered clause, example of Listing

1.7 demonstrates this case. Line 3 has a dependence of a previous iteration while

Line 5 does not, however, ordered directives with depend clauses must be surrounding

the whole if/else, because surrounding only statement of Line 3, will cause to ordered

synchronization to fail if else condition is taken. In this case, a deadlock occurs

because dependence of Line 3 might be not synchronized at Line 5, however, Line

3 will still busy wait for its dependence.

• DOAX Components: because of how ordered it is implemented in OpenMP Runtime,

it can have only one sequential component in loop body. This happens because of

a internally allocated dependence array, which keeps record of completed iterations

from sequential component. This array is not reset after sequential component

�nishes its iterations, which causes incorrect execution order if there is at least

another sequential component. However, this limitation applies only to DOAX

technique. Loops marked with more than one sequential component can still be

parallelized using BDX or PSBDX.

• Batch Size: for now, there is a limitation for batch size value, it must be a divisible

value of the number of iterations of the loop. This occurs because if there is a

remainder, loop control gets lost and executes more iterations than original loop.

This is easy to solve by spliting the loop into two other loops, the �rst one with a

number of iterations that is a multiple value of batch size and the second one with a

number of iterations from remainder of division. However, this is not implemented

in this clause yet.

2.4 DOAX Transformations

Since DOAX algorithm is already implemented in OpenMP by using ordered construct,

use clause handle code generation by simply removing use from parallel for pragma and
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letting OpenMP code generation �ow normally.

OpenMP uses POST/WAIT runtime function calls to implement DOAX in OpenMP

using ordered directive and depend clause to insert these function calls. Clause de-

pend(sink: ...) is replaced by a function call to the proposed wait function, which is

basically a busy waiting that compares current loop index with speci�ed dependence

index in clause argument. Clause depend(source) is replaced by a function call to the pro-

posed post function, which is responsible for updating dependences array to indicate that

current iteration has been completed and dependant iterations can be executed. Figure

2.2 shows an example of the transformed source of example in �gure 1.9.

1 #pragma omp p a r a l l e l f o r ordered (1 )

2 For ( i = 1 ; i < N; i++) {

3 @WAIT( i −1) ;@
4 A[ i ] = A[ i − 1 ] ∗ i ;

5 k = f (A, j++) ;

6 @POST( i ) ;@

7 B[ i ] = A[ i ] + k ;

8 }

9

Figure 2.2: ordered directive replaced by POST/WAIT function calls

2.5 BDX Transformations

Given an annotated loop with ordered directives for the serial component, we can separate

all components by analyzing the pragma annotations. Whenever we �nd an ordered

directive with depend(sink:...) clause, it is the start of a serial component and whenever

we �nd an ordered directive with depend(source) clause, it is the end of a serial component.

All statements between these two clauses, in that order, are part of a serial component,

otherwise they are part of a parallel component. An example is shown in �gure 2.1.

With these components, it is possible to start the loop body transformation. However,

this transformation must be done in two steps: at the AST level and in the LLVM IR level,

because some information needed for transformation are present only in AST structure

or in LLVM IR.

For example, at the AST level we can �nd information about pragmas and loop struc-

ture and in the LLVM IR level we can �nd dependences between loop components.
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Figure 2.3: BDX Loop transformation �ow

These two steps were incorporated into Clang's execution �ow. The �rst step is done

before OpenMP code generation, which is responsible for receiving an AST and generating

the LLVM IR. The second step is done as a �rst step of optimization, receiving a raw

LLVM IR (that is, before any LLVM optimization) and generating a transformed LLVM

IR. Figure 2.3 shows a diagram of loop transformations for AST Level (steps 1, 2, 3 and

4) and LLVM IR Level (steps 5 and 6).

1 #pragma omp p a r a l l e l f o r ordered (1 ) use ( psbdx , 10)

2 For ( i = 1 ; i < N; i++) {

3 #pragma omp ordered depend ( s ink : i −1) depend ( var : j )

4 A[ i ] = A[ i − 1 ] ∗ i ;

5 k = f (A, j++) ;

6 #pragma omp ordered depend ( source )

7 B[ i ] = A[ i ] + k ;

8 }

9

Figure 2.4: Example of DOACROSS loop with the use clause

For this example, statements at lines 3 to 6, which represent a sequential component,

will be called C1 and statement at line 7, which is parallel, will be called C2.

2.5.1 AST Transformation

With these components, it is possible to start the transformation of the loop body. The

outer loop transformation is shown in Listing 2.5. A loop-carried variable must be syn-

chronized between threads, then, a global variable loop_carried_j is created for this syn-

chronization and is initialized before loop starts. Another global variable is created to

adjust batch size in LLVM IR, then, variable __bdx_bu�er_size is initialized with use

strip size value before loop starts.
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1 loop_carr ied_j = j ;

2 __bdx_buffer_size = 10 ;

3 #pragma omp p a r a l l e l f o r schedu le ( s t a t i c , 1) p r i va t e ( j )

4 f o r ( i = 1 ; i < N; i = i + 10 ) {

5 C1

6 C2

7 }

8

Figure 2.5: Example of DOACROSS loop transformed by clause use

Then, each loop component is also transformed separately.

First step is the insertion of two function calls surrounding each component's body:

__bdx_stage_begin__ and __bdx_stage_end__. These functions are needed to pass

some information from AST level into LLVM IR level, because these information are

needed for dependence analysis and bu�er creation but are not explicitly available at

LLVM IR level. Function __bdx_stage_begin__ is inserted before �rst statement of each

component and is used to delimit component start, because this information is needed

for posterior analysis and is not available at LLVM IR level. Also, this function has an

argument which is the inner loop iteration variable, again, in order to ease posterior anal-

ysis. Function __bdx_stage_end__ is inserted after last statement of loop component

to simply delimit it from other components at LLVM IR level. Listings 2.6 and 2.7 show

these functions call insertion for components C1 and C2.

1 __bdx_stage_begin__( i ) ;

2 A[ i ] = A[ i − 1 ] ∗ i ;

3 k = f (A, j++) ;

4 __bdx_stage_end__() ;

5

Figure 2.6: C1 with function calls delimiters

1 __bdx_stage_begin__( i ) ;

2 B[ i ] = A[ i ] + k ;

3 __bdx_stage_end__() ;

4

Figure 2.7: C2 with function calls delimiters

The next step is to apply a loop tiling because each component must run a number

of iterations before synchronizing and �ll bu�ers to communicate dependences between

components. To do this, a new for loop is created containing the component instructions

as loop body, as shown in Listings 2.8 and 2.9. Also, all uses of iteration variable inside

component must be replaced by this newly created loop iteration variable and the incre-

ment of original for loop must be updated to represent the size of tiling, as shown in Line

4 of Listing 2.5. This tiling transformation is represented by Step 1 of Figure 2.3.
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1 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

2 __bdx_stage_begin__( ibdx ) ;

3 A[ ibdx ] = A[ ibdx − 1 ] ∗ ibdx ;

4 k = f (A, j++) ;

5 __bdx_stage_end__() ;

6 }

7

Figure 2.8: Loop tiling of C1

1 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

2 __bdx_stage_begin__( ibdx ) ;

3 B[ ibdx ] = A[ ibdx ] + k ;

4 __bdx_stage_end__() ;

5 }

6

Figure 2.9: Loop tiling of C2

Another transformation needed at this level is to synchronize scalar loop-carried vari-

ables if component is sequential, this is done by depend(var:...) clause and this trans-

formation includes synchronization of loop-carried scalar variables before and after inner

loop. This is done by creating a new global variable for each loop-carried variable and

this global variable is is responsible for carrying the value between threads, as shown in

Listing 2.10. Line 1 shows input synchronization, where global variable value is copied

into a private copy of loop-carried variable and line 8 shows local variable value being

updated into global variable. The loop-carried variables synchronization is represented

by Step 3 of Figure 2.3.

1 j = __bdx_loop_carried_j ;

2 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

3 __bdx_stage_begin__( ibdx ) ;

4 A[ ibdx ] = A[ ibdx − 1 ] ∗ ibdx ;

5 k = f (A, j++) ;

6 __bdx_stage_end__() ;

7 }

8 __bdx_loop_carried_j = j ;

9

Figure 2.10: Loop-carried variable synchronization of C1

Then, also for sequential components, there must be included a barrier before the

tiling loop, in order to ensure the synchronization between threads. This synchronization

is needed for sequential components to execute in the correct iterations order. The barrier

is just a simple busy waiting loop that checks the value of a shared variable, when this

variable has the same value as thread ID, that thread can execute that component, as

shown in line 1 of Listing 2.11. Also, synchronization after inner loop is needed to update
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the value of the shared variable used for control synchronization, as shown in line 10 of

Listing 2.11. This barrier insertion is represented by Step 2 of Figure 2.3.

1 whi l e (__bdx_flags != omp_get_thread_num ( ) ) ;

2 j = __bdx_loop_carried_j ;

3 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

4 __bdx_stage_begin__( ibdx ) ;

5 A[ ibdx ] = A[ ibdx − 1 ] ∗ ibdx ;

6 k = f (A, j++) ;

7 __bdx_stage_end__() ;

8 }

9 __bdx_loop_carried_j = j ;

10 __bdx_flags = (__bdx_flags + 1) % omp_get_num_threads ( ) ;

11

Figure 2.11: Control synchronization of C1

In order to make use implementation more �exible for future implementation of other

parallelization techniques, an if is included surrounding each component, as shown in

Line 1 of Listing 2.12 and Line 1 of Listing 2.13. This decision had in mind that in some

parallelization techniques not all threads execute all components of the loop, i.e. DSWP,

and this function __bdx_cond__ can be used by each thread choose which components

must be executed.

1 i f (__bdx_cond__(0) ) {

2 whi l e (__bdx_flags != omp_get_thread_num ( ) ) ;

3 j = __bdx_loop_carried_j ;

4 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

5 __bdx_stage_begin__( ibdx ) ;

6 A[ ibdx ] = A[ ibdx − 1 ] ∗ ibdx ;

7 k = f (A, j++) ;

8 __bdx_stage_end__() ;

9 }

10 __bdx_loop_carried_j = j ;

11 __bdx_flags = (__bdx_flags + 1) % omp_get_num_threads ( ) ;

12 }

13

Figure 2.12: C1 transformed by clause use
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1 i f (__bdx_cond__(1) ) {

2 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

3 __bdx_stage_begin__( ibdx ) ;

4 B[ ibdx ] = A[ ibdx ] + k ;

5 __bdx_stage_end__() ;

6 }

7 }

8

Figure 2.13: C2 transformed by clause use

In this example, the bu�ers have not yet been created because all transformations up

to this step are done at the AST level and the bu�ers are created at the IR level.

All of these transformations are done at the Abstract Syntax Tree (AST) level because

some necessary information (ie, OpenMP pragmas, loop iterator) are available only, or

are much easier to obtain, at this stage of the compilation process.

With these modi�cations made at the AST level, code generation is ready to create

the LLVM IR. To do this, our method simply generates all modi�cations in AST and

allows OpenMP to handle code generation. This is much easier because there is no need

to deal with variable scopes since OpenMP already does it.

2.5.2 LLVM IR Transformation

After the AST transformations, the bu�ers have yet to be created for the algorithm to

work. This is because the dependencies between the components in the same thread need

to be communicated. For this, one should have a simple dependency analysis that decides

whether a bu�er for a given variable should be created or not.

For this analysis, we faced with some questions regarding code optimization. Some

references to the variables were optimized so that we lost the references between the

components and, with this, the bu�ers were not created correctly. The solution was to

encapsulate our analysis step within Clang's optimization pass �ow, making dependence

analysis pass to run as early as possible during the optimization process.

With generated LLVM IR, as shown in Listings 2.15 and 2.16, a dependence analysis

is needed in order to detect which variables must be bu�ered for the BDX to work.

This analysis just checks when a variable is written in a component and read in another

component, if this happens, there must be a bu�er to communicate this variable between

those components. Then, all uses of that variable are replaced by bu�er access indexed

by batch iterator.

This dependence analysis is done over LLVM IR because is much easier to be done on

this level due to OpenMP code generation and variable privatizations.
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1 For each component c

2 For each i n s t r u c t i o n i on component c

3 I f i n s t r u c t i o n i i s a s t o r e or a temporary a t t r i b u t i o n

4 I f i i s a s t o r e

5 va l <− s t o r e address

6 Else

7 va l <− i

8 Find a l l uses o f va l

9 For each use u o f va l

10 I f u and i are in d i f f e r e n t components

11 va l needs a bu f f e r

12

Figure 2.14: Bu�er Detection Algorithm

Dependence analysis algortihm, as shown in �gure 2.14 is very simple and checks if

there is a value assignment in a loop component that is used in another loop component,

if that is the case, a bu�er must be created in order to communicate such dependence.

This pass has two steps: detection and creation. Detection step (Step 5 of Figure 2.3)

analyze entirely the LLVM IR and decides which variables need a bu�er, however, does

not create bu�ers. Once all bu�ers have been detected, creation step (Step 6 of Figure

2.3) receives information from detection step and bu�ers are created by allocating arrays

and all uses of the variables are replaced by bu�er access indexed with batch loop index.

1 . . .

2 %121 = c a l l i 32 @f ( i 32 ∗ %36, i 32 %119)

3 s t o r e i 32 %121, i 32 ∗ %37 , a l i g n 4 , ! tbaa ! 1

4 c a l l void @__bdx_stage_end__()

5 . . .

6

Figure 2.15: Intermediary representation of �rst loop component

1 . . .

2 %149 = load i32 , i 32 ∗ %148, a l i g n 4 , ! tbaa ! 1

3 %150 = load i32 , i 32 ∗ %37 , a l i g n 4 , ! tbaa ! 1

4 %151 = add nsw i32 %149, %150

5 . . .

6

Figure 2.16: Intermediary representation of second loop component

For example, at line 3 of �gure 2.15, there is a store into an address stored in %37,

which represents assignment of variable k at line 5 of �gure 2.4. Then, %37 is used to

load variable value at line 3 of �gure 2.16. Since these two uses of %37 are in di�erent

components and one of them modi�es the variable value, there must be a communication

between these components, so, a bu�er must be created to do this communication.
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These bu�ers are created only once for the loop and are in local memory for each

thread, that is, bu�ers are created by each thread, before starts executing loop body and

are deallocated after loop body �nished its execution.

Abstracting bu�er creation to a higher level, Listing 2.17 shows bu�er allocation in

line 3 and bu�er deallocation at line 9. Listings 2.18 and 2.19 show how this bu�er is

used, replacing all uses of original variable that need to be communicated by a bu�er

indexed with the inner loop iteration variable.

1 loop_carr ied_j = j ;

2 __bdx_buffer_size = 10 ;

3 buffer_k = ( i n t ∗) mal loc ( __bdx_buffer_size ∗ s i z e o f ( i n t ) ) ;

4 #pragma omp p a r a l l e l f o r schedu le ( s t a t i c , 1) p r i va t e ( j )

5 f o r ( i = 1 ; i < N; i = i + 10) {

6 C1

7 C2

8 }

9 f r e e ( buffer_k ) ;

10

Figure 2.17: Example of DOACROSS loop transformed by clause use

1 i f (__bdx_cond__(0) ) {

2 whi l e (__bdx_flags != omp_get_thread_num ( ) ) ;

3 j = __bdx_loop_carried_j ;

4 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

5 __bdx_stage_begin__( ibdx ) ;

6 A[ ibdx ] = A[ ibdx − 1 ] ∗ ibdx ;

7 buffer_k [ ibdx ] = f (A, j++) ;

8 __bdx_stage_end__() ;

9 }

10 __bdx_loop_carried_j = j ;

11 __bdx_flags = (__bdx_flags + 1) % omp_get_num_threads ( ) ;

12 }

13

Figure 2.18: C1 transformed by clause use

1 i f (__bdx_cond__(1) ) {

2 f o r ( i n t ibdx = i ; ibdx < i + 10 ; ibdx++) {

3 __bdx_stage_begin__( ibdx ) ;

4 B[ ibdx ] = A[ ibdx ] + buffer_k [ ibdx ] ;

5 __bdx_stage_end__() ;

6 }

7 }

8

Figure 2.19: C2 transformed by clause use
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After these transformations, BDX implementation is completed, with all needed con-

trol and synchronization statements, so this loop is transformed into a parallel version

that uses BDX technique to parallelize it.
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Chapter 3

Related Work

HELIX is a compiler that has previously delivered good speed-ups for irregular programs

on a six-core Intel i7 machine [7]. HELIX parallelizes loops in sequential programs, dis-

tributing the iterations to available cores in a round-robin fashion. To preserve depen-

dences between iterations or (may) loop-carried dependences, HELIX creates sequential

segments that are subsets of iterations whose execution on cores must respect the loop-

iteration order of the sequential program. These sequential segments correspond to SCCs

in a Data-Dependence Graph (DDG) that have at least one loop-carried dependence. An

SCC formed by a single node with no loop-carried dependences is considered a paral-

lel segment that does not need synchronization. In contrast, this paper proposes a new

OpenMP clause that enables programmers to annotate sequential segments that should

synchronize or speculate their iterations.

Decoupled Software Pipeline (DSWP) [17, 21] is a Pipelined Multithreading algorithm

for parallelizing loops with loop-carried dependences. It transforms the loop body in a

way that it becomes a computational pipeline where each thread executes a di�erent

stage of the loop and data dependencies �ow only in one direction among the stages.

DSWP proposes the use of inter-core/thread queues to communicate loop-independent

dependences between stages and decouple their execution. By using queues as a com-

munication mechanism between stages, DSWP becomes quite resilient to communication

latency variations. However, the complexity of managing the queues makes di�cult to

achieve speedups with DSWP in many cases [1, 19].

Batched DOACROSS [1] is a generalization of the idea behind DOAX [9], which sep-

arates loop body into sequential and parallel components and executes these components

as a pipeline, respecting dependences between iterations and components. However, this

technique uses bu�ers to do a loop tiling and transform loop components into batches,

a batch is executed by a thread entirely before next batch can be executed by another

thread. This batching process results in less synchronizations between threads and better

memory locality in some cases. DOAX is a particular case of BDX when batch size is

only of one iteration.

Salamanca et al. use coarse-grained TLS to speculate a (strip-mined) whole iteration

and perform con�ict detection and resolution at the end of the iteration to detect RAW

dependence violations [2]. They describe how speculation support designed for HTM can

also be used to implement TLS [2]. They focused their work on the impact of false sharing
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and the importance of judicious strip mining and privatization to achieve performance.

They provide a detailed description of the additional software support that is necessary

for both the Intel Core and the IBM POWER8 architectures to enable TLS. Moreover,

in [6] they carefully evaluate the performance of TLS on Intel Core and POWER8 using

22 loops from cBench focusing on the characterization of the loops. This paper extends [6]

by providing programmers with an OpenMP based approach to automatically run TLS

on DOACROSS loops.

Post/Wait [22] technique is a simple implementation of DOAX [9] technique, which

uses function calls and a runtime library to create DOAX pipeline. In this technique,

sequential components are surrounded by two functions responsible for synchronizing

loop execution. A Wait function is a simple barrier which checks iterations dependences

and only allow one thread to execute sequential components at same time to assure

correct iterations execution order. A Post function is simply the end of the barrier

and is responsible for updating the variable being used to control the barrier. Since

it's implementation is very simple, Post/Wait was incorporated in OpenMP 4.1 [23] as

ordered directive speci�ed with depend clause.

For this dissertation, the concept of SCCs used by HELIX and DSWP is essential for

selecting loop components correctly, Batched DOACROSS is used within our implemen-

tation as a doacross loop parallelization technique, Salamanca et al. implementation and

Post/Wait are used as comparison techniques to validate performance in experimental re-

sults. Also, OpenMP Post/Wait implementation structure is used to ease programmer's

annotation of loops.



36

Chapter 4

Results

4.1 Methodology

The clause use has been implemented using OpenMP infrastructure of LLVM/Clang 4.0

and has been evaluated using well-known SPEC CPU 2006, StarBench, and cBench bench-

mark suites as shown in Table 4.1. This clause has been tested in a quad-core Intel Haswell

TSX machine and Intel OpenMP Library Version 20160808, also each benchmark has been

executed ten times and average values were calculated.

All benchmarks were compiled using -O3 optimization �ag and to guarantee that each

software thread is bound to one hardware thread (core) and to decrease the number of con-

�ict aborts, the environment variable KMP_AFFINITY is set to granularity=�ne,scatter

for TLS.

4.2 Experimental Results

Parallelized loops from each benchmark are detailed in Table 4.1, this table shows some

informations about the loops: source location (benchmark, �le, line number and function),

loop coverage and number of times the loop is executed during program execution.

Table 4.2 shows detailed information about execution parameters and obtained results

for all benchmarks, i.e. loop execution time and speedup. Loops were split into two classes:

(a) those with low LCP (Loops A, E, H, I, J and, V from cBench) and those with high

LCP (Bzip, Rota, Rgb, RotC and, Ray).

Table 4.2 also shows, in the Components column, the loop components: number of

components and type (S-Sequential, P-Parallel). Information for Bzip, parallelized with

DOAX, was omitted because the OpenMP ordered parallelization scheme does not support

the parallelization of a loop with two consecutive sequential stages.

Notice that the listed low LCP loops (LCP = 0%) are MAY DOACROSS, i.e. the

compiler could not prove, at compile time, that they are free of loop-carried dependences.

However, these loops have no materialized loop-carried dependence at runtime.

Figure 4.1 shows loops wall-time speed-ups normalized to the sequential execution

time, when the use clause is set to work with the TLS (orange bar), DOAX (purple bar)

and, BDX (blue bar) algorithms. A dotted vertical line was added to separate the loop
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Table 4.1: Loops extracted from SPEC CPU 2006, StarBench, and cBench applications

Loop ID Benchmark Location Function/Method %Cov Invocations
A automotive_bitcount bitcnts.c,65 main1 100% 560
E automotive_susan_s susan.c,725 susan_smoothing 100% 22050
H automotive_susan_e susan.c,1117 susan_edges 18% 374
I automotive_susan_e susan.c,1056 susan_edges 56% 374
J automotive_susan_s susan.c,723 susan_smoothing 100% 49
V automotive_susan_c susan.c,1614 susan_corners 7% 782

Bzip Bzip2 bzip2.c,460 compressStream 90% 3
Rota Rotate program.cpp,89 main 100% 1
Rgb RGB-YUV bmark.c,280 main 100% 1
RotC Rot-CC program.cpp,91 main 100% 1
Ray Ray-Rot program.cpp,101 main 100% 1

Table 4.2: Characterization and Execution of Loops

Loop Loop Characterization Serial Execution TLS Execution DOAX Execution BDX Execution
ID # Components LCP (% ) Loop Strip Loop Loop Loop Loop Batch Loop Loop

Exec. Time (s) Size Exec. Time (s) Speedup Exec. Time (s) Speedup Size Exec. Time (s) Speedup
A P-S 0% 0.0084396 502 0.00308929 2.73 0.03108403 0.27 1000 0.017491 0.48
E P-S 0% 0.000145 15 0.00007256 2.00 0.00015865 0.91 60 0.000112 1.29
H S 0% 0.002515 1 0.00069519 3.62 0.00160649 1.57 34 0.001521 1.65
I S 0% 0.0033662 2 0.00157754 2.13 0.00496690 0.68 37 0.004409 0.76
J S 0% 0.0569932 1 0.02979592 1.91 0.06440706 0.88 45 0.057311 0.99
V S 34% 0.00016 1 0.00014067 1.14 0.00043272 0.37 40 0.000236 0.68

Bzip S-S 100% 10.52 80 10.74 0.98 - - 80 10.08 1.04
Rota S-P 100% 23.22 2 23.96 0.97 16.89 1.37 1 8.07 2.88
Rgb P-S-P 100% 17.42 2 18.10 0.96 13.70 1.27 1 5.39 3.23
RotC S-P 100% 24.86 2 25.57 0.97 13.27 1.87 1 8.83 2.82
Ray S-P 100% 2.82 6 2.91 0.97 2.57 1.10 1 0.79 3.58

classes with low (left) and high LCP (right).

Figure 4.2 shows the abort/commit ratios for the coarse-grained TLS of the evaluated

loops. Aborts may be caused by: memory con�icts, capacity issues, explicit instructions

(xabort) and OS or microarchitecture events (e.g. system calls, interrupts or traps) [6].

An order-inversion abort rolls back a transaction that completes execution out of order

using an explicit abort instruction. As shown in Figure 4.2 the class of low LCP loops

(left) exhibits a larger share of commits (blue bar) when compared to high LCP loops

(right).

Figure 4.1: Performance of the loops running the three parallelization techniques
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Figure 4.2: Ratio of aborts and commits for coarse-grained TLS execution on Intel Core

4.2.1 Performance Analysis

The hypothesis presented is that loops with low LCP have a better perfomance improve-

ment when parallelized using TLS technique, otherwise, for loops with greater LCP, non-

speculative DOACROSS parallelization techniques have a better performance improve-

ment. By analyzing Figure 4.1 and Table 4.2 in all loops with low LCP, TLS paralleliza-

tion performed better than DOAX and BDX. Furthermore, TLS performance degrades as

LCP increases. This becomes clearer in the case of loop V (LCP = 34%) which exhibits

the lowest TLS speed-up of those in its class (1.14x).

TLS is better applied on loops that compiler cannot prove that iterations are inde-

pendent and when compiler may detect a dependence, this dependence do not occur at

runtime. Some tested loops, which have a may loop-carried dependence, �t into this situ-

ation, because these dependences does not occur at runtime and there are few transaction

aborts. Notice that these loops (A, E, H, I, J and, V) have near zero LCP, which indicates

that TLS is better applied in loops with low LCP.

The evaluated DOACROSS loops have many actual dependences that materialize at

runtime (LCP = 100%) resulting in large con�ict-abort ratios, what prevents TLS from

delivering performance improvements. loopV has a substantial LCP and con�ict-abort

ratio. However, this loop is a special case because although it has LCP = 34%, TLS can

still deliver some performance improvement. As explained in [6], the input of this loop

is a sparse image with most of the pixels set to zero; although the image corners create

loop-carried dependences they are computed close to each other within the same strip.

Overall, BDX performed better than DOAX, because it is well-known that DOAX is

intensive in communication due to its need to forward loop-carried dependences through

shared memory at every iteration. BDX, on the other hand, only communicates intra-

component dependences after a batch of iterations. Moreover, since iterations are dis-

tributed among threads, DOAX su�ers from more cache misses and false sharing which
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reduce data locality. By executing each stage in batching mode and applying a simple

communication mechanisms BDX can be e�ective to parallelize small and large loops.

Nevertheless, notice that for loops of small granularity (A, E, H, I, J and, V) both BDX

and DOAX struggle to produce performance improvements because communication over-

head is greater than performance gain.

The strip size parameters for TLS and batch size parameters for BDX, shown in

Table 4.2, were determined empirically running a number of experiments. However, one

can also choose batch sizes based on loop or stage size. In other words, small loops require

larger batch sizes and bigger loops require small batch sizes. Experiments revealed that

BDX can produce good speedups if the loop has a su�cient number of instructions and

supports a well-balanced stage partitioning. Consistent slowdowns were only observed in

the loops where the stage sizes were tiny (loops A. I and V of cBench).

An interesting observation about the three algorithms (TLS, DOAX, and BDX) is

that although all three are applied in a similar manner through the use clause, the speed-

ups achieved by them can be very di�erent. This reinforces what was claimed that TLS

technique results in good speed-ups for low LCP loops and non-speculative algorithms

(DOAX or BDX) produce better speed-ups for high LCR (LCF or LCP) loops. Another

conclusion that can be drawn from the experiments is that for those loops containing at

least one parallel stage, BDX performs better than DOAX.

Overall, the experiments made it clear that enabling the user to drive the paralleliza-

tion process, by quickly selecting which loop parallelization algorithm to use is paramount

to achieve good performance improvements across a wide range of program loops.

A methodology for choosing better algorithm for each type of loop is shown in table

4.3. This table shows DOACROSS loop types (DOACROSS, MAY DOACROSS and

UNDEFINED components) and LCP classes (low or high). Combining these two metrics,

programmer is able to decide which one is the better algorithm for each case.

Loop Classi�cation High LCP Low LCP

(1) UNDEFINED Components ¯ TLS

(2) MAY DOACROSS Loops BDX TLS

(3) DOACROSS Loops DOAX or BDX

Table 4.3: Selecting parallelization technique based on loop-carried probability and knowl-
edge of sequential components
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Chapter 5

Conclusions

Analysis have proved that loop-carried probability and parallelization technique choice

are correlated. Thus, loop-carried probability can be used as a metric for selecting which

technique has a better performance improvement when parallelizing an algorithm with

DOACROSS loops. However, the knowledge about loop components must be used as a

metric too, because loop categories (DOACROSS, MAY DOACROSS and UNDEFINED)

may have di�erent behaviors depending on parallelization technique used to parallelize

the loop.

As seen on experimental results, we can categorize studied loops into two categories:

loops with low loop-carried probability and loops with high loop-carried probability and

each category is better parallelized using a di�erent technique, depending on loop struc-

ture. Loops with low loop-carried probability have better performance when speculated

using TLS, because there are less transactions aborts and performance improvement is

greater than transactions overhead. Loops with high loop-carried probability have better

performance when parallelized using BDX or DOAX, because independent regions of the

loop can be executed in parallel and only the regions with loop-carried dependences must

be executed sequentially.

Generally, when programmer knows loop iterations dependences, that is, loop is a

DOACROSS or a MAY DOACROSS, the only factor to decide which technique has a

better performance gain is the LCP. Otherwise, when loop is UNDEFINED, using the

TLS technique is the only option, however, performance is only improved when LCP is

low. When a loop is UNDEFINED but has a high LCP, all techniques presented fail

to improve the performance and even worse, introduce an overhead for managing and

synchronizing threads.
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Appendix A

Attachment 1

Loop A from automotive_bitcount, line 65 from bitcnts.c �le:

1 i n t random = rand_r(&rSeed ) ;

2 n = 0 ;

3 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e ( seed ) use ( psbdx , 1000)

4 f o r ( j = 0 ; j < i t e r a t i o n s ; j++) {

5 i n t temp = 0 ;

6 seed = 13 ∗ j + random ;

7 temp += pBitCntFunc [ i ] ( seed ) ;

8

9 #pragma omp ordered depend ( s ink : j−1) depend ( var : n )

10 n += temp ;

11 #pragma omp ordered depend ( source )

12 }
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Appendix B

Attachment 2

Loop E from automotive_susan_s, line 725 from susan.c �le:

1 f o r ( i = mask_size ; i < y_size − mask_size ; i++) {

2 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e (

\

3 area , t o ta l , dpt , ip , centre , cp , b r i ghtnes s , tmp , x , y ) use (

psbdx , 60)

4 f o r ( j = mask_size ; j < x_size − mask_size ; j++) {

5 area = 0 ;

6 t o t a l = 0 ;

7 dpt = dp ;

8 ip = in + ( ( i − mask_size ) ∗ x_size ) + j − mask_size ;

9 c en t r e = in [ i ∗ x_size + j ] ;

10 cp = bp + cent r e ;

11 f o r ( y = −mask_size ; y <= mask_size ; y++) {

12 f o r ( x = −mask_size ; x <= mask_size ; x++) {

13 b r i gh tne s s = ∗ ip++;
14 tmp = ∗dpt++ ∗ ∗( cp − br i gh tne s s ) ;

15 area += tmp ;

16 t o t a l += tmp ∗ br i gh tne s s ;

17 }

18 ip += increment ;

19 }

20 tmp = area − 10000 ;

21

22 #pragma omp ordered depend ( s ink : j − 1) depend ( var : out )

23 i f (tmp == 0)

24 ∗out++ = median ( in , i , j , x_size ) ;

25 e l s e

26 ∗out++ = (( t o t a l − ( c en t r e ∗ 10000) ) / tmp) ;

27 #pragma omp ordered depend ( source )

28 }

29 }
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Appendix C

Attachment 3

Loop H from automotive_susan_e, line 1117 from susan.c �le:

1 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e (

\

2 m, n , cp , p , x , y , c , z , do_symmetry , w, a , b , j ) use ( psbdx , 34)

3 f o r ( i = 4 ; i < y_size − 4 ; i++) {

4 #pragma omp ordered depend ( s ink : i − 1)

5 f o r ( j = 4 ; j < x_size − 4 ; j++) {

6 i f ( r [ i ∗ x_size + j ] > 0) {

7 m = r [ i ∗ x_size + j ] ;

8 n = max_no − m;

9 cp = bp + in [ i ∗ x_size + j ] ;

10

11 i f (n > 600) {

12 p = in + ( i − 3) ∗ x_size + j − 1 ;

13 x = 0 ;

14 y = 0 ;

15 . . .

16 } e l s e

17 do_symmetry = 1 ;

18

19 i f ( do_symmetry == 1) {

20 p = in + ( i − 3) ∗ x_size + j − 1 ;

21 x = 0 ;

22 y = 0 ;

23 w = 0 ;

24

25 /∗ | \

26 y −x− w

27 | \ ∗/
28

29 . . .

30 }

31 }

32 }

33 #pragma omp ordered depend ( source )

34 }
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Appendix D

Attachment 4

Loop I from automotive_susan_e, line 1056 from susan.c �le:

1 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e (n , p , cp , j ) use ( psbdx ,

37)

2 f o r ( i = 3 ; i < y_size − 3 ; i++) {

3 #pragma omp ordered depend ( s ink : i − 1)

4 f o r ( j = 3 ; j < x_size − 3 ; j++) {

5 n = 100 ;

6 p = in + ( i − 3) ∗ x_size + j − 1 ;

7 cp = bp + in [ i ∗ x_size + j ] ;

8

9 . . .

10

11 i f (n <= max_no)

12 r [ i ∗ x_size + j ] = max_no − n ;

13 }

14 #pragma omp ordered depend ( source )

15 }
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Appendix E

Attachment 5

Loop J from automotive_susan_s, line 723 from susan.c �le:

1 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e (

\

2 area , t o ta l , dpt , ip , centre , cp , b r i ghtnes s , tmp , x , y , j ) use (

psbdx , 45)

3 f o r ( i = mask_size ; i < y_size − mask_size ; i++) {

4 #pragma omp ordered depend ( s ink : i − 1) depend ( var : out )

5 f o r ( j = mask_size ; j < x_size − mask_size ; j++) {

6 area = 0 ;

7 t o t a l = 0 ;

8 dpt = dp ;

9 ip = in + ( ( i − mask_size ) ∗ x_size ) + j − mask_size ;

10 cent r e = in [ i ∗ x_size + j ] ;

11 cp = bp + cent r e ;

12 f o r ( y = −mask_size ; y <= mask_size ; y++) {

13 f o r ( x = −mask_size ; x <= mask_size ; x++) {

14 b r i gh tne s s = ∗ ip++;
15 tmp = ∗dpt++ ∗ ∗( cp − br i gh tne s s ) ;

16 area += tmp ;

17 t o t a l += tmp ∗ br i gh tne s s ;

18 }

19 ip += increment ;

20 }

21 tmp = area − 10000 ;

22

23 i f (tmp == 0)

24 ∗out++ = median ( in , i , j , x_size ) ;

25 e l s e

26 ∗out++ = (( t o t a l − ( c en t r e ∗ 10000) ) / tmp) ;

27 }

28 #pragma omp ordered depend ( source )

29 }
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Appendix F

Attachment 6

Loop V from automotive_susan_c, line 1614 from susan.c �le:

1 #pragma omp p a r a l l e l f o r ordered (1 ) p r i va t e (x , f l a g , j ) use ( psbdx ,

40)

2 f o r ( i = 5 ; i < y_size − 5 ; i++) {

3 #pragma omp ordered depend ( s ink : i − 1) depend ( var : n)

4 f o r ( j = 5 ; j < x_size − 5 ; j++) {

5 x = r [ i ∗ x_size + j ] ;

6 i f ( x > 0) {

7 /∗ 5x5 mask ∗/
8 #i f d e f FIVE_SUPP

9 f l a g = (x > r [ ( i − 1) ∗ x_size + j + 2 ] ) &&

10 (x > r [ ( i ) ∗x_size + j + 1 ] ) && (x > r [ ( i ) ∗x_size + j + 2 ] )

&&

11 (x > r [ ( i + 1) ∗ x_size + j − 1 ] ) &&

12 (x > r [ ( i + 1) ∗ x_size + j ] ) &&

13 (x > r [ ( i + 1) ∗ x_size + j + 1 ] ) &&

14 (x > r [ ( i + 1) ∗ x_size + j + 2 ] ) &&

15 (x > r [ ( i + 2) ∗ x_size + j − 2 ] ) &&

16 (x > r [ ( i + 2) ∗ x_size + j − 1 ] ) &&

17 (x > r [ ( i + 2) ∗ x_size + j ] ) &&

18 (x > r [ ( i + 2) ∗ x_size + j + 1 ] ) &&

19 (x > r [ ( i + 2) ∗ x_size + j + 2 ] ) &&

20 (x >= r [ ( i − 2) ∗ x_size + j − 2 ] ) &&

21 (x >= r [ ( i − 2) ∗ x_size + j − 1 ] ) &&

22 (x >= r [ ( i − 2) ∗ x_size + j ] ) &&

23 (x >= r [ ( i − 2) ∗ x_size + j + 1 ] ) &&

24 (x >= r [ ( i − 2) ∗ x_size + j + 2 ] ) &&

25 (x >= r [ ( i − 1) ∗ x_size + j − 2 ] ) &&

26 (x >= r [ ( i − 1) ∗ x_size + j − 1 ] ) &&

27 (x >= r [ ( i − 1) ∗ x_size + j ] ) &&

28 (x >= r [ ( i − 1) ∗ x_size + j + 1 ] ) &&

29 (x >= r [ ( i ) ∗x_size + j − 2 ] ) && (x >= r [ ( i ) ∗x_size + j − 1 ] )

&&

30 (x >= r [ ( i + 1) ∗ x_size + j − 2 ] ) ;

31 #end i f

32 #i f d e f SEVEN_SUPP

33 . . .

34 }
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35 }

36 #pragma omp ordered depend ( source )

37 }
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Appendix G

Attachment 7

Loop Bzip from Bzip2, line 460 from bzip2.c �le:

1 UChar ∗ i bu f2 ;
2

3 #pragma omp p a r a l l e l f o r p r i va t e ( nIbuf , i bu f2 ) f i r s t p r i v a t e ( bze r r )

ordered (1 ) use ( psbdx , 80)

4 f o r ( cnt=0; cnt<MaxIterat ions ; cnt++) {

5 #pragma omp ordered depend ( s ink : cnt−1)
6 ibu f2 = (UChar ∗) mal loc (5001∗ s i z e o f (UChar) ) ;
7 nIbuf = f r ead ( ibuf2 , s i z e o f (UChar) , 5000 , stream ) ;

8 #pragma omp ordered depend ( source )

9

10 #pragma omp ordered depend ( s ink : cnt−1)
11 BZ2_bzWrite ( &bzerr , bzf , ( void ∗) ibuf2 , nIbuf ) ;

12 f r e e ( ibu f2 ) ;

13 #pragma omp ordered depend ( source )

14 }
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Appendix H

Attachment 8

Loop Rota from Rotate, line 89 from program.cpp �le:

1 i n t exec = 1 ;

2 #pragma omp p a r a l l e l f o r ordered (1 ) use ( psbdx )

3 f o r ( i = 0 ; i < q tdF i l e s ; i++) {

4 #pragma omp ordered depend ( s ink : i − 1)

5 RotateEngine ∗ re = new RotateEngine ;

6 i f ( exec ) {

7 i f ( ! re−>i n i t ( s r c f i l e s [ i ] , d e s t f i l e s [ i ] , ang le ) ) {

8 exec = 0 ;

9 cont inue ;

10 }

11 }

12

13 #pragma omp ordered depend ( source )

14 RotateEngine ∗ re2 = re ;

15

16 i f ( exec ) {

17 re2−>run ( ) ;
18 re2−>f i n i s h ( ) ;

19 }

20 }

21 TIME( loop_time_end ) ;

22 double t = t im e v a l d i f f (&loop_time_start , &loop_time_end ) ;

23 f p r i n t f ( s tde r r , "Total execut ion time : %l f ( s ) \n" , t /1 .0 e3 ) ;

24

25 i f ( exec == 0) return BAD_EXIT;



52

Appendix I

Attachment 9

Loop Rgb from RGB-YUV, line 280 from bmark.c �le:

1 i n t exec = 1 ;

2 #pragma omp p a r a l l e l f o r ordered (1 ) use ( psbdx )

3 f o r ( i = 0 ; i < q tdF i l e s ; i++) {

4 rgbyuv_args_t args ;

5 rgbyuv_args_t ∗argsP = &args ;

6 #pragma omp ordered depend ( s ink : i − 1)

7 i f ( exec ) {

8 i f ( i n i t i a l i z e ( argsP , s r c f i l e s [ i ] ) ) {

9 f p r i n t f ( s tde r r , "Could Not I n i t i a l i z e Kernel Data\n") ;

10 exec = 0 ;

11 cont inue ;

12 }

13 }

14 #pragma omp ordered depend ( source )

15 i f ( exec ) {

16 processImage ( argsP ) ;

17

18 writeComponents ( argsP ) ;

19

20 i f ( f i n a l i z e ( argsP ) ) {

21 f p r i n t f ( s tde r r , "Could Not Free Al located Memory\n") ;

22 exec = 0 ;

23 cont inue ;

24 }

25 }

26 }

27

28 i f ( ! exec ) re turn BAD_EXIT;
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Appendix J

Attachment 10

Loop RotC from Rot-CC, line 91 from program.cpp �le:

1 i n t exec = 1 ;

2

3 #pragma omp p a r a l l e l f o r ordered (1 ) use ( psbdx )

4 f o r ( i = 0 ; i < q tdF i l e s ; i++) {

5 #pragma omp ordered depend ( s ink : i − 1)

6 BenchmarkEngine ∗be = new BenchmarkEngine ;

7 i f ( exec ) {

8 i f ( ! be−>i n i t ( s r c f i l e s [ i ] , d e s t f i l e s [ i ] , ang le ) ) {

9 exec = 0 ;

10 cont inue ;

11 }

12 }

13 #pragma omp ordered depend ( source )

14 i f ( exec ) {

15 be−>run ( ) ;
16 be−>f i n i s h ( ) ;

17 }

18 }

19

20 i f ( ! exec ) re turn BAD_EXIT;
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Appendix K

Attachment 11

Loop Ray from Ray-Rot, line 101 from program.cpp �le:

1 i n t exec = 1 ;

2 #pragma omp p a r a l l e l f o r ordered (1 ) use ( psbdx )

3 f o r ( i = 0 ; i < q tdF i l e s ; i++) {

4 #pragma omp ordered depend ( s ink : i − 1)

5 RotateEngine ∗ re = new RotateEngine ;

6 RayEngine ∗ ra = new RayEngine ;

7

8 i f ( exec ) {

9 i f ( ! ra−>i n i t ( s r c f i l e s [ i ] , xres , yres , rpp ) ) {

10 c e r r << "Raytracing Kernel I n i t f a i l e d ! " << endl ;

11 exec = 0 ;

12 cont inue ;

13 }

14

15 i f ( ! re−>i n i t ( ra−>getOutputImage ( ) , angle , d e s t f i l e s [ i ] ) ) {

16 c e r r << "Rotation Kernel I n i t f a i l e d ! " << endl ;

17 exec = 0 ;

18 cont inue ;

19 }

20 }

21 #pragma omp ordered depend ( source )

22 i f ( exec ) {

23 ra−>pr intRayt rac ingSta te ( ) ;

24 re−>pr in tRota t i onSta te ( ) ;

25

26 ra−>run ( ) ;
27 re−>run ( ) ;
28

29 ra−>f i n i s h ( ) ;

30 re−>f i n i s h ( ) ;

31 }

32 }

33

34 i f ( ! exec ) re turn BAD_EXIT;
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