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RESUMO 

A produção de etanol no Brasil deverá ser de 54 bilhões de litros em 2030 para atender ao 

acordo firmado na COP21, o que representa o dobro da produção de etanol verificada em 2016. 

Do ponto de vista agronômico há duas alternativas: ou aumenta-se a área plantada com a cultura 

ou aumenta-se a produtividade por área. Ambientalmente não há dúvidas que o aumento da 

produtividade é a melhor alternativa, sendo que a agricultura de precisão (AP) será fundamental 

para contribuir com a sustentabilidade da produção. Atualmente a AP nas lavouras de cana-de-

açúcar no Brasil está longe do potencial que as tecnologias disponíveis podem proporcionar 

para o manejo adequado da cultura. O principal objetivo da presente tese é demonstrar como 

as tecnologias de PA, mais especificamente, monitores de rendimento, parâmetros topográficos 

e sensores de condutividade elétrica aparente (CEa), podem ajudar os agricultores a gerenciar 

os campos de forma específica do local. Para tanto, os atributos do solo que impactam 

diretamente a produtividade das culturas foram avaliados espacial e temporalmente, associando 

esses elementos do solo com parâmetros topográficos e CEa. Os objetivos são fornecer 

indicadores qualitativos e quantitativos para uma caracterização espacial precisa dos campos, 

mostrando o potencial dos parâmetros topográficos e CEa para melhorar o manejo específico 

do local dos campos de cana-de-açúcar. Para aumentar a produtividade, os resultados 

mostraram que a matéria orgânica (MO) disponível no solo, teor de argila e capacidade de troca 

catiônica (CTC) são os fatores que impactam diretamente a produtividade da cana-de-açúcar. 

Além disso, a variabilidade temporal na produtividade foi causada principalmente pela 

variabilidade no pH do solo. Uma avaliação abrangente da variabilidade espacial dos atributos 

do solo relacionados aos parâmetros topográficos evidenciou padrões espaciais que foram 

temporalmente remanescentes. Os resultados mostraram que as classes morfométricas 

horizontais (HConv, HPlan e HDiv), associadas às áreas côncavas (Vconc), apresentaram maiores 

teores de MO, Soma de Bases (SB) e CTC, indicando que essas áreas apresentam maior 

fertilidade do solo, onde a formação VConcHDiv apresentou a maior fertilidade do solo. Para 

todas as classes morfométricas verticais (VConc, VRet e VConv), os níveis de pH do solo foram 

maiores quando associados a áreas divergentes (HDiv) e menores quando associados a áreas 

convergentes (HConv), sugerindo um manejo mais rigoroso da acidez do solo nas áreas HConv. 

As áreas VConvHConv, onde a menor fertilidade do solo foi observada, devem ser amostradas 

com maior acurácia para adequada caracterização espacial do solo, devido ao alto Coeficiente 

de Variação (CV) observado quando comparado a outras classes morfométricas avaliadas. 

Além disso, as classes de CEa, divididas pelo método do quantil, mostraram que os locais de 

menor condutividade elétrica apresentam menores teores de MO e CTC. As classes de CEa 

mais altas mostraram CV menor para todos os atributos do solo avaliados, ou seja, locais que 

podem ser caracterizados com menores quantidades de amostras para um mapeamento de solo 

adequado. A variabilidade do conteúdo de argila foi diretamente proporcional à variabilidade 

da CEa (R2 = 0,97). MO (R2 = 0,65) e CTC (R2 = 0,76) também apresentaram boa correlação 

com a variabilidade da CEa. Com alta estabilidade espacial e temporal, os parâmetros 

topográficos e da CEa são excelentes fontes de informação (economicamente viáveis e de fácil 

avaliação) para apoiar os processos de amostragem do solo e mapear as zonas de fertilidade 

nos campos. Palavras-chave: agricultura de precisão; indução eletromagnética; manejo 

localizado da cultura; agricultura. 

 

 

 

 

 

 



 
 

 
 

ABSTRACT 

The ethanol production should be 54 billion liters in 2030, almost double of the current 

production. From the agronomic point of view, two alternatives are possible; increase the 

planted area and/or agricultural yield to reach the goals. Environmentally, increase the yield is 

a more sustainable option, and the adoption of Precision Agriculture (PA) will be essential. 

The current use of PA in Brazilian sugarcane industry is very far from its full potential. The 

main objective of the present thesis is to demonstrate how PA technologies, more specifically 

yield monitors, topographic parameters and apparent electrical conductivity (ECa) sensors, can 

help farmers to manage fields in a site-specific way. For this purpose, soil attributes that 

directly impact crop yield were spatially and temporally evaluated, associating these soil 

elements with topographic and ECa parameters. The aims are to provide qualitative and 

quantitative indicators for a precise soil spatial characterization of fields, showing the potential 

of topographic and ECa parameters to improve the site-specific management of sugarcane 

fields. To increase the yield, the findings showed that the amount of available soil organic 

matter (OM), clay content and cation exchange capacity (CEC) are important factors that 

directly impact sugarcane yield. Furthermore, the temporal variability in the yield is caused 

mainly by the variability in the soil pH. A comprehensive assessment of the spatial variability 

of soil attributes related to topographic parameters evidencing spatial patterns that were 

temporally remained. The results showed that the horizontal morphometric classes (HConv, HPlan 

and HDiv), associated with vertical concave areas (VConc), presented higher levels of OM, Sum 

of Bases (SB) and CEC, which indicated that these areas have higher soil fertility, where 

VConcHDiv showed the highest soil fertility. For all vertical morphometric classes (VConc, VRet 

and VConv), soil pH levels were higher when associated with horizontal divergent areas (HDiv) 

and lower when associated with convergent areas (HConv), suggesting that stricter soil acidity 

management was needed in the HConv areas. The VConvHConv areas, where the lower soil fertility 

was observed, should be sampled with greater accuracy for adequate soil spatial 

characterization due to the high CV observed when compared to other morphometric classes 

assessed. Furthermore, ECa classes, defined by quantil method, showed that the low electrical 

conductivity sites present lower OM and CEC contents. The higher ECa classes showed smaller 

CV for all soil attributes assessed, i.e., sites that can be characterized with smaller amounts of 

samples to an adequate soil mapping than lower ECa classes. The clay content variability was 

directly proportional to the ECa variability (R2 = 0.97). OM (R2 = 0.65) and CEC (R2 = 0.76) 

showed great correlation with ECa variability too. With high spatial and temporal stability, 

topographic and ECa parameters could be excellent (economically feasible and easily assessed) 

sources of information to support soil sampling processes and to map fertility zones within 

fields. Keywords: precision agriculture; electromagnetic induction; site specific crop 

management; agriculture. 
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I. General Introduction 

December 12, 2015 was a historic day for the world. More than 195 nations in 

Paris-France decided to combat global climate change (COP-21, Paris, France). This agreement 

provided an international engagement to limit the global temperature changes. One of the main 

focus of the agreement is the low-carbon economy. Then, Brazil plays a fundamental key for 

nations around the world, through the ethanol production; a renewable fuel that can mitigate 

the climate change. Thus, the production and export of Brazilian ethanol, which is increasing 

every year (OECD-FAO Agricultural Outlook 2015-2024, 2015), may suffer even more 

significant changes that projected earlier.  

Brazil has the most renewable energy matrix in the industrialized world. About 

41.2% of its production coming from renewable sources such as water resources, biomass and 

ethanol, wind and solar energy. The world energy matrix is composed of 13.5% of renewable 

sources in industrialized countries, decreasing to 6% in developing nations. The Brazilian 

biomass from sugarcane represents 16.9% of the national energy matrix. In the agreement 

signed during COP-21, Brazil committed to reduce the greenhouse gas (GHG) emissions by 

37% and 43%, compared to the 2005 levels, by 2025 and 2030 respectively. The agreement 

will promote an irreversible change in the current Brazilian energy framework, and the 

sugarcane industry has a huge potential to replace the fossil fuels import with ethanol to meet 

the established demands. 

Brazil is the world's largest producer of sugarcane and the second largest producer 

of ethanol, only behind of the United States of America. In 2017, Brazil produced 657.18 

million tons of sugarcane in 9.05 million hectares (CONAB, 2017). To meet the COP-21 goals, 

the ethanol production is expected to reach 54 billion of liters in 2030, almost double of the 

2016 production. The sugar production is expected to increase from 38.7 million tons to 46.4 

million tons by 2030. To meet these demands for ethanol and sugar production, National 

Confederation of Industry (CNI), in partnership with the University of São Paulo (FEA/USP), 

estimated that it will be necessary 942 million tons of sugarcane per season in 2030 (CNI, 

2017). To meet these demands, the Brazilian southeast region (especially São Paulo state) 

should still be the main pole of production, since the other Brazilian regions suffer with lack 

of investments in new research and technologies to increase their productions capacity. 

From the agronomic point of view, two alternatives are possible. If the area 

expansion is possible, the increase of agricultural yield is also an alternative. Despite of the 

many controversies over the sugarcane fields expansion and their impact on food production 
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(Popp et al., 2014), studies showed that there is still potential for the crop expansion, especially 

in pasture fields (Loarie et al., 2011). However, a more sustainable alternative from the 

economic and environmental point of view is increase the crop yield. To accomplish that, it 

will be necessary to invest in technologies that allow to produce more in the same area, i.e., the 

crop yield should reach new levels and exceed the current Brazilian average of 73 Mg ha-1 

(CONAB, 2017). In this context, precision agriculture (PA) is an approach that includes several 

technologies and tools that can contribute significantly to these challenges. 

The PA is an approach that seeks to increase yield through a site-specific 

management of soil and crops, optimizing the inputs and environmental impacts (Bullock et 

al., 2007). The main technologies available to PA users are yield monitors, remote and 

proximal soil/plant sensors associated with Global Navigation Systems (GNSS) and several 

Geographic Information Systems (GIS) packages. Although these technologies are available 

worldwide, the Brazilian sugar and ethanol industry lacks the effective adoption of them. The 

adoption of PA is still far from its potential for localized management of sugarcane fields (Silva 

et al., 2011). One reasons for that is that the sugarcane fields lack a long-term assessment that 

supply producers with robustness results from technologies application in a site-specific level.  

To ensure an adequate site-specific management of sugarcane fields, the soil 

variability characterization, at spatial and temporal level, is essential to guarantee economic 

and environmental returns of production. The precise mapping of soil attributes variability 

should be made in an efficient way, that is, economically and physically feasible. Among the 

technologies available, many studies in literature evidence that soil apparent electrical 

conductivity (ECa) and topographic parameters are source of information with great potential 

to help soil characterization. In this context, the hypothesis of the present thesis is that the main 

soil attributes, that direct affect sugarcane yield at spatial and temporal level, will be 

characterized by topographic and ECa information obtained thought SRTM data em EMI 

sensor, respectively. Sources of information economically feasible and easily assessed could 

help farmers to manage sugarcane fields in a sustainable way, enable the increase adoption of 

PA in sugarcane fields. We expected that, through the present study, it will be possible to 

visualize the main challenges that Brazil will face in the next decade, providing indicators to 

guide public policies that will overcome the technological bottlenecks for a sustainable 

sugarcane production expansion. 
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II. Objectives 

The main objective is to provide a comprehensive assessment of the spatial and 

temporal variability of soil attributes and its relationship with sugarcane yield, topographic 

parameters and ECa information. The present thesis aims to provide qualitative and quantitative 

indicators for a precise soil spatial characterization of fields, showing the potential of PA 

technologies (yield monitor, ECa and remote sensing) to improve the production profitability 

in the Brazilian sugarcane industry. The specific objectives are as follows: 

i. Provide a site-specific assessment of spatial and temporal variability of sugarcane yield 

and the soil attributes to identify the main soil factors that directly affect the crop yield; 

ii. Provide a comprehensive assessment of spatial variability of soil attributes related to 

topographic parameters, providing indicators that can be used to guide the soil spatial 

characterization and soil sampling process; 

iii. Provide a wide-ranging assessment of the relationship among soil attributes, that 

directly impact the sugarcane yield, and ECa at spatial and temporal level in Brazilian 

sugarcane fields by an EMI sensor.  

The following topics are divided in chapters, where each one corresponds with a specific 

objective of this thesis. At the end of the last chapter, we will present the general discussions 

and conclusions. Figure 1 shows a general overview of how chapters were organized. 

 

 

Figure 1. General overview of chapters. 
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Chapter 1: Site-specific assessment of spatial and temporal variability of sugarcane yield 

related to soil attributes (Geoderma 334, 90-98, 2019) 

Guilherme M. Sanches1*, Paulo S. Graziano Magalhães1 and Henrique C. Junqueira Franco1 

1 University of Campinas – UNICAMP - Ph.D. Program in Bioenergy – Interdisciplinary Center for 

Energy Planning. 

*Corresponding author – guilherme.sanches@cropman.com.br/+55 14 991648711 

 

Abstract: The adoption of information technology (IT) and precision agriculture (PA) has 

converted agricultural fields into data sources. However, the transformation of data into 

decision making knowledge remains a major challenge. In the Brazilian sugarcane industry, 

the current use of PA technology is very far from its full potential for site-specific management, 

mainly because yields are not temporally or spatially monitored. The objective of the present 

study was to investigate the relationship between the physical and chemical properties of soils 

and sugarcane yield, thereby identifying the soil parameters that determine the final 

productivity. Two sugarcane fields were monitored from 2011 to 2014. During the crop season, 

soil samples and yield data were collected annually. The random forest algorithm was applied 

to investigate the influence of different soil attributes on yield using data that were collected 

spatially over the study period. The results showed that the amount of available soil organic 

matter (OM), clay content and cation exchange capacity (CEC) are important factors impacting 

sugarcane yield variation. Furthermore, it was found that the temporal variability in the yield 

is caused mainly by the variability in the pH over the study period. The results indicated that 

when OM increased over time, there was greater phosphorus availability. Large volumes of 

spatial and temporal data, together with data mining techniques, allowed for the extraction of 

knowledge and the creation of specific management zones in the field that support the decision-

making process for producers. Keywords: precision farming; data mining; random forest; yield 

monitor; Saccharum spp. 

 

1.1. Introduction 

According to the goals set by the Brazilian government at COP21, ethanol production 

in 2030 is expected to be 54 billion of litres, almost double the current production levels. Sugar 

production will increase from 38.7 million tons to 46.4 million tons. To achieve these ethanol 
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and sugar production goals, it will be necessary to produce 942 million tons of sugarcane per 

season in 2030 (CNI, 2017). These demands will promote an irreversible change in the current 

Brazilian sugar and ethanol framework. The sugarcane industry has great potential to replace 

part of the expected imports of fossil fuel with ethanol and to meet the established greenhouse 

gas (GHG) reduction targets. Thus, increasing the agricultural yield of sugarcane provides a 

more economically and environmentally sustainable alternative as producing more yield in the 

same planted area reduces production costs and avoids the need for new fields expansions. The 

current Brazilian average sugarcane yield is 72.6 Mg ha-1 (CONAB, 2017), far from the genetic 

potential of the crop, which is 300 Mg ha-1 (Waclawovsky et al., 2010). Achieving this yield 

threshold seems to be a distant possibility, but investments in technology and research can 

contribute significantly to reaching this goal. 

The adoption of precision agriculture (PA) technologies represents a promising 

approach to increasing agricultural yields and reducing production costs. PA comprises several 

techniques and technologies for managing the spatial and temporal variability of crops, and 

these approaches seek to improve the yield, profitability and environmental management of 

fields. These benefits are essentially obtained through site-specific management that considers 

the spatial and temporal variability of fields. The main technologies available to PA users are 

yield monitors, remote and proximal soil and plant sensors associated with Global Navigation 

Satellite System (GNSS) positioning and geographic information systems (GIS). Among the 

fundamental PA tools are yield monitors, which can spatially map yields and identify problems 

in the fields. Although widely developed and used in grain crops (Silva et al., 2011, Arslan and 

Colvin, 2002), yield monitors are still rarely used in the Brazilian sugarcane industry. Examples 

of yield monitor applications come mainly from the academy, with the first works having been 

produced by Magalhães and Cerri (2007). 

One of the technological bottlenecks preventing PA advances in the Brazilian sugarcane 

industry is the lack of applicable knowledge to help farmers make the right decisions. 

Moreover, the literature offers fewer long-term economic and environmental studies on the 

adoption of site-specific management of sugarcane fields compared to those that evaluate 

grains (Yost et al., 2016) and citrus (Colaço and Molin, 2017). The development of appropriate 

decision support systems for decision making remains a major hindrance to the full adoption 

of PA (McBratney et al., 2006). At the strategic and tactical levels, the data gathered on the 

performance of various farm management systems should be grouped by time to build a 

systematic database, allowing for "quick and preliminary" assessments of the effects of 
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management strategies based on experiences obtained elsewhere in similar soil conditions 

(Bouma et al., 1999). To overcome this challenge, information technology (IT) has been widely 

applied in all aspects of agriculture, making it an effective tool to increase agricultural yield 

(Yan-e, 2011). 

The acquisition of data and the extraction of agronomic knowledge on the spatial and 

temporal variability of crops can contribute significantly to the expansion of PA in sugarcane 

fields. Some studies have demonstrated the influence of soil attributes on sugarcane yield 

(spatially monitored). Using a yield monitor and decision trees algorithms, Souza et al. (2010) 

found that potassium and altitude were the most important attributes determining high yields. 

Cerri and Magalhães (2012) evaluated the correlations between sugarcane yield and some 

chemical and physical soil attributes. These correlations were found to be generally weak 

(<0.5), and the authors concluded that a simple correlation is not enough to explain the spatial 

variability in yield, suggesting that characteristics other than soil attributes should be analysed. 

Working with sugarcane yield mapping, soil fertility attributes and attributes of sugarcane 

quality over 3 years, Johnson and Richard Jr. (2005) obtained non-significant, low and 

moderate correlations using linear Pearson correlations, suggesting that future studies should 

verify the influence of micronutrients on crop quality and yield. Rodrigues Jr. et al. (2013) also 

did not find patterns in the temporal stability of sugarcane quality parameters, suggesting that 

more crop cycles should be included in future assessments. Although few studies in the 

literature have reported on using of yield monitors in sugarcane fields to investigate the causes 

of spatial and temporal variability, some plot-scale studies have addressed the influence of soil 

attributes on yield (Bordonal et al., 2017; Rossi Neto et al., 2017; Dias et al., 1999).  

As suggested by Cerri and Magalhães (2012), a simple Pearson’s correlation between 

soil and plant parameters is not enough to explain yield. Advancements in data science and big 

data (Wolfert et al., 2017) may be able to address this bottleneck. Some studies reported in the 

literature have used data mining techniques, such as random forest (RF) algorithms (Breiman, 

2001), to estimate sugarcane yields (Everingham et al., 2016; Bocca et al., 2016; Bocca et al., 

2015), showing the potential of these tools. RF methods have been widely adopted for certain 

agricultural problems, such as remote sensing analysis (Lebourgeois et al., 2017; Parente et al., 

2017), leaf nitrogen levels (Abdel-Rahman et al., 2008) and classifying sugarcane varieties 

(Everingham et al., 2007). RF were used in many problems of yield estimation (Park et al., 

2005; Tulbure et al., 2012; Fukuda et al., 2013; Newlands et al., 2014; Jeong et al., 2016), 

particularly in sugarcane fields (Everingham et al., 2009; Everingham et al., 2015a; 
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Everingham et al., 2015b; Everingham et al., 2016). RF algorithms can handle large volumes 

of data, use categorical variables as predictors, measure the degree of importance of the 

predictive variables, and output the class probability and is robust against overfitting, even for 

slightly imbalanced datasets (Khoshgoftaar et al., 2007). Although previous studies have 

addressed sugarcane crops, none of them use yield monitor data spanning multiple years to 

assess the influence of soil attributes on sugarcane yield.  

In this context, the objective of this paper was to investigate the relationship between 

physical and chemical soil attributes and sugarcane yield in order to identify the determinant 

parameters that define the spatial and temporal variability of yields. Thus, we used the 

computational environment created to support agricultural research, data acquisition, data 

formatting, data verification, data storage and analysis that was described in Driemeier et al. 

(2016) and developed with the objective of assisting PA studies. From large volumes of data 

obtained through soil and plant monitoring, it is possible to obtain new and relevant agronomic 

knowledge that can help producers increase yields and production profitability, thereby 

increasing the efficiency and sustainability of the sugarcane industry based on site-specific crop 

management. 

 

1.2. Materials and Methods 

The data used in this paper are derived from two experimental sugarcane fields used for 

PA projects and are stored in the Agricultural Database (BDAgro) of the Brazilian Bioethanol 

Science and Technology Laboratory (CTBE/CNPEM). The first experimental area, with an 

area of 30 hectares, is located at the Pedra Mill (PeM - São Paulo - Brazil - 21°16’36.94”S, 

47°18’31.31”W - 583 m), and the second, with an area of 10 hectares, is located at São João 

Mill (SJM - São Paulo - Brazil - 22°23’37.21”S, 47°18’31.31”W - 640 m). The slope of the 

areas is 10% and 2% for PeM and SJM fields, respectively. The sugarcane varieties, chosen 

according to the local climatic conditions and the soil type, were CTC09 and SP80-3280 for 

PeM and SJM, respectively. The full details and initial objectives of the PeM and SJM project 

experiments were reported by Magalhães et al. (2014) and Rodrigues Jr. et al. (2012), 

respectively. The main difference in the management of the two experimental fields is related 

to soil fertilization. At PeM, nitrogen (according to expected yield), phosphorus and potassium 

(according to the laboratory soil analyses) were applied at variable rates throughout the entire 

crop cycle (3 crop seasons), while at SJM, fertilizers were not applied during the experimental 

period (2 crop seasons). The areas were sampled in a regular grid of 50x50 m and 30x30 m for 



22 
 

 
 

the PeM and SJM with a total of 107 and 117 soil sampling points, respectively (Figure 1.1). 

Soil samples collected in the superficial layer (0.00 to 0.20 m) were submitted for wet-chemical 

laboratory analysis. The soil attributes assessed were soil organic matter (OM), pH, phosphorus 

(P), potassium (K), calcium (Ca), magnesium (Mg), hydrogen + aluminium (H+Al), the sum 

of bases (SB), cation exchange capacity (CEC) and base saturation (BS). PeM was evaluated 

during the crop seasons of 2012 to 2014, and SJM was evaluated in 2011 and 2012. The first 

year of sugarcane production (lasting from 12 to 18 months) is defined as the cane plant, and 

successive years (12 months) are defined as ratoon. In Brazil, the length of the average 

sugarcane cycle, from one planting to the next, is approximately five years. In the present 

experiment, the sugarcane crops corresponding to the evaluated years were the cane plant, 1st 

ratoon, and 2nd ratoon for PeM and the 2nd and 3rd ratoons for SJM. The experimental fields 

were harvested using a yield monitor coupled to the sugarcane harvest (SIMPROCANA®, 

ENALTA, São Carlos, Brazil). 

 

 

 

Figure 1.1. Grid soil sampling in the experimental fields of Pedra Mill (PeM – left) and São 

João Mill (SJM – right). Buffer zone (in detail) used to assign the yield data to the soil sampling 

grid. 
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1.2.1.  Data analysis 

The yield data were reduced to a soil sample grid by linear polynomial surface 

regression (fittype fuction) using Matlab software (MathWorks, Natick, Massachusetts) in the 

buffer zone (Figure 1.1 – detail) according to the linearization method described by Driemeier 

et al. (2016). The soil chemical attributes were converted to logarithms of the concentrations. 

The logarithmic scale reduced the positive asymmetry of the distribution, which was both 

physically and chemically justifiable (Atkins and Paula, 2010). The next step was to remove 

extreme values, which could cause detrimental biases for correlations, covariance, and 

subsequent analyses, from the datasets. Any input that deviated from the mean by more than 

three standard deviations (for a given attribute) was treated as an outlier (Driemeier et al., 

2016). Pearson’s correlation and principal component analysis were performed to identify 

relationship patterns between soil attributes and yield. RF was applied to identify the major soil 

attributes that influence sugarcane yield at spatial and temporal level. To assess the soil and 

yield through time, annual differences at each sampling point were calculated (Eq. 1). The 

objective was to investigate the variation in soil attributes over the years associated with 

variations in yield. In Eq. 1, a positive value indicates an increase in the attribute evaluated in 

the following year, and a negative value indicates the opposite. This analysis allows for the 

effective interpretation of the evaluated parameters through time. For the present paper, we 

assumed that the spatial and temporal variability levels can be determined by applying the 

analysis to the original and transformed (Eq 1) data values. 

 

𝐶(𝒙,𝒚)
𝑁  =  𝐶(𝒙,𝒚)

𝑖+1 − 𝐶(𝒙,𝒚)
𝑖   [Eq 1] 

where 𝐶(𝑥,𝑦)
𝑁  is the new content evaluated at the [X,Y] coordinates and 𝑖 is the evaluation year. 

i. Principal component analysis (PCA) 

Principal component analysis simplifies the description of a set of interrelated variables 

by reducing the dimensionality and enabling the interpretation of components. This analysis 

does not treat the variables as dependent or independent, as in the regression analyses; rather, 

all evaluated attributes are treated as variables. In this way, this technique can be understood 

as a method to transform the original variables into new uncorrelated variables, where each 

main principal component (PC) is a linear combination of the original variables (Johnson and 

Wichern, 2007). PCA was used to observe the correlation structure between soil attributes and 

crop yield. PCA allows for an effective qualitative interpretation of several evaluated 
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parameters, resulting in a robust and simple means of identifying the relationship between the 

variables assessed. 

ii. Decision trees 

The principle behind classification/regression trees is to "divide-to-conquer". At each 

level of a tree, a more complex prediction/classification problem (where there is a greater 

heterogeneity of target variable values) is decomposed into simpler subproblems. This 

approach generates descendants in which the heterogeneity of the variables to be predicted (and 

explained) is more attenuated, and predictions can be made with lower risk for each of these 

nodes. The present paper applied an RF algorithm to identify the soil attributes (independent 

variables) that best explain the spatial and temporal variability in sugarcane yield (dependent 

variable). RF belongs to the class of supervised algorithms in which a dependent variable is 

explained in terms of n independent variables measured at any scale. RF is an ensemble 

learning method (Breiman, 2001) that can be applied to classification and regression problems. 

RF has certain advantages in that it can handle large volumes of data; it can use categorical 

variables as predictors; it can measure the degree of importance of the predictive variables in 

the final model; and it has only two main parameters to set: the number of classification trees 

(ntrees) and the number of prediction variables (mtry). RF algorithms operate with several 

decision trees at the time of training and allow for the identification and ranking of the most 

significant attributes in describing the dependent variable. For the assessment, 100 trees and 

all soil attributes were used. For training and testing, 70% and 30% of the total data were used, 

respectively. A classification and regression approach were applied in the spatial and temporal 

assessments, respectively. For classification, all soil attributes evaluated were discretized 

according to Raij et al. (1997). The yield data were classified into five classes: very high (y ≥ 

110 Mg ha-1); high (90 ≤ y < 110 Mg ha-1); medium (70 ≤ y < 90 Mg ha-1); low (50 ≤ y < 70 

Mg ha-1) and very low (y < 50 Mg ha-1). Finally, a chi-squared automatic interaction detector 

(CHAID) decision tree (Kass, 1980) was applied to distinguish the yield potential of the 

experimental fields according to the most important soil attributes, aiming to visualize the yield 

differences by soil limiting factors. 

1.3.Results 

From the sample data (N = 555), 35 discrepant values were identified, corresponding 

to 6% of the dataset. These instances were eliminated in an attempt to avoid bias in the analyses. 

The experimental fields exhibit differences in the average clay and sand contents (Figure 1.2). 
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The PeM soils are more clayey (~458 g kg-1) than the SJM soils (~232 g kg-1), and the silt 

content is roughly equal (~90 g kg-1).  

 

 

Figure 1.2. Clay, sand and silt content (g kg-1) in the Pedra (PeM) and São João (SJM) 

experimental fields. 

 

The maximum value of clay content for the PeM and SJM fields is 537 and 310 g kg-1, 

respectively. The mean OM content in the two experimental areas decreased over time (Figure 

1.3), and the average OM content was higher than 20 g dm-3 for PeM and less than 12 g dm-3 

for SJM. Phosphorus levels increased over time for both fields. The SJM field has 

approximately a phosphorus content three times greater than that of the PeM field. Only the 

SJM field maintained an average critical level of 16 mg dm-3 of available P. Unlike P, K 

decreased over time in the PeM field, while that in the SJM field increased in the third ratoon. 

The PeM field was richer in potassium content and was the only field to maintain an average 

content above the critical level (critical level of K = 1.6 mmolc dm-3). The Ca and Mg contents 

were always higher than the critical level for sugarcane crops established by Raij et al. (1997) 

for both fields, but the calcium contents decreased over time in the PeM field. The soil pH 

always remained on average within the acidity range of 5.1 to 5.5 for both areas. However, 

some places in both fields presented minimum levels of pH within the high acidity range (4.4 

< pH < 5.0). The CEC increased in SJM but decreased in PeM, following the Ca and Mg 

attributes. The BS remained on average higher than 60% (critical level) in SJM and lower than 

this level in PeM over the years. 

 



26 
 

 
 

 

Figure 1.3. Natural logarithm (ln) of soil attributes content in Pedra (PeM - a) and São João 

(SJM - b) fields. Numbers represent the average content of soil attributes. Red columns 

represent the critical level according to Raij et al. (1997). [Units]: [OM] - [g dm-3]; [pH] - [in 

CaCl2]; [P] - [mg dm-3]; [K, Ca, Mg, H+Al, SB and CEC] - [mmolc dm-3]; [BS] - [%]. 

 

The average sugarcane yield decreased over the course of the sugarcane crop season, 

with the highest decrease registered from the first to the second ratoon in PeM (from 94 to 60 

Mg ha-1). The raw yield data distribution shows the absence of discrepant values for both areas 

(Figure 1.4), and the lowest data variability was recorded for the second ratoon in PeM (CV = 

8%). The highest yields were recorded for PeM (~140 Mg ha-1 - cane plant), while the lowest 

were recorded for SJM (~37 Mg ha-1 - third ratoon). The maps of spatial variability in yield are 

shown in Figure 1.5. A PCA of the original contents of soil attributes and yield was conducted, 

and the first two principal components account for ~67% of the total data variability (Figure 

1.6). The projection of variables onto the factor plane suggest that the sugarcane yield is related 

directly to K, OM and H+Al contents (Figure 1.6 - a). The projection of the instances on the 

factor plane divided the dataset into two main clusters (Figure 1.6 - b), clearly differentiating 

the experimental fields. 
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Figure 1.4. Yield (Mg ha-1) data variability in the sampling grids for the Pedra (PeM) and São 

João (SJM) fields. 

 

 

Figure 1.5. Spatial variability maps of sugarcane yield (Mg ha-1) for the Pedra (PeM – a) and 

São João (SJM – b) fields. 

The highest Pearson’s correlation coefficient between yield and soil attributes (Table 

1.1) were those between yield and OM, K and H+Al (r = 0.48, 0.32 and 0.39, respectively) for 

spatial variability, while pH showed a significant temporal correlation (r = 0.39). SB was 

directly related to the variations in Ca and Mg contents spatially (r = 0.97 and 0.81, 
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respectively) and temporally (r = 0.99 and 0.77, respectively). The spatial variability of clay 

content is intrinsically related to the OM content (r = 0.82). Although the correlation is low, it 

is possible to observe a significant and positive trend in OM temporal variation related to SB, 

CEC, Ca, Mg, BS and P contents (r = 0.34, 0.34, 0.32, 0.31, 0.28 and 0.16, respectively). 

 

 

Figure 1.6. Principal component analysis (PCA) of soil attributes and sugarcane yield of the 

Pedra (PeM - blue) and São João (SJM - red) fields. Projection of the variables (a) and instances 

(b) on the first two principal components (PCs). 

Table 1.1. Pearson correlation coefficient of soil attributes and yield for spatial (below of the 

main diagonal) and temporal (above of the main diagonal) variability. 

  Clay OM pH P K Ca Mg H+Al SB CEC BS Yield 

OM 0.82* - 0.02 0.16* 0.10 0.32* 0.31* 0.07 0.34* 0.34* 0.28* 0.00 

pH -0.30* -0.27* - 0.00 -0.09 0.10 0.03 -0.35* 0.09 -0.04 0.30* 0.39* 

P -0.71* -0.65* 0.29* - 0.05 0.09 0.12* 0.08 0.11 0.13* 0.04 0.06 

K 0.54* 0.52* -0.14* -0.39* - 0.15* 0.18* 0.09 0.23* 0.25* 0.19* 0.00 

Ca -0.26* -0.09* 0.40* 0.37* -0.11* - 0.66* 0.03 0.99* 0.92* 0.77* 0.00 

Mg -0.58* -0.44* 0.51* 0.59* -0.26* 0.68* - -0.14* 0.77* 0.66* 0.70* -0.13* 

H+Al 0.43* 0.52* -0.62* -0.34* 0.25* -0.23* -0.46* - -0.01 0.37* -0.52* 0.01 

SB -0.35* -0.19* 0.46* 0.46* -0.11* 0.97* 0.81* -0.32* - 0.93* 0.80* -0.02 

CEC -0.09* 0.14* 0.10* 0.23* 0.04 0.84* 0.53* 0.28* 0.82* - 0.55* -0.02 

BS -0.48* -0.39* 0.67* 0.47* -0.19* 0.77* 0.80* -0.76* 0.83* 0.38* - 0.02 

Yield 0.24* 0.48* 0.01 -0.28* 0.32* -0.11* -0.16* 0.39* -0.13* 0.11* -0.28* - 

*significant at 5%. 
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In dataset of the present paper, the highest yield class frequency is high, with an overall 

mean of 83.45 Mg ha-1. In each experimental field, the highest yield class frequency was high 

as well, with averages of 88.61 and 76.36 Mg ha-1 for PeM and SJM, respectively. The RF 

algorithm analysis indicated that the most important attribute that directly impacts sugarcane 

yield was OM followed by CEC and clay content (Figure 1.7 – a). These factors may be the 

main soil attributes that limit yield. However, an RF regression indicated that the soil attribute 

that most influenced yield through time was pH followed by SB and P (Figure 1.7 – b). This 

finding is evidenced by the trend in the Pearson’s correlation coefficient between yield and pH.  

 

 

Figure 1.7. Ranking of the first eight soil attributes (plot importance) that explain the spatial 

(a) and temporal (b) variability of sugarcane yield (dependent variable). 

 

 Dividing the experimental fields at the first level of the CHAID decision tree 

algorithm, soil OM was the most significant variable explaining yield at the PeM field, a critical 

value equal to 23 g dm-3 (Figure 1.8). Contents above this value showed a higher frequency of 

high yields (M = 99.59 Mg ha-1), while lower levels showed low yields (M = 69.81 Mg ha-1). 

The attribute that most influenced the yield for SJM was soil pH, where low pH levels (pH < 

5.0) were associated with an increased frequency of low yields (M = 73.96 Mg ha-1), while 

high pH levels (pH > 5.6) were associated with high yields (M = 81.81 Mg ha-1). 
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Figure 1.8. Decision tree results of the first two levels of a CHAID algorithm. M – average 

yield (Mg ha-1); SD – standard deviation of yield (Mg ha-1) and N – Number of instances in the 

nodes. 

1.4.Discussion 

Difference in the clay contents between experimental fields are clear. The soils in PeM 

and SJM fields can be classified as clay and sandy loam (EMBRAPA, 1999), respectively. The 

maximum clay contents in the soil show some clayey regions at PeM, while the SJM field 

present some regions ranging from sandy loam to medium soil texture. The average contents 

of soil OM decreased for both fields over the years, a pattern that has been commonly observed 

in the sugarcane fields in the central southern region of Brazil. As expected, the OM content 

followed the soil clay content (r = 0.84). The most clayey field (PeM) presented higher OM 

contents, while SJM presented OM levels lower than 12 g dm-3. The OM contents are within 

the expected values according to Raij et al. (1997), with sandy soils presenting contents lower 

than 15 g dm-3 and clayey soils ranging between 16 and 30 g dm-3. There is a trend of higher 

OM contents in clayey soils than in sandy soils due to the formation of soil aggregates, thereby 

allowing the clay particles to protect soil OM from microbiological attack (Razafimbelo et al., 

2013). 

The variability of the yield data in the sampling grid, which were adjusted according to 

the linear regression described in Driemeier et al. (2016), shows the robustness of the 

regression in removing noise and discrepancies in the sugarcane yield monitor dataset, as 

reported in Maldaner et al. (2015) and Rodrigues Jr. et al. (2012). The spatial variability maps 

of sugarcane yield (Figure 1.5) indicated that the noise from yield monitors was removed when 

the linearization filter was applied, as described in Driemeier et al. (2016), and showed a clear 
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spatial pattern for the fields. Due to the different management approaches adopted in the field 

experiments, in the PeM field (where P and K fertilizers were applied), the average K content 

decreased over the years, which was not expected. In contrast, the average P content increased. 

In the SJM field (where fertilizers were not applied), contrary to expectations, there was an 

increase in the mean K and P levels in the crop seasons evaluated. One hypothesis for these 

changes in soil attributes can be derived from the Pearson’s correlation for temporal variability 

(Table 1.1). Despite of the low correlation, there is evidence that where OM increased, the P 

and K increased as well, and the inverse is also true. Setting the P content as a dependent 

variable in the RF algorithm, this hypothesis is proven (Figure 1.9). For both fields, the soil 

attribute that better explains the P content through time is soil OM. This fact was addressed by 

Nogueirol et al. (2014) and shows the importance of soil OM for the availability of macro and 

micronutrients in the soil. The cycling of nutrients present in the straw from green cane 

harvesting can contribute significantly to increases in OM. According to Menandro et al. 

(2017), on average, sugarcane straw has the potential to recycle 48, 15 and 80 kg ha-1 of N, 

P2O5 and K2O, respectively, annually into the soil or into soil OM. The PeM field, which had 

high OM content, presented higher yields, and there was a direct correlation between these 

attributes (r = 0.60, data not shown) that was also shown by the correlation with all soil data 

sets (r = 0.48). As one of the most important soil attributes for defining the sugarcane yield and 

the availability of nutrients such as phosphorus and nitrogen in the soil (Nogueirol et al., 2014), 

OM content exhibited higher concentrations in the soil, more nutrients could be provided, and 

consequently, greater yields could be achieved. Indeed, OM has an important effect on the 

physical properties of agricultural soils, mainly under rainfed conditions. This effect occurs 

because OM promotes soil aggregation, which also indirectly impacts other physical attributes 

of soil such as soil bulk, soil porosity, soil aeration, water capacity and water drainage, which 

are essential for soil-crop yield capacity (Bayer and Mielniczuk, 2008). Furthermore, soil 

conservation management can help to maintain adequate soil OM levels over time, as reported 

by Carvalho et al. (2016), and improve both the quality of soil and its function of sustaining 

adequate plant growth (Cherubin et al., 2018). In a recent major review, Carvalho et al. (2016) 

suggested that 7 Mg ha-1 of straw should be left on the soil after the harvest to ensure minimum 

soil quality parameters. As expected, the higher availability of Ca and Mg caused an increase 

in the SB for both areas because the soil sum of bases is strictly related to these elements (Raij 

et al., 1991).  
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Figure 1.9. Ranking of the first eight soil attributes (plot importance) that explain the temporal 

P content variability for the PeM (a) and SJM (b) fields. 

The RF algorithm results show a clear influence of soil OM on agricultural yield. OM 

followed by CEC and clay content are the three most relevant soil attributes that impact 

sugarcane yield with similar levels of impact (Figure 1.7 – a). Such relations are not as clear in 

a simple Pearson’s correlation analysis, as reported by Cerri and Magalhães (2012), but the RF 

algorithm shows definitively that these soil attributes influence the spatial variations in yield. 

The classification of soils according OM and clay content shows the importance of these soil 

attributes for establishing yield potential zones (Landell et al., 2003). Clay soils present higher 

yield potentials compared to sandy soils, as evidenced in the present paper, and are intrinsically 

related to OM content. In the Brazilian sugarcane industry, fields are managed according to 

production environments (Landell et al., 2003), and soil texture is one of the most important 

factors for classifying these environments. 

With the CHAID decision tree algorithm (Figure 1.8), the influence of available soil 

OM content in the soil clearly delimited different yield potentials. The critical level of 23.0 g 

dm-3 distinguished the yield potentials, with a difference of 30 Mg ha-1 between these areas for 

the PeM field. In the SJM field, the soil pH over the years was a determining soil factor that 

differentiated yield potentials. Although not a recent discovery, Malavolta (1979) shows that 

higher nutrient availability for crops occurs with lower soil acidity (pH > 5.6). With recent 

improvements in technology and data acquisition (Viscarra and Bouma, 2016), this knowledge 

can be applied at a site-specific level, and field-specific assessment can be implemented. Yield 

maps combined with other soil and landscape parameters are often used to define yield zones 

(Buttafuoco et al., 2010; Diker et al., 2004), but this approach has mainly been used for grain 
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crops and not for sugarcane because yield monitors are not widely adopted in commercial 

sugarcane fields, where technological improvements are still necessary. 

Within a critical range (pH between 5.1 and 5.5, according to Raij et al., 1997), pH can 

be considered the most important attribute influencing yield at the SJM field since fertilizer 

was not applied. As addressed above, other nutrients, such as P and K, may have been available 

at sites where the pH was above the critical level. Moreover, the OM may have helped with P 

availability as well, as shown in a previous analysis (Figure 1.9). The present paper provides 

evidence that the pH must be controlled annually to fall within a specific range in low-yield 

potential fields like SJM. This management approach is not typically applied in Brazilian 

sugarcane fields, where pH is managed at fixed rates and only at the time of planting or once 

every two years. The RF regression analysis showed the high importance of pH through time, 

which was directly related to yield variations (Figure 1.8). By way of support, the first level of 

one of the trees generated by RF (Figure 1.10) shows that increases in pH from one year to 

another (variation > 0.15) resulted in yield decreases of ~15 Mg ha-1. However, where pH 

decreased between years (variation < 0.15), yield decreases of ~33 Mg ha-1 were found. The 

findings showed that pH is a key factor in sugarcane fields, where lower yield decreases were 

found in sites where pH increased. 

 

 

Figure 1.10. Decision tree of the random forest (RF) regression algorithm applied through 

time. 

The use of proximal soil sensors to characterize the spatial variability of pH can be 

fundamental for the rational application of limestone; that is, such an approach used in the right 

place and right amount can increase production profitability (Sanches et al., 2018). The real-

time proximal soil sensing of OM contents (Huang et al., 2017) can be an efficient alternative 

for delineating management zones in sugarcane fields. Finally, agronomic knowledge from big 
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datasets of the spatial and temporal variability in soil and yield can help producers define 

management zones for their crop fields. Critical levels of some soil attributes should be 

managed on a site-specific basis to increase the profitability and sustainability of sugarcane 

production. 

1.5.Conclusion 

The present paper shows the importance of combining yield monitor data with data 

mining techniques to derive spatial and temporal patterns from soil and crop datasets. The 

findings show that OM and pH are the most important attributes that directly impact the yield 

potential through space and time, respectively. Mapping soil limiting factors can aid in the 

creation of management zones to improve the profitability of sugarcane fields. Finally, higher 

P availability may be directly associated with the amount of soil OM, indicating the importance 

of a conservationist management approach in attaining the minimum soil quality parameters. 

Acknowledgements 

The authors thank the São Paulo Research Foundation (grant process: 2015/01587-0, 

2014/14965-0, 2013/50942-2 and 2008/09265-9) and the sugarcane mills for technical support 

and for making the experimental fields available. We also thank to Dr Francelino Augusto 

Rodrigues for provide data from fields. 

 

1.6.References 

Abdel-Rahman, E.M., Ahmed, F.B., 2008. The application of remote sensing techniques to 

sugarcane (Saccharum spp. hybrid) production: a review of the literature. Int. J. Remote 

Sens. 29, 3753-3767.  

Arslan, S. and Colvin, T. 2002. An evaluation of the response of yield monitors and combines 

to varying yields. Precision Agriculture 3, 107-122. 

Atkins, P., Paula, J. de, 2010. Physical Chemestry, 9th ed. Oxford University Press, Oxford. 

Bayer, C., Mielniczuk, J. Dinâmica e função da matéria orgânica. 2008. In: Santos, G.A.; 

SILVA, L.S.; CANELLAS, L.P.; CAMARGO, F.A.O. Fundamentos da matéria orgânica 

do solo: Ecossistemas tropicais e subtropicais. Porto Alegre, ed.  Metropole, 654p.  



35 
 

 
 

Bocca, F.F., Rodrigues, L.H.A., Arraes, N.A.M., 2015. When do I want to know and why? 

Different demands on sugarcane yield predictions. Agricultural Systems 135, 48-56. 

Bocca, F.F., Rodrigues, L.H.A., 2016. The effect of tuning, feature engineering, and feature 

selection in data mining applied to rainfed sugarcane yield modelling. Computers and 

Electronics in Agriculture 128, 67-76. 

Bordonal, R.O., Lal, R., Ronquim, C.C., Figueiredo, E.B., Carvalho, J.L.N., Maldonado Jr, W., 

Milori, D.M.B.P., Scala Jr, N.L., 2017. Changes in quantity and quality of soil carbon due 

to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern 

Brazil. Agriculture, Ecosystems & Environment 240, 54-65. 

Bouma, J., Stoorvogel, J., van Alphen, B. J., Booltink, W. G., 1999. Pedology, Precision 

Agriculture, and the Changing Paradigm of Agricultural Research. Soil Science Society of 

America 63(6), 1763-1768. 

Breiman, L., 2001. Random forests. Machine Learning 45, 5-32. 

Buttafuoco, G., Castrignano, A., Colecchia, A. S., Ricca, N., 2010. Delineation of management 

zones using soil properties and a multivariate geostatistical approach. Italian Journal of 

Agronomy 5(4), 323-332. 

Carvalho, J.L.N., Nogueirol, R.C., Menandro, L.M.S., Bordonal, R.O., Borges, C.D., 

Cantarella, H., Franco, H.C.J., 2016. Agronomic and environmental implications of 

sugarcane straw removal: a major review. Global Change Biology Bioenergy 1, 1-12. 

Cerri, D.G.P., Magalhães, P.S.G., 2012. Correlation of physical and chemical attributes of soil 

with sugarcane yield. Pesquisa Agropecuária Brasileira 47, 613-620. 

Cherubin, M.R., Oliveira, D.M. da S., Feigl, B.J., Pimentel, L.G., Lisboa, I.P., Gmach, M.R., 

Varanda, L.L., Morais, M.C., Satiro, L.S., Popin, G.V., Paiva, S.R. de, Santos, A.K.B. dos, 

Vasconcelos, A.L.S. de, Melo, P.L.A. de, Cerri, C.E.P., Cerri, C.C., 2018. Crop residue 

harvest for bioenergy production and its implications on soil functioning and plant growth: 

A review. Scientia Agricola 75, 255–272.  

Confederação Nacional da Indústria (CNI). 2017. O setor sucroenergético em 2030: 

dimensões, investimentos e uma agenda estratégica. Brasília, CNI, 108 p. 



36 
 

 
 

Colaço, A.F., Molin, J.P., 2017. Variable rate fertilization in citrus: a long-term study. 

Precision Agriculture 18, 169-191. 

Companhia Nacional do Abastecimento (CONAB). 2017. Acompanhamento da safra 

Brasileira. Cana-de-açúcar, SAFRA 2017/18 Primeiro Levantamento Abril/2017. 

Brasília, DF, 62p. 

Dias, F.L.F., Mazza, J.A., Matsuoka, S., Perecin, D., Maule, R.F., 1999. Productivity of 

sugarcane in relation to climate and soils of the northwestern São Paulo state. Revista 

Brasileira de Ciência do Solo 23, 627-634. 

Diker, K., Heermann, D. F., Brodahl, M. K., 2004. Frequency analysis of yield for delineating 

yield response zones. Precision Agriculture 5(5), 435–444. 

Driemeier, C.E., Ling, L.Y., Sanches, G.M., Pontes, A.O., Magalhães, P.S.G., Ferreira, J.E., 

2016. A computational environment to support research in sugarcane agriculture. 

Computers and Electronics in Agriculture 130, 13–19. 

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 1999. Sistema brasileiro de 

classificação dos solos. Rio de Janeiro: Embrapa Solos, 412 p. 

Everingham Y.L., Lowe, K.H., Donald, D.A., Coomans, D.H., Markley, J., 2007. Advanced 

satellite imagery to classify sugarcane crop characteristics. Agronomy Sustainable 

Development 27(2), 111-117. 

Everingham, Y.L., Smyth, C.W., Inman-Bamber, N.G., 2009. Ensemble data mining 

approaches to forecast regional sugarcane crop production. Agricultural and Forest 

Meteorology 149 (3-4), 689-696. 

Everingham, Y.L., Inman-Bamber, N.G., Sexton, J., Stokes, C., 2015a. A dual ensemble 

agroclimate modelling procedure to assess climate change impacts on sugarcane 

production in Australia. Agricultural Sciences 6, 870-888. 

Everingham YL, Sexton J, Robson A (2015b) A statistical approach for identifying important 

climatic influences on sugarcane yields. In: Proc Aust Soc Sugar Cane Technol. 

Bundaberg, Australia, pp 8–15 



37 
 

 
 

Everingham Y.L., Sexton, J., Skocaj, D., Inman-Bamber, G., 2016. Accurate prediction of 

sugarcane yield using a random forest algorithm. Agronomy Sustainable Development 

(2016), 36:27.  

Fukuda S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V., Müller, J., 2013. Random Forests 

modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields 

under different irrigation regimes. Agricultural Water Management 116, 142-150. 

Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Timlin, D.J., 

Shim, K., Gerber, J.S., Reddy, V.R., Kim, S., 2016. Random Forests for Global and 

Regional Crop Yield Predictions.  PLoS ONE 11(6): e0156571. 

doi:10.1371/journal.pone.0156571 

Huang, J., Pedrera-Parrilla, A., Vanderlinden, K., Taguas, E.V., Gómez, J.A., Triantafilis, J., 

2017. Potential to map depth-specific soil organic matter content across an olive grove 

using quasi-2d and quasi-3d inversion of DUALEM-21 data. Catena 152, 207-217. 

Johnson, R.M., Richard Jr., E.P., 2005. Sugarcane Yield, Sugarcane Quality, and Soil 

Variability in Louisiana. Agronomy Journal 97(3), 760–771. 

Johnson, R.A., Wichern, D.W., 2007. Statistical Analysis, sixth edit. ed. Pearson Pretice Hall, 

Upper Saddle River. 

Kass, G., 1980. An exploratory technique for investigating large quantities of categorical data. 

Applied Statistics 29(2), 119-127. 

Khoshgoftaar, T.M., Golawala, M., Hulse, J. Van, 2007. An Empirical Study of Learning from 

Imbalanced Data Using Random Forest. 19th IEEE Int. Conf. Tools with Artif. Intell. 310–

317.  

Landell, M.G.A., Prado, H., Vasconcelos, A.C.M., Perecin, D., Rossetto, R., Bidóia, M.A.P., 

Silva, M.A., Xavier, M.A., 2003. Oxisol subsurface chemical attributes related sugarcane 

productivity. Scientia Agricola 60, 741-745. 

Lebourgeois, V., Dupuy, S., Vintrou, É., Ameline, M., Butler, S., Bégué, A., 2017. A 

Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder 

Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated 

Sentinel-2 Time Series, VHRS and DEM). Remote Sensing 9, 259. 



38 
 

 
 

Magalhães, P.S.G., Cerri, D.G.P., 2007. Yield Monitoring of Sugar Cane. Biosystems 

Engineering 96, 1–6. 

Magalhães, P.S.G., Sanches, G.M., Franco, H.C.J., Driemeier, C.E., Kolln, O.T., Braunbeck, 

O.A., 2014. Precision Agriculture in Sugarcane Production. A Key Tool to Understand Its 

Variability. In: 12 International Conference on Precision Agriculture, 2014, Sacramento, 

CA. 12th ICPA Abstracts Book. 

Malavolta, E. 1979. ABC da Adubação. 4th edição. São Paulo SP, Editora Agronomia Ceres, 

255 p. 

Maldaner, L.F., Spekken, M., Eitelwein, M.T., Molin, J. P., 2015. Removal of errors on maps 

of productivity of sugarcane. In: X SBIAGRO – Congresso Brasileiro de Agroinformárica. 

Piracicaba-SP, 11 p. 

McBratney, A., Whelan, B., Ancev, T., 2006. Future directions of precision agriculture. 

Precision Agriculture 6, 7-23. 

Menandro, L.M.S., Cantarella, H., Franco, H.C.J., Pimenta, M.T.B., Rabelo, S.C., Sanches, 

G.M., Carvalho, J.L.N., 2017. Comprehensive assessment of sugarcane straw: 

implications for biomass and bioenergy production. Biofuels Bioproducts & Biorefining-

Biofpr 11(3), 488-504. 

Newlands, N.K., Zamar, D.S., Kouadio, L.A., Zhang, Y., Chipanshi, A., Potgieter, A., Toure, 

S., Hill, H.S.J., 2014. An integrated, probabilistic model for improved seasonal forecasting 

of agricultural crop yield under environmental uncertainty. Frontiers in Environmental 

Science. doi:10.3389/fenvs.2014.00017 

Nogueirol, R.C., Cerri, C.E.P., Silva, W.T.L., Alleoni, L.R.F., 2014. Effect of no-tillage and 

amendments on carbon lability in tropical soils. Soil & Tillage Research 143, 67-76. 

Parente, L., Ferreira, L., Faria, A., Nogueira, S., Araújo, F., Teixeira, L., Hagen, S., 2017. 

Monitoring the brazilian pasturelands: A new mapping approach based on the landsat 8 

spectral and temporal domains. International Journal of Applied Earth Observation and 

Geoinformation 62, 135–143. 

Park, S.J., Hwang, C.S., Vlek, P.L.G., 2005. Comparison of adaptive techniques to predict crop 

yield response under varying soil and land management conditions. Agricultural Systems 

85(1), 59–81. 



39 
 

 
 

Raij, B. van., 1991. Fertilidade do solo e adubação. Piracicaba, Ceres/Potafos, 343p. 

Raij, B. van., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., 1997. Recomendações de 

adubação e calagem para o Estado de São Paulo. Campinas. Instituto Agronômico; 

Fundação IAC., Campinas. 

Razafimbelo, T., Chevallier, T., Albrecht, A., Chapuis-Lardy, L., Rakotondrasolo, F.N., 

Michellon, R., Rabeharisoa, L., Bernoux, M., 2003. Texture and organic carbon contents 

do not impact amount of carbon protected in Malagasy soils. Scientia Agricola 70(3), 204-

208. 

Rodrigues Jr., F.A., Magalhães, P.S.G., Franco, H.C.J., 2012. Soil attributes and leaf nitrogen 

estimating sugar cane quality parameters: Brix, pol and fibre. Precision Agriculture 14, 

270–289. 

Rodrigues Jr., F.A., Magalhães, P.S.G., Franco, H.C.J., Beauclair, E.G.F., Cerri, D.G.P., 2013. 

Correlation Between Chemical Soil Attributes and Sugarcane Quality Parameters 

According to Soil Texture Zones. Soil Science 178, 147-156. 

Rossi Neto, J., de Souza, Z.M., de Medeiros Oliveira, S.R., Kölln, O.T., Ferreira, D.A., 

Carvalho, J.L.N., Braunbeck, O.A., Franco, H.C.J., 2017. Use of the Decision Tree 

Technique to Estimate Sugarcane Productivity Under Edaphoclimatic Conditions. Sugar 

Tech 19(6), 662-668. 

Sanches, G.M., Magalhães, P.S.G., Remacre, A.Z., Franco, H.C.J., 2018. Potential of apparent 

soil electrical conductivity to describe the soil pH and improve lime application in a clayey 

soil. Soil & Tillage Research 175, 217-225. 

Silva, C.B., Moraes, M.A.F.D., Molin, J.P., 2011. Adoption and use of precision agriculture 

technologies in the sugarcane industry of São Paulo state, Brazil. Precision Agriculture 

12(1), 67–81. 

Souza, Z.M., Cerri, D.G.P., Colet, M.J., Rodrigues, L.H.A., Magalhães, P.S.G., Mandoni, 

R.J.A., 2010. Análise dos atributos do solo e produtividade da cultura de cana-de-açúcar 

com o uso da geoestatística e árvore de decisão. Ciência Rural 40, 840-847. 

Tulbure, M.G., Wimberly, M.C., Boe, A., Owens, V.N., 2012. Climatic and genetic controls 

of yields of switchgrass, a model bioenergy species. Agriculture, Ecosystems & 

Environment 146(1), 121-129. 



40 
 

 
 

Viscarra Rossel, R.A., Bouma, J., 2016. Soil sensing: a new paradigm for agriculture. 

Agricultural Systems 148, 71–74.  

Waclawovsky, A.J., Sato, P.M., Lembke, C.G., Moore, P.H., Souza, G.M., 2010. Sugarcane 

for bioenergy production: an assessment of yield and regulation of sucrose content. Plant 

Biotechnology Journal 8, 263-276. 

Wolfert, S., Ge, L., Verdouwa, C., Bogaardt, MJ., 2017. Big Data in Smart Farming – A review. 

Agricultural Systems 153, 69-80. 

Yan-e, D., 2011. Design of Intelligent Agriculture Management Information System Based on 

IoT. In: Intelligent Computation Technology and Automation (ICICTA),.Guangdong, 

Shenzhen. 1:1045-1049. 

Yost, M.A., Kitchen, N.R., Sudduth, K.A., Sadler, E.J., Drummond, S.T., Volkmann, M.R., 

2016. Long-term impact of a precision agriculture system on grain crop production. 

Precision Agriculture 18(5), 823-842. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5750113


41 
 

 
 

Chapter 2: Comprehensive assessment of soil spatial variability related to topographic 

parameters in sugarcane fields (Geoderma) 

Guilherme M. Sanches1*, Paulo S. Graziano Magalhães1, Ana C. dos Santos Luciano2 and Henrique 

C. J. Franco1 

1 University of Campinas – UNICAMP - Ph.D. Program in Bioenergy – Interdisciplinary Center for 

Energy Planning, 13083-896, Campinas, São Paulo, Brazil 

2 Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in 

Energy and Materials (CNPEM) 

*Corresponding author – guilherme.sanches@cropman.com.br/+55 14 99164 8711 

 

Abstract: Landscape are intrinsically related to soil spatial variability. Understanding soil 

fertility based on topographic parameters is essential to ensure sustainable agronomic 

management through the rational use of inputs. The aim of the paper was to perform a 

comprehensive assessment of soil organic matter (OM), pH, sum of bases (SB) and cation 

exchange capacity (CEC) according to topographic parameters, with the goal of identifying 

spatial patterns and know the relationship between them to capture the soil variability in 

sugarcane fields. A soil dataset from nine sugarcane experimental fields was evaluated. 

Approximately 3,000 soil samples, collected between 2008 and 2017, were evaluated. The 

topographic parameters of vertical and horizontal curvatures were related to the variability of 

the soil attributes. The results showed that the horizontal morphometric classes (HConv, HPlan 

and HDiv), associated with vertical concave areas (VConc), presented higher levels of OM, SB 

and CEC, which indicated that these areas have higher soil fertility, where VConcHDiv showed 

the highest soil fertility. For all vertical morphometric classes (VConc, VRet and VConv), soil pH 

levels were higher when associated with horizontal divergent areas (HDiv) and lower when 

associated with convergent areas (HConv), suggesting that stricter soil acidity management was 

needed in the HConv areas. The VConvHConv areas, where the lower soil fertility was observed, 

should be sampled with greater accuracy for adequate soil spatial characterization due to the 

high CV observed when compared to other morphometric classes assessed. The results showed 

that the detected spatial patterns were temporally stable. With high spatial and temporal 

stability, topographic parameters could be excellent (economically feasible and easily 

assessed) sources of information to support soil sampling processes and to map fertility zones 

within fields, helping farmers in site-specific management of their crops to increase yields and 
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profitability of production. Keywords: precision agriculture; soil sampling; site-specific 

management; fertility zones; landscape parameters 

2.1.Introduction 

Sugarcane production, the main source of Brazilian biomass for ethanol production, 

will experience significant changes in the coming years. To increase sugarcane production, it 

will be necessary to advance technologies that can increase crop yields to exceed the current 

yield average of 73 Mg ha-1 (CONAB, 2017). The increase in production should be 

accompanied by sustainable crop management, improving the application of inputs to reduce 

environmental impacts. Understanding soil spatial variability is essential to managing inputs 

in a sustainable way. Thus, characterizing soil spatial variability is a process that must be 

carried out with accuracy. 

Precision agriculture (PA) encompasses a package of tools and technologies that allow 

characterization of the spatial and temporal variabilities of soils with accuracy, utilizing the 

information on variability to optimize the inputs. PA is considered the most feasible approach 

to achieving sustainable agriculture (Bullock et al., 2007). Although several technologies are 

available, soil sampling to characterize the spatial variability of soil attributes still interests 

many in the scientific community. Furthermore, mapping the spatial variability of soil nutrients 

is the way that PA enables efficient agronomic decisions. However, one of the limiting factors 

to mapping soil with high accuracy is the number of samples required, which often results in 

the sampling process being physically and economically impractical (Peets et al., 2012). In 

addition, estimates of models based on single variables are expensive and time consuming, 

especially when laboratory analyses are involved (Simbahan and Dobermann, 2006). To 

overcome this challenge, some studies have been carried out on soil sampling procedures in 

the past few decades (Webster and Oliver, 1992; Nanni et al., 2011; Montanari et al., 2012; 

Stepien et al., 2013; Cherubin et al., 2014; Fortes et al., 2015; Sanches et al., 2018). Although 

several procedures have been recommended, the most common sampling procedures used for 

soil mapping are regularly spaced grids. Although this method has benefits, its high cost and 

low efficiency are issues that still need to be addressed. The use of previous information on 

soil spatial variability and topographic parameters may represent an intelligent solution to 

overcome this bottleneck, improving soil sampling processes and spatial characterizations 

(Sanches et al., 2018), especially in sugarcane fields where the adoption of PA is low (Silva et 

al., 2011). 
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Soil spatial variability may be due to natural or anthropogenic influences that result 

from five main factors: climate, microorganisms, landscape, parent material and time (Jenny, 

1941). Anthropogenic influences promote a soil disturbance mainly due to the management 

applied, generating variations in nutrient content. However, attention should be given to 

influences caused by topography. The relationship between soils and topographic parameters 

is intrinsic (Moore et al., 1993). The variability of physical and chemical soil attributes is 

related to the topographic position affecting pedogenetic processes, transport and storage of 

water in the soil profile (Sanchez et al., 2009). Topographic parameters, referred to as 

geomorphometric variables, are extremely important parameters that influence chemical-

physical soil attribute variability (Muños et al., 2011; Brubaker et al., 1993; Fulton et al., 1996; 

Chung et al., 2001; Gaston et al., 2001; Wilson and Gallant, 2000). Despite the intrinsic 

relationship between topographic and soil attributes, sampling procedures addressing the 

physic-chemical characterization do not consider topographical parameters, such as those 

proposed by Valeriano and Rosseti (2008), and few studies have examined the relationship 

between them in sugarcane fields, that are manage with high amount of inputs. 

To ensure sustainable site-specific management of sugarcane fields, understanding soil 

spatial variability related to topographic parameters is extremely important. The aim of the 

present study is to carry out a comprehensive assessment of soil spatial variability in terms of 

organic matter (OM), pH, sum of bases (SB) and cation exchange capacity (CEC) in sugarcane 

fields as a function of topographic parameters, with the goal of assessing the patterns and 

divergences among them to improve soil management by farmers. Understanding soil 

variability patterns through space and time may help sustainable management of sugarcane 

fields. In addition, topographic parameters derived easily from broadly available digital 

elevation models are a source of information (economically feasible and easily assessed) with 

a great potential to aid in site-specific management and to improve fertilizer application.  

2.2.Materials and Methods 

2.2.1. Soil chemical characterization 

The dataset used in this study is from sugarcane experimental fields where PA research is 

carried out. All data are stored in the Agronomic Database (BDAgro) reported in Driemeier et 

al. (2016). Data from nine sugarcane experimental fields were evaluated in this study (Figure 

2.1). All experimental fields [labeled as Field A (21°16'35.65''S 47°32'15.65''W), Field B 

(21°16'56.77''S 47°32'00.39''W), Field C (21°49'11.69''S 48°35'44.21''W), Field D 
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(21°46'28.12''S 48°37'34.05''W), Field E (22°23'37.90''S 47°18'31.40''W), Field F 

(22°26'30.33''S 52°36'04.15''W), Field G (21°38'12.18''S 48°39'05.49''W), Field H 

(21°49'04.10''S 48°25'35.97''W) and Field I (21°49'04.10''S 47°44'11.29''W)] are located in São 

Paulo State, Brazil. The experimental fields are in the cities of Serrana (Fields A and B), Nova 

Europa (Fields C, D and G), Araras (Field E), Euclides da Cunha Paulista (Field F), Descalvado 

(Field I) and Bebedouro (Field H). Only soil surface layer data (0.00 to 0.20 m), where the 

most sugarcane active root are present, were evaluated. For all fields, the soil was sampled by 

grids with different densities (Table 2.1). The experimental fields A, B, E and G were sampled 

for more than 1 year. Approximately 3,000 soil samples, collected between 2008 and 2017, 

were evaluated. The attributes OM, pH, SB and CEC, which are soil attributes that directly 

impact the spatial and temporal variability of sugarcane yields, were assessed. 

 

 

Figure 2.1. Geographic location of the sugarcane experimental fields in São Paulo State, 

Brazil. 
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Table 2.1. Soil sampling characteristics of the sugarcane experimental fields. 

Field 
Area 

Years 
Grid 

Samples 
Density 

[ha]  [m] [samples ha-1] 

A 52.57 2011, 2012, 2013 and 2014 50 x 50 204 3.88 

B 58.07 2011, 2012 and 2013 50 x 50 24 0.41 

C 95.88 2014 50 x 50 303 3.16 

D 34.81 2014 50 x 50 128 3.68 

E 10.08 2008, 2009, 2011 and 2012 30 x 30 117 11.61 

F 97.65 2014 100 x 100 197 2.02 

G 102.06 2016 and 2017* 50 x 50 424 4.15 

H 108.09 2017 75 x 75 183 1.69 

I 90.04 2017 100 x 100 119 1.32 

* 100 x 100 m grid with 214 samples collected. 

 

2.2.2. Topographic dataset 

The topographic parameters used in this study were obtained from the Topodata database 

(Brasil, 2008). These data were generated by Valeriano and Rosseti (2008) and Valeriano and 

Albuquerque (2010), where the Shuttle Radar Topography Mission (SRTM) data were refined 

to a 30-m resolution (Valeriano and Rossetti, 2012; Rabus et al., 2003). Geomorphometric 

variables of terrain formations, resulted from vertical (V) and horizontal (H) curvatures, were 

assessed. Terrain formation is divided into 9 classes, produced by three vertical curvature 

(concave, rectilinear and convex areas, labeled as ‘VConc’, ‘VRet’ and ‘VConv’, respectively) and 

three horizontal curvature (convergent, planar and divergent areas, labeled as ‘HConv’, ‘HPlan’ 

and ‘HDiv’, respectively), both according to classifications proposed by Valeriano and Rosseti 

(2008). The 9 classes are: ‘VConcHConv’, ‘VConcHPlan’, ‘VConcHDiv’, ‘VRetHConv’, ‘VRetHPlan’, 

‘VRetHDiv’, ‘VConvHConv’, VConvHPlan’ and ‘VConvHDiv’. The soil sampling points were associated 

with the morphometric classes that were located in. 

2.2.3. Data analysis 

Data analysis was performed by different steps (Figure 2.2). First, all data were analyzed 

to remove discrepant values according to the methodology described in Driemeier et al. (2016). 

Any data that deviated by more than 3 standard deviations (SD) was treated as outliers. Second, 

all soil attributes were normalized to an interval of 0 to 1 (Equation 1), within the respective 

experimental field, and evaluated year. This step placed the data, regardless of the site and year, 

in the same range of variation to allow future comparisons. 
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𝑋𝑝 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (1) 

where 𝑋𝑝 is the normalized attribute value, 𝑥𝑖 is the original attribute value; 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are 

respectively the minimum and maximum values of the attribute assessed within the respective 

experimental field and evaluated year. 

A random sampling by each morphometric class was performed to balance the classes and 

avoid bias in the analysis. Three-hundred samples per class were adopted for each 𝑧𝑗 iteration 

of the random sampling. At each iteration, the mean (M) and coefficient of variation (CV), by 

morphometric class, of the soil attribute were calculated. We performed 10 iterations to allow 

a statistical evaluation and ensure an adequate comparison. We assessed the level of 

significance (α = 0.05) regarding the difference between the mean values of classes and apply 

LSD test to distinguish classes into homogeneous groups. Therefore, a box-plot was used to 

visualize the data variability of all the iterations by morphometric classes, using the mean as 

the second quartile. Finally, a principal component analysis (PCA) was also applied to simplify 

the evaluated soil dataset and assess the variability of the principal components (PCs) within 

the evaluated areas. To verify the spatial patterns at a temporal level, we evaluated the first two 

main components in field A, where sampling was performed for 4 years. 

 

 

Figure 2.2. Data analysis process applied to dataset. 

2.3.Results  

 Field E was the flattest, while field A presented a greater slope (Figure 2.3 - b), with 

averages equal to 2.5% and 9.5%, respectively. Fields G, A and I had the largest variability in 

slope, showing a high variability of terrain elevations.  
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Figure 2.3. Clay content (a) and slope (b) variability of the experimental fields. 

 

 Experimental Fields A, C and I showed the highest averages of clay content, with 

averages of 452, 492 and 379 g kg-1, respectively (Figure 2.3 – a). The experimental Field F, 

which had the lowest average clay content, showed the lowest levels for all the soil attributes 

(Figure 2.4). In addition, Field F showed the highest variability of pH (Figure 2.4 – b) and the 

lowest variability of SB (Figure 2.4 – c) and CEC (Figure 2.4 – d). The average OM and 

variability of OM in Fields F and H were similar, with averages of approximately 13.5 g dm-3. 

Fields G and I showed the highest variability of OM content, followed by clay content 

variability. On average, the pH levels of all the experimental fields were within a range of 5.0 

to 5.6 (Figure 2.4 – b). The SB and CEC had the highest variability in Fields C and I (Figure 

2.4 – c and d). The highest average values of the attributes, except for CEC, were in Field I 

(OM = 30.1 g dm-3, pH = 5.6 and SB = 60.1 mmolc dm-3). The highest average CEC was in 

Field C (CEC = 76.8 mmolc dm-3). 
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Figure 2.4. Organic matter (a), pH (b), sum of bases (c) and cation exchange capacity (d) 

variability of the experimental fields. 

 The horizontal morphometric classes associated with VConc areas showed the highest 

average levels for all soil attributes, except for pH (Figure 2.5). The pH (Figure 2.5 – b) showed 

lower average levels in the HConv areas associated with all vertical morphometric classes. For 

pH, at each vertical morphometric class, the level increases from HConv to HDiv (HConv < HPlan < 

HDiv). For OM (Figure 2.5 – a), SB (Figure 2.5 – c) and CEC (Figure 2.5 – d), the content trend 

to decrease from HConv to HDiv in the VRet areas; the opposite behavior observed for pH levels. 

For these same soil attributes, in the VConv areas, the highest content is associated with HPlan 

areas, followed by HDiv and HConv. The VConvHConv areas showed the lowest average levels for 

all attributes assessed. Except for pH, there was a decreasing trend in the content of the soil 

attributes assessed from VconcHConv until VConvHConv. 
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Figure 2.5. Variability of the normalized content of the iterations for organic matter (a), pH 

(b), sum of bases (c) and cation exchange capacity (d) according morphometric classes. 

Lowercase letters - LSD test of mean comparisons. 

The HConvVConv area showed the highest CV for all soil attributes assessed, demonstrating 

greater spatial variability of these soil attributes within these areas and differing statistically 

from all morphometric areas assessed (Figure 2.6). On the other hand, except for CEC, the 

VConcHDiv areas showed the lowest CV for all attributes assessed, indicating a lower spatial 

variability. For OM (Figure 2.6 – a) and SB (Figure 2.6 – c), the lowest CV was observed in 

all horizontal morphometric classes associated with VConc areas. For CEC (Figure 2.6 – d), the 

VConcHConv and VConcHPlan showed the lowest CV.  In absolute terms, in average, the pH showed 

lower CVs in the most areas assessed. 
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Figure 2.6. Coefficient of variation (CV) of the iterations for organic matter (a), pH (b), sum 

of bases (c) and cation exchange capacity (d) according morphometric classes. Lowercase 

letters - LSD test of mean comparisons. 

 The first two PCs explained approximately 82% of the total variance of the data 

evaluated (Table 2.2). PC 1 is directly related to the SB and CEC attributes (ρ = 0.93 and 0.88, 

respectively). The pH correlated positively with PC 1 (ρ = 0.49) and negatively with PC 2 (ρ = 

-0.79), while OM correlated positively with both components (Figure 2.7 – a). Following the 

same trend observed previously, the highest contents of PC1 was observed in VConc areas 

(VConcHDiv > VConcHConv > VConcHPlan). On the other hand, VConvHConv showed the lowest level 

for PC1. The PC2, represented mostly by pH (negatively) and OM (positively), showed the 

same trend, with higher and lower levels in VConcHDiv and VConvHConv, respectively. 
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Table 2.2. Factor coordinates of the soil attributes related to principal components. 

Eigenvalues and total variance explained by the components. 

Attribute PC 1 PC 2 PC 3 PC 4 

     

OM 0.6168 0.5705 -0.5421 -0.0151 

pH 0.4972 -0.7892 -0.3479 0.0940 

SB 0.9263 -0.1340 0.2182 -0.2763 

CEC 0.8868 0.1857 0.3442 0.2464 

     

Eigenvalue 2.27 1.00 0.58 0.15 

Variance (%) 56.80 25.02 14.52 3.65 

 

 

Figure 2.7.  Projection of the soil attributes in the unitary plane of the first two main 

components (a) and variability of the loadings of the iterations for PC 1 (black) and PC 2 (red) 

according morphometric classes (descending order of PC1 levels). Lowercase letters - LSD test 

of mean comparisons (b). 

 At a temporal scale, in the experimental field A (where samples were taken for four 

successive years) there was a decreasing trend from HConv to HDiv associated with VConc and 

VRet areas for both PC1 (Figure 2.8 – a) and PC2 (Figure 2.8 – b). The same trend was not 

observed for PC1 in 2013. In this way, excepted for 2013, it’s possible observe that there was 

a spatial trend that remains at temporal level, mainly in VConc and VRet areas. The VConv areas 

showed a behavior that not remains temporally, showing a greater variability in these areas. 
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Figure 2.8. Variability of the average content for PC1 (a) and PC2 (b) in the experimental field A throughout the soil sampling periods 2011 to 

2014 (left to right) in the morphometric classes assessed. 
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2.4.Discussion 

 The investigated fields contained very sandy/silt (clay < 150 g kg-1) and very clayey 

(clay > 600 g kg-1) sites. Thus, different soil fertility classes were included, since soil textural 

class is directly related to the availability of water and nutrients (Raij et al., 2001). This 

relationship is exemplified by the highest sand content field, Field F, that had lower average 

levels of OM, SB and CEC (Figure 4). Fields G and I, which had high slope variability, also 

showed significant changes in clay content, indicating a correlation between these attributes, 

as reported by Brubaker et al. (1993). Soil acidity values, defined by pH values, were similar 

for all the fields, with values between 5.0 and 5.6. However, soil pH should be maintained 

between 5.5 and 6.0, which is ideal for the nutrient absorption by crops (Malavolta, 1979). 

Field F, the sandiest, presented very low (pH > 6.0) and very high (pH < 4.3) acidity sites, 

where the greatest spatial variability was observed for this attribute. 

 Regardless of the site and soil fertility class, the OM, SB and CEC attributes showed 

the highest average levels in VConc areas (Figure 2.5 – a, – c and – d, respectively). The findings 

indicated that these areas always tend to contain higher levels of these attributes, thus showing 

higher soil fertility in the sugarcane fields. Thus, the fertilizer applications in these sites can be 

managed in a different way from the other sites, where the VConc areas are more fertile, in 

average, than the VConv areas. Due to their geomorphological shape, the concave areas present 

different elevation values, where generally higher elevations occur at the edges of these areas, 

and lower elevations occur in the central regions. Thus, sediments and other soil components, 

influenced by gravity and erosive agents, tend to move to the lower elevations of these areas. 

Our findings were consistent with this finding and explained the higher soil fertility shown in 

these areas. The PCA (Figure 2.7) also corroborated the presented results, where the VConc, 

associated with all horizontal morphometric classes, present greater soil fertility, as expressed 

by PC 1.  

 On the other hand, for all vertical morphometric classes associated with HConv areas 

showed the lowest soil pH levels, i.e., sites with relative higher acidity. The character 

convergent, associated with horizontal terrain formation, showed that these lands tend to be 

more acidity than divergent areas. So, HConv areas in the fields could be manage in a different 

way to adequate the soil pH values. One reason for soil acidification is due to nutrient 

absorption by crops. Potassium and magnesium absorption by crops promote the release of H+ 

ions into the soil (Epstein and Bloom, 2005), changing the soil pH, being a possible explanation 

of the higher soil acidity in areas with convergent horizontal character. The HDiv areas had sites 
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with higher pH values, where the VConcHDiv area showed the highest values. A differentiated 

limestone application will be necessary in these areas to balance the soil pH and make nutrients 

available for plants, contributing to an increase in the yield potential of these sites. 

 In terms of the spatial variability presented by morphometric classes, a common 

behavior was observed among the investigated sugarcane fields. The soil attributes assessed 

had higher CVs within VConvHConv (Figure 2.6). This morphometric class showed the lower 

values of PC1 (Figure 2.7 – b), demonstrating that higher CV can be associated with low 

fertility zones. Excepted for CEC, the lowest CV was observed in the VConcHDiv areas, 

indicating a lower spatial variability. In this way, the results demonstrated that a lower soil 

sampling density will be necessary in the VConcHDiv areas for an adequate soil spatial 

characterization. This approach does not apply in VConvHConv areas, where the inverse is true, 

i.e., a larger amount of soil samples is required to characterize the soil.  

 As the most important soil attributes for defining the sugarcane yield (Nogueirol et al., 

2014), soil OM, pH, SB and CEC, represented by PC1 (Figure 2.7 – a), showed the same spatial 

variability behavior at the temporal level (Figure 2.8). Excepted for 2013, PC1 was a decreasing 

trend from HConv to HDiv associated with VConc and VRet areas (Figure 2.8 – a). The results 

indicate that a more rigorous management to adequate de soil fertility may be required in HDiv 

areas due to the lower levels of soil attributes assessed in field A.  

 Regardless of soil fertility and slope class, the patterns of spatial variability were 

constant in the experimental fields, showing a temporal trend for field A. This knowledge can 

help farmers who wish to carry out site-specific management of their crops by applying the 

right amount of fertilizers. According to our findings, the VConcHDiv areas could receive a 

relatively smaller amount of fertilizers in comparison to VConvHConv areas (Figure 2.7 – b). 

Topographic parameters, which have high temporal stability, could be a great alternative 

(economically feasible and easily accessible) type of information that could be used for 

management zone delineation. Some studies have assessed landscape parameters in terms of 

management zone delineation (Brubaker et al., 1994; Yang et al., 1998; Siqueira et al., 2010) 

that is intrinsically related to yield variations in the fields. Combining the topographical 

attributes of vertical and horizontal curvatures, specifically the VConc character of the landscape 

(whose soil fertility is always relatively greater) with VConv areas (with lower soil fertility), it 

is possible to develop fertility zone maps for site-specific management of the fields. So, the 

landscape attributes and their derivations can be an excellent alternative for managing 

sugarcane fields in a sustainable way. 
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 Although the present study focuses only on the soil conditions in sugarcane fields, the 

patterns of spatial variability shown here can be applied to other crops, which is a great way 

for farmers to apply localized management of their fields. More accurate digital elevation 

models (DEMs) and their derivatives using different technologies, such as drones, can be used 

in the future to evaluate the content and variability of soil attributes as presented here. The 

relationship between soil fertility zones and crop yield could be investigated to provide greater 

indicators of the topographic attributes available in the Topodata database (Brasil, 2008) that 

are an excellent alternative for localized and efficient management of sugarcane fields. 

2.5.Conclusion 

 As a great source of information (economically feasible and easily accessible) about 

spatial and temporal variability of soil attributes in the field, topographic parameters showed 

that can be used to manage sugarcane fields in a site-specific way. The findings of present 

comprehensive assessment of sugarcane fields showed that some morphometric classes present 

greater soil fertility and lower CV, like VConcHDiv and VConvHConv, respectively. So, while 

VConvHConv areas would require higher soil sampling densities to characterize soil spatial 

variability due to their high CVs, in the VConcHDiv areas the fertilizer applications may be 

relatively lower due these areas are characterized by zones with higher contents of OM, pH, 

SB and CEC. Soil acidity management should be more rigorous in horizontal convergent 

(HConv) areas due to their lower levels of pH. The patterns of spatial variability were verified at 

a temporal level for field A, indicating that topographic parameters can be used to define 

fertility zones within fields. Finally, topographic attributes proved to be an excellent alternative 

for farmers to use to establish fertility zones in their fields to manage accordingly. 
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Abstract: The soil apparent electrical conductivity (ECa) has been highlighted as a valuable 

information with high potential to map the soil fertility and yield potential of fields. However, 

sugarcane fields still have few results that shows the applicability of this information to define 

the soil spatial variability and its fertility conditions. The objective of this paper was to provide 

a comprehensive assessment of the relationship among ECa, evaluated by an electromagnetic 

induction (EMI) sensor, and the spatial variability of clay content, organic matter (OM) and 

cation exchange capacity (CEC) in sugarcane fields. Six experimental sugarcane fields were 

evaluated, totaling 412 hectares mapped and 2,000 soil samples collected between 2011 and 

2017. The results showed that ECa was able to map sites with higher clay content, OM and 

CEC, corresponding to classes of greater soil electrical conductivity. Low ECa classes 

presented greater spatial variability of the evaluated soil attributes, i.e., places that should be 

sampled with greater accuracy and higher sample density for a suitable soil spatial 

characterization. The ECa variability was directly proportional to clay content (R2 = 0.97), OM 

(R2 = 0.65) and CEC (R2 = 0.76) variabilities. In general, the patterns founded at spatial 

variability level were temporarily remained. The EMI sensor is an excellent tool to define the 

spatial variability of soil fertility and could be used for a guided soil sampling to manage the 

sugarcane fields in an adequate sustainable way. Keywords: apparent electrical conductivity, 

proximal sensing, precision farming, site-specific management. 

3.1. Introduction 

The high-quality soil fertility mapping is one of the main procedures to ensure more 

sustainable production. Intrinsically related to Precision Agriculture (PA), this mapping 

consists in a detailed soil sampling using modern equipment and techniques (Bullock et al., 

2007). Map the soil spatial variability is the way where PA can make decisions and efficient 

agronomic practices to increase profitability of production. However, to ensure a precise 
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mapping of this variability, a dense soil sampling has been adopted; turn the activity unfeasible 

and unable to perform a differential management of crops. On the other hand, with the increase 

advent of information technology (IT) in agriculture, many soil sensing techniques (Rossel and 

Bouma, 2016) are available to map the spatial variability of fields. 

Within the historical context of affordable technologies to acquire high-quality 

information to manage the crop spatial variability, the apparent electrical conductivity (ECa) 

of soil it has been highlighted as an effective method to evaluate quickly, with high resolution 

and low cost, the general soil fertility conditions (Sudduth et al., 2005) and soil yield potential 

(Corwin and Lesch, 2005 and 2003). ECa measurement has several advantages, such as high-

speed data acquisition, easy to use, portable for field applications, and is a non-invasive method 

(Reedy and Scanlon, 2003). As a tool first applied to geology, ECa has been highlighted as a 

powerful information for agriculture in the last decades, showed great correlation with soil 

salinity, clay content, cation exchange capacity (CEC), clay minerals, pore size and 

distribution, organic matter and temperature (Molin and Faulin, 2013; Ekwue and 

Bartholomew, 2011; Corwin and Lesch, 2005; McBratney et al., 2005; Tarr et al., 2005;  

Domsch e Giebel 2004; Triantafilis et al., 2000; Sudduth et al., 2001; Kitchen et al., 1999; 

Rhoades et al., 1999).  How ECa reflects the cumulative effect of soil matrix properties (mainly 

soil texture, cation exchange capacity, SOM and solute content), since these soil matrix 

properties are correlated with the yield, the ECa can also be highly correlated to crop yield 

(Godwin et al. 2003; Kitchen et al., 2005). Even more, recently, Serrano et al. (2017) addressed 

the ECa data and it’s great spatial and temporal stability, turn it a valuable information for site-

specific management of crops. 

For instance, Heil and Schmidhalter (2017) showed a broad review of the ECa potential 

by an electromagnetic induction (EMI) sensor. However, within the crops assessed by Heil and 

Schmidhalter where the technology has been applied, neither of them were in sugarcane fields. 

In Brazilian fields, ECa has been used mainly to define the soil productive potential (Siqueira 

et al., 2015), soil fertility mapping (Medeiros et al., 2018), moisture differences (Costa et al., 

2014; Molin and Faulin, 2013) and management zones (Molin and Castro, 2008). Moreover, 

the studies mostly applied sensors that measure ECa by direct contact principle (Sanches et al., 

2018; Medeiros et al., 2018; Sana et al., 2014; Molin and Faulin, 2013; Salton et al., 2011; 

Valente et al., 2012; Molin and Castro, 2008), with few studies that use IEM (Sanches et al., 

2019b; Siqueira et al., 2015). Within this context, the objective of this paper was provided a 

wide-ranging assessment of the relationship among soil attributes (clay content, organic matter 

and cation exchange capacity), that directly impact the sugarcane yield (Sanches et al., 2019a), 
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and ECa at spatial and temporal level in Brazilian sugarcane fields by an EMI sensor. We 

intended to provide a comprehensive knowledge if ECa information, provided by an EMI 

sensor, can reflect the soil attributes variability and how it can help the producers to ensure an 

adequate site-specific management of their fields. 

3.2. Material and Methods 

3.2.1. Experimental fields 

All experimental fields (Figure 3.1), were labeled as: field A (21°16'35.65''S 

47°32'15.65''W), field B (21°49'11.69''S 48°35'44.21''W), field C (21°46'28.12''S 

48°37'34.05''W), field D (21°38'12.18''S 48°39'05.49''W), field E (21°49'04.10''S 

48°25'35.97''W)  and field F (21°49'04.10''S 47°44'11.29''W), and are located in São Paulo 

state, Brazil. The experimental fields are in the cities of Serrana (Fields A), Nova Europa 

(Fields B, C and D), Bebedouro (Field E) and Descalvado (Field F). The fields slope ranged 

from 3.3% to 9.4% (Figure 3.2).  

 

Figure 3.1. Geographic location of the sugarcane experimental fields in São Paulo state, Brazil. 
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Figure 3.2. Slope (%) variability of the sugarcane experimental fields in São Paulo state, 

Brazil. 

3.2.2. Soil dataset 

The soil dataset used are from six sugarcane experimental fields (Figure 3.3) where PA 

researches are carried out by the University of Campinas (UNICAMP). All data are stored in 

the Agronomic Database (BDAgro) of CTBE/CNPEM, reported in Driemeier et al. (2016). 

Only the soil surface layer data (0.00 to 0.20 m) were evaluated. For all fields, the soil was 

sampled by regular grids with different densities (Table 3.1). The experimental fields A and D 

were sampled for more than 1 year. About 2000 soil samples were collected between 2011 and 

2017 and analyzed for clay content, OM and CEC, which are directly impacting in the spatial 

and temporal variability of sugarcane yield. 

Table 3.1. Soil sampling characteristics of the sugarcane experimental fields. 

Field 
Area 

Years 
Grid 

Samples 
Dens. 

[ha]  [m] [samples ha
-1

] 

A 52.57 2011, 2012, 2013 and 2014 50 x 50 204 3.88 

B 95.88 2014 50 x 50 303 3.16 

C 34.81 2014 50 x 50 128 3.68 

D 102.06 2016 and 2017
*
 50 x 50 424 4.15 

E 37.50 2017 75 x 75 66 1.76 

F 90.04 2017 100 x 100 119 1.32 

* 100 x 100 m grid with 214 samples was collected. 



64 
 

 

 

Figure 3.3. Soil sampling grids of experimental fields A (a), B (b), C (c), D (d), E (e) and F 

(f). 

3.2.3. Apparent Electrical Conductivity (ECa) data set 

The soil ECa was measured using the electromagnetic induction (EMI) sensor EM38-

MK2® (Geonics, Ontario, Canada), the most widely used EMI sensor in agriculture (Doolittle 

and Brevick, 2014). The measures were obtained between May and July, the lowest rainfall 

season in all fields assessed. Each field were mapped within a short period (maximum of 2 

days per field). We used the 0.5 m coil separation readings in the horizontal dipole mode, that 

reaches a maximum sensitivity directly below to the instrument. Technical data, construction 

and tool specification of EM38-MK2® are described in Heil and Schmidhalter (2017). The ECa 

was measured in parallel rows with intervals of 5-10 m pulled by a field vehicle. The data 

logger frequency was 1 Hz (Table 3.2). No rainfall was occurred on the ECa measurement days 

that could change the soil moisture and, consequently, influence the ECa measurements. 

Finally, the ECa maps was obtained by applying ordinary kriging (OK). 
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Table 3.2. Apparent electrical conductivity (ECa) data of the sugarcane experimental fields. 

Field Valid N 
Area Dens. Mean Median Min. Max. Range SD CV 
[ha] [readings ha

-1
]  [mS m

-1
] 

A 18438 52.57 350.74 122.838 117.403 15.352 225.117 209.765 45.693 37.198 

B 25657 95.88 267.59 30.851 29.844 -55.430 227.500 282.93 43.517 141.052 

C 13312 34.81 382.45 5.055 4.727 -4.766 78.008 82.774 3.737 73.931 

D 79304 102.06 777.04 -51.846 -70.958 -124.727 137.190 261.9173 34.394 -66.338 

E 10102 37.50 269.40 -57.095 -57.695 -77.695 38.789 116.484 7.626 -13.357 

F 24499 90.04 272.09 -4.228 -15.508 -109.414 242.695 352.109 68.343 -1616.474 

 

3.2.4. Data analysis 

To assess the relationship between ECa and soil attributes, the data analysis process 

was performed according Figure 3.4. First, the ECa and soil data were analyzed to remove 

discrepant values from field readings or laboratory errors. Any input value that deviated from 

the mean by more than three standard deviations was treated as an outlier. The ECa data were 

reduced to the soil sample grid by linear polynomial surface regression (fittype fuction) using 

Matlab software (MathWorks, Natick, Massachusetts) in a buffer zone according to the 

linearization method described by Driemeier et al. (2016). After the removal of discrepant 

values, the correlation between soil attributes and ECa was calculated by Pearson’s correlation 

coefficient (r). Second, all soil attributes were normalized to the interval 0 to 1 (Equation 1), 

within the respective experimental field and evaluated year. This step put the data, regardless 

of the site and year, in the same range of variation to allow future comparisons. 

𝑋𝑝 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (1) 

where 𝑋𝑝 is the normalized attribute value, 𝑥𝑖 is the original attribute value; 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 is, 

respectively, the minimum and maximum values of the attribute assessed within the respective 

experimental field and evaluated year. 

We performed a K-means cluster analysis to verify the best number of clusters (classes) 

for ECa at experimental fields. V-fold cross validation was performed to define the number of 

clusters, varying from 2 to 25. After that, ECa data of each experimental field was divided into 

classes by three types of classification methods. We tested the Quantil (Q), Natural Breaks 

(NB) and Geometrical Intervals (GI) classification methods. One hundred samples, per ECa 

class, were adopted for each 𝑧𝑗 iteration of the random sampling. We performed 10 iterations. 
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At each iteration was calculated the mean (M) and coefficient of variation (CV), by ECa class, 

of the soil attribute assessed. At first time, we evaluated the clay content within ECa classes 

divided by the three types of classification methods tested. The objective was to decide what 

classification method show better difference between classes. The best classification method 

was selected, and the steps was performed again for OM and CEC. The box-plot was used to 

visualize the data variability of all iterations by ECa classes. Linear adjustment between ECa 

and soil attributes (by ranges of measurement) was performed to verify the robustness of ECa 

data to measure the soil spatial variability of fields. Finally, to verify the spatial patterns at 

temporal level, we evaluated the OM and CEC content at fields A and D, where soil sampling 

was performed for more than 1 year. 

 

 

Figure 3.4. Data analysis process applied to dataset. 

3.3. Results 

The study comprised experimental fields with wide range of clay content variability 

(Figure 3.5 - a). Fields assessed were from high sandy (clay < 150 g kg-1) until high clayey 

(clay > 600 g kg-1). Fields B and F showed the greatest clay content variability, while fields C 

and E the smallest. Fields B and F showed measurement ranges equal to 648 g kg-1 and 520 g 

kg-1 respectively. Fields C and E, which presented lower clay content variability, also presented 

lower variability of OM and CEC (Figure 3.5 - b and c, respectively). While field B showed 

the highest average levels for clay and CEC, field F had the highest OM content on average. 
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Figure 3.5. Clay content (a), organic matter (b) and cation exchange capacity (c) variability 

among experimental fields. 

Like clay content variability, fields B and F showed the greatest variability in soil ECa 

(Figure 3.6). Except for field A (Figure 3.6 - a), the other fields presented negative values in 

the ECa readings, justified by the principle of measurement and equipment calibration as 

reported in Heil and Schmidhalter (2017). The highest ECa variability was observed in field F 

(Figure 3.6 - f), with a measurement range equal to 352 mS m-1 (Table 3.2). Fields C and E 

showed the lowest ECa measurement ranges, following clay content, OM and CEC variability 

trends. 
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Figure 3.6. Spatial variability maps of apparent electrical conductivity (ECa) of experimental 

fields A (a), B (b), C (c), D (d), E (e) and F (f). 

A direct and significant correlation was founded between ECa and clay content (Table 3.3) 

for fields A, B, D and F (r = 0.48, 0.71, 0.81 and 0.78 respectively), corresponding to the fields 

with high clay content variability. In the fields C and E, where low clay content variability was 

observed, the correlation with ECa was not significant (r = 0.08 and -0.12, respectively). 

Excepted for OM content at field E, OM and CEC correlated positively with ECa for all fields 

and years assessed, where the highest correlation of these attributes was for field D (r = 0.70 

in 2017 and r = 0.59 in 2016, respectively, for OM and CEC). 

  



69 
 

 

Table 3.3. Pearson’s correlation coefficient between ECa and soil attributes assessed. 

Field Year Clay OM CEC 

A 

2011 

0.48* 

0.16* 0.06 

2012 0.12 0.15* 

2013 0.25* 0.04 

2014 0.09 0.07 

B 2014 0.71* 0.30* 0.37* 

C 2014 0.08 0.13 0.14 

D 
2016 

0.81* 
0.62* 0.59* 

2017 0.70* 0.56* 

E 2017 -0.12 -0.28* 0.07 

F 2017 0.78* 0.59* 0.28* 

*Significant at 5%. 

The assessment of clustering cost curves by K-means algorithm showed that the best 

number of classes for experimental fields A, B and C were 6, while for fields D, E and F were 

5 (Figure 3.7). So, like differences in fields assessed were low, we adopted five classes to 

perform further analysis and aiming to simplify the results. 

 

Figure 3.7. Clustering cost curves of experimental fields A (a), B (b), C (c), D (d), E (e) and F 

(f). Optimal number of clusters (dashed line). 

Dividing into five classes, quantil classification method showed the best division of clay 

content for ECa classes (Figure 3.8). All iterations produced, for NB and GI methods, overlap 

of classes 3 and 4. Thus, we assumed that the Q method was the most suitable for separation 
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and classification of ECa data into classes. For subsequent analyzes were adopted five classes 

divided by quantil method. 

 

Figure 3.8. Clay content variability (g kg-1) by five classes defined according quantil (Q), 

natural breaks (NB) and geometrical intervals (GI) classification methods. 

How class 1 has the lowest and class 5 the highest values of ECa, clay content (Figure 3.9 

- a), OM (Figure 3.9 - b) and CEC (Figure 3.9 - c) showed a clear trend of growth from class 1 

to 5 according to box-plot performed by random sampling assessment. In this way, as expected, 

the classes with low ECa evidenced sandy areas with lower contents of OM and CEC. The CV 

from 10 iterations performed, showed that the less conductive classes also present greater 

variability in the contents, with a decrease trend from class 1 to 5. Clay content and CEC 

showed a significant decreasement starting from class 3, while OM (Figure 3.9 – b) showed a 

linear decrease. 
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Figure 3.9. Standard content (y-axis left) and coefficient of variation (y-axis right – dashed 

line) of the iterations, per ECa class, of clay content (a), organic matter (b) and cation exchange 

capacity (c). 

By linear adjustment of ECa measurement range with clay content, OM and CEC ranges 

of all the experimental fields assessed, it is possible to visualize that, excluding field B, a good 

correlation between attributes ranges. The line adjusted means that a variation of 1.0 mS m-1 

meant a variation of 1.5 g kg-1, 0.11 g dm-3 and 0.24 mmolc dm-3 in clay content, OM and CEC, 

respectively (Figure 3.10 – a, b and c, respectively). The results showed that ECa, measured by 

an EMI sensor, shows a high correlation with soil texture variability of fields assessed (R2 = 

0.97), showing great correlations with OM (R2 = 0.65) and CEC (R2 = 0.76). 
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Figure 3.10. Linear adjustment of clay content (a), organic matter (b) and cation exchange 

capacity (c) with apparent electrical conductivity (ECa) variability of experimental fields 

assessed. Adjustment including (solid line) and excluding (dashed line) field B. 

 At time level, OM and CEC showed the same growth trend from class 1 to 3, as 

previously observed (Figure 3.9), for the first two year of assessment for field A (Figure 3.11). 

The trend is clear evidenced in field D (Figure 3.12) for both soil attributes assessed, while in 

field A this trend is not as clear in 2013 and 2014. In field A, from 2011 to 2013, the average 

level of OM showed a declining trend, as can also be clearly seen from 2016 to 2017 in field 

D (Figure 3.12 - a). Excepted in 2013 for field A, the variability of OM and CEC is lower for 

class 5 compared to class 1, evidencing the higher CV found in the lower ECa classes, as 

showed previously (Figure 3.9). For field D, classes 4 and 5 always showed greater contents 

than classes, 1, 2 and 3 for both OM and CEC. In general, the patterns founded at spatial 

variability level, were temporarily remained, where class 1 showed smaller average contents 

than class 5.  
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Figure 3.11. Organic matter (a) and cation exchange capacity (b) variability by ECa classes for the evaluated years in experimental field A. 
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Figure 3.12. Organic matter (a) and cation exchange capacity (b) variability by ECa classes 

for the evaluated years in experimental field D. 

3.4. Discussion 

By clay content observed in the experimental fields, the present study covered different 

soil types and slope classes. Even more, different soil fertility classes were included, since soil 

textural class is directly related to the availability of water and nutrients (Raij et al., 2001), 

addressing the wide-range assessment proposed here for sugarcane fields. Soil ECa, measured 

by EMI sensors, proved to be a high-quality information from fields to map the soil fertility in 

sugarcane fields, showing high potential to map yield potential zones (Sanches et al., 2019b; 

Siqueira et al., 2015). The ECa division into five classes, by quantil method, showed be the 

most suitable to distinguish the differences between soil texture zones, where areas with high 

ECa showed higher clay content and, thus, higher OM and CEC, soil attributes that driven 

sugarcane yield (Sanches et al., 2019a). So, a good option for farmers to divided fields into 

management zones can be done dividing ECa measurements into quantil classes. 

Related to soil spatial variability mapping, an issue that still arouses interest of the 

scientific community is related to an efficient (economically and physically feasible) soil 
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spatial characterization of its variability, as reported by Peets et al. (2012). The results founded 

in the present study can addressed this bottleneck, as evidenced by the ECa division into classes 

by quantil method. CV can be an excellent indicative to assist the sampling and soil mapping 

process. While ECa lower classes must be sampled more rigorously, that is, with a higher 

sample density, the more conductive classes can be sampled with fewer samples for an 

adequate soil characterization. Among the different types of sensing technologies for soil 

nutrient mapping, as addressed by Adamchuk et al. (2004), ECa sensors are an excellent and 

complementary alternative to map the spatial variability of soil fertility. Furthermore, ECa can 

also aid the interpolation methods as an auxiliary variable to map the soil spatial variability 

(Sanches et al., 2018). Moreover, conductive classes could receive, in general, lower amounts 

of fertilizers in comparison to the lower conductivity classes, mainly because higher ECa 

classes have more fertility and yield potential, helping in a sustainable site-specific 

management of sugarcane fields. Although results reported here not established quantitative 

indicators of soil sampling and fertilizer recommendations by ECa zones, further studies can 

be carried out to address these questions according qualitative information reported. 

Clay content and CEC are important soil attributes which are related to both nutrient 

supply and water availability, with several studies indicating their prediction with EMI (De 

Benedetto et al., 2012; Mahmood et al., 2012; Piikki et al., 2013; Huang et al., 2014). The 

present study showed that, despite the low correlation between ECa and soil attributes (Table 

3.3), the measurement range of these attributes were highly correlated (R2 = 0.97, 0.65 and 0.76 

for clay content, OM and CEC, respectively). Sanches et al. (2019b) showed a review of 

Pearson’s correlation variability between ECa and soil attributes, where highest correlations 

were observed for clay content (r = 0.89) and CEC (r = 0.82) too. Despite the low correlations 

observed here, as reported by Sanches et al. (2019b), a low correlation does not mean that these 

attributes were not physically related. The extreme behavior of field B, treated as an outlier, 

may be related to the soil salinity of the field. One of the hypotheses is that the field, located 

near to the mill production unit, received fertilization through vinasse application (residue 

generated in the manufacture of sugar and ethanol and rich in potassium). Vinasse application 

can lead to soil acidification, thus influencing ECa and justifying the behavior founded. 

Temporally stable (Serrano et al., 2017), ECa can be extremely valuable information for a 

site-specific management of sugarcane fields. Fields A and D, assessed, respectively, for 4 and 

2 successive years, showed that the ECa classes are good indicative to differentiate sites with 

higher and lower OM and CEC contents. This fact is clearly observed for the first year of 
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evaluation for both fields, exactly when the crop was planted. In another years of cultivation, 

the trend does not seem to be so clear. A possible explanation can be the management used in 

the fields, justifying the results founded. The management of the sugarcane in Brazil, 

characterized by the low adoption of precision agriculture technologies (Silva et al., 2011) and 

high mechanization of agricultural operations (Franco et al., 2018), has been causing serious 

problems on soil fertility and, consequently, on crop yield. This fact can be observed by OM 

decreasement content in the fields, especially in field D, where we can see a significant 

decrease from 2016 to 2017. OM is one of the most important soil attributes to define sugarcane 

yield (Sanches et al., 2019a) and the availability of nutrients such as phosphorus and nitrogen 

in the soil (Nogueirol et al., 2014). This decreasing trend in soil OM is common in Brazilian 

sugarcane fields, especially if soil tillage operations are used. In this way, especially in field A, 

the sugarcane management can be promoted a disturbance in soil fertility and quality 

conditions, where the ECa higher classes not showed the expected higher soil OM and CEC 

contents than ECa lower classes. Despite the disturbance observed, in general, patterns at 

spatial variability level were temporarily remained, where class 1 always showed smaller 

average contents than class 5. As reported by Carvalho et al. (2016), soil conservation 

management can help to maintain adequate soil OM levels over time and, consequently, 

maintain the adequate soil quality and fertility conditions. Even more, the low adoption of PA 

and the inadequate management of sugarcane fields justify the crop yield stagnation in the last 

decade, not exceeding the average yield of 80 Mg ha-1 (CONAB, 2017). 

Finally, the ECa mapping of sugarcane fields can be an excellent alternative for a site-

specific management as showed here. Despite the low Pearson’s correlation founded between 

ECa and soil attributes, the ECa quantil classes are a good option for farmers establish zones 

in their fields to manage the soil fertility, allow the establishment of precision production 

environments (Sanches et al., 2019b) and the yield potential zones. 

3.5. Conclusion 

Despite the high variability presented in soil, ECa classes, defined by quantil method, 

showed that the low electrical conductivity sites tend to present lower OM and CEC contents. 

The higher ECa classes showed smaller CV for all soil attributes assessed, i.e., sites that can 

be characterized with smaller amounts of samples to an adequate soil mapping than lower ECa 

classes. The clay content variability was directly proportional to the ECa variability (R2 = 0.97), 

where line adjusted means that 1.0 mS m-1 of ECa corresponded to 1.5 g kg-1 of clay. OM (R2 
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= 0.65) and CEC (R2 = 0.76) showed great correlation with ECa variability too. Regular grids 

to soil sampling, where previous soil spatial variability is not used, could be overcome to an 

optimized soil sampling by a cheap and fastest soil spatial variability information like ECa. 

The EMI sensor is an excellent tool to define the spatial variability of soil fertility, that can be 

used for growers in site-specific management of their fields. 
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III. General Discussion 

In the current Brazilian agricultural scenario, the adoption of PA increases every 

year for all Brazilian agribusiness segments. Although several crops are investigated by 

researches in PA context, wheat and maize are the most addressed crops when compared with 

sugarcane. The technology adoption by wheat and maize fields may evidence the reasons for 

the advancement of these crops when compared to sugarcane. In the last decades, it was 

possible to observe the expressive growth of yield in maize and wheat when compared with 

sugarcane (Figure 2). While maize and wheat crops showed yield increases about 30% and 

19% from 2000 (4.76 to 6.20 Mg ha-1 and 3.00 to 3.60 Mg ha-1, respectively, for maize and 

wheat), sugarcane showed a growth of 8% (71.23 to 76.82 Mg ha-1) in the same period. The 

genetic improvement of these crops can be one of the main reasons (Tian et al., 2011), unlike 

in sugarcane where little genetic improvements was made in the last years. In addition, a 

sugarcane yield decline can be observed since 2008, when the mechanization of the sugarcane 

harvest was intensified in Brazil (Franco et al., 2018). The lack of PA technologies adoption in 

the Brazilian sugarcane sector, reported by Silva et al. (2011), may have contribute to the yield 

stagnation in the last decade, not exceeding 80 Mg ha-1 of average yield.  

 

Figure 2. Yield (Mg ha-1) of wheat, maize and sugarcane crops from 1961 to 2014. Source: 

FAOSTAT, 2016. 
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To meet the COP-21 goals, National Confederation of Industry (CNI), in 

partnership with the University of São Paulo (FEA/USP), estimated that it will be necessary 

that Brazil produced 942 million tons of sugarcane per season in 2030 (CNI, 2017). The best 

economic and environmental option is to increase the yield. However, Brazil will need to move 

forward to reach new levels and exceed the current Brazilian average of 73 Mg ha-1 (CONAB, 

2017). The genetic potential of the crop is about 300 Mg ha-1 (Waclawovsky et al., 2010). The 

major limitations are related to hydrous deficit, an inadequate crop management and the 

availability amounts of nutrients for plants. In terms of crop management, one issue that may 

assist sugarcane fields to achieve the goals and ensure greater production sustainability is the 

Precision Agriculture (PA). PA is an approach that includes several technologies and tools that 

can contribute significantly to overcome these challenges and improve the production 

profitability. 

Among technologies available to assist site-specific management of sugarcane 

fields, yield monitor, topographic parameters and apparent electrical conductivity 

demonstrated to be promising to help farmers in soil spatial characterization, as demonstrated 

here. Although these technologies are commercially available, they are still little adopted in the 

last years, mainly because few studies at long-term were showed in the literature. Thus, the 

adoption of yield monitors in sugarcane fields could allow to identify which soil attributes are 

directly impacting the crop yield. Perhaps, at others sugarcane fields the main soil attributes 

that impact yield are not the same as those founded here, such as MO and pH. However, the 

constant yield mapping and soil attributes allow to identify the limiting nutrients for the plant 

by applying the appropriate statistical tools and techniques, such as Random Forest algorithm.   

How one of the limiting factors to map the soil with high accuracy is the amount 

of samples required, which often turn the sampling process physically and economically 

impractical (Peets et al., 2012), the findings showed that this bottleneck can be overcome. The 

landscape formations and ECa have proved to be excellent sources of information that could 

be allow an efficient soil sampling process. The different classes of landscape and ECa allow 

to divide the field into zones with different fertility levels, enabling farmers to create zones 

with different yield potentials. These sources of information can also be used as auxiliary 

variables in multivariate interpolation methods, as demonstrated in Sanches et al. (2018), 

helping to characterize the soil spatial variability. The combination of these data can be 

evaluated in future studies to increase the accuracy of soil spatial characterization of the fields. 

Furthermore, with high temporal stability, the topographical and ECa attributes can not only 
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aid sugarcane fields, but also other crops that use a large amount of inputs and needed to 

rationalize the fertilizer applications. 

 Finally, the current world scenario, where resources are increasingly scarce and 

environmental pollution increasing, the PA adoption will be fundamental. The area and/or yield 

expansion to reach the COP-21 goals without considering the sustainable management 

alternatives, like PA technologies, are not sufficient to promote a sustainable production. The 

sugarcane yield stagnation in the last five years must be addressed, where the PA and other 

technologies improvements should guide the agenda of government and producers. 

IV. General Conclusion 

The present work proved that yield monitors, topographic and ECa parameters are an 

excellent source of information to manage sugarcane fields in a site-specific way. The results 

showed that the spatial and temporal characterization of soil attributes is essential to ensure a 

sustainable site-specific management of sugarcane fields. Soil organic matter (OM), clay 

content and cation exchange capacity (CEC) are important soil factors that directly impact 

sugarcane yield, that can be spatial characterized by topographic and ECa parameters. 

Furthermore, it was observed that the temporal variability in the yield is caused mainly by the 

variability in the pH.  ECa and topographic parameters, that are temporally stable, showed that 

pH should be manage differently in HConv topographic formations. ECa spatial variability maps 

showed a greater correlation with variability of clay conten (R2 = 0.97), OM (R2 = 0.65) and 

CEC (R2 = 0.76). Regular grids to soil sampling, where previous soil spatial variability is not 

used, could be overcome to an optimized soil sampling by a cheap and fastest soil spatial 

variability information like ECa and topographic parameters. The EMI sensor and SRTM 

topographic data are excellent tools to define the spatial variability of soil fertility, that can be 

used for growers to describe the soil spatial variability in a precise and sustainable way. We 

expected that the present study can help the Brazilian sugarcane industry to increase the 

adoption of PA technologies, reducing production costs and the environmental impacts through 

the rational use of inputs and help the Brazil to reach the targets established by 2030.  
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