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RESUMO 

A leprose dos citros, causada pelo citrus leprosis virus C (CiLV-C) e transmitida pelo ácaro 

Brevipalpus yothersi é a principal doença viral dos citros no Brasil. Além dos prejuízos 

econômicos à cultura, a leprose desperta interesse científico por ser uma doença atípica na qual 

o vírus permanece restrito nos tecidos vegetais ao redor do ponto de alimentação do vetor, 

assemelhando-se a uma reação de incompatibilidade do tipo hipersensibilidade (HR). Com este 

trabalho, objetivou-se revelar os mecanismos moleculares envolvidos na interação 

planta/CiLV-C/B. yothersi, ainda amplamente desconhecidos. Para o estudo da interação 

planta/ácaro foram analisados o transcriptoma de Arabidopsis thaliana em resposta ao B. 

yothersi via RNA-Seq, os níveis de ácido salicílico (SA) e jasmônico (JA) através de LC-

MS/MS, e a relevância das vias hormonais com o uso de plantas mutantes de Arabidopsis. As 

plantas selvagens infestadas induziram ambas as vias de SA e JA, enquanto os processos 

envolvidos no seu crescimento e desenvolvimento foram reprimidos. A oviposição dos ácaros 

fui reduzida nas mutantes sid2 e npr1, sugerindo que o B. yothersi manipula a planta tornando-

a mais suscetível à colonização. Para o estudo da interação planta/vírus foram analisados os 

principais eventos da replicação do CiLV-C através da quantificação da relação 

RNA1/p29sgRNA, a resposta transcricional de Arabidopsis infectada com CiLV-C via RNA-

Seq, a presença de células mortas e a produção de espécies reativas de oxigênio (ROS) em 

tecidos afetados através de ensaios histoquímicos, e a expressão transiente das proteínas virais 

em Nicotiana benthamiana. Em resposta à infecção pelo CiLV-C as plantas apresentaram uma 

explosão de ROS e uma indução de genes associados ao crescimento celular, à via do SA, e aos 

processos de morte celular e HR; enquanto reprimiram a via de JA e o metabolismo primário. 

A expressão da proteína viral P61 mimetizou respostas que ocorrem durante a infecção viral, 

indicando-a como uma elicitora do sistema imune vegetal. O CiLV-C favoreceu a oviposição 

do ácaro vetor nas folhas infectadas, sugerindo que o vírus contribui com a infestação do seu 

vetor. Finalmente, a expressão de alguns genes modulados durante a interação 

Arabidopsis/CiLV-C/B. yothersi foi confirmada em plantas de laranja-doce (Citrus sinensis), 

validando o uso da planta-modelo no estudo do patossistema da leprose. Foi demonstrado ainda 

que outros vírus transmitidos por Brevipalpus (VTBs) são capazes de infectar Arabidopsis, o 

que permite o seu uso como hospedeira alternativa em estudos de interação com VTBs 

filogeneticamente distantes ao CiLV-C. Os resultados apresentados, além de proporcionar uma 

melhor compreensão dos processos fisiopatológicos da leprose, a longo prazo poderão 

contribuir para o estabelecimento de estratégias de controle mais sustentáveis da doença.  



 
 

ABSTRACT 

Citrus leprosis is caused by citrus leprosis virus C (CiLV-C), transmitted by Brevipalpus 

yothersi mites, and is the main viral disease of citrus in Brazil. Differently from other plant 

viruses, CiLV-C is unable to accomplish systemic infection in its hosts, remaining restricted to 

cells around the inoculation sites, where symptoms of viral infection develop. Phenotypically, 

these features resemble the outcome a hypersensitivity response (HR). In this study, we 

attempted to unravel the molecular mechanisms involved in the plant/CiLV-C/B. yothersi 

interaction, which are still poorly understood. To disentangle the plant/mite interaction, we 

analyzed the Arabidopsis thaliana transcriptome in response to B. yothersi by RNA-Seq, the 

levels of salicylic acid (SA) and jasmonic acid (JA) in infested plants by LC-MS/MS, and the 

role of the hormonal pathways during mite infestation using Arabidopsis mutant plants. Infested 

wild type plants induced both SA e JA pathways, whilst processes involved in plant growth and 

defense were repressed. sid2 e npr1 mutant plants reduced the oviposition of mites, suggesting 

that B. yothersi manipulate plant response to render it more susceptible to its colonization. To 

uncover plant/virus interaction, we identified the main events of viral replication by quantifying 

the CiLV-C RNA1/p29sgRNA ratio during the infection, the transcriptional Arabidopsis 

response to CiLV-C using RNA-Seq, the presence of dead cells and reactive oxygen species 

(ROS) in infected tissues through histochemical assays, and the elicitor activity of viral proteins 

by transient expression in Nicotiana benthamiana. Plants responded to CiLV-C with a ROS 

burst and the induction of genes related to cell growth, SA pathway, cell death and HR. 

Conversely, infected plants repressed the SA pathway and the primary metabolism. The 

expression of the P61 viral protein mimicked responses observed during CiLV-C infection, 

indicating P61 as a viral component that elicits the plant immune system. CiLV-C presence 

favored mite oviposition in virus-infected leaves, suggesting that the virus benefit mite 

infestation. Finally, the expression of selected genes modulated during the interaction with 

Arabidopsis was confirmed in sweet orange (Citrus sinensis), validating the use of this model 

plant in the study of citrus leprosis. We also showed that other Brevipalpus-transmitted viruses 

(BTVs) infect Arabidopsis, which thus can be used as an alternative host in the studies of plant 

interaction with CiLV-C-phylogenetically distant BTVs. The results presented here provided a 

better understanding of the processes developed during citrus leprosis disease and will be 

helpful to the establishment of sustainable strategies of the disease control. 
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INTRODUÇÃO GERAL 

 

A citricultura é um dos principais setores do agronegócio brasileiro. O país destaca-se 

no cenário mundial como o maior produtor e exportador de suco de laranja concentrado 

congelado e não concentrado (FAO, 2017). No ano de 2017, foram produzidas mais de 18 

milhões de toneladas de laranja em uma área de cerca de 630 mil ha, sendo o Estado de São 

Paulo responsável por 77% da produção nacional (IBGE, 2017). Apesar do seu excelente 

desenvolvimento como agronegócio, a citricultura brasileira enfrenta problemas de ordem 

fitossanitária. Neste contexto, destaca-se a leprose dos citros como a principal doença viral que 

atinge aos citros no país (Freitas-Astúa et al., 2016). 

A leprose típica e prevalente é causada pelo citrus leprosis virus C (CiLV-C) e 

transmitida por ácaros do gênero Brevipalpus (Acari: Tenuipalpidae). Sintomas típicos incluem 

lesões cloróticas ou necróticas localizadas na região de alimentação do ácaro em folhas, frutos 

e ramos. Plantas severamente atacadas podem apresentar desfolha, seca de ramos e queda 

prematura de frutos, promovendo redução drástica na produção (Bastianel et al., 2010). A forma 

mais efetiva do manejo da doença é o controle químico do ácaro vetor, o que tem demandado 

gastos anuais de até U$ 80 milhões à indústria citrícola brasileira (Bastianel et al., 2010). A 

importância da doença tem aumentado tanto em nível nacional, estando presente em todos os 

Estados produtores de citros do país, quanto mundial, uma vez que já foi relatada na maioria 

dos países da América do Sul e Central e, mais recentemente, no México (Castillo et al., 2011). 

A chegada da leprose ao hemisfério Norte tem preocupado países onde a citricultura é uma 

atividade econômica relevante, como os EUA, fazendo com que a doença seja considerada re-

emergente (Roy et al., 2015).  

Citrus leprosis C cilevirus é a especie tipo do gênero Cilevirus (Locali-Fabris et al., 

2012). Os vírus dessa espécie apresentam um genoma bipartido formado por dois RNAs fita 

simples de sentido positivo [(+) ssRNA] que codificam seis ORFs. O RNA1 (8745 nt) apresenta 

duas ORFs, correspondentes à replicase (RNA-dependent RNA polymerase, RdRp) e à putativa 

capa proteica (P29) do vírus (Locali-Fabris et al., 2006). O RNA2 (4986 nt) apresenta quatro 

ORFs, codificando a putativa proteína de movimento (movement protein, MP) e as proteínas 

P15, P61 e P24 com funções desconhecida (Locali-Fabris et al., 2006). Apesar de as proteínas 

P61 e P24 apresentarem homologia distante com proteínas estruturais dos vírus específicos de 

insetos da família Negeviridae (Kuchibhatla et al., 2014), metade dos genes do CiLV-C são 
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considerados “órfãos” (Tautz and Domazet-Lošo, 2011) por não apresentarem homólogos em 

outras espécies de vírus.  

Ácaros do gênero Brevipalpus são pestes cosmopolitas e polífagas que atacam, além de 

citros, centenas de espécies de plantas de famílias distintas, incluindo culturas economicamente 

importantes e inúmeras plantas ornamentais (Childers et al., 2003; Kitajima et al., 2010). Apesar 

de causarem dano direto a algumas espécies de plantas, os impactos negativos da infestação por 

ácaros Brevipalpus são associados à sua capacidade de transmitir várias espécies de fitovírus. 

Os chamados vírus transmitidos por Brevipalpus (VTBs) induzem sintomas localizados 

semelhantes aos causados pelo CiLV-C e incluem espécies dos gêneros Cilevirus e 

Dichorhavirus (Freitas-Astúa et al., 2018). Entre os ácaros vetores de VTBs, o B. yothersi 

transmite tanto cilevirus como dichorhavirus, sendo o principal vetor do CiLV-C e a espécie 

mais comum nos pomares brasileiros (Chabi-Jesus et al., 2018; Ramos-González et al., 2016; 

Sánchez-Velázquez et al., 2015). Além da sua relevância para a agricultura, os ácaros 

Brevipalpus apresentam uma biologia atípica. Muitas espécies do gênero são haploides durante 

todo o seu ciclo de vida, uma característica única entre organismos superiores, e suas 

populações são formadas essencialmente por fêmeas devido à presença de uma bactéria 

endossimbionte do gênero Cardinium (Weeks et al., 2001). 

Diferentemente de outros vírus de plantas, o CiLV-C é incapaz de realizar movimento 

sistêmico em todas as suas hospedeiras conhecidas. Naturalmente, o CiLV-C infecta várias 

espécies do gênero Citrus, sendo as laranjas doces (C. sinensis) altamente suscetíveis, e outras 

espécies vegetais distintas como a rutácea Swinglea glutinosa (León et al., 2008) e a trapoeraba 

(Commelina benghalensis) (Nunes et al., 2012). Experimentalmente, o vírus pode ser 

transmitido para ao menos cerca de 50 espécies vegetais pertencentes a famílias distintas, dentre 

elas as plantas-modelo Nicotiana benthamiana e Arabidopsis thaliana (Arena et al., 2013; 

Garita et al., 2014). Apesar da ampla gama de hospedeiras, invariavelmente o CiLV-C 

permanece restrito às células ao redor do sítio de inoculação do ácaro vetor, onde os sintomas 

da infecção viral se manifestam sob a forma de lesões locais. Fenotipicamente, estes sintomas 

se assemelham ao resultado de uma resposta de hipersensibilidade (hypersensitive response, 

HR), uma forma de resistência caracterizada pela morte de células hospedeiras e pela restrição 

do patógeno no sítio de inoculação durante uma interação incompatível. 

Na natureza, as plantas interagem frequentemente com patógenos e herbívoros com 

estratégias de infecção e alimentação distintas. Para se proteger contra essa ampla gama de 

agressoras, as plantas apresentam barreiras pré-formadas (como cera ou tricomas) que previnem 

ou atenuam o ataque por grande parte dos organismos fitopatogênicos e herbívoros. Muitos 
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agressores, no entanto, são capazes de superar tais barreiras, levando as plantas a recrutarem 

defesas induzidas para limitar o ataque dos mesmos. A primeira linha do sistema de defesa 

induzida é baseada em receptores de reconhecimento de padrões (pattern recognition receptors, 

PRRs) que reconhecem moléculas conservadas associadas aos patógenos/microrganismos 

(pathogen/ microbe-associated molecular patterns, PAMPs/ MAMPs), herbívoros (herbivore-

associated molecular patterns, HAMPs) ou a danos à célula hospedeira (damage-associated 

molecular patterns, DAMPs), ativando a chamada imunidade desencadeada por padrões 

(pattern-triggered immunity, PTI). Patógenos e herbívoros bem-sucedidos produzem proteínas 

efetoras, adquiridas durante a co-evolução com suas plantas hospedeiras, capazes de suprimir a 

PTI, levando a uma susceptibilidade desencadeada por efetor (effector-triggered susceptibility, 

ETS). Como contra-ataque, algumas plantas apresentam genes de resistência (R) que codificam 

proteínas capazes de reconhecer direta ou indiretamente os efetores, ativando uma segunda 

linha de defesa denominada imunidade desencadeada por efetor (effector-triggered immunity, 

ETI) (Hogenhout and Bos, 2011; Jones and Dangl, 2006).  

A natureza das defesas ativadas durante a PTI ou ETI mostram grande sobreposição 

(Thomma et al., 2011). Defesas contra patógenos incluem a fortificação da parede celular 

através da síntese de calose, o acúmulo de metabólitos secundários antimicrobianos como as 

fitoalexinas, e a indução de proteínas de defesa relacionadas à patogênese (pathogenesis-

related, PR) como as quitinases e glucanases que degradam paredes celulares. Defesas contra 

herbívoros podem ser indiretas, como a liberação de voláteis que atraem predadores, ou diretas, 

que incluem proteínas de defesa e metabólitos secundários com efeitos tóxicos ou inibitórios à 

alimentação como os glucosinolatos (Wu and Baldwin, 2010). Além disso, as alterações 

metabólicas induzidas durante a ativação das defesas podem induzir uma explosão de espécies 

reativas de oxigênio (reactive oxygen species, ROS) que pode culminar no desenvolvimento de 

uma HR (Xia et al., 2015). 

A reprogramação transcricional que resulta nas respostas de defesa é mediada pela ação 

de vias interconectadas dependentes de hormônios, sendo os principais os ácidos salicílico (SA) 

e jasmônico (JA). A via do SA media defesas contra patógenos biotróficos e tipicamente 

antagoniza as respostas mediadas por JA, uma estratégia da planta para alocar seus recursos de 

acordo com a natureza do ataque (Pieterse et al., 2012). A via do JA, por sua vez, é subdividida 

em dois ramos que se antagonizam entre si para modular a resposta a agressores específicos. O 

ramo mediado por fatores de transcrição ERF (ethylene responsive factor) é regulado em 

conjunto com etileno (ET) e atua na defesa contra patógenos necrotróficos. O ramo mediado 
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por fatores de transcrição MYC é modulado por ácido abscísico (ABA) e condiciona a 

resistência a herbívoros (Pieterse et al., 2012).  

Quando se trata de resposta a vírus, as defesas mediadas por vias clássicas de sinalização 

são conectadas à principal defesa antiviral, o silenciamento de RNA (Hunter et al., 2013; 

Pumplin and Voinnet, 2013). O mecanismo de silenciamento é disparado pela presença de 

RNAs dupla-fita (dsRNA), presentes como os intermediários replicativos dos vírus ou em 

genomas que apresentam estructuras secondarias. Tais moléculas são consideradas PAMPs 

específicos de vírus e portanto denominadas padrões moleculares associados à virus (virus-

associated molecular pattern, VAMPs). Os VAMPs são reconhecidos por nucleases Dicer-like 

(DCL) e processados pelas mesmas em pequenas moléculas de RNA interferente (small 

interferent RNAs, siRNAs). Uma fita guia dos siRNAs é incorporada à complexos de 

silenciamento induzidos por RNA (RNA-induced silencing complex, RISC), os quais contém 

como componente central uma proteína Argonauta (AGO), que direcionam a degradação 

específica ou silenciamento do genoma viral mediado por homologia de sequências (Parent et 

al., 2012). Como contra-ataque a um mecanismo de defesa tão eficiente, inúmeros fitovírus 

apresentam efetores que atuam como supressores de silenciamento de RNA (viral suppressors 

of RNA silencing, VSRs). Em um paralelo claro com o esquema clássico de resistência por PTI 

e ETI, alguns VSRs podem ser reconhecidos por proteínas R de plantas, desencadeando 

respostas típicas de ETI, incluindo a HR (Pumplin and Voinnet, 2013; Sansregret et al., 2013). 

Apesar da singularidade e importância econômica da leprose, o conhecimento acerca 

dos mecanismos moleculares envolvidos na interação planta-patógeno-vetor é limitado 

(Freitas-astúa et al., 2007; Marques et al., 2010), havendo uma escassez de informações 

necessárias a melhor compreensão do patossistema. O estudo da interação dos componentes do 

patossistema com plantas de citros apresenta complexidades inerentes como a dificuldade de se 

transmitir o vírus mecanicamente (sendo necessária a transmissão experimental mediante o uso 

de ácaros virulíferos), a característica infecção localizada e a demora no surgimento dos 

sintomas (que podem levar de 25 a 60 dias após a infestação com ácaros virulíferos em plantas 

de citros). Em função destas particularidades, variáveis como as taxas de aquisição e inoculação 

do vírus pelo vetor, o número de partículas virais encontradas no mesmo, e a movimentação do 

ácaro pela planta hospedeira afetam a consistência dos dados nos estudos que envolvem 

indivíduos distintos. Além disso, a análise de dados é limitada em função do restrito 

conhecimento sobre o genoma da laranja, sequenciado há poucos anos (Xu et al., 2013), e sobre 

as interações envolvendo citros e seus patógenos, problemas inerentes ao uso de organismos 

não-modelo. 
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A complexidade dos estudos de interação envolvendo a leprose dos citros pode ser 

parcialmente superada com o uso de hospedeiros experimentais apropriados. Neste sentido, a 

planta-modelo Arabidopsis thaliana (Arabidopsis) surge como uma alternativa ideal, 

destacando-se por apresentar um genoma curado de alta qualidade, um banco completo de 

mutantes e ser utilizada em inúmeros estudos de interação, tornando-se útil para fins de 

comparação ou inferências dos resultados obtidos com outros patossistemas (Nishimura & 

Dangl, 2010). Em relação ao estudo da leprose especificamente, existe ainda a vantagem 

adicional do período de apenas 7 a 10 dias para a manifestação de sintomas causados pela 

infecção do CiLV-C, o que reduz o problema de variação e representa um ganho significativo 

de tempo na avaliação dos experimentos (Arena et al., 2013). Apesar da ampla utilização de 

Arabidopsis para o estudo de diferentes aspectos da biologia vegetal, a espécie mais utilizada 

como planta-modelo na fitovirologia é a Nicotiana benthamina, devido principalmente ao 

grande número de vírus capazes de infecta-la. A grande vantagem de N. benthamiana, no 

entanto, é sua alta receptividade à expressão transiente via agroinfiltração, permitindo o estudo 

funcional de genes de maneira facilitada (Goodin et al., 2008). 

Diante do exposto, com o presente trabalho objetivou-se um estudo holístico da 

interação molecular planta/CiLV-C/B. yothersi, com o intuito de elucidar os mecanismos 

envolvidos no desenvolvimento da doença. Previamente, havia sido feita uma análise pontual 

da expressão de genes marcadores de vias de defesa em Arabidopsis infestadas com ácaros 

avirulíferos e virulíferos (Arena, 2014). Os dados obtidos foram complementados com ensaios 

histoquímicos de tecidos infectados, com a validação da expressão de genes selecionados em 

plantas de laranja-doce, e com análises da modulação do comportamento do ácaro vetor em 

plantas infectadas pelo CiLV-C, dando origem a um primeiro modelo da interação planta-

patógeno-vetor (Capítulo 1, Arena et al., 2016). Para aprofundar o conhecimento acerca da 

interação planta/CiLV-C, foram identificados os principais eventos da replicação viral através 

da quantificação do vírus ao longo da infecção, a resposta transcricional global de Arabidopsis 

ao CiLV-C com o uso de RNA-Seq, e a atividade elicitora das proteínas virais por meio da 

expressão transiente em N. benthamiana (Capítulo 2). Visando uma melhor compreensão da 

interação planta/Brevipalpus, foram analisados o transcriptoma de Arabidopsis em resposta ao 

B. yothersi através de RNA-Seq, os níveis de hormônios de defesa em plantas infestadas, e a 

relevância das vias hormonais na interação através do uso de plantas mutantes de Arabidopsis 

(Capítulo 3, Arena et al., 2018). Finalmente, foi avaliada a capacidade de outros BTVs 

infectarem Arabidopsis, com o intuito de futuramente se utilizar a planta-modelo como 

hospedeira alternativa em estudos de interação com vírus relacionados ao CiLV-C, o que 
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estenderia o conhecimento acerca do desenvolvimento de doenças transmitidas por ácaros 

Brevipalpus (Capítulo 4, Arena et al., 2017). Os resultados apresentados no presente trabalho 

serão essenciais à compreensão dos mecanismos envolvidos no desenvolvimento da leprose dos 

citros e, a longo prazo, poderão contribuir para o estabelecimento de estratégias de controle 

mais sustentáveis. 
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A ordem dos capítulos apresentados nesta Tese foi definida em função da cronologia 

dos eventos que levaram à elucidação da interação planta/Brevipalpus/CiLV-C. O Capítulo 1 

corresponde a um artigo publicado em 2016 contendo aspectos gerais da interação entre os três 

componentes do patossistema e apresenta o primeiro modelo da interação. Visando aprofundar 

e complementar o dito modelo, objetivou-se uma análise simultânea do transcriptoma de plantas 

de Arabidopsis thaliana em resposta ao ácaro e ao vírus em um único experimento composto 

por plantas infestadas com ácaros virulíferos, com ácaros avirulíferos e não-infestadas. Para se 

definir os tempos da interação que seriam mais informativos para a coleta do material vegetal, 

foi realizado um experimento de avaliação da cinética de acúmulo do CiLV-C ao longo da sua 

infecção em plantas, o qual permitiu identificar os principais momentos da replicação viral. Os 

resultados da cinética de multiplicação do CiLV-C em A. thaliana foram comparados ao 

transcriptoma de plantas infectadas com o CiLV-C e estão apresentados no Capítulo 2 

(manuscrito ainda em fase de elaboração). O transcriptoma de plantas infestadas apenas com 

ácaros Brevipalpus é apresentado no Capítulo 3 (trabalho já publicado em 2018). A interação 

planta/CiLV-C (Capítulo 2) foi apresentada anteriormente à interação planta/Brevipalpus 

(Capítulo 3) pois na primeira ficaram definidos os tempos de avaliação dos experimentos da 

análise transcriptômica. Por fim, o uso de Arabidopsis como planta modelo para outros vírus 

transmitidos por Brevipalpus (VTBs) está registrado no Capítulo 4 (trabalho já publicado em 

2017), que abre uma perspectiva futura de estudos de interação envolvendo A. thaliana e VTBs 

além do CiLV-C. 
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Alves5, Luis E. A. Camargo2, Elliot W. Kitajima2, Marcos A. Machado1, Juliana Freitas-
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Citrus leprosis virus C Infection
Results in Hypersensitive-Like
Response, Suppression of the JA/ET
Plant Defense Pathway and
Promotion of the Colonization of Its
Mite Vector
Gabriella D. Arena 1, 2, 3, Pedro L. Ramos-González 1, 4, Maria A. Nunes 1,

Marcelo Ribeiro-Alves 5, Luis E. A. Camargo 2, Elliot W. Kitajima 2, Marcos A. Machado 1

and Juliana Freitas-Astúa 4, 6*

1 Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, São Paulo,

Brazil, 2 Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, Brazil, 3Universidade

Estadual de Campinas, São Paulo, Brazil, 4 Laboratório de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil,
5 Instituto Nacional de Infectologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil, 6 Embrapa Mandioca e Fruticultura, Cruz

das Almas, Brazil

Leprosis is a serious disease of citrus caused by Citrus leprosis virus C (CiLV-C,

genus Cilevirus) whose transmission is mediated by false spider mites of the genus

Brevipalpus. CiLV-C infection does not systemically spread in any of its known host

plants, thus remaining restricted to local lesions around the feeding sites of viruliferous

mites. To get insight into this unusual pathosystem, we evaluated the expression profiles

of genes involved in defense mechanisms of Arabidopsis thaliana and Citrus sinensis

upon infestation with non-viruliferous and viruliferous mites by using reverse-transcription

qPCR. These results were analyzed together with the production of reactive oxygen

species (ROS) and the appearance of dead cells as assessed by histochemical

assays. After interaction with non-viruliferous mites, plants locally accumulated ROS and

triggered the salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathways. ERF branch of

the JA/ET pathways was highly activated. In contrast, JA pathway genes were markedly

suppressed upon the CiLV-C infection mediated by viruliferous mites. Viral infection also

intensified the ROS burst and cell death, and enhanced the expression of genes involved

in the RNA silencing mechanism and SA pathway. After 13 days of infestation of two sets

of Arabidopsis plants with non-viruliferous and viruliferous mites, the number of mites in

the CiLV-C infected Arabidopsis plants was significantly higher than in those infested

with the non-viruliferous ones. Oviposition of the viruliferous mites occurred preferentially

in the CiLV-C infected leaves. Based on these results, we postulated the first model of

plant/Brevipalpus mite/cilevirus interaction in which cells surrounding the feeding sites

of viruliferous mites typify the outcome of a hypersensitive-like response, whereas viral

infection induces changes in the behavior of its vector.

Keywords: cilevirus, herbivory, plant-virus-vector interaction, Brevipalpus mites, Arabidopsis, Citrus sinensis,

hormonal crosstalk, RNA silencing
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INTRODUCTION

Most of the known plant viruses systemically infect their main
plant hosts. Distinctively, Citrus leprosis virus C (CiLV-C), the
causal agent of citrus leprosis, is unable to move long distances
within any of its almost 50 natural or experimental host species
belonging to at least 28 distant plant families (León et al., 2008;
Nunes et al., 2012a,b; Arena et al., 2013; Garita et al., 2013,
2014). CiLV-C infection invariably produces chlorotic or necrotic
lesions around the feeding sites of its mite vector. However,
albeit it shows localized symptoms, citrus leprosis threatens citrus
production in the Americas (Roy et al., 2015). Indeed, it is
regarded as the most important viral disease affecting citrus in
Brazil, the leading sweet orange producer in the world (Bastianel
et al., 2010).

CiLV-C is the type member of the genus Cilevirus (Locali-
Fabris et al., 2011). Virions are enveloped rod-like particles with
50–55 × 120–130 nm and its genome consists of two positive
(+) sense single-stranded RNA molecules that contain 5′ cap
structures and 3′ poly(A) tails. ORFs in the RNA1 (8745 nt)
encode the RNA-dependent RNA polymerase and the putative
29 kDa coat protein. RNA2 contains four ORFs encoding the
putative movement protein (MP), which shows conserved motifs
of the plant virus MPs of the 30K superfamily, and the P15,
P61, and P24 proteins with unknown functions (Locali-Fabris
et al., 2006; Pascon et al., 2006). However, P61 and P24 display
distant homology with structural proteins of the insect-specific
negeviruses (Kuchibhatla et al., 2014).

False spider mites of the genus Brevipalpus (Acari:
Tenuipalpidae) are polyphagous and cosmopolitan pests that
colonize, in addition to citrus, several economically important
crops and ornamentals plants (Childers et al., 2003a; Kitajima
et al., 2010). In order to feed, false spider mites pierce and
conceivably inject saliva into the plant mesophyll cells using
their interlocked stylet, and after withdrawing it, they suck out
the overflowed cell content of punctuated cells through the
preoral cavity (Alberti and Kitajima, 2014). Brevipalpus spp.
are haploid during their entire life-cycle, reproduce through
thelytokous parthenogenesis and their adult populations are
essentially females due to the presence of the endosymbiont
bacterium Cardinium sp. (Weeks et al., 2001). Within the group
of Brevipalpus species that transmit plant viruses, B. yothersi
(synonym B. phoenicis Geijskes citrus type) is the main vector of
the cileviruses (Beard et al., 2015; Sánchez-Velázquez et al., 2015;
Ramos-González et al., 2016). Once acquired during any of the
active phases of these mites, CiLV-C is persistently transmitted
to distant parts within the same plant and to new ones, but not
to their offspring (Bastianel et al., 2010; Kitajima and Alberti,
2014). CiLV-C replication in B. yothersi has been suggested (Roy
et al., 2015).

Plants are recurrently invaded by attackers with distinct
infecting or feeding strategies. Upon detection of the attacker-
associated ligands, i.e., pathogen-associated molecular patterns
(PAMP) and/or effectors, the plant immune system triggers a
spectrum of dynamic responses to arrest the colonization process
(Thomma et al., 2011; Cui et al., 2015). Phytohormones such
as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)

mediate a transcriptional reprogramming, tuning up defense
responses that are modulated by the nature of the injury
(Arimura et al., 2011; Pieterse et al., 2012; Alazem and Lin,
2015). The SA signaling pathway is primarily induced in response
to biotrophic pathogens and piercing-sucking herbivores that
cause minimal tissue damage. The JA pathway is subdivided in
two antagonistic and interconnected branches that are activated
in response to distinct stimuli. The ethylene responsive factor-
branch (ERF-branch) is regulated by ERF transcription factors
and synergistically cross-communicates with the ET pathway
in response to necrotrophic invaders. On the contrary, MYC-
branch, controlled by MYC transcription factors, is independent
of ET and mediates defense against herbivores whose action
greatly disrupts tissue integrity. Typically, SA antagonizes the
JA/ET pathways, a plant strategy to efficiently allocate its
resources according to the nature of the attack (Pieterse et al.,
2012).

Plant defense against viruses mainly involves the RNA
silencing machinery (Mandadi and Scholthof, 2013; Pumplin
and Voinnet, 2013). Double stranded RNA (dsRNA) replication
intermediates or structured RNA genomes from viruses can
be considered a special case of PAMP, i.e., VAMP (virus-
associated molecular pattern). VAMPs are recognized by Dicer-
like nucleases (DCL), which further process them into virus-
derived siRNAs. A guide strand of these molecules and an AGO
protein are assembled into the RNA-induced silencing complex
(RISC), which direct specific silencing of the homologous viral
genome (Parent et al., 2012). Albeit previously considered an
independent mechanism of antiviral resistance, the current
understanding is that RNA silencing is connected with the
hormonal pathways through the SA- and JA-induced RNA-
dependent RNA polymerase 1 protein (RDR1) (Hunter et al.,
2013).

In addition to hormones, plant response also involves the
generation of reactive oxygen species (ROS). ROS may act as
signal transduction molecules in the host, as toxic compounds
against the attackers or as a blocking agent to their colonization
by promoting the reinforcement of the plant cell walls (Foyer
and Noctor, 2013; Camejo et al., 2016; Gilroy et al., 2016).
Moreover, ROS accumulation may lead to the activation of the
hypersensitive response (HR) (Foyer and Noctor, 2005; Xia et al.,
2015). ROS and SA pathways are interconnected and mutually
enhanced, promoting a self-amplifying feedback loop that drives
HR (Xia et al., 2015). Hypersensitive-like response can also be
observed as an outcome of plant-attacker interactions where the
typically involved effectors and ligands are missing, suggesting
the participation of yet unknown host proteins (Li et al., 2010).

Plant defenses are constantly challenged, and even hijacked,
by the mechanisms of virulence from evolved attackers.
Hormonal cross-talking that usually occurs during the plant
immune response can be wielded by the attackers for their
own benefit (Pieterse et al., 2012). In contact with plants,
some insect eggs induce high level of SA, leading to a strong
reduction of the JA-mediated defenses and, hence, decreasing
their interference on the future larva feeding (Little et al.,
2007; Bruessow et al., 2010; Gouhier-Darimont et al., 2013;
Hilfiker et al., 2014). Extracts from these eggs reduce the MYC
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protein levels in a SA-dependent manner (Schmiesing et al.,
2016). Moreover, insects and mites secrete proteins in their
saliva which modulate, and even suppress, the plant defense
response (Kant et al., 2015; Villarroel et al., 2016). In the
saliva, proteins from arthropod-associated microorganisms, i.e.,
endosymbiont bacteria and viruses, are also responsible for plant
defense elicitation (Chaudhary et al., 2014; Jaouannet et al.,
2015). Similarly, plant viruses encode suppressors to efficiently
overcome the RNA silencing (Li and Ding, 2006). Virus derived
proteins have also been implicated inmutual benefit to pathogens
and their vectors (Casteel and Falk, 2016).

Despite the uniqueness of the citrus leprosis pathosystem,
its molecular aspects are poorly understood. To extend our
comprehension of the mechanisms underlying it, the current
study evaluated the model plant Arabidopsis thaliana by profiling
the mRNA expression of marker genes of the main defense
pathways during the course of its interaction with both non-
viruliferous and CiLV-C viruliferous Brevipalpus mites using
RT-qPCR. Moreover, we searched for evidence of an HR by
performing histological tests on the injured plant tissues. Finally,
we evaluated the feasibility of using Arabidopsis as a model host
for citrus leprosis studies by comparing the transcript profiles of
some selected Arabidopsis genes with their homologs of Citrus
sinensis. In addition to the first evidence on how plants respond
to both Brevipalpus feeding and CiLV-C infection, we present
evidence of changes in the behavior of the vector mites in CiLV-
C infected plants. Additionally, we provide data about CiLV-C
inoculation efficiency by the mite and indicate the plant reference
genes to be used in the current and future transcriptomic studies
involving the citrus leprosis pathosystem.

RESULTS

An Inoculation Access Period of 6 h
Results in 100% of CiLV-C-Infected
Arabidopsis plants by Viruliferous
Brevipalpus yothersi Mites
Since the successful inoculation of CiLV-C is only achieved using
viruliferous mites, the analysis of the transcriptional profiles
of plant genes involved in the interaction with this virus can
only be inferred by comparing the profiles of plants infested
with viruliferous and non-viruliferous mites. However, as upon
infestation the mites do not feed in a synchronous manner, the
time of CiLV-C inoculation may vary among a set of infested
plants. To reduce the impact of phased out infections over the
analysis of the expression profiles of genes implicated in the
earlier steps of the interaction, we conducted a preliminary
experiment to determine the minimal feeding period necessary
to achieve 100% of infection of plants infested with viruliferous
mites. Seven to ten days after infestation (dai), Arabidopsis plants
inoculated with viruliferous mites either for 4 or 6 h showed
the typical symptoms of CiLV-C infection; i.e., chlorotic spots in
green leaves and green islands in yellow senescent ones (Arena
et al., 2013) (symptoms as in Figure 1). However, the number
of symptomatic plants differed between the two treatments. In
the 4 h treatment only 30% of the plants displayed symptoms

FIGURE 1 | Phenotypes of Arabidopsis thaliana (left) and Citrus sinensis

(right) plants infested with non-viruliferous and CiLV-C viruliferous Brevipalpus

yothersi mites during the time course experiments. Pictures from Arabidopsis

and C. sinensis were taken at 8 and 25 days after infestation, respectively.

Infested leaves are indicated by asterisks (*).

TABLE 1 | CiLV-C inoculation efficiency of Arabidopsis thaliana with five

viruliferous Brevipalpus mites after different inoculation access periods

(IAP).

IAP Test-plants Symptomatic PCR-positive Inoculation

(n) plants (n) plants (n)b efficiency (%)

4 h 10 3 3 30

6 h 10 10 10 100

Controla 10 10 10 100

a Inoculation positive control, where CiLV-C viruliferous mites were kept onto plants

throughout the experiment.
bPlants were evaluated by RT-PCR using primer pairs designed for a region within the

CiLV-C MP gene (Locali et al., 2003).

compared to 100% in the 6 h treatment (Table 1). Presence of
CiLV-C in all symptomatic plants was confirmed by RT-PCR
(data not shown). Thus, from these analyses we determined that
6 h was an appropriate time to initiate the evaluation of the
Arabidopsis responses to CiLV-C infection.

F-BOX, SAND and TIP41 Are Suitable
Reference Genes for Transcript
Normalization during
Arabidopsis/Mite/Cilevirus Interaction
A time course experiment to evaluate Arabidopsis interaction
with non-viruliferous and viruliferous mites was set up. Six
candidate reference genes (EF1A, F-BOX, GAPDH, PPR, SAND,
and TIP41) for transcript normalization were evaluated by
assessing their expression levels. Quantification cycle (Cq)-values
ranged from 23.98 to 36.01 (Table 2), and only those whose
transcripts accumulated in moderate quantities (15 < Cq <

30, Wan et al., 2010) were further selected (i.e., EF1A, F-
BOX, GAPDH, SAND, and TIP41). Statistical analysis using
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TABLE 2 | Arabidopsis thaliana candidate reference genes ranked

according to their expression stability.

Gene Locus Mean Cq (±SD)a Stability value (M)b Rankingb

FBOX AT5G15710 30.46 ± 0.29 0.18 1

TIP41 AT4G34270 28.15 ± 0.31 0.18 1

SAND AT2G28390 28.30 ± 0.26 0.19 2

EF1α AT5G60390 23.98 ± 0.38 0.22 3

GAPDH AT1G13440 30.19 ± 0.71 0.34 4

PPRc AT5G55840 36.01 ± 0.41 - -

aQuantification cycle (Cq) and standard deviation (SD) values were obtained from RT-

qPCR of 27 samples (three technical replicates of nine biological samples across three

experimental conditions: plants infested with viruliferous mites, non-viruliferous mites or

not infested).
bM-values, calculated by geNorm (Vandesompele et al., 2002) based on RT-qPCR data,

increase from the most stable pair of genes to the least stable.
cPPR gene was excluded from analyses due to its low expression level (Cq-value > 35).

geNorm (Vandesompele et al., 2002) revealed that the F-BOX,
SAND, and TIP41 genes presented the lowest M-values, which
correspond to the highest expression stabilities. Since data
normalization is preferably done using at least three reference
genes (Vandesompele et al., 2002), these were selected for the
RT-qPCR analysis conducted in this work.

Infestation with Non-viruliferous Mites
Induces the SA Pathway and a Response
against Necrotrophic Rather than
Herbivorous Attackers in Arabidopsis
Expression of several genes involved in SA response (ICS1, EDS5,
NPR1, WRKY70 and PR5), JA/ET pathways (ETR1, EIN2,MYC2,
and PDF1.2) and gene silencing mechanism (AGO2), in addition
to marker genes for HR (NHL10) were induced as soon as at
6 h after infestation (hai) (Figure 2), indicating a rapid and
combined response of the plants to the mites.

Genes of the SA pathway remained induced throughout the
time course, i.e., ICS1: encoding the enzyme responsible for
main SA biosynthesis in defense responses, EDS5: the transporter
of SA from the chloroplast to cytoplasm, NPR1: the main
regulator of SA-responsive genes and the transcription factor
(TF) WRKY70. While statistical analysis indicated an induction
of the defense gene PR5 as early as 6 hai, the expression of this
gene as well as that of PR1 were noticeably up-regulated at 8 dai
(Figure 2).

The expression of most of the evaluated genes of the JA/ET
pathways was also induced at least at one time point with the
exception of JAR1, whose relative expression was not altered at
the earlier times of the infestation and was reduced at 8 dai
(Figure 2). Up-regulation of the ethylene receptor gene (ETR1)
was observed at 6, 12 hai and 8 dai; while induction of the main
positive regulator downstream of the ethylene perception (EIN2)
was detected at 6 hai and 8 dai. Up-regulation of the TF MYC2
was detected at 6 hai, but its relative expression was gradually
reduced at the following two time points and increased again
at 8 dai. The relative expression of the genes PDF1.2 and VSP2
increased during the interaction, although at different levels

and time points. Induction of PDF1.2 was noteworthy since its
transcript levels were 500-fold higher than in not infested plants
(Figure 2).

Expression of genes of the RNA silencing mechanism was also
modulated in response to mite feeding (Figure 2). Induction was
verified for RDR1 (12 hai), AGO2 (6 hai) and DCL2 (12 hai). We
also observed repression of AGO1 at 12 hai, of HEN1 and RDR6
at 12 hai and 8 dai, and of DCL4 at 6, 12 hai and 8 dpi.

RBOHD gene, which encodes a NADPH oxidase enzyme
responsible for ROS production, was highly induced at 8
dai, whereas the HR specific gene NHL10 was found up-
regulated throughout the time points assessed, except at 24 hai
(Figure 2).

Arabidopsis Infestation with CiLV-C
Viruliferous B. yothersi Mites Enhances SA
Response and Suppresses the JA/ET
Pathway
CiLV-C loads during the time course experiment were assessed
using a RT-qPCR assay established during this work. Virus was
detected in all plants infested with viruliferous mites, whereas
its absence was confirmed in plants either infested with non-
viruliferous mites or non-infested. In the subset of plants
collected at 12 and 24 hai, virus titers were ca. 2-fold higher (p
< 0.05) than in plants collected at 6 hai, whereas at the time of
symptom appearance (8 dai), the viral load increased 2000-fold
(Figure 3A).

Overall, the expression of the SA pathway related genes were
higher in plants infested with viruliferous mites than in those
infested with non-viruliferous ones (Figure 2). For instance, the
expression of genes coding for proteins acting upstream of the
pathway (ICS1 and EDS5) was triggered in higher levels as
early as 6 hai, whereas those encoding downstream proteins
were gradually up-regulated. Induction of the TF TGA3 and the
defense protein PR5 were observed in samples collected at 12
hai. In the case of WRKY70, NPR1, and PR1, maximum relative
expressions were detected at the latest stage of the infection (8
dai), when the highest viral loads were reached (Figure 3A).

In contrast to the general activation of genes of the SA
pathway, genes of the JA/ET pathways displayed distinct
expression patterns (Figure 2). Upon infection, genes encoding
the receptors for JA (JAR1) and ET (ETR1) were up-regulated,
although the expression levels of downstream genes of this
pathway were reduced. EIN2 and MYC2 were repressed at 6
and 12 hai, respectively, whereas the relative expression of the
pathway outcome genes PDF1.2 and VSP2 showed a marked
reduction at the end of the evaluation.

Core genes of the RNA silencing mechanism showed distinct
expression profiles in plants infested with non-viruliferous
compared to those infested with viruliferous mites (Figure 2).
RDR6 andHEN1were induced earlier (6 and 12 hai, respectively)
than AGO2 (8 dai), whereas the Dicer-like nucleases genes were
suppressed during the infection. The lowest relative expressions
ofDCL2 andDCL4were detected at 12 hai and 8 dai, respectively.

The expression patterns of the marker genes of the ROS
burst and HR were up-regulated in response to virus infection.
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FIGURE 2 | Expression profiles of Arabidopsis thaliana genes involved in the main plant defense pathways assessed by RT-qPCR. In green, plants kept

without mites. In orange, plants infested with non-viruliferous mites. In red, plants infested with CiLV-C viruliferous mites. Data are presented as fold change values in

comparison with not infested plants (with fold change value set to 1) or expression levels when transcripts were not detected in not infested plants. Values represent

the mean of 10 biological replicates for each set. Error bars represent standard errors. Different letters correspond to different expression levels between treatments

within the same time point (ANOVA and Tukey’s HSD post-hoc test, α < 0.05). hai, hours after infestation; dai, days after infestation.
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FIGURE 3 | CiLV-C loads on Arabidopsis thaliana (A) and Citrus sinensis (B) plants infested with viruliferous Brevipalpus yothersi mites throughout the time

course of the interaction. Data are presented as absolute number of copies (log) of the CiLV-C p29 gene normalized against SAND genes corresponding to each plant

species. Values represent the means of 10 biological replicates for each time point. Standard errors are represented on each bars. Different letters correspond to

different number of copies between the time points assessed (ANOVA and Tukey’s HSD post-hoc test, α < 0.05).

Induction of RBOHD was observed as early as 6 hai, whereas
induction of NHL10 was detected at 8 dai.

Sweet Orange Plant Response to Citrus
Leprosis Mirrors Major Hallmarks of the
Arabidopsis/Brevipalpus Mite/CiLV-C
Interaction
The expression profiles of some key genes involved in the defense
response of Arabidopsis to Brevipalpus mites and CiLV-C (PR1,
MYC2, AGO2, and WRKY70) were also evaluated in infested
sweet orange plants.

In citrus plants infested with viruliferous mites, the virus was
detected by RT-qPCR as early as 6 hai (Figure 3B). Viral loads
increased around 104-fold after 25 days of infection. Symptoms
were firstly observed at 17 dai, when small chlorotic spots started
to develop in some plants. Typical chlorotic and necrotic lesions
of citrus leprosis only were observed at 25 dai (Figure 1).

Differences in gene expression were not observed between
not infested plants and those infested with non-viruliferous
mites at 6 hai. At this time, only the expression of WRK70
and AGO2 were induced in response to the infestation with
viruliferous mites (Figure 4). However, at 25 dai all genes had
their expression altered. Particularly, high relative expression
of AGO2 was observed on plants infested with viruliferous
mites, suggesting a RNA silencing response specific to CiLV-
C infection. The SA-dependent PR1 gene was induced both in
plants infested with non-viruliferous and viruliferous mites, but
in the latter treatment its relative expression was much higher,
probably indicating an exacerbated response to the viral infection
progress. By contrast, the expression of the JA/ET-related TF
MYC2 was induced only in plants infested with non-viruliferous
mites, suggesting that its expression is reduced to basal levels
upon infection by CiLV-C. The expression of WRKY70, the TF
responsible for the SA-JA cross-talk, was induced as a result of
mite feeding, but it was higher in plants infected with CiLV-C.

CiLV-C Infection Intensifies the Oxidative
Stress and Cell Death in Arabidopsis Plants
ROS production was detected using the assay based on the
oxidation of 3,3′-diaminobenzidine (DAB), which turns brown
in the presence of hydrogen peroxide (H2O2). Discrete brownish
spots were detected in leaves collected as early as 6 and 12 hai
in plants of both mite-infested treatments, and their frequency
increased at 24 hai comprising up to 1.5 and 1.9% of the
stained tissue area in plants infested with non-viruliferous and
viruliferous mites, respectively (Figures 5A,B). DAB stained area
concentrated in the leaf midribs, which correspond to preferred
mites feeding regions. At 8 dai, the number of spots increased
and they were observed alongside the leaves as well (Figure 5C).
Brownish areas were noticeably larger and more frequently seen
in virus-infected leaves, representing approximately 25.6% of
the leaf area. In plants infested with non-viruliferous mites the
stained tissue only represented 4.5% of the leaf. H2O2 production
was not observed in non-infested plants.

In infested plants, dead cells were detected since 6 hai and they
increased in number over time as revealed by trypan blue dying
(Figure 5D). Foci of dead cells were mostly confined to the leaf
main veins and chiefly corresponded to individual cells during
the early times of the interaction (6–24 hai). Leaves of plants
infested with viruliferous mites presented a higher frequency of
blue spots and these were larger as they likely involved greater
number of cells. As observed in the accumulation of H2O2, spots
of dead cells were scattered throughout the virus-infected leaves
at 8 dai. No stain was detected in leaves of the healthy control
plants.

CiLV-C Infection in Arabidopsis Modules
the Behavior of Brevipalpus Mites
To evaluate the putative role of CiLV-C infection over the
behavior of Brevipalpus mites, two sets of healthy Arabidopsis
plants were infested with two populations of either viruliferous
or non-viruliferous adult mites. Typical localized symptoms

Frontiers in Plant Science | www.frontiersin.org 6 November 2016 | Volume 7 | Article 1757

22

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Arena et al. Plant/Brevipalpus Mite/Cilevirus Interaction

FIGURE 4 | Expression profiles of Citrus sinensis genes involved in the main plant defense pathways assessed by RT-qPCR. In green, plants kept without

mites. In orange, plants infested with non-viruliferous mites. In red, plants infested with CiLV-C viruliferous mites. Data are presented as fold change values in

comparison with not infested plants (with fold change value set to 1). Values represent the mean of 20 biological replicates for each set. Error bars represent standard

errors. Different letters correspond to different expression levels between treatments within the same time point (ANOVA and Tukey’s HSD post-hoc test, α < 0.05).

hai, hours after infestation; dai, days after infestation.

started to appear at 7 days after infestation with viruliferous
mites only. After 13 days of infestation, the number of mites
per plant was higher in those infested with viruliferous ones
(p < 0.01) (Supplementary Table 2, Figure 6). While no
significant differences in mite numbers were observed between
primarily and secondary infested leaves in plants that received
viruliferous mites (p > 0.05), the non-viruliferous mites were
unevenly distributed throughout the infested plants, with higher
population densities found in the secondary infested leaves
(p < 0.05). The total number of mite eggs counted in the two
sets of plants did not differ significantly (p > 0.05). However, the
number of eggs in the primarily infested leaves was superior to
that in the secondary infested leaves (p < 0.01) for those plants
infested with viruliferous mites, whereas no such differences
were observed for plants infested with non-viruliferous mites
(p > 0.05).

DISCUSSION

In this work we provide insights into plant response during citrus
leprosis infection, an emergent viral disease that threatens citrus
production in the Americas (Roy et al., 2015). Remarkably, this
disease reveals an atypical pathosystem in which its etiological
agent, CiLV-C, does not systemically spread in the host plants
and half of the genes encoded by its genome are considered
as orphans since they have no homologs in other viral species
(Locali-Fabris et al., 2006; Tautz and Domazet-Lošo, 2011).
Additionally, Brevipalpus yothersi mites, the CiLV-C vector, also
attack hundreds of plant species of very distinct families, have
worldwide distribution and exhibit an unusual biology (Weeks
et al., 2001; Childers et al., 2003b).

To shed light on citrus leprosis pathosystem, we evaluated the
transcriptional profiles of marker genes of Arabidopsis defense
pathways, ROS production and the occurrence of cell death upon
infestation with either non-viruliferous or CiLV-C viruliferous

mites. Moreover, we extended these analyses to sweet orange in
order to validate the use of Arabidopsis as a model plant for the
study of citrus leprosis.

As a result of the interaction of Arabidopsis with non-
viruliferous mites, small areas likely involving a few dead cells
proliferated in infested leaves while increased amounts of H2O2

were detected within early stages of the interaction. Such a
pattern of dead cell patches may be a direct consequence of mite
feeding and resembles that observed during interaction of the
mite Tetranychus urticae with Arabidopsis and bean plants in
which only one cell is targeted by the mite’s stylet (Bensoussan
et al., 2016). Brevipalpus activity also elicited the expression of
SA pathway genes (biosynthesis, signaling and response), and
the JA/ET responsive genes PDF1.2 and VSP2. Notably, the
expression level of PDF1.2wasmuch higher than that ofVSP2, ca.
500- and 15-fold, respectively, in comparison to the not infested
treatment at 8 dai.

The switching between strong and mild expression levels
of the JA-responsive genes was previously described as an
herbivore strategy to rewire the plant response in its favor
(Verhage et al., 2011). Based on this, our data supports the
hypothesis that B. yothersimites might manipulate plant defenses
to their own benefit. Typically, plant response to herbivory
and tissue damage triggers the JA signaling pathway, which
controls two major acting branches (Wu and Baldwin, 2010;
Arimura et al., 2011; Erb et al., 2012). Activation of each
branch is mediated by several TFs usually represented by MYC2
and ERF1. Whereas the ERF-branch induces the expression of
genes such as PDF1.2 to counteract necrotrophic pathogens, the
MYC-branch up-regulates genes such as VSP2, which encodes a
phosphatase with anti-herbivory activity (Verhage et al., 2011;
Kazan and Manners, 2013). TFs from the MYC-branch also
interact with TFs of the ERF-branch, and vice versa, repressing
each other (Song et al., 2014). Under herbivory attack, wild-type
Arabidopsis plants preferably activate the MYC branch; however,
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FIGURE 5 | Accumulation of reactive oxygen species (ROS) and cell death in Arabidopsis thaliana plants infested with non-viruliferous and CiLV-C

viruliferous Brevipalpus yothersi mites at 6 hours after the infestation (hai), 12 hai, 24 hai, and 8 days after the infestation (dai). (A) Detection of hydrogen

(Continued)
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FIGURE 5 | Continued

peroxide by 3,3′-diaminobenzidine (DAB) staining at 8 dai on leaves infested with viruliferous mites, non-viruliferous mites and not infested, respectively. Highlights on

leaves midribs represent the regions where mites concentrate, used to quantification of stained area. (B) Quantitative measure of DAB brownish areas on highlighted

regions along the course of the infestation. Values represent the means of 10 biological replicates for each set. Error bars represent standard errors. (C) Detail of ROS

detection in leaves stained with DAB. (D) Detail of cell death in leaves stained with trypan blue.

FIGURE 6 | Distribution of Brevipalpus yothersi adult mites and eggs in Arabidopsis thaliana. Non viruliferous (NV) or CiLV-C viruliferous (V) mites were

deposited in three leaves of each plant and were counted at 13 days after the infestation. Data are presented as the average percentages of mites or eggs in the

primarily infested leaves (where mites were initially deposited) and secondary infested leaves (due to mite migration to contiguous leaves). Error bars represent standard

errors. Statistically significant differences at p < 0.05 (*) or < 0.01 (**) are indicated. Bracket indicates the comparison between the number of NV and V mites.

activation of the ERF-branch occurs, for instance, in plants
impaired in the MYC-branch, as in the case of Arabidopsis jar1-1
mutants (Verhage et al., 2011). In the Arabidopsis-Brevipalpus
interaction assessed in this study, the down-regulation of
JAR1 was accompanied by an increased expression of PDF1.2
detected at the end of the time course. Therefore, repression
of JAR1 could redirect the JA pathway toward PDF1.2 thus
reducing the anti-herbivory defense conferred by the MYC-
branch.

Arabidopsis infestation with Brevipalpus also triggered SA
signaling leading to the up-regulation of PR responsive genes
within 24 hai. This has been observed in responses to certain
arthropods that cause mild tissue injuries such as the piercing-
sucking insects like aphids (Zarate et al., 2007; Arimura et al.,
2011). By exploiting the natural cross-talk between the SA-
JA/ET signaling pathways, these herbivores suppress JAmediated
defenses favoring their own performance (Zarate et al., 2007;
Hogenhout and Bos, 2011; Zhang et al., 2013). When induced,
SA down-regulates the transcription of JA responsive genes from
both ERF and MYC branches through a mechanism mediated by
NPR1 and WRKY70 (Caarls et al., 2015). However, differently
than in insects, in plant-mite interactions, both SA and JA/ET
signaling pathways are simultaneously induced and apparently
do not antagonize each other (Zhurov et al., 2014). Although this
could be the case of Brevipalpus-Arabidopsis interaction, where
bothVSP2 and PDF1.2were induced at most of the analyzed time
points, we cannot exclude that during this interaction SA and JA
may actually antagonize each other, although partially, and the JA
response we report here is intermediate. Such a relationship was

also suggested during plant interaction with Tetranychus mites
(Alba et al., 2015).

Modulation of plant response by herbivores has been shown
to occur by effector proteins present in their saliva (Hogenhout
and Bos, 2011). Piercing-sucking insects puncture and deliver
effectors to suppress plant defenses and establish compatible
interactions. Application of oral secretions of Pieris rapae
caterpillars on Arabidopsis leaves, for example, activates the ERF-
branch, suggesting that compounds in the saliva divert plant
response favoring the herbivore (Verhage et al., 2011). Analogous
to aphids, spider mites also suppress plant defenses (Sarmento
et al., 2011; Alba et al., 2015) through delivery of effectors via
their saliva (Villarroel et al., 2016). Tetranychus evansi suppresses
defense routes in tomato, reducing deterrent compounds to
even lower levels than constitutive ones expressed in healthy
plants (Sarmento et al., 2011). Brevipalpus feeding involves the
piercing of plant tissues, and likely, the injection of saliva inside
the host cells through a tube formed between its interlocked
stylets (Alberti and Kitajima, 2014). Therefore, our results
indicating the induction of signaling pathways associated to
herbivore manipulation in Arabidopsis suggest that Brevipalpus
might also inject effectors in their hosts through the saliva.
Since herbivore host range is likely limited by its ability to
suppress effectual plant defenses (Hogenhout and Bos, 2011),
it is suggested that generalists are more suppressive of plant
defense than specialists (Ali and Agrawal, 2012). Brevipalpus
mites are extreme generalists, colonizing a wide range of hosts
that includes more than 900 plant species spanning more than
a 100 plant families (Childers et al., 2003b). In this regard, the
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repertoire of immune response suppression strategies observed
during the interaction with Arabidopsis consistently supports the
polyphagia of Brevipalpusmites.

CiLV-C infection in Arabidopsis triggered SA-dependent
genes, a common response of plants to biotrophic pathogens
(Pieterse et al., 2009). From a general point of view, the patterns
of expression of the SA pathway genes resembled those observed
after infestation with non-viruliferous mites, though fold changes
of some genes such as NPR1 and WRKY70 were higher in
the presence of the virus. This activation likely reaches the
threshold required to trigger the down-regulation of JA/ET
responsive genes. In the presence of CiLV-C, PDF1.2 and VSP2
were drastically repressed (13- and 4-fold lower, respectively) at
latest stages of the infection when compared to plants infested
with non-viruliferous mites, suggesting the occurrence of SA-JA
antagonism.

Infestation of Arabidopsis with CiLV-C viruliferous mites
typically caused viral infection in the leaves where mites were
deposited (primarily infestation). Viral infection as consequence
of a secondary infestation due to mite migration between
contiguous leaves were barely detected at 8 dai, as observed in
Figure 1, or even after 13 dai, when the final evaluation was
performed. Results obtained in this work indicated that infected
leaves become more attractive for the mites. In absence of
viral infection, mites were preferentially found in the secondary
infested leaves. This behavior seem to be logic considering that
the area for secondary infestation is the largest, comprising more
and newer leaves available for mite colonization. In contrast,
in plants infected by viruliferous mites, no differences were
observed in their distribution, and leaves showing typical CiLV-
C localized symptoms harbored the largest number of eggs,
indicating the preference for oviposition in infected leaves.
Moreover, density of mites (mite/plant) reached higher values
in the infected Arabidopsis plants. Interestingly, CiLV-C infected
sweet oranges plants seem to be also beneficial for Brevipalpus
mite population. In a multifactorial experiment addressed to
evaluate the influence of citrus rootstocks on the relationship
between the mite Brevipalpus sp. and citrus leprosis disease
(Andrade et al., 2013), mite density was significantly higher in
CiLV-C infected plants.

Recent studies suggest that some virus-infected plants are
more attractive for the viral vector settlements and/or more
beneficial to the vector development (Mauck et al., 2012; Casteel
et al., 2014; Prager et al., 2015; Su et al., 2015; Casteel and Falk,
2016). Viruses that depend on vectors to move from infected
to healthy host plants use this strategy as an effective mean to
improve their transmissibility (Belliure et al., 2004; Abe et al.,
2012). For instance, infection by Tomato spotted wilt virus
(TSWV) induces the SA-mediated pathway, which decreases JA-
regulated defenses leading to enhanced attractiveness of plants
to its vector, the thrips Frankliniella occidentalis (Abe et al.,
2012). SA pathway induction by CiLV-C and reduction of JA/ET
mediated response reported here, in addition to other unknown
mechanisms, may benefit Brevipalpus infestation. This issue is
of special significance in the case of the conspicuous nature of
the localized colonization of CiLV-C, because relationship with
its vector is not only essential for plant to plant transmission,

but also to the infection of other parts within the same plant.
On the other hand, CiLV-C may act as a helper (effector-like)
factor of mite infestation to suppress the plant defenses. However,
whether the viral infection mediated by viruliferous mites indeed
may help the mite fitness to plant colonization is yet unclear and
has been addressed in ongoing experiments.

During Arabidopsis interaction with both non-viruliferous
and viruliferous Brevipalpus, fold changes of core genes of
the RNA silencing machinery showed low variation and the
expression profiles were kept mostly invariable, except in the
cases of RDR6 and AGO2, whose expressions were enhanced in
response to virus infection at 6 hai and 8 dai, respectively. RISC
activity against plant viruses preferentially involves AGO1 and,
in case of its suppression, the cell switches to a second layer
of defense mediated by AGO2 (Harvey et al., 2011). Increased
levels of AGO2 during virus infection have been observed in
Arabidopsis during Potato virus X (PVX),Cucumber mosaic virus
(CMV), Turnip crinkle virus (TCV), Tobacco rattle virus (TRV),
and Turnip mosaic virus (TuMV) infections (Carbonell and
Carrington, 2015). Control of AGO2 mRNA levels is mediated
by the microRNA miR403 via AGO1 (Harvey et al., 2011).
Inactivation of AGO1 by some virus suppressor of RNA silencing
(VSRs), e.g., the p38 protein from TCV, leads to the expression
of AGO2. TCV-p38 VSR activity is exerted by a WG motif
that acts as a hook for AGO1 protein, disabling RISC (Azevedo
et al., 2010). Interestingly, a WG/GWmotif is also present in the
COOH terminal domain of the CiLV-C RdRp protein, suggesting
that the activation of AGO2 reported here could result from the
hijacking of AGO1 in an analogous manner as the one described
for TCV. Further experiments need to be carried out to test the
putative VSR activity derived from CiLV-C proteins.

Plant gene expression during CiLV-C resembles that observed
in the course of a plant-virus interaction, where SA pathway
and RNA silencing are activated (Mandadi and Scholthof, 2013).
The current understanding is that both defense responses act
coordinately to counteract viral infection (Alamillo et al., 2006;
Lewsey et al., 2010; Jovel et al., 2011; Hunter et al., 2013).
SA-mediated defense interacts with RNA silencing through
ICS1- and NPR1-dependent up-regulation of RDR1, which
participates in the generation of secondary siRNA (Hunter et al.,
2013). Evidence of interplay between both defenses against
viral infections are increasing in the literature, e.g., Plum pox
virus (PPV) infection of Nicotiana tabacum results in the SA-
mediated potentiation of RNA silencing, thus inhibiting PPV
systemic movement (Alamillo et al., 2006). In sour orange plants
(Citrus aurantium),Citrus tristeza virus (CTV) accumulation and
spread are enhanced when the genes RDR1, NPR1, or DCL2-
DCL4 are silenced (Gómez-Muñoz et al., 2016). For the CiLV-
C/Arabidopsis interaction, the induction of RDR1 corroborates
with this mechanism and indicates that the early activation of
SA in response to mite feeding could pre-induce resistance to
CiLV-C replication.

As observed during the interaction of Arabidopsis with non-
viruliferous Brevipalpus, infestation with CiLV-C viruliferous
mites also elicited the production of H2O2. However, in this case
both the intensity of histochemical signals and fold changes of
RBOHD were higher than in the former case, further confirming
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our conclusion that infection by the virus amplifies the host
responses. Moreover, in these plants, the frequency of patches
of dead cells was also higher, indicating that the plant actively
recognizes the presence of CiLV-C. The oxidative burst both
activates cell death at the infection site during HR and signals
defense pathways beyond the infection site (Levine et al., 1994;
O’Brien et al., 2012). Thus, the observed cell death during CiLV-
C infection may be a consequence of HR which on its turn would
limit the systemic colonization of the host. Indeed, characteristic
necrotic symptoms of CiLV-C infection resemble the outcome
of HR-like, although the evolution up to necrosis shows an
atypically slower progression in sweet orange than that expected
in case of a typical hypersensitive reaction.

Induction of HR in cells of the vascular tissue of sweet orange
leaves was previously proposed as the cause for the non-systemic
spread of CiLV-C (Marques et al., 2007, 2010). In this regard,
caution has to be taken to interpret these and our own results.
Despite the strict relation between cell death and pathogen
restriction, evidence that HR limits viral colonization remains
controversial (Coll et al., 2011). Moreover, effectiveness and
contribution of MP and other CiLV-C-encoded proteins in the
movement of this virus remain unknown. However, regardless
of whether or not cell death is responsible for restricting CiLV-
C systemic movement, the presence of dead cells in association
with ROS production are strong evidence of HR-like response
elicitation in lesions surrounding the feeding sites of viruliferous
mites.

In line with the integration of the RNA silencing with the
classic frame of resistance by PAMP-triggered immunity (PTI)
and effector-triggered immunity (ETI) (Pumplin and Voinnet,
2013; Sansregret et al., 2013), it is tempting to speculate that
the host plants could recognize CiLV-C during activation or
suppression of RNA silencing and summon a classic defense
response. Recognition of CiLV-C could be from dsRNA produced
by virus replication or secondary siRNA derived from RISC,
triggering PTI defenses. Otherwise, plant could trigger an ETI
response through R-mediated recognition of the putative VSR.
In both cases, activation of the SA may convey to an HR-
like response, restricting the virus near the inoculation site by
the mite vector. Altogether, sequences of facts here reported
during Arabidopsis/CiLV-C interaction, e.g., expression of HR-
related genes, activation of effective defense pathways against
viral infections, ROS burst sustained along the infection, localized
cell death and pathogen restriction at the infection site, suggest
that CiLV-C symptoms are the outcome of a HR-like resistance.
Consequently, citrus leprosis should be considered the result of
an incompatible rather than a compatible interaction.

Finally, responses of sweet orange to the Brevipalpus feeding
and CiLV-C infection mirrored those detected in Arabidopsis.
Our analysis revealed the activation of SA- and JA/ET-
dependent defenses against mite feeding. Upon viral infection
on viruliferous mites-infected plants, we observed induction of
SA pathway and AGO2-mediated RNA silencing and reduction
of the JA/ET defenses. However, the defense response was not
established at 6 hai, which indicates a later response of C. sinensis.
Time of symptoms appearance is likely an indicative of this
phenomenon: lesions developed from 17 to 25 dai on the woody

perennial C. sinensis, while in the herbaceous Arabidopsis this
period was reduced to 7 to 10 dai. Although with a slower
progression, the natural host developed a similar pattern of
response than Arabidopsis, which validates this species as a
model to be used in interaction studies of citrus leprosis disease.

With the results presented here, we propose the first model
of Arabidopsis/B. yothersi/CiLV-C interaction (Figure 7). This
model represents a starting point to understand the processes
leading to the development of citrus leprosis and, possibly, other
diseases caused by non-systemic viruses also transmitted by these
vectors. Future studies shall aim at complementing the model
especially with regards to the lacking components and to the
contribution of each hormonal pathway to such conspicuous
interaction.

MATERIALS AND METHODS

Plant Material
Seeds of the Arabidopsis thaliana ecotype Columbia (Col-0)
were obtained from the Arabidopsis Biological Resource Center
(ABRC). Seeds were sown in sterilized soil in 100 mL pots
and incubated during 4 days at 4◦C in a dark chamber. After
this, plantlets were transferred to a controlled growth chamber
(Adaptis AR A1000, Conviron, Winnipeg, Canada) set at 22
± 2◦C and with a 12 h light/dark cycle where they were kept
throughout the experiments. Citrus sinensis L. Osbeck cv. Pera
plants were grown from seeds under greenhouse conditions.

Mite (Brevipalpus yothersi) Rearing and
Infestation
A population of non-viruliferous mites was obtained from a
single female collected from a citrus orchard in the State of Bahia,
Brazil, and further confirmed as B. yothersi using phase contrast
microscopy as reported elsewhere (Beard et al., 2015). Mites
were reared onto unripe fruits of leprosis-immune “Tahiti” acid
lime (Citrus latifolia Tanaka). All fruits were previously cleaned,
dried and partially submerged in liquid paraffin to prevent
desiccation. Mites were transferred to an area of approximately
4 cm in diameter of the fruit surrounded by a barrier of the pest
adhesive Biostop gum (Biocontrole, Indaiatuba, Brazil) prepared
with a wet mixture of wheat flour, plaster, and fine sand (1:1:2)
(Rodrigues et al., 2007). Viruliferous mites were obtained by
rearing the non-viruliferous mites from “Tahiti” acid lime as
described above on sweet oranges fruits collected from a citrus
grove with high incidence of leprosis caused by the CiLV-C strain
SJP (Ramos-González et al., 2016) in São José do Rio Preto,
State of São Paulo, Brazil. Mites from both viruliferous and non-
viruliferous populations were reared for several generations and
periodically evaluated for the presence of CiLV-C by RT-PCR
using primer pairs designed for a region within the CiLV-C MP
gene (Locali et al., 2003).

Assessment of CiLV-C Inoculation Access
Period by Viruliferous B. yothersi Mites
To define the period needed to achieve 100% of CiLV-C infection
of plants after infestation with viruliferous B. yothersi mites, five
viruliferous mites were transferred to each of 10 Arabidopsis

Frontiers in Plant Science | www.frontiersin.org 11 November 2016 | Volume 7 | Article 1757

27

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Arena et al. Plant/Brevipalpus Mite/Cilevirus Interaction

FIGURE 7 | Model representing the interaction of Arabidopsis thaliana plants/Brevipalpus mites/CiLV-C. Left and right leaf halves show hallmarks during

the plant interaction with non-viruliferous and viruliferous mites, respectively. During the feeding of non-viruliferous mites, saliva and putative mite-encoded effectors

are delivered into the mesophyll cells targeted by the mite’s stylet. Reactive oxygen species (ROS) burst, localized cell death and SA and JA/ET pathways are

triggered. Mite induces the expression of the ERF-branch responsive gene PDF1.2 rather than the MYC-branch responsive gene VSP2, which might restrain plant

response against herbivores. In plant infested by CiLV-C viruliferous mites, virions reach mesophyll cells mixed with the salivary flow. CiLV-C multiplies in the initially

infected cell and locally moves to the neighboring cells. Mite feeding and the increasing viral loads generate a stronger stimulus which intensifies the ROS production,

the number of dead cells around the mite feeding site and the SA-mediated response. Increased activity of the SA pathway likely promotes the inhibition of the JA/ET

pathways, leading the downregulation of PDF1.2 and VSP2, which probably improve the mite performance. Both non-viruliferous and viruliferous mite infestations

induce expression profile changes in the core genes of the gene silencing mechanism. Enhanced SA signaling activity in viral presence may contribute to higher RDR1

expression. A putative virus suppressor of RNA silencing (VSR) may target and inactivate AGO1, leading to the up-regulation of AGO2, which addresses a second

antiviral defense line of the RNA silencing. CiLV-C remains restricted at cells surrounding the inoculation site and chlorosis symptoms develop seven to 10 days after

inoculation, probably as a result of a hypersensitive-like response (HR) as consequence of an incompatible interaction.

plants, where they were kept for 4 or 6 h. After the inoculation
period, mites were removed using a small brush and plants were
maintained in a controlled chamber until the development of
symptoms. As positive controls, 10 plants were kept infested with
viruliferous mites throughout the experiment. The inoculation
periods were predetermined considering available data of CiLV-
C infection of common bean (Phaseolus vulgaris) plants using
viruliferous B. yothersi (Garita, 2013). Plants were evaluated daily
for symptoms and CiLV-C infection was evaluated by RT-PCR
(Locali et al., 2003) at the end of the experiment.

Time-Course Gene Expression Analysis on
Arabidopsis
A time course gene expression analysis was conducted on plants
infested with viruliferous or non-viruliferous mites and on non-
infested control plants at 6, 12, and 24 h after infestation (hai)
and at 8 days after infestation (dai), when symptoms were visible.
Four-week-oldA. thalianaCol-0 plants were grouped in sets of 20
individuals and were assigned to each treatment. For infestation,
five (viruliferous or non-viruliferous) mites were transferred to
each of three expanded rosette leaves per plant using a small

brush and a stereoscopic microscope. Infested or control leaves
were collected at each time-point; leaf samples from two plants
were pooled, totaling 10 biological replicates per treatment per
time point. Once collected, leaves were flash-frozen in liquid N2

and stored at−80◦C until RNA extraction.

Time-Course Gene Expression Analysis on
C. sinensis
The time course experiment on sweet orange (C. sinensis)
seedlings was established with the same infestation treatments
and two time points after infestation: 6 hai and 25 dai,
corresponding to 100% inoculate and 100% symptomatic
plants, respectively. Selection of 6 hai as the first time
for evaluation was based on previous results of inoculation
access period in Arabidopsis obtained in this work, and
those described elsewhere using common bean plants (Garita
et al., 2013). Twenty plants per treatment were assayed.
Fifteen mites were transferred to one leaf per plant, which
was previously coated with a wet mixture of wheat flour,
plaster and fine sand (1:1:2) as described above (Figure 1)
(Rodrigues et al., 2007). Each collected leaf represented an
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independent biological replicate, totaling 20 biological replicates
per treatment per time point. Once collected, leaves were
flash-frozen in liquid N2 and stored at −80◦C until RNA
extraction.

RNA Extraction and cDNA Synthesis
Plant RNA was purified from approximately 100mg of leaves
using the RNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands).
Residual plant DNAwas removed by RNAse free DNAse (Qiagen,
Venlo, Netherlands) during RNA extraction. RNA quantification
and A260/A280 ratios were estimated using the NanoDrop ND-
8000 micro-spectrophotometer (Thermo Scientific, Waltham,
MA, USA). RNA integrity was evaluated in 1.2% agarose gels
and the removal of genomic DNA was confirmed by reverse
transcription (RT-) PCR assays using the RNA as template.
cDNA corresponding to each sample (500 ng of total RNA)
was generated using the RevertAid H Minus First Strand
cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA)
as described by the manufacturer. cDNA solutions were diluted
25-fold in RNAse-free water for subsequent analysis by qPCR.

CiLV-C Detection and Quantification
CiLV-C loads were assessed by RT-qPCR using a TaqMan R© probe
complementary to the viral p29 ORF (G.D. Arena, P.L. Ramos-
González, M.A. Machado, J. Freitas-Astúa, unpublished data).
Reactionmixes were prepared as recommended by the TaqMan R©

Fast Universal PCR MasterMix 2X kit manufacturer (Thermo
Scientific, Waltham, MA, USA) and the amplifications were
carried out in a 7500 Fast Real-Time PCR System device (Thermo
Scientific, Waltham, MA, USA). Each sample was analyzed in
triplicate and three template-free controls were performed for
each primer pair. Cq-values were compared with a standard
curve to determine absolute quantities of CiLV-C p29molecules.
Absolute p29 quantities in infected A. thaliana and C. sinensis
were normalized using the expression levels of the species-
specific SAND genes as references. Average of the p29 quantities
of each time point were statistically compared with one-way
ANOVA and Tukey’s HSD (honest significant difference) tests
(α < 0.05).

Reference Genes Evaluation
Six candidate genes were selected for expression stability analyses
based on previous data obtained from A. thaliana subjected to
different stresses (Czechowski et al., 2005) or virus infection
(Lilly et al., 2011) or considering the expression profile of
their Citrus spp. homolog during the infection with CiLV-C
(Mafra et al., 2012). The candidates EF1A, F-BOX, GAPDH, PPR,
SAND, and TIP41 were amplified using the primer pairs listed
in Supplementary Table 1. Expression levels were assessed by
RT-qPCR in Arabidopsis plants infested by either viruliferous
or non-viruliferous mites and in non-infested plants. Cq-values
and relative quantities were determined as described below for
gene expression analysis. Cq-values were imported into geNorm
software (Vandesompele et al., 2002) for stability analysis and
further selection of the reference genes with the lowestM-values.

Gene Expression Analysis
Transcript levels of defense-related genes were assessed by RT-
qPCR. All primer sequences were obtained from the literature
(Supplementary Table 1) and validated by PCR and RT-qPCR.
RT-qPCRmixes were prepared for a final volume of 25 uL with 10
uL of GoTaq qPCR Master Mix (Promega, Madison, WI, USA),
120 or 150 nM of each gene-specific primer pair and 3 uL of
the diluted cDNA. Amplifications were performed in a 7500 Fast
Real-Time PCR System (Thermo Scientific, Waltham, MA, USA)
device, using the standard thermal profile: 95◦C for 20 s followed
by 40 cycles of 95◦C for 3 s and 60◦C for 30 s. Each sample was
analyzed in triplicate. To confirm the absence of genomic DNA
and unspecific reactions, the dissociation curves of each reaction
was inspected and three template-free controls were included for
each primer pair. After this, primer efficiency and quantification
cycle values were determined for individual RT-qPCR using the
algorithm of the Real-time PCRMiner (Zhao and Fernald, 2005).
Gene expression analyses were performed according the 1Cq
model using multiple reference genes (Hellemans et al., 2007).
The efficiency value (E) of each primer pair was estimated as
the arithmetic mean of values from all samples. The Cq-value
of each sample, expressed as the mean of the three technical
replicates, was converted into relative quantities (RQ) using
the function RQ=E1Cq, where 1Cq is the difference between
the lowest Cq-value across all samples for the evaluated gene
and the Cq-value of a given sample. A normalization factor
(NF) for each sample was calculated by the geometric mean of
the RQ-values of the three reference genes. Normalized-relative
quantity (NRQ) of each sample was calculated as the ratio of
the sample RQ and the appropriate NF. Individual fold change
values were determined by dividing the sample NRQ by the
mean NRQ of samples of the calibrator, that is, non-infested
control plants; this procedure renders a mean fold change value
of 1 for the set of plants in the non-infested treatment. For
statistical analysis, one-way ANOVA and Tukey’s HSD test (α
< 0.05) were used to compare the mean expression levels of
the treatments. Statistical analysis was individually done for each
gene at each time-point. For the EDS5 and NHL10 genes, the
number of transcripts in mite-free plants was lower than the
detection limit of the assay. In those cases, Cq-values were not
determined and the data of mite-infested plants were considered
as highly significant.

Histochemical Detection of H2O2 and Cell
Death
Histochemical analyses of Arabidopsis plants were carried out
in a time course manner with the same infestation treatments
and time points of the gene expression analysis. Ten plants per
treatment combination were assayed. Five mites were transferred
to each of two expanded rosette leaves per plant. Each infested
leaf of a plant was assayed for H2O2 production or cell death.
Dead cells were visualized by staining with trypan blue (Martinez
de Ilarduya et al., 2003). Infested or control leaves were boiled in
the presence of lactophenol-trypan blue for 2 min and incubated
overnight at room temperature. Excess dye was removed with
chloral hydrate (2.5 g/mL) for 4 days. H2O2 was detected by
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staining with DAB (Martinez de Ilarduya et al., 2003). Leaves
were vacuum infiltrated for seconds and incubated for 5 h in the
dark to allow the infiltration of DAB. Tissues were boiled in a mix
of ethanol:acetic acid (3:1) for 15 min. Samples were examined
under bright-field light using an Olympus MVX10 (Olympus,
Tokyo, Japan) microscope and images were capture with an
Olympus DP71 (Olympus, Tokyo, Japan) camera. Brownish
areas were measured with the QUANT software (Vale et al.,
2003).

Biology Behavior of Viruliferous and
Non-viruliferous Mites in Wild Type
Arabidopsis Plants
Two groups of 15 and 11 healthy Arabidopsis Col-0 plants were
infested with CiLV-C viruliferous or non-viruliferous Brevipalpus
yothersi mites, respectively. Five mites were transferred to
each of three expanded rosette leaves of each plant (primary
infestation), completing fifteen mites per plant. Sources of mites
and their manipulation were described above. After 13 days of
infestation, plant leaves were carefully detached, and the number
of Brevipalpus eggs and adults were counted. The number of eggs
and mites found in the primary infested leaves were compared
to those found in the rest of the leaves (secondary infestation)
using the Mann Whitney non-parametric test implemented in
R. Furthermore, the same data were compared using t-test, with
similar results. For the parametric test, data were normalized
following ln(x) transformation. Presence or absence of CiLV-C
in leaf samples was confirmed by RT-qPCR as described above.
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CAPÍTULO 2 

 

Hypersensitive response and SA-related defenses are triggered by 

citrus leprosis virus C infection and mimicked by the expression 

of the P61 viral protein 

Keywords: plant-virus interaction, hypersensitive response, defense pathways, salicylic acid, 

jasmonic acid, cross-talk, RNA-Seq 

Abstract 

Citrus leprosis virus (CiLV-C) is an atypical virus that does not spread systemically in any 

of its known plant hosts. Upon inoculation with CiLV-C viruliferous Brevipalpus mites, only 

localized lesions are observed, and viral infection remains restricted to cells around the 

inoculation sites, a phenotype that resembles the outcome of a hypersensitive response (HR). 

Here we aim to expand the limited knowledge of the molecular mechanisms underlying 

plant/CiLV-C interaction. To unravel the kinetics of CiLV-C accumulation, we developed RT-

qPCR assays to detect viral genome and the p29-subgenomic RNA along the course of the 

infection in Arabidopsis plants. CiLV-C loads increase continuously during infection with three 

distinct replication steps. To better understand the global plant response to CiLV-C, we used 

RNA-Seq to evaluate the transcriptome of infected plants. Plant transcriptome is progressively 

reprogrammed in parallel to increasing viral titer. Gene ontology enrichment analysis revealed 

that plant responds to CiLV-C presence with the induction of cell growth-related processes at 

early stages of the infection, and the triggering of processes related to the SA-mediated 

pathway, ROS burst and HR at the pre-symptomatic stage. Conversely, infected plants down-

regulates JA and ET-mediated pathways and processes involved in the primary metabolism that 

includes photosynthesis. The regulation of co-expressed genes by specific classes of 

transcription factors support the induction of cell growth and HR/SA-mediated defenses, and 

repression of JA pathway. To clarify the role of CiLV-C proteins in eliciting plant responses, 

we expressed them individually in Nicotiana benthamiana. Agrobacterium-mediated transient 

expression of the CiLV-C p61 protein consistently leads to a ROS burst, increased expression 

of SA- and HR-related genes, induced levels of SA, reduced levels of JA, and cell death. 

Mimicry of responses typically observed during CiLV-C-plant interaction indicates p61 as the 
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putative viral effector to be neutralized by plant defenses and the determinant of the HR-like 

symptoms associated to the viral infection. Our results support the theory that the symptoms of 

CiLV-C infection might be outcome of an incompatible rather than a compatible interaction. 

1. Introduction 

Citrus leprosis virus C (CiLV-C) is the prevalent causal agent of citrus leprosis, a re-

emerging viral disease affecting citrus orchards. Citrus leprosis is considered the most 

important viral disease of citrus industry in Brazil, the world leader in sweet orange production, 

costing an annual investment of millions of dollars for the chemical control of the mite vector 

Brevipalpus yothersi (Bastianel et al., 2010). Endemic in the Americas, the virus has spread 

throughout the South and Central America and already reached the north of the continent 

(Castillo et al., 2011), threatening nearby citrus producers such as USA. Members of the species 

Citrus leprosis C cilevirus, the type of the genus Cilevirus, have a bipartite genome of two 

positive (+) sense single-stranded RNA molecules encoding six proteins. RNA1 (8745 nt) 

harbors two open reading frames (ORFs) encoding the RNA-dependent RNA polymerase 

(RDRP) and the putative coat protein (P29). RNA2 (4986 nt) presents four ORFs encoding the 

putative movement protein (MP) and the P15, P61, and P24 proteins with unknown functions 

(Locali-Fabris et al., 2006; Pascon et al., 2006). Although P61 and P24 shows distant homology 

with structural proteins of the insect-specific negeviruses (Kuchibhatla et al., 2014), half of the 

CiLV-C genes are considered as orphans (Tautz and Domazet-Lošo, 2011) since they have no 

homologues in other viral species. CiLV-C RNA1 generates one sub-genomic RNA (sgRNA) 

of 0.7 kb for the expression of p29 gene, and RNA2 generates three co-terminal sgRNAs of 3 

kb, 1.5 kb and 0.6 kb corresponding to p61, mp and p24 genes (Pascon et al., 2006). 

Plant cells supporting successful replication of viruses are the source for local infections 

through contiguous cells, invasion of the vascular system and tissue systemic infections. 

Differently from other plant viruses, CiLV-C is unable to accomplish systemic infection in any 

of its natural or experimental host species belonging to distant plant families (Arena et al., 2013; 

Garita et al., 2014). CiLV-C particles are found mainly in the plant parenchyma and epidermal 

cells but rarely in vascular cells (Rodrigues et al., 2003), which may partially explain the virus 

inability to perform long-distance movement. Invariably, CiLV-C remains restricted to cells 

around the inoculation sites by their mite vector, where symptoms of viral infection are 

manifested as localized chlorotic or necrotic lesions. Phenotypically, these symptoms resemble 

the outcome a hypersensitivity response (HR), a cell death resistance process accompanied by 
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the pathogen restriction at the inoculation site during an incompatible interaction (Arena et al., 

2016). 

Plant defense mechanisms against pathogens are based primary on cell surface receptors 

that recognize pathogen/microbe-associated molecular patterns (P/MAMPs) and mount the so-

called pattern-triggered immunity (PTI). Successful pathogens produce effectors that 

counteract PTI but are subject to the direct or indirect recognition by plant resistance (R) 

proteins that trigger an effector-triggered immunity (ETI) (Jones and Dangl, 2006). Metabolic 

changes induced during plant defense can result on a burst of reactive oxygen species (ROS) 

that may culminate in a HR (Xia et al., 2015). The transcriptional reprogramming that results 

in the defense responses is mediated by the action of interconnected phytohormonal-dependent 

pathways and directed according to the nature of the injury. Typically, the salicylic acid (SA) 

pathway confers resistance to biotrophic pathogens and antagonizes the jasmonate/ethylene 

(JA/ET) pathways that in turn induce defenses against herbivores and necrotrophic pathogens 

(Pieterse et al., 2012). Hormonal-mediated pathogen resistance is also connected with the main 

antiviral defense, the RNA silencing. Plant viruses carry effectors that acts as viral suppressors 

of RNA silencing (VSR) which can be perceived by plant R proteins and trigger typical outputs 

of ETI, including HR (Pumplin and Voinnet, 2013). 

Several viral-plant proteins interacting partners have been identified as elicitors of 

hormonal defense responses. Activation of such responses can trigger HR and prevent viral 

infection. For instance, the P0 protein from poleroviruses elicits an HR that is associated to the 

Nicotiana glutinosa gene RPO1, a likely immune receptor of P0 (Wang et al., 2015). Likewise, 

the P38 protein from turnip crinkle virus is the avirulence factor recognized by the Arabidopsis 

R protein HRT, which activates an HR-mediated resistance (Cooley et al., 2000; Pumplin and 

Voinnet, 2013). Interestingly, both P0 and P38 also acts as viral suppressor of RNA silencing 

(VSR), supporting the connection between RNA silencing and classical mechanism of 

resistance against pathogens. Furthermore, viral proteins can modulate hormonal pathways to 

establish mutualism with its vector (Casteel and Falk, 2016). For example, the NIA-Pro protein 

from turnip mosaic virus (TuMV) interferes with ET-mediated responses, resulting in defense 

suppression and consequent enhanced performance of its vector, the aphid Myzus persicae 

(Casteel et al., 2015). Viruses that depend on vectors to move from infected to healthy host 

plants use this strategy of decrease anti-herbivory defense as an effective mean to improve their 

transmissibility (Abe et al., 2012). 
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Despite the economic importance and uniqueness of CiLV-C, little is known about the 

molecular mechanisms during plant infections by this virus. A previous study conducted in 

Arabidopsis thaliana revealed that CiLV-C infection triggers ROS burst and cell death, induces 

the classical antiviral mechanisms of RNA silencing and SA pathway, suppress the JA-

dependent response, and favor the colonization of the mite vector. A model of the interaction 

using these information was depicted (Arena et al., 2016), but it is still a preliminary draft where 

many underlying mechanisms of CiLV-C infection remain to be understood. To assess the 

kinetics of CiLV-C accumulation, we developed specific RT-qPCR detecting viral genome and 

p29-subgenomic RNA and quantified viral loads along the course of the infection. To unravel 

the global plant response to CiLV-C, we evaluated the transcriptome of infected Arabidopsis 

plants by RNA-Seq, whereas the role of CiLV-C proteins in eliciting plant responses were 

assessed by expressing them individually in Nicotiana benthamiana plants. Current work 

expands our knowledge of the plant/CiLV-C interaction and contributes to the identification of 

both plant and viral proteins involved in the development of citrus leprosis disease.  

2. Results 

2.1 CiLV-C titer increases continuously through first ten days of leaf infection, a 

period during which three distinct replication steps are clearly distinguished 

The kinetics of accumulation of CiLV-C in Arabidopsis infected leaves was evaluated 

by RT-qPCR to identify the major steps of viral multiplication and gene expression during the 

infection. TaqMan-based assays were developed for the quantitative detection of sequences 

within two ORFs from the CiLV-C RNA1: p29, which codes for the putative capsid protein and 

is transcribed in a subgenomic RNA, and RdRp, coding for the viral replicase which is directly 

translated to protein from the genomic RNA. To assess the amount of both genomic and 

subgenomic RNA molecules, amplicons corresponding to each region were cloned in plasmids 

that were further 10-fold serially-diluted to generate standard curves (Fig. 1A, B). Regression 

analysis of these standard curves demonstrated the high quality of the assays (R2 = 1 and 0.999 

for p29 and RdRp, respectively), high amplification efficiencies (E = 0.96 and 0.92 for p29 and 

RdRp, respectively), high sensitivity (detecting up to 102 molecules) and covered a wide 

dynamic range (six log units of concentration) (Fig. 1A, B). 
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Figure 1. Accumulation of CiLV-C p29 and RdRp RNA molecules through the course of viral 

infection in Arabidopsis thaliana. Standard curves were obtained from serial dilutions of 

plasmids containing sequences within p29 (A) and RdRp (B) genes. Absolute quantities of both 

molecules (C) and the p29/RdRp ratio (D) were determined eight time points after infestation 

with viruliferous Brevipalpus yothersi mites. Different letters correspond to different number 

of copies between the time points assessed (ANOVA and Student´s t-test, α < 0.05). E = 

efficiency, DAI: days after the infestation.  

 

To quantify the CiLV-C loads along the course of the viral infection in Arabidopsis, a 

time course experiment was set up. Plants were infested with B. yothersi viruliferous mites for 

¼, ½, 1, 2, 4, 6, 8 e 10 days. Symptoms of CiLV-C infection appeared at 7 days after the 

infestation (dai) in 100% of the infested plants that were kept until the two latest time points. 

Using the assays and standard curves described above, the absolute quantities of p29 and RdRp 

molecules were determined (Fig. 1C). All test-samples were positive in both analyses, 

confirming CiLV-C infection. Level of both molecules kept invariable during the first 24 hours 

after the infestation (hai). After this point, they increased continuously until the last time point 

[Tukey’s honest significant difference (HSD) test, α ≤ 0.05]. The highest difference between 

sequential time points was obtained from 2 to 4 days after the infestation (dai), when p29 and 

RdRp increased 66- and 53-fold, respectively (Fig. 1C). 
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To better understand the replication process, the ratio p29/RdRp at each evaluated time 

point was calculated (Fig. 1D). The number of p29 molecules was higher than RdRp across the 

whole experiment (Fig. 1C, D). Higher accumulation of p29 was expected as the assay detects 

both genomic and sub-genomic RNAs, whilst RdRp assay quantifies only the genomic RNA1. 

Within 2-4 dai, the ratio reached the lowest level and after this period the differences between 

sub-genomic and genomic RNAs increased to a level much higher than those observed during 

the first 24 hai (Fig. 1D). The ratio observed at two days matched with increased amount of 

RdRp which may be considered a peak of genome accumulation before the burst of p29 mRNA 

transcription. This experiment allowed us to define three main steps during CiLV-C replication 

in Arabidopsis: i) 0-24 hai, ii) 2-4 dai, and iii) 6-10 dai. 

The results obtained from the kinetics of CiLV-C accumulation were considered to 

select appropriate time-points for the further evaluation of plant response to viral infection. The 

first time points of these steps that also represent the main events of viral infection were 

selected. They were as follow: 6 hai, which correspond to the minimum inoculation access 

period required by mites to obtain 100% of infected plants by viruliferous mites (Arena et al., 

2016), 2 dai, the first moment during the infection when a significant increase in viral genome 

after initial inoculation is obtained, and 6 dai, the pre-symptomatic stage when transcriptional 

events likely take place to culminate in the disease phenotype. 

2.2 CiLV-C infection triggers significant transcriptome changes proportional to 

increasing viral loads 

The global response of Arabidopsis along the course of CiLV-C infection was assessed 

by RNA-Seq. Plants infested with viruliferous mites (CiLV-C-infected) were compared with 

those infested with non-viruliferous ones (mock) at 6 hours after infestation (hai), 2 days after 

infestation (dai) and 6 dai. Illumina sequencing generated roughly 924 million paired-end reads, 

with an average of 38.5 million per library and higher number of reads from mock treatment 

(Supplementary Table 1, Fig. 2A). Overall, 93.5% of the reads aligned in the A. thaliana 

reference genome, with a 90.6% average of uniquely mapped reads (Supplementary Table 1, 

Fig. 2B). The CiLV-C infected samples from 6 dai had the lowest percentage of unmapped 

reads probably due to the higher virus titer and consequently a higher number of reads mapping 

to the virus genome (Fig. 2B). 
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Figure 2. Overview of Arabidopsis thaliana transcriptome upon CiLV-C infection. A) Number 

of paired-end reads generated for each library by Illumina HiSeq sequencing. M: mock-infected 

(plants infested with non-viruliferous mites), V: virus-infected (plants infested with CiLV-C 

viruliferous mites). Dashed line represents the average of paired-end reads from all 24 libraries. 

B) Proportion of uniquely mapped, multi-mapped and unmapped reads obtained for each 

library. Reads were mapped in the Arabidopsis thaliana (TAIR 10) genome using TopHat2. M: 

mock-infected, V: virus-infected plants. C) Principal component analysis of normalized count 

data from all samples. D) Hierarchical clustering analysis of normalized count data z-scores 
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exhibited by differentially expressed genes (DEGs) of each sample within each time point. E) 

Numbers of up- and down-regulated DEGs in CiLV-C infected plants in comparison to mock 

control at each time point. DEGs were identified using DESeq2 and defined by log2 fold-change 

≥ 0.5 and false discovery rate (FDR)-corrected p-value ≤ 0.05. F) Volcano-plots of -log10p and 

log2FC exhibited by each gene in CiLV-C infected plants compared to mock control at each 

time point. Up- and down-regulated genes are presented in red and green, respectively. FC: 

fold-change, p: FDR-corrected p-value, hai: hours after infestation, dai: days after infestation. 

 

The main sources of variability within samples were assessed by principal component 

analysis (PCA) using the normalized count data (Fig. 2C). The first component, which accounts 

for 64% of the variance, separated the samples by both time after infestation and virus treatment 

and reflects the intensity of stimuli. Mock samples from different time points grouped 

separately, due to the differential expression proportional to longer mite feeding period (Arena 

et al., 2018). At 6 hai, where the lowest virus titer was detected, all samples grouped together 

regardless the virus presence/absence. Similar profile with a single group of infected and control 

samples was obtained for samples from 2 dai, where the virus titer is slightly higher than at 6 

hai. Distinct expression profiles between infected and control samples might be masked by the 

massive transcriptome changes imposed by feeding of non-viruliferous mites (Arena et al., 

2018). At 6 dai, where the highest virus titer was reached, infected and mock treatment formed 

two separated groups. Hierarchical clustering of samples within each time point (Fig. 2 D) 

confirmed the clusterization profile obtained by PCA. Although samples from both treatments 

were grouped together at 6 hai or 2 dai, mock and virus-infected samples were clearly separated 

at 6 dai.  

Differentially expressed genes (DEGs) in virus infected plants compared with mock 

were detected within each time point using the negative binomial-based DESeq2 package and 

False Discovery Rate (FDR)-correction of p-values for multiple comparisons. Overall, 3892 

DEGs (α ≤ 0.05) were detected (Supplementary Table 2). No gene was differentially expressed 

at 6 hai (Fig. 2E, F), in agreement with the same expression profile displayed by mock and 

virus-infected plants (Fig. 2C, D). The number of DEGs progressively raised along the course 

of the infection (Fig. 2E, F) in parallel to increasing virus titer (Fig. 1C). At 2 dai, 294 DEGs 

were obtained, of which the majority (253 DEGs, ≅ 86%) was up-regulated (Fig. 2E). The 

striking largest number of DEGs throughout the interaction was detected at 6 dai, when CiLV-

C infection deregulated 3717 genes, evenly distributed in 1995 (≅ 53.7%) up- and 1722 (≅ 

46.3%) down-regulated DEGs (Fig. 2E). Analysis performed here show that CiLV-C infection 
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triggers a significant reprogramming on infected plants that is proportional to the course of viral 

multiplication. 

2.3 CiLV-C infection induces cell growth and HR-related processes, and represses 

the plant primary metabolism and JA/ET-mediated responses 

Gene ontology (GO) enrichment analyses were performed with the independent sets of 

up- and down-regulated DEGs from each time point to identify the most relevant biological 

processes (BPs) disturbed during CiLV-C infection (Supplementary Table 2). DEGs and BPs 

that were shared by or exclusive to experimental sets are presented (Fig. 3A, B). Using the 

Cytoscape app BinGO, the enriched BPs were visualized as networks where color and size of 

the nodes identify p-values and number of DEGs from each ontology, respectively. 

The GO enrichment analysis revealed 49 and 5 over-represented BPs (hypergeometric 

test, α ≤ 0.001) in the sets of DEGs that were up- and down-regulated at 2 dai, respectively. 

Even though most of the DEGs identified at 2 dai were exclusively induced at this time point 

(146 DEGs, Fig. 3A), the majority of enriched BPs obtained from the set of up-regulated genes 

at 2 dai overlapped between induced sets of both time points (28 BPs, Fig. 3B). This suggests 

that several processes triggered soon at 2 dai are still modulated at 6 dai, and the discrepancy 

in the number of exclusive and shared DEGs probably reflects the occurrence of early and late 

responses of the same process. BPs enriched in both up-regulated DEGs from 2 and 6 dai 

included general terms of plant response to stimuli such as “defense response”, “regulation of 

response to stress” and “regulation of response to stimulus” (Supplementary Table 3). Likewise, 

enriched BPs that were up-regulated at 2 dai and down-regulated at 6 dai mainly referred to 

broad ontologies such as “response to hormone”, “response to endogenous stimulus” and 

“signaling” (Supplementary Table 3). On the other hand, 16 and 5 BPs were exclusive to up-

regulated and down-regulated DEGs from 2 dai, respectively (Fig. 3B). The BPs uniquely 

induced at 2 dai were predominantly related to cell growth, e.g. “cell growth”, “cellular 

developmental process”, “cell wall organization”, “cell morphogenesis” and “cell 

differentiation” (Supplementary Table 3). Of the five BPs uniquely repressed at 2 dai, three 

were associated to the ethylene pathway: “ethylene-activated signaling pathway”, “cellular 

response to ethylene stimulus” and “response to ethylene” (Supplementary Table 3). 

 Most of BPs were over-represented in the sets with higher number of genes, i.e. the ones 

modulated at 6 dai (Fig. 3A). GO enrichment analysis disclosed 124 and 114 enriched BPs 

(hypergeometric test, α ≤ 0.001) in the groups of DEGs that were up- and down-regulated at 6 
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dai, respectively (Supplementary Table 3). Apart from a few broad-term processes common to 

the DEGs induced at 2 dai, the vast majority of the BPs enriched at 6 dai were exclusive to this 

time point (Fig. 3B). Within these unique categories, only 4 were shared between 6 dai up- and 

down regulated-cluster, revealing that induced and repressed genes at 6 dai are mostly not 

involved in the same process and that distinct pathways are differentially modulated in the pre-

symptomatic stage (Fig 3B). 

 The cluster of up-regulated DEGs at 6 dai was enriched in 92 exclusive categories (Fig. 

3B) and revealed a massive modulation of the plant immune system (Fig. 3C, Supplementary 

Table 3). BP categories were mainly clustered in two groups comprising response to stimulus 

and biological regulation (Fig. 3C). Both groups were preponderantly represented by processes 

associated with response to stress and defense. The group of BPs centralized in response to 

stimulus was branched in stress-related nodes that included “response to biotic stimulus” 

(linked to the subcategories of response to bacteria, fungus, oomycetes and host defenses), 

“response to abiotic stimulus” (represented by subcategories of response to osmotic stress and 

oxygen levels) and “response to oxidative stress” (specified from “response to ROS” to 

“response to hydrogen peroxide”) (Fig. 3C). A defense-related branch from response to 

stimulus group displayed general ontologies (e.g. “immune response” and “defense response”) 

and it was typified by HR-related BPs such as “plant-type HR”, “defense response, 

incompatible interaction”, “systemic acquired resistance” and “programmed cell death” (Fig. 

3C). BP group centralized in biological regulation was branched to a major subgroup 

comprising the ontologies related to the regulation of both of response to stress and defense 

(Fig. 3C). Categories from that subgroup included general terms such as “regulation of defense 

response” and “regulation of response to stress”, and more specific ones e.g. “positive 

regulation of response to biotic stimulus” and “regulation of systemic acquired resistance”. 

Another branch from biological regulation group (“regulation of cellular processes”) displayed 

cell death- and SA-related responses including “regulation of cell death” and “regulation of SA 

biosynthetic and metabolic process”, respectively (Fig. 3C). A small cluster associated to the 

senescence process were also present in the up-regulated network (“aging”, “plant organ 

senescence” and “leaf senescence”) (Fig. 3C). Finally, the major hormonal-mediated pathway 

enriched in the up-regulated network was the SA pathway, represented by the categories 

“response to SA”, “cellular response to SA stimulus” and “SA mediated pathway” (Fig. 3C). 
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Figure 3. Main responses affected by CiLV-C infection in Arabidopsis thaliana plants. A) 

Venn diagram of up- and down-regulated genes identified within the set of differentially 

expressed genes (DEGs) from each time point. DEGs were identified using DESeq2 and defined 
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by log2 fold-change ≥ 0.5 and false discovery rate (FDR)-corrected p-value ≤ 0.05. B) Venn 

diagram of overrepresented biological processes (BPs) from each set of up- and down-regulated 

DEGs identified at each time point. Overrepresented BPs were identified based on a 

hypergeometric test with FDR-adjusted p-values ≤ 0.001. C and D) Networks of enriched BPs 

from up-regulated (C) and down-regulated (D) DEGs identified at 6 dai, generated using the 

app BinGO in Cytoscape. Size of the nodes correlates with the number of DEGs. Color of the 

nodes reveals p-values of enriched categories. Names of some BPs were simplified for clarity; 

full names are displayed in Supplementary Table 3. dai: days after the infestation with 

viruliferous Brevipalpus yothersi mites; ROS: reactive oxygen species, SA: salicylic acid, JA: 

jasmonic acid, ABA: abscisic acid. 

 

 The cluster of down-regulated DEGs at 6 dai was enriched in 95 unique categories (Fig. 

3B). Most of the GOs clustered in a major group of metabolic processes harboring mainly the 

primary metabolism (Fig. 3D). Primary metabolism subgroup included BPs associated to the 

metabolism of: i) lipids, such as “lipid biosynthetic and metabolic process” and “fatty acid 

biosynthetic and metabolic process”; ii) amino acids, whose categories included sulfur, cysteine 

and serine amino acid biosynthetic and metabolic process; and iii) carbohydrate, with numerous 

broad terms (e.g. “cellular carbohydrate biosynthetic and metabolic process”) and specific BPs 

associated to biosynthesis and metabolism of glucan, starch, glycogen and maltose. 

Carbohydrate-related processes were connected to a cluster of photosynthesis-related categories 

such as “photosynthesis, light and dark reaction”, “carbon fixation” and “generation of 

precursor metabolites and energy”. Secondary metabolism formed a small branch comprising 

BPs directed to the biosynthesis and metabolism of glucosinolates (Fig. 3D). Following 

metabolism group, the down-regulated GO network presented a group centralized in response 

to stimulus (Fig. 3D). Along with many general terms shared with the up-regulated network, 

response to stimulus group revealed response to distinct abiotic stimulus (light, radiation and 

temperature), response to wounding, and JA as the only enriched hormonal pathway within 

down-regulated processes. Another small group from the network was centralized in “cellular 

component organization or biogenesis”, with ontologies related to chloroplast and cell wall 

organization/biogenesis (Fig. 3D). 

 Overall, the GO enrichment analysis showed that early plant responses to CiLV-C 

infection involves a transient induction of cell growth-related processes, a transient repression 

of ET-responsive genes, and a stable modulation of defense and stress-related responses that is 

maintained up to later stages of the infection. At the pre-symptomatic stage, infected plants 

trigger processes related to the SA-mediated pathway, response to ROS and HR, all of which 

are present during incompatible interactions. Conversely, infected plants down-regulates 
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processes involved in the primary metabolism, JA-mediated pathway and synthesis of 

glucosinolates.  

2.4 Regulation of co-expressed genes by specific classes of transcription factors 

correlates with the modulation of stress defense responses 

 To unravel the regulation of the transcriptional reprogramming upon viral infection, the 

classes of TFs associated with co-expressed DEGs were identified. First, we identified the up- 

and down-regulated DEGs coding for TFs on each time point and their corresponding families 

(Fig. 4A, B, Supplementary Table 4). Over-representation of specific families from each co-

expressed set was assessed with a hypergeometric test (α ≤ 0.001). Within the set of up-

regulated DEGs at 2 dai, 29 (11.5%) TFs from 15 different families were identified. From those, 

only two families were over-represented: MYB (6 genes, p-value = 1.39E-03) and WRKY (4 

genes, p-value = 4.46E-03) (Fig. 4A), both typically involved in plant defense responses to 

stresses (Dubos et al., 2010; Phukan et al., 2016). From the down-regulated genes at the same 

time point, only 6 TFs (7.3%) comprising 3 different families were detected, as expected due 

to the reduced number of DEGs with such expression pattern. The only over-represented family 

was AP2/ERF (3 genes, p-value = 1.16E-03) (Fig. 4A), whose members are known to act as 

regulators of the ERF-branch of the JA/ET-mediated pathway (Pieterse et al., 2012). At 6 dai, 

134 TFs (6.7%) from 22 families were up-regulated. Only 3 of those families were over-

represented, of which the largest and most significant were WRKY (28 genes, p-value = 3.67E-

14) and NAC (20 genes, p-value = 1.59E-05) (Fig. 4B). Similar to WRKY, NAC TFs are also 

intimately associated with immune responses and specifically to increased resistance against 

pathogens, including the triggering of HR against viruses (Nuruzzaman et al., 2013; Olsen et 

al., 2005). Within the set of down-regulated DEGs at 6 dai, 122 TFs (7.1%) evenly distributed 

in 32 families were identified. Similar to the up-regulated set, only 3 classes of TFs were 

enriched, and the largest and most significant ones were MYB (17 genes, p-value = 3.50E-03) 

and AP2/ERF (16 genes, p-value = 1.31E-02) (Fig. 4B). 
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Figure 4. Enriched transcription factors (TFs) and TF targets during CiLV-C infection in 

Arabidopsis thaliana. A and B) Number of up- and down-regulated genes coding for TFs from 

each TF family identified within the set of DEGs at 2 dai (A) or 6 dai (B). Families 

encompassing two or less TFs were omitted. Up- and down-regulated DEGs are presented in 

red and green, respectively. Levels of enrichment (-Log10 p, with p: p-value) of each family 

(hypergeometric test, α ≤ 0.001) are presented by a dashed line with its corresponding values 

in the secondary axis. C) TFs with enriched targets within each set of up- and down-regulated 

DEG at 2 and 6 dai, identified by TF enrichment tool. TFs are grouped according to their 

families. Each line identifies one TF. Orange lines correspond to TFs with enriched targets 

within each set. Red and green lines represent up- and down-regulated DEGs, respectively, 

encoding TFs at each time point. Grey lines indicate absence of enriched targets for a given TF- 

and/or TF not differentially expressed. Families encompassing two or less TFs were grouped 

in “Others”. DEG: differentially expressed gene; dai: days after the infestation with viruliferous 

Brevipalpus yothersi mites. 

 

 In another approach, we search for TFs with over-represented targets within each set of 

DEGs by using the TF enrichment tool (Jin et al., 2016). Potential targets were identified based 

on cis-regulatory elements in the promoters of the test genes and regulatory interactions 

described at the literature (Jin et al., 2016) (Fig. 4C, Supplementary Table 5). The largest 
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families with potential targets within DEGs induced at 2 dai were the growth-related TCP 

(Manassero et al., 2013) and stress-related C2H2 (Kiełbowicz-Matuk, 2012), represented by 10 

and 13 TFs, respectively. On the other hand, the families MYB and bZIP – with 29 and 18 TFs, 

respectively – were the ones that presented the highest numbers of TFs with potential targets in 

the set of down-regulated genes at 2 dai (Fig. 4C). Interestingly, the analysis of 6 dai sets 

revealed once again WRKY (43 TFs) and NAC (37 TFs) as the largest families with targets 

within up-regulated DEGs (Fig. 4C), supporting the involvement of both TF classes in 

controlling the induction of those genes. Within the down-regulated genes at 6 dai, potential 

targets were mainly associated to TFs from bHLH (Fig. 4C), which includes the regulators of 

the MYC-branch of the JA/ABA-mediated pathway (Pieterse et al., 2012), and MYB classes, 

represented by 33 and 17 genes, respectively. No members of WRKY and NAC families had 

targets enriched in the down-regulated DEGs from 6 dai, neither TFs from bHLH family 

presented potential targets within the up-regulated genes at the same time point (Fig. 4C), 

highlighting the specificity of induced and repressed responses during the pre-symptomatic 

stage. 

 These analyses showed that expression of up-regulated genes is mainly driven by TF 

classes WRKY and NAC, followed by TCP and C2H2, whilst down-regulated genes are 

potentially controlled by TFs from AP2/ERF, bHLH and bZIP families. MYB TFs regulate 

both induced and repressed responses. WRKY is highlighted as the only family with both 

modulated TFs and targets exclusively within up-regulated genes. Results support the 

modulation of stress responses upon CiLV-C infection, being consistent with the specific 

induction of cell growth and HR/SA-mediated defenses, and repression of both ET and ABA 

branches of the JA pathway. 

2.5 Genes related to HR are induced at the pre-symptomatic stage 

Due to the over-representation of HR-related processes within up-regulated GO network 

and the HR-like phenotype induced by CiLV-C infection (Arena et al., 2016), the DEGs 

associated to HR or to the mechanisms underlying the development of such resistance response 

were thoroughly reviewed. Hierarchical clusters were generated with data from genes included 

in the categories “response to SA”, “response to ROS”, “cell death”, and “plant-type HR” (Fig. 

5A). Without exception, all DEGs belonging to these categories were up-regulated at the 6 dai. 

Induction of the whole set of genes directly or indirectly related to HR at the pre-symptomatic 

stage agrees with the theory that symptoms of viral infection result as consequence of a HR.  
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Figure 5. Hypersensitive response (HR)-related genes during plant infection by CiLV-C. A) 

Hierarchical clustering analysis of log2 fold-change (FC) exhibited by differentially expressed 

genes (DEGs) involved in HR-related biological processes. B) Expression profile of selected 

Arabidopsis thaliana genes in virus-infected plants, quantified by RNA-Seq and RT-qPCR. 

Data are presented as log2FC values in comparison with mock-infected plants (with log2FC set 

to zero). Statistically significant differences of virus-infested versus mock control at p-values ≤ 
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0.01 (**) and ≤ 0.05 (*) are indicated. hai: hours after infestation, dai: days after infestation. 

GO: gene ontology term; SA: salicylic acid; ROS: reactive oxygen species, HR: hypersensitive 

response; hai: hours after infestation, dai: days after infestation. 

 

To validate the RNA-Seq data and support the involvement of the SA pathway and HR 

in response to CiLV-C infection, the expression of selected DEGs was assessed by RT-qPCR 

(Fig. 5B). Six SA- and HR-related genes up-regulated at the pre-symptomatic stage were 

selected: the signaling component EDS1 (enhanced disease susceptibility 1), the SA 

biosynthetic enzyme ICS1 (isochorismate synthase 1), the regulator GRX480 (glutaredoxin 

480), the receptor-like kinase (RLK) CRK9 (cysteine-rich RLK 9), the transcription factor 

WRKY70 (WRKY DNA-binding protein 70) and the defense protein PR1 (pathogenesis-related 

protein 1). Expression profiles of those genes were assessed in a new experiment with plants 

infested with non-viruliferous (mock) and CiLV-C viruliferous mites at 6 hai, 2 dai and 6 dai 

(Fig. 5B). All the evaluated genes were induced at 6 dai, in consistency with the RNA-Seq data, 

supporting the results described in this work. 

2.6 Expression of CiLV-C P61 protein triggers HR and mimic plant responses to viral 

infection 

 To unravel the role of CiLV-C-encoded proteins in triggering the identified plant 

responses, the six viral ORFs were cloned in expression vectors and they were individually 

transiently expressed into Nicotiana benthamiana leaves. The elicitor activity of CiLV-C ORFs 

was elucidated by: i) visual phenotypic observation, ii) histochemical detection of H2O2, the 

main ROS detected during plant-pathogen interactions, iii) evaluation of the expression profile 

of the SA- and HR-related genes PR1a, PR1b, PR2, HIN1 and HSR203J, and iv) quantification 

of the SA and JA hormonal content. 

While the other CiLV-C proteins did not produce any altered phenotype, the 

Agrobacterium-mediated transient expression of P61 consistently induced cell death on the 

infiltrated areas at 3 day after infiltration, which clearly contrasted with the healthy phenotype 

observed in leaves infiltrated with the empty vector (Fig. 6A). Histochemical analysis of the 

P61 infiltrated leaves revealed the production and accumulation of large amount of H2O2 (Fig. 

6B). RT-qPCR assays showed that, although plants reacted to the infection by A. tumefaciens 

containing the empty vector, the presence of P61 clearly up-regulated the expression of all 

evaluated genes (Fig. 6C). Quantification of defense hormones by LC-MS/MS revealed that SA 
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levels were almost 7-fold higher on plants expressing this viral protein relative to GFP, used as 

negative control, while JA levels were more that 4-fold lower on the same comparison (Fig. 

6D). Mimicry of responses typically observed during CiLV-C-plant interaction put forward 

elements, indicating P61 as the putative viral effector to be neutralized by plant defenses. 

 

Figure 6. Elicitor activity of CiLV-C P61 protein. The viral protein was transiently expressed 

in Nicotiana benthamiana leaves using Agrobacterium-mediated infiltration. Injuries (A), ROS 

production (B), expression of SA- and HR-related genes (C), and levels of jasmonic acid and 

salicylic acid (D) were assessed at 3 days after the infiltration. To verify the elicitor activity of 

the p61 RNA versus protein, a frameshift mutant was produced (D). E.V: empty vector. 

Statistically significant differences of plants infiltrated with p61 versus empty vector (E.V.) at 

p-values ≤ 0.01 (**) and ≤ 0.05 (*) are indicated. 
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The above findings showed that the presence of the p61 gene elicits plant defense 

responses that might culminate in HR. In other plant-virus systems, typical PAMPs (pathogen-

associated molecular patterns) that elicits the plant immune system are dsRNAs produced 

during virus replication (Pumplin and Voinnet, 2013). To verify whether the HR is triggered by 

the P61 protein or the RNA sequence from it is translated, a frameshift mutant was produced to 

retain the entire sequence of the p61 ORF but prevent the production of the protein (Fig. 6E). 

The construct had an indel of two nucleotides (T and A) downstream the start codon of the p61 

ORF, resulting in a shift of the ORF frame and the generation of a stop codon immediately after 

the first codon. The clones carrying the genes for the p61 frameshift mutant, the p61 wild type 

and that encoding the GFP gene were agroinfiltrated in different spots throughout the same N. 

benthamiana leaf to compare the cell death phenotype (Fig. 6E). At 3 dai, the cell death was 

observed on areas infiltrated with the p61 wild type. No HR was observed in the areas infiltrated 

with GFP or the p61 frameshift mutant. Expression of the p61 with the frameshift mutation did 

not affect the synthesis of the p61 RNA but blocks the production of the protein. This result 

demonstrate that the HR phenotype is triggered by P61 and not the p61 mRNA.  

 

3. Discussion 

In this study, we attempted to unravel the molecular mechanisms underlying plant 

interaction with the cilevirus CiLV-C, a virus atypically unable to accomplish systemic 

infection in any of its known hosts. We characterized the major events during CiLV-C 

replication in plant leaves by quantifying viral genomic and subgenomic RNAs, the global plant 

transcriptional response to CiLV-C infection using RNA-Seq, and the CiLV-C elicitor that 

triggers plant responses by transient expression of viral proteins. 

The kinetics of production and expression of viral RNAs in Arabidopsis revealed three 

major steps of CiLV-C infection. The earliest stage occurs from the CiLV-C inoculation by 

viruliferous mites until 24 hai and is characterized by a low replication rate or likely, a 

replication restricted to a few cells. During such stage of reduced number of viral molecules, 

plant transcriptional response to CiLV-C infection is undetectable at least until 6 hai. From 2 

to 4 dai, the replication step with a high replication rate before the increase in sub-genomic 

expression takes place, and a moderate number of plant transcriptional responses to viral 

infection are detected. The latest stage ranges from 6 to 10 dai and it is marked by an increased 

accumulation of p29 sub-genomic RNA that might correlate with the expression of late proteins. 
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During the last step, CiLV-C titers reach the highest levels, a massive transcriptome 

reprogramming at the pre-symptomatic stage is observed, and symptoms of viral infected arise. 

The transcriptome analysis of Arabidopsis plants along the course of infestation with 

CiLV-C revealed that early transcriptome changes to CiLV-C infection involves the up-

regulation of general responses to stresses that are maintained later in the interaction, and the 

transient induction of cell growth-related processes. Induction of genes related to cell growth 

might be related to the development of hyperplasia or hypertrophy, typical histological changes 

promoted by phytopathogens, including plant viruses (Hull, 2009). Interestingly, anatomical 

studies revealed that both abnormal cell division and enlargement develop in parenchyma cells 

from local lesions caused by CiLV-C in sweet orange (Marques et al., 2007). Hyperplasia and 

hypertrophy are also noticeable in plant tissues infected by leprosis-related Brevipalpus-

transmitted dichorhaviruses (Marques et al., 2010), indicating that up-regulation of cell growth 

responses might be a pattern from plant infection by BTVs. 

Plant infection by CiLV-C down-regulated the inter-connected ET and JA pathways at 

2 and 6 dai, respectively. The later stage was also marked by a down-regulation of genes 

involved in the biosynthesis of glucosinolates, a well-known defense against herbivores 

typically modulated by JA. Concomitant induction of SA and reduction of JA at CiLV-C 

infected plants are likely a consequence of the well-known SA-JA antagonism, as previously 

proposed (Arena et al., 2016). The repression of anti-herbivory defenses upon virus infection 

has been described as a viral strategy to encourage transmission (Mauck et al., 2018). Several 

reports describe the ability of different viruses in manipulating plant phenotypes to increase 

vector fitness or attraction. For example, infection by the potyvirus TuMV alters ET responses, 

suppressing callose defenses and improving fecundity of its aphid vector, Myzus persicae 

(Casteel et al., 2015). By exploiting the natural SA-JA antagonism, the tosposvirus tomato 

spotted wilt virus triggers the SA-mediated pathway to reduce JA-mediated defenses, becoming 

more attractive to the thrips vector Frankliniella occidentalis (Abe et al., 2012). Similarly, the 

induction of SA and reduction of JA pathway and related defenses upon CiLV-C infection 

might account for an improvement in Brevipalpus vector performance. In agreement with this 

hypothesis, CiLV-C infected Arabidopsis leaves are preferred for mite colonization and 

oviposition (Arena et al., 2016) and mite density is higher is CiLV-C infected sweet orange 

trees in contrast to healthy ones in field conditions (Andrade et al., 2013). Furthermore, assays 

with Arabidopsis mutants revealed a lower oviposition of B. yothersi mites in plants 

compromised in SA signaling (Arena et al., 2018), pointing to a role of SA response in improve 
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mite performance. CiLV-C/Brevipalpus relationship might be mutually beneficial, with the 

mite performing better on plants with boosted SA response and likely suppressed anti-herbivore 

defenses, and the virus presenting improved transmission as a consequence of higher vector 

fitness. 

Along with the reduction of the JA pathway and glucosinolates production, the pre-

symptomatic stage was marked by a repression of the plant primary metabolism. Down-

regulated processes included the metabolism of lipids, amino acids and carbohydrates and 

photosynthesis. In other plant-virus systems, the infected cells supporting viral replication are 

transformed into metabolic sinks, triggering a massive reprogramming of the plant primary 

metabolism (Llave, 2016). Viruses typically interfere with lipid and fatty acid metabolism to 

promote changes in the membranes required for the formation of viral replication complexes 

(Llave, 2016). Reduced expression of several sterol or fatty acid biosynthesis genes have been 

shown to restrain other viruses replication (Llave, 2016) and might similarly affect CiLV-C 

infection in Arabidopsis. Altered metabolism of amino acids and carbohydrates have been 

observed in distinct viral infections, but their precise roles have not been fully elucidated and 

vary profoundly between distinct plant-virus interactions (Llave, 2016). Inhibition of 

photosynthesis is a general rule in different plant-virus interactions and is usually associated 

with changes in the chloroplasts and the development of chlorosis and necrosis, some of the 

most common viral symptoms. Chloroplasts are recognized as prime targets for plant viruses, 

undergoing massive structural and functional damage during viral infection (Bhattacharyya and 

Chakraborty, 2018). Moreover, chloroplast factors might participate in essential stages of viral 

infection such as replication and movement and as such are targeted by viruses to help fulfill 

their infection cycle (Zhao et al., 2016). On the other hand, chloroplasts are crucial for the plant 

defense against viruses, acting as the sites for the biosynthesis of defense hormones and HR-

related ROS, which may compromise the organelle photosynthetic efficiency in a trade-off 

process (Bhattacharyya and Chakraborty, 2018; Zhao et al., 2016). In either way, plant viruses 

commonly disturb chloroplast structure and functions, leading to reduced photosynthetic 

activity and development of chlorotic or even necrotic symptoms as a result of cell death 

(Bhattacharyya and Chakraborty, 2018; Zhao et al., 2016). Similarly, the chlorotic and necrotic 

lesions produced by CiLV-C might reflect chloroplast alterations and reduced photosynthetic 

activity, both supported by transcriptomic data. 

Even though plant genes were modulated at an early stage of the CiLV-C infection, the 

strikingly majority of the differentially expressed genes were identified at the later time point. 
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The biological processes identified at the pre-symptomatic stage might culminate in the 

development of the disease symptoms. Our results showed that such phase of viral infection is 

mainly typified by the up-regulation of the plant immune system. A large number of up-

regulated genes are related to SA-mediated pathway, response to ROS, cell death and HR. 

Likewise,  even though SA and ROS are not exclusively associated to HR, both are required 

for the development of the resistance response ensuing from incompatible interactions (Xia et 

al., 2015). Previous histochemical analysis revealed the accumulation of ROS and dead cells in 

CiLV-C infected tissues, confirming the molecular responses verified here (Arena et al., 2016). 

In all its recognized natural or experimental hosts, CiLV-C remains restricted to cells around 

the inoculation sites by the mite vector, where symptoms of viral infection are manifested as 

localized chlorotic and necrotic lesions (Bastianel et al., 2010). Phenotypically, these symptoms 

resemble the outcome of a HR, a cell death resistance process accompanied by the pathogen 

restriction at the inoculation site during an incompatible interaction. Transcriptome changes 

associated to the induction of HR support the theory that the lesions caused by citrus leprosis 

may be a consequence of an incompatible rather than a compatible interaction (Arena et al., 

2016). In general, the development of an HR resistance is associated with the recognition of the 

viral protein by corresponding plant resistance (R) proteins in a host-specific manner. It is 

noteworthy that, differently from other HR-inducing plant-virus systems, HR-like associated 

phenotypes (cell death and virus restriction) developed during CiLV-C interaction are not 

associated to a specific plant species but occurs over the spectrum of CiLV-C hosts identified 

so far. 

Finally, we showed that the transient expression by agroinfiltration of the CiLV-C P61 

protein reproduces phenotypes observed during plant interaction with CiLV-C. ROS burst, cell 

death, increased expression of SA- and HR-related genes, higher levels of SA and lower levels 

of JA are triggered by the transient expression of P61 but not its mRNA. Several viral proteins 

that mimicry responses of virus infection have been identified. The production of characteristic 

HR necrotic lesions can be triggered by the transient expression of the p50 helicase domain 

from tobacco mosaic virus (TMV) replicase (Les Erickson et al., 1999) and the silencing 

suppressor P0 from poleroviruses (Wang et al., 2015) in resistant Nicotiana glutinosa 

genotypes, for example. The chlorotic symptoms induced by cucumber mosaic virus in tobacco 

is determined by the interaction of the viral capsid protein (CP) with a chloroplast ferredoxin 

protein (Qiu et al., 2018). The βC1 protein from the betasatellite of tomato yellow leaf curl 

China virus interacts with the MYC2 transcription factor resulting in decreased levels of JA-
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responsive genes and consequent enhanced performance of its vector, the whitefly Bemisia 

tabaci (Li et al., 2014). Induction of HR-related defenses and phenotype induced by CiLV-C 

P61 indicates this protein in the center of processes that triggers the plant immune system, 

leading to the development of typical HR lesions. Increases SA and reduced JA levels suggest 

that P61, without any other viral factor, might trigger the cross-talk between the hormonal 

pathways and might influence vector performance upon CiLV-C infection. Ongoing studies for 

the identification of plant proteins that interact with P61 will shed light on the mechanism of 

CiLV-C recognition by the host and development of virus-associated phenotypes. 

Comprehensively, we showed that CiLV-C titer progressively increase in infected cells 

with distinct steps of replication, and we provided evidences based on the host transcriptome 

reprogramming that support the current understanding that the symptoms of CiLV-C infection 

results from an HR resistance. Futhermore, we identified a CiLV-C protein that elicits the same 

immune responses triggered by viral infection and that might determine the development of the 

HR-like symptoms. Our results improve the previously proposed model on the plant response 

to the components of the citrus leprosis pathosystem (Arena et al., 2016). In practical terms, we 

provide assays for the quantitative detection of CiLV-C in infected samples and extensive 

transcriptome data that can be further explored to unravel distinct mechanisms of plant gene 

expression regulation by CiLV-C infection.  

4. Materials and Methods 

4.1 Plant material 

Seeds from Arabidopsis thaliana ecotype Columbia (Col-0) were obtained from the 

Arabidopsis Biological Resource Center (ABRC, http://www.arabidopsis.org). Arabidopsis 

thaliana and N. benthamiana plants were grown in a controlled growth chamber Adaptis AR 

A1000 (Conviron, Winnipeg, Canada) at 23 ± 2 °C and a 12 h photoperiod. Four-week-old 

plants were used in the experiments.  

4.2 Mite (Brevipalpus yothersi) rearing 

Population of mites were initially obtained from a single female collected from a citrus 

orchard and identified as B. yothersi using phase contrast microscopy as reported elsewhere 

(Beard et al., 2015). Non-viruliferous mites were reared onto unripe fruits of 'Tahiti' acid lime 

(Citrus latifolia Tanaka), a genotype immune to citrus leprosis virus C. Viruliferous mites were 
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obtained by transferring the non-viruliferous mites from the acid lime to sweet oranges fruits 

with citrus leprosis symptoms infected with CiLV-C strain SJP (Ramos-González et al., 2016). 

Fruits were prepared as described before (Rodrigues et al., 2007). Mites were reared for several 

generations and were evaluated for the presence of CiLV-C by RT-PCR (Locali et al., 2003) 

before their use in the experiments. 

4.3 Kinetics of CiLV-C accumulation 

Quantification of CiLV-C loads were performed in Arabidopsis plants infested with B. 

yothersi viruliferous mites at ¼, ½, 1, 2, 4, 6, 8 e 10 dai. Arabidopsis plants were infested with 

15 mites (five per each of three rosette leaves), transferred with a brush under a stereoscopic 

microscope. Each time point had 10 biological replicates. Harvested leaves were flash-frozen 

in liquid N2 and stored at -80 °C until RNA extraction. Plant RNA was purified with the RNeasy 

Plant Mini Kit (Qiagen, Venlo, Netherlands), RNA concentration and purity (A260/A280) was 

determined in NanoDrop ND-8000 micro-spectrophotometer (Thermo Scientific, Waltham, 

USA), and cDNA was synthesized using RevertAid H Minus First Strand cDNA Synthesis Kit 

(Thermo Scientific, Waltham, MA, USA). CiLV-C presence was confirmed by RT-PCR 

(Locali et al., 2003). TaqMan - Minor Groove Binding (MGB) assays were developed to detect 

CiLV-C p29 and RdRp ORFs and Arabidopsis SAND reference gene. It should be noted that 

primers and probes for detection of CiLV-C p29 ORF target the p29-sgRNA and the viral- and 

anti- viral RNA1 molecules of CiLV-C, meanwhile those specific for RdRp ORF only target 

the viral- and anti- viral RNA1 molecules. In this later case, results were considered the 

indicator of viral genome accumulation. Both primers and probes were designed using Primer-

Express software (Thermo Scientific, Waltham, MA, USA) and their sequences are available 

at Supplementary Table 6. Amplicons generated from a virus-infected sample were purified 

and cloned in pGEM-T-Easy vector (Promega, Madison, WI, USA). Two clones per amplicon 

were sequenced in both directions and consensus sequences were 100% identical to the target 

sequences from the CiLV-C SJP genome. Eight 10-fold dilutions (108 to 101 molecules) from 

each plasmid were prepared to generate standard curves. Standards and cDNAs from infected 

samples were assayed by RT-qPCR. Reaction mixes were prepared with the TaqMan® Fast 

Universal PCR MasterMix 2X kit, as recommended by the manufacturer (Thermo Scientific, 

Waltham, MA, USA). Amplifications were carried out in a 7500 Fast Real-Time PCR System 

device (Thermo Scientific, Waltham, MA, USA). Samples were analyzed in triplicates and no-

template controls were included to check for contaminations. Cycle quantification (Cq) values 

from infected samples were compared with the standard curves to determine absolute quantities 
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of CiLV-C p29 and RdRp molecules. Quantities of each molecule at different time points were 

statistically compared using one-way ANOVA and Tukey's HSD (honest significant difference) 

test (α ≤ 0.05). 

4.4 RNA-Seq time-course experiment 

Arabidopsis plants were infested with 15 non-viruliferous or viruliferous mites (five 

mites per each of three rosette leaves). Infested leaves were collected at 6 hours after infestation 

(hai), and 2 and 6 days after the infestation (dai). Sixteen plants were infested per treatment per 

time point and leaves from two plants were pooled, totaling eight biological replicates. Other 

set of plants was kept with viruliferous mites for eight days, when symptoms were visible, to 

confirm virus infection. Harvested leaves were flash-frozen in liquid N2 and stored at -80 °C 

until RNA extraction. Plant RNA was purified with the RNeasy Plant Mini Kit (Qiagen, Venlo, 

Netherlands) and treated with RNAse-free DNAse (Qiagen, Venlo, Netherlands) for removal 

of plant DNA. RNA purity (A260/A280 ~ 2.0) and integrity (RIN > 8) were confirmed in 

NanoDrop ND-8000 micro-spectrophotometer (Thermo Scientific, Waltham, USA), and 

Bioanalyzer 2100 (Agilent technologies, Santa Clara, USA), respectively. CiLV-C presence in 

plants infested with viruliferous and absence in the ones infested with non-viruliferous mites 

were confirmed by RT-PCR (Locali et al., 2003). RNA extracts from two samples (100ng/uL 

each) were pooled, totaling four replicates per treatment (CiLV-C and mock) per time point for 

the RNA-Seq. cDNA libraries were prepared with Illumina TruSeq Stranded mRNA Library 

Prep Kit (Illumina, San Diego, USA). Sequencing was performed in an Illumina HiSeq 2500 

system (Illumina, San Diego, USA) using HiSeq SBS v4 High Output Kit (Illumina, San Diego, 

USA). Paired-end reads of 2x125 bp were generated. 

4.5 Bioinformatics analysis of RNA-Seq data 

RNA-Seq data were analyzed following the pipeline from Anders et al. (2013) with 

some modifications, as described before (Arena et al., 2018).Biological variability of the 

samples was assessed by principal component analysis (PCA) and hierarchical clustering (using 

Euclidean distance metric and Ward’s clustering method). Differentially expressed genes 

(DEGs) between CiLV-C and mock treatments were identified at each time point using the 

package DESeq2 (Love et al., 2014). False Discovery Rate (FDR) correction for multiple 

comparisons was applied. DEGs with corrected p-values ≤ 0.05 and fold-change (log2) 

threshold of 0.5 were classified as differentially expressed. GO Enrichment Analysis was 
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performed on DEGs to elucidate mechanisms potentially involved in the CiLV-C infection and 

symptoms development. A gene set was defined as all DEGs identified at each set (2 dai/ up-

regulated, 2 dai/ down-regulated, 6 dai/ up-regulated, and 6 dai/ down-regulated) and the 

universe comprised all genes of the A. thaliana TAIR10 genome. Overrepresented BPs were 

identified by a hypergeometric test (FDR-adjusted p-values ≤ 0.001). GO networks were 

generated in Cytoscape using the app BinGO (Maere et al., 2005). 

4.6 Identification of enriched transcription factors 

Enriched TFs were assessed on up and down-regulated DEGs from 2 and 6 dai using 

two approaches. First, genes coding for TFs within DEGs were identified by searching on 

PlantTFDB database (Jin et al., 2017) and over-represented TF families on each set of genes 

were assessed using a hypergeometric test (α ≤ 0.001). Second, individual TFs with targets 

enriched within DEGs were identified using the TF enrichment tool (Jin et al., 2017), based on 

the presence of cis-regulatory elements in the sequences of the DEGs assessed and literature 

mining. TFs with enriched targets were further grouped according to their families. 

4.7 Validation of gene expression data by RT-qPCR 

A new time course experiment was set with Arabidopsis Col-0 plants infested with 

viruliferous and non-viruliferous mites at 6 hai, 2 dai and 6 dai. For each time point, plants were 

grouped in sets of 16 individuals assigned to each treatment (CiLV-C and mock). Plants were 

infested with 15 mites (5 mites per each of 3 rosette leaves). Infested leaves were collected at 

each time-point and leaves from two plants were pooled, totaling eight biological replicates per 

treatment per time point. Harvested leaves were flash-frozen in liquid N2 until RNA extraction. 

Plant RNA was purified with the RNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands) and 

treated using RNAse-free DNAse (Qiagen, Venlo, Netherlands). RNA concentration and purity 

were assessed using NanoDrop ND-8000 microspectrophotometer (Thermo Scientific, 

Waltham, USA), and RNA quality was confirmed in 1.2% agarose gels. cDNA was generated 

using RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, 

USA) as described by the manufacturer. qPCR were prepared with 3 ng of cDNA, 6.5 uL of 

GoTaq qPCR Master Mix (Promega, Madison, WI, USA) and 120 nM of each gene-specific 

primer pair. Primer sequences are available at Supplementary Table 7. Each cDNA sample was 

analyzed in triplicate and melting curves were included. Primer pairs efficiencies and Cq values 

were determined for individual reaction using Real-time PCR Miner (Zhao and Fernald, 2005). 
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Gene expression analyses were performed using the ΔCq model with efficiency correction and 

multiple reference genes (Hellemans et al., 2007) as previously described (Arena et al., 2016). 

Difference between infected and mock samples within each time point were assessed using 

Student’s t-test (α ≤ 0.05). 

4.8 Cloning of CiLV-C ORFs in expression vectors 

CiLV-C ORFs were amplified from pre-generated clones using a HiFi polymerase (Thermo 

Scientific, Waltham, USA) and specific primers were designed to add restriction sites to the 

ends of each amplicon (Supplementary Table 8). The amplicons were digested and cloned in 

an intermediary vector based on the backbone of the pUC19 cloning vector (New England 

Biolabs). Each transcriptional unit was constituted by the 35s cauliflower mosaic virus 

promoter to constitutive expression of the gene, the Ω fragment from TMV to enhancement of 

the translation, the CiLV-C ORF, and the Nopaline synthase terminator. After assembled, each 

transcription unit was transferred from the intermediary vector to a pCambia 2300 binary 

vector. Final constructions were digested with the endonucleases XbaI and XhoI for validation 

of their identity. After the identification of P61 elicitor activity (methods described below), new 

expression clones were assembled to express this protein fusioned to a 3xFLAG C-terminal tag, 

under the control of a dexamethasone (DEX)-inducible promoter. Somewhat similar cloning 

procedures were performed to construct GFP-expressing clones as negative controls. The 

Gateway system (Thermo Scientific, Waltham, USA) was used. Specific primers 

(Supplementary Table 8) were designed to include four Gs and the 25pb of the attB regions in 

the 5` end (for efficient Gateway cloning), remove the stop codon (for fusion with the 

3xFLAG), and add additional nucleotides (to maintain the proper reading frame with the FLAG 

tag). Genes were amplified using the Phusion High-Fidelity DNA Polymerase (New England 

Biolabs). The amplicons were purified and cloned in the donor vector pDONR207 (Thermo 

Scientific, Waltham, USA). Entry clones were purified and sequenced. Once confirmed, the 

transcriptional units were transferred by recombination to a Gateway-compatible version of the 

pTA7001 destination vector (Aoyama et al., 1997; Li et al., 2013), with a C-terminal 3xFLAG 

(DYKDHDGDYKDHDIDYKDDDDK) and a DEX-inducible promoter. Expression clones 

were purified and sequenced to confirm their identity. To generate p61 construct containing the 

frameshift mutant, the p61 gene was amplified from the previously constructed vector using a 

forward primer (Supplementary Table 8) designed to introduce two extra nucleotides following 

the start codon. The amplicons were cloned in the pDONR207 and the transcriptional units 
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were further transferred to the Gateway-compatible version of the pTA7001 destination vector. 

Expression clones were purified and confirmed by sequencing. 

4.9 Transient expression assays in Nicotiana benthamiana leaves 

Once verified, plasmids were inserted into the Agrobacterium tumefaciens strain 

GV3101. Recombinant A. tumefaciens was cultivated overnight in 5 mL of Luria-Bertani (LB) 

medium containing kanamycin (30 µg/mL) and rifampicin (50 µg/mL). Fresh media (Kn, Rif 

and 150 μM acetosyringone) were inoculated with 1/10 (v/v) of the pre-inoculum until reaching 

a 0.8-1 OD600 nm. Cells were harvested by centrifugation and further incubated in the 

infiltration buffer (10 mM MES, pH 5.6, 10 mM MgCl2, 150 μM acetosyringone) in the dark 

for four hours. Infiltrations were carried out using a syringe in leaves of four to six leaf stage 

plants. In parallel, N. benthamiana plants were infiltrated with the empty vectors and GFP-

expressing clones (negative controls) and the infiltration buffer (blank). When pTA7001 

expression clones were used, infiltrated leaves were sprayed with 30uM DEX and collected at 

1, 2 and 3 days after induction for protein detection. Cells were lysed in presence of NP40-

based buffer (150mM NaCl, 1% NP40, 50mM Tris-HCl), diluted in a protein disruption buffer 

(136mM DTT, 192mM Tris, 45mg/mL SDS, 50ug/mL bromophenol blue, 10M urea), heated 

at 95°C and loaded in SDS-PAGE gels. The fusioned proteins were assessed by Western Blot 

probed with anti-DYKDDDDK-HRP conjugate (Miltenyi Biotec) at a concentration of 1:2000. 

Bands of the expected size (~30kD for GFP-3xFLAG and ~63kD for p61-3xFLAG) were 

observed. Leaves infiltrated with the construction for the expression of P61, empty vector or 

the expression of GFP were collected for histochemical detection of H2O2, expression analysis 

of marker genes, and quantification of defense hormones. H2O2, were visualized by leaf staining 

with Diaminobenzidine (DAB) as reported elsewhere (Ilarduya et al, 2003). The expression 

profiles of SA- and HR-related genes were assessed by RT-qPCR as described above (topic 

4.7), with primer pairs available at Supplementary Table 7. The SA and JA contents were 

quantified by LC-MS/MS as described before (Arena et al., 2018). 
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Making a Better Home: Modulation
of Plant Defensive Response by
Brevipalpus Mites
Gabriella D. Arena1,2, Pedro L. Ramos-González3, Luana A. Rogerio1,
Marcelo Ribeiro-Alves4, Clare L. Casteel5, Juliana Freitas-Astúa3,6* and
Marcos A. Machado1

1 Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis,
Brazil, 2 Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil, 3 Laboratório de Bioquímica
Fitopatológica, Instituto Biológico, São Paulo, Brazil, 4 Instituto Nacional de Infectologia Evandro Chagas, Fundação
Oswaldo Cruz, Rio de Janeiro, Brazil, 5 Department of Plant Pathology, University of California, Davis, Davis, CA,
United States, 6 Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil

False-spider mites of the genus Brevipalpus are highly polyphagous pests that attack
hundreds of plant species of distinct families worldwide. Besides causing direct damage,
these mites may also act as vectors of many plant viruses that threaten high-value
ornamental plants like orchids and economically important crops such as citrus and
coffee. To better understand the molecular mechanisms behind plant-mite interaction
we used an RNA-Seq approach to assess the global response of Arabidopsis thaliana
(Arabidopsis) plants along the course of the infestation with Brevipalpus yothersi, the
main vector species within the genus. Mite infestation triggered a drastic transcriptome
reprogramming soon at the beginning of the interaction and throughout the time course,
deregulating 1755, 3069 and 2680 genes at 6 hours after infestation (hai), 2 days after
infestation (dai), and 6 dai, respectively. Gene set enrichment analysis revealed a clear
modulation of processes related to the plant immune system. Co-expressed genes
correlated with specific classes of transcription factors regulating defense pathways
and developmental processes. Up-regulation of defensive responses correlated with the
down-regulation of growth-related processes, suggesting the triggering of the growth-
defense crosstalk to optimize plant fitness. Biological processes (BPs) enriched at
all time points were markedly related to defense against herbivores and other biotic
stresses involving the defense hormones salicylic acid (SA) and jasmonic acid (JA).
Levels of both hormones were higher in plants challenged with mites than in the non-
infested ones, supporting the simultaneous induction of genes from both pathways. To
further clarify the functional relevance of the plant hormonal pathways on the interaction,
we evaluated the mite performance on Arabidopsis mutants impaired in SA- or JA-
mediated response. Mite oviposition was lower on mutants defective in SA biosynthesis
(sid2) and signaling (npr1), showing a function for SA pathway in improving the mite
reproduction, an unusual mechanism compared to closely-related spider mites. Here
we provide the first report on the global and dynamic plant transcriptome triggered by
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Brevipalpus feeding, extending our knowledge on plant-mite interaction. Furthermore,
our results suggest that Brevipalpus mites manipulate the plant defensive response to
render the plant more susceptible to their colonization by inducing the SA-mediated
pathway.

Keywords: plant–herbivore interaction, plant hormones, defense pathways, salicylic acid, jasmonic acid, cross-
talk, Tetranychus, RNA-Seq

INTRODUCTION

Plants are frequently threatened by arthropods herbivores from
different feeding guilds causing variable tissue injuries. Chewers
consume a significant amount of plant tissue thus promoting
extensive damage, while sap-suckers and cell-content-feeders
pierce to ingest plant fluids, inflicting minimal physical damage.
To further enhance self-protection against attackers, plants
display receptors that recognize conserved molecules associated
with herbivores (herbivore-associated molecular patterns –
HAMPs) or even self-molecules released after cell damage
inflicted by the attack (damage-associated molecular patterns –
DAMPS) and mount appropriate defense response. Some
adapted herbivores have evolved the ability to counteract plant
defenses by producing effectors that disrupt plant signaling
and induce effector-triggered susceptibility (Hogenhout and Bos,
2011; Ferrari et al., 2013; Pel and Pieterse, 2013). The plant
counterattack involves resistance proteins (R proteins) which
directly bind the effectors, or the plant proteins they modify, and
elicit a second layer of the immune response. The outcome of
induced defenses includes the production of toxins that interfere
with herbivore feeding, growth, reproduction or fecundity and/or
volatile compounds that attract natural enemies of the attacker
(Pieterse et al., 2012).

Upon recognition a cascade of phytohormone-dependent
signals, modulated by the nature of the damage, orchestrates
specific plant defense responses. Generally, arthropods such as
chewing insects that greatly damage the plant tissue integrity
trigger the jasmonic acid (JA) pathway, whilst herbivores causing
minimal tissue disruption, i.e., piercing-sucking arthropods
induce salicylic acid (SA) mediated response (Arimura et al.,
2011). The SA pathway is typically associated with resistance
against biotrophic pathogens and can often antagonize JA-
mediated defenses. Ethylene (ET) and abscisic acid (ABA) also
control plant responses to herbivore through the modulation
of JA signaling branches. ABA regulates the MYC transcription
factor branch (MYC-branch) acting in the defenses against
herbivores, whereas ET regulates the ethylene responsive factor
branch (ERF-branch) to defend against necrotrophic invaders.
The ET- and ABA-regulated branches antagonize each other to
fine tune JA pathway against the specific invader (Pieterse et al.,
2012).

Herbivores can take advantage of the natural cross-talk
between hormonal pathways to circumvent plant defenses.
Bemisia tabaci activates SA responses to suppress effective JA
defenses and improve whitefly performance (Zarate et al., 2007;
Zhang et al., 2013). Likewise, some insect eggs induce high
levels of SA that leads to reduced protein levels of MYC2,

subsequent suppression of JA defenses, and the enhancement
of larvae performance (Bruessow et al., 2010; Schmiesing et al.,
2016). The ERF-MYC branch antagonism is also occasionally
exploited by herbivores. Oral secretions of Pieris rapae activates
the ERF-branch to rewire JA signaling toward the insect
preferred branch (Verhage et al., 2011). Beyond through cross-
talk, other herbivores are capable of directly suppressing several
defense pathways. The mite Tetranychus evansi repress both JA
and SA signaling in tomato, dramatically reducing the levels
of defense compounds (Sarmento et al., 2011; Alba et al.,
2015).

Manipulation of plant defenses by herbivores has been shown
to frequently occur through saliva-contained effectors. Salivary
proteins able to modulate defenses and improve herbivore
performance have been identified in insects (Hogenhout and Bos,
2011) and mites (Villarroel et al., 2016). Moreover, proteins from
arthropod-associated microorganisms such as endosymbiont
bacteria (Casteel et al., 2012; Chung et al., 2013) and viruses
(Casteel et al., 2014; Li et al., 2014) may also be present in
the saliva and modulate plant defenses to promote herbivore
performance.

Current understanding of the mechanisms involved in plant
response to herbivores comes mainly from studies of plant–
insect interactions. Relatively little is known about molecular
responses to other arthropods as mites, most of them focusing
on the two-spotted spider mite T. urticae (Rioja et al.,
2017). False spider mites of the genus Brevipalpus (Acari:
Tenuipalpidae) are economically important phytophagous mites
that attack hundreds of plant species of very distinct families,
including large-scale plantations of high-value crops and several
ornamental plants (Childers et al., 2003; Kitajima et al., 2010).
Besides causing direct damage to some plant species, the
negative impacts of infestation are often exacerbated by their
ability to vector numerous plant-infecting viruses, the so-called
Brevipalpus-transmitted viruses (BTVs) (Kitajima and Alberti,
2014). Brevipalpus yothersi vectors both cileviruses and tentative
dichorhaviruses (Ramos-González et al., 2016; Chabi-Jesus et al.,
2018) being the main vector of citrus leprosis virus C (CiLV-C),
the prevalent virus causing citrus leprosis disease. Chemical
control of B. yothersi mites costs millions of dollars each year in
Brazil, the world leading producer of sweet orange juice, frozen
concentrated orange juice (FCOJ) and not-from-concentrate
orange juice (NFC) (Bastianel et al., 2010). The cosmopolitan
distribution of Brevipalpus spp. poses a major threat to the
worldwide citrus industry and to other crops such as coffee
(Rodrigues and Childers, 2013; Beard et al., 2015). In addition to
their agricultural relevance, Brevipalpus mites are also prominent
because of their unusual biology. Several species of the genus
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are haploid during their entire life cycle, an exclusive feature
amongst higher organisms, and are essentially female due to the
presence of the endosymbiont bacterium Cardinium sp. (Weeks
et al., 2001).

Despite the economic and biological significance, many
aspects of the Brevipalpus mite-plant interaction remain largely
unknown. A previous study showed that plants respond to the
presence of B. yothersi non-viruliferous mites with a ROS burst
and induction of specific genes from SA and JA-dependent
pathways (Arena et al., 2016). Upon infestation with CiLV-C
viruliferous mites, both SA- and JA-responsive genes are reduced,
and mite behavior is affected (Arena et al., 2016). To achieve a
wider understanding of the molecular mechanisms behind plant-
mite interaction, we used an RNA-Seq approach assessing the
global response of Arabidopsis thaliana plants along the course
of the infestation with B. yothersi. Transcriptome analysis was
complemented with the measuring of the SA and JA hormone
levels in plants upon mite feeding. Finally, to further clarify
the functional relevance of hormone-triggered plant defense
on the interaction, we evaluated the B. yothersi oviposition on
Arabidopsis mutants impaired in SA or JA-mediated response.
Current work provides a comprehensive picture of the plant
response to Brevipalpus mite feeding.

RESULTS

Brevipalpus Mites Elicit a Significant
Transcriptome Reprogramming on
Infested Plants
A time-course RNA-Seq experiment was set up to assess
the global response of A. thaliana plants along the course
of infestation with non-viruliferous B. yothersi mites. The
transcriptome of infested plants was compared with that from
non-infested ones (control) at 6 h after infestation (hai), 2 and
6 days after infestation (dai). Overall, 995 million paired-end
reads were obtained by Illumina sequencing, with an average of
41.5 million per library and higher average number of reads in
samples from the infested treatment (Supplementary Table S1
and Figure 1A). Roughly 94% of the reads mapped against the
A. thaliana reference genome, with a 91% average of uniquely
mapped reads (Supplementary Table S1 and Figure 1B).

Biological variability between samples was verified by
principal component analysis (PCA) using the normalized
count data (Figure 1C). Infested and control samples grouped
separately, suggesting a globally distinct expression profile, as
expected. Even though a classification of the first principal
components as treatment or time of infestation was not clear, the
first component (PC1), which accounts for 52% of the variance,
apparently separated the samples by the intensity of stimuli.
Except for two out of four control samples at 6 dai, all control
samples grouped together with those of mite-infested treatments
from 6 hai, whose plants were stimulated by a short period of
mite feeding. Samples from plants challenged by longer mite
feeding period (2 and 6 dai) grouped separately. Hierarchical
clustering of samples within each time point confirmed a clear

separation between mite-infested and non-infested treatments
over the course of the experiment (Figure 1D).

By using the negative binomial-based DESeq2 package and
FDR correction of p-values for multiple comparisons, 5005
differentially expressed genes (DEGs, α ≤ 0.05) were detected
(Supplementary Table S2). Mite infestation deregulated 1755,
3069 and 2680 genes at 6 hai, 2 dai, and 6 dai, respectively
(Figure 1E). At the earliest stage of the interaction (6 hai),
the majority of the DEGs was up-regulated. The number
of down-regulated genes progressively increased during the
interaction reaching its highest rating at 6 dai (Figures 1E,F).
Analysis performed here show an intense modulation of
the plant transcriptome in response to Brevipalpus mite
infestation.

To validate the RNA-Seq data, 10 genes were selected for
Real Time RT-qPCR analysis. Expression of these genes was
assessed in a new experiment with mite-infested and non-infested
Arabidopsis plants at 6 hai, 2 dai, and 6 dai (Supplementary
Figure S1). Altogether, expression profiles of selected genes
obtained by RT-qPCR were consistent with those obtained by
the RNA-Seq, supporting the results described in this work.
Additionally, some of these genes had an expression profile
similar to that revealed by a qPCR-driven analysis during
a comparable experiment previously described (Arena et al.,
2016).

The Plant Immune System Is Modulated
by Brevipalpus Mite Infestation
Gene ontology (GO) enrichment analysis was performed with
all 5005 DEGs to identify the most relevant biological processes
(BPs), molecular functions (MFs) and cellular components
(CC) disturbed during Brevipalpus mite-plant interaction. This
study identified 264 BPs, 83 MFs and 78 CCs that were over-
represented (hypergeometric test, α ≤ 0.001) in the list of DEGs
(Supplementary Table S3). Enriched BPs were further visualized
as a network using the app BinGO from Cytoscape, where color
and size of the nodes identify p-values and number of DEGs from
each category, respectively (Supplementary Figure S2).

The GO network revealed a striking deregulation of
plant defensive responses. BP categories were clustered in
two major groups comprising metabolism and response to
stimuli. BP-metabolism was sub-clustered into two branches
separately harboring the primary and secondary metabolisms.
Secondary metabolism group was represented by processes
related to the biosynthesis and metabolism of “flavonoids,”
“glucosinolates,” “toxins,” and “camalexins,” which are known
to exert anti-herbivory roles and be induced by SA or JA.
Primary metabolism included categories associated to the
metabolism of: (i) “aminoacids” and “proteins,” connected to
processes involved in the control of gene expression (such as
“protein modification,” “phosphorylation,” and “transcription”);
(ii) “organic acid,” whose sub-categories included the “SA
metabolism” and “JA biosynthesis and metabolism”; and
(iii) “carbohydrates,” edged to several photosynthesis-associated
categories and processes related to “cell wall modification” such
as “callose deposition,” a well-known defense against herbivores
(Jander, 2014).
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FIGURE 1 | Overview of Arabidopsis thaliana transcriptome upon infestation by Brevipalpus mites. (A) Number of paired-end reads generated for each library by
Illumina HiSeq sequencing. C, control (non-infested plants); M, mite-infested-plants. Dashed line represents the average of paired-end reads from all 24 libraries.
(B) Proportion of uniquely mapped, multi-mapped and unmapped reads obtained for each library. Reads were mapped in the A. thaliana (TAIR 10) genome using
TopHat2. C, control; M, mite-infected plants. (C) Principal component analysis of normalized count data from all samples. (D) Hierarchical clustering analysis of
normalized count data z-scores exhibited by differentially expressed genes (DEGs) of each sample within each time point. (E) Numbers of up- and down-regulated
DEGs in mite-infested plants in comparison to non-infested control at each time point. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5
and false discovery rate (FDR)-corrected p-value ≤ 0.05. (F) Volcano-plots of -log10p and log2FC exhibited by each gene in mite-infested plants compared to
non-infested control at each time point. Up- and down-regulated genes are presented in red and green, respectively. FC, fold-change; p, FDR-corrected p-value, hai,
hours after infestation; dai, days after infestation.
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Biological processes cluster centralized in “response to
stimulus” was fully represented by processes associated with
defense responses. Nodes from the cluster included response
to “stress,” “abiotic,” and “biotic” stimulus (linked to “defense
response” and to the subcategories of response to “wounding,”
“insects,” and other pathogens). A large “response to hormone”
branch displayed all main hormone-mediated pathways,
including SA and JA, but also abscisic acid (ABA), ethylene (ET),
auxins (IAA), cytokinins (CK) and gibberellins (GA). Other
nodes included in the “response to stimuli” group were “response
to chitin,” commonly triggered in plants colonized by chitin-rich
organisms such as arthropods and fungi (Libault et al., 2007), and
“oxidative stress,” typically induced in plant-biotic interactions
(Arena et al., 2016; Camejo et al., 2016). Several processes related
to defense response were also present in “biological regulation”
nodes, such as “regulation of hormone levels,” “defense response,”
“immune response,” and, “JA pathway.”

Specific and Common Transcriptomic
Changes Occur at Different Time Points
After Brevipalpus Mite Infestation of
Plants
A comparison of the DEGs deregulated across the experiment
revealed both common and specific changes at each time points
(Figure 2A). Few DEGs were common to all time points, whereas
the highest percentage of them were found to be exclusively
modulated at 2 or 6 dai suggesting intense reprogramming steps
of plant transcriptome throughout the course of the Brevipalpus
mite infestation (Figure 2A).

Most of the BPs (84 terms) over-represented during
mite infestation overlap at all time points (Figure 2B and
Supplementary Table S4). These processes included most of
the general terms of plant response to stresses and hormones,
indicating a continuous and lasting reprogramming of the plant
immune system since the beginning of the interaction until at
least 6 dai. Several categories were common between 6 hai and
2 dai (75 terms), and 2 dai and 6 dai (20 terms), but no biological
process was shared between the first and the last evaluated time
points (Figure 2B).

Even though processes related to plant defense responses
were markedly enriched over the time course of the experiment,
time point-specific ontologies were also identified. From all the
over-represented BP categories, 49, 47, and 24 were uniquely
identified at 6 hai, 2 dai, and 6 dai, respectively (Figure 2B and
Supplementary Table S4). Hormone biosynthesis (“salicylic
acid biosynthetic process,” “oxylipin biosynthetic process”),
early signaling (“activation of MAPK activity”), and structural
defenses (“callose deposition,” “cell wall thickening,” and “lignin
biosynthetic process”) were processes exclusively enriched at
6 hai (Figure 2C). At 2 dai, unique categories were related
to the metabolism of defense-related secondary metabolites
(“indole glucosinolate metabolic process,” “pigment,” and
“flavonoid biosynthetic and metabolic process”), photosynthesis
and oxidative stress (“photosynthesis,” “carbon fixation,”
“photosynthetic electron transport,” “response to light intensity,”
“response to oxidative stress”) (Figure 2C). Exclusive ontologies

that came up with the late infestation state (6 dai) were
detoxification processes (“cellular detoxification,” “cellular
response to toxic substance”), and other associated to cell wall
components and structure (“plant-type cell wall organization,”
“cell wall loosening,” and “pectin,” “galacturonan,” “glucan,”
“carbohydrate,” and “polysaccharide” metabolic process)
(Figure 2C).

Brevipalpus Mite Infestation Induces
Plant Defensive Responses and
Represses the Plant Growth-Related
Processes
The vast majority of DEGs detected in more than one time point
were strictly kept up- or down-regulated. Among the 5005 DEGs
identified throughout the analysis, only 201 of them (4%) shift
their expression patterns across the experiment (Supplementary
Table S2). In agreement with this, results of the hierarchical
clustering analysis revealed two major clusters of DEGs, which
mainly encompassed 2762 and 2243 up-regulated and down-
regulated genes, respectively (Figure 3A).

Gene ontology enrichment analysis separately performed
with DEGs within each of the predefined clusters identified
only 31 common categories between the up- and down-
regulated groups (Figure 3B and Supplementary Table S5).
These categories represented higher GO levels and included
general BPs such as “regulation of biological quality,” “response
to stimulus,” “metabolic process,” “signal transduction,” among
others. BPs such as “response to hormones” and “hormone-
mediated signaling pathway” were also shared between the
up- and down-regulated clusters but GO-terms identifying a
particular hormonal pathway were always detected in just one of
the two groups.

The up-regulated cluster was enriched in 264 exclusive
BPs (Figure 3C and Supplementary Table S5). Network
topology was similar to that obtained using all the DEGs
(Supplementary Figure S2), with two major clusters centralized
in metabolic processes and response to stimuli. GO terms
within metabolic process cluster involved several BPs related
to secondary metabolism, whilst response to stimuli cluster
presented terms associated to stress and defense and hormonal
pathways. Over-represented categories were massively typified
by defensive responses. Besides broad immune system-related
terms (e.g., “immune response”), other common categories
displayed by the general network (Supplementary Figure S2)
included responses to hormones, oxidative stress and the
production of secondary metabolites, e.g., glucosinolates,
flavonoids, and camalexin. Only SA, JA, ET, and ABA-mediated
hormonal pathways were represented in the up-regulated
cluster network. Induced GO network also included other
over-represented processes that were unidentified in the general
network (Supplementary Figure S2). Among these are included:
“response to herbivore,” “response to virus,” “multi-organism
process,” “modification of morphology/physiology of other
organism,” “lignin biosynthetic and metabolic process,” “defense
response by callose deposition,” and “phytoalexin biosynthetic
and metabolic process.”
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FIGURE 2 | Transcriptomic changes at different time points after Brevipalpus mite infestation of A. thaliana plants. (A) Venn diagram of DEGs in mite-infested plants
compared to non-infested control at each time point. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5 and FDR-corrected p-value ≤ 0.05.
(B) Venn diagram of overrepresented BPs of DEGs at each time point. Overrepresented BPs were identified for each time point based on a hypergeometric test with
FDR-adjusted p-values ≤ 0.001. (C) Lists of overrepresented BPs exclusive to each experimental time point (6 hai, 2 dai or 6 dai) and those commons between
them (6 hai × 2 dai × 6 dai). BPs corresponding p-values obtained in the Gene ontology (GO) enrichment analysis are included in the right column of the tables.
Twenty BPs of each list are presented in each table. Complete lists of exclusive and common BPs are available in Supplementary Table S4.
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FIGURE 3 | Continued
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FIGURE 3 | Induced and repressed responses on A. thaliana infested by Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs on
mite-infested plants compared to non-infested control. DEGs were identified using DESeq2 and defined by log2 fold-change ≥ 0.5 and FDR-corrected
p-value ≤ 0.05. hai, hours after infestation; dai, days after infestation. (B) Venn diagram of overrepresented BPs of DEGs at each cluster composed by up- and
down-regulated genes. Overrepresented BPs were identified for each cluster based on a hypergeometric test with FDR-adjusted p-values ≤ 0.001. (C,D) Networks
of enriched BPs from clusters of up-regulated (C) and down-regulated (D) DEGs, generated using the app BinGO in Cytoscape. Size of the nodes correlates with
the number of DEGs. Color of the nodes reveals p-values of enriched categories. Nodes in gray represent categories that were shared between clusters of up- and
down-regulated genes. Names of some BPs were simplified for clarity; full names are displayed in Supplementary Table S5. ROS, reactive oxygen species; SA,
salicylic acid; JA, jasmonic acid; ET, ethylene; ABA, abscisic acid; IAA, auxin; CK, cytokinin; BR, brassinosteroid.

The down-regulated cluster was enriched in 76 exclusive
BPs, which were predominantly associated with the plant
growth and development (Figure 3D and Supplementary
Table S5). Over-represented terms included broad categories,
for instance “developmental process” and “regulation of
growth,” and also those directly related to plant growth
such as “cytokinetic process,” “cell cycle process,” “mitotic
cytokinesis,” or indirectly related to growth such as
“cell wall organization or biogenesis” and “cytoskeleton
organization”. Among the enriched BPs there were also
processes associated to morphogenesis and development of
specific plant components such as “root morphogenesis,”
“cuticle development,” and “cotyledon development.” The
other major class of over-represented BPs uniquely detected
in the down-regulated cluster comprised photosynthesis-
related processes such as “photosynthesis,” “electron transport
chain,” “carbon fixation,” “photosynthesis, dark and light
reaction,” “light harvesting,” “photosynthetic electron
transport,” and “chlorophyll biosynthetic process.” Finally,
the only hormones represented in the down-regulated cluster
network were the major growth regulators IAA, CK and
brassinosteroids (BR).

Co-expression of Genes Correlates With
Classes of Transcription Factors (TFs)
Involved in SA, JA and Developmental
Processes
Since transcriptional reprogramming is mainly controlled by TFs,
the regulation of the expression dynamics of DEGs by specific
classes of TFs was tested by two different approaches.

First, over-represented TF families were searched based on
up- and down-regulated DEGs that encode TFs (Figure 4A
and Supplementary Table S6). Within the cluster of
up-regulated DEGs, 254 (9.2%) TFs from 30 different
families were identified. From those, 16 over-represented
families were detected (hypergeometric test, α ≤ 0.001).
The largest and most significant of them were the WRKY
(33 genes, p-value = 2.47E-33) and the AP2/ERF (40 genes,
p-value = 8.46E-34), known to act as regulators of SA
pathway and ERF-branch of the JA pathway, respectively.
From the analysis using the cluster of down-regulated DEGs,
141 (6.3%) TFs belonging to 30 families were detected.
Twenty-three of these families were also found in the cluster
of up-regulated DEGs. TFs were evenly distributed among 18
over-represented families (hypergeometric test, α ≤ 0.001),
with lower significance (higher p-values). The largest and most
significantly over-represented families were bHLH (22 genes,

p-value = 3.21E-25), which comprises the regulators of the
MYC-branch of the JA pathway, and C3H family (17 genes,
p-value = 1.46E-17).

Second, TF families that potentially regulate the expression of
the DEGs were searched based on over-represented target genes
within the DEGs (Figure 4B and Supplementary Table S7).
Enriched target genes and their corresponding TFs were
identified by using a TF enrichment tool that takes advantage
of previously identified cis-regulatory elements and regulatory
interactions from literature mining (Jin et al., 2017). As a
result, WRKY was the largest identified family with potential
targets within the up-regulated DEGs. Twenty-one out of its
42 TF members were also induced during Brevipalpus mite-
plant interactions. Targets from WRKY TFs were exclusively
enriched in the up-regulated cluster. The next largest families
with targets within the induced DEGs were MYB, bZIP, and
bHLH, with 29, 26, and 24 TFs, respectively. Targets for MYB,
bZIP, and bHLH, however, were not exclusively enriched in the
analysis of the cluster of up-regulated DEGs. These families
represented by 34, 24, and 14 TFs, respectively, were also
among the largest with potential targets within down-regulated
DEGs. MYC2, the marker TF from the MYC-branch of the
JA pathway, was one of the bHLH TF with targets exclusively
enriched in the down-regulated cluster. Notably, the analysis
of the down-regulated cluster also revealed the TCP family,
which is typically involved in the control of plant development.
This family involved 15 and 4 TFs that potentially regulate
targets within the assortment of repressed and induced DEGs,
respectively.

Overall, the analysis of co-expressed genes with its
corresponding TFs showed a correlation of up- and down-
regulated genes with TFs that regulates SA, JA and developmental
processes. The SA-related WRKY family was the largest one with
target genes exclusively enriched in the up-regulated cluster and
most of its TF members were also up-regulated. The analysis of
enriched TFs settles the involvement of plant hormonal pathways
and developmental processes in the plant response to Brevipalpus
mites, with highlight on the participation of the SA pathway
solely on the up-regulated responses.

Focus on Defense Pathways: SA- and
JA-Mediated Responses Are Induced in
Brevipalpus Mite-Infested Plants
Over-represented genes from GO-terms associated with SA
and JA-dependent responses were thoroughly reviewed to
confirm their induced status. Data from genes included in
the categories “response to SA” and “SA metabolic process,”
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FIGURE 4 | Enriched transcription factors (TFs) and TF targets in clusters of mite-responsive co-expressed genes. (A) Number of DEGs coding for TFs within each
TF family identified in the clusters of up- and down-regulated DEGs. Up- and down-regulated DEGs are presented in red and green, respectively. Levels of
enrichment (−Log10 p, with p: p-value) of each family (hypergeometric test, α ≤ 0.001) are presented by a dashed line with its corresponding values in the secondary
axis. (B) TFs with enriched targets within each cluster of up- and down-regulated DEGs, identified by TF enrichment tool. TFs are grouped according to their families.
Each line identifies one TF. In the first and second row (“Up” and “Down” clusters, respectively), orange lines correspond to TFs with enriched targets within each
cluster. In the third row (“TF DEGs”), red and green lines represent up- and down-regulated differentially expressed genes, respectively, encoding TFs. Gray lines
indicate absence of enriched targets for a given TF- and/or TF not differentially expressed. Families encompassing two or less TFs were grouped in “Others.”

or “response to JA,” “regulation of JA-mediated pathway,” and
“JA metabolic process” were processed by a Hierarchical cluster
analysis.

The SA-dependent pathway was represented by 103 DEGs
(Supplementary Table S8). Eighty-one of these DEGs were
up-regulated in at least one of the experimental time points.
Some of these genes were induced at either early or late
stages of the response, but they were not down-regulated
in any of the other analyzed time points (Figures 5A,B).
Examples of these expression patterns are the genes coding
for the signaling protein for SA activation EDS1 (enhanced
disease susceptibility 5) and the SA-biosynthetic enzyme
ICS1 (isochorismate synthase 1) that were up-regulated at
the beginning of the interaction, whilst the SA-responsive
proteins PR1 (pathogenesis-related protein 1) and GLIP1 were
induced at later time points. Moreover, the expression profile
analysis of some DEGs revealed the quick regulation of some
SA-responsive genes since the initial steps of the plant-mite
interaction. For instances, PR2/BGL2 (pathogenesis-related
protein 2/beta-1,3-glucanase 2) was up-regulated as soon as
6 hai and remained activated at least till 2 dai. Among the

induced genes associated to the SA pathway there were also
several signaling kinases such as the receptor-like kinase (RLK)
CRK9 (cysteine-rich RLK 9), the wall-associated kinases WAK1
and WAKL10, and the L-type lectin receptor kinase LCRK-S.2,
LCRK-IV.1 and LCRK-IX.2. Other up-regulated DEGs from
this cluster were genes encoding the SA biosynthetic enzymes
ICS2 and PAL1 (Phenyl ammonia lyase 1), the transporter of
SA from chloroplast to cytoplasm EDS5 (enhanced disease
susceptibility 5), the regulator of SA responses GRX480
(glutaredoxin 480), the methyl-salicylate (MeSA) esterase
proteins MES7 and MES9 (methyl esterase 7 and 9), the
defense protein PR5, and several TFS from WRKY and MYB
families.

Another small cluster of SA-related genes comprised
a group of 22 DEGs that were mainly down-regulated,
particularly at the two latest time points of the experiment
(Figure 5A). This cluster was largely formed by TFs that
are also responsive to JA. Repressed TFs included members
of the ERF/AP2, MYB and GRAS/DELLA families. Other
repressed genes beyond TFs were UGT1 (UDP-glucose
transferase 1), involved in the callose formation, and the
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FIGURE 5 | Salicylic acid (SA) pathway in the A. thaliana response to Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs involved in
the SA pathway. hai, hours after infestation; dai, days after infestation. (B) Schematic representation of SA pathway, where a sub-set of DEGs is presented. Colors
identifies log2FC of DEGs at each experimental time point, according to the scale presented in (A). (C) SA levels in infested and systemic leaves of mite-infested
plants, and in non-infested control plants. Hormone levels were quantified by LC-MS/MS at 6 dai. Error bars represent standard errors. Statistically significant
difference at p-value ≤ 0.05 (∗) is indicated. FW, fresh weight. (D) Mite performance in Arabidopsis mutants compromised in the SA pathway. Data represent the
average number of eggs deposited after 4 days of infestation with five Brevipalpus yothersi mites/plant. Error bars represent standard errors. Statistically significant
differences at p-values ≤ 0.01 (∗∗) are indicated. WT, wild type.

genes encoding the GRP23 and GRP5 proteins (glycine-
rich proteins 23 and 5), which are components of the plant
cell wall.

The JA-mediated pathway was composed by 137 DEGs that,
similarly to what was observed in the SA-pathway analysis, were

mainly up-regulated (Supplementary Table S8) (Figures 6A,B).
DEGs were subdivided in three clusters: two larger groups formed
by 60 and 54 highly and mildly up-regulated genes, respectively,
and a small one composed by 23 genes that were mostly down-
regulated (Figure 6A).
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FIGURE 6 | Jasmonic acid (JA) pathway in the A. thaliana response to Brevipalpus mites. (A) Hierarchical clustering analysis of log2 FC exhibited by DEGs involved
in the JA pathway. hai, hours after infestation; dai, days after infestation. (B) Schematic representation of JA pathway showing a sub-set of DEGs. Colors identifies
log2FC of DEGs at each time point, according to the scale presented in (A). (C) JA levels in infested and systemic leaves of mite-infested plants, and in non-infested
control plants. Hormone levels were quantified by LC-MS/MS at 6 dai. Error bars represent standard errors. Statistically significant differences at p-value ≤ 0.05 (∗) is
indicated. FW, fresh weight. (D) Mite performance in Arabidopsis mutants compromised in the JA pathway. Data represent the average number of eggs deposited
after 4 days of infestation with five Brevipalpus yothersi mites/plant. Error bars represent standard errors. WT, wild type.

Highly induced JA-related genes (Supplementary Table S8)
at the beginning of the infestation code for proteins acting
upstream on the JA pathway such as the DAMP receptor
PEPR2 (PEP1 receptor 2) and the JA-biosynthetic and modifying
enzymes AOS (allene oxide synthase), AOC2 and AOC3 (allene
oxide cyclase 2 and 3), LOX2, LOX3, and LOX4 (lipoxygenase

2, 3, and 4), OPCL1 (OPC-8:0 CoA ligase 1) and JMT (JA
carboxyl methyltransferase) (Supplementary Table S8). DEGs
induced at the two first experimental time points also included
terpene synthases (TPS03, TPS04, and TPS10), several JAZ
( jasmonate-zim-domain) proteins (JAZ1, JAZ2, JAZ5, JAZ7,
JAZ8, JAZ9/TIFY7, and JAZ10) and the TFs MYC2 and ERF1.
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Genes with high expression at later time points encode proteins
directly involved in defense such as the marker responsive
protein of the ERF-branch PDF1.2 (plant defensin 1.2),
and proteins involved in the anthocyanin biosynthesis such
as UF3GT (UDP-glucose:flavonoid 3-o-glucosyltransferase).
Other highly up-regulated DEGs included MYB TFs, the
DELLA protein RGL3 that contributes to JA/ET-mediated
defenses, the ERF-branch TFs ERF2 and ORA59 (octadecanoid-
responsive Arabidopsis AP2/ERF59), the responsive gene
THI2.1 (thionin 2.1), and the JA oxidases JOX1 and JOX2
that down-regulate plant immunity by hydroxylation and
inactivation of JA.

Genes from the JA pathway that were mildly induced
(Supplementary Table S8) at the first time points included
those coding for the JA-biosynthetic enzymes ACX1 (acyl-
CoA oxidase 1) and AOC4, the TF WRKY70 that acts on
the SA-JA antagonism, the negative regulators of JA-responsive
genes NINJA (novel interactor of JAZ) and JAZ3, and the
proteins MYB34 and SOT16 (sulfotransferase 16) involved in
the synthesis of glucosinolates. Later in the infestation, the
group of mildly induced genes included those coding for the
proteins MYB75/PAP1 and TT4 that act in the biosynthetic
pathway of anthocyanin, the MYB51 and FMOGS-OX7 proteins
involved in the synthesis of glucosinolates, and the responsive
marker genes of the MYC-branch VSP1 and VSP2 (vegetative
storage proteins 1 and 2), which directly act during the anti-
herbivory defense. Two essential modulator genes of the JA
signaling, i.e., RGLG3 (ring domain ligase 3) and the MYC3
TF were induced at all the assessed time points although at
low expression levels. RGLG3 encodes for a RING-ubiquitin
ligase acting upstream of JA-Ile recognition and MYC3 operates
together with MYC2 coordinating the expression of responsive
genes from the MYC-branch.

The down-regulated JA cluster comprised DEGs that were
mainly repressed at 2 and 6 dai (Supplementary Table S8). Some
of them encode TF commonly acting in the SA-pathway such
as members of the families: ERF (RAP2.6 and DREB26), MYB
(MYBS1, MYB28, MYB29, and MYB16), and GRAS/DELLA
(RGL1 and RGL2). Other repressed genes were those encoding
the BAT5 (bile acid transporter 5) protein and the MYB76
TF, both required for the biosynthesis of glucosinolates, the
DAMP receptor PEPR1, and the JA-repressed protein AGP31
(arabinogalactan protein 31).

SA and JA Levels Increase in
Mite-Infested Plants
Both SA and JA biosynthetic and responsive genes were induced
in Brevipalpus mite-infested plants. To confirm the consistency
of the observed molecular data, the profiles of the SA and JA
hormones were determined in Arabidopsis plants challenged
with Brevipalpus mites. SA (Figure 5C) and JA (Figure 6C)
levels were 1.5- and 2.8-fold higher, respectively, on infested
leaves when compared to the control ones (Student’s t-test,
α ≤ 0.05).

Salicylic acid and JA levels were also verified in systemic leaves
of mite-infested plants. No difference was observed between the

levels of both hormones in systemic and non-infested control
leaves, suggesting a local rather than a systemic response to
Brevipalpus mite infestation.

Brevipalpus Mites Have a Decreased
Performance on Plants Impaired in
SA Responses
Salicylic acid- and JA-mediated pathways were clearly induced
upon Brevipalpus mite infestation. To further explain the
functional relevance of the plant hormonal pathways on the
interaction, the performance of B. yothersi mites was evaluated on
Arabidopsis plants impaired in SA or JA-mediated response. Mite
oviposition was assessed on mutants defective in SA biosynthesis
(salicylic acid induction deficient2, sid2) and signaling (non-
expressor of pathogenesis-related protein1, npr1), and JA signaling
(jasmonate resistant1, jar1 and coronatine-insensitive1, coi1).
Plants were infested with adult female mites and the number of
laid eggs was counted after 6 days.

The number of eggs per plant was 2.4- and 1.5-fold lower on
SA-mutants sid2 and npr1, respectively, when compared to the
mite’s performance in the infested wild-type A. thaliana Col-0
plants used as control (Student’s t-test, α ≤ 0.05) (Figure 5D).
No difference was observed between the number of eggs on
the mutants affected in the JA pathway (jar1 and coi1) and the
wild-type control (Student’s t-test, α ≤ 0.05) (Figure 6D). These
results point to a role of SA-mediated response promoting the
Brevipalpus mite colonization.

DISCUSSION

False-spider mites of the genus Brevipalpus are serious and
cosmopolite phytophagous pests with a unique biology (Weeks
et al., 2001). They directly provoke injuries in some plant species,
but the major consequence of their feeding behavior ensues
from the transmission of several cile- and dichorha- viruses that
infect economically important crops (Kitajima and Alberti, 2014).
Almost 10 species of Brevipalpus mites are known to act as
virus vector, but, among them, mites of the species B. yothersi
stands out due to their involvement in transmission of viruses
causing citrus leprosis, a severe disease that threatens the citrus
industry in the Americas (Beard et al., 2015; Ramos-González
et al., 2016). To disentangle the Brevipalpus-mite interaction,
in the current paper we provide data that extensively describe
the response of Arabidopsis plants during their colonization by
Brevipalpus mites. Changes in the plant transcriptome profile are
complemented with the analysis of the accumulation of defense
hormones and the results are discussed emphasizing the role of
particular plant defense genes during the Brevipalpus infestation
process.

Our results showed that mite infestation clearly triggers the
plant immune system. Processes related to the response to
herbivory and other biotic stresses dominate a large number of
the over-represented GO categories among all DEGs. Most of the
BPs were common between all the time points, although specific
changes were also identified. Plant response during the initial
6 h included the induction of genes involved in the hormone
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biosynthesis and signaling, consistent with an early recognition
of the mite feeding. Transcriptome changes were followed by
the up-regulation of a wide range of genes involved in defense
and synthesis of secondary metabolites at 2 and 6 dai. The
major dissimilarity was between the first and last time points,
which do not share any BPs except the ones that were present
throughout the infestation. GO enrichment analysis revealed
that defense responses were up-regulated and mainly involved
the SA- and JA-mediated pathways. Deeper analysis on SA/JA-
related DEGs and quantification of hormone contents confirmed
that these pathways were distinctly induced upon the infestation
by Brevipalpus mites. On mite-infested plants, genes involved
in the biosynthesis, signaling, and response of the SA and JA
pathways were mostly up-regulated, and SA and JA hormone
levels were increased. In this regard, simultaneous induction
of SA and JA plant response to B. yothersi infestation follows
a similar pattern to those observed during plant colonization
by several spider mites (Kant et al., 2004; Zhurov et al.,
2014; Alba et al., 2015; Rioja et al., 2017). Induced defense-
related processes also included a clear transcriptional response
to oxidative stress. Previous histochemical analysis of infested
tissues revealed the production of ROS upon mite feeding (Arena
et al., 2016). Induction of ROS production and related transcripts
also resembled plant response to spider mite feeding and, in
both cases, the role of ROS signaling remains to be determined
(Agut et al., 2018).

Gene ontology enrichment analysis revealed an extensive
genetic expression adjustment throughout the JA pathway
including the hormonal biosynthesis and metabolism, and
downstream regulation and response. Mite presence induced the
DAMP-receptor PEPR2, suggesting the perception capacity of
damaged tissues by Arabidopsis plants. Although minimal, mite
feeding causes tissue disruption on infested leaves (Arena et al.,
2016). Individual or very few dead cells are observed after mite
feeding activity, probably as consequence of punctures by the
mite stylets. Upon recognition, JA-biosynthetic enzymes such as
AOC, AOSs, and LOXs were up-regulated. Higher JA content
in mite-infested leaves confirmed activity of this biosynthetic
pathway. Downstream of JA production, several signaling
proteins and regulators were induced, including many TFs from
MYB, AP2/ERF, and bHLH families. Downstream responses were
represented by an array of up-regulated transcripts involved
in the production of terpenes, anthocyanin, and glucosinolates.
Since induced JA responses to Brevipalpus mites are similar
to the ones that mediate Arabidopsis response to spider mites
(Zhurov et al., 2014), our results indicate a conservation of mite-
induced JA regulatory mechanisms. Moreover, several negative
regulators of JA response were induced on plants infested by
B. yothersi, including genes encoding NINJA and numerous
JAZ proteins, which interact to repress the TFs that regulates
the expression of JA-responsive genes (Wager and Browse,
2012), and JA oxidases, which down-regulates downstream
responses by hydroxylation and inactivation of JA (Caarls
et al., 2017). In this context, the induced JA pathway might
be attenuated, and consequently, the observed data reflect a
somewhat mitigated rather than a fully-induced JA-mediated
response.

Even though the JA pathway was largely induced upon
mite infestation, distinct activation profiles of JA branches were
observed. First, TFs from the ERF- and MYC-branches were
differentially regulated. AP2/ERF family with TFs that control
the ERF-branch was the largest and most enriched family within
up-regulated DEGs, whilst bHLH family that includes the TFs
that regulates the MYC-branch was the largest and most enriched
one within down-regulated DEGs. Particularly, MYC2 that is
the major regulator of the MYC-branch responsive genes, was
induced, although its target genes were enriched within the
cluster of down-regulated genes. Second, the expression levels
of defensive genes from the ERF-branch were much higher than
that from genes of the MYC-branch. The gene encoding the ERF-
responsive anti-microbial protein PDF1.2 figures among the most
highly up-regulated DEGs (e.g., FC = 94-fold at 2 dai), whilst
those coding for the MYC-responsive anti-herbivory proteins
VSP2 and VSP1 were only mildly or not induced at the same
experimental time points (e.g., FC = 4- and 10-fold, respectively,
at 2 dai). The preferential activation of the ERF-branch over the
MYC-branch was described as an herbivore strategy to induce a
harmless response in expense of a harmful defense (Verhage et al.,
2011; Pieterse et al., 2012). The strongest activation of the ERF-
branch reported here corroborates a previous study proposing
that Brevipalpus mites might mitigate effective defenses by
manipulating the plant resistance mechanisms toward herbivore
preferred JA responses (Arena et al., 2016). However, further
analysis of ERF and MYC mutants are required to clarify the
actual role of each one the JA branches in plant response to
Brevipalpus mites.

Within the induced hormonal pathways in response to
Brevipalpus infestation, the SA-mediated pathway plays a
conspicuous role. On these plants SA levels were elevated,
the vast majority of SA-related genes were up-regulated, and
the SA-related WRKY TFs as well as their target genes were
exclusively over-represented in the cluster of up-regulated genes.
Induction of SA response has been associated with stealthy
arthropods such as piercing-sucking insects (Nguyen et al.,
2016; Patton et al., 2017). Likewise, Brevipalpus mite feeding
behavior causes minimal tissue disruption. During feeding,
mites pierce epidermal cells using interlocked stylets, sometimes
through leaf stomata, and suck out overflowed cell content
(Kitajima and Alberti, 2014). Activation of the SA pathway by
Brevipalpus mites agrees with the common pattern observed for
herbivores causing little overt tissue damage (Arimura et al.,
2011).

Interestingly, an increasing number of evidence indicate that
activation of SA pathway favors herbivore performance rather
than acts as an effective defense against herbivory. For instance,
Bemisia tabaci nymphs performs better in the cpr6 mutants pre-
activated for SA-mediated defenses (Zhang et al., 2013), and SA
exogenous application render Arabidopsis plants more attractive
to thrips (Abe et al., 2012). Using Arabidopsis mutants, we
found that the performance of Brevipalpus mites is compromised
in plants with lower SA content (sid2, mutant for ICS1) and
defective SA signaling (npr1). In comparison with wild-type
plants, the number of laid eggs was 2.4- and 1.5-fold lower on
sid2 and npr1 mutant plants, respectively. Whilst SA levels during
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plant-biotic stresses is mainly produced through ICS1-mediated
isochorismate pathway (Wildermuth et al., 2001), responses
downstream SA accumulation are branched in NPR1-dependent
and -independent genes (Uquillas et al., 2004; Shearer et al.,
2012). The milder phenotype from npr1 in comparison with
sid2 might be related to intact NPR1-independent responses.
Influence of SA response in Brevipalpus mites seems contrary
to its role against spider mites. Even though a few reports
showed no influence of SA against Tetranychus species (Zhurov
et al., 2014), a recent study showed that T. urticae mites
have an increased performance on SA-deficient NahG tomato
plants (Villarroel et al., 2016). Lower oviposition of B. yothersi
mites in either the SA -synthesis or -signaling impaired plants
suggests the manipulation by Brevipalpus mites of the SA
pathway aiming the promotion of host colonization. The positive
influence of the SA pathway over B. yothersi also has implications
for the role of the mite as a vector. We previously reported
that infestation with CiLV-C-carrying B. yothersi induces even
stronger SA response than that reached during non-viruliferous
mites feeding (Arena et al., 2016). Higher up-regulation of
SA pathway in response to viral infection might further
enhance mite colonization and, probably, contribute to the viral
transmission.

Salicylic acid-mediated improvement of herbivore
performance is usually associated with the antagonistic
interactions between the SA and JA signaling pathways
(Bruessow et al., 2010; Thaler et al., 2012; Zhang et al., 2013;
Caarls et al., 2015). Some arthropods induce SA as a strategy
to repress JA effective defenses exploiting the natural cross-talk
between signaling pathways. JA defenses, and specifically the
production of indole glucosinolates, are central to Arabidopsis
defense against Tetranychus species (Rioja et al., 2017). Higher
reproduction rate of Brevipalpus mite due to the induction
of the SA pathway could be associated with the reduction
on the JA pathway, as previously suggested (Arena et al.,
2016). However, our current results show that Brevipalpus
mite oviposition was not increased in Arabidopsis mutants
impaired in JA-responses (jar1 and coi1), therefore, the role
of JA pathway against Brevipalpus mite colonization is not as
obvious as against spider mites, or it does not directly affect
oviposition. Molecularly, our results might suggest that the
induction of SA antagonizes a set of JA responses which are
independent of JAR1 and COI1, or that the SA pathway might
improve mite performance by mechanisms alternative to the
SA–JA crosstalk. It is noteworthy that upon mite infestation
both JAR1 and COI1 genes were not induced (Supplementary
Table S2), consequently, at least at transcriptional level, evidence
of involvement of these two gene in response against Brevipalpus
mite colonization was not revealed. Furthermore, it is possible
that the JA pathway influences other aspects rather than mite
oviposition such as host preference or mite development.
The deeper analysis of other JA mutants and features of mite
behavior will help to disentangle the role of the JA on mite
infestation.

Some arthropod herbivores are capable of manipulating host
responses to circumvent defenses (Stahl et al., 2018). Even
though most of the known examples of defense suppression

by herbivores involves plant–insect interactions, some cases of
suppressive mites have been described (Agut et al., 2018). Defense
counteraction has been shown to occur by secreted proteins,
called effectors, injected into host cells through herbivores’ saliva
to interfere with plant responses (Hogenhout and Bos, 2011).
Effectors from Tetranychus saliva that suppress harmful defenses
and increase spider mite performance were recently described
(Villarroel et al., 2016). Brevipalpus mites likely inject saliva inside
host cells through a tube formed between its interlocked stylets
(Kitajima and Alberti, 2014). The ability of B. yothersi mites
to manage the plant response favoring their own performance
suggests that, similarly as spider mites do, Brevipalpus mites
might also deliver saliva-borne effector proteins into plant cells.
It is noteworthy, however, that mites from Brevipalpus genus
employ such a distinct strategy of modulation of plant responses
compared to closely-related spider mites. Even though feeding
by both Brevipalpus and Tetranychus mites induce SA and JA
pathways simultaneously, the effectiveness of such responses
diverges between the two systems. Whilst JA pathway defend
plants against Tetranychus mites (Zhurov et al., 2014), SA
pathway has been described as neutral or detrimental to spider
mite species (Villarroel et al., 2016). On the contrary, adverse
effect of JA responses to counteract Brevipalpus mite infestation
was not revealed in the present study, but SA pathway has
a positive effect over the colonization of these false-spider
mites, pointing to a unique response within described plant-mite
interactions.

Polyphagous arthropods likely posses a larger collection of
salivary proteins due to their exposure to a wide range of host
plants with distinct morphology and physiology (Vandermoten
et al., 2014). Large groups of proteins families identified in
T. urticae saliva were proposed to facilitate the expansion of
the host range of these highly polyphagous mites (Jonckheere
et al., 2016). Like T. urticae, Brevipalpus mites infest a wide
range of hosts that includes almost a thousand of plant
species in more than a hundred of different families (Childers
et al., 2003). Collectively, our results suggest that Brevipalpus
mites manipulate the plant defensive response to render the
plant more susceptible to the colonization by inducing the
SA-mediated pathway, a mechanism unusual to spider mite
species. Mite’s ability to modulate the plant physiology in
their favor might support the high polyphagous nature of
false-spider mites.

Independent GO enrichment analysis from up- and down-
regulated DEGs revealed not only the up-regulation of defensive
responses, but also the repression of plant growth-related
processes. Defensive responses have been long considered to
impose a cost that results in reduced plant growth and
reproduction (Züst and Agrawal, 2017). Growth-defense trade-
off comes from a reallocation of resources to optimize fitness
when plants are exposed to environmental changes. Upon
herbivory, the plant metabolism is frequently reconfigured.
While the secondary metabolism is enhanced to produce
defenses, the primary metabolism is suppressed. For instance,
induction of JA pathway by Manduca sexta results in down-
regulation of photosynthesis in Nicotiana attenuata (Halitschke
et al., 2011). Plant growth genes repressed during the elicitation
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of defenses comprise, among others, those associated with cell
wall (e.g., expansins), cell division (e.g., cyclins), and DNA
replication and photosynthesis (such as components of the light-
harvesting complex, photosystem subunits, electron transport
chain, chlorophyll biosynthesis, etc.) (Attaran et al., 2014).
On Brevipalpus mite-infested plants, several of those growth-
related genes were down-regulated. Over-represented GO terms
within repressed DEGs included processes associated to the
cell wall, morphogenesis of cell components, cell division, and
photosynthesis.

The plant growth-defense trade-off is modulated through
the interplay between defense hormonal pathways mediated
by SA and JA and the hormones that act as the major plant
growth regulators, i.e., IAA, BR, and GA. Some molecular players
that regulate the trade-off have been identified (Huot et al.,
2014; Lozano-Durán and Zipfel, 2015; Campos et al., 2016;
Züst and Agrawal, 2017). DELLA proteins are key negative
regulators of GA signaling that inactivates growth-promoting
phytochrome-interacting factors (PIFs). Upon GA elicitation,
DELLA proteins are degraded, releasing PIFs and allowing them
to activate expression of growth-promoting genes (Huot et al.,
2014; Züst and Agrawal, 2017). DELLA and JAZ proteins interact,
inhibiting each other actions over the repression of growth
and defense-related genes (Yang et al., 2012). The degradation
of JAZ proteins triggered by JA accumulation releases DELLA
from JAZ binding, thereby strengthens the suppression of
PIFs and plant growth (Yang et al., 2012; Züst and Agrawal,
2017). Likewise, overexpression of the DELLA protein RGL3
reduces GA-mediated growth while increases MYC2-dependent
expression of JA-responsive genes (Wild et al., 2012). Our
results indicate that markers from the molecular mechanism
behind the trade-off, such as RGL3, were induced. The SA- and
JA-dependent defense responses were up-regulated and IAA-,
BR-, and GA-mediated growth processes were downregulated,
suggesting that the growth-defense trade-off occurs during
Arabidopsis-Brevipalpus interaction.

Results obtained here extend our previously proposed model
on the Arabidopsis response to non-viruliferous Brevipalpus
mites (Arena et al., 2016). Beyond the responses focused here,
the large-scale transcriptome we obtained will provide a valuable
resource to further explore unknown molecular components
involved in plant interaction with false-spider mites.

MATERIALS AND METHODS

Plant Material
Wild-type A. thaliana ecotype Columbia (Col-0) was obtained
from the Arabidopsis Biological Resource Center1. Arabidopsis
mutants in the Col-0 background (sid2-1, npr1, and jar1) were
obtained from Georg Jander. The Arabidopsis mutant coi1-
16 was obtained from Kirk Overmyer. Plants were grown in
controlled growth chambers (Conviron, Winnipeg, Canada) at
23 ± 2◦C and a 12 h light/dark photoperiod. Four-week-old
plants were used in the experiments.

1http://www.arabidopsis.org

Mite Rearing
Non-viruliferous mites were initially obtained from citrus
orchards and further confirmed as B. yothersi using phase
contrast microscopy as reported elsewhere (Beard et al., 2015).
Mites were reared onto fruits of ‘Tahiti’ acid lime (Citrus latifolia
Tanaka), a genotype immune to citrus leprosis virus C, as
previously described (Arena et al., 2016). Mites were reared for
several generations and were confirmed as non-viruliferous by
RT-PCR using primers for CiLV-C (Locali et al., 2003) before
their use in the experiments.

RNA-Seq Experiment
A time course experiment was conducted on plants infested
with non-viruliferous mites and on non-infested control plants
at 6 h after infestation (hai), 2 and 6 dai. For each time point,
Arabidopsis Col-0 plants were grouped in sets of 16 individuals
assigned to each treatment (infested and control). Plants from
both treatments were kept at the same growth chamber. Plants
from the infested treatment were challenged with 15 mites
(5 mites per each of 3 rosette leaves), transferred with a small
brush under a stereoscopic microscope. Mites were not caged.
Infested or control leaves were collected at each time-point.
From mite-infested plants, only the leaves where mites were
originally deposited were collected. Leaves from two plants were
pooled, totaling eight biological replicates per treatment per time
point, flash-frozen in liquid N2 and stored at −80◦C until RNA
extraction. Plant RNA was purified using the RNeasy Plant Mini
Kit (Qiagen, Venlo, Netherlands) and treated RNAse-free DNAse
(Qiagen, Venlo, Netherlands) for removal of residual plant
DNA. RNA quality was assessed in Bioanalyzer 2100 (Agilent
technologies, Santa Clara, CA, United States). All samples had
an RNA integrity number (RIN) above eight and were considered
suitable for RNA-Seq. RNA extracts from two samples (100 ng/µL
each) were pooled in a single sample, totaling four replicates
per treatment per time point for library construction and
independent sequencing. cDNA libraries were prepared using
Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina,
San Diego, CA, United States). Sequencing was performed with
HiSeq SBS v4 High Output Kit (Illumina, San Diego, CA,
United States) in an Illumina HiSeq 2500 system (Illumina, San
Diego, CA, United States) and generated 2 × 125 bp paired-
end reads.

Bioinformatics Analysis of RNA-Seq Data
RNA-Seq data were analyzed using R and Bioconductor
according to Anders et al. (2013) with some modifications.
Quality of the sequences was confirmed using ShortRead
(Morgan et al., 2009) and FASTQC. Reads were mapped to
the A. thaliana TAIR10 genome using TopHat2 (Kim et al.,
2013). The number of reads per gene was counted with
HTSeq (Anders et al., 2015) and normalized by size factors
obtained from the negative binomial-based DESeq2 package
(Love et al., 2014). After normalization, clusterization profiles
of the samples were assessed by hierarchical clustering (with
Euclidean distance metric and Ward’s clustering method) and
principal component analysis (PCA). Differentially expressed
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genes (DEGs) between infested and control treatments were
identified at each time point using likelihood ratio tests after
negative binominal fittings using the package DESeq2 (Love
et al., 2014). Genes with False Discovery Rate (FDR)-corrected
p-values ≤ 0.05 and fold-change (log2) threshold of 0.5 were
classified as differentially expressed. To identify mechanisms
potentially involved in the plant response to mite feeding, GO
Enrichment Analysis was performed. A gene set was defined as
all DEGs (unless otherwise noted) and the universe comprised
all genes of the A. thaliana TAIR10 genome expressed in at least
one of the observed conditions. Overrepresented BPs, MFs, and
CCs were identified based on a hypergeometric test with FDR-
adjusted p-values ≤ 0.001. GO networks were generated using the
app BinGO in Cytoscape (Maere et al., 2005).

Identification of Enriched Transcription
Factors
A hierarchical clustering was performed with all DEGs to identify
up- and down- regulated clusters, using Euclidean distance
metric and Ward’s clustering method. Two approaches were used
to identify enriched TFs on each cluster. First, we searched for
genes coding for TFs within DEGs using PlantTFDB database (Jin
et al., 2017). Over-represented TFs on each cluster were identified
using a hypergeometric test (α ≤ 0.001). Second, we searched
for enriched TF targets using the TF enrichment tool, based
on previously identified cis-regulatory elements and regulatory
interactions from literature mining (Jin et al., 2017).

Validation of Gene Expression Data by
RT-qPCR
Another time course experiment was set with plant infested with
non-viruliferous mites and non-infested control plants at 6 hai,
2 and 6 dai. For each time point, Arabidopsis Col-0 plants were
grouped in sets of 16 individuals assigned to each treatment
(infested and control). Plants from the infested treatment were
challenged with 15 mites (5 mites per each of 3 rosette leaves).
Infested or control leaves were collected at each time-point.
Leaves from two plants were pooled, totaling eight biological
replicates per treatment per time point, and flash-frozen in
liquid N2. Plant RNA was purified using the RNeasy Plant
Mini Kit (Qiagen, Venlo, Netherlands) and treated with RNAse-
free DNAse (Qiagen, Venlo, Netherlands). RNA concentration
was assessed using NanoDrop ND-8000 microspectrophotometer
(Thermo Scientific, Waltham, MA, United States) and RNA
quality was verified in 1.2% agarose gels. cDNA were generated
for each RNA sample (500 ng) using RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA,
United States) as described by the manufacturer. RT-qPCR were
prepared with 6.5 µL of GoTaq qPCR Master Mix (Promega,
Madison, WI, United States), 120 nM of each gene-specific
primer pair and 3 ng of cDNA. Primer sequences are available on
Supplementary Table S9. Reactions were performed in a 7500
Fast Real-Time PCR System (Thermo Scientific, Waltham, MA,
United States) device, using the standard settings. Each sample
was analyzed in triplicate and melting curves were included to
confirm the absence of genomic DNA and unspecific reactions.

Quantification cycle (Cq) values and primer pairs efficiencies
were determined for each individual reaction using Real-time
PCR Miner (Zhao and Fernald, 2005). Gene expression analyses
were performed according the 1Cq model using multiple
reference genes (Hellemans et al., 2007) as previously described
(Arena et al., 2016). Statistical significances between infested
and control samples within each time point were assessed using
Student’s t-test (α ≤ 0.05).

Quantification of Hormone Levels
Four-week-old Arabidopsis Col-0 plants were infested with 10
mites (two leaves with five mites each) or kept without mites.
Infested leaves were collected after 6 days. Leaves from two plants
were pooled together in one sample, totaling six replicates per
treatment. Harvested leaves were weighted, flash frozen in liquid
nitrogen and ground in a paint shaker. The SA and JA contents at
local and systemic leaves of mite-infested plants were compared
with those from the non-infested control as previously described
(Casteel et al., 2015). For analysis, 5 µL of each extract were
analyzed on a triple-quadrupole liquid chromatography-tandem
mass spectrometry system (Agilent 6420A triple-quadrupole with
Infinity II HPLC). Extracts were separated on a Zorbax Extend-
C18 HPLC column (Agilent, 3.5 µm, 150 mm × 3.00 mm)
using 0.1% formic acid in water and 0.1% formic acid in
acetonitrile. Statistical significance was assessed using Student’s
t-test (α ≤ 0.05).

Mite Performance in Arabidopsis
The mite performance was evaluated on Arabidopsis mutants
impaired in SA- (sid2 and npr1) or JA- (jar1 and coi1) mediated
response. Plants were infested with five female adult B. yothersi
mites in a single leaf, caged to prevent escape, and a completely
randomized design was set. After 4 days of infestation, plant
leaves were carefully detached, and the number of mite eggs was
counted. Data from each mutant genotype was compared to the
wild-type plants using Student’s t-test (α < 0.05).

RNA-Seq Raw Data
The RNA-Seq raw data are available at sequence read archive
(SRA) with the ID SRP144249.
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FIGURE S1 | RT-qPCR validation of the RNA-Seq data. Expression profile of
selected Arabidopsis thaliana genes was analyzed in Brevipalpus yothersi
mite-infested plants by RNA-Seq and RT-qPCR. Data are presented as log2

fold-change (FC) values in comparison with non-infested plants (with log2FC set to
zero). Statistically significant differences of mite-infested versus non-infested
control at p-values ≤ 0.01 (∗∗) and ≤ 0.05 (∗) are indicated. hai, hours after
infestation; dai, days after infestation. Note that the gene coding for the
SA-responsive protein PR1 was up-regulated at 2 and 6 dai, following the same
profile obtained by RNA-Seq. The SA-related genes GRX480, WRKY70, and PR2
were also identified as induced by RT-qPCR at the beginning of the interaction,
but statistical significance was not confirmed in the later time points. Expression of
the JA-responsive TFs MYC2 and ORA59 was also validated by RT-qPCR. Even
though MYC2 transcripts were significantly higher at 6 dai by RT-qPCR but not
RNA-Seq, up-regulation of this TF at 6 hai and 2 dai was identified using both
techniques. Likewise, ORA59 gene was up-regulated at 6 hai and 6 dai by both
RNA-Seq and RT-qPCR. RT-qPCR results also confirmed the mild induction of the
MYC-branch responsive gene VSP2 at 2 dai, and the high induction of the
ERF-branch marker gene PDF1.2 at 2 and 6 dai. The growth-related gene EXP3
was down-regulated at 6 hai and 6 dai, while the negative regulator RGL3 was
induced at the same time points, according the RNA-Seq data.

FIGURE S2 | Main biological processes (BPs) affected by Brevipalpus mites in
Arabidopsis thaliana plants. Overrepresented BPs were identified based on a
hypergeometric test with false discovery rate (FDR)-adjusted p-values ≤ 0.001.
Gene ontology (GO) networks were generated using the app BinGO in Cytoscape.
Color and size of the nodes identify the number and p-values of differentially

expressed genes (DEGs) from each category. Names of some BPs were simplified
for clarity; full names are shown on Supplementary Table S3. ROS, reactive
oxygen species; SA, salicylic acid; JA, jasmonic acid; ET, ethylene; ABA, abscisic
acid; IAA, auxin; CK, cytokinin; GA, gibberellic acid.

TABLE S1 | Sequencing and alignment statistics for all Arabidopsis thaliana
samples. hai, hours after infestation; dai, days after infestation.

TABLE S2 | Total differentially expressed genes (DEGs) in A. thaliana plants
infested with Brevipalpus yothersi mites at 6 hours after infestation (hai), 2 days
after infestation (dai) and 6 dai. FC, fold-change; FDR, False Discovery
Rate-corrected p-values. Gene symbols and descriptions were retrieved from
ThaleMine (https://apps.araport.org/thalemine).

TABLE S3 | Enriched Biological processes (BPs), molecular functions (MFs), and
cellular components (CCs) in the set of DEGs of A. thaliana plants infested with
B. yothersi mites. Overrepresented BPs, MFs, and CCs were identified based on a
hypergeometric test with False Discovery Rate (FDR)-adjusted p-values ≤ 0.001.
GO, Gene ontology; FDR, FDR-corrected p-values.

TABLE S4 | Enriched BPs at each time point assessed after the infestation of
A. thaliana plants with B. yothersi mites. Overrepresented BPs were identified
based on a hypergeometric test with FDR-adjusted p-values ≤ 0.001. GO, Gene
ontology; FDR, FDR-corrected p-values; hai, hours after the infestation; dai, days
after the infestation.

TABLE S5 | Enriched BPs at each cluster formed by DEGs that were mainly up- or
down-regulated during the A. thaliana interaction with B. yothersi mites. Clusters
were defined after a hierarchical clustering analysis of all DEGs. Overrepresented
BPs were identified based on a hypergeometric test with FDR-adjusted
p-values ≤ 0.001. GO, Gene ontology; FDR, FDR-corrected p-values.

TABLE S6 | Differentially expressed genes (DEGs) coding for TF at each cluster
formed by DEGs that were mainly up- or down-regulated during the A. thaliana
interaction with B. yothersi mites. Clusters were defined after a hierarchical
clustering analysis of all DEGs.

TABLE S7 | Transcription factors (TFs) with enriched targets within each cluster
formed by DEGs that were mainly up- or down-regulated during the A. thaliana
interaction with B. yothersi mites. TFs with enriched targets were identified by TF
enrichment tool (Jin et al., 2017). Up- and down-regulated clusters were defined
after a hierarchical clustering analysis of all DEGs.

TABLE S8 | Differentially expressed genes (DEGs) involved in salicylic acid (SA)
and jasmonic acid (JA) pathways, identified in A. thaliana plants infested with
B. yothersi mites at 6 hai, 2 dai and 6 dai. FC, fold-change; FDR, False Discovery
Rate-corrected p-values. Gene symbols and descriptions were retrieved from
ThaleMine (https://apps.araport.org/thalemine).

TABLE S9 | Selected genes and corresponding primer pairs of A. thaliana used
for gene expression analyses by RT-qPCR.
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ABSTRACT: Brevipalpus-transmitted viruses (BTV) are a taxonomically diverse group of plant 

viruses which severely affect a number of major crops. Members of the group can be sub-

classified into cytoplasmic (BTV-C) or nuclear type (BTV-N) according to the accumulation sites of 

virions in the infected plant cells. Both types of BTV produce only local infections near the point 

of inoculation by viruliferous mites. Features of BTV-plant interactions such as the failure of sys-

temic spread in their natural hosts are poorly understood. In this study we evaluated Arabidopsis 

thaliana, a model plant commonly used for the study of plant-virus interactions, as an alternative 

host for BTV. Infection of Arabidopsis with the BTV-N Coffee ringspot virus and Clerodendrum 

chlorotic spot virus, and the BTV-C Solanum violaefolium ringspot virus, were mediated by virulif-

erous Brevipalpus mites collected in the wild. Upon infestation, local lesions appeared in 7 to 10 

days on leaves of, at least, 80 % of the assayed plants. Presence of viral particles and character-

istic cytopathic effects were detected by transmission electron microscopy (TEM) and the viral 

identities confirmed by specific reverse-transcriptase polymerase chain reaction (RT-PCR) and 

further amplicon sequencing. The high infection rate and reproducibility of symptoms of the three 

different viruses assayed validate A. thaliana as a feasible alternative experimental host for BTV. 

Keywords: Clerodendrum chlorotic spot virus, Cilevirus, Solanum violaefolium ringspot virus, 

Coffee ringspot virus, Dichorhavirus
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Introduction

Plant viruses vectored by species of false spider 

mites of the genus Brevipalpus [Tenuipalpidae] are known 

as Brevipalpus-transmitted viruses (BTV) (Kitajima et al., 

2014). As a group, BTV affect, at least, 40 plant species 

ranging from major crops such as citrus and coffee, to eco-

nomically important cultivated plants such as orchids and 

passion fruit, and other less significant ornamentals (Bastia-

nel et al., 2010; Kitajima et al., 2010; Ramalho et al., 2014). 

The BTV-caused citrus leprosis is the main viral disease 

affecting citrus production in Brazil and is acknowledged 

to be re-emergent in the Americas (Roy et al., 2015). 

BTV are classified as cytoplasmic (BTV-C) or nuclear 

(BTV-N) according to their replication and accumulation 

in plant cells. Taxonomically, BTV-C belong to at least one 

genus, Cilevirus [bipartite (+) single-stranded (ss) RNA] (Lo-

cali-Fabris et al., 2012), and possibly to Higrevirus [tripartite 

(+) ss RNA] (Melzer et al., 2012). BTV-N are classified into 

the recently created genus Dichorhavirus [bipartite, (-) ss-

RNA] (Afonso et al., 2016; Dietzgen et al., 2014). Overall, 

BTV are intriguingly atypical since differently from other 

plant-virus systems in nature, viral long distance move-

ment is not accomplished in any of their known hosts. 

Although BTV were first identified in the early 20th 

century, molecular information concerning plant-BTV in-

teraction remains barely known. Natural hosts of BTV 

show large, complex (e.g. citrus, coffee, orchids) (Cai et al., 

2015; Xu et al., 2013; Wu et al., 2014; Denoeud et al., 2014) 

or unknown genomes (e.g. passion fruit) and may require 

customized installation for their growth and reproduction 

of BTV-caused diseases. Complexity of the research on the 

molecular processes involved in plant-BTV pathosystems 

may be partly bypassed by using appropriate experimental 

host systems. Arabidopsis thaliana appears as the primary 

alternative host model for plant-pathogen interaction stud-

ies, benefiting from a high-quality curated genome and sev-

eral resources for reverse genetics approaches (Nishimura 

and Dangl, 2010). 

Recently, we reported Arabidopsis as experimental 

host for Citrus leprosis virus C (CiLV-C), a BTV-C (Arena 

et al., 2013; Ramos-González et al., 2016). In this work, 

Arabidopsis plants were assessed for their capacity to host 

a wider range of BTV including another BTV-C, Solanum 

violaefolium ringspot virus (SvRSV), and two BTV-N, Cof-

fee ringspot virus (CoRSV) and Clerodendrum chlorotic spot 

virus (ClCSV) (Kitajima et al., 2010). 

Materials and Methods

Brevipalpus spp. mites were collected from Sola-

num violaefolium, Coffea arabica and Clerodendrum specio-

sum infected with SvRSV, CoRSV and ClCSV, respective-

ly. Plants from wild type A. thaliana ecotype Columbia 

(Col-0) were obtained from the Arabidopsis Biological 

Resource Center (ABRC) and grown at 22 ± 2 °C with 

a 12-h light cycle in an environmental-controlled growth 

chamber Adaptis AR A1000 (Winnipeg, Canada).

Note
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Five adult mites collected in plants infected with 

SvRSV, CoRSV or ClCSV were transferred to each four-

week-old Arabidopsis plant using a small brush. Mites 

were left on the inoculated leaves and plants were kept 

under controlled conditions throughout the experiment. 

Plants were evaluated daily for the development of 

symptoms.

Viral presence was detected through transmission 

electron microscopy (TEM) and RT-PCR. To detect cyto-

pathic effects caused by BTV-C and -N, lesioned tissues 

were processed, fixed in Karnovsky reagent, embedded 

in Spurr’s epoxy resin and examined by TEM (Kitajima 

et al., 2001). Leaves were assayed by RT-PCR using spe-

cific primers for SvSRV (Ferreira et al., 2007), CoRSV 

(Kitajima et al., 2011) and ClCSV. Total RNA from in-

dependent plants inoculated with each virus was ex-

tracted using TRIZOL® Reagent (Thermo Scientific, WI, 

USA). RNA quantification and A260/A280 ratios were 

estimated using the micro-spectrophotometer Nano-

Drop ND-8000 (Thermo Scientific). RNA integrity was 

evaluated in a 1.2 % agarose gel. cDNA corresponding to 

each sample were generated using RevertAid H Minus 

First Strand cDNA Synthesis Kit (Thermo Scientific) as 

described by the manufacturer. PCRs were performed 

with 2 uL cDNA, 1 X reaction buffer, 1.8 mM MgCl
2
, 

0.2 mM dNTP mix, 1 U Taq DNA polymerase (Ther-

mo Scientific), 200 nM of specific primers (Table 1) and 

sterile Milli-Q water for a final volume of 25 uL. cDNA 

from healthy plants were used as negative controls. PCR 

products were visualized in 1 % (w/v) agarose gel stained 

with ethidium bromide.

To confirm viral identity, the amplicons obtained 

from three plants infected with each BTV were purified 

using Promega Wizard SV and PCR clean-up system and 

cloned into pGEM-T-Easy vector (Promega, WI, USA). 

Ligation products were introduced into Escherichia coli 

DH5α by transformation. Plasmids from white colonies 

were purified using the Promega Wizard® Plus SV Mini-

preps DNA Purification System and after a digestion with 

EcoRI restriction enzyme, those containing appropriate 

fragments were selected. Three individual clones corre-

sponding to each PCR fragment were sequenced in both 

directions using the BigDye Terminator Cycle Sequencing 

kit (Thermo Scientific) in an ABI Prism 3730 automated 

sequencer (Applied Biosystems, CA, USA). Contigs were 

assembled and compared to GenBank accessions using 

BLAST search (http://www.ncbi.nlm.nih.gov). 

Results and Discussion

During the last few decades, A. thaliana has become 

the major experimental model for plant biology, includ-

ing plant-pathogen interactions (Nishimura and Dangl, 

2010). Besides the unique characteristics of the plant such 

as short generation time and small size (allowing for rapid 

growth and analysis of a large number of individuals in a 

minimum of space), its genome is compact and completely 

curated, and a wide mutant collection is available. Much of 

the current knowledge about the mechanisms underlying 

plant disease resistance and susceptibility has been discov-

ered studying Arabidopsis pathology and then translated to 

natural host systems (Nishimura and Dangl, 2010). 

We have previously showed that CiLV-C is able to 

infect Arabidopsis, inducing localized chlorotic symp-

toms upon infestation with Brevipalpus viruliferous 

mites (Arena et al., 2013; Ramos-González et al., 2016). 

In Arabidopsis, symptoms of CiLV-C infection occur 

in approximately 1/3 of the time they appear in sweet 

orange (Citrus sinensis), the virus’ natural host. Shorter 

incubation time represents a significant gain on experi-

ments evaluating plant-virus interaction. In this study, 

we tested the susceptibility of Arabidopsis to SvRSV, a 

BTV-C and putative member of Cilevirus, CoRSV and 

ClCSV, two BTV-N and possible members of the genus 

Dichorhavirus. 

After 7 to 10 days of infestation with Brevipalpus 

spp. viruliferous mites, localized lesions appeared on the 

inoculated leaves of more than 80 % of the plants in the 

sets corresponding to each evaluated virus (16 symptom-

atic /20 infested plants for CoRSV; 4/5 for ClCSV and 4/5 

for SvRSV). Arabidopsis plants infected with CoRSV exhib-

ited brown patches not observable in the leaves infected 

either with ClCSV or SvRSV. However, chlorotic spots on 

green leaves and green isolated islands on yellow senescent 

leaves were observed as a common response to the three 

inoculated viruses (Figure 1A, B, C). This pattern of symp-

toms resembles that previously described for Arabidopsis 

infected with CiLV-C (Arena et al., 2013) and also those 

occurring during infections of SvRSV, CoRSV and ClCSV in 

their natural hosts (Figure 1D, E and F). However, in natu-

ral hosts a necrotic area usually developed in the center of 

the chlorotic spots. Necrosis was not visible in any of the 

Arabidopsis plants infected with BTV assayed in this work. 

Probably, accelerated senescence that takes place on the 

Arabidopsis infected leaves hampers observation of such 

Table 1 − List of primers used to detect Brevipalpus-transmitted viruses (BTV).

BTV Primer sequence (5'_3') Target Amplicon size (bp) Reference

CoRSV
GGACCATGAGACAGGAGGTG ORF RdRp

RNA2
389 Kitajima et al. (2011)

CTCTGCCAGTCCTCAATGTG

SvRSV
TGTCGAACTTTGGTATGAGTCG ORF RdRp

RNA1
596 Ferreira et al. (2007)

CCGGTTCGTCAAATAACTCC

ClCSV
ATATCACCGTTTAAGCAAGC ORF RdRp

RNA2
638 Unpublished

TCCTTGTTACAACTCCTTGC

CoRSV: Coffee ringspot virus; SvRSV: Solanum violaefolium ringspot virus; ClCSV: Clerodendrum chlorotic spot virus.
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symptom. Furthermore, as expected, no disease symptoms 

were observed in the cauline systemic leaves of Arabidop-

sis, attesting to the typical non-systemic pattern of BTV in-

fection under natural conditions. 

Transmission electron microscopy analyses 

of plants inoculated with SvRSV allowed detecting 

enveloped bacilliform particles of ca. 50 × 100 nm in 

large pockets of the endoplasmic reticulum of cells of 

chlorotic lesions. Dense viroplasms were also seen in the 

cytoplasm of these cells (Figure 2A, B). In contrast, in leaf 

lesions from plants infected with CoRSV and ClCSV, non-

enveloped bacilliform, rod-like virions of ca. 40 × 110 nm 

were observed in both the nucleoplasm and cytoplasm of 

palisade parenchyma cells. Most particles were arranged 

perpendicularly to the membranes of the endoplasmic 

reticulum and the nuclear envelope. Electron lucent 

viroplasms were detected in the nucleus of CoRSV and 

ClCSV infected cells, although they were more easily 

observed in the former case (Figure 2C, D, E, F). In 

general, virions and cytopathic effects seen in Arabidopsis 

were identical to those previously described in the natural 

hosts of SvRSV, CoRSV and ClCSV (Kitajima et al., 2014).

To confirm the identity of viruses present in symp-

tomatic Arabidopsis, RT-PCR tests using specific primers 

were conducted. As expected, amplicons of approx. 600, 

400 and 600 bp were obtained in samples from SvRSV, 

CoRSV and ClCSV, respectively (Figure 3). Consensi se-

quences of SvRSV and CoRSV amplicons showed identity 

values as high as 99 % with sequences obtained from the 

cognate viruses in the naturally infected hosts available 

under GenBank accessions number DQ514336 (Solanum 

Figure 2 − Micrographs of sections of leaf lesions in Arabidopsis 

thaliana infected by Solanum violaefolium ringspot virus (SvRSV) (A 

and B), Coffee ringspot virus (CoRSV) (C and D) and Clerodendrum 

chlorotic spot virus (ClCSV) (E and F). Bacilliform particles (v) and 

cytoplasmic viroplasma (*) are present in cells infected by SvRSV, 

while rod-like particles (v) and nuclear viroplasma (*) can be seen in 

those infected by CoRSV and ClCSV. C: chloroplast; CW: cell wall; M: 

mitochondrion; NE: nuclear envelope; ER: endoplasmic reticulum.

Figure 1 − Symptoms of Brevipalpus-transmitted viruses (BTV) 

infection on model and natural hosts. In the upper line, Arabidopsis 

thaliana leaves exhibiting chlorotic spots after infection of Solanum 

violaefolium ringspot virus (SvRSV) (A), Coffee ringspot virus (CoRSV) 

(B) and Clerodendrum chlorotic spot virus (ClCSV) (C) by Brevipalpus 

mite - mediated transmission. In the bottom line, leaves of Solanum 

violaefolium, Coffea arabica and Clerodendrum speciosum infected 

with SvRSV (D), CoRSV (E) and ClCSV (F), respectively.

Figure 3 − Agarose gel (1 %) profile of reverse-transcriptase polymerase 

chain reaction (RT-PCR) products obtained from plants infected 

with Solanum violaefolium ringspot virus (SvRSV), Coffee ringspot 

virus (CoRSV) and Clerodendrum chlorotic spot virus (ClCSV). MW: 

molecular weight marker (GeneRuler 1 kb DNA Ladder, Thermo 

Scientific); 1: natural hosts infected with each corresponding virus; 

2: healthy Arabidopsis thaliana; 3: blank; 4-6: A. thaliana infected 

with each specific virus. Sizes of the expected amplicons for SvRSV, 

CoRSV and ClCSV are 596, 389 and 638 bp, respectively.

violaefolium ringspot virus replicase-associated protein) 

and GQ979998 (Coffee ringspot virus isolate Cordeiropolis 

RNA-dependent RNA polymerase gene). For ClCSV, the 
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amplicons showed 100 % with the viral sequence in the 

Clerodendrum plant used as the viral source. However, 

these sequences exhibited only 69 % of identity with 

the sequence previously described for ClCSV isolate 

ESALQ_Piracicaba (HQ853700) (Kitajima et al., 2008), 

suggesting a wider diversity of BTV-N infecting Clero-

dendrum plants. 

In conclusion, the appearance of localized symp-

toms in the infected plants, the visualization of typical 

BTV particles and viroplasms in infected cells, and the 

confirmation of the identity of the viruses at nucleotide 

sequence level validated A. thaliana as alternative host 

for both BTV-C and -N. High susceptibility of this plant 

to mite mediated transmission of BTV and its reduced 

time for symptom appearance will likely boost research 

on understanding the interactions involving this peculiar 

group of plant viruses and their hosts.
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DISCUSSÃO GERAL 

 

A leprose dos citros destaca-se como uma doença re-emergente das Américas e de ampla 

importância econômica no Brasil, onde é considerada a principal doença viral dos citros 

(Bastianel et al., 2010; Roy et al., 2015). Além de sua relevância econômica, a leprose se revela 

como uma doença atípica. O seu agente causal, o vírus da leprose dos citros (citrus leprosis 

virus, CiLV-C), é incapaz de invadir sistemicamente todas as plantas hospedeiras conhecidas e 

apresenta um genoma formado em grande parte por genes “órfãos” que não apresentam 

homólogos em outras espécies de vírus (Locali-Fabris et al., 2006; Tautz and Domazet-Lošo, 

2011). A leprose tem como vetor ácaros do gênero Brevipalpus (principalmente B. yothersi), 

os quais são extremamente polífagos, cosmopolitas e apresentam uma biologia única (Kitajima 

& Alberti, 2014; Weeks et al., 2001). 

Com o presente trabalho, objetivou-se compreender os mecanismos moleculares 

envolvidos na interação planta/CiLV-C/B. yothersi, ainda amplamente desconhecidos. Dados 

prévios indicavam a indução de genes marcadores de vias hormonais em resposta a ambos ácaro 

e vírus em plantas de Arabidopsis (Arena, 2014). Para o estudo da interação planta/vírus, foram 

analisados: i) a presença de células mortas e espécies reativas de oxigênio (ROS) em ensaios 

histoquímicos, visando apoiar o envolvimento de uma resposta de hipersensibilidade (HR); ii) 

a cinética de acúmulo de CiLV-C ao longo da infecção através de RT-qPCR, para se identificar 

os principais eventos da replicação viral; iii) o transcriptoma de Arabidopsis infectadas com o 

CiLV-C via RNA-Seq, de forma a se obter a resposta global de plantas na presença do vírus; e 

iv) a expressão transiente das proteínas virais em Nicotiana benthamiana mediante 

agroinfiltração, para se identificar aquelas com atividade elicitora. Para o estudo da interação 

planta/ácaro, foram avaliados: i) o transcriptoma de Arabidopsis infestadas com B. yothersi 

através de RNA-Seq, com o intuito de se identificar a resposta global da planta à ácaro; ii) os 

níveis de ácido salicílico (SA) e jasmônico (JA) em plantas infestadas via LC-MS/MS, para 

apoiar a ativação de ambas as vias em resposta ao ácaro; e iii) a performance do B. yothersi em 

mutantes de Arabidopsis, visando revelar o papel das vias moduladas na infestação. Além disso, 

a análise de alguns genes marcadores da interação com ácaros B. yothersi avirulíferos e 

virulíferos para o CiLV-C foi extendida para plantas de Citrus sinensis (laranja-doce), com o 

intuito de validar os dados obtidos em Arabidopsis na principal hospedeira da doença. Foi ainda 
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avaliada a influência do CiLV-C na colonização do B. yothersi, mostrando a capacidade do 

vírus em modular o comportamento do ácaro vetor. 

Os resultados obtidos permitiram a estruturação de um modelo da interação 

planta/patógeno/vetor (Fig 1). Durante o processo de alimentação, ácaros B. yothersi 

avirulíferos perfuram células do mesófilo com seus estiletes, através dos quais ocorre a injeção 

de saliva, possivelmente contendo efetores associados ao ácaro. Em resposta à interação com o 

ácaro, ocorre um acúmulo de SA, levando à indução de genes responsivos da via (ex.: PR1), o 

que favorece a performance do ácaro. Em paralelo, há um acúmulo de JA, associado à expressão 

de genes de defesa como aqueles envolvidos na síntese de glucosinolatos. Embora ambos os 

ramos da via de JA sejam ativados, ocorre uma indução preferencial do ramo ERF (modulado 

por etileno, que tem por gene marcador o PDF1.2) em relação ao MYC (regulado por ácido 

abscícico e associado a indução de genes como o VSP2). Além disso, ocorre uma produção de 

espécies reativas de oxigênio (ROS) restrita a poucas células e uma modulação de poucos genes 

envolvidos no silenciamento de RNA. Em contrapartida, a infestação por ácaros reprime 

processos associados ao crescimento e desenvolvimento da planta, incluindo a expressão de 

genes de síntese de hormônios de crescimento (auxinas, citoquininas e brassinosteroides), 

possivelmente em função do antagonismo entre defesa e crescimento vegetal. Em plantas 

infestadas com ácaros virulíferos, o CiLV-C atinge as células do mesófilo juntamente com a 

saliva do ácaro, se multiplica e se move localmente para células restritas ao redor do sítio de 

inoculação. A presença do vírus intensifica a produção de ROS e a resposta mediada por SA, 

além de ativar uma série de genes associados a morte celular e a uma resposta de 

hipersensibilidade (HR). Estas respostas são também induzidas pela expressão transiente da 

proteína viral P61, sugerindo esta proteína como o componente do CiLV-C responsável pela 

elicitação do sistema imune da planta. A infecção pelo CiLV-C causa ainda uma indução de 

genes associados ao crescimento celular, os quais podem ser os responsáveis pela hiperplasia e 

hipertrofia observada em células infectadas. Em contrapartida, ocorre uma repressão dos genes 

responsivos a JA, possivelmente em função de um antagonismo exercido pela indução elevada 

da via de SA, incluindo aqueles envolvidos na síntese de glucosinolatos, o que hipoteticamente 

favoreceria a performance do ácaro. A infecção pelo CiLV-C reduz também processos 

envolvidos no metabolismo primário da planta hospedeira, incluindo a fotossíntese, o que pode 

estar relacionado ao desenvolvimento dos sintomas de clorose. Por fim, é possível que o CiLV-

C codifique um supressor viral de silenciamento de RNA (VSR) que inativa a proteína AGO1, 

levando à uma indução de AGO2 e a consequente ativação de uma segunda linha de defesa do 
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silenciamento de RNA que contribui para a redução da multiplicação do vírus. Como resultado 

da ativação de mecanismos de defesa, o CiLV-C permanece restrito a células ao redor do sítio 

de inoculação e os sintomas de morte celular se desenvolvem, provavelmente como resultado 

de uma HR manifestada durante uma interação incompatível. 

 

Figura 1. Modelo da interação planta/CiLV-C/Brevipalpus yothersi. Os lados esquerdo e 

direito da célula representam os eventos que ocorrem durante a interação da planta com o ácaro 

e o vírus, respectivamente. Os detalhes encontram-se no texto. HR: resposta de 

hipersensibilidade, SA: ácido salicílico, JA: ácido jasmônico, ROS: espécies reativas de 

oxigênio, VSR: supressor viral de silenciamento de RNA. 

 

Espera-se que trabalhos posteriores complementem o modelo obtido, adicionando 

elementos do papel da via de JA e dos glucosinolatos na infestação por ácaros, os efetores 

codificados pelo ácaro que elicitam as respostas na planta hospedeira, o papel da via de SA e 

HR na infecção pelo vírus, e as proteínas da planta hospedeira que reconhecem a P61. Para 

complementar os dados da interação planta/ácaro, já estão em andamento análises da 

performance do ácaro em mutantes de Arabidopsis para ambos os ramos da via de JA (myc2, 

vsp2, ora59, pdf1.2, jaz3) e para a síntese de glucosinolatos (qKO, atr1D, cyp79b2/79b3), que 

servirão para esclarecer a participação de ambos na infestação. Visando a identificação dos 

componentes do ácaro responsáveis por elicitar as respostas na planta hospedeira, foram 

realizadas análises in silico para a predição de efetores candidatos, os quais serão clonados e 

expressos em N. benthamiana para elucidação de sua capacidade elicitora. Para maior 
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compreensão da interação planta/vírus, estão sendo analisadas plantas de Arabidopsis mutantes 

para a via de SA (sid2, npr1, wrky70) e para genes associados a HR (nhl10, crk13, 

rbohD/rbohF). A ação da P61 na infecção está sendo explorado através da expressão da 

proteína P61 em plantas transgênicas NahG de N. benthamiana, comprometida no acúmulo de 

SA, e da geração de plantas transgênicas de Arabidopsis expressando a proteína viral. Neste 

mesmo contexto, foram ainda realizados ensaios de co-imunoprecipitação seguida de 

espectrometria de massa em N. benthamiana expressando a P61, cujos resultados estão em 

análise, para se revelar as proteínas vegetais que interagem com a proteína viral e desencadeiam 

a ativação do sistema imune e o desenvolvimento da HR. 

Os dados apresentados neste trabalho proporcionam, portanto, uma melhor 

compreensão dos processos patofisiológicos que se desenvolvem durante a leprose dos citros e, 

possivelmente, de outras doenças não-sistêmicas transmitidas por ácaros Brevipalpus (Freitas-

Astúa et al., 2018). A possibilidade de se utilizar Arabidopsis como hospedeira alternativa para 

outros VTBs, também descrita neste trabalho, facilitará o estudo dos mecanismos envolvidos 

na infecção por tais vírus e sua comparação com os identificados durante a interação com CiLV-

C. Em termos práticos, o presente estudo forneceu ainda dados úteis para estudos futuros 

envolvendo os componentes do patossistema leprose, como ensaios TaqMan para a detecção 

quantitativa do RNA genômico e subgenômico do CiLV-C através de RT-qPCR, e o 

transcriptoma completo de plantas infestadas por ácaros aviruliferos e virulíferos para a 

exploração de outros mecanismos não abordados neste trabalho. A longo prazo, os resultados 

obtidos aqui e nos experimentos em andamento serão essenciais ao estabelecimento de 

estratégias de controle mais sustentáveis, a exemplo do silenciamento de genes da planta, vírus 

e ácaro envolvidos no desenvolvimento da doença.  
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CONCLUSÕES GERAIS 

 

1. Plantas de Arabidopsis infestadas com Brevipalpus yothersi, em comparação a plantas não 

infestadas, apresentam um acúmulo de espécies reativas de oxigênio (ROS) restrito à poucas 

células infestadas, acumulam maiores níveis de ácidos salicílico (SA) e jasmônico (JA) e 

induzem a expressão de genes associados a ambas as vias hormonais, além de processos 

envolvidos  na síntese de compostos de defesa como os glucosinolatos. Em contrapartida, 

processos envolvidos no crescimento e desenvolvimento da planta são reprimidos. 

2. A ativação de genes envolvidos na biossíntese e sinalização da via de SA contribui para a 

performance de B. yothersi, apontando para um papel da via em favorecer a infestação do ácaro. 

3. O título de CiLV-C aumenta continuamente durante os primeiros dez dias de infecção em 

folhas de Arabidopsis, um período durante o qual três etapas de replicação viral são 

identificadas. 

4. Plantas de Arabidopsis infestadas com ácaros virulíferos para o CiLV-C, em comparação a 

plantas infestadas com ácaros avirulíferos, intensificam a explosão de ROS e a ativação da via 

de SA, e induzem a expressão de genes associados ao crescimento celular, à morte celular e à 

resposta de hipersensibilidade (HR). Em contraste, plantas infectadas reprimem a via de JA, os 

processos associados à síntese de glucosinolatos e o metabolismo primário. 

5. A expressão transiente da proteína P61 do CiLV-C mimetiza respostas observadas durante a 

interação com o vírus, como o acúmulo de ROS, a indução de genes associados à via de SA e 

à HR e a morte celular. 

6. Os vírus transmitidos por Brevipalpus (VTBs) clerodendrum chlorotic spot virus, coffee 

ringspot virus e solanum violaefolium ringspot virus são capazes de infectar experimentalmente 

plantas de Arabidopsis, o que valida o uso desta planta-modelo como hospedeira alternativa 

nos estudos de interação com VTBs filogeneticamente divergentes ao CiLV-C. 
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