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Resumo

Neste trabalho, estudamos e analisamos o problema de reconhecimento em cenários aber-
tos no contexto de diversos tipos de métodos de reconhecimento de padrões: baseados em
distância, geométricos e redes neurais. O problema de reconhecimento em cenário aberto
apresenta particularidades extras a serem tratadas, quando comparado ao já bem estu-
dado problema de classi�cação em cenários fechados. Em cenários abertos, o método de
reconhecimento deve ser devidamente capaz de reconhecer e também rejeitar instâncias
de classes desconhecidas, i.e., de classes não consideradas durante a etapa de treino. Por
outro lado, métodos de classi�cação em cenários fechados assumem que qualquer instância
apresentada para classi�cação sempre pertence a uma das classes conhecidas. Extensões
triviais de métodos próprios para cenários fechados, usualmente baseadas em limiares de
rejeição, não lidam bem com cenários abertos e esta é a razão principal pela qual este
problema tem recebido maior atenção recentemente.

Nesta pesquisa, �zemos a hipótese de que limitar o espaço aberto classi�cado como
conhecido seja uma propriedade requerida para um método de reconhecimento em ce-
nários abertos. Isso signi�ca que instâncias de teste fora do suporte das instâncias de
treino, em uma região in�nita do espaço de características, seriam devidamente rejeitadas
como desconhecidas, sendo, consequentemente, o risco do desconhecido limitado. Nossos
experimentos con�rmam esta hipótese e mostramos como garantir esta propriedade em
classi�cadores geométricos que, usualmente, de�nem semiespaços, i.e., potencialmente
de�nem uma região ilimitada do espaço aberto classi�cada como conhecida. Além da
abordagem trivial de aplicar um limiar à distância em si, também mostramos como me-
lhor de�nir a região classi�cada como conhecida em classi�cadores baseados em distância.
Além do mais, neste trabalho, realizamos uma análise perspicaz em redes neurais � que
são inerentemente fechadas por design � com o objetivo de obter as mesmas propriedades
com este tipo de classi�cadores em trabalhos futuros.

As análises e discussões apresentadas neste trabalho também têm o objetivo de de�nir
conceitos e clari�car o problema de reconhecimento em cenários abertos. Há particulari-
dades no problema às quais devemos estar atentos e que independem do tipo de classi�-
cadores empregados para resolvê-lo, como é o caso da análise de métodos de extensão de
classi�cadores inerentemente binários para classi�cação multiclasse; a estratégia de busca
por parâmetros própria para cenários abertos e as medidas de acurácia próprias para
cenários abertos.



Abstract

In this work, we have studied and analyzed the open-set recognition problem from the
context of multiple types of recognition methods, namely, distance-based, geometric and
neural networks. Open-set recognition problems bring some extra particularities to handle
compared to well-studied closed-set classi�cation problems. In open-set scenarios, the
recognition method must be able to properly recognize and also reject instances from
unknown classes, i.e., classes never seen during training phase. On the other hand, closed-
set classi�cation methods assume that any instance presented for classi�cation always
belongs to one of the known classes. Trivial threshold-based extensions of closed-set
methods do not handle well the open-set recognition scenario and that is the reason this
problem has received more attention nowadays.

In the research, we had hypothesized that ensuring a bounded known-labeled open
space is a required property for a recognition method in open-set scenarios. It means that
test instances from outside the support of the training instances, on an in�nity region
of the feature space, would be properly rejected as unknown; consequently, the risk of
the unknown would be limited. Our experiments con�rm this hypothesis and we have
shown how to accomplish this with geometric classi�ers, that usually de�ne half-spaces,
i.e., possibly unbounded known-labeled open space, as well as with nearest neighbors
classi�ers, besides the trivial approach of thresholding the raw distance. Furthermore, in
this work, we perform insightful analyses on neural networks�which is inherently closed
by design�aiming at obtaining similar achievements for this type of methods in future
work.

The analyses and discussion presented in this work also aim at de�ning concepts and
clarifying the open-set recognition problem. There are peculiarities on the problem for
which anyone should be attentive, independently of the type of classi�ers employed for
solving it, as is the case of the analysis of multiclass-from-binary extensions, open-set grid
search strategy, and evaluation measures employed for open-set setups.
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Nomenclature

`0 Unknown label.

`i Label referring to class i.

λ Regularization parameter.

m Number of training instances.

mi Number of training instances from class i.

mp Number of positive training instances.

n Number of known/training classes.

T Decision threshold for rejection.

x, x′, xi Training/testing samples (a.k.a. instances, data points, and examples). xi
represents the i-th training sample or the nearest training sample from the
i-th nearest training class, depending on the context.

Rd d-dimensional feature space.

d(x,x′) Distance in the Euclidean space between data points x and x′.

f(x) Decision/recognition function of a classi�er given a test instance x.

K Kernel function.

φ : X 7→ Z Projection function such that K(x,x′) = φ(x)Tφ(x′).

θ(x) Ground-truth class of a training instance x such that θ(x) ∈ {`1, . . . , `n}.

a[0], x Input vector of a neural network.

a[l] Activation vector of the l-th layer of a neural network.

a
[l]
i Activation of the i-th unit of the l-th layer of a neural network.

ŷ Output vector of a neural network.

φ[l] Activation function of the l-th layer of a neural network.

L[l] Set of units of the l-th layer of a neural network.

w
[l]
ji Weight of the connection between j-th unit of layer l with i-th unit of layer

l − 1.
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Chapter 1

Introduction

The literature of machine learning and pattern recognition is rich on closed-set clas-

si�cation methods, ranging from traditional distance-based and geometric methods to

prominent neural networks, highly adopted nowadays. The open-set scenarios, inherently

present in some of the real-world recognition problems, have been mainly treated in a

per-instance basis instead of approaching the problem on the level of the classi�cation

methods. For that reason, the machine learning literature still has a lack of general

purpose open-set recognition methods. Aiming at overcoming this de�cit, this work is

dedicated to a broad range of categories of recognition methods present in the literature:

distance-based, geometric, and neural network classi�ers.

The problem of recognition in open-set scenarios is characterized by the lack of in-

formation regarding the circumstances in which a trained recognition method would be

employed. Solutions for open-set recognition must assume extraneous instances can be

presented for classi�cation, consequently, they should be properly rejected, i.e., recognized

as not belonging to any of the classes with which the recognition method was trained.

On the other hand, it is an inherent assumption for closed-set classi�ers that any predic-

tion can be safely assigned to the known class for which the method has more con�dence

about. Although it can be true in a more controlled scenario, any unexpected change on

that scenario would make the classi�er unreliable.

For this reason, there is a recent e�ort on establishing concepts that are inherent to

the open-set problem, previously ignored when dealing with a strict closed-set one. One

of the most important is the concept of open space [Scheirer et al., 2013], which refers

to the region of the feature space outside the support of the training classes, i.e., region

with lower probability of having a representative instance for one of the known classes.

That is, the region in which no sample of any of the known classes is likely to appear.

Most of the works on closed-set classi�ers have neglected it, aiming at only obtaining the

best possible separation on the region of the feature space among the known classes. For

instance, Support Vector Machines (SVM) [Cortes and Vapnik, 1995] de�ne half-spaces,

which means that even when classifying an instance far away from any training sample,

that sample will be detected as belonging to one class or the other, but not recognized as

none of them. This SVM behavior can be considered even worse on open-set scenarios, if

we consider that the further away a testing sample is from the hyperplane, the surer SVM

is about its classi�cation as belonging to a certain class. Other examples are the Neural
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Networks, which are usually trained aiming at solely the highest con�dence on predicting

the learned instance at its target class, but neglects the possibility of the unknown through

its learning process.

The concepts of positively-labeled open space (PLOS) and known-labeled open space

(KLOS) arise to make explicit the problem of this behavior on de�ning half-spaces or, in

a more general term, the problem of not bounding the KLOS. For binary classi�cation,

PLOS refers to the region of the open space in which a classi�er ends up classifying an

instance as positive. Similarly, KLOS applies to the multiclass level and refers to the

region of the open space in which a recognition method would predict a test sample as

belonging to one of the known classes. If a binary classi�er predicts as positive any sample

at an unbounded (in�nity) region of the feature space, PLOS is unbounded as well, as

the open space is potentially always unbounded. Despite the relationship of the concept

of PLOS to binary classi�cation, it has its main importance when considering extending

binary classi�ers for multiclass classi�cation through the one-vs-all approach [Rocha and

Goldenstein, 2014]. We can see that if a binary classi�er is able to bound the PLOS

for every classi�er that composes a multiclass-from-binary classi�er, then the region of

the open space classi�ed as known (KLOS) is bounded as well. We present more details

regarding this point in Chapter 2.

A straightforward approach to take advantage of the amount of closed-set classi�ers

available in the literature for applications in open-set scenarios would be to apply thresh-

olds on raw con�dence scores calculated for each method. This approach, however, is not

safe and cannot o�er a good generalization. Furthermore, due to the curse of dimension-

ality, it is often not reliable.

Employing one-class methods is another straightforward alternative for handling

the open-set recognition problem. For instance, One-Class Support Vector Machines

(OCSVM) [Schölkopf et al., 2001] and Support Vector Data Descriptor (SVDD) [Tax and

Duin, 1999a, 2004, Chang et al., 2013] are support vectors-based methods mainly designed

for outlier detection. When employed with kernels [Boser et al., 1992], PLOS is bounded.

However, employment of those methods are not well-suitable due to its specialization-

generalization ability problem. As one-class methods do not consider other classes when

generating their models, when employed with one-vs-all approaches to multiclass classi-

�cation, it tends to generate a poor model on the decision boundaries among the known

classes. Anyhow, as we shall see, recent methods targeted for open-set problems have con-

sidered one-class methods, along with the bene�t of the discrimination ability of binary

methods, for open-set recognition.

The methods we present in this thesis di�er from those trivial approaches�as we

name them�on bounding the KLOS as they try to keep a reasonable model for the known

classes as well. The Open-Set Nearest Neighbors (OSNN), proposed in this work, relies its

decision on a ratio of distances instead of raw distances themselves while the Specialized

Support Vector Machines (SSVM), also proposed herein, optimizes a separation margin

at the same time of ensuring a bounded PLOS for every binary classi�er, later composed

with a one-vs-all approach for multiclass classi�cation.

Finally, we should notice an inherent problem that remains, when dealing with open-

set setups, despite all the e�ort for bounding the PLOS/KLOS. The OSNN and the
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SSVM, that will be presented in Chapters 4 and 5, respectively, are able to bound the

KLOS on the given feature space. Like other methods with the same ability, they can

only ensure a bounded KLOS on the feature space de�ned for training, which does not

mean the input space�space of the raw data, e.g., images�would also be bounded.

It is important to notice, mainly when contrasting the theoretical guarantees we have

obtained with OSNN and SSVM with e�orts for dealing with the open-set problem with

neural networks. Further discussion regarding this point is presented in Chapter 7 along

with the analysis for neural networks.

The OSNN we propose herein is a generalization of the Open-Set Optimum-Path Forest

(OSOPF) proposed in our previous work [Mendes Júnior, 2014]. OSNN have recently been

published [Mendes Júnior et al., 2017] and OSOPF has also been extended along with

genetic programming [Neira et al., 2018]. Up to the date of publication of this thesis,

SSVM is under review, however, preprint has been kept updated online [Mendes Júnior

et al., 2018]. Furthermore, its source-code, extended from LIBSVM [Chang and Lin,

2011], is available at GitHub.[1]

As for the remaining chapters of this thesis, in Chapter 2, we present some impor-

tant considerations about the open-set problem and de�ne concepts that will be used

throughout this work. In Chapter 3, we present previous work on open-set recognition.

The distance-based OSNN and the geometric SSVM are presented in Chapters 4 and 5,

respectively, along with additional considerations for each type of classi�ers. We have de-

cided to group the results for OSNN and SSVM methods in a single chapter, Chapter 6,

due to their similarity on the experimental setup. On the other hand, for experiments

with neural networks, we present them in Chapter 7 itself, along with their discussion.

Finally, our general conclusion is presented in Chapter 8.

[1]SSVM source-code is available at https://github.com/pedrormjunior/ssvm.

https://github.com/pedrormjunior/ssvm
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Chapter 2

Considerations about the open-set

scenario

In this chapter, we review important concepts related to the open-set recognition scenario

that will enable a better understanding of this work. In Section 2.1, we consider one-

vs-all and one-vs-one multiclass-from-binary approaches for extending binary classi�ers

for multiclass classi�cation. The content of that section is important for the discussion

we present in Chapter 5. When we consider forms of grid searching for parameters, as

in Section 2.2, it can be applied to any type of classi�ers. In Section 2.3, we consider

evaluation measures properly designed for open-set scenarios.

2.1 Multiclass-from-binary approaches

From works in closed-set recognition, both one-vs-all and one-vs-one [Rocha and Golden-

stein, 2009, 2014] are well-known approaches for extending inherently binary classi�ers�

e.g., SVMs�for multiclass classi�cation. Each of those have its own advantage, but

one-vs-one is usually preferable on closed-set scenarios due to their smaller training time

and slightly improved accuracy compared to one-vs-all [Hsu and Lin, 2002]. It was for

that reason one-vs-one was chosen to be implemented in LIBSVM [Chang and Lin, 2011].

However, this preference should change in an open-set scenario, as we shall consider.

The one-vs-one approach consists on decomposing the complete multiclass problem

into n(n−1)/2 pairwise binary problems, for n training classes, so that each problem can

be solved by a binary SVM. For the �nal decision, a voting scheme is employed and the

most voted winning class is chosen to label the test sample. Each class appears in n− 1

binary problems and, consequently, it can receive at most n − 1 votes. The behavior of

one-vs-one, along with the voting scheme, is closed-set and there is no straightforward

extension for open-set problems. To the best of our knowledge, the idea of thresholding

the number of votes for classifying a test instance as unknown has not been tested and

published in any research. However, one would consider estimating probabilities for SVMs

[Platt, 2000, Wu et al., 2004] and thresholding them for rejection, even with no guarantee

on being able to bound the KLOS. We present more analysis regarding the one-vs-one

approach with probability estimates in Section 5.3.2, however, for now, let us consider
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the one-vs-all strategy for the open-set scenario.

The one-vs-all approach consists on training n binary problems. The positive class for

each problem is one of the available classes for training and the negative class comprises

all other n− 1 remaining classes. This way, each class appears as positive in exactly one

binary problem. A trivial extension of one-vs-all for the open-set scenario is to classify a

test sample as unknown when all n binary classi�ers classify a sample as negative. The

rationale is that it indicates the instance is negative for every class, therefore unknown.

In Chapter 6, we show some empirical evidence that justify the reasonable performance

that SVM with one-vs-all approach can obtain in open-set scenarios.

Employing one-vs-all in the open-set scenario gives us further perspectives: if a binary

classi�er can ensure a bounded PLOS, the one-vs-all approach then can ensure a bounded

KLOS. That is the main rationale of the method we present in Chapter 5: to be able to

bound the PLOS.

2.2 Open-set grid search

In previous work, Jain et al. [2014] have proposed the cross-class validation targeted for

Support Vector Machines with Probability of Inclusion (PISVM) method. Independently,

in previous work [Mendes Júnior, 2014], we have de�ned a parameter optimization phase

for OSOPF classi�er and they both share the same principle. In summary, they consist

of simulating the open-set scenario, with unknown classes on validation so that obtained

�tting parameters are suitable for the open-set scenario that appears on testing.

In this work, we formalize this method�we call it open-set grid search�aiming at its

general employment along with any classi�er targeting open-set scenarios. First, consider

two possible well-known alternatives for performing grid search for parameters. One grid

searches for individual parameters for each binary model of a one-vs-all or one-vs-one

composition. The other one grid searches for parameters so that all binary models share

the same parameters. We call them internal and external grid search, respectively�

notice they are already well-known in the literature [Chang and Lin, 2011], however with

no name explicitly assigned to them as we do here. For closed-set scenarios, previous

work [Chung et al., 2003, Kao et al., 2004, Chen et al., 2005] have shown no signi�cant

di�erence between those two methods when considering the one-vs-one approach. Notice

both methods can also be employed with inherently multiclass classi�ers as well, as is

the case of the reject option of Fukunaga [1990] (external grid search) and the rejection

threshold per training class of Muzzolini et al. [1998] (internal grid search).[1]

Now, we de�ne all four possible con�gurations among external, internal, closed-, and

open-set grid search, thus open-set grid search is de�ned for every case and we evince the

di�erence compared to closed-set forms.

The external closed-set grid search is performed as usual: it introduces samples of

all n known classes into validation set and searches for best parameters based only on

the empirical risk . External open-set grid search, di�erently, ensures that a subset of the

n known classes appears only in validation set so that samples from those classes are

[1]Reject option and rejection threshold per training class are better introduced in Chapter 3.
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External Internal
Fitting Validation Fitting Validation

Closed n n n n
Open dn/2e n d(n− 1)/2e+ 1 n

Table 2.1: Comparison of open- and closed-set grid search strategies in terms of number
of known classes employed in �tting and validation sets during grid search. Value n refers
to the number of known classes available for training, i.e., present in training set.

unknown for the model used for evaluating parameters.

We de�ne the internal grid search considering the one-vs-all approach. For the internal

form, the closed-set variation searches for parameters of a binary model by having the

same representative classes on �tting set�the set used for generating a model for grid

search�and validation set: one of the classes is labeled as positive and all other available

classes are labeled negative; however, the set of distinct classes composed by the negative

class is the same on both �tting and validation sets. For the internal open-set grid search,

it ensures the negative class of the validation set comprises extra classes compared to the

set of classes composed by the �tting set. This way, some �unknown instances� appear

along with the negative set for validating best parameters for the �nal model.

In Table 2.1, we summarize those alternatives. As shown in that table, internal open-

set grid search employs d(n−1)/2e+1 known classes on �tting set because half of the n−1
classes included in negative set�in the level of a binary classi�er�are selected to appear

only in validation set. The other half remains on �tting set along with the additional

positive class.

Those open-set approaches can be employed along with any classi�er with three or

more classes available for training. In this work, we have opted at employing grid search

instead of other alternatives for hyperparameter optimization�e.g., random search [Solis

and Wets, 1981]�to ensure a paired comparison among the recognition methods. As

the open-set approach only di�ers from the closed-set one on the split of the training

data, notice that this technique can be trivially extended to be employed along with

random search as well as other hyperparameter optimization methods [Li et al., 2018]. In

Chapter 6, we compare closed- with open-set grid search applied to multiple classi�ers.

2.3 Evaluation measures

In previous work [Mendes Júnior, 2014], we have proposed some evaluation measures

speci�c for assessing performance of experiments in open-set scenarios, due to the lack

of appropriate measures at the time. Those measures are necessary because in some

problems the proportion of known/unknown instances for testing can be very unbalanced

and traditional closed-set measures could misinterpret results. As for reference, those

measures are extension of the well-known macro- and micro-averaging f-measure�we

call them open-set macro- and micro-averaging f-measure�and the named Normalized

Accuracy (NA), that balances the Accuracy on Known Samples (AKS) and the Accuracy
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on Unknown Samples (AUS), calculated separately. Since publication of those de�nitions,

we have obtained a small improvement on the de�nition of open-set measures. We de�ne

them here for later use on the experiments.

As their own name indicate, AKS and AUS measures are calculated separately on the

subsets of testing samples containing only the known and unknown samples, respectively.

The NA of previous work balances AKS and AUS with a 50�50% weight. In certain sce-

narios, however, one would consider that a better accuracy in one of the sets is preferable

over the other. Then, in this case, we consider the de�nition of NA as in Equation (2.1).

NA = λrAKS+ (1− λr)AUS, (2.1)

in which λr, 0 < λr < 1, is a regularization constant. This more general de�nition

can also be employed for grid searching, while assessing accuracy on validation set. For

instance, if one prefers the recognition method to be less tolerant to false acceptance of

unknown samples, λr < 0.5 can be set for grid searching better parameters for the model.

Conversely, if one wants parameters that ensure both accuracy on AKS and AUS to be

reasonably well, the Harmonic Normalized Accuracy (HNA), as de�ned in Equation (2.2),

should be employed.

HNA =


0, if AKS = 0 or AUS = 0,

2
1

AKS
+

1

AUS

, otherwise. (2.2)

Notice that HNA goes to 0 as either AKS or AUS goes to 0. NA, however, can stay

around 0.5, in case of a no-classi�er, which is not desirable in some cases, then justifying

the use of HNA. In Chapter 6, we show how λr of NA can be calibrated for evaluation on

validation set during grid search, targeted on de�ning a more/less restrictive behavior on

classifying unknown samples.
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Chapter 3

Related work

The open-set problem in inherently present in many real-world recognition problem, how-

ever, only in a recent work of Scheirer et al. [2013] it has been properly formalized with a

math-grounded basis. The term, however, have been employed back in the works of Gong

[2002], Deng and Hu [2003], Sivakumaran et al. [2003], Li and Wechsler [2005], Han et al.

[2010], Gao et al. [2011], Güney et al. [2012], He�in et al. [2012], Pritsos and Stamatatos

[2013], and Zhao et al. [2013], predominantly on biometric recognition.

In recent years, we have we have watched an increasing attention on the open-set

setup along with multiple other applications in machine learning and pattern recognition.

Besides the well-known problems in biometric recognition [Kumar and Kumar, 2014,

Zhang and Hao, 2014, dos Santos Junior and Schwartz, 2014, Rattani et al., 2015, Wang

et al., 2016, Günther et al., 2017, Moeini et al., 2017, Vareto et al., 2017, Xie et al., 2018],

which still seems to receive the greatest attention, exist works in domain analysis [Busto

and Gall, 2017, Dong et al., 2019], intrusion detection [Cruz et al., 2017], camera and

camera model identi�cation [Costa et al., 2012, 2014, Bayar and Stamm, 2018], acoustic

scene classi�cation [Battaglino et al., 2016], language identi�cation/recognition [Zhang

and Hansen, 2014, 2016], web genre detection [Pritsos and Stamatatos, 2018], among

others, as well as works targeted at more general-purpose solutions in multiple steps of

the recognition process [Scherreik and Rigling, 2016, Zhang and Patel, 2017, Liang et al.,

2018, Xiao et al., 2018, Rudd et al., 2018, Tian et al., 2018, Neira et al., 2018]. In this

work, we focus on the methods tailored to general-purpose open-set recognition [He�in

et al., 2012, Pritsos and Stamatatos, 2013, Costa et al., 2014, Scheirer et al., 2013, 2014,

Jain et al., 2014] as well as the ones that allow direct extension for the open-set setup

[Schölkopf et al., 2001, Tax and Duin, 2004, Chang and Lin, 2011].

In this chapter, we present existing methods that somehow deal with open-set clas-

si�cation scenarios. We separated those approaches into two categories: in Section 3.1,

we present approaches employed in problems related to open-set recognition and, in Sec-

tion 3.2, we present previous work directly addressing the open-set recognition problem

by means general-purpose classi�cation methods. As we shall see, virtually all previous

solutions for the open-set scenarios were based on SVM classi�ers.
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3.1 Approaches for similar problems

One-class classi�ers�such as the OCSVM and SVDD�at �rst glance, seem promising

for the open-set scenario, as they focus on the known class and ignore everything else.

For the multiclass and open-set scenario, one-class classi�ers can be applied by training

a one-class classi�er for each of the known classes. As those methods have the same

behavior of binary classi�ers, they can be directly extended for multiclass classi�cation

by employing one-vs-all multiclass-from-binary approaches.

In the case of the One-Class Support Vector Machines (OCSVM) [Schölkopf et al.,

2001], for example, it �nds the best margin with respect to the origin. Kernels can be

applied, creating a bounded positive region around the samples of the known classes [Boser

et al., 1992]. This is the most reliable approach in cases in which the access to a second

class is very di�cult or even impossible. It is usually employed in problems for which

leaving half-spaces is undesirable [Chen et al., 2001]. OCSVM, however, has a limited use

because it does not provide good generalization nor specialization. Several works dealing

with OCSVM have tried to overcome the problem of lack of generalization/specialization,

e.g., by introducing some few extra negative/outlier instances to better re�ne decision

boundary [Jin et al., 2004, Tax and Duin, 1999b, Wu and Ye, 2009, Manevitz and Yousef,

2001] or by employing cascade approaches along with binary models [Cevikalp and Triggs,

2012]. All of these works can be applied to the multiclass and open-set scenario in the

same way the OCSVM can be applied.

Although one-class classi�ers are inherently suitable for open-set classi�cation prob-

lems, binary classi�ers (e.g., SVM) also hold potential. For example, binary classi�ers can

be applied to the open-set scenario (which is multiclass) using the one-vs-all [Rocha and

Goldenstein, 2014] approach. The binary classi�er which classi�es as positive is chosen

to decide the �nal class of the multiclass classi�er. When two or more binary classi�ers

return positive for some test instance, the one most con�dent about its classi�cation is

chosen to decide the �nal class. When no binary classi�er classi�es as positive, then the

test sample is classi�ed as unknown. In this vein, all variations of the SVM [Bartlett and

Wegkamp, 2008, Malisiewicz et al., 2011, Jayadeva et al., 2007, Chew et al., 2012] (which

are also binary classi�ers) can be applied using the one-vs-all approach.

As we mentioned before, the trivial approach to handle the open-set scenario is to

de�ne a threshold on the similarity score of the classi�ers: for SVM, this threshold could

be de�ned based on the distance from the hyperplane or the probability value; for the

Nearest Neighbor (NN) classi�er, it could be de�ned based on the distance to the nearest

neighbor, for example. Establishing a threshold on the similarity score means rejecting

distant samples from the training samples in some cases. Also, one would be interested

in rejecting doubtful or ambiguous samples.

The reject option presented by Fukunaga [1990] is a form of postponing the decision-

making process to further evaluate the test sample by other means (e.g., other classi�ers).

Note that in the open-set scenario, we want to classify a test sample as one of the known

classes or as none of the known classes (unknown) without postponing the decision mak-

ing. Chow [1970] presented a method for rejecting doubtful test samples, i.e., to avoid

classifying the test sample as one of the known classes when the classi�er has good similar
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scores for more than one class. Later, Dubuisson and Masson [1993] extended the ambigu-

ity reject option of Chow [1970] and presented the distance reject option in the context of

statistical pattern recognition. The distance reject option is to avoid classifying the test

sample �far from� the training ones in the feature space. Muzzolini et al. [1998] extended

the work of Dubuisson and Masson [1993] to de�ne better distance rejection thresholds

adapted for each training class.

Works dealing with distance rejection can be applied to the open-set classi�cation

scenario because if one ensures that far away test samples are rejected (i.e., classi�ed as

unknown), then the classi�er creates a bounded open space in the feature space. The

problem for most of the methods dealing with rejection by thresholding the similarity

score is the di�culty to de�ne such threshold.

3.2 Approaches proposed for open-set scenarios

In this section, we review only recent work that explicitly deals with open-set scenarios.

Anyhow, we note that other insights presented in many works in the literature can be

somehow modi�ed or directly used for the open-set scenario. Most of these works, however,

did not perform experiments with appropriate open-set setup.

In the works of He�in et al. [2012] and Pritsos and Stamatatos [2013], they present

a multiclass SVM classi�er based on OCSVM. For each of the training classes, they �t

an OCSVM. In the prediction phase, the test sample is classi�ed by all n OCSVMs,

in which n is the number of available classes for training. The test sample is classi�ed

to the class in which its OCSVM classi�ed as positive. When no OCSVM classi�es as

positive, the test sample is classi�ed as unknown. He�in et al. [2012] deal with multiple

class classi�cation, then when two or more OCSVMs classify as positive, the test sample

is classi�ed as belonging to those positive classes. Di�erently, Pritsos and Stamatatos

[2013] choose the more con�dent classi�er among the ones that classify as positive. In

those works, the OCSVM is used with the Radial Basis Function (RBF) kernel.

The Decision Boundary Carving (DBC) [Costa et al., 2012, 2014] is an extension upon

the SVM aiming at a more restrictive specialization on the positive class of the binary

classi�er. For this, the method moves the hyperplane a value ε towards the positive class

(in rare cases backwards). The value ε is obtained by minimizing the training data error.

For multiclass classi�cation, the one-vs-all approach can be used.[1] The DBC was tested

by the authors along with RBF kernel. The test sample is classi�ed as unknown when no

binary classi�er classi�es as positive and the test sample is classi�ed as the most con�dent

class when one or more classi�ers classify as positive. The con�dence is obtained based on

the distance of the test sample from the hyperplane: the more distant, the more con�dent.

The 1-vs-Set Machine (OVS) [Scheirer et al., 2013] is a binary classi�er extended upon

the SVM. Similarly to the DBC, it moves the main hyperplane towards the positive class.

Besides, a second hyperplane, parallel to the main one, is created such that the positive

[1]Despite dealing with a multiclass problem, Costa et al. [2014] evaluated their method in a binary
fashion by obtaining the accuracy of individual binary classi�ers. They did not present the multiclass
version of the classi�er directly. Therefore, in this work, we consider their method with the one-vs-all
approach in the experiments.
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class is between the two hyperplanes. This second hyperplane makes the samples �behind�

the positive class to be classi�ed as negative. Then a re�nement step is performed on both

hyperplanes. According to the authors, the method works better with the linear kernel.

The work of Scheirer et al. [2013] was the �rst e�ort on formalizing the open-set recog-

nition problem. The concept of open space has been de�ned as the region of the feature

space outside the support of the training samples, i.e., the region that potentially refers

to classes unknown at training phase. In practice, the open space should be estimated by

an open-set recognition function f and it is unknown a priori. Consider f(x) a recogni-

tion function such that f(x) = 1 indicates that x is known and f(x) = 0 indicates x as

unknown. Assuming a bounded positively-labeled open space O, to de�ne the open-space
risk RO, Scheirer et al. have considered a large ball So containing both O and the known

training samples such that

RO(f) =

∫
O
f(x)dx∫

So

f(x)dx
. (3.1)

We see in Equation (3.1) that the greater the PLOS the greater the risk of the unknown.

Usual closed-set classi�ers optimize the empirical risk Rε, usually measured on the

training data, e.g., by grid searching for the best parameters for the model. An open-set

problem, however, as formalized by Scheirer et al., requires minimizing both Rε and RO:

argmin
f∈H
{λoRε(f) +RO(f)} , (3.2)

in which λo is a regularization constant. In practice, the open-space risk RO is di�cult to

obtain, as it strongly depends on unknown data not available at training phase. As a side

note, the open-set grid search we have formalized in Chapter 2 is a form of estimation of

RO. Also, notice that λo of Equation (3.2) has a direct correspondence to λr for the NA

in Equation (2.1). Later in Chapter 6 we will show the e�ectiveness of both employing

open-set grid search and adjusting the value of λr for the NA during grid search.

The authors of the Weibull-Calibrated Support Vector Machines (WSVM) [Scheirer

et al., 2014] classi�er de�ne the Compact Abating Probability (CAP) model for open-set

recognition, which decreases the probability of a test sample to be considered as belonging

to one of the known classes when it is far away from the training samples. In the WSVM,

they use two steps for classi�cation: a CAP model based on a one-class classi�er and

the other one based on a binary classi�er allied with the Extreme Value Theory (EVT)

[Coles, 2001, de Haan and Ferreira, 2007, Scheirer, 2017]. The �rst step aims at obtaining

the probability of a test sample to belong to a positive/known class and the second step

aims at obtaining the probability of a test sample to not belong to a negative/unknown

class. The product of both probabilities is the probability of the test sample to belong to

a positive/known class. The WSVM uses the RBF kernel in the work of Scheirer et al.

[2014].

Jain et al. [2014] propose the PISVM, also based on the EVT. It is an algorithm for

estimating the unnormalized posterior probability of class inclusion. For each known class,

a Weibull distribution [Coles, 2001] is estimated based on the smallest decision values of
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the positive training samples. The binary classi�er for each class is an SVM with RBF

kernel trained using the one-vs-all approach, i.e., the samples of all remaining classes are

considered as negative samples. They introduce the idea of cross-class validation which

is similar to the open-set grid search we formally de�ne in our work. For a test sample,

PISVM chooses the class for which the decision value produces the maximum probability

of inclusion. If that maximum is below a given threshold, the input is marked as unknown.

Bendale and Boult [2015] have considered initial steps towards what they have named

open-world recognition, which consists on the open-set problem along with incremental

learning [Ross et al., 2008] not only on the level of instances but also on the level of

classes to be included online in the system. The concepts of known unknown and unknown

unknown classes are important considerations from their work. In a testing scenario�or

a real scenario�samples that appear for classi�cation that belong to none of the classes

used for training a classi�er are, in essence, unknown unknown. For certain applications,

however, one can be interested in recognizing and classifying a limited number of classes of

interest, while extra classes, that might be available for training the recognition method as

well, can be employed as known unknown classes used to guide the classi�er at recognizing

the unknown unknown classes. In Chapter 7, we evaluate the employment of known

unknown classes in the context of neural networks.

Finally, in a previous work [Mendes Júnior, 2014, Neira, Mendes Júnior, Rocha, and

Torres, 2018], we have extended the graph-based Optimum-Path Forest (OPF) [Papa

et al., 2007, 2012] classi�er for open-set recognition by introducing the OSOPF, a distance-

based method that shares the same principle of OSNN�thresholding the ratio of distances

instead of raw distances, as we shall see in Chapter 4�however the latter consists on a

simpli�cation/generalization of the �rst.
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Chapter 4

Distance-based classi�ers

As discussed previously, distance-based open-set classi�ers can be easily extended to open-

set recognition by simply applying a threshold on the distance or the similarity value

generated by the classi�er. This threshold, however, is di�cult to obtain and the be-

havior of such classi�er is not reliable when applied to the raw value, due to the curse

of dimensionality. Furthermore, sparseness of each of the known training classes can be

di�erent and, consequently, by choosing a single threshold will make the method unable

to generalize well. Anyhow, as we shall show in Chapter 6, even by de�ning a threshold

per known class, this method does not generalize well.

Aiming at overcoming the problem of thresholding the raw distance of distance-based

methods, in previous work [Mendes Júnior, 2014], we have developed a method that learns

an optimal threshold on ratio of similarity scores based on the OPF, an inherently closed-

set classi�cation method. As this ratio is ensured to be always in the interval 0�1, the

threshold that trades o� the empirical risk and the risk of the unknown has delimited

range for search regardless the dimensionality of the feature space. In this work, we have

extended this previous work to work with an even simpler classi�er: the Nearest Neighbor

(NN) classi�er.

As for the remaining of this chapter, in Section 4.1, we present the base foundation of

NN and then we introduce the Open-Set Nearest Neighbors (OSNN) in Section 4.2. In

Section 4.3, we present some additional considerations regarding distance-based methods

for open-set recognition.

4.1 Nearest Neighbor classi�er

In this section, we �rst describe the more general k-Nearest Neighbors (kNN) classi�er,

then we present the NN classi�er we use as the base classi�er for OSNN. We present the

kNN as described by Bishop [2006], �rstly as a technique for density estimation, then

turn it to the kNN classi�er.

Di�erently to the kernel approach to density estimation, the kNN technique does not

need to have a �xed parameter for the kernel width. Instead, given a �xed value k of

data points to be used to infer the density estimation, with kNN technique, we obtain a

volume V of the minimal sphere around data point x ∈ Rd such that k data points are
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inside, in which x is a point for which we want the density estimate:

p(x) =
k

mV
. (4.1)

In this case, m is the total number of data points available.[1]

To extend this density estimation for classi�cation, we apply the kNN density estima-

tion technique for each class `i. Consider that each class `i has mi representative samples.

To classify a sample x, we draw a minimal sphere with volume V centered in x so that

it contains k sample regardless the class. Consider that inside this sphere there are ki
samples of the class `i. Using Equation (4.1), we have a density estimate for each class:

p(x|`i) =
ki
miV

(4.2)

and the class priors:

p(`i) =
mi

m
(4.3)

Combining the unconditional density of Equation (4.1) with Equations (4.2) and (4.3)

using Bayes' theorem, we have the probability of class membership:

p(`i|x) =
p(x|`i)p(`i)

p(x)
=
ki
k
, (4.4)

i.e., the kNN classi�er assigns the sample x using a majority voting scheme based on

the classes of the k nearest training samples of x. The value of k de�nes the degree of

smoothing of the classi�er.

The kNN classi�er does not need a �tting phase, as the training data are simply stored

to be used in the prediction phase. OSNN is based on a particular case of the kNN, called

NN classi�er, which is equivalent to kNN for k = 1.

4.2 Open-Set Nearest Neighbors classi�er

As for NN, OSNN is also inherently multiclass and has a simpli�ed training step. In

training phase, OSNN is simply required to store training samples and search for a decision

threshold T , 0 < T < 1, that in prediction phase is applied to a calculated ratio of

distances. The rationale behind OSNN, �rstly, is to bound the KLOS, and to better

de�ne the decision boundary on the region of the feature space getting far apart from

training samples. That is why thresholding on ratio of distance is employed instead

of thresholding the raw distance itself. The de�nition of OSNN is straightforward and

de�ned as follows.

The training phase of OSNN simply requires the storage of training samples, as for

NN, and the choice of T for proper rejection of instances from unknown classes. We call

[1]As presented by Bishop [2006], the validity of Equation (4.1) depends on two contradictory assump-
tions: (1) the region in the volume V be su�ciently small, making the density approximately constant
in the region; and (2) su�ciently large so that the number k of points inside the region is enough for a
binomial distribution to be sharply peaked.
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the phase of choosing T as parameter optimization and, in essence, it relies on the open-set

grid search as presented in Chapter 2.

For the prediction phase, �rst consider that the traditional NN obtains only the nearest

neighbor training sample x1 and predicts that a test instance x belongs to class θ(x1),

in which θ(x′) ∈ {`1, . . . , `n} represents the ground-truth class of a training instance x′

in a classi�cation problem with n classes. OSNN also obtains x1 in the same way and,

furthermore, obtains an additional nearest neighbor x2 such that θ(x1) 6= θ(x2). Then,

the ratio R is de�ned as

R =
d(x,x1)

d(x,x2)
, (4.5)

in which d is the distance in the feature space. Finally, OSNN's decision function employs

the threshold T previously obtained in the training phase:

f(x) =

{
θ(x1) if R ≤ T

`0 if R > T,

in which `0 indicates the test sample is classi�ed as unknown.

OSNN is able to bound the KLOS because R approaches 1 as a test sample x get far

away from training samples.

4.3 Additional considerations

The e�ectiveness of OSNN resides on being able to bound the KLOS. This property,

however, comes with a price: R also approaches 1 for test samples in the decision frontier

of two or more training classes. Anyhow, the ability of rejecting an instance in the open

space compensates this undesirable behavior. Aiming at demonstrating this, we de�ne an

additional classi�er based on NN that also rejects doubtful testing samples but with no

ability for bounding the KLOS. We call it Open-Set Nearest Neighbors Class Veri�cation

(OSNNCV) as its rationale is to obtain a second nearest neighbor to �verify� if the class

of the main nearest neighbor should be used for classi�cation.

OSNNCV does not require training, as it has no parameter learning (as for NN). In

prediction phase, as for NN and OSNN, OSNNCV obtains the nearest neighbor x1. Then,

a second nearest neighbor is obtained with just the constraint x1 6= x2, so it can happen

that θ(x1) = θ(x2). The decision function of OSNNCV is de�ned as follows.

f(x) =

{
θ(x1) if θ(x1) = θ(x2)

`0 if θ(x1) 6= θ(x2).

The rationale behind this is that the classi�er is only sure about attributing an example

to the class of the nearest neighbor if there are more than a single nearest neighbor of the

same class. However, on the open space, the two nearest neighbors can continue to be

on the same class ad in�nitum and that is the reason OSNNCV cannot bound the KLOS.

Notice that OSNNCV also has the uninteresting behavior of rejecting test instances among

known classes, which can be problematic in overlapping regions of two or more training
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Boat dataset. (a) OSNNCV. (b) OSNN.

Figure 4.1: Behavior analysis of OSNN. The Boat dataset is depicted on the far left.
Figure (a) depicts the behavior of OSNNCV, which is not able to bound the KLOS.
Figure (b) depicts the bounded KLOS left by OSNN. The small circles represent the
training samples from the dataset and their colors represent their classes. A colored
background represents the class in which a possible test instance in the corresponding
position of the feature space would be classi�ed. White background indicates that a
possible test instance in that region would be classi�ed as unknown.

classes.

For a proof of concept, we compare the behavior of OSNN and OSNNCV on the

synthetic Boat [Kuncheva and Hadjitodorov, 2004] dataset in Figure 4.1. The Boat dataset

is 2-dimensional and comprises 3 classes. All samples from this dataset were employed

for training the classi�ers for generating Figures 4.1a,b. We observe the nicely bounded

KLOS left by OSNN in Figure 4.1b while, in Figure 4.1a, we observe an unbounded KLOS

for OSNNCV. In Chapter 6, we compare those two classi�ers to evince the importance of

bounding the KLOS.
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Chapter 5

Geometric classi�ers

In this chapter, we analyze geometric classi�ers�e.g., SVM, OCSVM�for open-set recog-

nition. As explained in Chapter 2, we employ multiclass-from-binary one-vs-all method

in all those considerations, except when otherwise stated. The main purpose here is to

ensure a binary classi�er to be able to bound the PLOS so that the risk of the unknown is

�nite. In Section 5.1, we formalize the SVM, a base foundation for the SSVM presented in

Section 5.2. And, in Section 5.3, we present additional considerations regarding geometric

classi�ers for open-set recognition.

5.1 Support Vector Machines formalization

SVM is a binary classi�er that, given a set X of training samples xi ∈ Rd and the

corresponding labels yi ∈ {−1, 1}, i = 1, . . . ,m, it �nds a maximum-margin hyperplane

that separates xi for which yi = −1 from xj for which yj = 1 [Cortes and Vapnik, 1995].

We consider the soft margin case with parameter C.

The primal optimization problem is usually de�ned as

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi,

s.t. yi(w
Txi + b) ≥ 1− ξi, ∀i, (5.1)

ξi ≥ 0, ∀i. (5.2)

To solve this optimization problem, we use the Lagrangian method to create the dual

optimization problem. In this case, the �nal Lagrangian is de�ned as

L(w, b, ξ, α, r) =
m∑
i=1

αi −
1

2
||w||2, (5.3)

in which αi ∈ R, ri ∈ R, i = 1, . . . ,m, are the Lagrangian multipliers. Then, the
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optimization problem now is de�ned as

min
α

W (α) = −L(w, b, ξ, α, r) = 1

2
||w||2 −

m∑
i=1

αi, (5.4)

s.t. 0 ≤ αi ≤ C, ∀i, (5.5)
m∑
i=1

αiyi = 0. (5.6)

The decision function of a test sample x comes from the constraint in Equation (5.1)

and is de�ned as

f(x) = sign(wTx+ b) = sign

(
m∑
i=1

yiαix
T
i x+ b

)
.

Boser et al. [1992] proposed a modi�cation in SVM for the cases in which the training

data are not linearly separated in the feature space. Instead of linearly separating the

samples in the original space X of the training samples in X, the samples are projected

onto a higher dimensional space Z in which they are linearly separated. This projection is

accomplished using the kernel trick [Mercer, 1909]. One advantage of this method is that

in addition to separating non-linear data, the optimization problem of the SVM remains

almost the same: instead of calculating the inner product xTx′, it uses a kernel K(x,x′)

that is equivalent to the inner product φ(x)Tφ(x′) in a higher dimensional space Z, in
which φ : X 7→ Z is a projection function. When using the kernel trick, we do not need

to know the Z space explicitly.

Using kernels, the decision function of a test sample x becomes

f(x) = sign

(
m∑
i=1

yiαiK(xi,x) + b

)
. (5.7)

The most used kernel for SVM is the RBF kernel [Schölkopf and Smola, 2001], de�ned

as follows.

K(x,x′) = e−γ||x−x
′||2 . (5.8)

It is proved that using this kernel, the projection space Z is an ∞-dimensional space

[Schölkopf and Smola, 2001].

5.2 Specialized Support Vector Machines classi�er

In this section, we show how it is possible to ensure a bounded PLOS for SVM no matter

the shape of the samples in the feature space so that a limited risk of the unknown can

be ensured for open-set recognition. Then, we present the SSVM, that implements an

alternative optimization problem compared to SVM, aiming at ensuring a bounded PLOS

for every binary classi�er. As usual, SSVM can be extended to multiclass classi�cation

based on a one-vs-all approach.
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5.2.1 Ensuring a bounded positively-labeled open space for Sup-

port Vector Machines

By simply employing an RBF kernel, we cannot ensure the PLOS is bounded.

Theorem 1. Support Vector Machines (SVM) with any Radial Basis Function (RBF)

kernel has a bounded positively-labeled open space (PLOS) if and only if the bias term b

is negative.[1]

Proof. We know that

lim
d→∞

K(x,x′) = 0, (5.9)

in which K(x,x′) is any RBF kernel and d = ‖x − x′‖. For the cases in which a test

sample x is far away from every support vector xi, we have that

m∑
i=1

yiαiK(xi,x)

also tends to 0. From Equation (5.7) it follows that

f(x)→ sign (b)

when x is far away from the support vectors. Therefore, for negative values of b, f(x)

is always negative for far away x samples. That is, samples in an bounded region of the

feature space will be classi�ed as positive. For the only if direction, let b be positive.

Then there will exist a distance d such that ∀i : ‖xi − x‖ > d =⇒ f(x) = sign(b) > 0,

i.e., positively classi�ed samples will be in an unbounded region of the feature space.

Theorem 1 can be applied not only to the RBF kernel of Equation (5.8) but to any

radial basis function [Buhmann, 2003] kernel satisfying Equation (5.9), e.g., General-

ized T-Student (TST) kernel, Rational Quadratic (RQ) kernel, and Inverse Multiquadric

(IMQ) kernel [Souza, 2010].

Figure 5.1 depicts the rationale behind Theorem 1 on a 2-dimensional synthetic

dataset. The z axis represents the decision values for which possible 2-dimensional test

samples (x, y) would have for di�erent regions of the feature space. Training samples are

normalized between 0 and 1. Note in the sub�gures that for possible test samples far

away from the training ones, e.g., (2, 2), the decision value approaches the bias term b.

Note in Figure 5.1c that an unbounded region of the feature space would have samples

classi�ed as positive. Consequently, all those samples would be classi�ed as class 3 by the

�nal multiclass-from-binary classi�er. In general SVM usage, both positive and negatives

biases occur as b depends on the training data.

Theorem 1 also provides a solution to the problem of unbounded PLOS. We can

ensure a bounded PLOS by simply employing an RBF kernel and ensuring a negative b.

[1]In some implementations, including the LIBSVM library [Chang and Lin, 2011], the decision function
is de�ned as f(x) = sign(wTx − ρ). In that case, instead of ensuring a negative bias term b, one must
ensure a positive bias term ρ to bound the PLOS.
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Boat dataset with 3 classes:

red (the central class to the

left), green (the central class

to the right), and blue (the

class with the ring shape).
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(a) Class 1 (red). b = −0.832.
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(b) Class 2 (green). b = −0.86.
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(c) Class 3 (blue). b = +0.594.

Figure 5.1: Behavior analysis of SVM with a RBF kernel. Image on the top-left depicts
the Boat dataset. Figures (a)�(c) correspond to the red, green and blue classes of the Boat
dataset, respectively. The x, y axes in Figures (a)�(c) represent the two features of the
Boat dataset, used for training. The training data is normalized between 0 and 1 for each
feature. The z axis shows the value of the SVM decision function

∑m
i=1 yiαiK(xi,x) + b

(Equation 5.7 without sign function) and the colored lines in the walls depict the point 0,
that separates the positive class from the negative one (equivalent to the sign function of
Equation 5.7). Note in Figure (c) that an unbounded region of the feature space remains
in the positive side, as b > 0 and f(x, y) ≈ b for (x, y) points far away from support
vectors.
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In Section 5.2.2, we present a new SVM optimization objective that optimizes the margin

while ensuring the bias term b is negative.

A corollary from Theorem 1 is that either the positively-labeled or the negatively-

labeled regions of the feature space is bounded while either of them is unbounded as well,

when SVM is employed with an RBF kernel.

5.2.2 Specialized Support Vector Machines optimization problem

As we discussed in Section 5.2.1, we must ensure a negative b to obtain a bounded PLOS.

For this, we de�ne the SSVM optimization problem as

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi + λb, (5.10)

subject to the same constraints de�ned in Equations (5.1) and (5.2), in which λ is a

regularization parameter that trades o� between the empirical risk and the risk of the

unknown.

From Equation (5.10), the dual formulation has the same Lagrangian de�ned in Equa-

tion (5.3). Consequently, we have to optimize the same function as de�ned in Equa-

tion (5.4) with the constraint in Equation (5.5). However, the constraint in Equation (5.6)

is replaced by the constraint
m∑
i=1

αiyi = λ. (5.11)

The same Sequential Minimal Optimization (SMO) algorithm proposed by Platt

[1998], with the Working Set Selection (WSS) proposed by Fan et al. [2005], for op-

timizing ensuring the constraint in Equation (5.6) can be applied to this optimization

containing the constraint of the Equation (5.11). As the main idea of the SMO algorithm

is to ensure that
∑
αiyi remains the same from one iteration to the other, before the

optimization starts, we initialize αi such that
∑
αiyi = λ. For this, we let αi = λ/mp, ∀i

such that yi = 1, in which mp is the number of positive training samples.

Proposition 1. For the Support Vector Machines (SVM) with soft margin, the maximum

valid value for λ is Cmp.

Proof. From Equation (5.5), 0 ≤ αi ≤ C. The maximum value λ =
∑
αiyi is thus

obtained by setting αi = C for i such that yi = 1 and setting αi = 0 for i such that

yi = −1. This yields λ ≤ Cmp

During optimization, we must ensure λ ≤ Cmp given that if λ > Cmp, the constraint

in Equation (5.5) would be broken for some αi.

Despite Proposition 1 saying that it is allowed λ = Cmp, when it happens, we have

that αi = C for yi = 1 and αi = 0 for yi = −1, and there will be no optimization. In

this case, despite satisfying the constraints, there is no �exibility for changing values of αi
because, for each pair αi, αj selected by the WSS algorithm, we must update αi = αi+∇α,

αj = αj + ∇α when yi 6= yj and αi = αi − ∇α, αj = αj + ∇α when yi = yj. For any
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∇α 6= 0, the constraint 0 < αi < C would break for either αi or αj, for any selected pair.

Then, in practice, we grid search λ in the interval 0 ≤ λ < Cmp.

Proposition 2. There exists some λ such that we can obtain a bias term b < 0 for the

Specialized Support Vector Machines (SSVM) with a Radial Basis Function (RBF) kernel

K such that 0 < K(x,x′) ≤ 1 when C ≥ 1.

Proof. See Appendix B.

In Proposition 2, we considered a very extreme case for the proof. For example, in

Case (1)�for i such that yi = 1�we considered K (xi,xj) = 1 for j such that yj = −1
and K (xi,xj) ≈ 0 for j such that yj = 1. It means that all negative samples have the

same feature vector of sample xi under consideration and all positive samples are far away

from sample xi. In practice, we do not have the λ nearly as constrained as in the proof

to ensure a negative bias term. Moreover, in our experiments with the SVM, we observed

that oftentimes the bias term is negative for a binary classi�er trained with the one-vs-all

approach, i.e., it is often the case that even with λ = 0 the bias will be negative. More

details about this behavior is shown in Section 6.

Notice that the proof of Proposition 2 is restricted to RBF kernels such that 0 <

K(x,x′) ≤ 1. That is the case for Gaussian kernel of Equation (5.8) as well as Generalized

T-Student (TST) and Rational Quadratic (RQ) kernels. As in practice the recognition

scenario is not as constrained as in the proof, we believe the statement of Proposition 2

holds true even when the RBF does not satisfy that property, e.g., for Inverse Multiquadric

(IMQ) kernel.

In Appendix A, we present the complete formulation of the optimization problem for

the SSVM classi�er.[2]

Choosing the λ parameter for the SSVM

Proposition 2 states that we can �nd a λ parameter that ensures a bounded PLOS for the

optimization problem presented above. To ensure this, models with a non-negative bias

term receive accuracy of −∞ on the validation set, during the grid search. Nevertheless,

we cannot ignore that, in special circumstances, certain λ values allow a negative bias term

during the grid search but not for training in the whole set of training samples. In this

case, once the parameters are obtained by grid search, if the obtained λ does not ensure

a negative bias term for the whole training set, one would need to retrain the classi�er

with an increased value for λ, until a negative bias term is obtained for the �nal model.

However, for grid search, we assume the distribution of the validation set, a subset of the

training set, represents the distribution of the training set; that is one possible explanation

as for why in our experiments we did not need to retrain the classi�er with a value of λ

larger than the one obtained during grid search, as all values of λ obtained during grid

search were able to ensure a negative bias term for all binary classi�ers.

As for intuitive and empirical evidence of SSVM behavior, Figure 5.2 depicts the

behavior of SSVM compared to SVM. As we can see in Figure 5.2b, SSVM gracefully

bounds the KLOS around training samples.

[2]SSVM source-code is available at https://github.com/pedrormjunior/ssvm.

https://github.com/pedrormjunior/ssvm
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Boat dataset. (a) SVM. (b) SSVM.

Figure 5.2: Behavior analysis of SSVM. The Boat dataset is depicted on the far left.
Figure (a) depicts the behavior of the SVM with a one-vs-all approach as is. As previously
evinced in Figure 5.1c, the model for the ring-shaped blue class obtains a positive bias
term b and, consequently, SVM leaves an unbounded PLOS for that class. Figure (b)
depicts the behavior of SSVM being able to bound the PLOS for every binary classi�er
and, consequently, the KLOS. All �gures were generated with closed-set grid search. The
small circles represent the training samples from the dataset and their colors represent
their classes. A colored background represents the class in which a possible test instance
in the corresponding position of the feature space would be classi�ed. White background
indicates that a possible test instance in that region would be classi�ed as unknown.

5.3 Additional considerations

The work on SSVM has allowed us to observe other support vector classi�ers in a di�erent

perspective. For this reason, in this section, we present additional considerations regard-

ing classi�cation with geometric classi�ers other than binary SVM with the one-vs-all

strategy. In Section 5.3.1, we visit the formulation of SVM without the bias term and

analyze its behavior on open-set scenarios. In Section 5.3.2, we analyze the employment

of the one-vs-one approach for multiclass extension along with SVM. Finally, we describe

a straightforward adaptation of OCSVM that better takes advantage of possible extra

classes available for training, when generating its model in an open-set scenario.

5.3.1 Support Vector Machines without bias term

The theoretical foundation of SSVM indicates that other extensions of geometric classi�ers

for open-set recognition can be obtained taking into account the factor that determines

a bounded/unbounded open-space risk, as shown in Section 5.2.1. For instance, consider

SVM without explicit bias term [Vogt, 2002, Kecman et al., 2005], for which b = 0 is

implicit. Its decision function is similar to the one of SVM with bias term; as shown in

Equation (5.12); compared to Equation (5.7), only the bias term is missing.

f(x) = sign

(
m∑
i=1

yiαiK(xi,x)

)
. (5.12)
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For test samples far away from support vectors, we have that
∑m

i=1 yiαiK(xi,x) converges

to 0 from the bottom or from the above, depending on the training samples. Consequently,

a bounded PLOS cannot be ensured in all cases for this method as is. However, in practice,

as the Gaussian bell precipitates to 0 and due to limitations on �oat point representation,

PLOS is bounded if the sign function considers only values strictly greater than 0 as

positive.

The main di�erence from the SVM without bias term to the traditional SVM is that

the constraint in Equation (5.6) does not exist in the dual formulation. SSVM optimizes

the risk of the unknown, that is equivalent to say to minimize the bias term b, with a

substitute to that constraint, as de�ned on Equation (5.11). Consequently, SVM without

bias term cannot optimize the risk of the unknown as performed by SSVM, however, a

straightforward way an SVM without bias term can bound the PLOS is by introducing

an arti�cial bias term ε with a negative value on the decision function of Equation (5.12)

at prediction time, i.e., after the model is obtained. The same Theorem 1 applies to SVM

without bias term if the arti�cial bias term ε < 0 is introduced, as in Equation (5.13).

It is not as elegant as the SSVM optimization problem that takes into account the risk

of the unknown during optimization, however, equivalent experimental results might be

obtained if ε is properly grid searched. We leave the problem of grid searching optimal ε

as future work. However, in Chapter 6 we present results with �xed ε.

f(x) = sign

(
m∑
i=1

yiαiK(xi,x) + ε

)
(5.13)

For better gaining an intuition about the SVM without bias term, in Figure 5.3, we

present its behavior with and without the arti�cial bias term. As we have considered the

sign function to classify as positive only for values strictly greater than 0, Figure 5.3a

presents a bounded KLOS for SVM without bias.

5.3.2 Support Vector Machines with one-vs-one multiclass-from-

binary approach

Usually, at least for closed-set classi�cation problems, the one-vs-one approach is prefer-

able over the one-vs-all, for multiclass extension of SVMs. It creates n(n − 1)/2 smaller

problems compared to the n larger problems of one-vs-all approach, so that in practice,

one-vs-one usually runs faster. Then, for �nal decision, it uses a voting scheme for choos-

ing the class of a test sample. Di�erently than one-vs-all, the one-vs-one approach does

not have a direct criteria for allowing the multiclass-from-binary SVM to classify a sample

as unknown. A straightforward approach, however, used in practice, is to estimate proba-

bilities, combine them in the multiclass level, and establish a threshold on the probability

to the most probable class.[3] A natural question that arises here is about the minimal

threshold such that KLOS would be bounded or, in other words, what is the probability

[3]We have talked with some authors of previous work on open-set recognition and, in fact, they seem
to use this approach very often as baseline, as the one-vs-one approach is the only one implemented in
libraries like LIBSVM and, furthermore, those implementations already calculate probability estimates.
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(a) SVM without bias. (b) SVM without bias term

with arti�cial bias set as

−1× 10−6.

(c) SVM without bias term

with arti�cial bias set as

−1× 10−1.

Figure 5.3: Behavior analysis of SVM without bias term. Figures were generated for
the Boat dataset. Figure (a) depicts the behavior of SVM without bias term as is, i.e.,
without an arti�cial bias term introduced after training. Figures (b) and (c) show the
behavior of SVM without bias term by introducing two di�erent values of arti�cial bias
term. All �gures were generated with closed-set grid search. As grid search was per-
formed, parameters to �t each of those classi�ers di�er from image to image. The small
circles represent the training samples from the dataset and their colors represent their
classes. A colored background represents the class in which a possible test instance in
the corresponding position of the feature space would be classi�ed. White background
indicates that a possible test instance in that region would be classi�ed as unknown.

in the open space?

As we have analyzed the abating behavior of RBF kernel in Section 5.2.1, we can infer

that the probability for any sample in the open space would approach a constant value.

The same is not true for kernels that do not satisfy the property of Equation (5.9). The

analysis in this section, then, considers RBF kernels.

A well-known approach for estimating probabilities in a binary problem for SVM is

proposed by Platt [2000] and later improved by Lin et al. [2007]. They use a parametric

model to �t the posterior P (y = 1|f) as in Equation (5.14), i.e., a sigmoid form is assumed

to �t the data, according to their empirical evaluation.

P (y = 1|f) = 1

1 + eAf+B
, (5.14)

in which A and the bias B are the parameters of the sigmoid obtained by minimizing the

negative log likelihood of the training data.

Then, any method for obtaining multiclass probabilities from pairwise posteriors [Wu

et al., 2004] can be employed for calculating the �nal probability. For instance, consider

the �Second Approach� of Wu et al. [2004]. Given a test sample x, it consists on solving
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an optimization problem as follows.

min
p

n∑
i=1

∑
j:j 6=i

(rjipi − rijpj)2, (5.15)

s.t.
n∑
i=1

pi = 1, (5.16)

pi ≥ 0,∀i, (5.17)

in which rij = P (y = 1|f) and rji = 1− P (y = 1|f), considering the parameters Aij and

Bij obtained for the class i (as positive) vs. class j (as negative) problem.

Those methods [Platt, 2000, Lin et al., 2007, Wu et al., 2004], in fact, are implemented

in LIBSVM and are commonly used. For each binary problem, parameters A and B

are obtained on training phase by �tting models to smaller problems, employing cross-

validation to avoid bias, to obtain the values of f . The problem of Equation (5.15) is only

solved on prediction phase.

As we have observed in Section 5.2.1, for a test sample x in the open space, f(x)

(without sign function) approaches b. Then, we can simply estimate the probability on the

open space by replacing f by b in Equation (5.14) and solve the problem of Equation (5.15)

at training time. Each value pi, i ∈ {1, . . . , n}, represents the probability the model would

assign, as belonging to class i, for any sample in the open space. This way,

T = max
i
pi (5.18)

is the maximum threshold such that KLOS is not bounded and for any positive value of ε,

a threshold of T + ε can ensure a bounded KLOS.

For empirical evidence of this property, in Figure 5.4, we show the decision bound-

aries of SVM with the one-vs-one approach when the threshold for classifying as unknown

is below and above a minimum required threshold T of Equation (5.18). KLOS is un-

bounded/bounded when the rejection threshold is below/above T . And we can infer from

Figure 5.4a that the probability estimated for some regions of the feature space�the

white regions close to the training samples�is smaller than for the open space, which

indicates that SVM with one-vs-one strategy also is a�ected by the problem of mistaking

doubtful test instances with unknown ones.

5.3.3 One-Class Support Vector Machines with open-set grid

search

As stated before, OCSVM has a poor specialization-generalization ability, as it neglects

possible information from other available classes when �tting a model considering a certain

class as positive. Consequently, another straightforward extension of a multiclass-from-

binary one-vs-all implementation composed of OCSVMs is to consider those extra classes

at least during the grid search procedure. This way, even when the model does not consider

the separation among known classes, parameters that lead to models that disrespect this

separation would be penalized. In such a way, it is more likely better parameters are
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Boat dataset. (a) SVM with one-vs-one ap-

proach and rejection thresh-

old as T − ε.

(b) SVM with one-vs-one ap-

proach and rejection thresh-

old as T + ε.

Figure 5.4: Behavior analysis of SVM with one-vs-one approach. The Boat dataset is
depicted on the far left. Figure (a) depicts the behavior of the classi�er when the threshold
for rejection is below a minimum required threshold. Figure (b) depicts the behavior of
the classi�er when the threshold for rejection is above a minimum required threshold. T is
obtained according to Equation (5.18). This behavior is obtained by �xing C = 1, γ = 24,
and ε = 1× 10−6. In this example, T = 0.875 697. The small circles represent the training
samples from the dataset and their colors represent their classes. A colored background
represents the class in which a possible test instance in the corresponding position of
the feature space would be classi�ed. White background indicates that a possible test
instance in that region would be classi�ed as unknown.

obtained for the multiclass model.

The same idea can be employed along with any one-class classi�er, e.g., the SVDD. As

a matter of fact, those implementations are present on the open-set grid search versions of

those classi�ers for the experiments in Chapter 6. In Chapter 6, we show the e�ectiveness

of this simple approach.

Figure 5.5 depicts the di�erence of behavior of OCSVM with those two possible im-

plementations. We observe in Figure 5.5a that the model generated for one of the classes

(the ring-shaped blue class) predominates over the other, as it does not take into account

how well it would predict when considering extra classes. Di�erently, when using other

available classes for validation during grid search, as depicted in Figure 5.5b, models gen-

erated for each of the known classes allow a better separation among training classes.

However, we still observe a highly specialized behavior of this classi�er.
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Boat dataset. (a) OCSVM with closed-set

grid search.

(b) OCSVM with open-set

grid search.

Figure 5.5: Behavior analysis of OCSVM with closed- and open-set grid search. The Boat
dataset is depicted on the far left. Figure (a) depicts the behavior of OCSVM when it uses
only a single class on validation, during grid search. Figure (b) depicts the behavior of
OCSVM when additional known classes not employed for generating the one-class model
for grid search are included in the validation set so that obtained parameters generalize
better. The small circles represent the training samples from the dataset and their colors
represent their classes. A colored background represents the class in which a possible test
instance in the corresponding position of the feature space would be classi�ed. White
background indicates that a possible test instance in that region would be classi�ed as
unknown.
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Chapter 6

Experiments with distance-based and

geometric classi�ers

In this chapter, we present experiments performed for both the OSNN and SSVM meth-

ods compared to state-of-the-art baselines. Those are the �rst experiments we perform,

in Sections 6.1 and 6.2, respectively, aiming at demonstrating the e�ectiveness of the pro-

posed methods. In Section 6.3, we perform some experimental evaluation of SVM with the

one-vs-all approach aiming at showing empirical evidence for an explanation why SVM

with the one-vs-all approach, as is, performs reasonably well in open-set scenarios. For the

experiments in Section 6.4, we have implemented open-set grid search on the state-of-the-

art baselines aiming at showing the e�ectiveness of employing it in general methods for

open-set recognition. In Section 6.5, we perform comparison among the best alternatives.

In Sections 6.6 and 6.7, we present strong empirical evidence of the hypothesis we have

carried along this work: bounding the KLOS is required for open-set recognition. For

experiments in Section 6.6, we employ the SVM without bias term and, in Section 6.7, we

employ SVM with the one-vs-one approach and play with its minimal required threshold

on probability estimates, as derived in Section 5.3.2, for ensuring a bounded KLOS. Fi-

nally, in Section 6.8, we employ OSNN for showing how λr of Normalized Accuracy (NA)

can be properly de�ned during grid search aiming at training the method to be more or

less restrictive to the false acceptance of unknown samples.

For comparison of methods, we have de�ned an experimental setup in which 3, 6, 9,

and 12 training classes are considered to be available for the methods. For statistical eval-

uation, for each number n of available classes, we have performed 10 paired experiments in

which n classes of each dataset are chosen at random. We have employed both Binomial

and Wilcoxon statistical tests along with Holm method to control the family-wise error

rate when accounting for multiple comparisons [Dem²ar, 2006]. Along this chapter, we

present tables of statistical tests only for Binomial tests and the equivalent for Wilcoxon

tests are presented in Appendix C.

For the experiments, we have employed seven datasets from multiple domains. In

the 15-Scenes [Lazebnik et al., 2006] dataset, images from a scene classi�cation problem

are represented by a bag-of-visual-word vector created with soft assignment [van Gemert

et al., 2010] and max pooling [Boureau et al., 2010], based on a codebook of 1000 Scale

Invariant Feature Transform (SIFT) codewords [Lowe, 2004]. The KRKOPT [Olson et al.,
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Dataset # classes # samples # features
# samples/class
mean min max

15-Scenes 15 4485 1000 299 210 410
KRKOPT 18 28,056 6 1559 27 4553

Letter 26 20,000 16 769 734 813
KDDCUP 32[1] 10,237 41 320 11 500

Auslan 95 146,949 22 1547 1390 1938
Caltech-256 256 29,780 1000 116 80 800

ALOI 1000 108,000 128 108 108 108

Table 6.1: General characteristics of the datasets employed for the experiments.

2017, Bain, 1994] is a dataset of chess endgames representing white king and rook against

black king (KRK) in which the outcome represents optimal depth-of-win for white in

0�16 moves or draw. The Letter [Frey and Slate, 1991, Michie et al., 1994] dataset

represents letters of the English alphabet (black-and-white rectangular pixel displays).

The KDDCUP [Stolfo et al., 2000] dataset represents an intrusion detection problem on

a military network environment and its feature vectors combine continuous and symbolic

features. In the Auslan [Kadous, 2002] dataset, for a sign language recognition problem,

the data was acquired using two Fifth Dimension Technologies (5DT) gloves hardware and

two Ascension Flock-of-Birds magnetic position trackers. In the Caltech-256 [Gri�n et al.,

2007] dataset, comprising an object recognition problem, feature vectors consider a bag-of-

visual-words characterization approach, with features acquired with dense sampling, SIFT

descriptor for the points of interest, hard assignment [van Gemert et al., 2010], and average

pooling [Boureau et al., 2010]. Finally, for the ALOI [Geusebroek et al., 2005] dataset�

also an object recognition problem�features were extracted with the Border/Interior

(BIC) descriptor [Stehling et al., 2002]. Those datasets or other datasets could be used

with di�erent characterizations. However, in this work, we focus on the learning part of

the problem rather than on the feature characterization one. In Table 6.1, we summarize

the main features of the considered datasets in terms of number of samples, number of

classes, dimensionality, and approximate number of samples per class.

Besides the evaluation measures de�ned in Section 2.3, in this chapter, we employ

macro- (OSFMM) and Micro-averaging Open-set F-measure (OSFMµ) of previous work

[Mendes Júnior, 2014] as well as traditional macro- (FMM) and Micro-averaging F-

measure (FMµ) [Sokolova and Lapalme, 2009]. Throughout this chapter, we refer to

NA, Harmonic Normalized Accuracy (HNA), OSFMM , OSFMµ, FMM , and FMµ as global

measures, as they consider accuracies on both known and unknown instances of the test

set. On the other hand, we refer to Accuracy on Known Samples (AKS) and Accuracy

on Unknown Samples (AUS) as partial measures.

[1]Aiming at keeping the same setup across all datasets, for KDDCUP, we have joined training and
testing datasets and partitioned the data into those sets for the experiments. As WSVM cannot �t the
model with classes with few samples, aiming at a paired experiment, we have kept only the classes with
10 or more samples.
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6.1 Open-Set Nearest Neighbors versus baselines

In this section, we compare OSNN with distance-based baselines. We have included inher-

ently closed-set NN and OPF for drawing the worst case scenario. We have also considered

NN by employing a threshold on the distance to the nearest neighbor. We refer to those

implementations as Thresholded Nearest Neighbor (TNN). We have considered a straight-

forward implementation TNNE that performs the external grid search and establishes a

single threshold for the multiclass problem [Fukunaga, 1990] and we have also considered

TNNI, that performs internal grid search and establishes a per-class threshold [Muzzolini

et al., 1998].

In Figures 6.1 and 6.2, we present results regarding HNA for all datasets of Table 6.1.[2]

With exception of 15-Scenes and Caltech-256 datasets, OSNN obtains better results than

its baseline OSNNCV, which is only able to reject doubtful samples but not to bound the

KLOS. The same observation applies to OSOPF of previous work [Mendes Júnior, 2014,

Neira et al., 2018] compared to its baseline OSOPFCV. With few exceptions, in general,

OSNN improves over its more prominent baseline, the OSOPF.

We think the exceptions for 15-Scenes and Caltech-256 datasets happen due to their

high dimensional feature space. For those datasets, AKS for OSNN su�er while AUS

improves compared to OSNNCV. It indicates that in high dimensional spaces, the size of

the �intermediate region� among known classes becomes more signi�cative (in terms of the

de�ned threshold). As mentioned in Section 4.3, it becomes more problematic for datasets

with a high overlapping among the known classes, as OSNN�and also OSOPF�tends

to reject any instance in those regions, as the ratio in Equation (4.5) approaches 1.

With those results, we also observe the e�ectiveness of establishing a threshold per

class, as of TNNI of Muzzolini et al. [1998], instead of a single global rejection threshold on

the distance, as implemented in TNNE [Fukunaga, 1990], for classifying as unknown. Both

Binomial and Wilcoxon statistical tests present more than 99% of con�dence evincing the

superiority of TNNI compared to TNNE for global measures and for AUS, however, AKS

for TNNE is better than for TNNI, also with more than 99% con�dence. Anyhow, as

presented in Table 6.2, OSNN outperforms TNNI for virtually all measures, also with

99% of con�dence. In fact, as seen in Table 6.2, except for AKS, OSNN performs better

than any baseline with more than 99% of con�dence.

6.2 Specialized Support Vector Machines versus base-

lines

In this section, we compare SSVM with its SVM-based baselines. General results for HNA

are presented in Figures 6.3 and 6.4. In these �gures, all methods perform closed-set grid

search: the open-set grid search was ignored here to avoid introducing an extra factor

in the analysis. Speci�c analysis for the in�uence of open-set grid search is presented in

[2]We have excluded NN and OPF from Figures 6.1 and 6.2 because their HNA is 0 for every dataset
(their AUS is always 0), as they are closed-set methods. Anyhow, we consider those methods on the
statistical tests for other measures.



49

TNNE

TNNI

OSOPFCV

OSOPF

OSNNCV

OSNN

12 9 6 3
ACS

0.0
0.2
0.4
0.6
0.8
1.0

H
N

A

(a) 15-Scenes.

12 9 6 3
ACS

0.0
0.2
0.4
0.6
0.8
1.0

H
N

A

(b) KRKOPT.

12 9 6 3
ACS

0.0
0.2
0.4
0.6
0.8
1.0

H
N

A

(c) Letter.

12 9 6 3
ACS

0.0
0.2
0.4
0.6
0.8
1.0

H
N

A
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Figure 6.1: Comparison of OSNN with baselines (part I). Results for 15-Scenes, KRKOPT,
Letter, and KDDCUP datasets regarding HNA considering 3, 6, 9, and 12 available classes
(ACS).
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Figure 6.2: Comparison of OSNN with baselines (part II). Results for Auslan, Caltech-256,
and ALOI datasets regarding HNA considering 3, 6, 9, and 12 available classes (ACS).

Measure TNNE TNNI OSOPFCV OSOPF OSNNCV

NA <.0001* <.0001* <.0001* <.0001* <.0001*
HNA <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMM <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMµ <.0001* <.0001* <.0001* <.0001* <.0001*
FMM <.0001* 0.0033* <.0001* <.0001* <.0001*
FMµ <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* <.0001* <.0001* <.0001* <.0001*

AUS <.0001* <.0001* <.0001* 0.0049* <.0001*

Table 6.2: Binomial statistical tests comparing the OSNN with baselines. Each cell
compares results for all datasets considering all number of available classes. Bold means
there is statistical di�erence with 95% of con�dence. �*� indicates the statistical di�erence
is with 99% of con�dence. And<.0001* indicates the statistical di�erence is with 99.99%
of con�dence. Emphasized indicates the method in the column obtains better performance
for the measure associated with that row.
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Measure SVMC OCSVMC DBCC OVSC WSVMC PISVMC SVDDC

NA <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
HNA <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMM <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
FMM <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
FMµ <.0001* 0.0015* <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* <.0001* <.0001* 0.0002* <.0001* <.0001* <.0001*
AUS <.0001* 1.0000 <.0001* <.0001* <.0001* <.0001* <.0001*

Table 6.3: Binomial statistical tests comparing the SSVMC with baselines. Each cell
compares results for all datasets considering all number of available classes. Bold means
there is statistical di�erence with 95% of con�dence. �*� indicates the statistical di�erence
is with 99% of con�dence. And<.0001* indicates the statistical di�erence is with 99.99%
of con�dence. Emphasized indicates the method in the column obtains better performance
for the measure associated with that row.

Section 6.4 and a comparison of SSVM (and OSNN) with baselines performing open-set

grid search is presented in Section 6.5.

We observe in Figures 6.3 and 6.4 that SSVM outperforms baselines in most cases

and is robust across datasets. We also observe the low accuracy of the OVS method.

We attribute this low-accuracy behavior of OVS to its strictly-linear constraint. PISVM

obtains HNA equals to 0 for all cases. It is due to its low performance on unknown

samples, which leads to AUS equal to 0. We should remember here that PISVM was

proposed along with the cross-class validation, which is a form of open-set grid search.

Then, that is probably the reason the authors of PISVM have proposed it along with

cross-class validation: it works better for estimating its parameters. All other methods,

except those, perform reasonably well. Anyhow, with the statistical tests presented in

Table 6.3, we con�rm that SSVM clearly outperforms its baselines when all of them are

employed with closed-set grid search.

6.3 Behavior analysis of Support Vector Machines

We have observed in Section 6.2, Figures 6.3 and 6.4, that traditional SVM has performed

reasonably well, even with the simple closed-set grid search, when employed with the

one-vs-all approach. We hypothesize that SVM with RBF kernel employing a one-vs-all

strategy, as is, is able to bound the PLOS in most cases. An intuitive�and informal,

however�explanation is that, when training a binary problem of a single positive class

versus a negative class comprising a set of n − 1 distinct classes, it is more likely that

samples from the negative classes will be �around� the samples of the positive class, hence

creating the non-linear separation hyperplane that bounds the PLOS.

For example, consider Figure 6.5a, in which the behavior of SVM is presented for
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Figure 6.3: Comparison of SSVM with baselines (part I). Results for 15-Scenes, KRKOPT,
Letter, and KDDCUP datasets regarding HNA considering 3, 6, 9, and 12 available classes
(ACS).
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Figure 6.4: Comparison of SSVM with baselines (part II). Results for Auslan, Caltech-256,
and ALOI datasets regarding HNA considering 3, 6, 9, and 12 available classes (ACS).
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Four-Gauss dataset. (a) SVM. (b) SSVM.

Figure 6.5: Behavior analysis of SVM with one-vs-all approach. The Four-Gauss dataset is
depicted on the far left. The behavior presented in Figures (a) and (b) was obtained with
SVM and SSVM, respectively, both with RBF kernel along with a one-vs-all strategy for
multiclass-from-binary extension. Figure (a) shows that SVM is able to create a bounded
KLOS, which means every binary SVM generates a negative bias term. As expected,
SSVM in Figure (b), also generates a bounded KLOS and, compared to SVM, it creates
a more specialized behavior. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.

Four-Gauss [Kuncheva and Hadjitodorov, 2004] dataset.[3] Consider that SVM in that

�gure has employed the one-vs-all approach so that for every class we have a binary

classi�er trained considering that class as positive an all other classes as a single negative

class. For instance, the less-sparse red class versus other classes would more likely create

a decision hyperplane tending to bound around the red class instead of bounding around

the negative class. Recall that we know from Theorem 1 that, when RBF kernel is used,

either the region classi�ed as positive or the region classi�ed as negative is bounded and,

also, either of them is unbounded. For the red class of Figure 6.5, intuitively, we would

say the positive class is the one to be bounded. It is equivalent to say that the bias term

of that binary classi�er is likely to be negative. As a side note, notice in Figure 6.5b that

SSVM also bounds the KLOS and additionally presents a more specialized behavior than

SVM.

Aiming at con�rming this hypothesis, we have analyzed the percentage of cases for

which binary SVM classi�ers �correctly� obtains a negative bias term after the optimiza-

tion process, when employed by performing the one-vs-all strategy. For comparison pur-

poses, we also have considered the SVM along with the one-vs-one approach, so that both

positive and negative classes of each binary classi�er would comprise a single known class.

In this case, there would be no preference on bounding the positively-labeled space over

the negatively-labeled one. In fact, as shown in Table 6.4, in general, over 97% of the

binary SVMs that compose the one-vs-all strategy is able to properly bound the PLOS.

[3]The Four-Gauss dataset comprises a 4-classes problem and�similarly to the Boat dataset employed
since Section 4.3�also contains 2-dimensional data, proper for behavior visualization of the classi�ers.
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Dataset one-vs-all one-vs-one

15-Scenes 99.00% 56.92%
KRKOPT 95.67% 40.25%
Letter 99.67% 55.75%

KDDCUP 99.33% 49.79%
Auslan 99.00% 42.50%

Caltech-256 98.00% 48.75%
ALOI 97.67% 52.50%

Table 6.4: Percentage of binary classi�ers with negative bias term, for each dataset, ob-
tained by the Support Vector Machines trained with one-vs-all and one-vs-one strategies.

Measure SVM OCSVM DBC OVS WSVM PISVM SVDD SSVM

NA 0.0101 <.0001* <.0001* 0.4373 <.0001* <.0001* <.0001* 0.0004*
HNA 0.0101 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 0.0829
OSFMM 0.0829 0.0006* <.0001* 0.0637 <.0001* <.0001* <.0001* <.0001*
OSFMµ 0.0101 <.0001* <.0001* 0.2561 <.0001* <.0001* <.0001* <.0001*
FMM 0.3701 <.0001* 0.0101 0.0022* 0.0015* <.0001* <.0001* 0.0006*
FMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* 0.0003* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

AUS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

Table 6.5: Binomial statistical tests for the pairwise comparison between closed- and
open-set grid search implementations of the methods. Each cell compares results for
all datasets considering all number of available classes. Bold means there is statistical
di�erence with 95% of con�dence. �*� indicates the statistical di�erence is with 99% of
con�dence. And <.0001* indicates the statistical di�erence is with 99.99% of con�dence.
Emphasized means the version with closed-set grid search obtains better performance for
the measure associated with that row.

On the other hand, as expected, for the one-vs-one approach, it happens only with around

50% of the cases.

6.4 E�ectiveness of open-set grid search

Aiming at a per-factor analysis, in this section, we analyze the in�uence of open-set grid

search over SSVM as well as all SVM-based baselines. We have employed all datasets

listed in Table 6.1 and the same setup described in the beginning of this chapter�10

experiments per number of available classes, for 3, 6, 9, and 12 available classes�for both

closed- and open-set grid search variations for each method. From Table 6.5, we con�rm

that, for most of the methods, their versions with open-set grid search perform better

than their counterparts with closed-set grid search. For SVM and SVDD, however, it

seems that the best grid search alternative changes from cases to case�or from measure

to measure.
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6.5 Comparison among best alternatives

In Section 6.1, we have compared OSNN only with its distance-based baselines and, in

Section 6.2, we have compared SSVM only against geometric classi�ers. Also, notice that

open-set grid search has not been employed for the results presented in those sections.

In this section, we compare OSNN and SSVM with baseline methods employing open-set

grid search. Recall, from Section 6.2, that PISVM has performed poorly because it was

not using the cross-class validation. In this section, we perform a fair comparison with

PISVM, as the open-set grid search employed here has the same principle of the cross-class

validation proposed by the authors of PISVM.

We can observe in Figures 6.6 and 6.7 that both OSNN and SSVM present the highest

classi�cation accuracies, with few exceptions. In general, SSVM shows a more robust

behavior than OSNN, as it can keep a higher accuracy in the cases for which OSNN

behavior su�ers, e.g., for 15-Scenes, KRKOPT, and Caltech-256. On the other hand,

there are a few datasets for which OSNN obtains a slightly better accuracy than SSVM,

e.g., Letter, Auslan, and ALOI. Overall, we conclude that SSVM performs slightly better

than OSNN, as we notice by comparing Table 6.6 with Table 6.7.

In Table 6.6, we compare OSNN with the baselines. We observe in this table that

OSNN outperforms its baselines in most cases, however, PISVM performs better than

OSNN for OSFMM and FMM even though OSNN surpasses PISVM for FMµ. We also

observe that OSNN, compared to baselines proposed for open-set scenarios�DBC, OVS,

WSVM, PISVM�has a more restrictive behavior against accepting unknown samples, as

points out the statistical di�erence for AUS. On the other hand, AKS is worse, also with

statistical signi�cance, compared to those open-set methods, as usually AUS and AKS

trade o�. Anyhow, global metrics indicate an improved behavior for the OSNN compared

to its baselines, in general.

When comparing SSVM with its baselines, as in Table 6.7, results improve. Still,

the more competing baseline is PISVM. However, in this case, we observe a favorable

performance for SSVM: out of the six global measures�AKS and AUS assess only partial

performance�SSVM improves with statistical signi�cance of 95% for four of them, when

compared to PISVM. As for OSNN, we also observe that SSVM has a more restrictive

behavior on accepting unknown instances as known, compared to most of the baselines.

6.6 Assessing Support Vector Machines without bias

term

In this section�and in Section 6.7, as we shall see�our objective is to evince the impor-

tance of not only bounding the KLOS but also decreasing it as much as possible. There

usually is a trade o� between decreasing the KLOS and properly recognizing known sam-

ples. To evince the importance of decreasing the KLOS�here, we assume the one-vs-all

strategy is employed�we use the Support Vector Machines without bias term (SVMWB).

As presented in Section 5.3.1, SVMWB is only able to bound the KLOS due to the fast

convergence of RBF kernel to 0�in function of distance, as in Equation (5.9)�and when
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Figure 6.6: Comparison among best methods (part I). Results for 15-Scenes, KRKOPT,
Letter, and KDDCUP datasets regarding HNA considering 3, 6, 9, and 12 available classes
(ACS).
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Figure 6.7: Comparison among best methods (part II). Results for Auslan, Caltech-256,
and ALOI datasets regarding HNA considering 3, 6, 9, and 12 available classes (ACS).

Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.0030* <.0001* <.0001* <.0001* <.0001* 0.3701 <.0001*
HNA 0.0392 <.0001* <.0001* <.0001* <.0001* 0.2094 <.0001*
OSFMM 0.2700 0.0013* 0.0133 <.0001* 0.5110 0.0147 <.0001*
OSFMµ 0.3383 0.0302 <.0001* <.0001* 0.0060* 0.9524 <.0001*
FMM 1.0000 0.0112 0.0112 <.0001* 1.0000 0.0112 <.0001*
FMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 0.7651

AKS 1.0000 <.0001* <.0001* 0.0283 <.0001* 0.0019* <.0001*
AUS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

Table 6.6: Binomial statistical tests comparing the OSNN with best baselines. Each
cell compares results for all datasets considering all number of available classes. Bold
means there is statistical di�erence with 95% of con�dence. �*� indicates the statistical
di�erence is with 99% of con�dence. And <.0001* indicates the statistical di�erence
is with 99.99% of con�dence. Emphasized indicates the method in the column obtains
better performance for the measure associated with that row.
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Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
HNA <.0001* <.0001* <.0001* <.0001* 0.0001* 0.2561 <.0001*
OSFMM <.0001* <.0001* <.0001* <.0001* <.0001* 0.0101 <.0001*
OSFMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
FMM <.0001* <.0001* <.0001* <.0001* <.0001* 0.0829 <.0001*
FMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 0.0268

AKS 0.1658 <.0001* <.0001* 0.1658 <.0001* <.0001* <.0001*
AUS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

Table 6.7: Binomial statistical tests comparing the SSVMO with best baselines. Each
cell compares results for all datasets considering all number of available classes. Bold
means there is statistical di�erence with 95% of con�dence. �*� indicates the statistical
di�erence is with 99% of con�dence. And <.0001* indicates the statistical di�erence
is with 99.99% of con�dence. Emphasized indicates the method in the column obtains
better performance for the measure associated with that row.

the sign function considers as positive values strictly greater than 0. However, notice that

a theoretically correct way of bounding the KLOS for SVMWB is to establish an arti�cial

bias term ε < 0 on prediction time, after SVMWB model is obtained. This way, as soon

as the decision value for a test instance approaches 0, it is considered to be on the open

space.

For the purpose of those experiments, we introduce the arti�cial bias term ε on the

decision function, as in Equation (5.13), aiming at a more restrictive KLOS. We have

established ε = −1× 10−6 in SVMWB
6 and an even more restrict behavior, with ε =

−1× 10−1, in SVMWB
1 . The experiments we have performed here consider closed-set grid

search. In Figures 6.8 and 6.9, we present results for those alternatives�and also for

SSVM as well, for comparison purposes. In general, we observe that SVMWB
1 improves

the HNA over SVMWB and slightly improves over SVMWB
6 . Statistical evaluation of this

improvement is present in Table 6.8, where we check that, in fact, SVMWB
1 outperforms

SVMWB with statistical signi�cance of 95% for most evaluation measures. However, for

the global measures, there is no evidence that SVMWB
1 outperforms SVMWB

6 . Anyhow,

by analyzing AKS and AUS, we con�rm that SVMWB
1 is more restrict than SVMWB

6 on

accepting unknown instances.

Those experiments show that by decreasing the KLOS, we improve accuracy on open-

set scenarios.

6.7 Assessing the importance of bounding the known-

labeled open space

The rationale of SSVM�and OSNN as well�is to bound the KLOS for better perfor-

mance on open-set scenarios. Besides bounding the KLOS, the regularization parameter

λ of SSVM also minimizes the risk of the unknown. This double-factor di�erence over tra-

ditional SVM does not allow us to claim that being able to bound the KLOS is �essential�
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Figure 6.8: Performance of SVM without bias term (part I). Results for 15-Scenes,
KRKOPT, Letter, and KDDCUP datasets regarding HNA considering 3, 6, 9, and 12
available classes (ACS).
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Figure 6.9: Performance of SVM without bias term (part II). Results for Auslan, Caltech-
256, and ALOI datasets regarding HNA considering 3, 6, 9, and 12 available classes (ACS).

Measure SVMWB SVMWB
6

NA 0.1275 0.4373
HNA <.0001* 0.7651
OSFMM 0.0003* 0.7651
OSFMµ <.0001* 0.1350
FMM 0.0001* 0.8578
FMµ 0.0392 0.4373

AKS <.0001* 0.0010*

AUS 0.0196 0.0020*

Table 6.8: Binomial statistical tests comparing the SVMWB
1 with SVM without bias term

alternatives. Each cell compares results for all datasets considering all number of available
classes. Bold means there is statistical di�erence with 95% of con�dence. �*� indicates
the statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.
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Four-Gauss dataset. (a) SVMOVO
	 . (b) SVMOVO

⊕ .

Figure 6.10: Behavior analysis of SVMOVO with minimal threshold. The Four-Gauss
dataset is depicted on the far left. Figure (a) depicts the behavior of the classi�er when
the threshold for rejection is T −1× 10−6, i.e., below a minimum required threshold. Fig-
ure (b) depicts the behavior of the classi�er when the threshold for rejection is T+1× 10−6,
i.e., above a minimum required threshold. T is obtained according to Equation (5.18).
Closed-set grid search was employed on generating those �gures. The small circles rep-
resent the training samples from the dataset and their colors represent their classes. A
colored background represents the class in which a possible test instance in the corre-
sponding position of the feature space would be classi�ed. White background indicates
that a possible test instance in that region would be classi�ed as unknown.

for open-set recognition, as one factor can in�uence the other. However, the Support Vec-

tor Machines with the one-vs-one approach (SVMOVO) presented in Section 5.3.2, along

with its minimum required threshold T for bounding the KLOS, allows us to analyze

this factor individually. As shown in that section, the multiclass probability estimate for

the open space approaches T , as de�ned in Equation (5.18). Consequently, the KLOS of

SVMOVO is bounded if and only if the threshold for rejection is greater than T . Aiming

at showing the importance of bounding the KLOS, we have established SVMOVO
	 and

SVMOVO
⊕ implementations. SVMOVO

	 establishes its rejection threshold as T − 1× 10−6

and SVMOVO
⊕ establishes its rejection threshold as T + 1× 10−6. The former is unable to

bound the KLOS and the latter is able to, as we can see in Figure 6.10.

In Figure 6.10, each implementation has performed its own grid search, which would

potentially allow them to obtain distinct �tting parameters. However, notice that the

di�erence on thresholds between SVMOVO
	 and SVMOVO

⊕ is small. And, as SVM models

for both implementations are obtained based on known samples, those are potentially

similar, which we can con�rm by analyzing the decision boundaries among known classes

in Figures 6.10a and 6.10b. For those reasons, SVMOVO is appropriate for verifying our

hypothesis on the requirement of bounding the KLOS.

In Figures 6.11 and 6.12, we present HNA results for SVMOVO
	 and SVMOVO

⊕ �as well

as for SSVM, for comparison purposes. We can observe that in virtually all cases, SVMOVO
⊕

outperforms SVMOVO
	 , which con�rms our hypothesis. Both Binomial and Wilcoxon sta-

tistical tests present more than 99% of con�dence on those results for global measures and

for AUS. However, AKS for SVMOVO
	 is better than for SVMOVO

⊕ , also with more than

99% con�dence.
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Figure 6.11: Comparison of SVM with unbounded/bounded KLOS (part I). Results for
15-Scenes, KRKOPT, Letter, and KDDCUP datasets regarding HNA considering 3, 6, 9,
and 12 available classes (ACS).
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Figure 6.12: Comparison of SVM with unbounded/bounded KLOS (part II). Results
for Auslan, Caltech-256, and ALOI datasets regarding HNA considering 3, 6, 9, and 12
available classes (ACS).
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Measure OSNNλr
10 OSNNλr

30 OSNNλr
70 OSNNλr

90

NA 1.0000 <.0001* 1.0000 <.0001*
HNA 0.0020* 0.8578 <.0001* <.0001*
OSFMM 0.0005* <.0001* 0.0001* 0.0196
OSFMµ <.0001* <.0001* 0.0141 0.0001*
FMM 0.0001* <.0001* <.0001* 0.2094
FMµ <.0001* <.0001* <.0001* <.0001*

AKS <.0001* 0.0268 <.0001* <.0001*

AUS <.0001* <.0001* <.0001* <.0001*

Table 6.9: Binomial statistical tests comparing the OSNN with OSNN alternatives. Each
cell compares results for all datasets considering all number of available classes. Bold
means there is statistical di�erence with 95% of con�dence. �*� indicates the statistical
di�erence is with 99% of con�dence. And <.0001* indicates the statistical di�erence
is with 99.99% of con�dence. Emphasized indicates the method in the column obtains
better performance for the measure associated with that row.

6.8 Variable metric on grid search

In this section, we analyze the in�uence of the regularization constant λr of NA�see

Equation (2.1)�when employing that measure during grid search. For this purpose,

we have established the following extra implementations of OSNN: OSNNλr
10 , OSNN

λr
30 ,

OSNNλr
70 , and OSNNλr

90 . Respectively, they perform grid search based on NA with λr set

to 0.1, 0.3, 0.7, and 0.9. In Table 6.9, we check if there is statistical signi�cance for each

evaluation measure when compared to OSNN, which uses λr = 0.5. As most measures

check for overall performance, including f-measure alternatives, we observe that OSNN

with λr = 0.5 still performs the best in general. AKS and AUS in Table 6.9 present the

most important information in this analysis, however. With more than 95% con�dence,

we have the following observations. Regarding AKS, OSNN outperforms OSNNλr
10 and

OSNNλr
30 but not OSNNλr

70 and OSNNλr
90 . Regarding AUS, OSNN outperforms OSNNλr

70

and OSNNλr
90 but not OSNNλr

10 and OSNNλr
30 . It indicates that, in fact, NA with certain

values for λr can be employed during grid search to make the recognition methods more or

less restrictive on accepting false unknown rates. Furthermore, a trade o� is unavoidable

in this case.

6.9 Performance with deep features

In Chapter 7, we will formalize neural networks and present analyses regarding their

behavior in open-set scenarios. Beforehand, we have decided to include results with deep

features in this chapter, as neural networks were employed solely for feature extraction,

hence, the handling of the open-set problem at network's level is not analyzed here. We

consider, for the experiments with deep features, the SVM-based classi�ers previously

employed.

In this analysis, we have extracted the features in two distinct setups: (1) Open-set
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Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.0067* <.0001* <.0001* <.0001* 0.8746 0.0067* <.0001*
HNA 0.0067* <.0001* <.0001* <.0001* 0.8746 0.0067* <.0001*
OSFMM 0.0129 <.0001* <.0001* <.0001* 0.8746 0.0067* <.0001*
OSFMµ 0.0193 <.0001* <.0001* <.0001* 0.8746 0.8592 <.0001*
FMM 0.0129 <.0001* <.0001* <.0001* 0.8746 0.0067* <.0001*
FMµ 0.0257 <.0001* <.0001* <.0001* 0.8746 0.8592 0.1154

AKS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
AUS 0.0129 0.0005* <.0001* <.0001* <.0001* 0.0166 <.0001*

Table 6.10: Binomial statistical tests comparing the SSVMO with baselines in ImageNet.
Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.

network: the network used for feature extraction is not trained with the classes employed

in the open-set experiment and (2) Closed-set network: the network used for feature

extraction is trained on all classes employed in the experiment.

We have employed ImageNet [Deng et al., 2009] dataset along with open-set network

setup. For this, a Convolutional Neural Network (CNN) was trained on ImageNet 2012

dataset, which contains 1000 classes. Then, experiments where performed on a subset of

ImageNet 2010 with 360 classes, which has been reported in Bendale and Boult [2016]

and Russakovsky et al. [2015] to have no overlapping with the classes of version 2012

of the dataset. In Figure 6.13a, we present results for ImageNet for methods with both

closed- and open-set grid search. We see that SVM and open-set methods DBC, WSVM,

PISVM, and SSVM have achieved near 100% accuracy, which means that both AKS and

AUS for those methods are also near 100%. Aiming at verifying if there are statistical

di�erences among those methods, we have selected only the versions with open-set grid

search. Binomial statistical tests for ImageNet are presented in Table 6.10, in which we can

see that both SVM and DBC have outperformed SSVM for this dataset. It is interesting

to notice that DBC and SVM have not been competing methods to SSVM in previous

experiments, however, in this case, they have presented outstanding performance.

We have also experimented with CIFAR-10 [Krizhevsky and Hinton, 2009] and

MNIST [LeCun et al., 1998] datasets along with the closed-set network setup. Networks

employed for both datasets are publicly available [Tensor�ow.org, 2018a,b]. Both datasets

comprise 10-class problems. CIFAR-10 represents an object classi�cation problem with

classes of vehicles and animals. MNIST is a digit classi�cation problem whose classes

are 0�9 digits. In Figures 6.13b and 6.13c, we present results for CIFAR-10 and MNIST

datasets, respectively. For CIFAR-10, in Figure 6.13b, SSVM, PISVM, and SVM seem to

have performed best, with a highlight for PISVM. In fact, in Table 6.11, we con�rm the

superiority of PISVM with Binomial tests. In this case, however, SSVM has outperformed

the baselines SVM and DBC of the previous experiment, for the global measures. As for

the MNIST, WSVM has excelled, as indicated with statistical signi�cance for FMM and

FMµ. DBC and PISVM seem to have slightly outperformed SSVM, however, no statis-
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Figure 6.13: Comparison among best methods with deep features. Results for ImageNet
2010, CIFAR-10, and MNIST datasets. Experiments regarding HNA considering 3, 6, 9,
and 12 available classes (ACS) for ImageNet 2010 and 3, 6, and 9 ACS for CIFAR-10 and
MNIST datasets.
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Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.0072* 0.0161 0.0072* <.0001* 0.0072* 0.0104 <.0001*
HNA 0.0104 0.0016* 0.0104 <.0001* 0.0057* 0.0057* <.0001*
OSFMM 0.0209 0.0086* 0.0209 1.0000 0.1975 0.0086* <.0001*
OSFMµ 0.0209 0.0019* 0.0209 0.5847 0.1975 0.0019* <.0001*
FMM 0.0157 0.0072* 0.0072* 0.3616 0.1975 0.0019* <.0001*
FMµ <.0001* 0.0057* 0.0003* 0.0987 0.0104 0.0057* <.0001*

AKS 1.0000 0.0016* 1.0000 <.0001* 1.0000 0.0645 <.0001*
AUS <.0001* 0.1283 <.0001* <.0001* 0.1975 0.2005 <.0001*

Table 6.11: Binomial statistical tests comparing the SSVMO with baselines in CIFAR-
10. Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.

Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.1711 <.0001* 1.0000 <.0001* 1.0000 1.0000 <.0001*
HNA 0.3949 <.0001* 1.0000 <.0001* 1.0000 1.0000 <.0001*
OSFMM 0.1283 <.0001* 0.1975 <.0001* 0.0645 0.1975 <.0001*
OSFMµ 0.0645 <.0001* 0.7232 <.0001* 0.0645 0.8555 <.0001*
FMM 0.0484 <.0001* 1.0000 <.0001* 0.0209 1.0000 <.0001*
FMµ 0.0057* <.0001* 1.0000 <.0001* 0.0157 1.0000 <.0001*

AKS 0.8555 <.0001* <.0001* 0.0010* 0.0002* 0.0104 <.0001*
AUS 0.0029* <.0001* 0.0010* <.0001* 0.0002* 0.0987 <.0001*

Table 6.12: Binomial statistical tests comparing the SSVMO with baselines in MNIST.
Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.

tical signi�cance is evinced in this case. It is worth noticing that for those two datasets,

SSVM has performed better with its variant performing closed-set grid search.

Those results with deep features have shown us that depending on the problem, one

classi�er can be more suitable than the other. Besides not maintaining the best perfor-

mance in all cases, SSVM have shown a robust behavior, as it outperforms each baseline

for at least one of the datasets.

6.10 Behavior analysis of the classi�ers

Aiming at obtaining an intuition of the proposed classi�ers, as well as of the baselines

employed in this work, in this section, we present a behavior analysis of those methods.

We employ 2-dimensional synthetic datasets for training the classi�ers, then we use the

generated models to predict their behavior in the feature space. To generate the images
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depicting the behavior of the classi�ers, test samples comprise points in grid on the 2-

dimensional space.

We have employed the following 2-dimensional synthetic datasets: Boat, Four-Gauss,

Petals, Regular, R15, Seven-Gauss, Half-Ring, and Cone-Torus.[4] Respectively, they are

depicted in Figures 6.14�6.21. In those �gures, the small circles represent training samples

from the dataset. Their colors represent their classes. The background color represents

the class in which a possible test instance in that position of the feature space would be

classi�ed. White background indicates that a possible test instance in that region would

be classi�ed as unknown. We can see that a method is able to bound the KLOS when

the colored region is bounded.

Sub�gures labeled (a) show that SVM is able to bound the KLOS however not in

all cases, as can be seen in Figures 6.14a, 6.20a, and 6.21a. Compared to SVM, DBC

performs a �ner adjustment of the decision hyperplane, aiming at a more specialized

behavior, however, it does not ensure a bounded KLOS, as evinced in Figures 6.14c and

6.21a. Anyhow, when the translation of the hyperplane performed by DBC obtains a

negative bias term for every binary classi�er, DBC is able to bound the KLOS, as can

be seen in Figure 6.20c compared to SVM in Figure 6.20a. For the one-class classi�ers

OCSVM and SVDD, in Sub�gures labeled (b) and (g), respectively, we observe that,

in fact, they are able to always obtain a bounded KLOS at the expense of a highly-

specialized behavior. Due to its linear kernel, OVS is never able to bound the KLOS,

as observed in Sub�gures labeled (d). In those �gures, we clearly observe the slabs this

method creates aiming at decreasing the KLOS. WSVM employs one-class models in its

formulation and that is the reason it can bound the KLOS, as depicted in Sub�gures

labeled (e)[5], however, its behavior is not as specialized as the behavior of other one-class

models. It is well depicted in Figure 6.14e how the binary model employed by WSVM

creates a good separation among the known classes and avoids the in�uence of the one-

class models for the separation. For PISVM in Sub�gures labeled (f), we also observe that

it is not always able to bound the KLOS, as in Figures 6.14f and 6.20f. OSNN and SSVM

are always able to bound the risk of the unknown, as seen in Sub�gures labeled (h) and

(i). In general, SSVM presents a more specialized behavior than OSNN and gracefully

bounds the KLOS. SSVM also avoids the extra KLOS obtained by OSNN in some cases.

Finally, we observe that SSVM does not su�er from the problem of rejecting doubtful test

samples that might appear in the overlapping region of two or more classes, as OSNN

does. Clearly, we see that in Cone-Torus dataset by comparing Figures 6.21h and 6.21i.

Although in high-dimensional spaces the behavior of the classi�ers can di�er, with

those images, we obtain an intuition of what to expect from each classi�er. For instance,

consider the PISVM: it is not always the case PISVM is able to bound the KLOS�as there

is no mechanism to ensure that�although it happens in most situations. By contrast,

[4]R15 dataset was made available by Veenman et al. [2002], Seven-Gauss datasets was generated by
us, and all other synthetic datasets are from Kuncheva and Hadjitodorov [2004].

[5]In Figure 6.20e, WSVM is not presenting a bounded-KLOS behavior due to a bug found in the
source code provided by Scheirer et al. [2014]: when only two classes are available, instead of obtaining
one model per class, the method is �tting a single model, which might leave an unbounded KLOS for one
of the classes. However, it does not a�ect the experiments we have presented in previous sections as we
consider at least 3 available classes on the open-set setup.
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SSVM does that by considering the correct signal for the bias term. With those images,

we gain a better view that, in a critical open-set application, one should seriously consider

the implications of employing a classi�er with no guaranty of limited open-space risk.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.14: Decision boundaries on the Boat dataset. Behavior of the classi�ers con-
sidered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.15: Decision boundaries on the Four-Gauss dataset. Behavior of the classi�ers
considered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.16: Decision boundaries on the Petals dataset. Behavior of the classi�ers con-
sidered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.17: Decision boundaries on the Regular dataset. Behavior of the classi�ers
considered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.18: Decision boundaries on the R15 dataset. Behavior of the classi�ers considered
for the experiments. The small circles represent the training samples from the dataset
and their colors represent their classes. A colored background represents the class in
which a possible test instance in the corresponding position of the feature space would be
classi�ed. White background indicates that a possible test instance in that region would
be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.19: Decision boundaries on the Seven-Gauss dataset. Behavior of the classi�ers
considered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.20: Decision boundaries on the Half-Ring dataset. Behavior of the classi�ers
considered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) SVM. (b) OCSVM. (c) DBC.

(d) OVS. (e) WSVM. (f) PISVM.

(g) SVDD. (h) OSNN. (i) SSVM.

Figure 6.21: Decision boundaries on the Cone-Torus dataset. Behavior of the classi�ers
considered for the experiments. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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Chapter 7

Neural networks

Neural networks�along with recent advances on deep learning [LeCun et al., 2015]�have

obtained state-of-the-art performance in a broad range of machine-learning tasks and

�elds, e.g., computer vision, object detection, object segmentation, speech recognition,

etc., and their development have been for both supervised and unsupervised classi�cation

problems. In addition, neural networks allow a straightforward employment, as they do

not require previous feature extraction and raw data can directly be used as input data.

In this work, we focus on neural networks for classi�cation problems. Despite all

advancements reported in the literature, neural networks have been tested predominantly

on closed-set scenarios, which makes us wonder if their employment on open-set scenarios

will continue to present the expected behavior. This doubt is strengthened with results

obtained with adversarial images [Szegedy et al., 2014, Goodfellow et al., 2015], which

are able to trick the network on classifying a testing instance with high con�dence to

the incorrect class. Furthermore, networks are known to be susceptible to fooling images

[Nguyen et al., 2015], which are images whose content is unrecognizable for humans and

make a network to classify to certain classes also with high con�dence.

More than bringing �nal conclusions and/or de�ning ready-to-use methods for open-

set recognition with neural networks, our purpose here is to present results aiming at

driving the intuition for dealing with open-set scenarios along with this type of classi�ers.

First, in Section 7.1, we present a mathematical formulation of neural networks that will

help us on the analyses we present in Sections 7.2 and 7.3. In Section 7.2, we inspect the

behavior of neural networks in low-dimensional input data aiming at assessing factors that

could empower the network to properly handle the open space. In special, we consider

the method of Bendale and Boult [2016] in this analysis. Finally, in Section 7.3, we

avoid de�ning thresholds on networks' output and, instead, we evaluate the in�uence

known unknown data have on �nal performance. The contribution of our work on neural

networks resides on those experimental evaluations.

7.1 Neural networks for classi�cation problems

For the purpose of our work, we consider the multilayer perceptron (MLP), a form of feed-

forward neural network (FNN) [Bishop, 2006] for multiclass classi�cation highly employed
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nowadays. It consists of small processing units connected one to another by weighted

edges. In case of an FNN, di�erently than a Recurrent Neural Network (RNN) [Graves,

2012], the connected units form a directed graph with no cycle, hence its name. The

MLP is arranged in form of layers and each layer is composed of a set of units. Con-

nections happen among units of consecutive layers however there is not intra-layer nor

non-consecutive layer connections. The input layer represents the input data so that each

of its units becomes a value of the input vector x ∈ Rd. The last layer of this arrange-

ment is called the output layer and represents the prediction of the neural network. All

other layers are called hidden layers because they are intermediate layers on the chain of

computations. The number of layers of an MLP comprises the number of hidden layers

plus one (the output layer), hence an input vector x can also be represented by a[0] and

the output of a l-layer network by a[l] = ŷ. Except for units on the input layer, each one

of them calculates a weighted sum and then applies an activation function to obtain its

�nal activation. In summary, the �nal activation a
[l]
j of a unit j on layer l is given by

a
[l]
j = φ[l](z

[l]
j + b

[l]
j ),

in which φ[l] is an activation function employed on layer l, e.g., linear, sigmoid, hyperbolic

tangent, recti�ed linear unit (ReLU), etc., b
[l]
j is a bias term, and z

[l]
j is the weighted sum:

z
[l]
j =

|L[l−1]|∑
i=1

w
[l]
jia

[l−1]
i ,

in which L[l] represents the set of units on layer l and w
[l]
ji represents the weight of the

connection between unit j of layer l with unit i of previous layer l − 1.

Usually, for binary problems, a single unit is required on the output layer, along with

a sigmoid activation function such that the �nal output is in [0, 1], and can be used to

represent the probability for the positive class. For multiclass problems, however, it is

a well-established convention to have a unit per training class on the output layer, i.e.,

n units in total. In this case, a softmax function�a.k.a. softmax layer�as de�ned in

Equation (7.1), is usually employed to obtain per-class probabilities [Bridle, 1990].

P (`j|x) =
eŷj

|L[l]|∑
i=1

eŷi

, (7.1)

in which `i, i = 1, . . . , n, indicate each of the training classes. Then, the �nal decision is

simply given as `i, for

i = argmax
i
P (`i|x).

It is proven that MLPs with a su�cient number of hidden units can approximate

any continuous function [Hornik et al., 1989, Nielsen, 2015]. For training a network, i.e.,

adjusting its weights to approximate the desired function, the backpropagation technique

has been a staple in the literature. In essence, it consists on propagating backwards the

error calculated by the loss function through successive applications of partial derivatives
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with respect to any weight and bias, by means of the chain rule. Gradient descent�

or any of its alternative forms [Graves, 2012]�can then be employed to minimize any

di�erentiable loss function. The gradient for updating the parameters of the network can

be calculated on the entire training set (batch learning), however, when training set is

large enough to make this approach unfeasible, mini-batch gradient descent should be

employed. Mini-batch gradient descent consists of updating weights and biases based on

the gradient calculated for a subset of training samples.

For the experiments in Section 7.2, we consider an MLP as de�ned here. In Section 7.3,

we use a Convolutional Neural Network (CNN) [LeCun et al., 2015] for the experiments,

however, as the theoretical foundation of CNNs is not required for the analysis we perform,

we abstain to formalize it here.

7.2 Behavior analysis of fully-connected networks

The purpose of the experiments we present in this section is to assess the behavior of a

neural network on the input space when decisions are accomplished on one of the feature

spaces of the last layers of the network, e.g., considering the trivial extension of a neural

network to open-set recognition by thresholding its probability score (softmax layer) for

certain classes.

First, let us de�ne what would be that trivial extension. One can think that if the

network is not con�dent about its classi�cation�i.e., if the probability score calculated

by the softmax layer is not high enough, based on a threshold�then the test instance can

be rejected as unknown. This rationale is basically implemented by Equation (7.2).

f(x) =

`i if max
i
P (`i|x) > Ts

`0 otherwise,
(7.2)

in which `0 is the unknown label and Ts, 0 ≤ Ts < 1, is some previously obtained threshold

to be applied on the softmax probability estimate.

Recently, Bendale and Boult [2016] have proposed a more elaborated method for

extending neural networks for open-set recognition. In essence, their method works as

follows. The network is trained as it is usually accomplished in a closed-set scenario. Then,

the purpose of their method is to estimate if an input test instance is from an unknown

class. They �rst generate what they call the Mean Activation Vectors (MAVs), one per

training class. The MAV mk for a class k is calculated by extracting the activations

a[l−1](i) on the penultimate layer (before softmax) for every correctly-classi�ed training

sample i from class k. Their main hypothesis is that the MAV of a class represents

how a sample of that class activates the penultimate layer. Then, by employing EVT,

the method consists of estimating a Weibull distribution [Coles, 2001] per class k based

on the largest distances ‖mk − a[l−1](i)‖, for i ∈ Sk, in which Sk is the set of correctly-

classi�ed training samples from class k. On prediction phase, a test instance x is predicted

to some class k by the closed-set neural network and its activation vector a[l−1] on the

penultimate layer is acquired for further veri�cation. Then, the �nal decision is performed
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as in Equation (7.3).

f(x) =

`k if max
k
Pk(y = k|d) > Tu

`0 otherwise,
(7.3)

in which Pk is the posterior of the previously-estimated Weibull distribution for class k,

Tu is an uncertainty threshold, and d = ‖mk − a[l−1]‖. The network layer that performs

the veri�cation described in Equation (7.3) is called the openmax layer.

For the purpose of the experiments we present in this section, we have considered

a simpli�ed version of openmax: instead of using a Weibull distribution, we have em-

ployed the well-known normal distribution, calibrated such that approximately 95% of

the correctly-classi�ed training instances are non-outliers on the penultimate-layer fea-

ture space. We have preferred the normal distribution to facilitate the interpretation of

the behavior. As for Ts in Equation (7.2), we have considered Ts = 0.97.

In these experiments, our aim is to visualize the behavior of the network in a 2-

dimensional input space. For this, we have de�ned a 3-layer neural network with 2 input

units. From the �rst hidden layer to the output layer, this network has 384, 192, and

n units, respectively, in which n is the number of training classes. For the �rst two

layers, ReLU [Glorot et al., 2011] activation function was employed. Throughout those

experiments, a mini-batch of size 40 was used, unless otherwise stated. For each dataset we

will present, the network was trained in 1 000 000 steps (feedforward and weights update),

although less steps would be enough to obtain an appropriate model. The same network

model, along with softmax with rejection threshold of Equation (7.2), was also used as

the base model for the openmax method.

Training data are from 2-dimensional synthetic datasets, always normalized in the

interval [0, 1]. Examples of the datasets we used for training are the Boat, Four-Gauss,

Petals, Regular, Saturn, Cone-Torus [Kuncheva and Hadjitodorov, 2004], and R15 [Veen-

man et al., 2002] datasets. We have also created an additional dataset similar to Four-

Gauss, named Four-Gauss-Full, that has a similar shape compared to Four-Gauss, how-

ever, with more training samples. We have also generated the Seven-Gauss dataset�not

as dense as Four-Gauss-Full�with seven known classes. All those datasets are depicted

in Figure 7.1.

The network, as previously described, was trained on each of the datasets presented in

Figure 7.1. Their decision boundaries for each dataset are presented in Figure 7.2. We can

notice in this �gure that generated models are able to separate well the samples in most

cases. In general, we also observe a tendency on generating linear decision frontiers when

possible, as can be seen between the two middle classes of Boat dataset in Figure 7.2a

and between classes in Petals, Regular, Half-Ring, R15, and Four-Gauss-Full datasets. In

special, we notice linear decision frontiers among classes in Half-Ring and Four-Gauss-Full,

which do not allow proper separation of the entire training set. We conjecture it is due to

small size of mini-batch compared to the entire training set. One intuitive explanation is

that for each mini-batch of randomly selected samples, it is likely for those datasets that

a linear decision boundary can separate them and from step to step the model for each

dataset keeps those frontiers linear. After presenting the decision boundaries for softmax
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with rejection threshold and for openmax, we will return to this point.

Firstly, in Figure 7.3, we present the decision boundaries for the same neural net-

works (same weights) with the openmax layer included. As we can see, in most cases,

openmax gracefully bounds the KLOS on the input space. Interestingly, the cases with

non-linear-shaped boundaries from Figure 7.2, makes the openmax more likely to bound

the KLOS. Bendale and Boult [2016] have proved that the KLOS (i.e., the open-space

risk) is bounded. However, their proof applies only to the feature space of the penulti-

mate layer. It does not avoid that an unbounded region on the feature space of previous

layers�including the input space�is mapped to similar activations on the penultimate

layers, making the KLOS on previous layers unbounded. In fact, Figures 7.3g, 7.3h, and

7.3i seem to con�rm it. It is a question due to debate whether the known-labeled space

needs to be bounded de facto on the input space. We leave it for future analyses as we do

not have the �nal answer on that matter, however, we should notice that leaving an un-

bounded KLOS, as in Figure 7.3g, seems unreasonable and unsafe, as the behavior of the

network outside the support of the training samples seems unpredictable. For instance,

in Figure 7.4, we analyze the cases of Figure 7.3 with (seemingly) unbounded KLOS in

a larger portion of the feature space. As we can see, the openmax layer (apparently)

still leaves an unbounded KLOS for Half-Ring, as shown in Figure 7.4d. For Cone-Torus

and Four-Gauss-Full, Figures 7.4e and 7.4f evince openmax is still not able to bound the

KLOS in the range [−10, 11] of the input space, however, it is not clear whether it might

be able to bound the KLOS at some point of that feature space.

In Figure 7.5, we show the decision frontiers for the method de�ned in Equation (7.2).

As we can see, establishing a threshold on softmax only makes doubtful testing samples to

be rejected while a great part of the open space is still labeled as known. It indicates that

even by increasing the rejection threshold Ts, it would only make the decision frontier

to be tighter among known classes but the high con�dence region on the open space

would still remain. Anyhow, by thresholding softmax, in some cases it makes the KLOS

bounded further away in the feature space, as can be noticed on the corners of Figure 7.5e

and evinced for several other datasets in Figure 7.6, in which we present the behavior

in a broader region of the input space (for the range [−10, 11]). The reason is that a

point further away in the open space starts having similar probabilities for every class,

hence there will be no highly activated class for a point su�ciently far in the open space.

However, Figures 7.5g, 7.5h, and 7.5i present no indication it might happen at some point.

Those results help us understand the results obtained by Nguyen et al. [2015]:

it evinces the possibility of obtaining fooling images with high con�dence for certain

classes�sometimes with more con�dence than for training samples themselves. As the

method of Bendale and Boult [2016] bounds the KLOS on the input space in some cases�

by bounding the KLOS on the penultimate-layer space�those results we have presented

are an explanation why the openmax is also able to correctly reject some fooling images

as well as rubbish images [Goodfellow et al., 2015], as reported by the authors [Bendale

and Boult, 2016]. We also visually con�rm the linearity problem of neural networks as

stated by Goodfellow et al. [2015]: it is likely to leave an unbounded KLOS, as we could

see.

Previously, we have observed the linear behavior of the network on Four-Gauss-Full
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dataset. We have hypothesized it is due to the small mini-batch size compared to the total

number of the training samples. Aiming at further checking and evincing this hypothesis,

we have trained the same network with a larger mini-batch size of 800. In this case, the

generated model better separated training instances non-linearly, as shown in Figure 7.7.

As we can see in Figure 7.7b, now openmax is able to bound the KLOS on the input

space, as decision frontiers are no longer linear. However, softmax still continues to yield

high con�dence scores for possible test instances that might appear on the feature space

outside the support of the training samples.

7.3 Partial knowledge of the unknown

In this section, we analyze the performance of neural networks when simulating an �un-

known class�. In this case, instead of establishing a threshold for rejection, the networks

are trained with known unknown classes [Bendale and Boult, 2015]. The known unknown

classes comprise the semantic classes of any instance that can be acquired at training

phase but for which we have no interest in recognizing them. For this purpose, it is not

mandatory de�ning the label for each of those instances as long as we can assure they do

not belong to any of the classes of interest. On the other hand, unknown unknown in an

open-set setup refers to the classes for which representative samples are not available for

training.

Our objective is to understand the impact of the assumption that by including on

training of a neural network as many known unknown samples as possible would make

the network to learn to recognize unknown classes. We have seen in Section 6.3 that, for

an SVM with the one-vs-all strategy, when the negative class comprises multiple known

classes, it makes the SVM more likely to bound the PLOS, generating a model suitable

for open-set scenarios. The factor we want to analyze here is similar, however, with an

empirical approach, i.e., through experiments with multiple con�gurations.

For the purpose of those experiments, we have employed a publicly available CNN

[Tensor�ow.org, 2018b]. This network is targeted for closed-set digit classi�cation on

MNIST dataset and achieves a classi�cation accuracy of approximately 99.2% in the

closed-set setup among 10 classes. The input layer is 28× 28 pixels, followed by 7 layers:

two convolutional layers interchanged with two max pooling layers and two fully-connected

(FC) layers at the end followed by the softmax layer. ReLU is employed along with each

convolutional layer and the �rst FC layer. For regularization, this network performs a

dropout [Srivastava et al., 2014] on the �rst FC layer. We have employed a mini-batch of

size 50.

For the setup of those experiments, we have split the 10 MNIST classes into K, Ku,

and U sets such that |K| + |Ku| + |U | = |K ∪ Ku ∪ U | = 10. For each experiment,

K is the set of known classes used for training (the classes of interest); Ku is the set

of known unknown classes, i.e., classes not of interest however used to aid the network

model at recognizing the unknown; and U is the set of unknown classes that appear only

on prediction time.

Trained networks have n+1 units at the two last layers: n = |K| for each of the known
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classes and +1 for the (known) unknown class. This way, we can assess the performance

of the network when partial knowledge of the unknown is included in the trained model.

For testing, besides MNIST, we have also employed Chars74K [de Campos et al., 2009]

dataset, which consists of digits and letters in a distinct domain. Kd represents the set

of known digits; Kd
u represents the set of known unknown digits; Ud represents the set

of unknown digits; and U l represents the set of (unknown) letters from Chars74K. The

instances from Chars74K were resized to be 28× 28 and converted to grayscale.

Furthermore, we have generated two additional datasets: R consists of instances whose

pixels have received a random intensity from the range [0, 255] and Rp consists of test in-

stances from MNIST dataset with their pixels shu�ed. Both R and Rp represent unknown

samples from the point of view of every trained network in those experiments.

In Table 7.1, we present results when training the networks only with data from

the MNIST dataset. In Table 7.2, networks were trained also with samples for known

classes from Chars74K datasets. In Table 7.3, networks do not use known samples from

Chars74K, however, it uses samples from Chars74K for the known unknown set of classes.

Finally, in Table 7.4, trained networks use instances from Chars74K for both known and

known unknown classes. In every case, known and known unknown classes from MNIST

are used. Samples that appear for training a network, do not appear for testing in any

other network and vice-versa. Obtained results for each (|K|, |Ku|, |U |) con�guration

denote the mean of 10 experiments with distinct randomly selected classes.

The main result we analyze here is the one obtained in MNIST's unknown unknown

set. As we are not dealing with the problem of domain adaptation, results on Chars74K

dataset are extra considerations. For instance, we would not expect a network not trained

with samples from Chars74K to be able to perform well on the set Kd of known classes

from Chars74K. However, we would expect an open-set classi�er to be able to reject the

unknown classes from Chars74K.

First, let us analyze the performance only for the MNIST's K, Ku, and U test sets.

In Table 7.1, we observe that results on K and Ku are similar to the ones for closed-

set, i.e., around 99.2%, evincing that the network continues to �t well on the available

classes, as expected. Furthermore, as the number of classes of interest considered on the

experiments in Table 7.1 is smaller than the equivalent closed-set experiments (always

10 classes), we observe a slight improvement. The Ku in Table 7.1�and in the other

tables as well�comprises the test set referring to the known unknown classes. Results on

Ku is consistently better than results on K set, and they improve as the ratio |Ku|/|K|
increases.

Those two results show that by including a set of known unknown classes for training

the network, its performance is not a�ected in those two sets. However, it does not make

the network able to recognize true unknown samples, as shown by the accuracy obtained

on the U test set. Anyhow, by increasing the size of Ku, compared to the size of K, the

likelihood of rejecting true unknown samples increases. At �rst glance, it might indicate

that by introducing as much data as possible as known unknown would solve the open-set

problem on neural networks, however, from further analyses, this conclusion cannot be

drawn, as we shall see ahead.

By comparing the performance on K, Ku, and U sets across Tables 7.1�7.4, we observe
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that the introduction of data from Chars74K in training�as in Tables 7.2�7.4�does not

change the performance neither for good nor for bad. Anyhow, it is interesting to notice

that by introducing data from a distinct domain does not change its behavior on the main

domain.

That last observation indicates us that the main factor for the improved performance

on U set, as the size of Ku increases, is the increase of the ratio |Ku|/|K|. It makes the

network simply more likely to reject instances in general, which does not mean it is taking

into account the content of the samples for rejecting them.[1] Anyhow, the accuracy on

K does not decrease as the ratio |Ku|/|K| increases, hence we can also infer that the

introduction of known unknown samples from the same domain of the classes of interest

can help the network to recognize at least a part of the unknown world without a�ecting

the performance on recognizing the classes of interest.

We have observed across Tables 7.1�7.4 that by including samples from Chars74K

in the training, the performance on MNIST data was not a�ected much. On the other

hand, as more known unknown classes from MNIST are included on training, the better

the accuracy on unknown samples from Chars74K dataset�as observed across rows of

Table 7.1�although the accuracy on the set Kd of known samples from Chars74K su�ers.

Observe, however, that in this case�across the rows of the same table�the con�guration

of those test sets changes, which is not true when comparing the same cases across tables.

Test sets R and Rp are kept the same across rows on those tables and, in fact, they can

indicate that the model better rejects unknown samples as the ratio |Ku|/|K| increases.
As saw before, it happens without a�ecting the performance on known samples in K,

from the main domain. However, it is a casual behavior of the network, as the network

becomes more likely to reject unknown instances in general as that ratio increases. The

results for R and Rp in Table 7.2 strongly evinces this statement. By introducing known

samples from Chars74K on training, it makes the network to misclassify the set R almost

entirely as well as signi�cantly decrease the accuracy on Rp. Furthermore, the inclusion

of those samples on training disturb the behavior on the sets Kd
u, U

d, and U l of unknown

samples from Chars74K. Remember that R comprises samples whose pixels are randomly

generated and Rp was created based on images from MNIST with their pixels shu�ed,

which makes those results and the following ones unexpected.

In Table 7.3�with known unknown training samples from Chars74K�the scenario

reverses: accuracy on R reaches 100% in multiple cases and accuracy on Rp is reasonable.

As expected, results for Kd, Kd
u, U

d, and U l are also reversed, compared to Table 7.2.

Finally, in Table 7.4�when considering samples from Chars74K as both known and

known unknown training data�we observe that the network performs as if two separated

models where trained. We have observed before�by comparing results for K, Ku, U

across the tables�that the model for MNIST data is not a�ected by the introduction

of data from Chars74K on training. Now, we observe for Chars74K test sets a similar

behavior we have previously observed for MNIST: results on known and known unknown

sets�Kd and Kd
u, respectively�maintains a reasonable accuracy while the accuracy on

the true unknown data is usually worse.

[1]In this exploration, we have not focused too much on the balancing of the training classes for each
mini-batch, as this was not the main topic of research by itself.
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7.4 Final considerations

With those analyses and results we have shown, at present, it is not reasonable to expect

a secure behavior from neural networks in the open-set scenario by simply giving them a

massive amount of training data, even when a partial representation of the unknown is

included among the known unknown data being used. Neural networks are data-driven

methods and that is their very advantage over other classi�ers, however, we have seen

that undesirable behavior can happen under certain circumstances, as their behavior in

the open space usually cannot be inferred based solely on known data or on the obtained

model. The results we have obtained for R and Rp�along with the analysis in the previous

section�are an important indication of those unexpected behaviors. As unknown data

is not available for training and, furthermore, in some applications the type of input

data cannot be predicted a priori, those analyses indicate the need of understanding the

particularities that would allow us to make neural networks more robust and reliable in

the open space.

The previous analyses we have presented broaden the view of the �eld of open-set

recognition along with neural networks, as neural networks for open-set scenarios should

optimize not only the empirical risk but also the open-space risk. As for other classi�ers,

we argue its behavior and properties should be analysed in their essence so that theoretical

guarantees should be provided. For instance, consider the analysis of openmax layer,

which is able to obtain a bounded KLOS on the input space for some cases. For the

cases for which KLOS is bounded, it means that network's model ensures that distinct

con�gurations from previous layers distinctly activates further layers so that bounding

the KLOS on the last layer ensures a bounded KLOS on the input space. If one can

guarantee it happens from layer to layer, independently from the training data, then the

same open-set properties we have guaranteed for other classi�ers would be guaranteed for

MLP. Furthermore, further studies can also be accomplished along with CNN aiming at

the same objective.
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(a) Boat (100 instances). (b) Four-Gauss (100 in-

stances).

(c) Petals (100 instances).

(d) Regular (144 instances). (e) R15 (600 instances). (f) Seven-Gauss (570 in-

stances).

(g) Half-Ring (373 in-

stances).

(h) Cone-Torus (800 in-

stances).

(i) Four-Gauss-Full (20000

instances).

Figure 7.1: 2-dimensional datasets employed on the behavior analysis of neural networks.
Colored points represent training samples for the neural network. Training data are
normalized in the interval [0, 1] for each feature. Each image shows the range [−1, 2] in
the feature space for each feature. The small circles represent the training samples from
the dataset and their colors represent their classes.
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(a) Boat. (b) Four-Gauss. (c) Petals.

(d) Regular. (e) R15. (f) Seven-Gauss.

(g) Half-Ring. (h) Cone-Torus. (i) Four-Gauss-Full.

Figure 7.2: Behavior analysis of the closed-set neural network. Images generated without
employing any kind of rejection criteria, hence, a closed-set behavior is presented. The
small circles represent the training samples from the dataset and their colors represent
their classes. A colored background represents the class in which a possible test instance
in the corresponding position of the feature space would be classi�ed. White background
indicates that a possible test instance in that region would be classi�ed as unknown.



90

(a) Boat. (b) Four-Gauss. (c) Petals.

(d) Regular. (e) R15. (f) Seven-Gauss.

(g) Half-Ring. (h) Cone-Torus. (i) Four-Gauss-Full.

Figure 7.3: Behavior analysis of the neural network with openmax rejection layer. Open-
max layer rejects a test instance when its activation vector on the penultimate layer is
dissimilar to the Mean Activation Vector of the predicted class. The small circles rep-
resent the training samples from the dataset and their colors represent their classes. A
colored background represents the class in which a possible test instance in the corre-
sponding position of the feature space would be classi�ed. White background indicates
that a possible test instance in that region would be classi�ed as unknown.
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(a) Closed-set. Half-Ring. (b) Closed-set. Cone-Torus. (c) Closed-set. Four-Gauss-

Full.

(d) Openmax. Half-Ring. (e) Openmax. Cone-Torus. (f) Openmax. Four-Gauss-

Full.

Figure 7.4: Behavior analysis of the neural network with openmax rejection layer far
from training samples. Neural networks behavior for the open space far from training
samples. Depiction of decision boundaries for closed-set neural network, openmax layer,
and softmax layer with threshold. Images represent the 2-dimensional input space in
the range [−10, 11]. The small circles represent the training samples from the dataset
and their colors represent their classes. A colored background represents the class in
which a possible test instance in the corresponding position of the feature space would be
classi�ed. White background indicates that a possible test instance in that region would
be classi�ed as unknown.
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(a) Boat. (b) Four-Gauss. (c) Petals.

(d) Regular. (e) R15. (f) Seven-Gauss.

(g) Half-Ring. (h) Cone-Torus. (i) Four-Gauss-Full.

Figure 7.5: Behavior analysis of the neural network by establishing a rejection threshold
on the softmax layer. When the probability to the most probable class is not high enough,
the test instance is rejected. The small circles represent the training samples from the
dataset and their colors represent their classes. A colored background represents the class
in which a possible test instance in the corresponding position of the feature space would
be classi�ed. White background indicates that a possible test instance in that region
would be classi�ed as unknown.
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(a) Boat. (b) Four-Gauss. (c) Petals.

(d) Regular. (e) R15. (f) Seven-Gauss.

(g) Half-Ring. (h) Cone-Torus. (i) Four-Gauss-Full.

Figure 7.6: Behavior analysis of the neural network by establishing a rejection threshold
on the softmax layer far from training samples. When the probability to the most probable
class is not high enough, the test instance is rejected. Images represent the 2-dimensional
feature space in the range [−10, 11]. The small circles represent the training samples from
the dataset and their colors represent their classes. A colored background represents the
class in which a possible test instance in the corresponding position of the feature space
would be classi�ed. White background indicates that a possible test instance in that
region would be classi�ed as unknown.
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(a) Closed-set. Four-Gauss-

Full.

(b) Openmax. Cone-Torus. (c) Softmax. Cone-Torus.

Figure 7.7: Behavior analysis of the neural network for Four-Gauss-Full dataset with
mini-batch of size 800. Depiction of decision boundaries for closed-set neural network,
openmax layer, and softmax layer with threshold. Images represent the 2-dimensional
feature space in the range [−1, 2]. The small circles represent the training samples from
the dataset and their colors represent their classes. A colored background represents the
class in which a possible test instance in the corresponding position of the feature space
would be classi�ed. White background indicates that a possible test instance in that
region would be classi�ed as unknown.
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(|K|, |Ku|, |U |) K Ku U Kd Kd
u Ud U l R Rp

(6, 2, 2) 0.9935 0.9939 0.1480 0.4029 0.5069 0.2977 0.3624 0.3296 0.2453
(5, 2, 3) 0.9942 0.9948 0.3176 0.2790 0.6579 0.4514 0.5038 0.5400 0.5580
(6, 3, 1) 0.9916 0.9947 0.4797 0.2652 0.7418 0.6490 0.6261 0.4997 0.5348
(4, 2, 4) 0.9941 0.9944 0.3003 0.3469 0.6866 0.4739 0.5265 0.4466 0.3871
(5, 3, 2) 0.9932 0.9953 0.5229 0.2492 0.8281 0.7613 0.7442 0.8585 0.6245
(3, 2, 5) 0.9951 0.9968 0.4258 0.2029 0.8931 0.7635 0.7677 0.7802 0.7051
(4, 3, 3) 0.9922 0.9974 0.5069 0.2292 0.8689 0.7218 0.7635 0.8564 0.5341
(5, 4, 1) 0.9918 0.9955 0.5360 0.1834 0.8748 0.8404 0.8154 0.7573 0.6387
(4, 4, 2) 0.9910 0.9954 0.6064 0.1133 0.9524 0.9185 0.8805 0.8562 0.8713
(3, 3, 4) 0.9943 0.9970 0.5076 0.2639 0.8765 0.7448 0.7960 0.7992 0.7011
(2, 2, 6) 0.9941 0.9984 0.4962 0.4527 0.7592 0.6049 0.6445 0.6727 0.7080
(4, 5, 1) 0.9891 0.9966 0.6648 0.1327 0.9781 0.9367 0.9563 0.9639 0.9608
(3, 4, 3) 0.9924 0.9969 0.6655 0.1554 0.9469 0.9200 0.9332 0.9568 0.7998
(2, 3, 5) 0.9940 0.9983 0.6822 0.2067 0.9826 0.9008 0.9202 0.9517 0.9134
(3, 5, 2) 0.9907 0.9970 0.8213 0.1139 0.9588 0.9253 0.9256 0.9555 0.8220
(3, 6, 1) 0.9910 0.9969 0.8389 0.0815 0.9881 0.9938 0.9511 0.9886 0.8008
(2, 4, 4) 0.9929 0.9982 0.7403 0.2999 0.9018 0.8685 0.8622 0.9146 0.8157
(2, 5, 3) 0.9921 0.9978 0.8098 0.0997 0.9944 0.9663 0.9744 0.9999 0.8124
(2, 6, 2) 0.9879 0.9982 0.8847 0.1100 0.9895 0.9615 0.9815 0.9957 0.8195

Table 7.1: Results on MNIST and Chars74K datasets with networks trained with known
and known unknown classes of MNIST. Each line represents the mean of 10 experiments
with randomly selected (|K|, |Ku|, |U |) digits. Lines are sorted by |Ku|/|K|. Red back-
ground indicates low accuracy (for visualization purposes).
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(|K|, |Ku|, |U |) K Ku U Kd Kd
u Ud U l R Rp

(6, 2, 2) 0.9932 0.9949 0.1708 0.8402 0.1208 0.0000 0.0352 0.0011 0.0551
(5, 2, 3) 0.9938 0.9936 0.3030 0.8311 0.1292 0.0367 0.0220 0.0002 0.2562
(6, 3, 1) 0.9919 0.9949 0.4353 0.8383 0.1198 0.0534 0.0382 0.0007 0.1697
(4, 2, 4) 0.9945 0.9952 0.3206 0.8813 0.1177 0.0248 0.0392 0.0011 0.3235
(5, 3, 2) 0.9932 0.9944 0.4695 0.8526 0.1085 0.0275 0.0415 0.0011 0.2818
(3, 2, 5) 0.9948 0.9967 0.3966 0.8865 0.2067 0.0491 0.0330 0.0005 0.3105
(4, 3, 3) 0.9927 0.9967 0.4863 0.8367 0.1577 0.0692 0.0622 0.0010 0.2335
(5, 4, 1) 0.9908 0.9952 0.5347 0.8195 0.1483 0.0866 0.0698 0.0020 0.3124
(4, 4, 2) 0.9916 0.9949 0.5970 0.8523 0.1928 0.0864 0.0521 0.0039 0.4767
(3, 3, 4) 0.9935 0.9972 0.5305 0.8945 0.1362 0.0487 0.0836 0.0027 0.4126
(2, 2, 6) 0.9958 0.9970 0.4552 0.8927 0.1583 0.0480 0.0588 0.0028 0.3610
(4, 5, 1) 0.9882 0.9967 0.7300 0.8349 0.1225 0.0767 0.0901 0.0004 0.5658
(3, 4, 3) 0.9928 0.9960 0.6586 0.8574 0.1371 0.0900 0.0762 0.0000 0.3695
(2, 3, 5) 0.9953 0.9978 0.6374 0.8544 0.1904 0.0407 0.0669 0.0000 0.5080
(3, 5, 2) 0.9901 0.9969 0.8426 0.8559 0.1472 0.1194 0.0792 0.0000 0.4118
(3, 6, 1) 0.9909 0.9975 0.8592 0.8768 0.1747 0.1282 0.0783 0.0000 0.4786
(2, 4, 4) 0.9931 0.9980 0.7216 0.9273 0.1670 0.1214 0.0907 0.0005 0.4299
(2, 5, 3) 0.9917 0.9979 0.7951 0.8848 0.1726 0.0952 0.0949 0.0120 0.6134
(2, 6, 2) 0.9886 0.9981 0.8564 0.8791 0.1652 0.1366 0.1088 0.0000 0.5057

Table 7.2: Results on MNIST and Chars74K datasets with networks trained with known
and known unknown classes of MNIST and known classes of Chars74K. Each line repre-
sents the mean of 10 experiments with randomly selected (|K|, |Ku|, |U |) digits. Lines are
sorted by |Ku|/|K|. Red background indicates low accuracy (for visualization purposes).
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(|K|, |Ku|, |U |) K Ku U Kd Kd
u Ud U l R Rp

(6, 2, 2) 0.9936 0.9948 0.1553 0.0538 0.9984 0.9825 0.9639 1.0000 0.7266
(5, 2, 3) 0.9937 0.9953 0.3404 0.0512 1.0000 0.9908 0.9642 1.0000 0.9370
(6, 3, 1) 0.9925 0.9938 0.4670 0.0382 0.9988 0.9818 0.9766 1.0000 0.8778
(4, 2, 4) 0.9953 0.9957 0.3362 0.0422 0.9970 0.9828 0.9739 1.0000 0.8202
(5, 3, 2) 0.9928 0.9949 0.4718 0.0330 0.9957 0.9868 0.9789 1.0000 0.8899
(3, 2, 5) 0.9949 0.9963 0.4173 0.0319 0.9986 0.9850 0.9730 1.0000 0.8067
(4, 3, 3) 0.9930 0.9960 0.4815 0.0389 0.9958 0.9776 0.9848 1.0000 0.8570
(5, 4, 1) 0.9913 0.9949 0.5162 0.0212 0.9991 0.9958 0.9870 1.0000 0.9280
(4, 4, 2) 0.9912 0.9953 0.5992 0.0157 0.9991 0.9948 0.9876 1.0000 0.9772
(3, 3, 4) 0.9941 0.9975 0.4969 0.0368 0.9963 0.9941 0.9864 1.0000 0.9009
(2, 2, 6) 0.9966 0.9977 0.4401 0.0878 0.9976 0.9696 0.9734 0.9998 0.8148
(4, 5, 1) 0.9904 0.9957 0.6717 0.0149 0.9969 1.0000 0.9931 1.0000 0.9885
(3, 4, 3) 0.9925 0.9965 0.6660 0.0204 0.9991 0.9962 0.9944 1.0000 0.9199
(2, 3, 5) 0.9953 0.9979 0.6420 0.0476 0.9987 0.9929 0.9901 1.0000 0.9498
(3, 5, 2) 0.9900 0.9972 0.8523 0.0031 1.0000 0.9986 0.9959 1.0000 0.9485
(3, 6, 1) 0.9905 0.9971 0.8651 0.0078 1.0000 1.0000 0.9922 1.0000 0.9392
(2, 4, 4) 0.9921 0.9975 0.6975 0.0289 1.0000 0.9935 0.9892 1.0000 0.9320
(2, 5, 3) 0.9918 0.9979 0.7984 0.0096 0.9993 0.9988 0.9956 1.0000 0.9682
(2, 6, 2) 0.9891 0.9981 0.8793 0.0207 0.9995 0.9921 0.9977 1.0000 0.9295

Table 7.3: Results on MNIST and Chars74K datasets with networks trained with known
and known unknown classes of MNIST and known unknown classes of Chars74K. Each
line represents the mean of 10 experiments with randomly selected (|K|, |Ku|, |U |) digits.
Lines are sorted by |Ku|/|K|. Red background indicates low accuracy (for visualization
purposes).
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(|K|, |Ku|, |U |) K Ku U Kd Kd
u Ud U l R Rp

(6, 2, 2) 0.9934 0.9945 0.1488 0.8304 0.8605 0.2209 0.3200 0.3650 0.2725
(5, 2, 3) 0.9932 0.9949 0.3416 0.7904 0.9336 0.3870 0.3308 0.5529 0.6060
(6, 3, 1) 0.9920 0.9951 0.4300 0.7790 0.8930 0.5907 0.4709 0.5352 0.5547
(4, 2, 4) 0.9951 0.9953 0.3033 0.8114 0.9005 0.3902 0.4309 0.6351 0.5495
(5, 3, 2) 0.9926 0.9952 0.5132 0.7906 0.8311 0.4568 0.4216 0.6941 0.6415
(3, 2, 5) 0.9955 0.9967 0.4226 0.7847 0.9322 0.4538 0.4524 0.4971 0.6703
(4, 3, 3) 0.9928 0.9962 0.4844 0.7793 0.9161 0.5472 0.5396 0.6084 0.6046
(5, 4, 1) 0.9902 0.9959 0.5535 0.7398 0.9407 0.5863 0.6001 0.6718 0.5940
(4, 4, 2) 0.9912 0.9951 0.5893 0.7537 0.9572 0.7776 0.6478 0.9108 0.8865
(3, 3, 4) 0.9943 0.9971 0.5448 0.7636 0.9454 0.6908 0.7016 0.7799 0.7172
(2, 2, 6) 0.9954 0.9985 0.4696 0.7259 0.9274 0.6147 0.6470 0.6554 0.7442
(4, 5, 1) 0.9908 0.9963 0.6861 0.7277 0.9442 0.7340 0.7754 0.7895 0.9336
(3, 4, 3) 0.9923 0.9966 0.6781 0.7028 0.9781 0.7985 0.7679 0.8322 0.7294
(2, 3, 5) 0.9953 0.9983 0.6558 0.7349 0.9587 0.6896 0.7420 0.8659 0.8490
(3, 5, 2) 0.9894 0.9965 0.8215 0.7128 0.9500 0.7409 0.7119 0.7555 0.7519
(3, 6, 1) 0.9894 0.9974 0.8578 0.7343 0.9784 0.7249 0.7389 0.9508 0.8227
(2, 4, 4) 0.9936 0.9977 0.7098 0.7932 0.9599 0.7800 0.7537 0.9559 0.8653
(2, 5, 3) 0.9899 0.9985 0.8351 0.7024 0.9736 0.8561 0.8250 0.9383 0.9300
(2, 6, 2) 0.9895 0.9984 0.8736 0.6801 0.9767 0.8538 0.8918 0.9622 0.8442

Table 7.4: Results on MNIST and Chars74K datasets with networks trained with known
and known unknown classes of MNIST and known and known unknown classes of
Chars74K. Each line represents the mean of 10 experiments with randomly selected
(|K|, |Ku|, |U |) digits. Lines are sorted by |Ku|/|K|. Red background indicates low accu-
racy (for visualization purposes).
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Chapter 8

Conclusions and future work

The main hypothesis we have carried out along this work is that being able to bound

the known-labeled open space (KLOS) is essential for properly handling the open-set

recognition problem. The methods we have proposed�the Open-Set Nearest Neighbors

(OSNN) and the Specialized Support Vector Machines (SSVM)�both are capable of

keeping the KLOS bounded in the feature space of the description, and their superior

performance in most of the experiments highlight this requirement. The properties of

Support Vector Machines (SVM) along with Radial Basis Function (RBF) kernel have

allowed us to better assess this factor to prove the requirement of a bounded KLOS

for open-set recognition. Furthermore, we have shown the e�ectiveness of employing

the�now formalized�open-set grid search as a general grid search strategy, which can

be applied to any parametric classi�er that has the ability to reject unknown samples.

Finally, we have enlarged the set of options for evaluation measures specially targeted at

assessing accuracy in an open-set setup.

Some baselines from the literature have shown competitive results with our proposed

methods�a special highlight for Support Vector Machines with Probability of Inclusion

(PISVM)�and even the straightforward SVM, when properly con�gured with one-vs-all

strategy, obtains reasonable results. However, most of those methods have no theoretical

guaranty of being able to bound the risk of the unknown by bounding the KLOS. In fact,

we have shown throughout our experiments that in certain cases, those methods leave an

unbounded KLOS, which might be an undesirable characteristic for certain critical and

sensitive applications. For instance, consider a forensic scenario in which suspects shall be

judged for certain crimes and experts should employ a recognition method for acquiring

evidence for the verdict: as they are simply suspects, we would expect a recognition

method to avoid obtaining positive and highly-con�dent outputs on the open-space, i.e.,

to avoid being highly con�dent of its correctness when it incorrectly predicts that one

of the suspects has committed the crime. It implies that a bounded KLOS should be

ensured, otherwise the behavior of the method for instances from unknown classes�a.k.a.

the suspects, if they have not committed the crime de facto�would be unexpected.

Some particularities should be taken into account when dealing with open-set scenarios

in order to facilitate handling the problem and avoiding mistakes. We have shown, for

instance, that the one-vs-all as a multiclass-from-binary strategy is suitable for open-set

scenarios as it allows the straightforward employment of binary classi�ers that only need
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to satisfy simpler properties, e.g., bounding the positively-labeled open space (PLOS).

This is required for bounding the KLOS and decrease the risk of the unknown. The

same is true with the open-set grid search we have formalized in this work, which allows

a general employment and was shown to improve performance of multiple recognition

methods.

The lack of research on open-set recognition until recent years makes us consider

that, when required to handle the problem, trivial approaches�as the ones described

along this work�can be unduly employed in real world, as they seem reasonable at �rst

glance. However, appearances deceive, and we have shown, for instance, that thresholding

SVM's probabilities aiming at identifying unknown samples need to be employed with

caution to avoid unexpected behavior in an open-set setup. The same concern applies to

the straightforward approach of thresholding softmax probabilities on neural networks:

although it seems reasonable to reject not-so-con�dent classi�cations, only a small portion

of the open space is in fact handled.

Due to the properties obtained along the development of SSVM, we have also touched

some particularities of SVM without bias term and probability estimates for SVM with

one-vs-one strategy. While SVM without bias term is a method simpler to extend to

the open-set recognition setup�by introducing what we have named the arti�cial bias

term�it seems that the requirement of a minimum threshold on probability estimate

has been ignored in previous work. We have shown that a minimal required threshold

can be calculated for SVM with one-vs-one approach such that, when applied to SVM's

probability, it will ensure a bounded KLOS. Future research can be accomplished not

only on the search for optimal rejection threshold but also on proper ways of estimating

probabilities for open-set scenarios. For instance, consider that Platt's probability for

a binary problem, as is, can obtain smaller probability for a positive training sample

than for the open space. Then, by simply employing the minimum threshold to ensure a

bounded PLOS would incorrectly reject positive samples. It shows that Platt's probability

estimate does not consider the open-set scenario. A proper probability estimate for the

open-set scenario, for individual binary problems, needs to ensure higher probability for

the positive instances than for the open space.

Regarding SVM for open-set scenario, all variants we have evaluated in this work

consider the traditional binary version�the only formalization known until the works of

Weston and Watkins [1998] and Crammer and Singer [2001], who have extended SVM for

multiclass classi�cation by means of a single optimization problem. In this work, we have

not considered the employment of inherently multiclass SVMs, as their performance over

traditional multiclass-from-binary extensions has not been evinced [Hsu and Lin, 2002,

Rifkin and Klautau, 2004, Mathur and Foody, 2008]. Furthermore, starting the research

from the binary formulation was the natural path of investigation that we could employ.

We highlight, however, the promising research topic of open-set recognition along with

those multiclass formulations.

OSNN has shown promising results for open set by relying on ratio of distances. The

current implementation only employs the two nearest classes and its simplicity can be a

plus in many scenarios. However, all other trained classes are neglected but might hold

important information for better decisions. OSNN su�ers from the problem of rejecting
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known instances that appear on the overlapping region of two or more training classes

instead of classifying them as one of the doubtful classes. This undesirable behavior might

be overcome by employing extra ratios of distances to other known classes for the �nal

decision. It is not a trivial extension to accomplish but worth investigating in future work.

More elaborated techniques, as the meta-recognition proposed by Scheirer et al. [2012],

can be employed to avoid dealing with multiple thresholds and better performing the �nal

decision.

We have shown multiple nuances of neural networks when considering it for recognition

in open-set scenarios. It is not enough to verify for lower con�dence scores to properly

identify unknown samples. Furthermore, employing a huge amount of known unknown

data is not feasible�as all the universe of the unknown cannot be represented�and that

does not tackle the problem in its root. We have touched the open-set problem along with

neural networks aiming at gaining intuition on how to solve it and much can be explored

in future work. For instance, we have observed the consequence of the linear behavior of

the learned decision function, which shares some conclusions with works on adversarial

images [Goodfellow et al., 2015], and it de�nes an intersection of research areas already

evinced in previous work [Bendale and Boult, 2016] that is worth investigating.

Finally, in Chapter 7, we have saw that a Multilayer Perceptron employed with open-

max layer is able to bound the KLOS of the input space, however, it is not guaranteed

to be true for every case, as it depends on the shape of the dataset. Future work is

worth investigating on �nding out the properties of a neural network that might de�ne

bounded/unbounded KLOS at the feature space of some of the network's layers. Further-

more, analyses similar to the ones we have presented before should be accomplished for

Convolutional Neural Network as well, as this model have been highly employed nowadays

and its behavior with inputs from unknown classes have not received dedicated studies.

Neural networks have been receiving attention mainly in the point of view of closed-set

scenarios and still the possibility of the unknown have been ignored in many of the works

that claim state-of-the-art results in classi�cation problems. And we have shown that the

straightforward approach of thresholding softmax probabilities is theoretically unreason-

able, and training with known unknown instances is an insu�cient alternative. It is an

open �eld of research on how to make network methods optimizing the open-space risk

besides the empirical risk, taking advantage of its data-driven characteristic and taking

into account the unknown.
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Appendix A

Complete Specialized Support Vector

Machines formulation

In this appendix, we present the complete formulation of SSVM, i.e., the details regarding

the derivation of the dual problem from the primal one.

The optimization problem for the SSVM classi�er is de�ned as

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi + λb,

s.t. yi
(
wTxi + b

)
− 1 + ξi ≥ 0,

ξi ≥ 0,

as we want to minimize the value of b aiming at minimizing the risk of the unknown.

Using the Lagrangian method, we have the Lagrangian de�ned as

L(w, b, ξ, α, r) = 1

2
||w||2 + C

m∑
i=1

ξi + λb−
m∑
i=1

riξi

−
m∑
i=1

αi
[
yi
(
wTxi + b

)
− 1 + ξi

]
, (A.1)

in which αi ∈ R and ri ∈ R, i = 1, . . . ,m, are the Lagrangian multipliers.

First we want to minimize with respect to w, b, and ξi, then we must ensure

∇w =
∂

∂b
L =

∂

∂ξi
L = 0.
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Consequently, we have

w −
m∑
i=1

αiyixi = 0 =⇒ w =
m∑
i=1

αiyixi, (A.2)

λ−
m∑
i=1

αiyi = 0 =⇒
m∑
i=1

αiyi = λ, (A.3)

C − αi − ri = 0 =⇒ ri = C − αi. (A.4)

As the Lagrangian multipliers αi, ri must be greater than 0, from Equation (A.4) we

have the constraint 0 ≤ αi ≤ C as a consequence in the dual problem of the soft margin

formulation. This is the same constraint we have in the traditional formulation of the

SVM classi�er.

Using Equations (A.2)�(A.4) to simplify the Lagrangian in Equation (A.1), we have

L(w, b, ξ, α, r) =
m∑
i=1

αi −
1

2
||w||2,

i.e., the same Lagrangian of the traditional SVM optimization problem. The optimization

of the bias term b relies on the constraint in Equation (A.3).

Therefore, the dual optimization problem is de�ned as

min
α

W (α) = −L(w, b, ξ, α, r) = 1

2
||w||2 −

m∑
i=1

αi,

s.t. 0 ≤ αi ≤ C, ∀i,
m∑
i=1

αiyi = λ.
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Appendix B

Proof of Proposition 2

From the Karush-Kuhn-Tucker (KKT) [Bishop, 2006] conditions, the bias term is de�ned

as

b = yi −
m∑
j=1

αjyjK (xi,xj)

= yi −
m∑
j=1:
yj=1

αjK (xi,xj) +
m∑
j=1:
yj=−1

αjK (xi,xj) ,

for any i such that 0 < αi < C. Now, let us consider two possible cases: (1) yi = 1 and

(2) yi = −1. For Case (1), we have

b = 1− αi −
m∑
j=1:
yj=1,
j 6=i

αjK (xi,xj) +
m∑
j=1:
yj=−1

αjK (xi,xj) ,

as K (xi,xi) = 1. Note that 0 < K(x,x′) ≤ 1. To show that there exists some λ such

that b < 0, we analyze the worst case, i.e., when the kernel in the second summation�for

negative training samples�is 1. Then, we have

b = 1− αi −
m∑
j=1:
yj=1,
j 6=i

αjK (xi,xj) +
m∑
j=1:
yj=−1

αj.

From Equation (5.11), we have

m∑
j=1:
yj=−1

αj =
m∑
j=1:
yj=1

αj − λ, (B.1)
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then

b = 1−
m∑
j=1:
yj=1,
j 6=i

αjK (xi,xj) +
m∑
j=1:
yj=1
j 6=i

αj − λ

Analyzing the worst case again, considering αj = C for positive training samples, with

j 6= i, we have

b = 1− C
m∑
j=1:
yj=1,
j 6=i

K (xi,xj) + C (mp − 1)− λ

= 1 + Cmp − C − C
m∑
j=1:
yj=1,
j 6=i

K (xi,xj)− λ.

To ensure b < 0 it is su�cient to let

λ > 1 + Cmp − C

1 +
m∑
j=1:
yj=1,
j 6=i

K (xi,xj)

 .

Given a C ≥ 1, it is always possible to obtain some λ such that λ < Cmp.

For Case (2), we have

b = −1−
m∑
j=1:
yj=1

αjK (xi,xj) +
m∑
j=1:
yj=−1

αjK (xi,xj) .

Considering the worst case for the values of the kernel for negative samples and using the

equality in Equation (B.1), we have

b = −1−
m∑
j=1:
yj=1

αjK (xi,xj) +
m∑
j=1:
yj=1

αj − λ.

Considering the highest possible value for b, by setting αj = C for positive samples, we

have

b = −1− C
m∑
j=1:
yj=1

K (xi,xj) + Cmp − λ.

In this case, to ensure b < 0 it is su�cient to let

λ > Cmp − 1− C
m∑
j=1:
yj=1

K (xi,xj) ,
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which is possible to obtain for any value of C.
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Appendix C

Additional statistical tests

In this appendix, we present the Wilcoxon statistical tests for the same experiments we

have presented the Binomial statistical tests throughout Chapter 6. In Table C.1, we

summarize the correspondence of the tables with Binomial results to the tables with

Wilcoxon results.

Binomial (Chapter 6) Wilcoxon (this appendix)

Table 6.2 Table C.2
Table 6.3 Table C.3
Table 6.5 Table C.4
Table 6.6 Table C.5
Table 6.7 Table C.6
Table 6.8 Table C.7
Table 6.9 Table C.8
Table 6.10 Table C.9
Table 6.11 Table C.10
Table 6.12 Table C.11

Table C.1: Correspondence of Wilcoxon statistical tests for the previously presented Bi-
nomial statistical tests.
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Measure TNNE TNNI OSOPFCV OSOPF OSNNCV

NA <.0001* <.0001* <.0001* <.0001* <.0001*
HNA <.0001* 0.0039* 0.0039* 0.0005* 0.0039*
OSFMM 0.0106 0.1042 0.0106 0.0001* 0.0106
OSFMµ 0.0106 0.0146 0.0106 0.0001* 0.0106
FMM 0.0220 0.1569 0.0176 <.0001* 0.0176
FMµ <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* <.0001* <.0001* 0.0002* <.0001*

AUS <.0001* <.0001* <.0001* <.0001* <.0001*

Table C.2: Wilcoxon statistical tests comparing the OSNN with baselines. Each cell
compares results for all datasets considering all number of available classes. For each
number of available classes and dataset, the mean of the 10 experiments was taken before
the statistical test. Bold means there is statistical di�erence with 95% of con�dence. �*�
indicates the statistical di�erence is with 99% of con�dence. And <.0001* indicates the
statistical di�erence is with 99.99% of con�dence. Emphasized indicates the method in
the column obtains better performance for the measure associated with that row.

Measure SVMC OCSVMC DBCC OVSC WSVMC PISVMC SVDDC

NA 0.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
HNA 0.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMM 0.0007* 0.0002* <.0001* <.0001* <.0001* <.0001* <.0001*
OSFMµ 0.0004* 0.0061* <.0001* <.0001* <.0001* <.0001* <.0001*
FMM 0.0010* <.0001* 0.0002* <.0001* 0.0002* <.0001* <.0001*
FMµ <.0001* 0.0946 <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* <.0001* <.0001* 0.0735 <.0001* <.0001* <.0001*
AUS <.0001* 0.7282 <.0001* <.0001* <.0001* <.0001* <.0001*

Table C.3: Wilcoxon statistical tests comparing the SSVMC with baselines. Each cell
compares results for all datasets considering all number of available classes. For each
number of available classes and dataset, the mean of the 10 experiments was taken before
the statistical test. Bold means there is statistical di�erence with 95% of con�dence. �*�
indicates the statistical di�erence is with 99% of con�dence. And <.0001* indicates the
statistical di�erence is with 99.99% of con�dence. Emphasized indicates the method in
the column obtains better performance for the measure associated with that row.
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Measure SVM OCSVM DBC OVS WSVM PISVM SVDD SSVM

NA 0.0924 <.0001* <.0001* 0.0001* <.0001* <.0001* <.0001* 0.0006*
HNA 0.0011* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 0.0102

OSFMM 0.0004* <.0001* <.0001* 0.0010* <.0001* <.0001* <.0001* <.0001*
OSFMµ 0.0009* <.0001* <.0001* 0.8303 <.0001* <.0001* <.0001* <.0001*
FMM 0.0108 <.0001* 0.0011* <.0001* <.0001* <.0001* <.0001* <.0001*
FMµ <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

AKS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

AUS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*

Table C.4: Wilcoxon statistical tests for the pairwise comparison between closed- and
open-set grid search implementation for the methods. Each cell compares results for all
datasets considering all number of available classes. For each number of available classes
and dataset, the mean of the 10 experiments was taken before the statistical test. Bold
means there is statistical di�erence with 95% of con�dence. �*� indicates the statistical
di�erence is with 99% of con�dence. And <.0001* indicates the statistical di�erence
is with 99.99% of con�dence. Emphasized means the version with closed-set grid search
obtains better performance for the measure associated with that row.

Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.1800 <.0001* 0.0002* <.0001* 0.0004* 0.2016 <.0001*
HNA 0.9157 0.1237 0.9157 <.0001* 0.5025 0.9157 <.0001*
OSFMM 1.0000 0.6281 0.6281 0.0005* 0.7078 1.0000 <.0001*
OSFMµ 0.6322 0.5127 0.0551 <.0001* 0.1430 0.6322 <.0001*
FMM 1.0000 0.5726 0.5726 <.0001* 1.0000 1.0000 <.0001*
FMµ 0.0527 0.0095* <.0001* <.0001* <.0001* 0.0001* 0.9911

AKS 1.0000 0.0057* 0.0017* 1.0000 0.0005* 0.3599 <.0001*
AUS 0.0104 0.0047* <.0001* <.0001* <.0001* <.0001* 0.0104

Table C.5: Wilcoxon statistical tests comparing the OSNN with best baselines. Each
cell compares results for all datasets considering all number of available classes. For each
number of available classes and dataset, the mean of the 10 experiments was taken before
the statistical test. Bold means there is statistical di�erence with 95% of con�dence. �*�
indicates the statistical di�erence is with 99% of con�dence. And <.0001* indicates the
statistical di�erence is with 99.99% of con�dence. Emphasized indicates the method in
the column obtains better performance for the measure associated with that row.
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Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.0001* <.0001* <.0001* <.0001* <.0001* 0.0010* <.0001*
HNA 0.0008* 0.0001* 0.0103 <.0001* 0.0103 0.3161 <.0001*
OSFMM 0.0004* 0.0002* 0.0011* <.0001* 0.0019* 0.1375 <.0001*
OSFMµ 0.0001* 0.0013* <.0001* <.0001* <.0001* 0.0013* <.0001*
FMM 0.0007* 0.0001* 0.0006* <.0001* 0.0026* 0.1256 <.0001*
FMµ <.0001* 0.0008* <.0001* <.0001* <.0001* <.0001* 0.1375

AKS 1.0000 <.0001* <.0001* 1.0000 <.0001* 0.0005* <.0001*
AUS 0.0001* 0.0058* <.0001* <.0001* <.0001* <.0001* 0.0103

Table C.6: Wilcoxon statistical tests comparing the SSVMO with best baselines. Each
cell compares results for all datasets considering all number of available classes. For each
number of available classes and dataset, the mean of the 10 experiments was taken before
the statistical test. Bold means there is statistical di�erence with 95% of con�dence. �*�
indicates the statistical di�erence is with 99% of con�dence. And <.0001* indicates the
statistical di�erence is with 99.99% of con�dence. Emphasized indicates the method in
the column obtains better performance for the measure associated with that row.

Measure SVMWB SVMWB
6

NA 0.2185 0.6136
HNA 0.0069* 0.7793
OSFMM 0.0112 0.5369
OSFMµ 0.0013* 0.7621
FMM 0.0634 0.7282
FMµ 1.0000 1.0000

AKS 0.7240 0.7240
AUS 0.7352 0.8489

Table C.7: Wilcoxon statistical tests comparing the SVMWB
1 with SVM without bias term

alternatives. Each cell compares results for all datasets considering all number of available
classes. For each number of available classes and dataset, the mean of the 10 experiments
was taken before the statistical test. Bold means there is statistical di�erence with 95%
of con�dence. �*� indicates the statistical di�erence is with 99% of con�dence. And
<.0001* indicates the statistical di�erence is with 99.99% of con�dence. Emphasized
indicates the method in the column obtains better performance for the measure associated
with that row.
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Measure OSNNλr
10 OSNNλr

30 OSNNλr
70 OSNNλr

90

NA 0.1899 0.2260 0.0044* <.0001*
HNA 0.0010* 0.0010* 0.0129 0.0001*
OSFMM 1.0000 1.0000 1.0000 0.3971
OSFMµ 1.0000 1.0000 1.0000 0.1609
FMM 1.0000 1.0000 1.0000 0.2941
FMµ 0.0003* 0.0002* 0.0001* <.0001*

AKS <.0001* <.0001* <.0001* <.0001*

AUS <.0001* <.0001* <.0001* <.0001*

Table C.8: Wilcoxon statistical tests comparing the OSNN with OSNN alternatives. Each
cell compares results for all datasets considering all number of available classes. For each
number of available classes and dataset, the mean of the 10 experiments was taken before
the statistical test. Bold means there is statistical di�erence with 95% of con�dence. �*�
indicates the statistical di�erence is with 99% of con�dence. And <.0001* indicates the
statistical di�erence is with 99.99% of con�dence. Emphasized indicates the method in
the column obtains better performance for the measure associated with that row.

Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.9264 <.0001* <.0001* <.0001* 0.9264 0.0057* <.0001*
HNA 0.9264 <.0001* <.0001* <.0001* 0.9264 0.0063* <.0001*
OSFMM 0.9429 <.0001* <.0001* <.0001* 0.9429 0.0004* <.0001*
OSFMµ 1.0000 <.0001* <.0001* <.0001* 1.0000 1.0000 <.0001*
FMM 0.9429 <.0001* <.0001* <.0001* 0.9429 0.0004* <.0001*
FMµ 1.0000 <.0001* <.0001* <.0001* 0.9689 1.0000 1.0000

AKS <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* <.0001*
AUS 0.2804 <.0001* 0.0013* <.0001* 0.2571 0.2804 0.0007*

Table C.9: Wilcoxon statistical tests comparing the SSVMO with baselines in ImageNet.
Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.
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Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.0062* 0.0044* 0.0001* <.0001* 0.0001* 0.0055* <.0001*
HNA 0.1048 0.0116 0.0018* <.0001* 0.0002* 0.0037* <.0001*
OSFMM 0.4259 0.2024 0.2024 0.4771 0.3724 0.0005* <.0001*
OSFMµ 0.0810 0.0128 0.0161 0.3085 0.0436 0.0008* <.0001*
FMM 0.1840 0.1173 0.0602 0.1173 0.1173 0.0007* <.0001*
FMµ <.0001* 0.0001* <.0001* 0.0006* 0.0006* 0.0010* <.0001*

AKS 1.0000 0.0014* 1.0000 <.0001* 1.0000 0.0002* <.0001*
AUS <.0001* 0.0064* <.0001* <.0001* 0.0034* 0.0656 <.0001*

Table C.10: Wilcoxon statistical tests comparing the SSVMO with baselines in CIFAR-
10. Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.

Measure SVMO OCSVMO DBCO OVSO WSVMO PISVMO SVDDO

NA 0.1457 <.0001* 1.0000 <.0001* 0.7100 1.0000 <.0001*
HNA 0.6318 <.0001* 1.0000 <.0001* 0.6318 1.0000 <.0001*
OSFMM 0.1981 <.0001* 0.0930 <.0001* 0.0038* 0.1333 <.0001*
OSFMµ 0.0625 <.0001* 0.5787 <.0001* 0.0081* 0.5787 <.0001*
FMM 0.1491 <.0001* 0.5069 <.0001* 0.0035* 0.5069 <.0001*
FMµ 0.0002* <.0001* 1.0000 <.0001* 0.0031* 1.0000 <.0001*

AKS 0.3184 <.0001* <.0001* 0.0006* <.0001* 0.0044* <.0001*
AUS <.0001* <.0001* <.0001* <.0001* <.0001* 0.0006* <.0001*

Table C.11: Wilcoxon statistical tests comparing the SSVMO with baselines in MNIST.
Bold means there is statistical di�erence with 95% of con�dence. �*� indicates the
statistical di�erence is with 99% of con�dence. And <.0001* indicates the statistical
di�erence is with 99.99% of con�dence. Emphasized indicates the method in the column
obtains better performance for the measure associated with that row.
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