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Abstract

With the advent of ubiquitous computing, the Internet of Things will undertake numer-
ous devices connected to each other, while exchanging data often sensitive by nature.
Breaching the secrecy of this data may cause irreparable damage. This raises concerns
about the security of their communication and the devices themselves, which usually
lack tamper resistance mechanisms or physical protection and even low to no security
mesures. While developing efficient and secure cryptography as a mean to provide
information security services is not a new problem, this new environment, with a wide
attack surface, imposes new challenges to cryptographic engineering. A safe approach
to solve this problem is reusing well-known and thoroughly analyzed blocks, such as
the Transport Layer Security (TLS) protocol. In the last version of this standard, Elliptic
Curve Cryptography options were expanded beyond government-backed parameters,
such as the Curve25519 proposal and related cryptographic protocols. This work in-
vestigates efficient and secure implementations of Curve25519 to build a key exchange
protocol on an ARM Cortex-M4 microcontroller, along the related signature scheme
Ed25519 and a digital signature scheme proposal called qDSA. As result, performance-
critical operations, such as a 256-bit multiplier, are greatly optimized; in this particular
case, a 50% speedup is achieved, impacting the performance of higher-level protocols.



Resumo

Com o advento da computação ubíqua, o fenômeno da Internet das Coisas (de Internet
of Things) fará que com inúmeros dispositivos conectem-se um com os outros, enquanto
trocam dados muitas vezes sensíveis pela sua natureza. Danos irreparáveis podem
ser causados caso o sigilo destes seja quebrado. Isso causa preocupações acerca da
segurança da comunicação e dos próprios dispositivos, que geralmente têm carência
de mecanismos de proteção contra interferências físicas e pouca ou nenhuma medida
de segurança. Enquanto desenvolver criptografia segura e eficiente como um meio de
prover segurança à informação não é inédito, esse novo ambiente, com uma grande
superfície de ataque, tem imposto novos desafios para a engenharia criptográfica. Uma
abordagem segura para resolver este problema é utilizar blocos bem conhecidos e
profundamente analisados, tal como o protocolo Segurança da Camada de Transporte
(de Transport Layer Security, TLS). Na última versão desse padrão, as opções para
Criptografia de Curvas Elípticas (de Elliptic Curve Cryptography - ECC) são expandidas
para além de parâmetros estabelecidos por governos, tal como a proposta Curve25519 e
protocolos criptográficos relacionados. Esse trabalho pesquisa implementações seguras
e eficientes de Curve25519 para construir um esquema de troca de chaves em um
microcontrolador ARM Cortex-M4, além do esquema de assinatura digital Ed25519
e a proposta de esquema de assinaturas digitais qDSA. Como resultado, operações
de desempenho crítico, tal como o multiplicador de 256 bits, foram otimizadas; em
particular, aceleração de 50% foi alcançada, impactando o desempenho de protocolos
em alto nível.
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Chapter 1

Introduction

The ubiquity of technology pervades every single area of knowledge, reaching into
personal, professional, environmental, and industrial applications. Small-factor com-
puting devices are deployed to identify an in-manufacturing item in a production line,
to detect changes in the chemical properties of the soil where crops are cultivated, and
to control life-supporting equipment, such as pacemakers and implantable defibrilla-
tors [1]. These devices are equipped with the ability to run private, safety-critical or
legally liable activities, sensible data collection, manipulation, and transmission.

Along the designer’s desire to have the product’s dimensions as small as possi-
ble, embedded devices carry not-so-powerful computing capabilities in comparison
to usual desktop computers, greatly limiting resources such as batteries and memory,
having to cut out computationally expensive functionalities. Considering this envi-
ronment, complex schemes providing data security are hardly implemented, despite
the relevance of collected data. For example, sensor networks may collect personally
identifiable information available in tags inside cars for surveillance purposes. As such,
numerous attacks may be carried out such as physical attacks, since devices are often
left unattended; eavesdropping and man-in-the-middle attacks, once communications
capabilities are based on wireless protocols [2]. If machine-to-machine communications
are used, breaking the chain of trust by faking identities is possible.

Passive attacks, like studying the time taken to compute an operation, is a relevant
threat on small, unattended devices. Those attacks do not leave traces for further
investigations [3]. More intrusive attacks also attempt to inject faults at precise execution
times, in hope of corrupting execution state to reveal secret information [4].

The design and secure implementation of cryptographic algorithms is not a new area
of study; however, on computationally weak devices with a wide attack surface, it still
remains as a strong research area. Implementing countermeasures against side-channel
attacks usually worsens the performance of cryptographic operations in comparison to
their non-secured counterpart, thus obtaining a balance between the required security
level and the usage of computational resources results in additional complexity to the
overall engineering decisions. New algorithmic advances and novel implementation
strategies are needed to alleviate this conundrum.
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1.1 Motivation

A possible way to deploy security in new devices is to reuse well-known building blocks,
such as the Transport Layer Security (TLS) protocol. In comparison with reinventing the
wheel, using a new, under-analyzed option, this has a major advantage of avoiding risky
security decisions that may repeat issues already solved in TLS. In the handshaking
phase, asymmetric (or public key) cryptographic schemes are largely used; namely, key
exchanges and digital signatures.

Both schemes are examples of where parties do not need to agree on a secret before-
hand. A key exchange protocol establishes a shared secret over an insecure channel;
this is the case when a web-browser connects to a TLS-secured server, where no prior
opportunity to exchange secrets was available. Further care, like authenticating both
parties before handling secrets and using an established long-term key to negotiate new
ephemeral keys must be taken. In the first case, a malicious third party may intercept
the protocol and exchange keys with both, becoming a relay. On the second, the channel
is secured, never exposing the new keys in the plain. For authentication purposes, a
digital certificate issued to the web server signed by a trusted third party guarantees
that there are no middlemen in the handshake.

In the Request for Comments (RFCs) 7748 and 8032, published by the Internet
Engineering Task Force (IETF), two asymmetric cryptographic protocols based on the
Curve25519 elliptic curve and its Edwards form are recommended and slated for use
in the TLS suite: the elliptic curve Diffie-Hellman key exchange using Curve25519 [5]
called X25519 [6] and the Ed25519 digital signature scheme [7]. These schemes rely
on a careful choice of parameters, favoring secure and efficient implementations of
finite field and elliptic curve arithmetic with a smaller room for mistakes due to their
overall implementation simplicity. There are Curve25519 optimized implementations
for several platforms (x86_64 [8], AVR [9], ARM NEON [10]) and the protocols based on
the curve are used in numerous softwares, including The Tor Project, OpenSSH and the
Google Chrome web browser.

1.2 Objectives

This work sets out as the main objective to provide an efficient implementation of
the Curve25519-based cryptographic protocols, resistant to side-channel attacks; in
particular, timing and cache attacks. More specifically, this requires efficient underly-
ing arithmetic modulo 2255 − 19 with no conditional branches to avoid timing issues,
leading to handcrafted implementations in Assembly code at this level. At the proto-
col level, elliptic curve group arithmetic must also be optimized, in particular, scalar
multiplication.
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1.3 Contributions

Contributions of this work consist of how to securely and efficiently implement arith-
metic operations needed for the X25519, Ed25519 and qDSA protocols running on an
entry-to-medium level ARM Cortex-M4-based microcontroller, selected as the main
target platform. Those implementations were also evaluated in higher-end CPU cores,
such as the ARM Cortex-A7, and the more recent ARM Cortex-A53.

In summary:

∙ An efficient and secure implementation of the 256-bit arithmetic needed for the
Curve25519 operations. In particular, an efficient implementation of a 256-bit
multiplier using Digital Signal Processing instructions of the Cortex-M4, which
in turn speeds up the key exchange and the digital signature schemes using the
mentioned curve (or its birrationally equivalent form).

∙ An alternative way to implement the conditional swap operation on ARMv7 and
higher platforms, leading to a slightly faster version of the operation in comparison
to implementations based on the classical algorithm [11].

∙ An optimized implementation of the Ed25519 and qDSA digital signature schemes
geared towards the Cortex-M4 embedded microcontroller, having in mind the
limited space in ROM to speed up the fixed-point multiplication on the curve.

Results include a 50% speedup in field multiplication, in comparison to the previous
state-of-art work. This operation is performance-critical in both key-exchange, which
runs in 0.9× 106 cycles (41% speedup versus the previous state-of-art) using this opti-
mization; and in digital signature schemes, taking approximately 0.5× 103 cycles to sign
a 5-byte message in the EdDSA scheme. This last implementation, as far as found in
available literature, is the first one geared towards the ARM Cortex-M4. For the qDSA
scheme, a 33% speedup is shown using the precomputed ladder algorithm.

Partial results of this work were published in the Fifth International Conference on
Cryptology and Information Security in Latin America (Latincrypt) 2017 [12] and in
the Seventh International Conference on Security, Privacy, and Applied Cryptography
Engineering (SPACE) 2017 [13].

1.4 Structure

This work is structured as follows: Chapter 2 presents the theoretical background used
in this work, discussing the target platform and its security concerns, and showing the
mathematical concepts behind the cryptographic protocols. Chapter 3 discusses the
implementation of the arithmetic investigated in this work, with a brief explanation of
the state-of-the-art implementation techniques and more efficient alternatives. Chapter 4
presents the testing platforms and the performance numbers, measuring the methods
shown in the previous chapter and discussing the implementation of the higher-level
protocol, along with a brief comparison of related works. In the end, Chapter 5 concludes
by briefly discussing this work in its entirety.
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Chapter 2

Theoretical Background

Asymmetric cryptography relies on the mathematical aspects of problems which are
computationally hard to solve, resulting in properties reflecting into the security level
provided by protocols. Many attacks aim to lower the complexity of solving the under-
lying problem, requiring large parameters to make those unfeasible, and thus using
more computational resources. The usage of elliptic curve protocols aims to reduce the
size of the parameters, using the fact that not all attacks can be used in elliptic curve
scenarios.

This chapter presents the underlying mathematical theory, building up to elliptic
curve cryptographic protocols. Features of the target environment are also shown here,
such as aspects of applicability and security concerns raised by them.

2.1 Asymmetric Cryptography

Symmetric (or secret-key) and asymmetric (also known as public-key) cryptography are
the main two types of cryptography and both are used to build secure communication
systems. Focusing on the last type, the concepts of a private and public keys are introduced
– the first secluded as a secret and the second publicly available. Note that, given the
private key, it’s easy to compute the public information. The point of building one-way
trapdoor functions, easy to compute in one direction but practically impossible to invert
without additional information, is the main idea behind public-key cryptography [14].

Public key cryptography has two principal goals [15]:

∙ Key Agreement allows two parties to share a secret key for use in a symmetric
cipher using an insecure communication channel, where an attacker may be
retrieving exchange information between the parties.

∙ Digital Signatures allow an entity to generate a signature, given a message and
a private key of the entity. Anyone can check the validity and the source of the
communication, given the message and the public key related to the private one
while no other party can forge the signature with non-negligible probability.

Key exchange protocols and digital signature schemes are building blocks for ap-
plications like key distribution schemes and secure software updates based on code
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signing. These protocols are fundamental for preserving the integrity of software run-
ning in embedded devices and establishing symmetric cryptographic keys for data
encryption and secure communication.

2.1.1 Practical Applications

The initial phases of the Transport Layer Security (TLS) protocol (and its early versions,
named Secure Socket Layers (SSL)) are a prime example of how widespread is the
application of public-key cryptography. Using the TLS protocol, every type of network
connection may encrypt its messages in transit. This allows a web browser, for example,
to securely receive hypertext hosted in an HTTP server.

Public key cryptography primitives are largely used in the handshaking part of the
communication, i. e. the negotiation phase of the parameters to start a secure channel.
Key exchange and signatures allow Alice and Bob to establish a secure communication
channel over an insecure one:

1. Alice generates a pair of private and public keys and publishes the latter. A digital
certificate, issued by a third party trusted by all parties in the communication
channel, containing a digital signature confirming that the key belongs to Alice is
also published.

2. Bob signals to Alice that he wants to start a secure communication channel.

3. Alice requests Bob to start a shared key exchange and also sends her share of the
to-be-negotiated key.

4. Bob gets Alice’s public key and, using the digital certificate, ensures that the public
key was really generated by Alice. If the check passes, Bob generates his share of
the shared key, encrypts it using Alice’s public key and sends it to her. Bob also
finishes his part of the key exchange and requests a change of the cipher protocol
being used to a symmetric one using the shared key.

5. Alice deciphers Bob’s message, and with both shares, the key exchange can be
finished. Alice acknowledges the protocol change and both can start a secure
communication using a symmetric cipher under the key they agreed.

The TLS 1.2 handshaking protocol (Figure 2.1) basically encompasses these steps,
with additional negotiation in regards to the supported cipher suits in both sides of
the communication channel. Albeit not common in practice, the server may request an
additional authenticity check of the client. Further versions of this protocol introduce
features to minimize communication required by the handshaking phase (and thus
lowering the initial overhead of each connection) and limit the options of supported
cipher suits in comparison to TLS 1.2. In special, elliptic curve cryptography is strongly
recommended to execute this initial agreement phases.
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Figure 2.1: TLS 1.2 handshaking process (from [16]).

2.2 Embedded Devices and Data Security

With the miniaturization of the computing devices, most of the tasks formerly handled
by traditional desktop computers with their (semi-)annual improvements were mi-
grated to smaller, ubiquitous devices. Further advances to this kind of devices allowed
them to be equipped with sensors and more powerful communication abilities, such
as wireless technologies. Many migrated applications rely on security mechanisms,
from protecting the vulnerable communication channel to enabling copy protection
schemes on multimedia files. In mobile devices, as an example, where processing
capabilities, memory space, and battery longevity are constrained, it is evident that
some implementations may be not sufficiently efficient to the point that its performance
matches the bandwidth of the communication link. In this case, inconvenience may
arise, since delays are unacceptable from the customer point of view [17].

In addition to the usual tasks, embedded devices have been shown to be good
solutions for problems present in new domains. Examples of new applications tailored
to ubiquitous devices include mobile ticketing, monitoring environmental parameters
for the preservation of perishable food, sensors to learn temperature preferences of
homeowners and warn about domestic incidents, sensor devices in use for healthcare
collecting real-time information of the patients for telemedicine solutions. Security
requirements on those sensible domains is a relevant issue in designing embedded
devices. Since increased levels of security might be required due to legal constraints or
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be used as countermeasures against potential data breach threats during the lifespan of
a product, implementations targeting data security might be sufficiently costly in terms
of computational resources.

An alternative is to increment the set of instructions with customizations in a way
that a given processor may run the needed cryptographic functionality in an optimized
fashion. This approach follows the example set by the industry in regards to media
processing and digital signal processing, where new instructions added to commer-
cial CPUs accelerated related functionalities. In the literature, the approach is also
shown to be possible in cryptography, given the multiple instruction proposals and
their implementations [18, 19], such as the AES-NI extension set present in some Intel
architectures [20] and the SHA-NI extension.

Efficient but non-specialized instructions may be also repurposed for cryptography
use. For example, digital signal processors (DSPs) are equipped with instructions
targeting video and audio processing; in particular, instructions to compute multiply
and accumulate (MAC) operations may be implemented. Those, for example, may be
used to speed up operations in elliptic curve cryptography [21].

2.3 Side-channel Attacks

Even with the availability of instructions to the purpose of speeding up cryptographic
operations, insecure implementations are still vulnerable to attack which may breach
data confidentiality. Attacks range from the logical side, using crafted inputs to exploit
weaknesses of the implemented algorithm or bugs in the code, to physical readings and
observations of the underlying hardware executing the code [22].

Attacks can be separated on two major classifications:

Invasive vs. Non-Invasive Some attacks may need to physically violate the device,
ranging from removing the casing to delidding and decapping integrated circuits,
obtaining direct access to components. Non-invasive options just observe available
phenomena externally, such as execution times or energy consumption.

Active vs. Passive Attacks may try to change the device’s functionality by, for example,
introducing failures such as voltage spikes during execution. Passive attacks just
collect data of the devices, without modifying its state of execution.

Unprotected implementations leak physical phenomena, measurable by an external
entity [23]; such properties may characterize an execution pattern. For example, when
energy consumption is higher than a baseline, it can be concluded that a high task
load is being executed; analogically, when consumption is lower, it can be inferred
that a low number of tasks are being done. Such analysis can be improved to make
an attacking algorithm possible. Using as inputs the execution characteristics and the
physical phenomena emanated by the hardware during the running of a program, the
algorithm may output the data under process or reveal which type of operation was
being conducted inside the execution units. These kinds of analysis, called side-channel
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attacks, may violate data security principles, such as revealing secret data or the keys
used for hiding it. Those kinds of attacks are more powerful in comparison to classical
cryptoanalysis in the sense the first does not leave traces of invasion, since observations
may be conducted in passive ways without leaving traces for further identification,
albeit both attacks having similar objectives [23, 24]. Along with that, side-channel
attacks can be done with low resources, becoming a potential threat for security-minded
devices such as smart cards and RFID tags.

Countermeasures against side-channel attacks include hardening physical protec-
tions [25], hardware-tampering sensing capabilities, data leak mitigations (if impossible
to avoid) [26] and the usage of constant-time (isochronous) implementation of algo-
rithms [24].

Protected implementations may present lower performance in comparison to its non-
protected version, since optimizations may be susceptible to attacks. Implementation
alternatives must be searched on to find an equilibrium point between performance
and the required level of security [27].

Various kinds of side-channel attacks can be enumerated:

Timing Attacks If the execution time depends on the bits of a secret, an attacker may
measure those differences and reveal the secret. In a related attack, timing differ-
ences induced by the usage of cache memory may be detected if this optimization
is used. An example can be found in AES implementations, where tables stored
in cache memory may speed up operations, albeit timing differences related to
caching potentially reveal the used key [22].

Power Attacks Energy consumption may vary during the execution of an algorithm in
addition to its inputs. As an example, clearing or using the all-bits-set configura-
tion in a register requires low and high amounts of energy, respectively. Direct
measures of the usage may reveal secrets [11]. In related phenomena, power usage
may induce disturbances in the electromagnetic spectrum or even make audible
noise. Analyzing this noise is also known to be an attack vector [26].

Data Remanence Storage systems may retain its data even if the user explicitly erased
the data from the filesystem due to its physical characteristics. Forensic analysis
techniques may be able to recover secret data from physically analyzing the
component [28].

Fault Injection Modifying clock signals with unsupported settings, variating the volt-
age of the power supply lines in order to glitch the device, using heat to introduce
unwanted bit modifications are all examples of how to make an implementation
to be erroneously executed on the system under attack. Faults may leak a single
bit from a secret or entire substitution boxes to leak encrypted data [29].
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2.4 ARM-based Processors

Unlike desktop and larger computers, embedded devices typically feature an ARM-
based processing or micro-controller unit. The ARM family of CPUs consists of a
reduced instruction set computing (RISC) architecture design available to licensees,
which in turn combines other parts to produce complete devices, ranging from micro-
controllers to entire system-on-chip (SoC) products. Albeit featuring variable character-
istics across parts and manufacturers, such as auxiliary hardware to accelerate specific
features like multimedia processing, the basic CPU core handles a mandatory set of
instructions defined by the architecture.

The ARM architecture is a reduced instruction set computer using a load-store
architecture. ARM processors are equipped with 16 registers: 13 general purpose, one
for the program counter (pc), one for the stack pointer (sp), and the last one for the link
register (lr). The latter can be freed up by saving it on slower memory and retrieving it
after the register has been used. This family of cores is equipped with a barrel shifter
allowing some bitwise operations, such as shifts and rotations, to be executed without
taking an extra CPU cycle.

Memory access involving 𝑛 registers in these processors takes 𝑛+1 cycles if there are
no dependencies (for example, when a loaded register has the address for a consecutive
store). This can happen either in a sequence of loads and stores or during the execution
of instructions involving multiple registers simultaneously. Batch memory operations
can be optimized by the pipeline, which has a different number of stages in different
core families.

The focus is given on the Cortex-M and -A families, which support the ARMv7
architecture. The Cortex-M family is a low-cost design tailored to real-time embedded
applications, such as computer peripherals, wireless sensors, and devices requiring basic
computing abilities. The hardware does not have a Memory Management Unit (MMU),
making it unable to run full-fledged operating systems. The number of pipeline stages
in this family is limited to three, the bare minimum to optimize memory operations in
batches.

The second family encompasses processors suitable to general consumer-grade
devices, such as smartphones, TV set-top receivers and single-board computers. The
ARM Cortex-A cores are computationally more powerful than their Cortex-M counter-
parts; and can run robust operating systems due to extra auxiliary hardware. Typically,
processors based on this design are equipped with a Single Instruction-Multiple Data
(SIMD) unit called NEON and have support for floating point arithmetic. Aside from
that, those processors may have sophisticated out-of-order execution and extra pipeline
stages in comparison to the Cortex-M core family. Processors using this design can
heterogeneously combine different cores in order to properly scale computing needs, for
example, combine two powerful Cortex-A53 and two power-saving Cortex-A7 cores.

The ARMv7E-M instruction set, present on the Cortex-M4 and superior cores, com-
prises of standard instructions for basic arithmetic (such as addition and addition with
carry) and logic operations, but differently from other lower processors classes, the
Cortex-M4 has support for the so-called DSP instructions, which include multiply-and-
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accumulate (MAC) instructions:

∙ Unsigned MULtiply Long: UMULL rLO, rHI, a, b takes two unsigned integer
words 𝑎 and 𝑏 and multiplies them; the upper half result is written back to rHI

and the lower half is written into rLO.

∙ Unsigned MULtiply Accumulate Long: UMLAL rLO, rHI, a, b takes unsigned
integer words 𝑎 and 𝑏 and multiplies them; the product is added and written back
to a double word integer stored as (rHI, rLO).

∙ Unsigned Multiply Accumulate Accumulate Long: UMAAL rLO, rHI, a, b takes
unsigned integer words 𝑎 and 𝑏 and multiplies them; the product is added with the
word-sized integer stored in rLO then added again with the word-sized integer
rHI. This double-word integer is then written back into rLO and rHI, respectively
the lower half and the upper half of the result.

ARM’s Technical Reference Manual of the Cortex-M4 core [30] states that all the
mentioned MAC instructions take one CPU cycle for execution in the Cortex-M4 and
above. However, those instructions deterministically take an extra three cycles to write
the lower half of the double-word result, and a final extra cycle to write the upper half.
Therefore, proper instruction scheduling is necessary in order to avoid pipeline stalls
and to make best use of the delay slots.

2.5 Mathematical Preliminaries

2.5.1 Finite Fields

Many (asymmetric) cryptography primitives use underlying Number theory problems
which, from the standpoint of algorithm complexity, are hard to solve, i. e. do not have
known solutions running in polynomial time. Those problems usually rely on finite
field mathematics; hence its importance to cryptography.

Before defining a field, the concept of a group must be presented first. A group
consists of a set 𝐺 with a binary operation * : 𝐺×𝐺→ 𝐺 with the following properties:

1. (Closure) For all 𝑎, 𝑏 ∈ 𝐺, the result 𝑎 * 𝑏 is also in 𝐺

2. (Associativity) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎 * (𝑏 * 𝑐) = (𝑎 * 𝑏) * 𝑐

3. (Identity) There’s an identity element 𝑒 ∈ 𝐺 such as 𝑎 * 𝑒 = 𝑒 * 𝑎 = 𝑎 for all 𝑎 ∈ 𝐺

4. (Inverse) For each 𝑎 ∈ 𝐺, there’s an inverse element 𝑏 ∈ 𝐺 which satisfies 𝑎 * 𝑏 =
𝑏 * 𝑎 = 𝑒

If 𝑎 * 𝑏 = 𝑏 * 𝑎 for every 𝑎, 𝑏 ∈ 𝐺, the group is also said to be abelian or commutative.
The * operation is usually the addition (+) or the multiplication (·); in the first, the

group is called to be an additive one, using 0 as the identity element and the additive
inverse of 𝑎 noted as −𝑎. On the second, the group is multiplicative, employing 1 as the
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identity element and the multiplicative inverse of 𝑎 noted as 𝑎−1. If the set of numbers is
finite, then the group is said to be a finite group; the number of elements in the group is
called the order.

If 𝐺 is a finite multiplicative group containing 𝑛 elements and 𝑔 ∈ 𝐺, the smallest
positive integer 𝑡 such as 𝑔𝑡 = 1 is the order of the element 𝑔. If 𝐺 has an element 𝑔 of
order 𝑛, then 𝐺 is a cyclic group and 𝑔 is its generator. Note that additive groups hold the
same concepts analogically.

A field consists of the following elements and properties:

∙ (F,+) is an abelian group with the additive identity denoted by 0

∙ (F ∖ 0, ·) is an abelian group with the multiplicative identity denoted by 1

∙ (Distributivity) (𝑎+ 𝑏) · 𝑐 = 𝑎 · 𝑐+ 𝑏 · 𝑐, for all 𝑎, 𝑏, 𝑐 ∈ F

As an example, let 𝑝 be a prime number; F𝑝 = {0, 1, 2, . . . , 𝑝− 1} denotes the set of
integers modulo 𝑝. (F𝑝,+) is an additive finite group of order 𝑝; likewise, (F*

𝑝, ·), where
F*
𝑝 denotes nonzero elements in F𝑝, is a multiplicative group with 𝑝− 1 elements with

multiplicative identity element 1. Joining those in the triple (F𝑝,+, ·), we form the finite
field modulo 𝑝, denoted as F𝑝.

2.5.2 The Discrete Logarithm Problem

Let G be a finite cyclic group of order 𝑛, denoting 𝛼 as its generator, and let 𝛽 ∈ 𝐺. A
discrete logarithm of 𝛽 ∈ 𝐺 to the base 𝛼, or log𝛼 𝛽, is the unique integer 𝑥, 0 ≤ 𝑥 ≤ 𝑛− 1,
such as 𝛽 = 𝛼𝑥. The generalized discrete logarithm problem is defined as finding such 𝑥,
given 𝐺 of order 𝑛, its generator 𝛼 and an element 𝛽 ∈ 𝐺.

This problem can be solved using exhaustive search, computing 𝛼0, 𝛼1, 𝛼2, · · · until
𝛽 is found. This algorithm takes 𝑂(𝑛) operations, where 𝑛 is the order of 𝛼. In cases of
cryptographic interests, 𝑛 is large so the search operation is inefficient.

If the group order 𝑞 of 𝐺 is not prime and its factorization is known, or easy to
determine, the Pohlig-Hellman algorithm reduces the problem of finding discrete
logarithms in 𝐺 to that of finding discrete logarithms in prime-order subgroups of
𝐺 [31]. This lowers the complexity of finding the discrete logarithm of 𝐺 to finding
the discrete logarithm of subgroups of 𝐺 with order 𝑞′, where 𝑞′ is the largest prime
dividing 𝑞. For this reason, prime-order groups are preferred for cryptographic uses.

Sub-exponential algorithms to solve the DLP are known, hence the need for large
parameters of protocols relying on finite fields. In special, index calculus uses a three-
step process: first, a factor base is selected, consisting of a set of small prime numbers.
Then, linearly independent relations with respect to the generator 𝑔 must be found. For
the second part, the linear system of equations must be solved to find the logarithms in
the factor base. For the last part, the field element which logarithm has to be computed
is multiplied by a random power of 𝑔, then factored in terms of the base. In addition,
a quasi-polynomial time algorithm to solve the discrete logarithm in fields F𝑘𝑛

𝑞 , with
𝑘 ≥ 2 fixed and 𝑛 ≤ 𝑞 + 𝑑 with small 𝑑 is known [32].
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2.5.3 Elliptic Curves

An elliptic curve 𝐸 over a finite field F𝑞 with 𝑞 ̸= 2, 3 is the set of solutions (𝑥, 𝑦) ∈ F𝑞×F𝑞

which satisfy

𝐸/F𝑞 : 𝑦
2 = 𝑥3 + 𝑎𝑥+ 𝑏, 𝑎, 𝑏 ∈ F𝑞 (2.1)

Curves described in this format are called (short) Weierstrass equations. The set of
points 𝐸(F𝑞) = {(𝑥, 𝑦) ∈ 𝐸(F𝑞)}∪{𝒪} = {𝑃 ∈ 𝐸(F𝑞)}∪{𝒪}with an additive operation
⊕ form an additive group, with 𝒪 as the identity element. Duplication, a special case of
the addition operation, is also supported. Figure 2.2 illustrates those operations.

R = (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

(a) Adding points 𝑃 +𝑄 = 𝑅.

R = (x3, y3)

x

y

P = (x1, y1)

(b) Duplicating point 2𝑃 = 𝑅.

Figure 2.2: Adding points and duplicating a point on an elliptic curve (from [33]).

Given an elliptic curve point 𝑃 ∈ 𝐸(F𝑞) and a 𝑘 in Z, the operation 𝑘𝑃 , called scalar
point multiplication, can be defined by

[𝑘] : 𝑃 ↦→ 𝑃 ⊕ . . .⊕ 𝑃⏟  ⏞  
𝑘 𝑡𝑖𝑚𝑒𝑠

(2.2)

This operation encodes the security assumption for Elliptic Curve Cryptography
(ECC) protocols, basing their security on the hardness of solving the elliptic curve
analogue of the discrete logarithm problem. The elliptic curve discrete logarithm
problem (ECDLP) is defined as, given an elliptic curve 𝐸 defined over a finite field F𝑞, a
point 𝑃 ∈ 𝐸(F𝑞) of order 𝑛 and a point 𝑄 ∈ ⟨𝑃 ⟩, to find the integer 𝑙 ∈ [0, 𝑛− 1] such as
𝑄 = 𝑙𝑃 . The integer 𝑙 is called the discrete logarithm of 𝑄 to the base 𝑃 [33].

Elliptic curve cryptosystems were independently proposed for cryptographic pur-
poses in [34] and [35]. The former work points out that a Diffie-Hellman key-exchange
can be to expressed as 𝑥(𝑃 ) ↦→ 𝑥([𝑘]𝑃 ), given a public base point 𝑃 [36]. That means that
Alice can compute 𝑥([𝑎]𝑃 ) and publish it; the same applies to Bob but using different a
secret 𝑏 instead of 𝑎. Once both receives the computation results, a shared secret can be
evaluated, since 𝑥([𝑏][𝑎]𝑃 ) = 𝑥([𝑎][𝑏]𝑃 ).

The most trivial algorithm to solve the ECDLP is exhaustive search: compute 2𝑃 ,
3𝑃 , 4𝑃 , . . . until 𝑄 is found, which may take 𝑛 steps to complete. To circumvent this
search, elliptic curve parameters can selected in a manner that 𝑛 is big enough that a
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large amount of computation has to be done (such as 𝑛 ≥ 280). A general-purpose attack
known to solve this problem is a combination of the Pohling-Hellman algorithm and
Pollard’s 𝜌 algorithm, which has a computational complexity of 𝑂(

√
𝑝), where 𝑝 is the

largest prime divisor of 𝑛. To resist this attack, parameters must be set to make
√
𝑝 large

enough to make computation infeasible.
No sub-exponential algorithms are known for computing discrete logarithms in

certain elliptic-curve groups. For a given security level, elliptic curve groups with small
orders (with carefully chosen parameters) can be used in comparison with subgroups
in Z*

𝑝 containing a large number of elements. In practice, for any required security level,
elliptic curve systems can use smaller parameters, with (asymptotically) faster group
operations compared to finite field groups.

2.5.4 Other Elliptic Curve Models

A Montgomery curve over F𝑝 is an elliptic curve defined by an affine equation

𝐸/F𝑝 : 𝐵𝑦2 = 𝑥(𝑥2 + 𝐴𝑥+ 1). (2.3)

Parameters 𝐴 and 𝐵 are in F𝑝 satisfying 𝐵 ̸= 0 and 𝐴2 ̸= 4. This curve model is
ideal for curve-based key exchanges, because it allows the scalar multiplication to be
computed using 𝑥-coordinates only, albeit formulas for these kind of curve are not
complete, i. e. they fail for certain inputs.

An Edwards curve over F𝑝 is an elliptic curve defined by an affine equation

𝐸/F𝑝 : 𝑎𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 𝑑 ∈ F𝑝∖{0, 1}. (2.4)

Edwards curves benefits of complete addition formula, and, in comparsion to Weier-
strass curves, are considered to have faster group operation.

2.6 Cryptographic Protocols

The points of an elliptic curve, in combination with an addition law, forms an additive
group. The elliptic curve discrete logarithm problem is present in this construction;
given a proper set of parameters of the curve, it’s computationally unfeasible to solve it.
This section introduces Curve25519 and cryptographic protocols based on this curve.

2.6.1 The X25519 Key Agreement Scheme

In order to reduce implementation difficulties and security risks involved with complex
designs and set new speed records, Bernstein introduced Curve25519, a cryptossytem
with 128-bit security level using the Montgomery model of an elliptic curve. The curve
is defined by the equation

Curve25519: 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥. (2.5)
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This curve serves as the mathematical background to build an elliptic curve Diffie-
Hellman key exchange protocol based on a function called X25519, which is an scalar
multiplication based on the Montgomery ladder.

A user selects a 32-byte long secret by taking the output of a cryptographically
secure random number generator. Aside from sufficient randomness, the key must
have set its topmost bit and the three lowest bits are set to 0, while its second-to-top
bit is set to 1. With the 32-byte secret properly formatted, the user applies the X25519
scalar multiplication, using as inputs the base point 9 and the secret scalar, resulting
in a 32-byte long public key. When two users exchange their respective public keys
and multiply their received public keys by their secret scalar, they establish a shared
value which can be used as a symmetric shared secret, given a suitable key-derivation
function.

The requirement of transforming the secret key into a multiple of 8 serves as a
countermeasure against small subgroup attacks, where an attacker can exchange a
public key consisting of a point with a small order on the curve (or in its quadratic
twisted form) in order to reveal information about the secret key. If those lower 3
bits are not cleared, the scalar multiplication will be performed modulo a small order
𝑏 chosen by the attacker, remaining a small subset of possibilities for an attacker to
brute-force [37]. On Curve25519, this attack fails since the order of the base point 9 is
prime, so no small 𝑏 exists. For the curve’s twisted form, the smallest orders under 2252

are 1, 2, 4 and 8; since the secret is multiplied by 8, 𝑠 mod 𝑏 = 0 for all secret 𝑠 and
orders 𝑏. The set second-most bit provides a fixed leading one, preventing optimizations
trying to find a starting point of the ladder and avoiding branching (and possible timing
attacks) due to the incompleteness of operations on the Montgomery format.

The X25519 Montgomery ladder takes any 32-byte 𝑥-coordinate of point 𝑃 , ignores
the value of the most significant bit and multiplies by an also 32-byte scalar 𝑠. The
resulting value is the point 𝑄(𝑥, 𝑧) = 𝑠𝑃 in the form 𝑥 ·𝑧. To get the final value, inversion
is efficiently done by computing the 𝑝− 2 = (2255 − 21)-th power of 𝑧 (as a consequence
of Fermat’s Little Theorem) using a chain of 254 squares and 11 multiplications, in an
instance of the Itoh-Tsujii algorithm [38]. This value is then multiplied by 𝑥, yielding a
32-byte value, either a public key or a shared secret, depending on the 𝑃 input being
either the base point 9 or a public key respectively. Resulting public keys do not need
verifications since all inputs of 𝑃 may be accepted.

The scalar multiplication runs in a constant-time fashion using 255 “ladder steps”
(one for each bit of the secret), each one performing a doubling and a differential
addition, followed by two conditional swaps on the pair of coordinates (𝑥1, 𝑧1) and
(𝑥2, 𝑧2). Algorithm 1 shows the steps of this method; in the listing, the conditional
swap function cswap returns, in constant-time, (𝑏, 𝑎) if the bit of the secret is zero;
otherwise, it returns (𝑎, 𝑏). Since no branching (secret key being scanned bit by bit to
decide whenever the conditional swap must be done) neither array indexing access
based on secret data is done, this algorithm is deemed safe against timing attacks or
cache-based attacks.
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Algorithm 1 X25519: scalar multiplication using the Montgomery ladder and inversion
to obtain the 𝑥-coordinate of 𝑠𝑃 . Value 𝑠𝑡 denotes the 𝑡𝑡ℎ bit of a 255-bit secret scalar 𝑠 in
its little-endian form; 𝑝 = 2255 − 19 and 𝑎24 = (𝐴+ 2)/4 = (486662− 2)/4 = 121665.
Input:

Scalar 𝑠, point 𝑃 expressed as 𝑥-coordinate
Output:

𝑠𝑃 , expressed as 𝑥-coordinate

𝑥1 ← 𝑃, 𝑥2 ← 0, 𝑧2 ← 1, 𝑧3 ← 1
for 𝑡 = 254 down to 0 do

(𝑥2, 𝑥3)← 𝑐𝑠𝑤𝑎𝑝(𝑠𝑡, 𝑥2, 𝑥3) ◁ Algorithm 2.
(𝑧2, 𝑧3)← 𝑐𝑠𝑤𝑎𝑝(𝑠𝑡, 𝑧2, 𝑧3)
𝐴← 𝑥2 + 𝑧2
𝐴𝐴← 𝐴2

𝐵 ← 𝑥2 − 𝑧2
𝐵𝐵 ← 𝐵2

𝐸 ← 𝐴𝐴−𝐵𝐵
𝐶 ← 𝑥3 + 𝑧3
𝐷 ← 𝑥3 − 𝑧3
𝐷𝐴← 𝐷 · 𝐴
𝐶𝐵 ← 𝐶 ·𝐵
𝑥3 ← (𝐷𝐴+ 𝐶𝐵)2

𝑧3 ← 𝑥1 · (𝐷𝐴− 𝐶𝐵)2

𝑥2 ← 𝐴𝐴 *𝐵𝐵
𝑧2 ← 𝐸 · (𝐴𝐴+ 𝑎24 · 𝐸)
(𝑥2, 𝑥3)← 𝑐𝑠𝑤𝑎𝑝(𝑠𝑡, 𝑥2, 𝑥3)
(𝑧2, 𝑧3)← 𝑐𝑠𝑤𝑎𝑝(𝑠𝑡, 𝑧2, 𝑧3)

end for
return 𝑥2/𝑧2 = 𝑥2 · 𝑧𝑝−2

2 mod 𝑝

Algorithm 2 cswap: Conditional swap using bitwise operations.
Input:

Bit 𝑏 and Points 𝐴 and 𝐵.
Output:

(𝐵,𝐴) if 𝑏 = 1; (𝐴,𝐵) otherwise.

𝑚𝑎𝑠𝑘 ← ¬(𝑏− 1)
𝑑𝑢𝑚𝑚𝑦 ← 𝑚𝑎𝑠𝑘 AND (𝐴⊕𝐵)
𝐴← 𝐴⊕ 𝑑𝑢𝑚𝑚𝑦
𝐵 ← 𝐵 ⊕ 𝑑𝑢𝑚𝑚𝑦
return (𝐴,𝐵)
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2.6.2 The Ed25519 Digital Signature Scheme

The Edwards-curve Digital Signature Algorithm [7] (EdDSA) is a signature scheme
variant of Schnorr signatures, instantiated with elliptic curves represented in (possibly
twisted) Edwards model. One of the recommended parameters, as described in the RFC
8032 document, is the edwards25519 curve, which can be described by the equation

edwards25519: − 𝑥2 + 𝑦2 = 1− 121655

121666
𝑥2𝑦2. (2.6)

When instantiated using edwards25519 (Equation 2.6), the EdDSA scheme is named
Ed25519. Equation 2.6 is a birrationally equivalent curve of Curve25519; implying that
the ECDLP difficulty for this signature scheme instantiated with edwards25519 is the
same as solving ECDLP for Curve25519. In addition, the Edwards curves model benefits
from complete addition group laws, aiding secure implementations of this protocol.

The security level target remains at 128-bit, as in the ECDH protocol based in
Curve25519. This system uses 32-byte keys for both public and private keys. Signatures
fit in 64 bytes, being significantly smaller than non-elliptic curve digital signature
schemes, such as based on the RSA algorithm [15].

An Ed25519 secret key is a 256-bit string 𝑘. Let 𝐻 be a hash function mapping
arbitrary-length strings to 512-bit hash values. The public key is the scalar product
𝐴 = 𝑎𝐵, being 𝑎 be the lower 32 bytes of the 𝐻(𝑘) with the 3 least significant and the
most significant bit cleared, plus the second-most signficant bit set.

Let 𝑟 be the hash of the concatenation of 𝐻(𝑘) and the message 𝑀 . The signature
of 𝑀 and private key 𝑘 under the Ed25519 scheme is a 512-bit string (𝑅, 𝑆). Let 𝑟 be
the hash of the concatenation of 𝐻(𝑘) and the message 𝑀 ; then 𝑅 is the scalar product
of the base point 𝐵 and the 𝑟 hash interpreted as a little-endian integer. Value 𝑆 is the
integer of little-endian interpretation of 𝑟 +𝐻(𝑅,𝐴,𝑀) modulo the group order ℓ [7].

Verification works by parsing the signature components (𝑅, 𝑆) and the public key 𝐴.
The verifier computes 𝐻(𝑅,𝐴,𝑀) and checks if the group equation 𝑆 ≡ 𝑟 +𝐻(𝑅,𝐴 =

𝑎𝐵,𝑀) (mod ℓ) holds. If parsing fails and the equation doesn’t hold, the check fails.
Like other discrete-log based signature schemes, EdDSA requires a secret value, or

nonce, unique to each signature. For reducing the risk of a random number generator
failure, EdDSA calculates this nonce deterministically, as the hash of the message and
the private key. Thus, the nonce is very unlikely to be repeated for different signed
messages. While this reduces the attack surface in terms of random number generation
and improves nonce misuse resistance during the signing process, high quality random
numbers are still needed for key generation.

The most expensive computations on key generation and message signing is the
fixed-point scalar multiplication. In order to optimize these operations time-wise,
lookup tables containing multipliers of the chosen point may be used in exchange of
read-only memory usage. This can speed up the classic right-to-left binary method
to evaluate a point multiplication by eliminating doublings, given a table with the
precomputed points 2𝑃, 22𝑃, . . . , 2𝑡−1𝑃 , where 𝑡 is the bit length of the scalar.
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2.6.3 The qDSA Digital Signature Scheme

Although Ed25519 and X25519 can be used in conjunction and share the same underly-
ing field arithmetic, keys generated under both schemes are not compatible. Alternatives
to make such compability possible, such as XEdDSA [39], derived from previous pro-
posals. A novel scheme, the Quotient Digital Signature Algorithm (qDSA), building on
Montgomery curves, was proposed by Renes and Smith [40] and it is named after the
scalar point multiplications are done in a algebraic variety generated by a quotient of
an algebraic curve.

This signature scheme (if instantiated using Curve25519) allow that X25519 keys be
used, without modifications, to sign data. From the fact that the underlying curve is of
the Montgomery form, curve operations are done only on the 𝑥-coordinate of the points.
As a drawback, given a qDSA signature, a second signature also passing verification
can be computed. This opens possibilites to misuse, potentially becoming an effective
attack.

qDSA is also based on the Schnorr signature scheme as in Ed25519, operating over a
Kummer variety 𝒦. This surface is the quotient of an (hyper-)elliptic curve 𝐸 computed
by 𝒦 = 𝐸/⟨±1⟩, hence, in case of elliptic curves, points 𝑃,−𝑃 ∈ 𝐸 are mapped into a
single element in 𝒦. Group structure is not preserved, but scalar multiplications are still
possible. If 𝐸 is an elliptic curve, 𝒦 turns out to be an one-dimensional space known as
the 𝑥-line [40].

Let 𝐻 be the a hash function mapping arbitrary-length strings to 512-bit hash values.
A qDSA secret key is a 512-bit string (𝑑0||𝑑1), computed by taking the digest from a
random, 256-bit value. The public key is a 256-bit string 𝑥𝑄 computed by a scalar
multiplication of a base point 𝐺 and 𝑑0 and compressing this result by taking the 𝑥-
coordinate of 𝑑0𝐺 divided by the 𝑧-coordinate of the same scalar product (Algorithm
3).

Let 𝑟 be the digest value of 𝑑1 concatenated with a message 𝑀 of arbitrary length
modulo ℓ. Let 𝑅 = (𝑋𝑟, 𝑍𝑟) be the scalar product of 𝑟 and the base point 𝐺; 𝑥𝑅 is the
compressed form of 𝑟𝐺 using the same steps to compress a public key. Let ℎ be the hash
of the concatenation of 𝑥𝑅, the public key 𝑥𝑞 and the messsage 𝑀 . The signature of a
message 𝑀 using the signer’s keys (𝑑0, 𝑑1) and its public key 𝑥𝑞 is the concatenation
of 𝑥𝑅 and the string 𝑠; this last one computed by subtracing the product ℎ𝑑0 from 𝑟

modulo ℓ (Algorithm 4).
Given an alleged signature (𝑥𝑅 ‖ 𝑠) of a message 𝑀 , the qDSA signature verification

procedure (Algorithm 5) must determine whether 𝑥𝑅 is the 𝑥-coordinate of 𝑅0 + 𝑅1,
where 𝑅0 = 𝑠𝐺 and 𝑅1 = ℎ𝑄 for ℎ defined as ℎ ≡ 𝐻(𝑥𝑅 ‖ 𝑥𝑄 ‖ 𝑀) (mod ℓ). For
that purpose, Algorithm 6 checks if 𝑓(𝑥𝑅) = 0, where 𝑓 is the quadratic polynomial
𝑓(𝑥) = 𝑓2𝑥

2 + 𝑓1𝑥+ 𝑓0, such that:

𝑓2 = (𝑥𝑅0 − 𝑥𝑅1)
2 ,

𝑓1 = −2(𝑥𝑅0 𝑥𝑅1 + 1)(𝑥𝑅0 + 𝑥𝑅1)− 4𝐴𝑥𝑅0 𝑥𝑅1 ,

𝑓0 = (𝑥𝑅0 𝑥𝑅1 − 1)2 .

(2.7)
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Algorithm 3 qDSA: Key generation
Input:
𝒟, the domain parameters.

Output:
(𝑑0, 𝑑1) ∈ {0, 1}2𝑁 is a private key, and 𝑥𝑄 ∈ F𝑝 is a public key

𝑑
$←− {0, 1}𝑁

(ℎ2𝑁−1, . . . , ℎ0)2 ← 𝐻(𝑑)

𝑑0 ← (ℎ2𝑁−1, . . . , ℎ𝑁)2
𝑑1 ← (ℎ𝑁−1, . . . , ℎ0)2
𝑄 = (𝑋𝑄 : 𝑍𝑄)← 𝑑0𝐺

𝑥𝑄 ← 𝑋𝑄/𝑍𝑄

return (𝑑0, 𝑑1) and 𝑥𝑄

Algorithm 4 qDSA: Signature generation.
Input:

(𝑑0, 𝑑1) and 𝑥𝑄 are the signer’s keys; and 𝑀 ∈ {0, 1}* is a message.
Output:

(𝑥𝑅 ‖ 𝑠) is the signature of 𝑀 , where 𝑥𝑅 ∈ F𝑝 and 𝑠

𝑟 ← 𝐻(𝑑1 ‖𝑀) mod ℓ

𝑅 = (𝑋𝑅 : 𝑍𝑅)← 𝑟𝐺

𝑥𝑅 ← 𝑋𝑅/𝑍𝑅

ℎ← 𝐻(𝑥𝑅 ‖ 𝑥𝑄 ‖𝑀)

𝑠← 𝑟 − ℎ𝑑0 mod ℓ

return (𝑥𝑅 ‖ 𝑠)

Algorithm 5 qDSA: Signature verification.
Input:

𝑥𝑄 is the public key of the signer, (𝑥𝑅 ‖ 𝑠) is a signature, and 𝑀 ∈ {0, 1}* is a message.
Output:
True, if the signature is valid; otherwise, False.

𝑄← (𝑥𝑄 : 1)

ℎ← 𝐻(𝑥𝑅 ‖ 𝑥𝑄 ‖𝑀) mod ℓ

𝑅0 ← 𝑥(𝑠𝐺)

𝑅1 ← 𝑥(ℎ𝑄)

return Check(𝑥𝑅, 𝑅0, 𝑅1)
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Algorithm 6 Check 𝑥𝑅 ∈ {𝑥(𝑃 ±𝑄)}.
Input:

𝑥𝑅, 𝑥𝑅1, 𝑥𝑅2 ∈ F𝑝

Output:
True if 𝑥𝑅 = 𝑥𝑅1 + 𝑥𝑅2; otherwise False.

Let 𝑓(𝑥)← 𝑓2𝑥
2 + 𝑓1𝑥+ 𝑓0 such that 𝑓𝑖 are defined as in Equation 2.7.

if 𝑓(𝑥𝑅) = 0 then
return True

else
return False

end if

2.7 Summary

Chapter 2 presented the fundamental concepts, such as concerns raised by the sensitive
data manipulation by not-so-powerful devices and lack of security mechanisms, and
the mathematical background explored in this work, such as the finite field definition,
elliptic curve concepts, and the complexity of related attacks. Protocols based on the
Curve25519 and its birrationally equivalent curve are shown, powering two goals of
public-key cryptography.
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Chapter 3

Implementation of the Finite Field
Arithmetic

Efficiently implementing the arithmetic operations of a cryptosystem is the most funda-
mental way to improve performance in cryptographic schemes. In order to speed up
group operations in the Curve25519 and its Twisted Edwards birrationally equivalent
curve, strategies to operate with 256-bit long numbers were designed and implemented
to speed up basic arithmetic operations of numbers usually larger than natively handled
by computer architectures.

In this chapter, implementations of the Finite Field modulo 2255− 19 arithmetic oper-
ations are explored, with emphasis on the most computationally expensive operations:
multiplication and squaring.

3.1 Representation, Addition and Subtraction

Each 255-bit integer field element can be densely represented, using 232-radix, implying
in eight “limbs” of 32 bits, each one in a little-endian format. This contrasts with the
reference implementation [5], which uses 25 or 26 bits in 32-bits signed words, allowing
carry values to be fit in the remaining bits. This require proper handling where those
bits cannot be transmitted to other parties. Due to its simplicity, the first representation
is used in this implementation.

The 256-bit addition is implemented by respectively adding each limb in a lower
to higher element fashion in both options. In the cast of the first representation, the
carry flag, present in the ARM status register, is used to ripple the carry across the limbs
without overhead, with the Add-with-Carry (ADC) instruction handling it. The result
must be always less than 2256 − 1, fitting in the 8 32-bit long limbs, requiring further
handling of the carry flag if it is set by the end of the routine.

A “weak” modular reduction modulo 2256− 38 is performed at the end of every field
operation in order to avoid extra carry computations between operations, as suggested
in [41]; this reduction must find a integer less than 2256 that is congruent modulo 2255−19.
In the case of addition, which might set flag the carry bit, subtracting 2𝑝 = 2256−38 from
the value may not yet clear the carry flag. This is the case when, for example, 𝑎 = 2256−1
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and thus 2𝑎 = 2257− 2; removing 2𝑝 yields in 2𝑎− 2𝑝 = 2257− 2256+36, which overflows
the 8× 32 bits representation. To solve this, removing an extra 2𝑝 results in an 256-bits
long integer. This subtraction can be efficiently computed by simply adding 38 to the
first limb with no risk of setting the carry flag (and thus avoiding more carry handling).

Note that the second subtraction must be only performed when the addition opera-
tion sets the carry flag and if the first 2𝑝 subtraction does not set the borrow bit, which
in most CPU architectures is stored as the complement of the carry bit present in status
registers. This may raise concerns in regards to storing the bit, since the borrow flag
may be set in the second subtraction. If it is the case, the generated carry bit counters
the borrow effect.

To avoid timing issues, all those operations must be executed in constant time, taking
advantage of complement of two arithmetic implemented in CPUs to conditionally
generate masks. Listing 3.1 shows a constant-time (isochronous) ARM implementation
of this strategy.

Listing 3.1: ARM assembly code handling carries on F2𝑝=2256−38 addition. Extra handling
(last 6 instructions) is needed to make sure that result is in 𝐹2𝑝.
@ [r3 - r10] holds A + B

@ if c = 1 -> 2p

@ else -> 0

MOV r14, #-1

ADC r14, r14, #0

MVN r14, r14

AND r12, r14, #-38

@ subtract if carry bit is set

SUBS r3, r3, r12

SBCS r4, r4, r14

SBCS r5, r5, r14

SBCS r6, r6, r14

SBCS r7, r7, r14

SBCS r8, r8, r14

SBCS r9, r9, r14

SBCS r10, r10, r14

@ need to remove 2p again if subtraction didn’t require a borrow

@ do it by resetting the borrow bit and subtract 38

MOV r12, #0

SBC r12, r12, r12 @ detect if borrowed on sub

MVN r12, r12

AND r12, r12, r14 @ detect if carried on sum

AND r12, r12, #38 @ mask 38

ADD r3, r3, r12 @ add 38 if carried sum and didn’t borrow

Subtraction follows the same strategy: each 32-bit limb of the 256-bit number is
subtracted in a fashion similar to addition, with the help of the borrow flag to avoid
performance overheads. If, by the final of the subtraction routine, the borrow flag is set,
2𝑝 is added to the current result conditionally. This still might not bring the final result
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to a value greater than 0, so, again, an addition of 2𝑝 must be done. To compute this in
an efficient manner, this can be implemented as a simple subtraction of the lowest 32-bit
limb with 38 and resetting the borrow flag if the initial subtraction required a borrow
and the first 2𝑝 addition didn’t set the carry flag. As always, secure implementations of
this algorithm must use masks and conditional operations to avoid timing differences.

Reference implementations do not have to follow strict rules as earlier defined, since
the extra remaining bits of each limb may be used to handle overflow or underflow
situations. Those must be treated in the modular reduction modulo 𝑝 = 2255 − 19

procedure, used when results must be communicated to the other party. This operation
is not used in-between operations because the “weak” modular reduction, in the case
after multiplication and squarings, takes approximately 10% less cycles than a modular
reduction modulo 𝑝.

3.2 Multiplication

In regard of the multiplication, two cases must be considered: multiplying a 256-bit
number by a 32-bit number (here denominated as a “multiplication by a word”) and
multiplying two 256-bit numbers.

3.2.1 Multiplying a 256-bit number with a 32-bit word

The multiplication by a word operation is used a single time when doubling a point in
X25519, where a 256-bit long integer must be multiplied by 𝑑 = 121666. This operation
follows the algorithm described in [42] and an ARM implementation is shown in
Listing 3.2. The main idea revolves using the multiply-and-accumulate instructions to
compute the multiplication between the least significant limb and the 32-bit word then
adding back to the same limb. The same strategy remains for the upper parts of the 256-
bit number, albeit the 32-bit number must be subtracted by one as the UMAAL instruction
adds back the in-processing limb and the higher part of the first multiplication.

Listing 3.2: ARM assembly code to compute a multiply a 256-bit word with a 32-bit
word. Adapted from [42].
@ r2 holds a 32-bit integer

@ [r3-r10] holds a 256-bit integer

UMULL r3, r11, r3, r2

SUB r2, r2, #1

UMAAL r4, r11, r4, r2

UMAAL r5, r11, r5, r2

UMAAL r6, r11, r6, r2

UMAAL r7, r11, r7, r2

UMAAL r8, r11, r8, r2

UMAAL r9, r11, r9, r2

UMAAL r10, r11, r10, r2
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@ reducing r11

MOV r14, #38

MOV r12, #0

UMLAL r3, r12, r11, r14

ADDS r4, r4, r12

ADCS r5, r5, #0

ADCS r6, r6, #0

ADCS r7, r7, #0

ADCS r8, r8, #0

ADCS r9, r9, #0

ADCS r10, r10, #0

As in Listing 3.2, the result is stored in (𝑎0, . . . 𝑎7, rHI) = (r3, . . . 𝑟10, 𝑟11). To make
this result fit in a 256-bit space, finding a number less than 2256 − 1 congruent modulo 𝑝

is needed. Since 2256 ≡ 38 mod 2𝑝, thus, 𝑎2256 ≡ 𝑎38 mod 2𝑝, multiplying rHI by 38
then adding back to 𝑎0 is sufficient. This addition may set up the carry flag; this bit must
be rippled across 𝑎1 to 𝑎7. Again, when rippling the carry into 𝑎7, a residual flag may be
set again; this time, a 2𝑝 subtraction strategy like on the case of addition must be done.

3.2.2 Multiplying two 256-bit numbers

This operation relies on either operand (Algorithm 7) or product scanning (Algorithm 8)
forms of integer multiplication of two 𝑊 -bit words [33]. These algorithms are written
in a form to take advantage of a multiplication operation resulting in a (2𝑊 )-bit result
in a 𝑊 -bit computer architecture. This requires a modular reduction modulo 𝑝. For the
F𝑝 implementation, a reduction modulo 2𝑝 is enough to fit in 256 bits.

Notation (𝑈𝑉 ) denotes a (2𝑊 )-bit quantity, obtained from the concatenation of 𝑈
and 𝑉 , both 𝑊 -bit words; 𝑅0, 𝑅1, 𝑅2, 𝑈 , and 𝑉 are 𝑊 -bit words. Figure 3.1 exemplifies
the operand scanning algorithm with 8 × 8 → 16 words. Figure 3.2 shows the same
operation but in the product scanning form. Each dot in the rhombus represents one
of the 𝑛2 𝑊 -bit word ×𝑊 -bit word→ 2𝑊 product, while thicker lines show a path to
execute the multiplications.

A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14] ......

Figure 3.1: Integer multiplication of 8 words each, using the operand scanning form
(adapted from [43]).



35

Algorithm 7 Integer multiplication, operand scanning form.

Input: Integers 𝑎, 𝑏 ∈ [0, 𝑝− 1]
Output: 𝑐 = 𝑎 · 𝑏

𝐶[𝑖]← 0 for 0 ≤ 𝑖 ≤ 𝑡− 1
for 𝑖 from 0 to 𝑡− 1 do

𝑈 ← 0
for 𝑗 from 0 to 𝑡− 1 do

(𝑈𝑉 )← 𝐶[𝑖+ 𝑗] + 𝐴[𝑖] ·𝐵[𝑗] + 𝑈
𝐶[𝑖+ 𝑗]← 𝑉

end for
𝐶[𝑖+ 𝑡]← 𝑈

end for
return 𝑐

Algorithm 8 Integer multiplication, product scanning form.

Input: Integers 𝑎, 𝑏 ∈ [0, 𝑝− 1]
Output: 𝑐 = 𝑎 · 𝑏

𝑅0 ← 0, 𝑅1 ← 0, 𝑅2 ← 0
for 𝑘 from 0 to 2𝑡− 2 do

for each {(𝑖, 𝑗)|𝑖+ 𝑗 = 𝑘, 0 ≤ 𝑖, 𝑗 ≤ 𝑡− 1} do
(𝑈𝑉 )← 𝐴[𝑖] ·𝐵[𝑗]
(𝜀, 𝑅0)← 𝑅0 + 𝑉
(𝜀, 𝑅1)← 𝑅1 + 𝑈 + 𝜀
𝑅2 ← 𝑅2 + 𝜀

end for
𝐶[𝑘]← 𝑅0, 𝑅0 ← 𝑅1, 𝑅2 ← 0

end for
𝐶[2𝑡− 1]← 𝑅0

return 𝐶
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A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14] ......

Figure 3.2: Integer multiplication with 8 words each, using the product scanning form
(adapted from [43]).

Let 𝑛 be the number of words enough to represent a large integer. The outer loop
of the operand scanning algorithm loads the operand 𝐴[𝑖], 0 ≤ 𝑖 < 𝑛− 1 and keeps the
value constant inside the inner loop, which loads 𝐵[𝑗], 0 ≤ 𝑘 < 𝑛 − 1 word by word
and multiplies with the loaded word from 𝐴. This product is then accumulated to an
intermediate result on the same column, already buffered in a register or loaded from
memory.

The product scanning approach processes partial products in a column-wise manner,
allowing that operands of each column can be multiplied and added back to back in a
multiply-accumulate scheme, resulting into a final word of the result for each column.
No intermediate results must be stored or loaded; in addition, carry propagation can be
easily handled, once this value can be simply added to the results of the next column.
This method only needs five working registers to perform multiplication: 2 for operands
and 3 for accumulators, making it a suitable option for devices with limited registers.
On the memory access count, operand scanning takes 3𝑛2 + 2𝑛 memory operations to
load the operands and write the results back; product scanning takes 2𝑛2 + 2𝑛 accesses
to do the same [43].

Hybrid methods combining both operand and product scanning forms may be used
to diminish the count of memory accesses; the main idea is to minimize the number of
loads of the inner loops. This approach can be implemented using two nested loops:
the outer one following the product scanning idea and the inner one using operand
scanning. Since more accumulators are needed to run operand scanning internally,
2𝑑 + 1 registers must be used, where the 𝑑 parameter defines the number of rows to
process within the inner loop. If 𝑑 = 1, the hybrid method falls off to the product
scanning approach; if 𝑑 = 𝑛, hybrid multiplication is equal to the operand scanning
algorithm. Figure 3.3 exemplifies this approach with 𝑑 = 4.

Algorithms 7, 8, and hybrid approaches have quadratic complexity depending on
the word size 𝑛. A divider-and-conquer approach called as Karatsuba’s Algorithm can
be used to lower this complexity to 𝒪(𝑛log2 3) [33]. Let 𝑛 = 2𝑙 and 𝑥 = 𝑥12

𝑙 + 𝑥0 and
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A[7]B[7]

A[7]B[0]

A[0]B[0]
1

2

3

4

A[0]B[7]

C[0]C[7]C[14] ......

Figure 3.3: Integer multiplication with 8 words each, using hybrid approach (adapted
from [43]).

𝑦 = 𝑦12
𝑙 + 𝑦0 are 2𝑙-bit integers; then we have:

𝑥𝑦 = (𝑥12
𝑙 + 𝑥0)(𝑦12

𝑙 + 𝑦0)

= 𝑥1𝑦12
2𝑙 + [(𝑥0 + 𝑥1) · (𝑦0 + 𝑦1)− 𝑥1𝑦1 − 𝑥0𝑦0]2

𝑙 + 𝑥0𝑦0.

Product 𝑥𝑦 thus can be computed using three multiplications of 𝑙-bits integers (as
opposed of one 2𝑙-bit multiplication), along with two additions and two subtractions.
For a large 𝑙, the linear cost of an addition or a subtraction is lower in comparison to
the cost of a quadratic 𝑙-bit multiplication, offering better performance in these cases.
As an example of such an application, De Santis and Sigl [42] field implementation
on the Cortex-M4 features a two-level Karatsuba multiplier implementation, splitting
a 256-bit multiplier down to 64-bit multiplications, each one taking four hardware-
supported 32 × 32 → 64 multiplication instructions. This algorithm is considered to
require more resources and memory accesses on microcontrollers than the quadratic
methods, given this algorithm exchanges multiplications for more than one addition
plus the fact that modern architectures offer the same performance for addition and
multiplication operations [44].

Memory accesses can be accounted for part of the time consumed by the multipli-
cation routine. Thus, algorithms and instruction scheduling methods which minimize
those memory operations are highly desirable, specially on not-so-powerful processors
with slow memory access. This problem can be minimized using the product scanning
strategy. However, following this scheme in its traditional way requires multiple stores
and loads from memory, since the number of registers available may be not sufficient
to hold the full operands. Improvements to reduce the amount of memory operations
are present in the literature: namely, Operand Caching due to Hutter and Wegner [43],
further improved by the Consecutive Operand Caching [45] and the Full Operand
Caching, both due to Seo et al. [46].

Inspired by the hybrid approach, where operands are reloaded between iterations
of the outer loop, Operand Caching introduces the concept of 𝑒 rows on the product
scanning form to compute partial results. By keeping operands in registers between
blocks of the hybrid approach, the number of loads and save from memory operations
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A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

r0

r1

binit

......

Figure 3.4: Operand Caching method to multiply two 8-word integers. Adapted
from [43].

is reduced. This method is illustrated in Figure 3.4.
This method divides product scanning in two steps:

∙ Initial Block: The first step loads part of the operands, and proceeds to calculate
the upper part of the rhombus using classical product scanning.

∙ Rows: In the rightmost part, most of the necessary operands are already loaded
from previous calculations, requiring only some extra, low-count operand loads,
depending on row width. Product scanning is done until the row ends. Note that,
at the end of each column, parts of the operands are previously loaded, hence a
small quantity of loads is necessary to evaluate the next column.

The 𝑒 parameter defines how many words of each operand is saved in registers in a
given time. Using the case of Figure 3.4, 𝑒 is set to 3; in total, 9 registers are needed to
compute this multiplication. Calculation must be separated in 𝑟 =

⌊︀
8
3

⌋︀
= 2 rows 𝑟0 and

𝑟1, plus a smaller block 𝑏𝑖𝑛𝑖𝑡.
Note that at every row change, new operands need to be reloaded, since the current

ones in registers are not useful at the start of the new row. Let 𝑛 be the number of
“limbs”. Full Operand Caching further improves the quantity of memory access in two
cases: if 𝑛− 𝑟𝑒 < 𝑒, the Full Operand Caching structure looks like the original Operand
Caching, but with a different multiplication order. Otherwise, Consecutive Operand
Caching bottom row’s length is adjusted in order to make full use of all available
registers at the next row’s processing.

Catching the Carry Bit. Using product scanning to calculate partial products with a
double-word multiplier implies adding partial products of the next column, which
in turn might generate carries. A partial column, divided in rows in a manner as
described in Operand Caching, can be calculated using Algorithm 9; an example of
implementation in ARM Assembly is shown in Listing 3.3. Notation follows as (𝜀, 𝑧)←
𝑤 meaning 𝑧 ← 𝑤 mod 2𝑊 and 𝜀 ← 0 if 𝑤 ∈

[︀
0, 2𝑊 − 1

]︀
, otherwise 𝜀 ← 1, where 𝑊

is the bit-size of a word; (𝐴𝐵) denotes a 2𝑊 -bit word obtained by concatenating the
𝑊 -bit words 𝐴 and 𝐵.
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Algorithm 9 Column computation in product scanning.

Input: Operands 𝐴,𝐵; column index 𝑘; partial product 𝑅𝑘 (calculated during column
𝑘 − 1); accumulated carry 𝑅𝑘+1 (generated from sum of partial products).

Output: (Partial) product 𝐴𝐵[𝑘]; sum 𝑅𝑘+1 (higher half part of the partial product for
column 𝑘 + 1); accumulated carry 𝑅𝑘+2 (generated from sum of partial products).

𝑅𝑘+2 ← 0
for all (𝑖, 𝑗) | 𝑖+ 𝑗 = 𝑘, 0 ≤ 𝑖 < 𝑗 ≤ 𝑛− 1 do

𝑇 ← 0
(𝑇𝑅𝑘)← 𝐴[𝑖]×𝐵[𝑗] + (𝑇𝑅𝑘)
(𝜀, 𝑅𝑘+1)← 𝑇 +𝑅𝑘+1

𝑅𝑘+2 ← 𝑅𝑘+2 + 𝜀
end for
𝐴𝐵[𝑘]← 𝑅𝑘

return 𝐴𝐵[𝑘], 𝑅𝑘+1, 𝑅𝑘+2

Listing 3.3: ARM code for calculating a column in product scanning.
@ k = 6

@ r5 and r4 hold R_6, R_7 respectively

@ r6, r7, r8 hold A[3], A[4] and A[5] respectively

@ r9, r10, r11 hold B[3], B[1], B[2] respectively

MOV r12, #0

MOV r3, #0

UMLAL r5, r12, r8, r10 @ A5 B1

ADDS r4, r4, r12

ADC r3, r3, #0

MOV r14, #0

UMLAL r5, r14, r7, r11 @ A4 B2

ADDS r4, r4, r14

ADC r3, r3, #0

MOV r12, #0

UMLAL r5, r12, r6, r9 @ A3 B3

ADDS r4, r4, r12

ADC r3, r3, #0

@ r5 holds AB[6], r4 holds R_7, @ r3 holds R_8

One possible optimization is delaying the carry bit: eliminating the last addition
of Algorithm 9. This addition can be deferred to the next column with the use of a
single instruction to add the partial products and the carry bit. This is easier on ARM
processors, where there is fine-grained control of whether or not instructions may
update the processor flags. Other optimizations involve proper register allocation in
order to avoid reloads, saving up a few cycles.

Carry Elimination. Storing partial products in extra registers without adding them
avoids potential carry propagation. In a trivial implementation, a register accumulator
may be used to add the partial values, potentially generating carries. The UMAAL

instruction can be employed to perform such addition, while also taking advantage
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of the multiplication part to further calculate more partial products. This instruction
never generates a carry bit, since (2𝑛 − 1)2 + 2(2𝑛 − 1) = (22𝑛 − 1), eliminating the need
for carry handling. Partial products generated by this instruction can be forwarded to
the next multiply-accumulate(-accumulate) operation; this goes on until all rows are
processed. Algorithm 10 and Listing 3.4 illustrate how a column from product-scanning
can be evaluated following this strategy.

Algorithm 10 Column computation in product scanning, eliminating carries.

Input: Operands 𝐴,𝐵; column index 𝑘; 𝑚 partial products 𝑅𝑘[0, . . . ,𝑚−1] (calculated
during column 𝑘 − 1 and stored in registers).

Output: Partial product 𝐴𝐵[𝑘]; 𝑚 partial products 𝑅𝑘+1[0, . . . ,𝑚− 1] (higher half part
of the calculated partial product for column 𝑘 + 1 stored in registers).

𝑡← 1
for all (𝑖, 𝑗) | 𝑖+ 𝑗 = 𝑘, 0 ≤ 𝑖 < 𝑗 ≤ 𝑛− 1 do

(𝑅𝑘[𝑡]𝑅𝑘[0])← 𝐴[𝑖]×𝐵[𝑗] +𝑅𝑘[0] +𝑅𝑘[𝑡]
𝑅𝑘+1[𝑡− 1]← 𝑅𝑘[𝑡]
𝑡← 𝑡+ 1

end for
𝐴𝐵[𝑘]← 𝑅𝑘[0]
return 𝐴𝐵[𝑘], 𝑅𝑘+1[0, . . . ,𝑚− 1]

Listing 3.4: ARM code for calculating a column in product scanning without carries.
@ k = 6

@ r3, r4, r12 and r5 hold R_6[0,1,2,3]

@ r6, r7, r8 hold A[3], A[4] and A[5] respectively

@ r9, r10, r11 hold B[3], B[1], B[2] respectively

UMAAL r3, r4, r8, r10 @ A5 B1

UMAAL r3, r12, r7, r11 @ A4 B2

UMAAL r3, r5, r6, r9 @ A3 B3

@ r3 holds (partially) AB[6]

@ r4, r5 and r12 hold partial products for k = 7

Note that this strategy is limited by the number of working registers available. These
registers hold partial products without adding them up, avoiding the need of carry
handling, so strategies diving columns into rows like in Operand Caching fits in this
case.

Figure 3.5 show an toy example of multiplication using the product scanning ap-
proach with 3-word sized operands 𝐴 and 𝐵 using the UMLAL and UMAAL instructions.
Figure 3.6 show a toy example for the same case, but using the operand scanning
approach.

3.2.3 Squaring a 256-bit number

The squaring operation can be seen as a specialization of the multiplication algorithm;
hence, all algorithms for the later operation work when both arguments are the same.
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Figure 3.5: Multiplying two 3-word integers with the product scanning approach using
the UMLAL and UMAAL instructions. Note that no carry values are generated.
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Figure 3.6: Multiplying two 3-word integers with the operand scanning approach using
the UMLAL and UMAAL instructions. Note that no carry values are generated.
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A[7]A[7]

A[0]A[7]

A[7]A[0]

A[0]A[0]

C[0]C[7]C[14] ......

Figure 3.7: Squaring a 8-limb number using a full multiplication algorithm; black dots
represent multiplications.

C[0]C[7]C[14] ......

A[7]A[7]

A[7]A[0]

A[0]A[0]

Figure 3.8: Squaring a 8-limb number halving the squaring structure; black dots repre-
sent multiplications; hollowed dots represent squarings.

Specialized implementations may have two advantages in comparison to multiplication
implementations: first, due to the fact that only one operand is used for squaring
computation, the number of loads can be halved in comparison to multiplication.
Secondly, many registers used to hold operands can be freed, and can be used for other
purposes such as for caching intermediate results or other values. The disadvantage
of spending more program space two fit a generalized operation (multiplication) and
the specialized one (square) must be accounted for when writing software for space-
constrained environments.

A multiplication algorithm similar to the operand or product-scanning may be
used (Figure 3.7), with optimizations towards removing unneeded operations and use
cheaper alternatives to compute the same result (Figure 3.8). For example, the new
algorithm may cut out redundant internal products and use efficient operations (such as
left shift by one) to double needed internal products. In these cases, hybrid approaches
combining both operand and product-scanning techniques may be used. [45] notes that
this approach “lacks optimal use of working registers” and “inefficiently deals with the
carry bit produced when adding two partial products”, hence introducing the Sliding
Block Doubling (SBD) algorithm.

To evaluate the square of a 8-part number as exemplified in Figure 3.9, SBD works by
computing partial results of the square using the product-scanning method; to account
the doubled products, a left shift by 1 is issued to the partial results and saved into
memory. Afterwards, squares from parts of the operands are computed; then partial
results saved in memory are retrieved and added to the partial squares.
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C[0]C[7]C[14] ......

A[7]A[7]

A[7]A[0]

A[0]A[0]

Figure 3.9: Sliding Block Doubling: black dots represent multiplications; hollowed dots
represent squarings.

C[0]C[7]C[14] ......

A[7]A[7]

A[7]A[0]

A[0]A[0]

binit

Figure 3.10: Sliding Block Doubling, computing an initial block beforehand.

This algorithm runs the following steps:

∙ Partial Products of the Upper Part Triangle: an adaption of product scanning
calculates partial products (represented by the black dots at the superior part of
the rhombus in Figure 3.9) and saves them to memory.

∙ Sliding Block Doubling of Partial Products: each result of the column is doubled
by left shifting each result by one, effectively duplicating the partial products.
This process must be done in parts because the number of available registers is
limited, since they hold parts of the operand.

∙ Remaining Partial Products of the Bottom Line: bottom line multiplications are
squares of part of the operand. These products must be added to their respective
partial result of its above column.

With the usage of carry flag present in the ARM architecture, both Sliding Block
Doubling and the Bottom Line steps can be efficiently computed. In order to avoid extra
memory access, those two routines may be implemented without reloading operands;
because of the need of the carry bit in both those operations, high register pressure
may arise in order to save them into registers. Calculating some multiplications akin
to the Initial Block step, as in the Operand Caching multiplication method, reduces
register usage by spilling partial results in memory. This allows proper carry catching
and handling in exchange for a few memory accesses. This method is exemplified in
Figure 3.10.

This algorithm runs the following steps:

∙ Triangular Initial Block: A halved “initial block” calculates some of the multipli-
cations in order to relieve register pressure for the next steps; partial results are
spilled to memory.
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∙ Remaining Partial Products and Squares: in a right-to-left fashion, each column
of the product-scanning-based multiplication is computed. The result of a column
is doubled by left-shifting by one; a possible overflow is caught and saved into a
working register. If the column computes a square, the doubled partial result is
added to the square. The carry bit can be also be set here: a working register must
capture it for handling in the next column processing.

Note that the working registers freed up to by the first step are used to save carry bits
generated by the doubling operation or during the addition of the squares. In the case
of the example in Figure 3.10, by calculating the “initial block”, each product-scanning
column of the next phase is limited to height 2, meaning that only two consecutive
multiplications can be handled without losing partial products. During evaluation of
the remaining partial products, those cached products are loaded and added to the
current results (using the UMAAL or UMLAL) instructions; afterwards, the saved carry
bits must be handled.

3.3 Summary

Chapter 3 explored the main implementation strategy of F2255−19 operations, emphasiz-
ing multiplication and squaring. Alternative algorithms were explored in attempts to
speedup the multiplication operation, taking figures of Karatsuba’s algorithm-based
implementations as baseline. Additionally, with multiplication-accumulation instruc-
tions present in ARM architectures, an efficient implementation was developed taking
advantage of those one cycle to execution instructions

Optimizations found in the multiplication operation were ported to squaring, since
both have similar structure. Utilizing the CPU’s capabilities, such as the carry flag and
the barrel shifter, improvements to algorithms found in literature are presented.
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Chapter 4

Protocol Implementation Details and
Performance Evaluation

In this chapter, the performance figures for the implementations measured in cycle
counts are shown, along with the compiled code size of them. A brief description
on how the protocols were implemented is also presented, exploring where critical
operations have bottlenecks in the explained cryptosystems and which approach was
considered the best for decreasing their impact.

4.1 Testing Environment

The focus of this work is given to microcontrollers suitable for integration within embed-
ded projects. Therefore, we choose some representative ARM architecture processors.
Specifically, the implementations were benchmarked on the following platforms:

∙ Teensy: Teensy 3.2 board equipped with a MK20DX256VLH7 Cortex-M4-based
microcontroller, clocked at 48 and 72 MHz.

∙ STM32F401C: STM32F401 Discovery board powered by a STM32F401C microcon-
troller, also based on the Cortex-M4 design, clocked at 84MHz.

∙ Cortex-A7/A15: ODROID-XU4 board with a Samsung Exynos5422 CPU clocked
at 2 GHz, containing four Cortex-A7 and four Cortex-A15 cores in a heterogeneous
configuration.

Code for the Teensy board was generated using GCC version 5.4.1 compiled with
the -O3 -mthumb flags; same settings apply for code compiled to the STM32F401C
board, but using an updated compiler version (7.2.0). For the Cortex-A family, code
was generated with GCC version 6.3.1 using the -O3 optimization flag. Cycle counts
were obtained using the corresponding cycle counter in each architecture. Randomness,
where required, was sampled through /dev/urandom on the Cortex-A7/A15 device.
In the Cortex-M4 boards, NIST’s Hash_DRBG is implemented with SHA256 and the
generator is seeded by analogically sampling disconnected pins on the board. This
sampling may not work in all cases, since (a) variation may be not big enough to change
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states, generating no entropy or (b) disconnected pins may be pulled up or down by
circuitry, permanently setting their electric tension.

Albeit not the most efficient for every possible target, the codebase is the same for
every ARMv7 processor equipped with DSP instructions, being ideal to large heteroge-
neous deployments, such as a network of smaller sensors connected to a larger central
server with a more powerful processor than its smaller counterparts. This helps code
maintenance, avoiding possible security problems.

4.2 Implementation Details and Timings

Table 4.1 presents timings and Table 4.2 shows the code size for field operations with
implementation described in Chapter 3. In comparison to the previous state-of-art [42],
our addition/subtraction take 18% less cycles; the 256-bit multiplier with a weak
reduction is almost 50% faster and the squaring operation takes 30% less cycles. The
multiplication routine may be used in replacement of the squaring if code size is a
restriction, since 1S is approximately 0.9M. Implementation of all arithmetic operations
take less code space in comparison to [42], ranging from 20% savings in the addition
to 50% in the 256-bit multiplier. As experimental evaluation, using the Karatsuba
algorithm to implement the F𝑝 multiplication, the operation takes 768 CPU cycles on
the Teensy device.

For completeness, Table 4.1 shows the cycle numbers of both 256-bit multipliers
implemented; the first is the Operand-Caching inspired version, and the second one is a
operand scanning-based multiplier. Since the former takes less CPU cycles, the most
efficient one is used to measure the performance of upper protocols.

As noted by Hasse [47], cycle counts on the same Cortex-M4-based controller can be
different depending on the clock frequency set on the chip. Different clock frequencies
set for the controller and the memory may cause stalls on the former if the latter is
slower. For example, operations relying on memory operations, such as the 256-bit
multiplication and squaring, use 10% more cycles when the controller is set to a 33%
higher frequency. This behavior is also present on cryptographic schemes, as shown
in Tables 4.3 and 4.4, since those are subject to compiler interference once those were
implemented in a higher level language.

4.2.1 X25519 implementation

X25519 was implemented using the standard Montgomery ladder over the 𝑥-coordinate.
Standard tricks like randomized projective coordinates and constant-time conditional
swaps were implemented for side-channel protection. Cycle counts of the X25519
function executed on the evaluated processors are shown in Table 4.3 and code size in
Table 4.2.

As a countermeasure against power analysis, projective coordinate randomization
is implemented, resulting in an approximately 1% penalty in testing. This technique
adds some multiple 𝑘 of the group order 𝑙 to the secret scalar 𝑠; multiplying (𝑘ℓ+ 𝑆)𝑃
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Table 4.1: Timings in cycles for arithmetic in F2255−19 on multiple ARM processors.
Numbers for this work were taken as the average of 256 executions; Standard deviation
is near zero, since implementation is inherently protected against timing attacks (con-
stant time). Two 256-multiplication implementations are measured: one based on the
Consecutive Operand Caching (“COC”) and the other one based on Operand Scanning
(“OpScan”). 𝑎Teensy board. 𝑏STM32F401C board. 𝑐STM32F407 board.

Cortex Add/Sub Mult Mult
by word Square Inversion

De Groot [37] M4 73/77 631 129 563 151997
De Santis [42] M4 106 546 72 362 96337

COC OpScan

This work

M4 @ 48 MHz𝑎 91/89 284 329 95 251 66681
M4 @ 72 MHz𝑎 91/89 311 358 100 290 77356
M4 @ 84 MHz𝑏 91/89 274 321 92 245 64955

A7 55/53 291 362 77 235 63249
A15 38/37 224 197 72 138 41136

Cortex F𝑝2

Add/Sub
F𝑝2

Mult
Mult

by word
F𝑝2

Square
F𝑝2

Inversion
FourQ [48] M4𝑐 84/86 358 - 215 21056

Table 4.2: Code size in bytes for implementing arithmetic in F2255−19, X25519, Ed25519
and qDSA with Curve25519 protocols on the Cortex-M4. Code size for protocols
considers the entire software stack needed to perform the specific action, including
but not limited to field operations, hashing, tables for scalar multiplication and other
algorithms.

Add Sub Mult Mult by word Square
De Groot [37] 44 64 1284 300 1168
De Santis [42] 138 148 1264 116 882
This work 110 108 622 92 562

Inversion X25519 Ed25519 Key Gen. Ed25519 Sign Ed25519 Verify
De Groot [37] 388 4140 - - -
De Santis [42] 484 3786 - - -
This work 328 4152 21265 22162 28240

qDSA Key Gen. qDSA Sign qDSA Verify
Left to Right Montgomery 14546 20720 15856
Right to Left Montgomery [8] 24762 29756 25516
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Table 4.3: Timings in 103 cycles for computing the Montgomery ladder in the X25519
key exchange. Numbers were taken as the average of 256 executions in chosen ARM
processors. Standard deviation is near zero, since X25519 implementation is inherently
protected against timing attacks (constant time). The measures for this work takes in
account the best 256-bit multiplier shown on Table 4.1.

Cortex X25519
De Groot [37] M4 1,816.3
De Santis [42] M4 1,563.8

This work
M4 @ 48 MHz (Teensy) 925.7
M4 @ 72 MHz (Teensy) 1,036.6

M4 @ 84 MHz (STM32F401) 913.8
Schwabe, Bernstein [10] A8 527.1

This work A7 840.0
A15 587.0

eBACS ref. code [49] A15 342.4
Cortex DH

FourQ [48] M4 (STM32F407) 542.9

results in (𝑠𝑃 + O) = 𝑠𝑃 , hence not modifying results. From a execution standpoint,
randomizing bits of the secret ensures that the execution path is unpredictable while
applying the Montgomery ladder each time [37].

Our implementation is 42% faster than De Santis and Sigl [42] while staying compet-
itive in terms of code size.

A note on conditional swaps

The conditional swap operation is classically implemented using bitwise instructions.
However, this approach opens a breach for a power analysis attack, as noted in [11],
since all bits from a 32-bit-long register (in ARMv7 architectures) must be set or not
depending on a bit derived from the secret key.

The conditional swap operation can be implemented in a alternative way by setting
the 4-bit ge-flag in the Application Program Status Register (ASPR) and then issuing
the SEL instruction, which pick parts from the operand registers in byte-sized blocks
and writes them to the destination [30]. Note that setting 0x0 to the ASPR.ge flag and
issuing SEL copies one of the operands; setting 0xF and using SEL copies the other one.
The ASPR bits cannot be set directly through a MOV with an immediate operand, so a
Move to Special Register (MSR) instruction must be issued. Only registers may be used
as arguments of this operation, so another one must be used to set the ASPR.ge flag.
Therefore, at least 8 bits must be used to conditionally move data between registers.
This may reduce the attack surface of a potential side-channel analysis, down from 32
bits, since less energy is spent to maintain the bits set.

In terms of performance, the SEL-based implementation of the conditional swap uses
92 CPU cycles. For comparison, an implementation of the same operation using bitwise
instructions uses 128 cycles without any optimizations. It must be noted that calls done
to an experimental, ARM assembly implementation of the SEL-based conditional swap
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are subject to function call overheads, resulting in extra 30 CPU cycles. Implementations
in higher level languages using bitwise instructions are not affected, once optimizing
compilers inline the method, thus skipping function call overhead.

4.2.2 Ed25519 implementation

The cycle counts for the Ed25519 implementation on choosen platforms and perfor-
mance numbers for comparable implementations are shown in Table 4.4. As in 2.6.2,
the most critical operation is implemented through a comb-like algorithm proposed by
Hamburg in [50]. The signed-comb approach recodes the scalar into its signed binary
form using a single addition and a right-shift. This representation is then divided into
blocks of bits and each one of those are divided in combs, much like in the multi-comb
approach described in [33].

Let 𝑛 be the order of a group 𝐺. To recode the scalar 𝑒 to its signed binary form using
𝐷 > log2 𝑛 digits, enough to write the scalar, i. e.

𝐷−1∑︁
𝑖=0

𝑑𝑖 · 2𝑖 (mod 𝑛) where 𝑑𝑖 ∈ {±1}

Note that
𝑒+ 2𝐷 − 1

2
=

𝐷−1∑︁
𝑖=0

𝑑𝑖 + 1

2
· 2𝑖.

To convert 𝑒 into signed binary using 𝐷 digits, adding 2𝐷−1 (0𝑏11 . . . 11) and halving
(a right shift by one) is needed. If 𝑒 is even, adding the odd group order 𝑛 makes halving
(𝑒 + 0𝑏11 . . . 11) mod 𝑛 by right shifting by one possible. Note that this operation
must be done securely in order to avoid timing differences, so all possibilities must be
accounted for. Then, the final result must be choosen by issuing a conditional swap.
For the implementation under discussion, recoding the scalar into 255-bit signed binary
was the preferred way.

Much like in the multi-comb algorithm, this representation must be divided into 𝑗

disjoint blocks of bits 𝐵:

𝑒 ≡
𝑛−1∑︁
𝑗=0

𝐵𝑗,where 𝐵𝑗 :=

𝑜𝑗+1−1∑︁
𝑖=𝑜𝑗

𝑑𝑖 · 2𝑖,

where 𝑜𝑗 is the offset of the 𝑗 block, counting from the least significant bit, so the
blocks 𝐵𝑗 are “parts” of the scalar 𝑒 in signed binary form. Note that division does
not have to be even: for a 255-bit signed binary representation, one can write it as
𝐵0 = 𝑑0 · 20+ 𝑑1 · 21+ . . .+ 𝑑49 · 249, 𝐵1 := 𝑑50 · 250+ 𝑑51 · 251+ . . .+ 𝑑99 · 299 (i. e. bits 𝑑50 to
𝑑99); and so on including 𝐵3. 𝐵4, however, must be fit with 55 bits to account 𝑒 entirely:
𝐵4 = 𝑑200 · 2200 + 𝑑201 · 2201 + . . .+ 𝑑255 · 2255. Note that those blocks can be represented
as an array of bits, e. g. bits 𝑑0 to 𝑑49.

Combs must be built for each block by getting 𝑡𝑗 bits (teeth) spaced by 𝑠𝑗 bits between
teeth; by the end, 𝑠𝑗 combs will be extracted from each block 𝐵𝑗 . Continuing from the
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d0 d10 d20 d30 d40 d49

C0,0

C0,1 ...

...

Figure 4.1: Building combs on a 50-bits block 𝑏0.

example, 10 combs can be extracted from block 𝐵0 (so 𝑠0 = 10, hence 𝑡0 = 5), getting:

𝐶0,0 = 𝑑0 · 20 + 𝑑10 · 210 + 𝑑20 · 220 + 𝑑30 · 230 + 𝑑40 · 240

𝐶0,1 = 𝑑1 · 21 + 𝑑11 · 211 + 𝑑21 · 221 + 𝑑31 · 231 + 𝑑41 · 241

...

𝐶0,9 = 𝑑9 · 29 + 𝑑19 · 219 + 𝑑29 · 229 + 𝑑39 · 239 + 𝑑49 · 249

Note that 𝐵4 has 55 bits, so 𝑠4 must be set to 11 and thus we get 𝐶4,0, 𝐶4,1, . . . , 𝐶4,9, 𝐶4,10.
These combs can be efficiently built using shifts and bitwise operations; for efficiency,
one can bypass the block separation, building the combs directly. Figure 4.1 illustrates
this process.

Mathematically, we have

𝐵𝑗 = 2𝑜𝑗 ·
𝑠𝑗−1∑︁
𝑘=0

2𝑘 · 𝐶𝑗,𝑘 where 𝐶𝑗,𝑘 :=

𝑡𝑗−1∑︁
𝑖=0

𝑑𝑜𝑗+𝑠𝑗𝑖+𝑘 · 2𝑠𝑗𝑖

With the combs:

𝑒 ≡
max 𝑠𝑗−1∑︁

𝑘=0

2𝑘 ·
𝑛−1∑︁
𝑗 = 0

𝑠𝑗 > 𝑘

𝐶𝑗,𝑘 =

max 𝑠𝑗−1∑︁
𝑘=0

2𝑘 ·
𝑛−1∑︁
𝑗 = 0

𝑠𝑗 > 𝑘

±|𝐶𝑗,𝑘| (mod 𝑞)

Then, to compute a multiplication:

𝑒 · 𝑃 =

max 𝑠𝑗−1∑︁
𝑘=0

2𝑘 ·
𝑛−1∑︁
𝑗 = 0

𝑠𝑗 > 𝑘

±|𝐶𝑗,𝑘| · 𝑃

Values 𝐶𝑗,𝑘 · 𝑃 must be precomputed beforehand for each block. Each block 𝐵𝑗

must have its own table of 2𝑡𝑗 − 1 precomputed multipliers of 𝑃 once the offsets varies
between blocks. For this work, implementing the simple double-addition ladder in
a simple script and inputting all possible 𝐶𝑗,𝑘 (and the generator 𝑔 as the point 𝑃 ) to
output the precomputed values suffices.

Recall that the combs use bits from the signed binary form of the scalar 𝑒. This means
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that the most significant bit works like the sign bit in signed integers; if that’s true,
the index must be changed to its two’s complement and the looked up value must be
negated. Since negation on extended projective coordinates can be efficiently computed
(because −𝑃 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑃 (−𝑥, 𝑦, 𝑧,−𝑡)), the lookup table’s size can be reduced by
half. Note that both handling of the “negative bit” of the comb and the evaluation the
additive inverse element must with no timing differences to avoid leaking secret bits,
so conditional swaps must be used.

In short:

1. Precompute 2𝑡𝑗 − 1 multiplies of 𝑃 for each block. Take account the offset of the
block to calculate the tables.

2. Convert the scalar into its signed binary notation; separate (blocks and) combs.

3. Accumulate precomputed values using the combs as index for the tables, handling
the “sign” bit, in a top-to-bottom fashion.

4. Double the accumulator and start over step 3. If it’s the last comb level (least
significant), there’s no need to double the result.

On cases where the CPU has cache memory, protection against cache attacks must
be implemented. This can be done by scanning the entire precomputed table in a linear
fashion, as shown in [51]. This puts an upper bound on the 𝑡𝑗 value, since increasing
it makes secure table access expensive. Using the parameters explained along, to
effectively calculate the scalar multiplication, the implementation requires 50 point
additions and 254 point doublings. Five lookup tables of 16 points each in Extended
Projective coordinate format with 𝑧 = 1 are used, adding up to approximately 7.5 KiB
of data.

Verification requires a double-point multiplication involving the generator 𝐵 and
point 𝐴 using a 𝑤-NAF interleaving technique [33], with a window of width 5 for the
𝐴 point, generated on-the-fly, taking approximately 3 KiB of volatile memory. The
group generator 𝐵 is interleaved using a window of width 7, implying in a lookup
table of 32 points stored in Extended Projective coordinate format with 𝑧 = 1 taking
3 KiB of ROM. Note that verification has no need to be securely executed, since all
input data is (expected to be) public. Decoding uses a standard field exponentiation
for both inversion and square root to calculate the 𝑦-coordinate as suggested by [52]
and [7]. This exponentiation is carried out by a chain of squares akin to computing the
inverse element of the prime field, providing an efficient way to calculate the missing
coordinate.

Timings for computing a signature (both protected and unprotected against cache
attacks) and verification functionality in the evaluated processors can be found in Table
4.4. Arithmetic modulo the group order in Ed25519-related operations closely relates to
the previously shown arithmetic modulo 2255 − 19, but multiplication is implemented
through classical schoolbook algorithm and Barrett reduction is used instead.
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Table 4.4: Timings in 103 cycles for key generation, signature and verification of a 5-byte
message in the Ed25519 scheme. Key generation encompasses taking a secret key and
computing its public key; signature takes both keys and a message as inputs to generate
its respective signature. Numbers were taken as the average of 256 executions in chosen
ARM processor. Standard deviation is near zero, since implementation is inherently pro-
tected against timing attacks (constant time), in exception to the Verification procedure.
Cache attacks safety on the Cortex-M4 is attained due to the lack of cache memory, while
side-channel protection is explicitly needed in the Cortex-A. Performance penalties for
side-channel protection can be obtained by comparing the implementations with Safe =
Y over N in the same platform. These measures take account the best 256-bit multiplier
shown on Table 4.1. Refer to subsection 4.3 to an overview of the works compared in.
𝑎Teensy board. 𝑏STM32F401C board. 𝑐STM32F407 board.

Safe Cortex Ed25519 Key Gen. Ed25519 Sign Ed25519 Verify

This work
Y M4 @ 48 MHz𝑎 353.0 501.7 1,323.0
Y M4 @ 72 MHz𝑎 385.6 537.2 1,463.6
Y M4 @ 84 MHz𝑏 394.7 549.0 1,360.8

Schwabe, Bernstein [10] Y A8 - 368.2 650.1

This work

N A7 - 426.7 1,182.3
Y A7 400.6 529.5 -
N A15 - 267.5 807.4
Y A15 248.7 309.0 -

eBACS ref. code [49] Y A7 241.6 245.7 730.0

Floodyberry [53]

Y M4 @ 48 MHz𝑎 693.9 750.5 1,967.7
Y M4 @ 72 MHz𝑎 738.4 796.7 2,026.4
Y A7 602.6 641.3 1,744.4
Y A15 269.9 286.9 775.3

Floodyberry [53]
+ This work’s F2255−19

Y A7 374.6 409.8 658.8
Y A15 240.4 255.8 497.3

CT Cortex SchnoorQ Key Gen. SchnoorQ Sign SchnoorQ Verify
FourQ [48] Y M4𝑐 265.1 345.4 648.6
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Table 4.5: Timings in 103 cycles for key generation, signature and verification of a 5-byte
message in the qDSA scheme. Key generation encompasses taking a secret key and
computing its public key; signature takes both keys and a message as inputs to generate
its respective signature. Numbers were taken as the average of 256 executions in chosen
ARM processors. Standard deviation is near zero, since protocol implementation is
inherently protected against timing attacks (constant-time).

Cortex qDSA Key Gen. qDSA Sign qDSA Verify
Left to Right Montgomery M4 @ 48 MHz (Teensy) 927.9 1,059.1 1,746.2

Right to Left Montgomery
M4 @ 48 MHz (Teensy) 614.5 744.8 1,451.8

A7 544.5 658.0 1,292.7
A15 369.0 426.1 890.0

4.2.3 qDSA implementation

The qDSA signature scheme is also impacted by the fixed-base scalar multiplication.
Although a comb-like algorithm could be used in this case, a right-to-left implemen-
tation of the Montgomery ladder [8] with an auxiliary table containing multiples of
the generator point replaces the double-and-add algorithm or the usual left-to-right
Montgomery ladder evaluating a scalar multiplication with an already known point.
This approach was choosen over the linear scan needed to protect table accesses in cases
where cache memory is present, causing an extra performance overhead proportional
to the table size. The cycle count measurements for both the original implementation
and the improved one are shown in Table 4.5. Note that a trade off between speed and
code size is present, as can be seen in Table 4.2.

Right-to-left scalar multiplications use a regular execution pattern of elliptic curve
operations, aiding secure implementations against side-channel attacks, plus avoiding
secret lookup indexes by using a counter to access the table. This table contains the
values 𝜇𝑖 = (𝑥𝑖 + 1)(𝑥𝑖 − 1)−1, such that (𝑥𝑖, 𝑦𝑖) = 2𝑖𝐺 for 0 ≤ 𝑖 ≤ 255. The execution
pattern uses two accumulators 𝑄0 and 𝑄1 and scans bits 𝑘𝑖 of the secret scalar to decide
which of the accumulators should be used to compute a differential addition with the
value from the table; if 𝑘𝑖 ⊕ 𝑘𝑖−1 = 0, 𝑄0 must be accumulated using 𝑄1 as a difference,
otherwise 𝑄0 is accumulated using 𝑄1 as difference. No point doublings are required in
this algorithm, in contrast to the left-to-right Montgomery algorithm.

𝑄0 and 𝑄1 must be properly initialized since the formula for computing a differential
addtion on the Montgomery model is not complete, i. e. when computing the differential
addition +𝑅 with 𝑃 and 𝑄 with 𝑅 = 𝑃 − 𝑄, the formula fails when 𝑅 ∈ 𝒪, (0, 0). On
the original Right-to-Left Montgomery work [8], the Diffie-Hellman X25519 function
has to compute the point 8𝑘𝐺, but the choosen algorithm computes 𝑘𝐺+ 𝑆. To remove
the 𝑆, a scalar multiplication with the cofactor ℎ, obtaining, in this case, ℎ𝑘𝐺. For this, 𝑆
is choosen as a point of order four (i. e. 4𝑆 = 𝒪); doubling 𝑘𝐺+ 𝑆 thrice results in 8𝑘𝐺.

Vulnerabilities originating from the use of low order point as inputs may arise [54],
needing protective countermeasures. This can be achieved using the fact that the order
of 𝐺 is odd, as in the case of Curve25519. In this case, the point 𝑆 is no longer needed,
but if 𝒪 is used as replacement, the algorithm fails. This indicates that the algorithm
computes scalar multiplications if 𝑘 is odd. One way to enforce that is calculating
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𝑘′𝐺 instead of 𝑘𝐺, once both maps to the same element in the Kummer variety. 𝑘′ is
computed by subtracting the scalar 𝑘 from the order ℓ of 𝐺. If ℓ is odd, 𝑘′ will be odd.
Selecting whether 𝑘 or 𝑘′ should be processed by the ladder has to be done in a safe way
using conditional swaps in order to avoid branching and, thus, timing attacks.

4.3 Comparison to other work

Implementations of this software stack are widely reported in the literature, focusing on
a wide range of architectures. The ECRYPT Benchmarking of Cryptographic Systems
(eBACS) project tests and benchmarks code in a variety of hardware. Open-source
implementations are also integrated within the framework, allowing reproduction of
reported results [49].

Düll et al. [41] implements X25519 and its underlying field implementation on a
Cortex-M0 based processor, equipped with a simple 32× 32→ 32-bit multiplier. Due to
this limitation, this multiplier is abstracted as a smaller one (16× 16→ 32) to facilitate a
3-level Refined Karatsuba implementation, taking 1294 cycles to complete this routine
on the same processor. Their 256-bit squaring uses the same multiplier strategy with
standard tricks to save up repeated operations, taking 857 cycles. Putting it together, an
entire X25519 operation takes about 3.6 million cycles with approximately 8 KiB of code
size.

On the Cortex-A family of CPU cores, implementers may use the NEON instructions,
a SIMD instruction set executed in its own unit inside the processor. Bernstein and
Schwabe [10] report 527,102 Cortex-A8 cycles for the X25519 function. In the elliptic
curves formulae used in their work, most multiplications can be handled in a parallel
way, taking advantage of NEON’s vectorization unit and Curve25519’s parallelization
opportunities.

Literature suggests there is no Ed25519 implementation specifically targeted at
the Cortex-M4 core. Floodyberry’s implementation ed25591-donna, geared towards
non-specific 32-bit and 64-bit architectures, takes about 693.9 thousand CPU cycles to
generate keys, 750.5 thousand cycles to sign a 5-byte message and 750.5 thousand cycles
to verify a signature when run on a board equipped with a Cortex-M4 CPU, clocked at
48MHz. Due to its portable nature, no MAC instructions present on the Cortex-M4 and
superior CPU cores are used as proposed in Chapter 3.

Bernstein’s work, depending on Cortex-A8’s NEON capabilities [10], reports 368,212
cycles to sign a short message and 650,102 cycles to verify its validity. The authors point
out that 50 and 25 thousand cycles of signing and verification are spent by the choosen
SHA-512 implementation, with room for further improvements.

Liu et al. reports [48] a 559,200 cycle count on a ARM Cortex-M4 based processor
for their 32-bit implementation of the Diffie-Hellman Key Exchange over the FourQ
curve. This curve, equipped with two efficiently computable endomorphisms, provides
efficient variable scalar multiplication, surpassing Curve25519’s variable-base scalar
multiplication routine in terms of performance.

Generating keys and Schnorr-like signatures over FourQ takes about 796 thousand



55

cycles on a Cortex-M4 based CPU, while verification takes about 733 thousand cycles
on the same CPU [48]. Key generation and signing are aided by a 80-point table taking
7.5KiB of ROM, and verification is assisted by a 256-point table, using 24 KiB of memory.
qDSA, a Digital Signature scheme relying only on the 𝑥-coordinate, instantiated with a
elliptic curve with the same underlying field as the Curve25519, takes about 3 million
cycles to sign a message and 5.7 million cycles to verify it in a Cortex-M0. This last
scheme does not rely on an additional table for speedups since low code size is an
objective given the target architecture, although this can be done using the ideas from [8]
with increased ROM usage.

The implementations presented in this work are competitive in comparison to the
mentioned works, given the performance numbers shown. Albeit direct comparisons
cannot be drawn due to differences on the underlying processors (and capabilities),
numbers are small enough to claim the mark of “under a million cycles to run X25519 on
a Cortex-M4” and point out the possibility of an efficient implementation of a signature
scheme targeting a microcontroller with small memory space.

4.4 Summary

Chapter 4 presented the performance figures of the execution of higher-level protocols
based on field arithmetic modulo 2255−19, mostly gained from the optimized multiplica-
tion and squaring operations discussed in Chapter 3. As expected, optimizing lower
level performance-critical operations impacted performance of elliptic curve operations,
achieving the under a million cycles mark for the X25519 operation.

Using the same optimizations, the Ed25519 implementation also gained speedups;
further performance gain was obtained by using an efficient algorithm to compute
fixed-base scalar multiplication, while still taking comparable code size in relation with
implementations freely available or discussed in literature. Similar gains were shown
in the qDSA signature scheme; in this case, a trade-off between code size and speed is
explored in order to speedup operations.

In the end, an comparative discussion between related works is presented. While
not directly comparable owing to different testing platforms, implementations shown in
this work are competitive in regards to the portability across different ARM platforms,
allowing code reuse and avoiding security problems from different codebases.
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Chapter 5

Final Remarks

This work investigated the full implementation stack of Curve25519-based crypto-
graphic protocols for use in the ARM Cortex-M4 microcontroller. As the most performance-
critical operation on the entire scheme, the 256× 256→ 512 multiplier = mod 2256− 38

based on the Operand Caching method is considered as the main feature of this work,
impacting the performance numbers of the execution of cryptographic protocols. For
further analysis and improvements, an ARM implementation is publicly available at
https://github.com/hayatofujii/curve25519-cortex-m4.

Instead of a Karatsuba-based implementation as suggested by literature, handcrafted
and carefully optimized implementations of either operand or product scanning meth-
ods has been seen as better options given the size of the operands, albeit the first method
having, theoretically, better computational complexity. This finding is in line with ob-
servations seen in [50, 55]. With the usage of the DSP instructions, the 256-bit multiplier
using the product scanning strategy can be implemented without using the carry bit
present on CPU registers, thus avoiding expensive handling of it.

With a similar structure, the squaring operation can, in addition to the usual tech-
niques to implement it, inherit optimizations found in the multiplication implemen-
tation. Proper usage of the features of the CPU avoids excessive operand reload and
memory accesses, costly operations which slowdowns performance.

As a evidence of how arithmetical operations impacts the overall performance of
higher-level protocols, reducing the time of the multiplication and squaring operations
brought the X25519 function cycle cost to under a million cycles in tested platforms,
making ECDH more attractive for CPUs of the ARM family. Further speedups may
include precomputed tables to assist the scalar multiplication, as proposed in [8], at the
expense of ROM, a limited resource on the platform. On the security side, a new way to
implement the conditional swap operation, presented in this work, theoretically reduces
the attack surface of a power analysis attack, as lesser bits are exposed, in comparison
to the implementations publicly available.

To implement the Ed25519 signature scheme targeting a limited-space platform, an
efficient algorithm runs the fixed point scalar multiplication, a performance critical
operation on the scheme. With optimizations on field arithmetic, the implementation
evidence that signature schemes can be efficiently implemented on Cortex-M4 platforms
with little ROM required. At the expense of execution time, the code size can be fine-

https://github.com/hayatofujii/curve25519-cortex-m4
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tuned if needed by changing the parameters of the fixed-point scalar multiplication.
CPUs based on the ARM architecture are extremely powerful in regards to conduct

integer arithmetic, mostly with its DSP instructions executing multiply-accumulate(-
accumulate) operations in a single CPU cycle. In addition, usage of the carry flag is of
relevant importance, but also a big headache if careful manipulation has to be done,
such as by saving it into a register or doing complex handling of the flag. Unusual
operations, such as additional carry logic, are expensive, taking precious CPU cycles
to handle it properly. The DSP multiplication instructions fall in this category: albeit
having results that might overflow, the UMLAL instruction does not (re)set the carry flag,
requiring treatment by hand.

5.1 Future Works

Further developments may target protocols based on the Goldilocks/edwards448 curve,
which have a similar structure in comparison to those based on Curve25519 but regarded
to have a higher security level. In order to save ROM, the Karatsuba algorithm may be
used to step up the multiplier from a 256-bit output to a 448-bit result, required on the
underlying finite field.

Further optimizations on the 256-bit multiplication and squaring may be possible
by, instead of reducing modulo 𝑝 or 2𝑝 at the final of the operation, on-the-fly reduction
may be executed between the product scanning columns, saving up scratch registers.
Reducing register pressure aids in avoiding memory operations, which have a big
impact on implementations targeting ARM microcontrollers.

An optimized implementation using compiler intrinsics or inline assembly of the
conditional swap operation as suggested in Section 4.2.1 may further speedup the
X25519 operation. This was not done since the experimental implementation is a
handcrafted ARM assembly code, thus not subject to any compiler optimizations. As
proof of concept, implementation of them aforementioned strategy in different CPU
architectures is also desirable.
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