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Abstract

An extension to the n-p and to the x-p fading models is proposed. This is
achieved by introducing a parameter that quantifies the clustering imbalance
between in-phase and quadrature components. For the n-u fading model, the
introduction of such an imbalance parameter leads to a new fading scenario,
with both envelope and phase distributions differing from the original n-u
formulations, rendering this model even more flexible. Interestingly, in spite
of introducing a new parameter, the formulations are still given in closed-form
expressions. For the x-u fading model, the introduction of such an imbalance
parameter modifies only the phase of the process, keeping the envelope the
same. Interestingly, using some mathematical identities developed along the
derivation process, it has been possible to find an excellent approximation
for the phase distribution, given in closed-form, avoiding the intricacy of the
integral solution. In both fading models, first order and higher order statistics
are found in closed-form formulations. In addition, the same approximation
procedure is carried out for the a-n-x-p phase distribution, resulting in an
unprecedented never before seen series expansion expression.

Key-words: wireless fading model, n-u complex model, k-p complex model,
a-n-k-p complex model, phase-envelope joint distribution, phase distribution,
envelope distribution.



Resumo

Este trabalho tem como objetivo apresentar uma extensao para o modelo
de desvanecimento n-p e k-p. Para tal, foi necessario introduzir um novo
parametro que quantifica o desbalanceamento de clusters de multipercurso en-
tre as componentes fase e quadratura. No modelo 7-u, tal parametro permitiu
explorar novos cenérios de desvanecimento em ambas distribuicoes de fase e
envoltéria, tornando o modelo mais flexivel. Apesar da insercao deste novo
parametro, as formulagoes obtidas ainda se encontram em forma fechada. Para
o modelo k-u, a introducao do parametro de desbalanceamento de clusters
modificou apenas a distribuicao de fase do processo, mantendo a envoltéria
idéntica ao modelo tradicional. Devido a complexidade do modelo k-pu, as
equacoes exatas de fase sao apresentadas no formato integral. Interessante-
mente, usando algumas identidades matematicas obtidas ao longo dos procedi-
mentos, foi possivel definir uma excelente aproximacao para a distribuicao de
fase, dada em forma fechada. Este resultado evita qualquer possivel compli-
cacao decorrente do processo de integragao observado na solucao exata. Para
ambos os modelos, estatisticas de primeira ordem e ordem superior sao apresen-
tadas em expressoes em forma fechada. Além disso, aproveitando os métodos
aqui desenvolvidos, uma aproximacao em expansao em série da distribuicao de
fase do modelo a-n-k-pu também é apresentada.

Palavras-chave: modelos desvanecimento sem fio, modelo complexo n-u, mo-
delo complexo k-, modelo complexo a-n-k-u, distribuicao conjunta de fase-
envoltoria, distribuicao de fase, distribuicao da envoltoria.
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Chapter

Introduction

Wireless communications are considered the bridge that undeniably connect
every person and, soon, every object in the world. Recent predictions estimate a total of
20 billion wireless devices activated by the year 2020 [4]. As the number of daily users
constantly increases, new technological demands, such as higher data speed, low latency
and energy efficient devices, arise as intricate challenges. With the advent of 5G, some
of these problems are expected to be solved, and wider range of applications are to be
developed [5], these include: (i) Vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation; (ii) autonomous vehicles; (iii) remote health services and health care monitoring;
(iv) augmented and virtual reality; and (v) smart cities and smart homes. Hence, to at-
tain such technological development and in order to encompass all possible communication
scenarios, the wireless channel has to be properly understood and characterized.

Fading is certainly a phenomenon to be deeply investigated. As well known,
wireless signals are characterized by long and short term fadings [6]. The former is de-
fined by the shadowing phenomenon, which occurs due to large scale obstructions between
transmitter and receiver, e.g. mountains and buildings, and due to the absence of diffrac-
tion at very high frequencies, i.e. 20GHz to 300GHz. The short term fading, by its turn,
is related to multipath propagation. This phenomenon is a consequence of the physical
singularities that affect electromagnetic waves, such as: (i) reflection; (ii) refraction; (iii)
diffraction; and (iv) scattering. As a result, the signal is subjected to constructive and
destructive interferences, and delays. Signals affected by multipath fluctuates rapidly,
reaching a dynamic range of tens of decibels [7].

In an attempt to better characterize the fading phenomenon, a set of distribu-

tions have been proposed to describe the radio channel statistics. It is known that the
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long-term signal variation is well characterized by the Lognormal distribution. Some alter-
natives for it, with no physical ground, e.g. Gamma, Nakagami-m, have been used only for
the sake of mathematical tractability. The short-term signal variation is well described by
several established models, most notably Rayleigh [8], Rice [9], and Hoyt [10]. Such mod-
els have been derived jointly in terms of envelope and phase. Even though both envelope
and phase probability density functions (PDFs) are obtained in closed-form expressions,
the envelope statistics have been more frequently the focus of most researches. Following
the intense use of the envelope statistics in wireless communications applications as well
as the need for even better descriptions of the channel, new envelope-related models have
arisen. These include Nakagami-m [11], followed by more general, yet mathematically eas-
ily tractable, models, namely, a-p [12], k- [13], n-p [13], a=-n-p [14], a-k-p [14]. In order
to investigate the phase processes, models for the complex signals in Nakagami-m [15,16],
n-p [17], and k-p [18] scenarios have been proposed, with their corresponding joint phase-
envelope PDFs. Even more recently, the a-n-x-1 model has been proposed [19], comprising
all of the mentioned models and Beckmann’s distribution [20].

As well known, both envelope and phase statistics are useful in wireless commu-
nications systems. The envelope statistics are widely used in the performance analyses of
systems involving diversity, modulation, coding, among others [21]. In addition, the level
crossing rate (LCR) and average fading duration (AFD) are useful second order statistics
for the development of error correcting codes [22] and diversity schemes in mobile sys-
tems [7]. The phase statistics are largely used in radar clutter and signal detection [23],
and error probability for M-phase signaling over fading channels [24]. Furthermore, the
phase crossing rate (PCR) is a necessary statistic introduced in [25] to evaluate noise clicks
in FM systems. Other investigations show that the PCR is equally important to: (i) define
the average number of noise spikes and slipping events [26,27]; (ii) measure rate perfor-
mance of FM receivers using limited-discriminator detector wherein FM random spikes
are generated by phase jumps; and (iii) determine the format of noise spikes [28].

In a non-dominant component condition and in a linear environment, the n-u
distribution arises as a very flexible model. This is a general fading model, which has
Nakagami-m and Hoyt as special cases. It is known that the -y distribution has added
flexibility and reliability in the analysis of realistic fading scenarios. Some comparisons,

in [13], show that the n-u distribution is more suitable than the Nakagami-m model in
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several field measurements scenarios. Moreover, it is noteworthy that its tail portion
follows the true field statistics where other distributions fail to yield good fit. The n-u
distribution can also be used to approximate the distribution of the sum of independent
non-identically distributed Hoyt variates [29]. More generally, it can also approximate the
sum of n-p random envelopes. Recently, n-u statistics have been used in several instances,
including the following: (i) performance analysis of a mixed radio-frequency and free-space
optical system [30]; (ii) performance of energy detection for spectrum sensing in cognitive
radio [31]; (iil) performance analysis of relaying networks [32]- [33] and selection combining
diversity [34]; and (iv) spatial modulation schemes [35].

The k-p model, by its turn, is used in dominant component scenarios, with
k being defined as ratio between the power of dominant components and the scattered
components, and with p representing the number of multipath clusters. In this model,
Nakagami-m and Rice distributions arise as particular cases. The x-p model is highly
flexible and ensures excellent adjust to field data in different scenarios. Some of its statistics
have been widely used such as in: (i) the evaluation of outage probability of diversity
receivers [36]; (i) in the analysis of co-channel interference with background noise [37]
and its impact in body area network [38]; (iii) the assessment of channel capacity of
spectrum aggregation systems [39]; (iv) the analysis of average symbol error rate and
diversity gain [40]; and (v) the energy detection scheme of spectrum sensing in cognitive
radio systems [41].

More recently, the a-n-r-p fading model [19] has been proposed. It captures
virtually all fading phenomena reported in the literature for wireless communications,
namely nonlinearity of the medium, power of scattered waves, power of dominant com-
ponents and multipath clustering. With this, the a-n-x-pu model comprises a multitude
of different fading settings, encompassing all of those mentioned before, and some not
yet established in the literature. As for its statistics, the joint phase-envelope PDF has
been obtained in closed-form formulation, and as for the envelope PDF, a series expansion
expression was developed. Unfortunately, no closed-form equation was available for the
phase PDF. Although it is still a novelty, the a-n-x-u model has already been subject of
recent investigations. In [42], the authors obtained some higher order statistics in integral
form, and explored its envelope PDF fitting performance over data collected in a mmWave

propagation scenario. In [43], the authors investigated the channel capacity under different
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adaptive transmission techniques operating in a-n-x-p fading channel. Finally, in [44], the
authors proposed an a-n-k-p sample generator and an application which calculates the

average bit error rate over BPSK modulation scheme.

Main Contributions

The aim of this thesis is to propose an Extended model for the n-p and x-pu
complex signals based on the results presented in [19]. This model introduces an imbalance
parameter p describing the ratio of the number of multipath clusters of the in-phase and
quadrature components. Strikingly, despite the introduction of a new parameter, the
formulations for the PDFs of the Extended models are still presented in mathematically
tractable closed-form expressions. For the Extended n-u, it is anticipated that p will have a
significant influence on the behavior of both phase and envelope distributions. In addition,
new cumulative density functions (CDF) are provided for the envelope and the phase
statistics. Other envelope statistics are presented, namely moment generating function
(MGF), and average bit error rate (ABER) for binary phase shift keying (BPSK) and
binary frequency shift keying (BFSK) modulation schemes in a diversity scenario. Higher
order statistics are also derived, which includes level crossing rate, average fading duration
and phase crossing rate. As for the Extended k-p model, the imbalance parameter affects
only the phase PDF. Thence, only phase related statistics are derived, which also includes
the phase crossing rate. Based on the elegant method developed in [45], an approximate
tight closed-form expression is determined for the phase PDF and PCR. When compared
to their exact counterparts, these formulations render excellent results. Finally, by using
the same approximation technique, a new expression is obtained for the phase PDF of the
a-n-k-p fading model. For such a process, a more tractable series representation for the
envelope PDF is derived. In addition, interesting outcomes have emerged from all these
procedures, which includes new mathematical identities for the modified Bessel function

and novel random variables.

Structure

This thesis is organized as follows:

— Chapter 2 provides a statistical guide on all mentioned fading models throughout
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the thesis, namely Hoyt, Rice, Nakagami-m, n-pu, k-p and a-n-x-p distributions.

— Chapter 3 proposes a new extension for the n-p fading model wherein an intrigu-
ing new parameter is introduced. This parameter indicates cluster imbalance, and
hence, new phase and envelope PDFs are determined. As a consequence, a complete
statistical analysis will be carried out, that leads to novel higher order statistics and

performance metrics formulations.

— Chapter 4 extends the traditional x-y fading model, by introducing the same cluster
imbalance parameter. Unlike the Extended n-p distribution, the new parameter
affects only the phase statistics. More importantly, an approximate tight closed-

form expression is found for the phase PDF and PCR.

— Chapter 5 develops a new series expression for the envelope PDF of the a-n-x-p fad-
ing model. With the approximation method employed in Chapter 4, an approximate

formulation is also propose for the phase PDF.

— Chapter 6 concludes this thesis with perspectives and future work.
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Chapter

Fading Models Revisited

This chapter revisits first and second order statistics of the consolidated Rice,
Hoyt and Nakagami-m fading models, and of the general x-u, n-p and a-n-k-p fading
distributions. The Rice distribution [9] is commonly used in fading signals with dominant
components. The Hoyt distribution [10], in the other hand, is suited for signals with
a power imbalance between its in-phase and quadrature components in non-dominant
component scenarios. Nakagami-m is a classic wireless communication distribution and is
generally applied in moderate fading settings. The x-u and n-p distributions are general
fading models and represent small-scale signal variations in non-dominant component and
dominant component conditions, respectively. Both distributions have been extensively
used for general fading characterizations and as special cases these models enclose Rice,
Hoyt and Nakagami-m distributions. More recently, the very general a-n-x-p model has

been proposed, which comprises all distributions mentioned in this chapter.

2.1 The Rice Fading Model

The Rice complex signal is given as
S=X+p)+iY +aq), (2.1)

wherein X and Y are Gaussian distributed random variables with zero mean and equal
variance o2, and p and ¢ are the mean values of the in-phase (X) and quadrature (Y)

components, respectively. The envelope R and phase © joint distribution is found as [9]
2

(1+k)r r

fre(r,0) = =3 €XP (—k — (1 + k) +2/k(1+ k) cos(f — ¢);> , (2.2)

™ T

in which » > 0 and —7 < 6 < 7 holds, k = (p* + ¢*) / (20?) is the Ricean parameter,
o =72/ (2(1+k)), 7 = E (R?) is the mean value of the envelope, and ¢ = arg(p + jq).



23

By integrating (2.2) in terms of 6, the envelope PDF is obtained as
2

fr(r) = Wexp <—k‘ —(1+ kr);) Iy <2m;> ; (2.3)

where Iy(z) is the modified Bessel function of the first kind and order zero [1, Eq. (9.6.16)].
After integrating (2.2) in respect to r, the marginal phase PDF is calculated

as

fo(0) = (1 + 7k cos(0 — ¢) exp (k: cos? (0 — (b)) (1 + erf (\/Ecos(e — gb))))

&P (=F) (2.4)
2m
where erf(z) is the error function [1, Eq. (7.1.1)].
The level crossing rate is defined as
Ng(r) = /0  fron(r, 7) i (2.5)

with fp r(r,7) denoting the joint PDF of R and its time derivative R. For the Rice fading
model, the LCR is expressed as [9]

Na(r) = %(1; L <—k 14k 2) I (2,/k<k I 1);) . (26)

r
f2

In similar fashion, the phase crossing rate is established as
No(6) = /0 0fe o(0,0)d0. (2.7)

where fg (0, f) is the the joint PDF of © and its time derivative ©. Thus, the Ricean
PCR is obtained as

Ne(0 1+ erf (\/E cos(6 — (b))) exp (—k sin?(0 — (b)) : (2.8)

_ fm
R

with f,,, denoting the maximum Doppler shift in hertz.

2.2 The Hoyt Fading Model

The Hoyt complex signal is given as
S =X+7Y, (2.9)

where X and Y are the in-phase and quadrature components, with each following a Gaus-

sian process with zero mean and arbitrary variances o, and o, respectively. The envelope

R and phase © joint PDF is found as [10, Eq. (2.15)]

fro(r,0) = 7r\/1r——b? exp <_1i62(1 — bcos(26))> , (2.10)
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in which r >0, —7 < 6 <7, and b = (afc — 05) / (Ui + O';) is the Hoyt parameter.

The envelope PDF can be evaluated as [10, Eq. (3.4)]

fR&)::véiig(mp<—li%$>]b<17¥ﬂ>. (2.11)

The phase PDF is obtained by integrating (2.10) with respect to r from 0 to
oo [10, Eq. (6.3)],

V1—1b?
fo(0) = .
27(1 — beos(20))
The LCR of the Hoyt distribution is found in integral-form as given in [46]

B 22 fr u os(20) ex _T2(1 — bcos(20))
A%wy_vqu_bgfww1+b (26) p( = )d& (2.13)

And the Hoyt’s PCR is calculates as [47]

_ Jm
22’

wherein f,, is defined as the maximum Doppler shift in hertz.

(2.12)

No(6) (2.14)

The Hoyt fading distribution is also known as the Nakagami-¢ model. As
special cases, when b — 0, the Rayleigh fading model is obtained, and by properly manip-
ulating 0 in terms of o, and o, the unilateral Gaussian model is also attained. Moreover,
Hoyt statistics are widely used to describe the signal amplitude distribution over a satel-
lite link subjected to ionospheric scintillation [48,49], and in wireless link performance

investigation [50-54].

2.3 The Generalized Nakagami-m Fading Model

The Nakagami-m model was first derived empirically in [11]. Since then, it
has been extensively used due to its mathematical tractability and accurate descritive
power of real world fading scenarios. Nevertheless, a physical model contemplating the
envelope distribution was proposed in [55]. On the other hand, its phase distribution,
first assumed uniform, was then found to be non-uniform, arising from a physically-based
fading model [15]. More recently a generalized model was presented in [16], in which a
phase parameter was introduced by allowing different number of in-phase and quadrature
multipath cluster in the fading channel.

A Nakagami-m signal is given as

S =X +jY, (2.15)
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in which
My my
X?=Y X} and Y*=>Y7 (2.16)
i=1 i=1
where X; and Y; are Gaussian distributed random variables with zero mean and equal vari-
ances, and m, and m,, are the number of cluster multipath in the in-phase and quadrature

components, respectively. In addition, m, and m,, are related as follows
2m = my +my, (2.17)

in which m is the original Nakagami-m parameter.

The phase parameter —1 < p <1 is defined as

mx —my
=X 7 2.18
T (2.18)

in which: (i) p = 0 stands for the balanced condition where the number of multipath
clusters are equally distributed within the in-phase and quadrature components; p # 0
stands for the unbalanced condition; and (ii) p = 1 or p = —1 signifies that all Gaussian
components are either concentrated in the in-phase or quadrature component.

The phase-envelope joint PDF is found as [56]

fre(r,0) = (2.19)

m™ |sin @ cos O™ r2m—1 mr?
mT ((14p 1-p pm XP | T Q )’
Qrr (Tm) r (Tm) |tan 0|
wherein r > 0 and —7 < 6 < 7, I'(z) is the Gamma function [1, Eq. (6.1.1)], and
Q) = E (R?) is the mean value of the envelope.

By integrating(2.19) in terms of 6, the envelope PDF is calculated as

2mmy?m=1 mr?
fr(r) = O (m) exp <_Q> : (2.20)

Similarly, the phase PDF is obtained, after integrating (2.19) with respect to

0, as )
I'(m) [sing|™
0) = . 2.21
fol®) 2mT’ (HTpm) r (PTpm) |tan 6" (2.21)
Finally, the LCR [55] and PCR [16] are found as
\/iﬂ_fmmmfé,,ﬂm—l r2
_ _r 2.9
Nalr) = S e (5 (2.22)
and . X
7 fon |sin(20)|™ " T (m — 5
No(g) — Yl [smCOI" T (m ) 2.25)

B om+3T (ml#) r (mlfp) |tan 6"™
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where f,, is the maximum Doppler shift in hertz.
Note that when p = 0, the balanced case is attained, and all equations presented
here for the Generalized Nakagami-m reduce to their classic approach. Moreover, for p = 1

and m = 1, the Rayleigh fading model arises as a special case.

2.4 The n-pu Fading Model

The n-p distribution is a fading model used to represent the small-scale varia-
tion of the signal in a non-dominant condition [13]. As implied, the distribution is known
to describe two different physical phenomena based on the definition of the parameter
n. In Format 1, the in-phase and quadrature components of the signal are independent
from each other and have different powers. In addition, 0 < 7 < oo is defined as the
scattered-wave power ratio between the in-phase and quadrature components of each mul-
tipath cluster. In Format 2, the in-phase and quadrature signals have identical power and
are correlated with each other. In such a case, —1 < n < 1 is the correlation coefficient
between the scattered-wave in the in-phase and quadrature components of each cluster of
multipath. In both formats, the parameter > 0 is defined as the number of multipath
clusters.

The n-p complex signal is described as follows,
S =X+7Y, (2.24)
in which the real (X) and imaginary (Y') parts of the signal are represented by

21 21
X?=Y X} and Y*=>Y7 (2.25)

i=1 i=1
wherein X; and Y; are random Gaussian variables with zero mean and arbitrary variances
o2 and O'Z. In Format 1, X; and Y; are independent and n = 02/ 05. In Format 2, X;
and Y; are correlated processes and their variances are defined as o2 = 03 = 72, and
n = E (X;,Y;) /#* indicates the correlation between clusters. An n-u signal with envelope

R and phase © has a joint phase-envelope PDF fr ¢(r,0) defined as [17]

fre(r,0) =

22 R sin (260) [ 2phr?
T

(W2 — ) 74T2 (1) hQ——H?) (h+ H cos (20))) . (2.26)

where: (i) 7 = /E(R?) is the RMS value of R; (ii) h and H are functions of n and

provide different relations for each format; (iii) g > 0, the number of multipath clusters,
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is given by p = (E2(R?)/2Var(R?)) (1+ (H/h)?); and (iv) E(-) and Var(-) indicate the
expectation and variance operators, respectively. In Format 1, the terms h and H are

defined, respectively, as

2 —1 -1 _
po GE A g g (2.27)
4 4
and in Format 2, they are described, respectively, as
1 1
h=—— d H=-—"—. 2.28
7 an = ( )

Thus, from these relations, it is possible to obtain one format from the other by applying

L —mn
2.29
T 1+ 1, ( )
or
IL—m
, 2.30
2 1+ ( )

where 7; and 7, are the parameter n for Format 1 and Format 2, respectively.
From (2.26), envelope [13] and phase [17] marginal PDFs are obtained, respec-
tively, as
AT\ 2 r\?2 7\ 2
S Al iy —2uh <> I (2ouH () 2.31
fr(r) I (p) H-57 <T> exp | =2uh = ) [y (20 H | 2 (2.31)

and

fol0) = (h? — H*)" T (2p) |sin (20) "
OV o (11)* (h + H cos (20))*"

where [,,(z) is the modified Bessel function of the first kind and arbitrary order v [1, Eq.

(2.32)

9.6.20]. Note that, in Format 1, n is symmetrical around n = 1. In other words, within
0 < n < 1, the envelope PDF yields the same values as for within 0 < n~* < 1. On the
other hand, within 0 < n < 1, in Format 2, the envelope PDF yields the same value as for
within —1 < n <0, which means it is symmetrical around 1 = 0.

As indicated in [57], the LCR for Format 1 is represented in an integral-form

as

2u—%  Ap—1 z
Ng(r) = fm\/;ﬂazlﬁtgzi)l 7?4%: - /0 Sin(29)2“71\/l +n— (1 —n)cos(20)

X exp <((1 +0)° + (1 =1 cos(29)) 2/;;2> de. (2.33)

The PCR is obtained in closed-form expression as [57]

No(0) = Fd/T 3T (2 — )| sin(20) 24
’ 22T2(1) (1+ 1+ (1 — ) cos(20))*

(2.34)
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wherein f,, is the maximum Doppler shift in hertz.

Finally, for all formulations presented in this sections, the original Nakagami-
m distribution can be obtained in an exact manner by setting u = m/2 and n — 1 in
Format 1, or n — 0 in Format 2. Also, the Hoyt distribution can be attained by setting
p=0.5and n=(1+4+0b)/(1 —b)in Format 1, or n = —b, parameter in Format 2, where b
is the Hoyt parameter. Other special cases consist of the unilateral Gaussian distribution,
by setting n — 0 or n — oo in Format 1, or n — +£1, in Format 2, and the Rayleigh
distribution for ;4 = 1/2 and adjusting n = 1, in Format 1, or n = 0, in Format 2 [13].

2.4.1 The Generalized 7n-; Fading Model

Following the same approach as in [16], the authors of [58] introduced cluster
imbalance with the phase parameter p to the -y model. According to the Nakagami-
m model, the generalized n-p distribution is related to its classic counterpart by setting
p = 0. Also, when n = 1 and g = m/2 in Format 1, or n — 0 and p = m/2 in Format
2, the expressions for the generalized Nakagami-m model are obtained. Thus, the joint

phase-envelope PDF for Format 1 is revealed as

fr 6(7’ 9) (1 +p)u(1+p ( ) (1 + 77)2#1“2H | cos 0|2u(1+p) 1 |Sln 9|2N (1-p)— E
, ) nu(lﬂ? ( ( p)) ( ( p)) e
2
e ( BLDE (14 ) cos? 0 + (1= ppysin?o) :2) ) (2.35)

with r > 0 and —7m < 0 <.

As hinted in [59], the envelope marginal PDF is indicated in integral-form as

fr(r) = _7; fre(r,0)do. (2.36)

The phase PDF for Format 1 is given as

T (2u) (1 — p)=P)(1 + p)r(t+p)gu(i=p)

fol0) = (W1 +p) T (u(1 —p)) 1+ p+n(—p) + (1 +p) — n(1 — p)) cos(20))?
 SSmEOI™ (2.37)
|tan 6|+
The PCR for Format 1 is found as [59]
T fm -1 n+p) (1 — p)rA=P)pu(i=p)=5 o 2u—1
No() — Vaful (20— 3) (14 p)ra+2) (1 — p)rti=py Isin(26)|

23 T —pPT(p(1 + p))T((1 — p)) [tan 6|7
X (1+p+n(l—p)+((1+p) —n(l —p))cos(26)) . (2.38)
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Note that Format 2 is attainable from (2.35), (2.37) and (2.38) by setting the

parameter 7 as
(1 —m2)(1 +p)

T ) —p)
in which n; and 7, are the parameter n in Formats 1 and 2, respectively. The Format 2

(2.39)

counterpart is given as
_(A+p) - —p)m
(I+p)+ (1 —p)m

2.5 The x-i Fading Model

g (2.40)

The k- distribution is a general fading model which has been used to represent
small scale variation in a linear medium and with dominant components [13]. As can be
seen, the distribution has two important parameters: (i) x > 0, indicating the ratio
between the power of all dominant components to the power of the scattered waves; and
(ii) p > 0, representing the number of multipath clusters of the received signal.

The complex x-p signal is defined as
S=X+jY, (2.41)

in which the in-phase (X) and quadrature (Y) components are defined as
p 1
X2=Y(X;+p) and Y?2=3 (Yit+a), (2.42)
=1 =1
wherein X; and Y; are independent Gaussian distributed random variables with zero mean
and equal variances o2, p; and ¢; indicate the mean values of the in-phase and quadrature
signals of the multipath waves of clusters with index i, and p represents the number of
multipath clusters. The power of the in-phase and quadrature components are defined as
2% 2%
p? = pr and ¢*> = qu (2.43)
=1 =1
Then, x is represented as the ratio between the total power of dominant com-

ponents to the power of scattered waves, as indicated in

2 2
P (2.44)
2402

The variance o2

7 =./E (R?), leading to

is written in terms of x, u and the RMS value of the envelope

2 P
= ——. 2.45
’ 2u(1 + k) (245)
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Now, by defining the phase parameter ¢ = arg(p+jq), p and ¢ can be rewritten

| K
= P 2.4
P 1+Hrcos¢ (2.46)
Ko ..
q= T sn b. (2.47)

With this in mind, the envelope R and the phase © joint PDF can be properly

as

and

calculated as

1 4 & 1 .y
fre (r,0) = 55175(14—%) “,uQA o |sm29] |sin 26" 2
r r
In_q (2 1 0 = h (2 1 0 =
X In 1( \/m,u]cos cos ¢ f) sec ( VE(L+ K)pcos cos¢f)
. . r . . r
X Lu_y (QMM |sin 6 sin ¢@| f) sech (2\/%(1 + K)psin @ sin gzﬁf)
2
X exp (—/w —(1+ rﬁ),u% + QMM cos(f — @) ) (2.48)

in which » > 0 and —7 < # < 7. An indeterminacy is encountered in (2.48) when ¢ = nrw

13

or ¢ = (2n+1)mw/2 with n € Z. However, these can be easily solved resulting, respectively,

in
| 1,8 r3 et u
frRe(r,0)s=nr = pER2TT (14 k)27 % ——[sin )" |cos 6]
30
XIp_y (2 K(1+ k) |cos b 7:) sech <2 k(1 + K)pcos 97:)
? 7
2
X exp ( (1+/£),u72 — K+ 24/ k(1 + K)pcos b cos p— ) (2.49)
and
1 1k 1_p 1, 3u 7"% X I
fro(r, ‘9)¢,(2n+)w = p'trrETT (14 /{)2 1 T |cos 9|“ |sin 6] 2
a0
T r
Te_4(2 1 inf|— h (2 1 in6—
xIu 4 ( \/E(1 4+ k) |sin 0] f) sec ( \E(1+ K)psin f)
r? T
X exp (—(1 + Ii),uﬁ — Kt + 24/K(1 + k) psin @ sin ¢f> . (2.50)
By integrating (2.48) in terms of #, the envelope PDF is found in closed-form
as

fr(r) = Q;Ml + /s)“?r’;) exp (—u(l + k) <;>2> Iy (Q,u\/m:) . (251)
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Then, by integrating (2.48), (2.49) or (2.50) in respect to R, the marginal phase

PDF is obtained as
fo() = [ fro(r.0)dr (2.52)
However, as indicated in [18], no closed-form expressions were found for this statistics.
Hence, in order to fill this gap, [45] derived a new approximation method leading to a
tight-closed approximation for the x-p phase PDF. This expression was shown to be very
accurate by maintaining all original properties of the exact phase PDF| including minimum
and maximum values, occurring at values of 6 close to these of the exact PDF. The tight

closed-form approximation of the phase PDF fp(6) is given as

fo(0) =~ fo(0) w1 R |sin 26’|% |sin 2¢>|17% exp (2\/1{(1 + k) pcos( — gb))

:4Iu—1 (2\/%;(1 + fi),u)
X Ju_y (2\//1(1 + K)p |sin @ sin ¢]) Tuy (2«//—@(1 + k) |cos 0 cos q5|>
X sech (2«/&(1 + k) cos b cos ¢) sech (2\/%;(1 + K)usin @ sin q§> , (2.53)

where O is the new phase random variable.

The particular cases for ¢ = nm or ¢ = (2n + 1)7/2 are represented as follows

n

k(1 + Kk u
Jo(0) p=nz = ( i |sin )"~ |cos 62 exp (2\/&'(1 + k) cos b cos gb)

2r (%) 1,1 (2\/5(1 + K)u)
X Lu_y <2\//£(1 + k) |cos 9|) sech (2\/%&(1 + k) cos 9) (2.54)

and

k(1 + K)p

fol6) temgpne = o (4) Lt (2y/w(1 + wn)
X Lu_y <2\/m(1 + K)u |sin 9|) sech (2\//£(1 + K)psin 0)
X exp (2\/#;(1 + K)psin 6 sin gb) : (2.55)

lcos 0] |sin 0] 2

Surprisingly, (2.53) has as particular cases: (i) the exact Nakagami-m phase
distribution which is obtainable by setting x — 0 and p = m; and (ii) the von Mises
distribution for k = k and p = 1.

The LCR of the k-u model is described in closed-form as [60]

g 2
Ni(r) = \/27‘('/1(1:-1/?) Jfm fzil exp (—KJ/L —(1+ K)ML) I, (2\//41(1 + ﬁ)p?) . (2.56)

K 2



32

Finally, the PCR is written in integral-form as follows [45]

ptl 3

L+ )5 [sin20] ¥ [sin 26|~ % exp (—rcp)

No(0)= 702 it

/0 Fur1 OXP <_<1 +h)mg + ZMM cos (0 — o) 7ﬁ>
LT ,
x Iu_, (A/Mu |sin 6 sin ¢| f) Luy (QMM |cos 0 cos ¢| f)
r r
X sec ( MMCOS COquf) sec ( \/mMsm smgzﬁf) r.(2.57)

Here again, the authors in [45] proposed a closed-form approximation which is

represented below as

No(8) ~ N@(g):ﬁfm\/ﬁgl + K)pl’ (u - %) 1Fh (%;M; —HN) ‘Sm(%”% ]sin(2¢)|1_%
23T () Ly (2¢/K(1+ R)ps
X Ju_y <2\//<(1 + k) |sin¢9$ingz5|) Iu <2\//<(1 + k) |cos B cos qz5|>
x sech (2\//1(1 + k) cos 6 cos qﬁ) sech <2\//£(1 + K)psin 0 sin ¢)

X exp (2\/m,u cos(f — gb)) : (2.58)

In a similar fashion, particular cases for ¢ = nm and ¢ = (2n + 1)7/2 can also

be calculated, resulting in
y —RU _ 2
) Isin 0]* " |cos 6] 2

x sech (2\//41(1 + K) cos 9) Tu g (24/K(1 + K)p|cos 0\)

X exp <2 k(1 + k) cos 8 cos q§> (2.59)

and

VEfpERE (L4 k)T (= 3) 1 Fy (35— k)
25T (§) T (1) Lumr (24/(1+ m)pr)

x sech (2\/5(1 + K)psin 9) Iuy <2 k(14 K)p |sin0\>

X exp (2\/5(1 + k) sin 0 sin (b) : (2.60)

It is important to reiterate that all x-p statistics, including both exact and

- #=11gin §| 2
No(0),_.. Crsi)r |cos 0" |sin 4|

=

approximate cases, are reducible to the classic Nakagami-m model (p = 0) when k — 0
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and = m. Also, for all exact k-u statistics, Rice fading model arises as special cases by
setting kK = k and p = 1. For all approximate x-p formulations, the von Mises distribution

is obtainable as an approximation to Rice distribution, where x = k and p = 1.

2.6 The a-n-x-p Fading Model

The a-n-x-p distribution is a very general complex fading model derived to
encompass all relevant short-term propagation phenomena depicted in the literature [19].

The complex a-n-x-p signal model can be described as
S=X+jY (2.61)

where X and Y correspond to in-phase and quadrature signals whose PDFs fx(x) and
fv (y) follow that in (2.64), by substituting the parameters o, A, and . by the parameters

Oz, Ay and pig, or oy, A\, and p,, as required. The envelope R and phase © are defined as
R* = X?*+Y? (2.62)

and
O =arg(X +jY) (2.63)

wherein o > 0 represents the nonlinearity parameter.
The building block for such a complex model is entrusted to a general quadra-
ture PDF indicated, as follows, by the general process Z [19]

e —A:)* A
% e (25°) 1 ()

Lz ?
2 = -1 Z\
202|\,|2 " cosh (—05)

fz(2) = (2.64)

in which: (i) —oo < z < oo; (ii) 2 is the power of one multipath cluster and o, > 0; (iii)
A2 is the power of dominant component of all clusters and —oco < A, < oo; and (iv) p, > 0
is the number of multipath clusters.

In addition, let W = Z2 be the corresponding power random variable. The

PDF of W, fw (w), is represented as

bw 1 w—A2, Aw W
] 72 exp (=43 ) Ty (2242)

fw(w) = o . (2.65)

202 \?

with i, = ptz, Ay = |A.| and 0, = 0.
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Before proceeding to the model PDFs, let us discuss some of the many param-
etrizations available for the a-n-x-p distribution [19], denominated: (i) Parametrization-0
(raw parametrization); (ii) Parametrization-1 (local parametrization); and (iii) Parametri-
zation-2 (global parametrization). Each format has its uniqueness and represents a set of
physical parameters. For Parametrization-0, the PDFs make use of already defined in-
phase (X) and quadrature (Y') parameters, which are o, and o,, A, and \,, and p, and
fy. In Parametrization-1, the parameters are switched out to local conventional param-
eters known as: (i) s, and k,, representing the ratio between the total power of the
dominant components and the total power of scattered waves, i.e. r, = A2/ (u,02) and
iy = Ao/ (uyai); and (i) 77 = E(X?) and 77 = E (Y?), indicating the mean value, and
72 = peos+ 2. and 7, = p.0, 4+ A2, Finally, in Parametrization-2, the PDFs are described
in terms of comparative parameters, namely: (i) 7* > 0, denoting the mean value E (R%),
Le. 7% = 07 + X + pyo, + A2 (i) » > 0, defining the ratio of the total power of
in-phase and quadrature scattered waves of the multipath clusters, i.e. n = 02/ 05; (iii)
k > 0, indicating the ratio of the total power of the dominant components and the total
power of scattered waves, i.e. k= (A2 4+ A)/ (1207 + p1,07); (iv) u > 0, representing the
total number of multipath clusters, i.e. © = (uy + py)/2; (v) p > 0, portraying the ratio
of the number of multipath clusters of in-phase and quadrature signals, i.e. p = p,/p,;
and (vi) ¢ > 0, giving the ratio of two ratios: (a) the ratio of the power of the dominant
components to the power of the scattered waves of the in-phase signal to (b) its quadrature
counterpart, i.e. ¢ = A2/ )\2. As can be observed, all Parametrizations are intrinsically
linked. For completeness, three other relations are shown below as follows: (i) in (2.66),
the raw parameters are rewritten in terms of global parameters ; (ii) in (2.67), the local

parameters are redefined as global parameters; and (iii) in (2.68), the global parameters

(1+p)7 2
2(1+n) 1+H),u

1
2

are represented in terms of local parameters.

o= (2(1 +(17)421pi K)up) 2

1

o negre :
TN+ k) (gn+1) Y 1+/< qn—l—l)
2pp

Ma::m Hy = 37—

>
Il

(2.66)

1+p
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_ (I +n)gr _ (A +n)k
N 1+qn Y 1+4qn
1 1
. _(n(1+q(n+n+nn))fa>2 . _( (1+ &+ n(q+ k)P~ )2 (2.67)
’ (I+n) 1+ k)1 +qn) Y (I+n)(1+r)(1+qn) '
o l+p Yol
Ke(1+ k)2 + Ky (1 + /iy)fj (1+ /iy)fi
A — =
(14 K2)P2 4 (1 + Ky)72 (1 + K,)72
= 72 4 72 g="= (2.68)
Ry

With these in mind, and considering Parametrization-2, the a-n-x-p signal has
a joint phase-envelope PDF fr o(r,6) given as
ap®p(1+m)*(1+ k) (1 +qn)= !

20(1 + p)2(qn) T 2k
< exp (_ (L+m)rp(l+pg)  (L+n)(L+ k) (nsin®f + pcos®0) 7“")

Tre(r,0) =

e (t2)-1

. e up.
|SlIl 6| I+p ’COS 9| 1+p W

—

(1+p)(1+qn) n(1+p) o
2(1 4+ n)pcos(0 — ¢) [nr(l+ k) (n+ p>q)r?
XeXp( n(1+p) \/ 1+qn ﬁ)

R
R

I 2(1+n)ulsinb] [r(ltr) r2 ) 7 o 2(1+m)pplcos 0] [nrq(1+k) r
THp ! 1+p I+qn 7 it n(1+p) I+qn 7

2(4n)plsin 8] [k(14k) r2 2(1+n)ppleos ] [nrq(l+r) rE
COSh( 1+p I+qn #% cosh n(1+p) I+qn 75

wherein r > 0, —7 < 0 < 7 and ¢ = tan™! ((1/p) (n/q)%).

Q)

X

) (2.69)

R | NIR)

From (2.69), the phase and envelope marginal PDFs can be promptly obtained
by performing an integration with respect to R and ©, respectively. Note that (2.69)
is rather elaborate, and therefore, no closed-form formulations for the marginal PDFs
could be found from this approach. In order to fill this gap, [19] developed an envelope-
based approach, where the relation between the envelope R and in-phase and quadrature
components X and Y given in (2.62) was used, in which X? and Y? denoting the power of
two independent k- variables, with their respective PDFs being indicated in (2.64). As
defined in [19], with U = X? and V = Y2, the PDF of a-7-x-u envelope can be evaluated

fr(r) = ar® /OTa fo(u) fy(r® —u)du (2.70)

falr) =ar® [ fulr = o) fue) do (2.71)
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wherein fy(u) and fi (v) follow the PDF in (2.65) with pu,
My = My, )\v =

i = Uz, )\u - |)\x|; Oy = Og,
|\, and o, = 0,,.

To solve these integrals, the author in [19] proposed a series expansion formu-
lation. This equation, however, is quite complicated to implement due to its recursive

nature, and its convergence is largely dependent on parameters

The exact LCR and PCR are given in integral-form, respectively, as [42]
V2T k™ 5(1+k =a
(1+djn2 U85

T

a ]sin9|$ ]cos&|%
1+ p)32(1+ qn)l_% prolut?) J o
(1 +n)rpul + pg)
x/p (d?n cos? § 4+ psin® 0) exp (—
v P\ ) an)

H .92 2\ 7"

nsin® 0 + p cos” 0 A)

n(1+p) ( )?”a

1+77 1+f~€up kg \C089|i
(1+&)(1+qn)

%
|sin 0| —

(1+k)( 1+qn)

2(1 1

Xsech< (14 n)( +f~wp\/ n/iq

2

(
2(1+n 1—1—/4#
L+p

-1
-1

X[ up (
1tp

X1 u_
Ttp

1+p

2(1+n)(1
xsech<( Ll
1+

02
rs
sin 60—
P \/ 14 &)( 1+q77) )

(2.72)
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VO fw (L4 )22 Bl 5 (14 ) g2 ()
(1+d) (L +p)22nE () (14 1g) =5 [y + cos(26) (p — dPn) + p

. u up. ) 1+ 77)”#(1 + pQ)
X |sin 0| T |cos B|1+r (d?nsin®(0) + pcos?(0)) ex (—(
sin ] 47 cos ] (i sin?(0) + peost(0)) exp (AR

(77 sin® @ + p cos® 9) ;Z)

0o g5 (apta=2) 1 1
X/ e exp (A +n)A+r)u
o paeltl) n(1+p)

4(1 VE(L+ K ro/2
X exp (Lt vl ) (v/nsind 4 py/qcos ) T
LEp o1+ an) °

2(1+n)(1+ k)up nNKq ‘COS@|T%
n(14p) (1+r)(1+qn) p2
2(1+n)(1+K)u sinf] r2
7_1 1+p 1+ k) 1+q77 03
2(1+n)(1 2
x sech )1+ K)up i cos@i
n(1+p) (1+k)(14qn) pz
x sech 20+ n){(+ K " sm@A dr, (2.73)
1+p (L+r)(1+qn) 72

wherein f is the mean Doppler frequency defined as f £ (f, + f,)/2, and f, and f, are the
in-phase and quadrature Doppler frequencies, respectively, and d is the ratio of Doppler
frequencies between in-phase and quadrature components, i.e. d = f,/f,.

As mentioned earlier, the a-n-k-p model is very general; therefore, an enormous
number of distributions can be mapped from its expressions. Considering Parametrization-
2, the following general distributions can be obtained: (i) a-p with o = o, p = p, Kk — 0,
n=pand 7 = 7; (ii) n-ux model with o = 2, p=2u, Kk - 0, n =n, p=1 and 7 = 7; (iii)
k-p model wherein « = 2, u = p, K = K, n = p, ¢ = q and 7 = 7; (iv) Beckmann model
witha=2, u=1,k=rn=np=1q¢g=qand 7 =7; (v) a-n-p @ = o, pp = 2, k — 0,
n=mn,p=1;and (vi) a-k-u model wherein « = a, p=pu, Kk =K, n=p,q=¢qand 7 = 7.
As previously specified, the n-u fading distribution has Hoyt and Nakagami-m models as
particular cases, and the k-p fading distribution reduces to both Rice and Nakagami-m

models.
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Chapter

The Extended n-p Fading Model

Cluster imbalance was first introduced in [16] for the Nakagami-m phase-
envelope joint distribution. In that case, the Nakagami-m complex model was redefined
by inserting a new parameter p which affected only its phase PDF formulation. Further-
more, the same parameter was inserted in [58] for the n-u fading model. Surprisingly,
for this particular case, the envelope statistics were also affected by the cluster imbalance
phenomenon, although no closed-form expression was found to depict its behavior. Later
on, the imbalance parameter was reinvented in [19] for the a-n-k-p model. Despite its
novelty and possible potential for delivering new closed-form expressions for both phase
and envelope, little attention has been given to p concerning its influence on first order
statistics and on other mapped models.

With that in mind, the aim of this chapter is to partially fill this gap, by
proposing an Extended n-p complex model, as a particular case of the a-n-x-p fading
model. Unlike the original n-p model, this proposal explores the difference in the number
of multipath clusters between the in-phase and quadrature components, by introducing
the parameter p.

This chapter offers a thorough statistical study for the Extended model and is

structured as follows:

— Section 3.1 introduces the Extended n-u physical model and derives the joint phase-

envelope distribution;

— Section 3.2 derives the envelope PDF and CDF, and depicts their behavior with

some plots;

— Section 3.3 proposes expressions for both phase PDF and CDF, which are accompa-
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nied with some curves;

— Section 3.4 develops formulations for the Extended n-p higher order statistics, such

as LCR and PCR;

— Section 3.5 derives the moment generating function for the instantaneous SNR, and

indicates possible applications in wireless channels;

— Finally, Section 3.6 explores some of its particular cases.

3.1 Joint Phase-Envelope Statistics

As discussed in [19], the complex fading models of the well established fading
models, namely, Rayleigh, Rice, Hoyt, and Beckmann, have made use of a quadrature
Gaussian. Such a paradigm was broken in the complex models for Nakagami-m, n-pu,
k-, and a-n-k-p. On the latter, the author proposed a general quadrature PDF which
encompasses all previously mentioned fading models. For the Extended n-u, the general
process —oo < Z < oo indicated in (2.64) is considered, wherein due to the absence of
dominant components A\, — 0. With this, the PDF of Z is redefined as

fole) = ")xp (— - ) | (3.1)

202 (1, 202
in which o2 > 0 is the power of one multipath cluster, p, > 0 is the number of multipath
clusters and T' (z) is the Gamma function [1, Eq. (6.1.1)]. In addition, let V = Z? be the
corresponding power. Its PDF is found as

pHe—l

fv(v) = mexp (—223> , (3.2)

with p, = p, and o, = 0o,.

Let the complex Extended n-p signal be defined as
S =X+7Y, (3.3)

in which X and Y denote the in-phase and quadrature signals whose PDFs fx(z) and
fv(y) follow that in (3.1), with respective parameters u, and o,, and p, and o,. The

resulting complex signal can be rewritten as

S = Rexp(j0), (3.4)
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wherein R is the envelope and © is the phase. By making the variable transformations

X = Rcos© and Y = Rsin O, the joint PDF is found as

fro(r,0) =rfx(rcosf) x fy(rsiné). (3.5)

For the following development, let us consider only the Format 1 of the n-u
model. Thus, 0 < n < oo is defined as the ratio of the total power of in-phase and
quadrature scattered waves of the multipath clusters, i.e. n = u,02/ (,uyaf/), and o, and

o, are obtained, respectively, as

()
o (2/%(1 + 77)) (36)

and

o, = (M) | (3.7)

Now, consider an imbalance parameter p > 0 defined as the ratio of the number

of multipath clusters of in-phase and quadrature signals given as

_ Ha

. (3.8)

p

in which p = 1 stands for the balanced condition. Finally, let ;1 > 0 be defined as the total

number of multipath clusters as in

[z + Hy = 240 (3.9)

Then, from (3.8) and (3.9), p, and p, can be represented in terms of y and p

as given in
2pp
p = —— 3.10
e =10, (3.10)
and
24
=—. 3.11

Substituting (3.1), (3.6), (3.7), (3.10) and (3.11) in (3.5), the phase-envelope

joint distribution is obtained as

2up
22,u 1 2p2p Tt B B 4p—1
Tro(r,0) = : +2;j7) IZ s pz |sin0|14rp 1|C050|ﬂ2 1TA4M
P (e ()1 () ;

204y [0y P2\ T
xexp( 1+p) sin (9—{—77COS 0 =Rk (3.12)
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wherein r > 0 and —7 < 6 < 7. Note that (3.12) reduces to (2.26) for p = 1 (balanced
case). Although only Format 1 formulations are shown, Format 2 can be obtained by

means of
]_ _
m = ( 772)_
(1+m2)

(3.13)

3.2 Envelope Statistics

3.2.1 Envelope PDF

Given the phase-envelope joint PDF, the marginal PDF of one variable can be
obtained by simple integration of this joint PDF with respect to the other variable. For

instance, the envelope PDF can be calculated by

fr(r) = _7; fre(r,0)do. (3.14)

However, in the present case (Eq. (3.12)), only the phase PDF can be found
in closed-form by direct integration (discussed later on Section 3.3). Then, to obtain
a closed-form solution for the envelope PDF, another convenient statistical approach is
needed.

Let the power of the envelope be defined as W = U + @, wherein W = R2,
and U = X? and Q = Y? are the powers of both in-phase and quadrature signals X and
Y, with their PDFs detailed in (3.2). Then, to obtain the PDF of W, fy (w), we follow
the standard convolution procedure for adding two independent random variables which

is defined as
fw(w) = fu(u) * fo(q). (3.15)
In this case, to solve (3.15), the Laplace transform operation is carried out,

converting the convolution procedure into a multiplication, as pointed below by

Lo [fw(w)] (s) = Lu [fu(u)] (s) x Ly [fo(@)] (5), (3.16)

wherein L[] (s) is the Laplace transform operator [1, Eq. (29.1.1)], s is the Laplace

variable, and the Laplace transform of (3.2) is given as

—Hv

L [fr)](s) = (2025 +1) (3.17)

Using (3.17), Equation (3.16) can be rewritten as

Hy

Lo [fww)] (s) = (2025 +1) " (2025 +1) ", (3.18)
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where o, = 0, and p, = p,, and oy = o, and g = p,.
Now, consider the following variable transformation s = 275 f, in which f is
the Fourier variable. Thus, the Laplacian operator can be substituted by the Fourier

transform operator leading to

Fuo [fw @) () = Lo [fw ()] (5)]s=2mjs

1 —Hz 1 —Hy 1 Hzx 1 Hy
_ - : 3.19
(47r0§ * jf) (47r0§ N jf) (47r0§) (4%05) » (3.19)

where F [-] (f) is the Fourier transform operator [3, Eq. (17.21)].

To obtain the PDF of W, the inverse Fourier transform of (3.19) must be

carried out, leading to

1N (1 \"™ o (01 N
Jw(w) = (4%03) (471'05) /—oo (4#03 +]f>

X (4 L 5 +jf>_ yexp (2mjwf)df. (3.20)
o

Y

Equation (3.20) can be solved by using the following mathematical identity [61,
Eq. (2.3.6.18)],

J R R T Y TS EEST R
o exp(—2mjwr) B I'(p+ o) exp (2rwz) ’ '

wherein 1 F (a;b; z) is the Kummer confluent hypergeometric function [1, Eq. (13.1.2)].

Therefore, the envelope power PDF| fy (w), is given as in

(o) w1 - < 1 ( 11 >>
wlw) = Mai P + [y W | —5 — —
ety g2 2T (1 + 1) 2 \o2 o

X exp (—;;) (3.22)

Y

or equivalently,

wh=try =1 1 (1 1
fw(w) = 1Fy (uy; P+ Hy; S <2 - 2>>

e 24
2ty 1 oy T (g + 1) oz o}

X exp <— v ) . (3.23)

2
202

Replacing (3.6), (3.7), (3.10) and (3.11) in (3.22) (or (3.23)), the PDF of W
can be rewritten as

2up
For(w) = 920+ 2= 10 T (1+ n)%ﬁ“ P, <2MP ' 2(p—n)(1 + n)uw>
7 (Lt p)™ T (20) g PP

2(1 4+ n)pw
X exp <_f2 1+p) ) . (3.24)

?
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Finally, with W = R?, the envelope PDF, fz(r), is obtained as

Q21T (1 4 )22 2pp 2(p —n)(1 +n)ur’
fR(T) = 2up 2 A 1h 17;2 T r2(1
nie (1+ p)™ P4eT(2p) +p 72(1+p)n
2(1 2
< oxp (- 2t mmT) (3.25)
72 (14 p)

Observe that with p = 1, (3.25) reduces to (2.31), and accordingly to both
Nakagami-m and Hoyt distributions, depending on the value of 1 [13]. Interestingly, for
any given 7 and p, (3.25) yields the same value for n/p and for p/n. This can be observed
from the definition of these parameters. In addition, the Nakagami-m distribution can be
directly obtained from it by using n = p.

Figure 3.1 depicts the plots of the envelope PDF for different values of p and
some arbitrary values for the other parameters. As can be seen, the imbalance factor
has great influence over the envelope PDF. Moreover, observe that as p grows from near
zero towards the value of 1, the PDF mode shifts rightwards, meaning a better fading
condition. Interestingly, as p surpasses 7, i.e. increases further towards infinity, the PDF
mode shifts back leftwards, meaning a worse fading condition. This can be directly inferred
from Figure 3.1 by noticing that the PDF is the same for n/p and p/n. Also, this pattern
is noted for different settings of n, u and p.

2.5

I p =0.02,0.05,0.1,02,0.3,04,05,0.635,085,1,12,1.7,3 |
2.0r

1.5}

fr(r)

1.0}

0.5/

0.8’
Figure 3.1: Envelope PDF for varying values of p (n =3.0, p = 1.75 and 7 = 1).

Figure 3.2 and 3.3 illustrate the behavior of envelope PDF for varying values of

n and u, respectively. Interestingly, in Figure 3.2, as observed earlier, as 7 approximates
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p, the PDF mode shift grows rightwards, indicating better fading scenario. After n out-
strips p, an inferior fading condition takes over, and the PDF grows indefinitely, shifting
leftwards. As already expected, in Figure 3.3, the PDF mass dislocates towards superior

fading scenario as p grows.

2.0

1.5¢

0.5

0.8.

Figure 3.3: Envelope PDF for varying values of  (n = 0.5, p=0.1 and 7 = 1).

3.2.2 Envelope CDF

The envelope CDF, Fg(r), is given as

Fa(r)=1- /  fale) de. (3.26)
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Therefore, the CDF for the Extended n-u envelope is obtained by substituting (3.25) in
(3.26). In order to arrive at a more tractable expression, a series expansion formulation

for the CDF is now proposed. Let us rewrite the hypergeometric function in (3.25) as

defined in [2, Eq. (2.20)],

1F1<2up.2M 2(n —p)(1 +n)p ) iéi) < n—p)(1+n)uw2>k7 (3.27)

1+p "7 (14 p)ni? (1+ p)ni?

with (2); being the Pochhammer symbol [1, Eq. (6.1.22)].
Replacing (3.27) in (3.25), the envelope PDF is rewritten as

0 2k+2u+1luk+2u <n+ 1)k+2u(n p)k 2k+4p—1 2,Up
fr(r) =3

k=0 KIT(2p)(1+ p)k+2ﬂ(2ﬂ)k7]k+ Ty p2k+Hdp 1+p),
2(1 + n)pr?
(1402 ) 3.28
XeXp( (1+p)r? (3.28)

And then, by replacing (3.28) in (3.26), the integral is formally solved, as given

n

(3.29)

7”2

2 e B 2pp
Fr(r)=1—1t > (1—t)" ( T(k+1)D(k +2p)

k=0 L+p/y

wherein I (a, z) is the incomplete Gamma function [1, Eq. (6.5.3)] and ¢t = min{p/n, n/p}.

Figure 3.4 illustrates the envelope CDF of both integral and series expansion
solutions for the same set of parameters as before, showing their equivalence. Here again
the influence of p on the fading conditions is clearly observed: the closer p is to n the
better the fading scenario. Note that there is no distinction between the integral and

series expansion solutions.

3.2.3 Higher Order Moments

The n'® moment of the envelope is defined as

E(R") = /0 h " fr(r)dr. (3.30)

By substituting (3.25) in (3.30), the n"® moment of the envelope is found formally as

l\J

)7p +2u 2up 1
E(R") = ( - ( )2F (“’p —(n+4p);2u;1 — p), (3.31)
25yt (1+n)ﬂﬁF<2u) L+p2 U

where o F} (a1, ag; b; z) is the Gauss hypergeometric function [1, Eq. (15.1.1)].
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0.500!

0.100}
0.050}

Fr(r)

0.010}
0.005/

0.001

Figure 3.4: Envelope CDF for varying values of p (n = 3.0, u = 1.75 and # = 1). Solid
lines indicate integral solution and dot markers indicate series expansion solution.

3.2.4 Amount of Fading

The amount of fading (AF), also known as fading figure, is a unified measure

of the severity of the fading [21]. It is defined as

» Var(R?)
AF & T (3.32)

wherein Var(R?) = E (R*) — E (R%)” is the variance operation.
Hence, using the higher order moment expression obtained in (3.31), the AF

of the Extended n-u model is obtained as

p_ AEP) (0 +p) (3.33)

2(1+n)" up

In Figure 3.5, the amount of fading is depicted as a function of the parameter

n for varying p, and fixed p = 2.35. As can be seen in this particular scenario, the severity
of the fading decreases until it reaches its minimum value wherein p = 1. As n grows,
i.e. n > p, the AF slowly start to increase again, indefinitely. Interestingly, the parameter
i dictates the behavior of the minimum value of the function, whereas cluster imbalance
shifts its position along the abscissa. In other words, in fading scenarios where the number
of multipath are equal, the AF minimum value is the same, for any given n and p.
Figure 3.6 illustrate the behavior of the AF as a function of p for different

values of p, and fixed n = 2.35. As expected, in different scenarios of cluster imbalance,
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12—

1'Of p =/001,0.1,0.25,0.5,0.75,0.85, 1, 1.35,1.75, 2.35 ]

0.8-

AF(n)

0.6¢

0.4%

0. ‘ ‘ ‘
6.0 0.5 1.0 1.5 2.0 2.5 3.0
n

Figure 3.5: Amount of fading for varying values of n and p (u = 2.35 ).

fading severity decreases as u increases. Also, as p < n grows, the severity of the fading
is drastically attenuated. However, the opposite is observed when the threshold p = 7 is
surpassed. This can be verified by taking the partial derivatives of (3.33) in respect to p,

n and u, and equating it to zero.

8

p =1235,1,0.75,05,04,0.25,0.1,0.05
A

Y
p = 0.01,0.02

Figure 3.6: Amount of fading for varying values of p and p (n = 2.35 ).

3.2.5 The Extended n-u for a Fixed m

As seen in [21], the amount of fading of the Nakagami-m process is given as

AF = 1/m. With this, [13] proposed an interesting alternative for parameter estimation by
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equaling both -y and Nakagami-m AFs. Then, for a given m, the parameters n and y can
be determined in order to yield the best fit. Note that some restrictions were imposed,
ie. m/2 < p < m, to guarantee that, for a fixed m and varying u, a corresponding
n=(1—a)/(1+ a) can be properly calculated, wherein a = /(2u/m) — 1. Thus, in this
section, a similar approach is carried on for the Extended n-u model.

First, let us express the m parameter in respect to the Extended n-u parame-
ters,

o 20 (3:34)

(L+p)(n*+p)’

so that AF' =1/m.

For a given m, the parameters 7, 1 and p are then selected to yield the best fit.
The maximum and minimum values of m can be calculated by substituting the limiting
values of 1 in (3.34), which are, for the Format 1 of the Extended n-x model = 0 and
n = oo, leading to m = 2u/(1+ p) and m = 2up/(1+ p), respectively. Consequently, with
p £ 1, both scenarios lead to m = p, and with p — 0 or p — oo, m = 2u. Therefore, for

any given m, the parameter y has to obey the following range

% < p < m. (3.35)

Finally, considering (3.35), (3.34) can be solved in 7, leading to

n = (3.36)

_ 2pp J mp(1 + p)*(2p —m)
m(1+ p) — 2up

(m(1+p) = 2up)*
As observed in the traditional 7-p model, when p = m/2, (3.36) reduces to the Nakagami-
m process with n = p. Surprisingly, when p = m, the Nakagami-m model is only attained
if p=1, and for p # 1, (3.36) simplifies to

2p N p(1+p)?
1—p (p—1)2

y = (3.37)

As can be seen from (3.36), for a fixed m, the Extended n-x model renders a
myriad of different fading scenarios. Figure 3.7 illustrates one of the cases for the envelope

PDF, wherein m = 1.25, u = 1.245 and p assumes varying values.

3.2.6 New Fading Scenarios

After exploring all these new statistics of the Extended -y model, some ques-

tions about the applicability of cluster imbalance on real fading scenarios still remain
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Figure 3.7: Envelope PDF for fixed m = 1.25, u = 1.245 and varying values of p (7 = 1).

unanswered. Having worked with the generalized phase Nakagami-m process, the au-
thors in [62] showed real world propagation measurements that are best fit by taking into
account cluster imbalance. Figure 3.8 illustrates some of the new fading scenarios possi-
bilities attained with cluster imbalance. For such, the extent of the envelope CDF of the
Extended n-p model is depicted alongside the classic n-p and Nakagami-m models, with
m = 1.25 and p obeying the relation found in (3.35), and 0 < p < 1. As inferred earlier,
the Nakagami-m process, indicated by the black line, is obtained when g = m/2, or when
@ =m and p = 1, and the classic n-p model is found as p = 1, represented by the green
line. Whence, the green shade denotes all fading scenarios available for the classic n-u

model (as illustrated in [13]), and the blue shade adds the potential new fading settings.

3.3 Phase Statistics
3.3.1 Phase PDF

The phase distribution is obtained by integrating (3.12) with respect to r, i.e.

fe(0) = /O fre(r,0)dr. (3.38)
By solving the integral, the phase PDF is obtained as
22“_1F(2M)7712Tupp%

o(f) =
fe(0) F(ny)r(w)((p_n)cos(29)+77+p)2u

1+p 1+p

1sin 6|77 |cos 0] T55 1. (3.39)
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Figure 3.8: Extent of the Extended n-u distribution with fixed m = 1.25.

As expected, for the balanced case (p = 1), (3.39) reduces to (2.32) and as seen in [17], R
and © are not independent from each other. It is noteworthy that in making the appro-
priate substitutions, gy = m/2 and 1 = 1, the generalized Nakagami-m phase distribution
in (2.21) is obtained.

Figure 3.9 illustrates the behavior of the phase PDF in polar coordinates for
different values of p and arbitrary n and u. Note that, as one of the quadrature fading
components degrades into the Gaussian condition, i.e. p = u/2, the PDF is led to move
from a bimodal to a quadrimodal characteristic. Also, it has been observed that, unlike the
envelope statistics, the phase PDF shows no symmetry as that observed for the envelope
case with respect to the ratios n/p and p/n. In fact, in such conditions, a shift of 7/2 in
the phase occurs. Such pattern is also noticed in Figure 3.10, in which 7 is varying, p and
p are fixed. Note, however, in this case, that n = 1 (black line) is the turning point for
the phase shift. Finally, Figure 3.11 illustrates again the PDF’s bimodal to quadrimodal

characteristics wherein p is varying, and arbitrary n and p.

3.3.2 Phase CDF

The phase CDF can be obtained in a straightforward manner by performing

the following integration

Fo() = /_ i folz) da, (3.40)
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Figure 3.9: Phase PDF in polar coordinates with p varying, n = 3.0 and p = 1.75.
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Figure 3.10: Phase PDF in polar coordinates, for varying values of n (1 = 1.375 and
p=0.735).

in which fg(z) is represented by (3.39). This procedure, however, does not result in any
closed-form expression due to its complicated background with the modulus operator,

present in the equation of the phase PDF. Having bumped in this same issue for the
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Figure 3.11: Phase PDF in polar coordinates, for varying values of p (n = 1.375 and
p = 0.735).

Nakagami-m phase distribution, the authors in [62] elegantly circumvented this situation
with a new method. Succinctly, the following procedure is used: (i) the function’s domain
is divided in pieces in which the modulus operator signal is invariant; (ii) the integral for
one specific domain piece is evaluated; and finally, (iii) the results are applied to the whole
domain by taking advantage of symmetries and periodicities of the phase PDF.
With this in mind, our first task is to identify possible periodicities in the phase
PDF. From (3.39), it can be seen that the phase distribution is an even function and has
period . Furthermore, over the interval [0, 7/2), the modulus operator is ineffective and
thus, the phase PDF can be rewritten as
22T (2p) T pits
T (25) T (22) ((p — n) cos(20) + 1 + p)>

fe(0) = (sin 9)147”1’_1 (cos 9)%_1 . (3.41)

Now, to enhance comprehensiveness, consider the auxiliary function u(6), and

its mirrored version uy(#), defined over the interval [0, 7/2) as
_ T
fo(0), if 0<6< 3

uy(0) = (3.42)
0, otherwise
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and

uQ(e){f@ (g_9>’ i 0§9<g (3.43)

0, otherwise,

in which fg(f0) is expressed as in (3.41). It can be easily observed that both auxiliary

functions are related to each other as

us(6) = uy (g - 9) . (3.44)

Then, by performing the same integral operation as in (3.40) over the interval

[0,7/2), the CDF for both u;(6) and uy() are obtained, respectively, in closed-form as in

2 2 2 -
U 0) = B (21— 2HP o) M 4 qsine, (P=1) 2
1+p 1+p 1+p p
L™ 2“

s 2 ) T+p
X 22p1%1“ (%) - (fT“p N 1) (sm 9) (3.45)

and

1 2 2 2 —
Uy(0) = ~ — F1< P Mp,Qu; a +1;sin20,(ppn)sin26’>

4 1 "’p; 1 +p 1+p
L (2p)n ™ o
22pTD (22T (2 4 1) (sin0) ™ ] (3.46)

wherein F}(a; by, by; ¢;w, z) is the Appell hypergeometric function of two variables [2, Eq.
(7.2.4.1)]. From the definitions of u; () and us(#), it can be easily seen that the following
relation holds

Uy(6) = i —0, (g - 9) | (3.47)

More importantly, when 6 = /2, (3.45) and (3.46) evaluate, respectively, as U;(7w/2) =
1/4 and Uy(m/2) = 1/4.
Having defined these, let strip down the original phase PDF (Eq. (3.39)) in

four distinct pieces, wherein

g (0 + ) if —w§9<—g
s 0+72T) if —g§9<o

fo(0) = (3.48)
s (6) i 0<0<
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Next, the phase CDF is promptly calculated by integrating each term of (3.48),

resulting in

0, if 0<-—m
Uy (0 + ), if —W§0<—g
1
(59+g>+£ it —2<0<0
Fo(0) = (3.49)
U, (6) + — it 0<g<”
1 27 1 = 2
T 3 T
_ e g L«
U, (0 2)+4 it Z<o<n
1, if 0>m.

As mentioned earlier, U; () is defined over the interval [0,7/2). However, the

domain can be expanded to [—m,7), by noting that
and
Uy (0) = Uy (—9). (3.51)
With (3.50), (3.51) and (3.44), (3.49) can be rewritten in terms of U, (#) as
0 if 0<—m
U, (6) if —ﬁ§9<—g

Umm+; if —gge<o
Fo(0) = (3.52)

1 T

ht if 0< a
Uy (0)+1  if g§9<w
1 if 6>

Finally, to comprise all cases observed in (3.52), the phase CDF of the Extended

n-p model is determined as

}%W%:;O{@+g>+ﬂ<0—;»+ﬁ<i>MWL (3.53)

in which H (%) is the Heaviside step function [1, Eq. (29.1.3)], S(2) £ sgn (sin(272)) is the
square wave function and sgn(z) is the sign function [3]. As far as we know, this formulation
has never be seen for any -y model. In addition, (3.53) comprises the traditional n-u phase
CDF (with p = 1), and more importantly, with appropriate substitutions, the generalized
Nakagami-m phase CDF obtained in [62, Eq. (15)].



95

The phase CDF characterization is presented in the following three plots. In
Figure 3.12, the CDF is depicted considering the cluster imbalance scenario, in which p
is varying, n and p follow arbitrary values. As can be seen, the influence of p is unques-
tionable, and as p — 0 or p — oo, the CDF assumes a more impulsive response around
+7, +7/2 and 0. In these limits, either the in-phase or quadrature components cease to
exist, and therefore, there is a phase concentration at the indicated angles. Interestingly,
in such a scenario, the CDF has a rotational symmetry around the coordinates (0,0.5),
naturally, associated to the ratio p/n and n/p. This pattern can also be observed in Figure
3.13, wherein 7 is the varying parameter. Finally, Figure 3.14 portrays the phase CDF

with different values of p.

1.0
0.8+
0.6’ /
D L
S|
0.4
0.2} ™~ 1
p =10"%001,005,0.1,02,04,10,25, 5, 10, 20, 102, 10*
0.0 |,r ‘ -
-JT _E 0 E T
e

Figure 3.12: Phase CDF for varying values of p (n = 3.0 and p = 1.75).

3.4 Higher Order Statistics

The higher order statistics derived here for the Extended n-p model are de-
pendent of the time derivative of in-phase and quadrature signals. For such, we firstly
obtain the joint distribution X, X, Y and Y, in which the dot notation characterizes the
temporal derivation of the random variable. Next, the joint PDF of R, R, © and O is
derived, by means of a common transformation of variables. Finally, important metrics

such as level crossing rate and phase crossing rate are determined.
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Figure 3.13: Phase CDF for varying values of (1 = 1.375 and p = 0.735).
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Figure 3.14: Phase CDF for varying values of p (n = 4.0 and p = 0.3).

3.4.1 Joint PDFof X, Y, X and Y

Let us reconsider the general process Z, which PDF follows (3.1), and its time
derivative Z. As widely investigated in [15,45,57,59], Z is independent of Z and is
Gaussian distributed with zero mean and variance 62, as indicated below

) 1 22
f5(2) = Wexp <_W> : (3.54)

in which, for an isotropic environment,

62 = 2% f2 02 (3.55)

m~z)
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wherein f,,, is maximum Doppler shift and o2 is the variance of Z.
Since X and Y are independent process, it follows that X, Y, X and Y are

independent from each other, which allows their joint PDF to be written as

fxxyy (@ &.y,9) = fx (@) fx (@) fy (W) [y (@) (3.56)

Then, by making the appropriate substitutions of Z by X and Y, and Z by X
and Y, the joint PDF is expressed as

42 (i 4 1) [y
N Zup 1
73 f2 A2 (p - 1)2H i e (%) r (%)
1 2 2 r2 2 2 -2 °2
Xeﬂ)_(+nM(WﬂAx?+w)+xp+mH  (3.57)
T fant(p + 1)

1

fX,X,Y,Y(Lfy?/,?J) =

3.4.2 Joint PDF of R, R, © and ©

Now, the joint PDF of R, © and their respective time derivative is determined
by
Ip.,6,6(0,506) = | J| fX,X,Y,Y(xa T,1,7), (3.58)
wherein by performing a transformation of variables, |J| = R? is the Jacobian of the
transformation and X = Rcos©, Y = Rsin®, X = Rcos® — ROsin©® e Y = Rsin® +
RO cos ©. With the proper substitutions, we find that
9212+ () 4 1)2u+1pfi—f,+§
7 fA (1 4+ p)in i Tir () T (222)

ri Ltnuwp »
X gura OXP <_7r2 (2 o :—p)ﬁ (7 cos § — rf sin 6)*

fR,R,@@(T,?;,Q,@.) = |Sjn9|{%,—1 \cos0|%_1

B ) o 02
X exp ( 21+ )72 (rf cos @ + 7 sin )

X exp <—m(p +n+(@—n) cos(29));i> : (3.59)

3.4.3 Other Joint PDFs

Having defined (3.59) and after the proper integration procedure, a series of

new closed-form expressions arise for different combinations of R, R, © and ©.
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The joint PDF of R, R and © is defined by integrating (3.59) in terms of ©,

fR,R,@ (Tv T, ‘9):/_ fR,R@,@(T? 7,0, 0) dg
22”+%M2“+l(n-+-1)2“+%p%%%+%\shle{ﬁﬁ

T (14 prin BT ()T () (0+ 0+ cos(26)(n — p))

p (w2 f2r2 (n* + p? — cos(46)(p — n)? + 6np) + 4npr?)
X exp ( om2 f2n(n + 1)~ (1 + p)72(n + cos(20)(n — p) + p) ) .(3.60)

—1 dpp g _
|cos 0|1+ pin—t
; Pp+1

The joint PDF for R, ©, © is calculated by integrating (3.59) with respect to

R,
fR,@,@(Tv 0, 9):/_m fR,R,@,@(Ta 7,0, 9) dr
92643 213 (1) 4 1)2“%}9%% |sin 0\1%71 |cos 9]%7 s
T3 L o442
78 f(L 4 p)2 iy D ()T (24) (04 1+ (p — ) cos(26)) 7
(1 + n)pr? (3% f20% + 32 f2.p2 + 2% f2mp + 4np6?)
X —
o 27 [20(L+ )2 (p+ n + cos(20)(p — 1))
1 4 cos(20) (p* — 40)(p — n)?
X oxp (_( +n)ur® ( cos(26) (P* = 1%) + cos(40)(p — n) )> 36
2n(1 + p)7*(p +n + (p — n) cos(20))
The joint PDF for R, ©, © is determined below by integrating with respect to
R,

. o0 .
fR,@,e(faQ,Q Z/ fRR@@(T,f“,H 0)dr
923 T3 753 Jsin 6] 75 Jeos 6] 7

T (2—“> r (2”“) exp (% (nsin? 6 + p cos? 9))

1+p 1+p fan(i+p

X (ﬂzfi(p + 1+ cos(20)(p — n)) + 6 (77 cos® § + psin® 9))

X [(WQf,%l(n + cos(20)(p — ) + p) + 67 (n cos® § + psin® 9))

—2p—1

NI

WF(N +1) | nu(l+mn)
(1+p)
.\ F ( L1 2 +p)‘1(1+n)ub292sin2(29)(p—n)2)
o 227 72 f2 () + cos(20)(p — n) + p) + 02 (1 cos? O + psin? 0)
3 27272 f 27 Y (1 + p) N1+ n)pp?0? sin®(20) (p — 1)?
2f2 (n+cos(20)(p —n) +p) + 62 (ncos? 6 + psin? 9))
(3.62)

—+1fﬂ <2M‘+'1
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Now, by integrating (3.60) with respect to R, the joint PDF of R and © is

calculated as

Troli0= [ Inpo(ri.0)dr
22M_%F<2#) T |SiT19|fTMP71|Cos€|§%*1
E 1 ;
7 fuptz (1) (14p)2 T (20) T (§25) (0 + cos(20) (1 — p) +p)*+2

w exp [ — 2(1 + n)ppp?
p( T2 f2 (1 + p)(p + 1 + cos(20)(n _p))>' (3.63)

Equivalently, (3.63) is obtainable by integrating (3.62) in terms of ©. Also, when per-

forming the integral in respect to R, the phase PDF (3.39) is achieved.
Finally, the joint PDF of © and © is derived with (3.61) and its integral in

respect to R,

fos(0.0)= [~ froo(r0.0)dr

24“W4”_%f$“p%+%77%+% |sin 0|1%_1 |cos 0|%_1 (n + cos(20)(p — n) + p)**
n +1
(7212, (3n% + 4.cos(26) (1> — 112) + 3p? + cos(46) (p — )2 + 2qp) + dnp?) "
[ (2u+1
(22 +3) (3.64)

X .
2 2
r(#)r ()
The expression in (3.64) is also obtainable by integrating (3.62) with respect to R. Note
that, (3.39) can also be attained by integrating (3.64) in terms of ©.

3.4.4 Level Crossing Rate and Average Fading Duration

The Level Crossing Rate is defined as

Na(r) 2 [ lr, ) di. (3.65)

0 k)
in which fp ;(r,7) stands for the joint PDF of R and its time derivative R. Theoretically,
this expression can be obtained by integrating (3.60) in respect to ©. However, this
procedure does not lead to a closed-form formulation. Therefore, the LCR has to be

evaluated as
— /OO /” P fr o (r, 7 6) O i (3.66)
O 771_ bl bl

This procedure can become quite a burden if performed repeatedly. To over-

come this complication, the integral order in (3.66) can be rearranged to

:/7r /Oof“fRR@(r,f,@)dde. (3.67)
-7 J0 B
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An auxiliary LCR function is determined by performing first the integral with respect to

R, leading to

Na(r, 0) :/O o (r, i 0) di
+ 1) Spith s ptnm l\smﬁllﬂ’ ‘COS@|%_1

(Z5)T (22) (p+ 1 — cos(20)(p — )
(

X exp (— (1 (—; +),u)pQ p+mn—+cos(20)(p — n))) , (3.68)
so that
Na(r) = [ " Na(r,0) do. (3.69)

With (3.68), the LCR in (3.69) can be written in a single integral as

/ VT Fn 2238 (5 + 1) 353 e [sin 0] 75 [eos 0155
1
(1+p)» 3 5T ()T (22) (p+ 5 — cos(20) (p — ) 2

(L+n)pp
X exp (—M(p + 1+ cos(20)(p — n))) de. (3.70)

The Average Fading Duration is defined as

A FR(T)
NR<7’) ’

Tr(r) (3.71)

in which Fg(r) and Ng(r) are indicated respectively by the equations in (3.29) and (3.70).
In Figures 3.15 and 3.16, the LCR and AFD are portrayed for different values

of p, to illustrate the influence of cluster imbalance in such statistics.

3.4.5 Phase Crossing Rate

The Phase Crossing Rate is defined as

0) = /0 T 0o 6(0,6) dd, (3.72)

in which fg (0, 9) is represented in (3.64). Thus, a closed-form expression is attained in a

straightforward manner by substituting (3.64) in (3.72) and by performing the integration,

leading to

2205 /7 fr T (2u + )p1+p_§77m_5 |sin 9|1+P |cos 0]%_1
(4= DT (Z5) T (£2) (n + cos(260)(p — ) + p)*!

Figures 3.17 depicts the phase crossing rate of the Extended n-p model in

No(0) = (3.73)

different cluster imbalance scenarios.
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Figure 3.15: LCR for varying values of p (1 = 1.75 and n = 3.0).
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Figure 3.16: AFD for varying values of p (1 = 1.75 and n = 3.0).

3.5 Moment Generating Function and Applications

Moment generating functions can be used to obtain the average symbol and
bit error rates (ASER and ABER) expressions for different modulation schemes. As indi-
cated in [21], such performance measurements can be put in terms of a single finite-range
integral, with integrands corresponding to the MGF of the instantaneous signal-to-noise
ratio (SNR). Therefore, in order to obtain a more tractable expression, thus circumventing
the burden of an integration procedure, a MGF series expansion for the Extended n-p will

be presented. Also, formulations for a maximal ratio combining scheme will be provided.
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Figure 3.17: PCR for varying values of p (u = 1.75 and n = 3.0).

Hence, an ABER expression concerning coherent BPSK and BFSK shall be derived.
Let T = R? represent the instantaneous SNR. After performing this variable
transformation, the PDF fy(v) can be calculated from (3.25), leading to

22422 (1 4 ) Pp s 2up ., 29 —=p)(A+n)u
fr(v) = By 2085

WZ“F(Q,M)(l _|_p)2,un fif, 1 +p’ ’ (1 + p)77'_7
29(1+n)u
il Sl 3.74
X exp < Atp)n ) (3.74)

in which is the average SNR given as 7 = E(T). The MGF of the instantaneous SNR,
M~ (s), is defined as

Mr(s) = [ exp(=s7)fr(7) dy. (3.75)
Following [57], in order to obtain the MGF, the hypergeometric function in
(3.74) must be rewritten as in (3.27) and substituted in (3.75), leading to

o 22Mu2#fy2#_1(1 + 77)2:“'p% 2’}/ 1+ ny
MT(S :/0 - , 5 —(1(_‘_)2 eXp(—S’y)
T (2p)(1 + )2 o
o (&) "
(#2), 2<n—p><1+n>m)
y k . 3.76
kz:%)k‘!(Q,U)k ( (L+p)ny ! o

From (3.76), the summation operator and every multiplicative terms not related to v can

be rearranged before the integral, obtaining the auxiliary function L as follows

L= /Ooo L exp (—s7) exp (—W) dy. (3.77)
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Now, the exponential functions in (3.77) can be replaced by [2, Eq. (8.4.3.1)],

;), (3.78)
0 _ 2(1 + Y~ -
ee [Tormap (2 () Je e

in which G7"(2) is the Meijer G-function [2, Eq. (8.2.1.1)]. Finally, (3.79) can be solved
with [2, Eq. (2.24.1.1)], resulting in

_ 2(1+n)u e 1,1 (1+p)sy
b ( (1 +p)7> G1’1(2(1+n)u

exp(—z) = G(l)j(l)(z

leading to

1—k—-2
) “), (3.80)

Then, using the property given in [2, Eq. (8.2.2.14)],
a 111—(b
G;g”(z ( p)) = G;g"( ( ">>, (3.81)
(bg) Z|1—(ap)

in (3.80), the MGF of the Extended n-u channel is found as

2pp k 2
Tip o0 I (k+ 22 21 1
M(s) = gk ( - p) ,( ) e 2L+ . (382)
ntre T (%) k=0 n) Kk +2u) (L+p)sy | k+2u

Maximal Ratio Combining Scheme

Now, considering a diversity scenario with maximal ratio combining, the total

SNR is given as [21]
M
Y= Vm, (3.83)
m=1

in which ,, is the instantaneous SNR for each m branch, and M is the number of branches
of the multichannel receiver.

By taking into account that all instantaneous SNR are identically distributed
random variables with PDF described in (3.74) with the same fading parameters and the
same average SNR, the PDF for the total SNR can be calculated after a simple sum of M

random variables, leading to

2uMp
friy) = D2uM  2uM A 2pM=1(1 o ) 2uM 715 R (MMP oy, 2 )L WL)
M (2 M)(1 +p)2“MU% l+p’ ’ (L+p)ny

29(1+n)p
X exp <—(1+m> : (3.84)
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Following the same expansion procedure, the MGF for the sum of M identically

distributed instantaneous SNR is equated as

2uMp 2uM
My (s) = L 3 < - p>k b (k i iLﬂop)
- 2uMp
n e [ (Qiﬂip) = n) k(k+2uM)
2(1 1
« it (L Enn . (3.85)
T\ A +p)sY | b+ 2uM

Average Bit Error Rate

For a coherent binary system, the average bit error rate, P,(FE), is expressed

as [21]
Py =L [ MT< I )de, (3.86)

7w Jo sin? 4

wherein g = 1, g = 1/2 and g = 0.715 are for BPSK, BFSK and BFSK with minimum cor-
relation, respectively. Replacing (3.82) in (3.86) and rearranging the summation operator,

the average bit error rate is found as
2pp 2
_ ZOO P\ (k+ %)
Pb(E) - 2up == |
oyt T (12%1;) k=0 n) KI(k+2p)

y /w/2 GH ( 2(1+ n)usin?0

g(1+p)y k+2p

1
) do. (3.87)

From (3.87), let us define an auxiliary function D, which is represented by

/2 2(1 in? 1
p=|[ G};}( p(L &) st )de. (3.88)
0

g(1+p)y k+2p

By making the transformation of variable u = cos? (f) in (3.88), the following is obtained

1 ) _
D:/ u 2(l—u) 2 GH<2M(1+77)(1 w)
0

9(1+p)y k+2u

1
) du. (3.89)

With [2, Eq. (8.3.2.21)], the Meijer G-function in (3.89) can be rewritten in
terms of Fox’s H-function [2, Eq. (8.3.1.1)], H]%"(2), as given in

e 2en—w | (L)
D—/Ou (1) Hm( e (k+2u,1))du. (3.90)

Finally, (3.90) is solved with the help of [2, Eq. (2.25.2.2)], resulting in

_ e 2 +n) 21
D_\/_G”(g(lﬂﬂ)ﬁ (k;+2ﬂ,0))' (3.9)
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Therefore, the average bit error rate for coherent signals is given as

_2pp 2pp k 2 1
Tppits O I'(k+ #£2 5,1
n_trp ( _ P) ( 1+p), 2 ) . (3.92)

P(E) = ——F—

For a balanced condition (p = 1), (3.92) is numerically equivalent to the average ABER
obtained in [57].

12 2p(1 4 1)
RIT(k +2u) ~*\ g(1+p)7

In a maximal ratio combining scenario, the ABER of a coherent fading channel

is attained in same fashion as (3.92) and is given as

PE) = —— (p s (1 p>k (k+45)
' 2yl (2 2\ ) Dk + 200)
1
2u(1 21
iz 2t 2 . (3.93)
“\ 9L +p)7 | (k +2uM,0)

Figure 3.18 compares the ABER of a coherent BFSK modulation scheme (g =
1/2) of both integral and series expansion solutions for M = 1. For any given SNR,
the closer p is to 7, the smaller is the ABER. This clearly reflects the fading conditions
as already commented in the envelope PDF and cases. It is noteworthy that the series
expansion formulas developed here converge rapidly, but, of course, it depends on the
parameters utilized. In particular, for the plots shown, no more than 30 terms were

necessary for the required accuracy.
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Figure 3.18: ABER of the coherent BFSK modulation (¢ = 1/2) for varying values of p
(n = 3.0 and p = 1.75). Solid lines indicate integral solution and dot markers indicate
series expansion solution.
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3.6 Particular Cases

As is already known, the traditional 7-p distribution encompasses a whole set
of other fading models. By introducing a new cluster imbalance parameter, the Extended
model is susceptible to new particular cases beyond the previously known possibilities.
The objective of this section is to explore both the classic and the new particular cases of

the Extended n-p model.

3.6.1 The n-p Distribution

As mentioned throughout this chapter, the Extended n-u model encompass
the original n-p distribution. Regardless of the Format used, when p = 1 the multipath
clusters are balanced; therefore, all equations here derived reduce to the original n-pu case.

Surprisingly, the generalized n-u case can also be attained by replacing p. =
(1+py)/(1—p,) for both Format 1 and 2, in which p, refers to the Extended 7-p parameter

and p, indicates the generalized 7-u parameter.

3.6.2 Generalized Nakagami-m Distribution

Interestingly, for all equations derived here, the generalized Nakagami-m dis-
tribution is obtained in exact manner for n, = (1 + p,)/(1 — p,) or e = pn, pp =
(1+pn)/(1—py) and p = m/2 in Format 1, and n, = 0 and g = m/2 in Format 2, wherein
the h index indicates Extended n-p and the n index concerns Nakagami-m model, and m
is the Nakagami parameter.

More interestingly, when the formulation related only to the envelope (i.e.
(3.25)), is submitted to the limits p — 0 or p — o0, it results in the classic Nakagami-m

envelope equations.

3.7 Conclusion

This chapter presented an extension to the original n-u fading model. This
model introduces an imbalance parameter, which quantifies the relative number of multi-
path clusters in the in-phase and quadrature components of the fading signals. Although
the introduction of such a parameter adds flexibility to the model. The mathematical com-
plexity introduced is no greater than that of the original model. Closed-form expressions

for the joint phase-envelope and marginal PDFs have been found, as well as closed-form
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formulations for the moments. The CDF and MGF of the envelope have been found in
rapidly convergent infinite series. The phase CDF was wondrously obtained in closed-form
equation. In addition, higher order statistics were derived for both envelope and phase
distributions and their respective time derivatives. The clustering imbalance parameter
has been found to directly affect both envelope and phase related statistics. Interestingly,
the envelope statistics are seen to have a symmetry around the ratio relating the power
imbalance and phase imbalance parameters. It is observed that the closer to each other the
clustering imbalance and power imbalance parameters of in-phase and quadrature com-
ponents, the better the fading conditions. It is noteworthy that the Extended n-p fading
model is a particular case of the more general a-n-x-p fading model, but it bears several

closed-form expressions.
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Chapter

The Extended k-p Fading Model

The r-p fading complex model was first introduced in [18]. There, joint phase-
envelope distributions were derived and an integral-form solution was presented for the
phase distribution. Later on, [45] developed a clever method to obtain a tight closed-
form approximation for the x-p phase PDF. This solution proved to be highly accurate
and allowed the authors to derive a very useful and elegant closed-form expressions for
its phase statistics. Despite this huge breakthrough, both studies, [18] and [45], never
considered parameterizing the cluster imbalance phenomenon. Cluster imbalance was first
introduced for the Nakagami-m process in [16], and was later remodeled for the a-n-k-p
fading model. As observed in both researches, this phenomenon is quite interesting and has
great potential to deliver new unexplored fading scenarios. Hence, in order to fill this gap,
an extension to the x-p fading model is proposed here. Here again, the Extended model
is based on the uneven number of multipath cluster between the in-phase and quadrature
components. This chapter introduces a complete statistical research for the Extended k-u

model, and is organized as follows:

— Section 4.1 develops the Extended k-pu physical model and introduces the joint phase-
envelope PDF

— Section 4.2 presents the envelope and the phase PDFs, and shows novel mathematical

identities for the Bessel function;

Section 4.3 proposes an approximate expression for the phase PDF, accompanied by

some plots;

Section 4.4 introduces new expressions for the Extended k-p higher order statistics,

and as a consequence, exact and approximate PCR formulations are proposed;
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— Finally, in Section 4.5, some particular cases are obtained from the new Extended

model.

4.1 Joint Phase-Envelope Statistics

For this extension proposal, the in-phase and quadrature signals follow the
general quadrature process described in (2.64). Thus, the general process —oo < Z < o0

is defined as

(z —\,)? |A.2]
= ——— | L= 4.1
fZ(Z> 20_3|Az|u72_1 COSh (%> exp ( 20.5 %*1 O_g ) ( )

2 > ( is the power of one multipath cluster; (ii) A\? is the power of the

wherein: (i) o2
dominant components of all multipath clusters, with —oco < A, < oo; (iii) . > 0 is the
number of multipath clusters; and (iv) I, () is the Bessel function of first kind and order
v [1, Eq. 9.6.20].

Now, the complex x-u signal is described as
S =X+7Y, (4.2)

in which X and Y are independent processes and correspond, respectively, to the real and
to the imaginary parts of S. Their PDFs, namely, fx(z) and fy(y) follow that in (4.1),
with respective parameters o,, A\, and p,, and o,, A\, and .

The envelope R is determined as the absolute value of S, i.e. R = |S]|, and
the phase is given as © = arg (X + jY). With a simple variable transformation, X and
Y can be rewritten in terms of R and ©, as X = Rcos©® e Y = Rsin©. Thus, the joint

phase-envelope PDF can be written as

fro(r,0) =rfx(rcos@)fy(rsind). (4.3)

For the Extended k-u fading model, let us define p as the parameter that
quantifies the ratio between the number of multipath clusters of in-phase and quadrature

components, given as follows

X
p=—. (4.4)
Hy
Here again, the balanced condition is attained for p = 1, and the imbalanced case is

obtained for any p > 0. Then, 1, and g, are related as in

fix + py =2, (4.5)
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with g > 0 denoting the total number of multipath clusters. After manipulating alge-

braically (4.4) and (4.5), p, and p, are found, respectively, as

2pup
— 4.6
= (4.6)
and
24
S 4.7
= (4.7)

Finally, as specified in [13] and [18], define x > 0 as the ratio of the total power
of dominant components to the total power of scattered waves, i.e. kK = ()\i + AZ) / (2p).

Solving for A, and ),, we have that

M=¢( Ll A— (4.8)

1+ pg)(1 + k)

and

ek 4

wherein: (i) ¢ > 0 is ratio of two ratios: the ratio of the power of the dominant components
to the power of he scattered waves of the in-phase signal and its counterpart for the
quadrature signal, i.e. ¢ = X2/(A2p); (ii) 7 = \/E (R?) is the RMS value; and (iii) £ (-) is
the expectation operator.

Additionally, in a k- signal, the in-phase and quadrature powers are identical,

ie. 0} =0, =07, then,
o? = "
2u(1 + k)

Having defined all the parameters, the joint phase-envelope PDF of the Ex-
tended k-p model can be obtained by replacing (4.1), (4.6), (4.7), (4.8), (4.9), (4.10) in

(4.10)

(4.3), resulting in

1 _wp 1 u up THHL

1 pp 1 pp u w1 s up
Sre(r,0) = k!~ ap2 205 g2 700 (14 k) 5 (1 4 pg) 2~ [sin (6)] 75 [cos(0) 77—

1 2
X exp (2 M,u (sin@ + /pq cos 0) ; —kp— (14 /{),u;)

1+ pq
1 1
xI v 1|2 u;ﬁsinéﬂz sech | 2 u,usinHZ
e L+ pq r L+ pq r

1 1
xTup 4|2 Mu |cos 0] 2 sech | 2 kg1 + K) H),ucosﬁz , (4.11)
e L+pg r L+ pq r

with r > 0 and —7 < 6 < m. To obtain the original x-x model as in (2.48), the following
settings must hold: p = 1 and ¢ = tan? ¢, wherein ¢ is the phase parameter as defined

earlier for the a-n-x-u fading model.
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4.2 Envelope and Phase PDF

With (4.11), both envelope and phase PDF, namely fr(r) and fo(f), can be
calculated after integrating with respect to 6 and r, respectively. In these cases, however,
no closed-form expressions can be found .

For the Extended k- phase distribution, it is anticipated that cluster imbalance
has a major role on its overall behavior. Thus, special attention is given for such matter
in Section 4.3, wherein plots are depicted for different fading scenarios while comparing
exact and approximate phase distribution.

By construction, the envelope PDF of the Extended x-p model, for any p > 0,
was found to yield the same values as the envelope PDF of the traditional model. Hence,
it is secure to assert that the Extended x-u envelope PDF is defined as

fr(r) = 2/~b(1u-|— k)T b exp <—/m — u(1+ k) (;)2> I, (2m/r<c(1 + /i);) . (4.12)

AT pul

More importantly, with

r) = [ 7; fre(r,0)de, (4.13)

one can easily maintain that the following empirical mathematical identity for the modified
Bessel function of first kind is true
1-8
1 a2 ™

Inip1(z) = sz | exp (\/lz_ (sm& + Vacos 9)) |sin 6] |cos 0]°
a s

X Iy 1 <\/_ ]s1n8|> Iy < |cos«9|>
x sech <\/1+—a sin 9) sech ( T+ o 9) dé, (4.14)

with 2 >0, a >0, a > 0 and § > 0. It is important to mention that (4.14) is new and to

the best of the author’s knowledge has never been described in the literature. Note also
that (4.14) is a more general version of the identity found in [18, Eq. (17)].

In the limits, ¢ — 0 and ¢ — oo, the identity in (4.14) can be rewritten with
the help of [1, Eq. (9.6.7)], wherein for small arguments the relation below is used

I 1(2) ~ (;)1 P(ly). (4.15)

Then, for ¢ — 0 and ¢ — oo, novel identities arise respectively as,

ZIB

Lop-1(2) = 5T () /_7T |sin 6]* [cos 0] " I,_1 (= |sin 0]) sech (= sin 0) 6 (4.16)



72

and

ZO(

Inip1(z) = 57T (a) /_7; Isin 8> |cos 6] I5_y (z |cos 8]) sech (= cos 6) d6. (4.17)

Again, the identities (4.16) and (4.17) encompass the expressions obtained in [18].

4.3 Phase PDF - An Approximate Solution

As explained earlier, the Extended k-p phase distribution is limited to its
integral-form, and despite its exactness, when evaluated repeatedly, this procedure can
become computationally impaired. In a way, mathematical tractability is often desired, in
order to pursue some studies related to fading models. Hence, [45] developed an elegant
and clever technique, coming up with a tight closed-form expression for the classic x-u
phase PDF. This approximation method proved to be highly resourceful in deriving other
phase statistics, and by maintaining most of the PDFs properties, delivered excellent and
accurate curves. Following this approach, the aim of this section is to propose a tight
closed-form approximate solution for the Extended k-p phase distribution.

First, let us introduce some concepts. As known, the phase PDF is promptly

calculated as
fo(0) = [~ frolr0)ar. (4.18)

wherein freo(r,6) is (4.11). However, for this direct procedure, no solution was found.
Another way of tackling this problem is to obtain the series expansion of some of the
transcendental functions available in (4.11) in series. Here again, the results are rather
complicated and unpractical; therefore, finding an approximate solution is a better ap-
proach.

The authors in [45] proposed to Taylor expand (4.11) in terms of r as shown
below

£ (a,0)

1
0
a)2 R,e(av ) by

fro(r,6) = fro(a,0)+(r—a) fro(a,0)+(z—a)

+..4+(x—a)" , (4.19)

with a being the expansion point, and n being the n'® term of the series. Note, however,
that after performing the integration with respect to r within the interval 0 and infinity,
(4.19) does not converge for any r. To overcome this situation, [45] cleverly truncated the

integration in two operations with distinct intervals, i.e. from 0 to 1 and from 1 to infinity,
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before Taylor expanding the joint PDF, i.e.

= /1 f&@(?“, 6)) dT—f-/OO fR?@(T’, 9) dr. (420)
0 1

Then, a simple variable transformation is carried out at the second integral, i.e.
r = 1/y, and the differential term is substituted as dr = — dy/y*. With this, the intervals

are promptly replaced from r = oo to y = 0 and from r = 1 to y = 1, so that

R 0
fo(0) = / fro(r,0) dr+/ L)dy. (4.21)

Finally, by performing the following variable transformation y = r, both terms

can be grouped under the same interval as
1
fol0) = [ u(r.0)ar, (4.22)
0

wherein u(r,0) = freo(r,0) + fre(1/r,0)/r%
All these guarantee a proper integral convergence within the proposed interval.

We now Taylor expand u(r, @) around a = 1, with n = 1, obtaining

1__wp 1 (2—7)
Put2

u(r, ) = k'~ 2p2 201+ q2 2(1+p)(1 + k)2 (14 pg)o ]sm@\lﬂ’ |cos 9|1+P

14 pq

[k(l+rK) . 1 k(1+k) . 1
24| ———2ulsin@| = | sech | 24/ ———%usin §—
14 pq ml ’f) ( 1+pqu 7

1 1 1 1
X I i (2 rpa(l + 1) ————u|cos 0] A) sech (2 Wu cos QA) . (4.23)
7

1+ _ 1 1
X exXp (2 uu (sin@ + \/pg cos ) . (1+ R)Mﬁ)

XIL_

With (4.23), the integral can be solved, resulting in

U(r,0) :/0 u(r, 0) dr

3
= 12k S pr o g2 059 (14 &) 5 (1 + pq) 5" [sin 0] 757 [cos 0] 1+

Frt2

1+ ) 1 1
X exp (2 u,u, (siné + /pq cos ) . rkpu— (14 l{)'uf?)

1+ pq
1 1 1 1
xIuw 1|2 uu|sin9|7 sech | 2 uusin@;
1“ L+ pg r 1+ pq r

1 1 1 1
XLuww _q |2 w;ﬂcos«ﬂ; sech | 2 Mucos@; . (4.24)
e L+ pq T L+ pq r
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In order to obtain a true PDF, (4.24) has to go through a normalization process.
First, let us remove all the multiplicative terms that are not related to € from (4.24),

resulting in

122 Hp 1
U*(0) = |sin0|7> |cos 0]1F7 exp (2 mﬂ(sinﬁ + \/p_qcos0))

1 1
X1 u 4 (2 Mu|sin9|) sech (2 M,usin@)

e L4 pq L4 pq
1 1
XIup |2 MMCOSM sech | 2 wucos@ . (4.25)
B L4 pq 14 pq

After this procedure, (4.25) must be integrated with respect to 6, leading to its
area A. By doing so, the result resembles the first mathematical identity derived in this

Chapter given by (4.14). The result of this process is given as follows
A= / " Ut (0)de

_ et (2 + m)n) (4.26)

w(1+ k) p(pg) T 749

Finally, the approximate phase PDF for the Extended k- model, fo(6), is

formalized as
folb) = =2 (4.27)

Substituting, (4.25) and (4.26) in (4.27), we have that

1 1P
k(l+ Kk 2 2(4p) w pp
foll) = ( )pd) B |sin @] |cos 0|1+ 1,4 <2\//<(1 + /{),u)

2(1+pg)'—>
k(1+k) .
X € 2y ——=p (sinf + cos
Xp< T o p( VPq ))
kK(1+kK) . K(1+k)
I o | 24— 0 h|{2y/)————= 0
xTpy ( T i |sin ]) sec ( T e sin

kpq(l + K) kpq(1 + k)
XTww 1 | 24| ———nlcosb| | sech | 24/ ———Fpcos@ | . (4.28
1( Lt g a !) ( g " (4.28)

Curiously, in the limits ¢ — 0 and ¢ — 00, (4.28) reduces to two distinct phase
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functions, with respective expressions are given as follow,

( k(1 + /{)p)ﬁ

© 2up

fo(0)g0 = [sin 0] [cos 17"

20 (2.) Iy (2¢/5(1+ K1)

XTI <2\/m(1 + k) |sin 9|> sech (2\//$(1 + K)psin 0)

X exp (2\//@(1 + K)psin 9) (4.29)

and
w1+ ) 2 up

fo(6)yn (el + ) 5in 675" feos 0] %5

() sy )
X Iz (2\//£(1 + k) |cos 9|) sech (2\/14(1 + K)p cos €>
X exp (2\/5(1 + K)p cos 9) : (4.30)

It is important to emphasize that, when clusters are balanced (p = 1), (4.28)
reduces strikingly to the approximate phase PDF of the classic k-u model represented in
(2.53), as expected. Consequently, as already observed in [45], exact Nakagami-m phase
PDF and von Mises are also obtained after proper parameter substitution. Wondrously,
with g =m, k =1 and p, = (14 p,)/(1 — p,)), wherein p, and p, indicate, respectively,
the parameter p of the Extended rk-pu and Nakagami-m models, (4.28) reduces to the
exact generalized Nakagami-m phase distribution as in (2.21). More importantly, due
to the normalization procedure, the equation in (4.28) is a true PDF, and henceforth, is
considered a new phase distribution model with random variable Q.

In order to investigate cluster imbalance and to confront both exact and ap-
proximate phase PDFs, some plots are presented considering different fading scenarios. A
quick look in Figures 4.1-4.3, shows that the approximate solution maintains all properties
of the exact phase PDF like minimum and maximum points, yielding an incredible fit in
most cases.

In Figure 4.1, the phase scenario is molded for smaller x = 0.01 and vary-
ing values of p. First, note the clear influence of cluster imbalance in the phase PDF.
Furthermore, observe that in this particular situation, while p < 0.4, the PDF grows in-
definitely around +7/2, when reaching p = 0.4, the PDF assumes a bimodal shape with
peaks in £7/2, and finally, as p > 0.4, the PDF mass changes to an uneven quadrimodal

form. Notice that this pattern repeats itself after a 7/2 shift. This can be explained due
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to either the in-phase and quadrature components reaches the Gaussian condition, i.e.
2= (14p)/p or 2 = 14 p. Once again, it can be seen that both exact and approximate
PDF are quite close to each other.

Figure 4.2 depicts another scenario with x = 0.5, and cluster imbalance is still
explored. Here again the Gaussian condition is observed, as the PDF mass cycles from an
indefinite to a trimodal shape, and then again to an indefinite form. Another scenario is
illustrated in Figure 4.3, in which s assumes different increasing values and the PDF mass

follows its growth.

1.0
0.81
% 9 p =002,005,01,03,04,05,085,1.0,12, 1.7,%.5\,4
< 04 ,,,@,{ﬂ NG
AN

I s
Tt 2 0 2

Figure 4.1: Exact (solid lines) and approximate (dashed lines) phase PDF for varying p
(k=0,01, p=1,75 and ¢ = 0.3).

4.4 Higher Order Statistics

As already explained, higher order statistics are calculated through temporal
derivatives of the signal’s components. After properly defining the temporal derivative
component, the joint X, X, Y and Y PDF are determined, wherein the dot indicates time
derivative. Finally, by means of a variable transformations, the joint PDF of R, R, © and
© can be obtained, leading the way to other interesting statistics such as phase crossing

rate.
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Figure 4.2: Exact (solid lines) and approximate (dashed lines) phase PDF for varying p
(k=0,50, = 3,75 and ¢ = 0.90).
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fo(6) and fo(6)

Figure 4.3: Exact (solid lines) and approximate (dashed lines) phase PDF for varying s
(n=1,75,p=1.90 and ¢ = 0.30).

4.4.1 Joint PDF of X, X, Y and Y

In [45], the authors conducted an extensive study over the time derivative
component for the r-p signal. In their research, the general variable Z is a Gaussian

process with zero mean and variance 62, and therefore, its PDF can be depicted as

2) = s (—;) | (131)




78

which for an isotropic environment, its variance is modeled as
6% =21 f2 02, (4.32)

with f,, denoting maximum Doppler shift in hertz, and o2 is represented in (4.10).
Hence, by definition, X and Y are independent processes, and therefore, their
time derivative counterpart, namely X and Y are also independent. Being so, the joint

PDF of X, X, Y and Y can be written as in

xxvy = Ix(@) fx (@) fy (@) fy(9), (4.33)

wherein fx(z) and fy(y) follow the general quadrature established in (4.1), and fy (%)
and fy-(y) PDFs are indicated in (4.31).

By making the appropriate replacements in (4.33), we have that

B 1__wp ©
PR (L4 R) 22 (pg)? 0 (L4 pg) " e
fxxyy(®,@,y,9) = 273 f2 it |z Jy[ T

e e O )
(-2 b o) )

1
XTI w42 ( + 1) |y‘ 2 A ,Ug
o 1+pq 7 1+pq r

I (2 “pq<1+”)u|x|) ech (2 “pq<1+“)ujﬁ). (4.34)

14 pq T 14+ pq

4.4.2 Joint PDF of R, R, © and ©

By means of transformations of variables, the joint PDF of R, R, © and © is
calculated through (4.34) with

fR,R,@,G) (Tv 7‘47 ‘97 0) = |‘]| X fX,X,Y,Y(Ia j:’ Y, y)a (435>

in which |J| = R? is the Jacobian of the transformation, and X = Rcos(©), Y = Rsin(0),
X = Rcos(©) — ROsin(0) and Y = Rsin(©) + RO cos(0). With that, the joint PDF is
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expressed as

1 up 1

p (1 + k)5 +2p2 7050 g2 7080 (1 + pq)
om3 f2 51
k(1 + k) r
xexp | 24/ ——2u(sinf + cosf) - —k
p( Tt 1 v/pacost) - u)

72 (14 K)p (r26? + 72
X exp (—(1 + /ﬁ)uﬁ — 27r2(j’2 = )

1 1
XITun 1|2 L + K)u |sin 6| 2 Tup (2 7/{pq( + R)u |cos 6| 2
e L4 pq r)or L+ pq r

1 1
x sech (2 u,u sin 97:) sech (2 wu cos 0T> . (4.36)
r

14 pg 14+ pg 7

SIS

-1 pt2
|sin Glﬁ |cos 9\% .

fR,R,@,@(rv 7,0,0) = puta

4.4.3 Other Joint PDF's

Given (4.36), other joint PDFs can be directly obtained by simple integral
procedure. Here again, new closed form expressions emerge for distinct combinations of
R, R, © and ©.

The joint PDF of R, R, and © can be calculated by integrating (4.36) with
respect to ©, and with the help of the mathematical identity derived in (4.14) leading to

2,18 s34l 2
o pe2 (L4 k) 2 (1+rK)p /s _ r
fRR,@(r, 7, 0) = 73 f2 put3 exp —727r2f2 pe (92r2 + 7“2) — (14 /-s),uﬁ — Kl

x 1,1 (2\//£(1 + /@')u;) : (4.37)

Interestingly, (4.37) is identical to the expression found in [45, Eq. (30)], prov-

ing once more that cluster imbalance does not affect envelope statistics.
The joint PDF of R, R, and © is derived by integrating (4.36) in terms of ©,
that is
