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“Imagen:
El Fuego. En sí mis-

mo no tiene fuerza: de-
pende de su medio. Dale

aire, madera seca, viento
que avive la flama y adqui-

rirá un impulso aterrador,
se desatará, se alimentará a
si mismo, consumirá todo a

su paso. Nunca dejes ese
poder al azar.”

Robert Greene. (GREENE, 2007)



Abstract
In Massive Multiple Input Multiple Output (MIMO) systems, where a large number of
antennas is used, the dependency of the power spectrum on the signal direction allows
Angle of Arrival (AoA) estimation with a very high precision. In this work, we derive the
probability to correctly detect the angle of arrival using the conventional beamformer. The
derivation is presented in an exact manner for Uniform Linear Array (ULA) and Uniform
Rectangular Array (URA) geometries. The resulting expressions depend on the noise
power, Line of Sight Component (LoS) (modeled as the fading mean), fading variance,
number of signal snapshots, number of steering angles, and the number of antennas.
We have numerically evaluated the simulated and analytical probability of detection and
they have shown a perfect agreement for distinct scenarios framed in the Massive MIMO
condition.

Keywords: Fading channel; Radio - Transmitters and Transmission - Fading; MIMO
Systems; Wireless Communication Systems; Telecommunications - Codification; Angle of
Arrival; Beamforming; Probability of Detection; ULA; URA.



Resumo
Em sistemas de MIMO massivo, onde um grande número de antenas é usado, a dependên-
cia do espectro de energia na direção do sinal permite estimar o AoA com uma precisão
muito alta. Neste trabalho, derivamos a probabilidade de detectar corretamente o ân-
gulo de chegada usando o beamformer convencional. A derivação é apresentada de uma
maneira exata para as geometrias ULA e URA. As expressões resultantes dependem da
potência do ruído, a linha de visada (modelada como a média de desvanecimento), vari-
ância de desvanecimento, número de amostras do sinal, número de ângulos de orientação
e o número de antenas. Avaliamos numericamente a probabilidade de detecção simulada e
analítica e elas mostraram uma concordância perfeita para cenários distintos enquadrados
na condição de MIMO massivo.

Palavras-chaves: Canal de Desvanecimento; Radio - Transmissores e transmissão - Des-
vanecimento; Sistemas MIMO; Sistemas de Comunicação sem fio; Telecomunicações -
Codificação; Ângulo de chegada; Beamforming; Probabilidade de Detecção; ULA; URA.
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1 Introduction

The upcoming fifth generation (5G) of mobile network communication tech-
nology is considering the use of Massive MIMO, that is, the use of a large number of
antennas at the base station. Although wireless communications and Massive MIMO re-
search have required a significant amount of effort at architecture, channel modeling,
performance analysis, power allocation, parallel models (Device to Device Communica-
tions (D2D)) and Channel State Information (CSI) (LARSSON et al., 2014; XU et al.,
2017a; XU et al., 2017b; MARZETTA, 2010), there are few works (GARCIA et al., 2017)
where a Massive MIMO system is used for localization of terminals.

There are several techniques for device localization, among the most important
we can enumerate the following:

∙ Time of Arrival (Time of Arrival (ToA)), which uses the delay principle in
signal transmission and matched filter for time/distance estimation (DARDARI et
al., 2008).

∙ Angle of Arrival (AoA), which uses the signal delay between elements of an
antenna array and/or the correlation of power and direction of arrival of a group of
signals (CHEN et al., 2010; WANG et al., 2016; HE, 2014; FAN et al., 2018).

∙ Received Signal Strength (Received Signal Strength (RSS)), which uses
the relationship between distance and power of a signal transmitted in a physical
medium (ZEYTINCI et al., 2013; SAVIC; LARSSON, 2015).

∙ Hybrid approaches, which employ simultaneous available data from previously
mentioned methods to determine the direction of arrival estimation (GARCIA et
al., 2017; KHAN et al., 2014).

Usually, all the described approaches work as inputs for localization applica-
tions where the final output is a position or a distance. Typical works in these applica-
tions investigate the development of new algorithms using procedures like Least Squares
(BECK et al., 2008), Kalman filters (ZHANG et al., 2013) or fingerprint methods (FANG;
WANG, 2011). In the mentioned cases, the performance is assessed using metrics like po-
sition/angle Root Mean Squared Error (RMSE) versus signal to noise ratio, number of
antennas, or bias (DARDARI et al., 2008).
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1.1 Objective: Justification and Contribution

Massive MIMO takes advantage from the large number of antennas to decrease
the effect of noise and fading (LARSSON et al., 2014). In the Marzetta’s (MARZETTA,
2010) pioneer paper, it has been shown that the use of the conventional beamforming
technique is optimal as the number of antennas increases. It turns out that this basic
technique for AoA estimation is the same used for combining the signals in the Massive
MIMO system. Therefore, our derivation can be used in both contexts (combining signals
and AoA estimation with conventional beamforming).

Several works have proposed algorithms and assessment methods for AoA es-
timation (CHEN et al., 2010; WANG et al., 2016; HE, 2014; FAN et al., 2018; BECK et
al., 2008; ZHANG et al., 2013) , however, to the best of our knowledge, the probability
of detection for AoA appraisal using the conventional beamformer is unavailable in the
literature.

There are other AoA estimation techniques such as Capon (CAPON, 1969),
Multiple Signal Classification (MUSIC (SCHMIDT, 1986), Estimation of Signal Parame-
ters via Rotational Invariance Technique (ESPRIT) (ROY; KAILATH, 1989) , and RiMax
(SALMI; MOLISCH, 2011) that present better performance than the basic method in-
vestigated here. However, the connection to Massive MIMO technique plays a key role
that has motivated the derivation of the proposed metric. In fact, we have also tried to
derive the same metric for MUSIC and Capon techniques, however, these calculations
are quite involved and would require new developments in invertible non-central complex
Wishart matrices, supersymmetry (use of anticommuting variables) and complex eigen-
vectors PDFs (CHEN et al., 2010; MUIRHEAD, 2005). In this way, we can say our derived
expressions can be used as a lower bound or an approximation to estimate the probability
of detection for Capon and MUSIC techniques.

The objective in this work is to derive the probability of detection (as a new
metric) for AoA using conventional beamforming in fading and noise scenarios for ULA
and URA geometries. Our derived expressions are presented as a function of the number
of signal snapshots, the magnitude of the fading mean (LoS), the magnitude of fading
variance, the magnitude of noise variance, the number of steering angles and the number
of antennas.
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1.2 Organization of the thesis

The thesis is organized as follows:

∙ The current Introduction presents and sets the objective of this work.

∙ Chapter 2 depicts the system model and selected AoA algorithms.

∙ Chapter 3 shows the derived expressions of the equivalent random variable for a
conventional beamforming technique using ULA and URA geometries. This equiv-
alent random variable is an entry for the probability of detection expression.

∙ Chapter 4 exhibits numerical results (analytical and simulated) of the previous
deducted random variable.

∙ Chapter 5 shows the formulation and derivation of the probability of detection.
Moreover, simulated and analytical results are exposed and discussed.

∙ Conclusions section draws the conclusions and proposed future work for the pre-
sented developments.



20

2 System Model

Chapter 2 exposes the system model used in this work and selected algorithms
for evaluation.

2.1 System Model

The system is framed in a scenario where the next assumptions are established
as stated in (KRIM; VIBERG, 1996) and (CHEN et al., 2010):

∙ Isotropic and Linear Transmission Medium: The physical medium maintains
is properties in all possible directions and can be superimposed linearly at any
point. This ensures steadiness in wave propagation (Despite AoA) and linearity in
the system processing at the receiver.

∙ Far Field: The wavefront of the signal is planar and arrives at the receiver in the
same AoA for all the array elements due to their location in such a distance that
guarantees far field approximation (received signals are parallel).

∙ AWGN Channel: The channel has a noise modeled as a complex white Gaussian
process.

∙ Rice Channel: The channel fading is modeled as a non-negative mean (modeling
the LoS component) complex Gaussian process.

With the assumptions set, Fig. 2.1 shows a typical ULA system where the
signal received by the 𝑖-th antenna element is given as:

𝑟𝑖(𝑡) = 𝑠(𝑡)ℎ𝑖(𝑡)𝑒𝑗(𝑖−1)𝜇(𝜃) + 𝑛𝑖(𝑡), (2.1)

where 𝑠(𝑡) is the transmitted signal, 𝜇(𝜃) = 2𝜋
𝜆

Δ sin(𝜃) is the spatial frequency, ℎ𝑖(𝑡)
models the fading, 𝜆 is the wavelength, Δ is the distance between the elements (usually
modeled as Δ = 𝜆

2 ), 𝜃 is the angle of arrival, and 𝑛𝑖(𝑡) is the additive Gaussian noise.

The signal received by all the elements of the array can be written in a 1 ×𝑀

vector form as:
r(𝑡) = a(𝜃) ∘ h(𝑡)𝑠(𝑡) + n(𝑡), (2.2)

where the symbol ∘ stands for the Hadamard product, and the components are:
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Figure 2.1 – Physical model of an ULA system with 𝑀 antennas. Based on (CHEN et
al., 2010)

∙ Steering vector a(𝜃), given as:

a(𝜃) =
[︁
1 𝑒𝑗𝜇(𝜃) ... 𝑒𝑗(𝑀−1)𝜇(𝜃))

]︁
, (2.3)

∙ The fading vector h(𝑡) is a complex Gaussian random process with mean 𝜇𝑓 = 𝐿/
√

2
for the real and imaginary part (𝐿/

√
2 is assumed as the fading mean component

and models the dominant LoS component), and covariance matrix 𝜎2
𝑓I𝑀 , where I𝑀

stands for a 𝑀 × 𝑀 identity matrix. Namely, the channel for signal 𝑠(𝑡) is set as
Rician fading with a dominant LoS component, i.e. 𝜇𝑓 .

∙ The noise n(𝑡) is a complex random process with zero mean and covariance matrix
𝜎2
𝑛I.

2.1.1 URA Case

URA configuration uses an extra angle dimension where the array is located
at the 𝑥𝑦 plane, with the first element placed at the origin (see Fig. 2.2 and Fig. 2.3). In
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this way, the elevation and azimuth steering vectors of the impinging signal in the array
are given as:

Figure 2.2 – URA Configuration.

Figure 2.3 – Elevation and Azimuth angles in URA layout.

a𝑢(𝜓, 𝜉) =
[︁
1 𝑒𝑗𝑢 ... 𝑒𝑗(𝑀𝑥−1)𝑢

]︁
, (2.4)

a𝑣(𝜓, 𝜉) =
[︁
1 𝑒𝑗𝑣 ... 𝑒𝑗(𝑀𝑦−1)𝑣

]︁
, (2.5)

where
𝑢 = −(2𝜋/𝜆)Δ sin(𝜓) sin(𝜉), (2.6)

and
𝑣 = −(2𝜋/𝜆)Δ sin(𝜓) cos(𝜉). (2.7)

These vectors are multiplied to get a matrix A(𝜓, 𝜉) as:

A(𝜓, 𝜉) = a𝐻𝑣 (𝜓, 𝜉)a𝑢(𝜓, 𝜉). (2.8)

Then matrix A(𝜓, 𝜉) is transformed into a 1 ×𝑀𝑥𝑀𝑦 vector using the vec (·) operation:

a(𝜓, 𝜉) = vec [A(𝜓, 𝜉)] . (2.9)
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Remember, that the vec (·) operator is a two step operation on a matrix: first, it con-
catenates the columns of a matrix in a single column vector of size 𝑀𝑥𝑀𝑦 × 1, and then
it transposes this vector into a line vector of size 1 × 𝑀𝑥𝑀𝑦. Note that, from (2.2) and
(2.9), r𝑘 has the same dimension as a(𝜓, 𝜉), therefore the size of r𝑘 for URA case will be
1 ×𝑀𝑥𝑀𝑦.

2.2 AoA algorithms

Covariance matrix calculates the degree of correlation of a group of signals.
The higher the value of the matrix elements, the higher the degree of correlation between
the signals. Noise is usually uncorrelated (as modeled in this work), opposite to a group
of signals coming from the same origin, which are highly correlated. In this case, the high
value of correlation comes from the fact that the signals are essentially the same with some
delay, in other words, they are closely alike between them. Therefore the sample covariance
matrix R can be used to estimate the angle of arrival, as vastly reported in many references
(CHEN et al., 2010; XU et al., 1994; JONG; HERBEN, 1999; KWAKKERNAAT et al.,
2008).

Assuming a specific time, we can define r𝑘 = r(𝑡 = 𝑡𝑘), and therefore the
spatial covariance matrix can be defined as:

R = 1
𝐾

𝐾−1∑︁
𝑘=0

r𝐻𝑘 r𝑘, (2.10)

where (·)𝐻 stands for the conjugate transpose or Hermitian operator. The variable 𝐾 is
the number of snapshots taken to the signal. Different AoA algorithms use and process
in a particular way the information that is given by the covariance matrix R as shown in
following subsections. Finally, for URA case, the dimension of covariance matrix R will
be given as 𝑀𝑥𝑀𝑦 ×𝑀𝑥𝑀𝑦.

2.2.1 Conventional Beamforming

The conventional beamformer method estimates the spatial power spectrum
for every possible AoA frequency as (CHEN et al., 2010, Eq. 3.43):

H𝑈𝐿𝐴−𝐶𝑂𝑁(𝜓) = a(𝜓)Ra𝐻(𝜓)
a(𝜓)a𝐻(𝜓) , (2.11)

where a(𝜓) is the steering vector for all possible AoA, as defined in (2.3). The angle
variable 𝜓 is discretized into Q possible values, in other words there are Q steering fre-
quencies. When the condition 𝜓 = 𝜃 occurs, (2.11) reaches its maximum, which is the key
assumption to estimate 𝜃 (the AoA of the direct line of sight component). Is is important
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to note that the original AoA 𝜃 will be covered by one the closest value of the Q steering
angles. However as the number of Q possible angles increases (which is the case for Mas-
sive MIMO), the error associated with this discretization will be negligible.
For all of the snapshots, the numerator can be given as:

a(𝜃)r𝐻𝑘 r𝑘a𝐻(𝜃) = q𝑘q𝑘 = |q𝑘|2. (2.12)

where q𝑘 = r𝑘a𝐻(𝜃).

Note that (2.12) presents the term q𝑘 = r𝑘a𝐻(𝜃), that is exactly the spatial
implementation of the Maximal Ratio Combining (MRC) principle (MARZETTA, 2010),
in which a𝐻(𝜃) is the spatial channel coefficient that optimizes the combining of the
received signal r𝑘. It is noteworthy to emphasize the following: The MRC technique has
been devised as the optimal combining technique since it maximizes the signal to noise
ratio at the combiner output. In the Massive MIMO context, this method has been used
since the effect of the noise and fast fading vanish as the number of antennas is very large
(LARSSON et al., 2014).

Other useful interpretation for (2.11) is the matched filter principle: a received
signal is correlated with its template signal. The filter response is maximum when both
signals are similar (i.e. correlated). In this particular case (2.11) could be seen as a spatial
matching filter that gives a maximum response when the impinging signals (characterized
on R) match with the steering vector of the angle of origin a(𝜃).

For URA case, the power spatial spectrum is defined as:

H𝑈𝑅𝐴−𝐶𝑂𝑁(𝜓, 𝜉) = a(𝜓, 𝜉)Ra𝐻(𝜓, 𝜉)
a(𝜓, 𝜉)a𝐻(𝜓, 𝜉) , (2.13)

and in the same fashion as (2.11), (2.13) achieves its maximum when (𝜓 = 𝜃, 𝜉 = 𝜑),
which is the AoA of the signal.

2.2.2 Capon Beamforming

Capon beamforming principle works on an inverse approach (CHEN et al.,
2010; CAPON, 1969): it forms a beam in the AoA direction and forms nulls in other
directions to dismiss other signals. This is achieved by restricting the beam in the AoA
direction (maintaining unity gain) and minimizing the array output power on the other
directions. This issue, results in a power spectrum for Capon Beamforming:

H𝑈𝐿𝐴−𝐶𝐴𝑃 (𝜓) = 1
a(𝜓)R−1a𝐻(𝜓)

, (2.14)

Once again, the angle variable 𝜓 is discretized into Q possible values, in other words
there are Q steering frequencies, and when the condition 𝜓 = 𝜃 occurs, (2.14) reaches
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Figure 2.4 – Power spectrum vs angle 𝜓 for Conventional beamforming with 𝜃 = 20∘,
𝐾 = 5, 𝐿 = 1, 𝑀 = 5, 𝑄=181 (Δ𝜓 = 1.0∘), 𝜎𝑛 = 0.1 and 𝜎𝑓 = 0.1 in ULA
configuration.

its maximum, which is the key assumption to estimate 𝜃. This method proves to have a
higher computational cost due to the calculation of the inverse matrix where the greater
the number of array elements, the severer the computing time and power. For URA case,
the power spatial spectrum is defined as:

H𝑈𝑅𝐴−𝐶𝐴𝑃 (𝜓, 𝜉) = 1
a(𝜓, 𝜉)R−1a𝐻(𝜓, 𝜉)

, (2.15)

and in the same fashion as (2.14), (2.15) achieves its maximum when (𝜓 = 𝜃, 𝜉 = 𝜑),
which is the AoA of the signal.

At last, it is worth to remember that number of snapshots 𝐾 in covariance
matrix R of (2.4) inserted in equations (2.14) and (2.15) shall always be greater or equal
to the number of antennas 𝑀 , (𝐾 ≥ 𝑀 or 𝐾 ≥ 𝑀𝑥𝑀𝑦), in order to avoid singularity
in the matrix that impedes the existence of invertible matrix, i. e. the basis of Capon
method.

2.2.3 MUSIC

MUSIC (SCHMIDT, 1986) method is framed into the subspace techniques,
that relies on the covariance matrix R space whose properties are given as (CHEN et al.,
2010):
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Figure 2.5 – Power spectrum vs angle 𝜓 for Capon beamforming with 𝜃 = 20∘, 𝐾 = 5,
𝐿 = 1, 𝑀 = 5, 𝑄=181 (Δ𝜓 = 1.0∘), 𝜎𝑛 = 0.1 and 𝜎𝑓 = 0.1 in ULA
configuration.

1. The signal space, spanned by its eigenvectors, can be partitioned into two orthogonal
subspaces, namely the signal subspace and noise subspace (CHEN et al., 2010).

2. The steering vector corresponds to the signal subspace (CHEN et al., 2010).

3. The noise subspace is spanned by the eigenvectors associated with the smallest
eigenvalues of the correlation matrix (covariance) (CHEN et al., 2010).

4. The signal subspace is spanned by the eigenvectors associated with the largest eigen-
value (CHEN et al., 2010).

With this basis, MUSIC algorithm is given as:

1. Calculate covariance matrix R

2. Develop eigen-decomposition on R:

RW = Wϒ (2.16)

Where ϒ = 𝑑𝑖𝑎𝑔[𝜐0, 𝜐1, . . . , 𝜐𝑀−1] are the eigenvalues of R and W is the matrix
that contains all the eigenvectors associated to R.

3. Find the largest eigenvalue 𝜐𝑀𝐴𝑋 . In (SCHMIDT, 1986) was proven that the eigen-
vectors associated to 𝜐𝑀𝐴𝑋 spanned the signal subspace.
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4. Remove column of eigenvectors associated to 𝜐𝑀𝐴𝑋 in W. Now W turns into W𝑛,
size 𝑀 ×𝑀 − 1.

5. Calculate the power spectrum with the inverse approach, using matrix W𝑛:

H𝑈𝐿𝐴−𝑀𝑈𝑆(𝜓) = 1
a(𝜓)W𝑛W𝐻

𝑛 a𝐻(𝜓)
, (2.17)

The eigenvectors in W𝑛 are spanning the noise subspace, therefore they will produce
nulls in the denominator of (2.17) when 𝜓 = 𝜃 (due to the orthogonality between
signal and noise subspaces). Subsequently, this product is inverted to obtain the
peaks in the spectrum, which determines the associated AoA, 𝜃. Once again, the
angle variable 𝜓 is discretized into Q possible values, in other words there are Q
steering frequencies.

For URA case, the algorithm remains the same, and the power spatial spectrum is defined
as:

H𝑈𝑅𝐴−𝑀𝑈𝑆(𝜓, 𝜉) = 1
a(𝜓, 𝜉)W𝐻

𝑛 W𝑛a𝐻(𝜓, 𝜉)
, (2.18)

and in the same fashion as (2.17), equation (2.18) achieves its maximum when (𝜓 = 𝜃, 𝜉 =
𝜑), which is the AoA of the signal.

Figure 2.6 – Power spectrum vs angle 𝜓 for MUSIC beamforming with 𝜃 = 20∘, 𝐾 = 5,
𝐿 = 1, 𝑀 = 5, 𝑄=181 (Δ𝜓 = 1.0∘), 𝜎𝑛 = 0.1 and 𝜎𝑓 = 0.1 in ULA
configuration.
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2.2.4 Maximum Likelihood

The maximum likelihood principle is a universal estimation technique where
the objective is to find the model (set of equations and/or their parameters) or just the
parameters (when the model is known) that fits the best with observed data. To do
so, for every possible model or group of parameters, the estimator calculates a selected
metric (typically the error or the squared error) and chooses the model that minimizes
the metric itself. Because some models could be massive, complex or with a wide span of
the parameters, the maximum likelihood technique is computationally intensive, however,
it always has the best performance in terms of error.

For this application, in particular, the estimator is formulated in the least
squares (LS) form as (CHEN et al., 2010):

𝜃 = arg min
𝜃,𝑠(𝑡)

⟨
⃦⃦⃦
r(𝑡𝑛) − a(𝜃)𝑠(𝑡𝑛)

⃦⃦⃦2
⟩𝑁 (2.19)

where the estimated angle 𝜃, is the one that minimizes the LS fit of a group of possible
steering vectors and reconstructed signals.The angle variable is discretized into Q possible
values. Therefore 𝜃 is the associated angle of the minimum value for the Q possible values
of the cost function

𝐽 = ⟨
⃦⃦⃦
r(𝑡𝑛) − a(𝜃)𝑠(𝑡𝑛)

⃦⃦⃦2
.⟩𝑁 (2.20)

Figure 2.7 – Cost Function vs angle 𝜓 for Conventional beamforming with 𝜃 = 20∘,𝐾 = 5,
𝐿 = 1, 𝑀 = 5, 𝑄=181 (Δ𝜓 = 1.0∘), 𝜎𝑛 = 0.1 and 𝜎𝑓 = 0.1 in ULA
configuration.
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2.3 AoA Estimation performance

In order to show the performance of the presented methods, we simulated the
estimated angle RMSE, estimated angle mean 𝜇𝜃 and estimated angle standard deviation
𝜎𝜃, as shown in Fig. 2.8 and Fig. 2.9. These metrics are calculated as:

RMSE =
√︃

E
[︂(︁
𝜃 − 𝜃

)︁2
]︂

(2.21)

𝜇𝜃 = E
[︁
𝜃
]︁

(2.22)

𝜎𝜃 =
√︂

var
[︁
𝜃
]︁

(2.23)

where 𝜃 is the correct angle used in the simulation and 𝜃 is the estimated angle. The
mean operator E [·] and the variance operator var [·] compute the average and variance
over many realizations of the Monte Carlo simulation.

Figure 2.8 – RMSE of Conventional, Capon, MUSIC and Maximum Likelihood angle es-
timators with 𝐾 = 5, 𝐿 = 1, 𝑀 = 4, 𝑄=181 (Δ𝜓 = 1.0∘), and 𝜎𝑓 = 1

Fig. 2.8 and Fig. 2.9 show that the greater the SNR the better the performance
of all the techniques. It is evident -as expected- that Maximum Likelihood method gives
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Figure 2.9 – Normalized Mean and Standard Deviation for estimated angle 𝜃 of Con-
ventional, Capon, MUSIC and Maximum Likelihood angle estimators with
𝐾 = 5, 𝐿 = 1, 𝑀 = 4, 𝑄=181 (Δ𝜓 = 1.0∘), and 𝜎𝑓 = 1

the best performance: it has a smaller error, it tends to the normalized mean faster than
the other methods, and its standard deviation is smaller for all the SNR range. On the
other hand, the beamforming estimators have a similar performance in all the metrics,
with Capon under-performing the other two.
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3 Conventional Beamforming Equivalent
Random Variable

This chapter shows the derivation of the random variables for conventional
beamforming, which their associated PDFs and CDFs are inputs to determine the prob-
ability of detection as given in Chapter 5.

3.1 ULA Case

3.1.1 Derivation of the Equivalent Random Variable

Note that (2.11), evaluated for a fixed angle, is a random variable and is defined
as:

H𝑈𝐿𝐴(𝜓) = a(𝜓)Ra𝐻(𝜓)
a(𝜓)a𝐻(𝜓) = a(𝜓)Ra𝐻(𝜓)

𝑀
. (3.1)

For notation simplicity, we assume a(𝜓) = a𝜓 and therefore, the power spectrum, given
in (3.1), can be written as:

H𝑈𝐿𝐴 =
a𝜓Ra𝐻𝜓
𝑀

. (3.2)

which its reduction/simplification and its associated PDFs and CDFs are our objective.
We start by redefining r𝑘 (2.2):

r𝑘 = a𝜃 ∘ h𝑘𝑠(𝑡) + n𝑘, (3.3)

where 𝑟𝑘𝑖 is the 𝑖-th element of r𝑘, and 𝑎𝜃𝑖 is the 𝑖-th element of a𝜃. We continue by deriving
the mean and variance of r𝑘. Since the sum of complex Gaussian random variables is also
Gaussian distributed, the real and imaginary part of 𝑟𝑘𝑖 are distributed as:

ℜ(𝑟𝑘𝑖) ∼ 𝑁

(︃
𝐿√
2

(ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) ,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.4)

ℑ(𝑟𝑘𝑖) ∼ 𝑁

(︃
𝐿√
2

(ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖)) ,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.5)

ℜ(𝑟𝑘𝑖) ∼ 𝑁

(︃
𝐿√
2

(︃
cos

(︃
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︃

− sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︃)︃

,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.6)

ℑ(𝑟𝑘𝑖) ∼ 𝑁

(︃
𝐿√
2

(︃
cos

(︃
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︃)︃

,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.7)
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where the notation 𝑁 (𝜇, 𝜎2) stands for a normal distribution with mean 𝜇 and variance
𝜎2.
Expanding (2.10) inside (3.2), we get:

H𝑈𝐿𝐴 = 1
𝐾𝑀

𝐾−1∑︁
𝑘=0

a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 . (3.8)

Now, we can define the variable q𝑘 as:

q𝑘 = a𝜓r𝐻𝑘 = ℜ(q𝑘) + 𝑗ℑ(q𝑘). (3.9)

Therefore
a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 = ℜ(q𝑘)2 + ℑ(q𝑘)2, (3.10)

which can be expanded as:

a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 =
(︃
𝑀−1∑︁
𝑖=0

ℜ(𝑎𝜓𝑖)ℜ(𝑟𝑘𝑖) + ℑ(𝑎𝜓𝑖)ℑ(𝑟𝑘𝑖)
)︃2

+
(︃
𝑀−1∑︁
𝑖=0

−ℜ(𝑎𝜓𝑖)ℑ(𝑟𝑘𝑖) + ℑ(𝑎𝜓𝑖)ℜ(𝑟𝑘𝑖)
)︃2

,

(3.11)

a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 =
(︃
𝑀−1∑︁
𝑖=0

cos
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℜ(𝑟𝑘𝑖) + sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℑ(𝑟𝑘𝑖)
)︃2

+
(︃
𝑀−1∑︁
𝑖=0

− cos
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℑ(𝑟𝑘𝑖) + sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℜ(𝑟𝑘𝑖)
)︃2

. (3.12)

Note that all the terms inside the summation are Gaussian distributed since 𝑟𝑘𝑖 is Gaussian
and 𝑎𝜓𝑖 is a constant. Also, the real and imaginary part of 𝑟𝑘𝑖 are independent. Now
defining the new Gaussian variables as:

𝑢𝑘𝑖 = ℜ(𝑎𝜓𝑖)ℜ(𝑟𝑘𝑖) = cos
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℜ(𝑟𝑘𝑖), (3.13)

𝛿𝑘𝑖 = ℑ(𝑎𝜓𝑖)ℑ(𝑟𝑘𝑖) = sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℑ(𝑟𝑘𝑖), (3.14)

𝜂𝑘𝑖 = ℑ(𝑎𝜓𝑖)ℜ(𝑟𝑘𝑖) = sin
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℜ(𝑟𝑘𝑖), (3.15)

𝜁𝑘𝑖 = ℜ(𝑎𝜓𝑖)ℑ(𝑟𝑘𝑖) = cos
(︃
𝑖
2𝜋Δ
𝜆

sin(𝜓)
)︃

ℑ(𝑟𝑘𝑖), (3.16)

which are distributed as:

𝑢𝑘𝑖 ∼ 𝑁

⎛⎝𝐿 · ℜ(𝑎𝜓𝑖)√
2

(ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) ,
ℜ(𝑎𝜓𝑖)2 ·

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
2

⎞⎠ , (3.17)

𝛿𝑘𝑖 ∼ 𝑁

⎛⎝𝐿 · ℑ(𝑎𝜓𝑖)√
2

(ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖)) ,
ℑ(𝑎𝜓𝑖)2 ·

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
2

⎞⎠ , (3.18)

𝜂𝑘𝑖 ∼ 𝑁

⎛⎝𝐿 · ℑ(𝑎𝜓𝑖)√
2

(ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) ,
ℑ(𝑎𝜓𝑖)2 ·

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
2

⎞⎠ , (3.19)

𝜁𝑘𝑖 ∼ 𝑁

⎛⎝𝐿 · ℜ(𝑎𝜓𝑖)√
2

(ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖)) ,
ℜ(𝑎𝜓𝑖)2 ·

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
2

⎞⎠ , (3.20)
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equivalently:

𝑢𝑘𝑖 ∼ 𝑁

(︃
𝐿 · cos

(︀
𝑖 2𝜋Δ
𝜆

sin(𝜓)
)︀

√
2

(︂
cos
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂

− sin
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂)︂

,
cos2 (︀𝑖 2𝜋Δ

𝜆
sin(𝜓)

)︀
·
(︀
𝜎2
𝑛 + 𝜎2

𝑓

)︀
2

)︃
,(3.21)

𝛿𝑘𝑖 ∼ 𝑁

(︃
𝐿 · sin

(︀
𝑖 2𝜋Δ
𝜆

sin(𝜓)
)︀

√
2

(︂
cos
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂

+ sin
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂)︂

,
sin2 (︀𝑖 2𝜋Δ

𝜆
sin(𝜓)

)︀
·
(︀
𝜎2
𝑛 + 𝜎2

𝑓

)︀
2

)︃
,(3.22)

𝜂𝑘𝑖 ∼ 𝑁

(︃
𝐿 · sin

(︀
𝑖 2𝜋Δ
𝜆

sin(𝜓)
)︀

√
2

(︂
cos
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂

− sin
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂)︂

,
sin2 (︀𝑖 2𝜋Δ

𝜆
sin(𝜓)

)︀
·
(︀
𝜎2
𝑛 + 𝜎2

𝑓

)︀
2

)︃
,(3.23)

𝜁𝑘𝑖 ∼ 𝑁

(︃
𝐿 · cos

(︀
𝑖 2𝜋Δ
𝜆

sin(𝜓)
)︀

√
2

(︂
cos
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂

+ sin
(︂
𝑖
2𝜋Δ
𝜆

sin(𝜃)
)︂)︂

,
cos2 (︀𝑖 2𝜋Δ

𝜆
sin(𝜓)

)︀
·
(︀
𝜎2
𝑛 + 𝜎2

𝑓

)︀
2

)︃
,(3.24)

then we can write (3.10) as:

a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 =
(︃
𝑀−1∑︁
𝑖=0

𝑢𝑘𝑖 + 𝛿𝑘𝑖

)︃2

+
(︃
𝑀−1∑︁
𝑖=0

𝜂𝑘𝑖 − 𝜁𝑘𝑖

)︃2

. (3.25)

The terms inside the sums are also Gaussian distributed and recalling that ℜ(𝑎𝜓𝑖)2 +
ℑ(𝑎𝜓𝑖)2 = 1, we have that:

𝜌𝑘𝑖 ∼ 𝑁

(︃
𝐿√
2

· (ℜ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) + ℑ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖))) ,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.26)

𝜏𝑘𝑖 ∼ 𝑁

(︃
𝐿√
2

· (ℑ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) − ℜ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖))) ,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
. (3.27)

By trigonometrical reduction:

ℜ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) + ℑ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖)) = cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃
,

(3.28)

ℑ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) − ℑ(𝑎𝜃𝑖)) − ℜ(𝑎𝜓𝑖) (ℜ(𝑎𝜃𝑖) + ℑ(𝑎𝜃𝑖)) = sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃
,

(3.29)
where

Ξ = sin(𝜓) − sin(𝜃). (3.30)

Therefore equations (3.26) and (3.27) can be rewritten as:

𝜌𝑘𝑖 ∼ 𝑁

(︃
𝐿√
2

·
(︃

cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
, (3.31)

𝜏𝑘𝑖 ∼ 𝑁

(︃
𝐿√
2

·
(︃

sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

,
𝜎2
𝑛 + 𝜎2

𝑓

2

)︃
. (3.32)

so we write (3.25) as:

a𝜓r𝐻𝑘 r𝑘a𝐻𝜓 =
(︃
𝑀−1∑︁
𝑖=0

𝜌𝑘𝑖

)︃2

+
(︃
𝑀−1∑︁
𝑖=0

𝜏𝑘𝑖

)︃2

(3.33)
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Once again due to independence of 𝜌𝑘𝑖 and 𝜏𝑘𝑖, the sum of 𝑀 Gaussian variables is another
Gaussian variable with mean equal to the sum of the 𝑀 means and variance equal to the
sum of the 𝑀 variances, therefore we have:

𝜖𝑘 =
𝑀−1∑︁
𝑖=0

𝜌𝑘𝑖, (3.34)

𝜔𝑘 =
𝑀−1∑︁
𝑖=0

𝜏𝑘𝑖, (3.35)

which are distributed as:

𝜖𝑘 ∼ 𝑁

(︃
𝐿√
2

·
(︃
𝑀−1∑︁
𝑖=0

cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

,
𝑀 · (𝜎2

𝑛 + 𝜎2
𝑓 )

2

)︃
, (3.36)

𝜔𝑘 ∼ 𝑁

(︃
𝐿√
2

·
(︃
𝑀−1∑︁
𝑖=0

sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

,
𝑀 · (𝜎2

𝑛 + 𝜎2
𝑓 )

2

)︃
, (3.37)

then we can write (3.8) as:

H𝑈𝐿𝐴 = 1
𝐾𝑀

𝐾−1∑︁
𝑘=0

𝜖2
𝑘 + 𝜔2

𝑘. (3.38)

Since the sum of independent non-central square Gaussians with 𝜎2 = 1 is a non-central
Chi-squared distributed random variable, we get that (3.38) (after unitary variance nor-
malization) can be written as:

H𝑈𝐿𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 · (𝜄+ 𝜈) , (3.39)

where

𝜄 ∼ 𝜒2
𝑛𝑐

⎛⎝𝐾, 𝐾𝐿2

𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁ (︃𝑀−1∑︁
𝑖=0

cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃2⎞⎠ , (3.40)

𝜈 ∼ 𝜒2
𝑛𝑐

⎛⎝𝐾, 𝐾𝐿2

𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁ (︃𝑀−1∑︁
𝑖=0

sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃2⎞⎠ , (3.41)

and 𝜒2
𝑛𝑐 (𝜅, 𝜆) is the non-central Chi-squared (PAPOULIS; PILLAI, 2002) distribution

with the parameters 𝜅 > 0 (degrees of freedom) and 𝜆 > 0 (non-centrality).

Finally, by non-central Chi-squared addition properties we get that

𝐻𝑈𝐿𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜓,𝜃), (3.42)

where

Ω(𝜓,𝜃) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾,
𝐾𝐿2

(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ , (3.43)
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and
𝜋1(𝜓,𝜃) =

𝑀−1∑︁
𝑖=0

(︃
cos

(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

, (3.44)

𝜋2(𝜓,𝜃) =
𝑀−1∑︁
𝑖=0

(︃
sin

(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

Ξ
)︃)︃

. (3.45)

Therefore, 𝐻𝑈𝐿𝐴 is a scaled non-central Chi-squared distributed random variable. This
result shows that the spatial power spectrum given in (2.11) could be seen as an equiva-
lent random variable, which depends on the spatial frequency associated to the angle 𝜓
(i.e. each one of the Q steering discretized angles of the span), 𝜃 (i.e the AoA), besides
the environment and controllable variables (the number of antennas 𝑀 , the number of
snapshots 𝐾, the fading mean component (LoS) 𝐿, the fading variance 𝜎2

𝑓 and the noise
variance 𝜎2

𝑛).

3.1.2 PDF and CDF

The derived PDF for𝐻𝑈𝐿𝐴 (using the characteristic PDF for scaled non-central
Chi squared distribution) is given as:

𝑓𝐻𝑈𝐿𝐴(𝑥) = 𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−
𝐾

(︁
2𝑀𝑥+

(︁
𝜋2

1(𝜓,𝜃)
+𝜋2

2(𝜓,𝜃)

)︁
𝐿2
)︁

2𝑀(𝜎2
𝑛+𝜎2

𝑓
)

⎛⎝ 2𝑀𝑥(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝐿2

⎞⎠
𝐾−1

2

·

I𝐾−1

⎛⎜⎜⎝ 𝐾𝐿

𝜎2
𝑛 + 𝜎2

𝑓

⎯⎸⎸⎷2
(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝑥

𝑀

⎞⎟⎟⎠ , (3.46)

where 𝐼𝑐 (𝑑) is the modified Bessel function of the first kind with parameters 𝑐 ≥ 0 and
𝑑 ≥ 0. The corresponding CDF (using the characteristic CDF for scaled non-central Chi
squared distribution) can be found as:

𝐹𝐻𝑈𝐿𝐴(𝑥) = 1 − Q𝐾

⎛⎜⎝
⎯⎸⎸⎸⎷𝐾

(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝐿2

𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁ ,

⎯⎸⎸⎷ 2𝐾
𝜎2
𝑛 + 𝜎2

𝑓

𝑥

⎞⎟⎠ , (3.47)

where Q𝑒(𝑎, 𝑏) is the Marcum-Q function with parameters 𝑎 ≥ 0, 𝑏 ≥ 0 and 𝑒 ≥ 0.

3.1.3 Mean and Variance

The mean of the random variable 𝐻𝑈𝐿𝐴 (using the characteristic mean for
scaled non-central Chi squared distribution) can be calculated as:

E[𝐻𝑈𝐿𝐴] =
2𝑀

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
+ 𝐿2

(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
2𝑀 , (3.48)
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and the variance (using the characteristic variance for scaled non-central Chi squared
distribution) is given as:

var[𝐻𝑈𝐿𝐴] =
𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁2
+ (𝜎2

𝑛 + 𝜎2
𝑓 )𝐿2

(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝐾𝑀

. (3.49)

Based on these analytical equations, it is evident that the mean does not depend on the
number of snapshots 𝐾, and it is strongly dependent on the product of the number of
antennas and the fading mean component. On the other hand, the variance is highly
sensitive to the noise and fading variance. These could be mitigated by increasing the
parameter 𝐾, which will reduce the variance.

3.1.3.1 Influence of parameters 𝜓 and 𝜃

Figure 3.1 – 𝜋2
1(𝜓,𝜃)

+ 𝜋2
2(𝜓,𝜃)

versus (𝜓, 𝜃) for 𝐻𝑈𝐿𝐴 with 𝑀 = 4.

Due to the linear dependence of the mean and variance on 𝜋2
1(𝜓,𝜃)

+𝜋2
2(𝜓,𝜃)

((3.48)
and (3.49)), Fig. 3.1 reflects the influence of steering angles (𝜓, 𝜃) on 𝐻𝑈𝐿𝐴 mean and
variance. It is evident that 𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)
gets its maximum (𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)𝑀𝐴𝑋
= 2𝑀2)

when 𝜓 = 𝜃 and also when the difference between {𝜓, 𝜃} is the biggest possible. This fact
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shows that the conventional beamforming, besides the influence of all the environment
(𝐿, 𝜎𝑛, 𝜎𝑓 ) and controllable parameters (𝑀,𝐾) is directly affected by the AoA itself.
Particularly, variance models the power of the signal. Therefore for the 𝐻𝑈𝐿𝐴 case, a
greater value implies more power associated with the AoA. This occurrence confirms
the principle of the conventional beamforming approach: to find the maximum power
associated with the Q possible steering angles of the spatial power spectrum. Finally,
the maximum in the extremes of the {𝜓, 𝜃} difference shows that this situation shall be
avoided, in other words, the steering shall be done in a range that reduces the effect of
the 𝜓 ̸= 𝜃 circumstance, like {−𝜋

3 ,
𝜋
3 }.

3.1.4 Equivalent Random Variable for AoA

Our primary objective focuses the research on finding the equivalent random
variable when 𝜓 = 𝜃, as established in the following rationale. We define:

𝐻𝑈𝐿𝐴(𝜓 = 𝜃) = 𝑃𝑈𝐿𝐴, (3.50)

therefore
𝑃𝑈𝐿𝐴 =

𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜃,𝜃), (3.51)

where

Ω(𝜃,𝜃) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾,
𝐾𝐿2

(︁
𝜋2

1(𝜃,𝜃)
+ 𝜋2

2(𝜃,𝜃)

)︁
𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ . (3.52)

Here
Ξ = sin(𝜓) − sin(𝜓) = 0 (3.53)

Therefore 𝜋1 and 𝜋2 change into:

𝜋1 =
𝑀−1∑︁
𝑖=0

cos
(︃
𝑖
2𝜋Δ
𝜆

0
)︃

+ sin
(︃
𝑖
2𝜋Δ
𝜆

0
)︃

=
𝑀−1∑︁
𝑖=0

cos (0) + sin (0) =
𝑀−1∑︁
𝑖=0

1 = 𝑀 (3.54)

𝜋2 =
𝑀−1∑︁
𝑖=0

sin
(︃
𝑖
2𝜋Δ
𝜆

0
)︃

− cos
(︃
𝑖
2𝜋Δ
𝜆

0
)︃

=
𝑀−1∑︁
𝑖=0

sin (0) − cos (0) =
𝑀−1∑︁
𝑖=0

−1 = −𝑀 (3.55)

𝜋2
1(𝜃,𝜃)

+ 𝜋2
2(𝜓,𝜃)

= (𝑀2) + (−𝑀)2 = 2𝑀2, (3.56)

turning (3.52) into:

Ω(𝜃,𝜃) ∼ 𝜒2
𝑛𝑐

(︃
2𝐾, 2𝐾𝑀𝐿2

𝜎2
𝑛 + 𝜎2

𝑓

)︃
. (3.57)

Correspondingly, the PDF, CDF, E[.] and var[.] acquire their own values:

𝑓𝑃𝑈𝐿𝐴(𝑥) = 𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−
𝐾(𝑥+𝑀𝐿2)
𝜎2
𝑛+𝜎2

𝑓

(︂
𝑥

𝑀𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝐿
𝜎2
𝑛 + 𝜎2

𝑓

√
𝑀𝑥

)︃
, (3.58)
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𝐹𝑃𝑈𝐿𝐴(𝑥) = 1 − Q𝐾

⎛⎝⎯⎸⎸⎷2𝐾𝑀𝐿2

𝜎2
𝑛 + 𝜎2

𝑓

,

⎯⎸⎸⎷ 2𝐾
𝜎2
𝑛 + 𝜎2

𝑓

𝑥

⎞⎠ , (3.59)

E[𝑃𝑈𝐿𝐴] = 𝜎2
𝑛 + 𝜎2

𝑓 +𝑀𝐿2, (3.60)

var[𝑃𝑈𝐿𝐴] =

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁2
+ (𝜎2

𝑛 + 𝜎2
𝑓 )2𝑀𝐿2

𝐾
. (3.61)

As in the general case, mean does not depend on the number of snapshots 𝐾 and variance
is sensitive to the noise and the fading variances. Finally, there is no dependence on 𝜓

neither 𝜃 angle.

3.1.5 Particular Cases for 𝑃𝑈𝐿𝐴

3.1.5.1 Absence of Rayleigh Fading

When the fading is not present in the model, 𝜎2
𝑓 = 0 and 𝐿 = 1. In this case,

the performance is very similar to the general case, but now the parameters 𝑀 and 𝐾

have more influence on the PDF. Consequently, the detection is more controllable.

3.1.5.2 Absence of fading mean (Null LoS)

When the fading mean is not present in the model (i.e. there is no LoS com-
ponent), 𝐿 = 0. In this case the 𝑃𝑈𝐿𝐴 will be given as:

𝑃𝑈𝐿𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜃,𝜃), (3.62)

where
Ω(𝜃,𝜃) ∼ 𝜒2

𝑛𝑐

(︃
2𝐾, 2𝐾𝑀02

𝜎2
𝑛 + 𝜎2

𝑓

)︃
. (3.63)

Ω(𝜃,𝜃) ∼ 𝜒2
𝑛𝑐 (2𝐾, 0) . (3.64)

Note that a null non centrality parameter for a non-central Chi squared random variable
implies that Ω(𝜃,𝜃) is distributed as a central Chi-squared distribution, or in other words,
a Chi-squared distribution with parameter 𝜅 = 2𝐾 (degrees of freedom).
The mean of the random variable (using the characteristic mean for scaled central Chi
squared distribution) can be calculated as:

E[𝑃𝑈𝐿𝐴] = 𝜎2
𝑛 + 𝜎2

𝑓 , (3.65)

and the variance (using the characteristic variance for scaled central Chi squared distri-
bution) is given as:

var[𝑃𝑈𝐿𝐴] =

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁2

𝐾
. (3.66)
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After replacing 𝐿 = 0 in (3.58) and reducing the Bessel function, the PDF is given as:

𝑓𝐻𝑈𝐿𝐴(𝑥) =
(︃

𝐾

𝜎2
𝑛 + 𝜎2

𝑓

)︃𝐾
𝑥𝐾−1𝑒

− 𝑥𝐾

𝜎2
𝑛+𝜎2

𝑓

Γ(𝐾) . (3.67)

In the same fashion for (3.59) and reducing the Marcum-Q function, the CDF is given as:

𝐹𝑃𝑈𝐿𝐴(𝑥) = 1 −
𝛾
(︂
𝐾, 𝐾𝑥

𝜎2
𝑛+𝜎2

𝑓

)︂
Γ(𝐾) , (3.68)

where 𝛾(·, ·) is the incomplete Gamma function, and Γ(·) is the gamma function.
These derivations show that the absence of the fading mean eliminates the influence of
the array (parameter 𝑀 absent), therefore 𝐾 is the only variable available to improve the
detection. The AoA estimation detection now strongly depends on the specific character-
istics of the fading (multipath propagation, signal reflection, signal diffraction) and the
noise which can result in a mediocre performance for angle appraisal.

3.2 URA Case

3.2.1 Derivation of the Equivalent Random Variable

Note that (2.13), evaluated for a fixed angle is a random variable defined as:

H𝑈𝑅𝐴(𝜓, 𝜉) = a(𝜓, 𝜉)Ra𝐻(𝜓, 𝜉)
a(𝜓, 𝜉)a𝐻(𝜓, 𝜉) . (3.69)

Recalling subsection 2.1.1, the r𝑘 signal vector size is 1 × 𝑀𝑥𝑀𝑦 and a(𝜓, 𝜉) = a(𝜓,𝜉),
therefore the power spectrum, given in (3.69), can be written as:

H𝑈𝑅𝐴 =
a(𝜓,𝜉)Ra𝐻(𝜓,𝜉)
𝑀𝑥𝑀𝑦

(3.70)

The next steps are the same as in the ULA case, resulting on

𝐻𝑈𝑅𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜓,𝜃,𝜉,𝜑), (3.71)

where

Ω(𝜓,𝜃,𝜉,𝜑) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾,
𝐾𝐿2

(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝑀𝑥𝑀𝑦

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ , (3.72)

𝜋1(𝜓,𝜃,𝜉,𝜑) =
𝑀𝑥𝑀𝑦−1∑︁

𝑖=0

(︁
ℜ(𝑎(𝜓,𝜉)𝑖)

(︁
ℜ(𝑎(𝜃,𝜑)𝑖) − ℑ(𝑎(𝜃,𝜑)𝑖)

)︁
+ ℑ(𝑎(𝜓,𝜉)𝑖)

(︁
ℜ(𝑎(𝜃,𝜑)𝑖) + ℑ(𝑎(𝜃,𝜑)𝑖)

)︁)︁
(3.73)
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𝜋2(𝜓,𝜃,𝜉,𝜑) =
𝑀𝑥𝑀𝑦−1∑︁

𝑖=0

(︁
ℑ(𝑎(𝜓,𝜉)𝑖)

(︁
ℜ(𝑎(𝜃,𝜑)𝑖) − ℑ(𝑎(𝜃,𝜑)𝑖)

)︁
− ℜ(𝑎(𝜓,𝜉)𝑖)

(︁
ℜ(𝑎(𝜃,𝜑)𝑖) + ℑ(𝑎(𝜃,𝜑)𝑖)

)︁)︁
(3.74)

Therefore, 𝐻𝑈𝑅𝐴 is a scaled non-central Chi-squared distributed random variable.
𝜒2
𝑛𝑐 (𝜅, 𝜆) is the non-central Chi-squared (PAPOULIS; PILLAI, 2002) distribution with

the parameters 𝜅 > 0 (degrees of freedom) and 𝜆 > 0 (non-centrality).

3.2.2 PDF and CDF

The derived PDF for𝐻𝑈𝑅𝐴 (using the characteristic PDF for scaled non-central
Chi squared distribution) is given as:

𝑓𝐻𝑈𝑅𝐴(𝑥) = 𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−
𝐾

(︁
2𝑀𝑥𝑀𝑦𝑥+

(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝐿2
)︁

2𝑀𝑥𝑀𝑦(𝜎2
𝑛+𝜎2

𝑓
)

⎛⎝ 2𝑀𝑥𝑀𝑦𝑥(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝐿2

⎞⎠
𝐾−1

2

I𝐾−1

⎛⎜⎜⎝ 𝐾𝐿

𝜎2
𝑛 + 𝜎2

𝑓

⎯⎸⎸⎸⎷2
(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝑥

𝑀𝑥𝑀𝑦

⎞⎟⎟⎠ , (3.75)

where 𝐼𝑐 (𝑑) is the modified Bessel function of the first kind with parameters 𝑐 ≥ 0 and
𝑑 ≥ 0. The corresponding CDF (using the characteristic CDF for scaled non-central Chi
squared distribution) can be found as:

𝐹𝐻𝑈𝑅𝐴(𝑥) = 1 − Q𝐾

⎛⎜⎝
⎯⎸⎸⎸⎷𝐾

(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝐿2

𝑀𝑥𝑀𝑦

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁ ,

⎯⎸⎸⎷ 2𝐾
𝜎2
𝑛 + 𝜎2

𝑓

𝑥

⎞⎟⎠ , (3.76)

where Q𝑒(𝑎, 𝑏) is the Marcum-Q function with parameters 𝑎 ≥ 0, 𝑏 ≥ 0 and 𝑒 ≥ 0.

3.2.3 Mean and Variance

The mean of the random variable 𝐻𝑈𝑅𝐴 (using the characteristic mean for
scaled non-central Chi squared distribution) can be calculated as:

E[𝐻𝑈𝑅𝐴] =
2𝑀𝑥𝑀𝑦

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
+ 𝐿2

(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
2𝑀𝑥𝑀𝑦

, (3.77)

and the variance (using the characteristic variance for scaled non-central Chi squared
distribution) is given as:

var[𝐻𝑈𝑅𝐴] =
𝑀𝑥𝑀𝑦

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁2
+ (𝜎2

𝑛 + 𝜎2
𝑓 )𝐿2

(︁
𝜋2

1(𝜓,𝜃,𝜉,𝜑)
+ 𝜋2

2(𝜓,𝜃,𝜉,𝜑)

)︁
𝐾𝑀𝑥𝑀𝑦

. (3.78)

These equations show that geometry does not have an impact on the equivalent model:
all parameters remain the same in both array configurations and the only generalization
is the total number of antennas.
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3.2.4 Equivalent Random Variable for AoA

In a similar fashion of the ULA case, we can obtain the equivalent random
variable for URA when 𝜓 = 𝜃 and 𝜉 = 𝜑, as established in the next equations:

𝐻𝑈𝑅𝐴(𝜓 = 𝜃, 𝜉 = 𝜑) = 𝑃𝑈𝑅𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜃,𝜃,𝜑,𝜑), (3.79)

where

Ω(𝜃,𝜃,𝜑,𝜑) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾,
𝐾𝐿2

(︁
𝜋2

1(𝜃,𝜃,𝜑,𝜑)
+ 𝜋2

2(𝜃,𝜃,𝜑,𝜑)

)︁
𝑀𝑥𝑀𝑦

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ , (3.80)

and after mathematical simplification

𝜋2
1(𝜃,𝜃,𝜑,𝜑)

+ 𝜋2
2(𝜓,𝜃,𝜉,𝜑)

= 2 (𝑀𝑥𝑀𝑦)2 , (3.81)

turning (3.80) into:

Ω(𝜃,𝜃,𝜑,𝜑) ∼ 𝜒2
𝑛𝑐

(︃
2𝐾, 2𝐾𝑀𝑥𝑀𝑦𝐿

2

𝜎2
𝑛 + 𝜎2

𝑓

)︃
. (3.82)

Correspondingly, the PDF, CDF, E[.] and var[.] can be written respectively as:

𝑓𝑃𝑈𝑅𝐴(𝑥) = 𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−
𝐾(𝑥+𝑀𝑥𝑀𝑦𝐿2)

𝜎2
𝑛+𝜎2

𝑓

(︃
𝑥

𝑀𝑥𝑀𝑦𝐿2

)︃𝐾−1
2

I𝐾−1

(︃
2𝐾𝐿
𝜎2
𝑛 + 𝜎2

𝑓

√︁
𝑀𝑥𝑀𝑦𝑥

)︃
, (3.83)

𝐹𝑃𝑈𝑅𝐴(𝑥) = 1 − Q𝐾

⎛⎝⎯⎸⎸⎷2𝐾𝑀𝑥𝑀𝑦𝐿2

𝜎2
𝑛 + 𝜎2

𝑓

,

⎯⎸⎸⎷ 2𝐾
𝜎2
𝑛 + 𝜎2

𝑓

𝑥

⎞⎠ , (3.84)

E[𝑃𝑈𝑅𝐴] = 𝜎2
𝑛 + 𝜎2

𝑓 +𝑀𝑥𝑀𝑦𝐿
2, (3.85)

var[𝑃𝑈𝑅𝐴] =

(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁2
+ (𝜎2

𝑛 + 𝜎2
𝑓 )2𝑀𝑥𝑀𝑦𝐿

2

𝐾
. (3.86)

As in the general case, mean does not depend on number of snapshots 𝐾 and variance is
sensitive to noise and fading variances.

3.2.5 Particular Cases for 𝑃𝑈𝑅𝐴

Analyses of special cases like the absence of Rayleigh fading (𝜎𝑓 = 0) and
absence of the fading mean (𝐿 = 0) (i.e. LoS is null) remain the same as in the ULA case.
The effect of changing parameter 𝑀 for 𝑀𝑥𝑀𝑦 does not affect the behavior of derived
equations in both cases.
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4 Numerical Results: Random Variable Char-
acterization

Chapter 4 characterizes the equivalent random variable presenting numerical
simulated and analytical results of the PDFs, CDFs, E[.] and var[.] for single and multiple
RBSs (ULA and URA case) in numerous scenarios, as well as a particular discussion for
each case.

4.1 ULA and URA general equivalent random variables

Fig. 4.1 shows the analytical PDF, given in (3.46), and the normalized his-
togram of the simulated random variable, given in (3.2) for three different steering angles
of ULA case. Fig. 4.2 shows the analytical CDF, given in (3.47), and the associated CDF
of the simulated random variable, given in (3.2) for three different steering angles of ULA
case. As expected, both plots match perfectly, once that our analytical results are exact.

Figure 4.1 – Normalized Histogram for 104 realizations of (3.2) and analytical PDF given
in (3.46), with 𝐾 = 5, 𝑀 = 4, 𝐿 = 1, 𝜎𝑓 = 1 and 𝜎𝑛 = 1 (SNR=0 dB) for
𝜓1 = 15∘, 𝜓2 = 𝜃 = 30∘ 𝜓3 = 70∘ in ULA case.



Chapter 4. Numerical Results: Random Variable Characterization 43

Figure 4.2 – Associated CDF for 104 realizations of (3.2) and analytical CDF given in
(3.47), with 𝐾 = 5, 𝑀 = 4, 𝐿 = 1, 𝜎𝑓 = 1 and 𝜎𝑛 = 1 (SNR=0 dB) for
𝜓1 = 15∘, 𝜓2 = 𝜃 = 30∘ 𝜓3 = 70∘ in ULA case.

Fig. 4.3 and Fig. 4.4 expose the URA case with the same parameters of ULA
case, including 𝑀𝑥 = 𝑀𝑦 that maintains parameter 𝑀 identical in (3.70), (3.72), (3.75)
and (3.76) as stated in section 3.2. Again there is a perfect match.

Fig. 4.2 and Fig. 4.4 show the first clues of the expected probability of detec-
tion for conventional beamforming: In both scenarios (with their particular controllable
and environmental conditions) the CDFs associated to 𝑃𝑈𝐿𝐴 and 𝑃𝑈𝑅𝐴 reach unitary
probability for smaller values of power threshold than the other cases of 𝐻𝑈𝐿𝐴 and 𝐻𝑈𝑅𝐴.
This implies that there could be a smaller probability of detection for power threshold
associated to the point where the case 𝜓 = 𝜃 reaches a probability equal to 100%.

Tables 4.1 and 4.2 show the simulated and analytical values of the mean and
variance for both ULA and URA cases. As anticipated, simulated and analytical results
have slight differences once that our derivations are exact. As a final conclusion, in both
cases when steering angle matches the AoA (having the same total number of antennas
(𝑀 or 𝑀𝑥𝑀𝑦)) all the PDF, CDF, mean and variance obtain the same values, confirming
the analytical derivations. From now on, we will utilize ULA model for discussion once
that geometry does not affect the final results.
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Figure 4.3 – Normalized Histogram for 104 realizations of (3.70) and analytical PDF given
in (3.75), with 𝐾 = 5, 𝑀𝑥 = 2, 𝑀𝑦 = 2, 𝐿 = 1, 𝜎𝑓 = 1 and 𝜎𝑛 = 1 (SNR=0
dB) for (𝜓1, 𝜉1) = (5∘,−75∘), (𝜓2, 𝜉2) = (0∘, 30∘) (𝜓3, 𝜉3) = (40∘, 80∘) in URA
case.

Mean Variance
Angle Simulated Analytical Simulated Analytical
𝜓1 = 15∘ 3.8106 3.822 2.2606 2.2576

𝜓2 = 𝜃 = 30∘ 5.9663 6.0000 3.9974 4.0000
𝜓3 = 70∘ 2.0783 2.0843 0.8628 0.8674

Table 4.1 – Mean and Variance with 𝐾=5, 𝐿=1, 𝜎𝑓=1 and 𝜎𝑛=1 (SNR=0dB) for ULA
(𝑀=4) case.

Mean Variance
Angle Simulated Analytical Simulated Analytical

𝜓1, 𝜉1 = 5∘,−75∘ 4.0903 4.1044 2.4387 2.4835
𝜓2 = 𝜃 = 0∘, 𝜉2 = 𝜓 = 30∘ 5.9783 6.0000 3.8820 4.0000

𝜓3, 𝜉3 = 40∘, 80∘ 2.9858 3.0084 1.6125 1.6067

Table 4.2 – Mean and Variance with 𝐾=5, 𝐿=1, 𝜎𝑓=1 and 𝜎𝑛=1 (SNR=0dB) for URA
(𝑀𝑥=2 and 𝑀𝑦=2) case.
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Figure 4.4 – Associated CDF for 104 realizations of (3.70) and analytical CDF given in
(3.76), with 𝐾 = 5, 𝑀𝑥 = 2, 𝑀𝑦 = 2, 𝐿 = 1, 𝜎𝑓 = 1 and 𝜎𝑛 = 1 (SNR=0
dB) for (𝜓1, 𝜉1) = (5∘,−75∘), (𝜓2, 𝜉2) = (0∘, 30∘) (𝜓3, 𝜉3) = (40∘, 80∘) in URA
case.

4.2 Cumulative Distribution Function of 𝑃𝑈𝐿𝐴
Our model has some controllable parameters (number of snapshots 𝐾 and

number of antennas 𝑀) that can compensate the effects of the environmental parameters
(fading mean 𝐿, noise power 𝜎𝑛, and fading variance 𝜎𝑓 ). This section shows the influence
of them in the CDF of 𝑃𝑈𝐿𝐴 and relates it to the probability of detection.

4.2.1 Influence of the Number of Antennas 𝑀

Arrays with a greater number of antennas will receive more signals, therefore
the power "sensed" by the spatial filter will be greater. This behavior is confirmed in Fig.
4.5. In other words, the power viewed by a massive MIMO array will be huge, therefore
this fact could be used as an advantage for detection.

4.2.2 Influence of the Number of Snapshots 𝐾

Fig. 4.6 and Table 4.3 show that the number of snapshots 𝐾 does not affect
the mean of the distribution, but the variance. Fig. 4.6 shows that for low values of the
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Figure 4.5 – Simulated and Analytical CDF of 𝑃𝑈𝐿𝐴 with 𝐾 = 2, 𝐿 = 1, 𝜎𝑓 = 1, and
𝜎𝑛 = 1 (SNR=0dB).

Figure 4.6 – Simulated and Analytical CDF of 𝑃𝑈𝐿𝐴 with 𝐿 = 1, 𝑀 = 36 𝜎𝑓 = 1, and
𝜎𝑛 = 1 (SNR=0dB).



Chapter 4. Numerical Results: Random Variable Characterization 47

threshold 𝑥, the probability associated with the CDF increases as the number of snapshots
𝐾 decreases. However, there is a turning point, given exactly by the mean of 𝐻𝑈𝐿𝐴 in
(3.65), where this relation is reversed: the greater the number of snapshots 𝐾, the higher
the probability associated to the CDF. This behavior implies that correct AoA estimation
might be dynamic in this scenario, where the influence of parameters 𝐾 and noise power
𝜎2
𝑛 in 𝑃𝑈𝐿𝐴 is not directly proportional.

Mean Variance
K Simulated Analytical Simulated Analytical
1 37.9112 38.0000 142.6144 148.0000
5 38.0929 38.0000 30.7504 29.6000
20 38.0266 38.0000 7.7487 7.0000

Table 4.3 – Mean and Variance of 𝑃𝑈𝐿𝐴 with 𝐿 = 1, 𝑀 = 36 𝜎𝑓 = 1, and 𝜎𝑛 = 1
(SNR=0dB).

4.2.3 Influence of the Fading Standard Deviation 𝜎𝑓

Figure 4.7 – Simulated and Analytical CDF of 𝑃𝑈𝐿𝐴 with 𝐿 = 1, 𝐾 = 2, 𝑀 = 36 and
𝜎𝑛 = 1 (SNR=0dB).

Fig. 4.7 exposes a slight difference on distinct values of 𝜎𝑓 for the CDF in
small values of power threshold. However, there is a turning point where there is a clear
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separation between the curves. This last situation depicts that the perceived power at
the array is directly affected by the fading condition, where the probability of detecting a
specific threshold is smaller for greater values of 𝜎𝑓 , that is to say, AoA estimation could
be wrong for large variance fading situations.

4.2.4 Influence of the fading mean 𝐿 (LoS component)

Figure 4.8 – Simulated and Analytical CDF of 𝑃𝑈𝐿𝐴 with 𝐾 = 2, 𝑀 = 36, 𝜎𝑓 = 1 and
𝜎𝑛 = 1 (SNR=0dB).

Fig. 4.8 shows two states of affairs: first, when 𝐿 = 0 (i.e. LoS is null), the
CDF attains unitary probability for small values of power threshold. This insinuates that
the array will be sensing any type of signal at any time from all possible phenomena like
interferences, multi-path propagation, noise, etc. Doubtlessly, the correct AoA estimation
could have a lower probability.

Second, the greater the mean of the fading, the smaller the probability for the
same values of power threshold. It is implied that the array will sense smaller power values
when the fading mean increases, therefore estimation could be wrong.

4.2.5 Influence of the Signal to Noise Ratio SNR(𝜎𝑛)

In a similar fashion of the fading scenario, Fig. 4.9 shows the same behavior for
the influence of noise power 𝜎2

𝑛, where there are small differences in the CDF before the



Chapter 4. Numerical Results: Random Variable Characterization 49

Figure 4.9 – Simulated and Analytical CDF of 𝑃𝑈𝐿𝐴 with 𝐿 = 1, 𝐾 = 2, 𝑀 = 36 and
𝜎𝑓 = 1.

turning point. After that threshold, low values of 𝜎𝑛 have more probability to perceive the
same power threshold. Once again this performance portrays that AoA estimation could
be incorrect by the increase of noise component.
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5 Probability of Detection

Probability of Detection Analyses will be done only for ULA configuration,
reminding that geometry does not affect the final outcomes of equivalent random variables
and associated equations (PDF,CDF, mean and variance). See Chapter 4.

5.1 Derivation

We find the probability of detection for conventional beamforming in a mas-
sive MIMO context. Our approach takes advantage of the spatial frequency spectrum
characteristics of the conventional beamforming itself.

First, we recall power spatial spectrum equation (3.1) and its random variable
equivalences (3.42) and (3.43):

H𝑈𝐿𝐴(𝜓, 𝜃) = a(𝜓)Ra𝐻(𝜓)
a(𝜓)a𝐻(𝜓) = a(𝜓)Ra𝐻(𝜓)

𝑀
. (5.1)

𝐻𝑈𝐿𝐴(𝜓,𝜃) =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜓,𝜃), (5.2)

Ω(𝜓,𝜃) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾,
𝐾𝐿2

(︁
𝜋2

1(𝜓,𝜃)
+ 𝜋2

2(𝜓,𝜃)

)︁
𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ . (5.3)

These equations show that the spatial spectrum depends on the steering angle and the
real AoA, in other words, original received signal r is "transformed" to the spatial fre-
quency domain where the steering angles are the associated spatial frequencies. This fact
is illustrated in Fig. 5.1.

Fig 5.1 describes the relation between power and space, where the maximum
occurs at 𝜓 = 𝜃 = 20∘ which is the AoA. Obviously, this is just a specific case, the
variation of the other modeled parameters would change this response.

With this situation in context, we define the probability of detection 𝑃𝐷 as:

𝑃𝐷 = Prob
[︁
𝜓 = 𝜃

]︁
. (5.4)

This circumstance occurs when the power of the associated frequency of 𝜓 = 𝜃 is greater
than the power of the rest of steering angles frequencies 𝜓. In other words, the probability
of detection is the probability that 𝑃𝑈𝐿𝐴 be the maximum of the whole 𝐻𝑈𝐿𝐴 spectrum,
i.e.:

𝑃𝐷 = Prob
[︁
𝑃𝑈𝐿𝐴 > {𝐻𝑈𝐿𝐴(𝜓1,𝜃) . . . 𝐻𝑈𝐿𝐴(𝜓𝑄−1,𝜃)}

]︁
, (5.5)
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Figure 5.1 – Spatial Power Spectrum of Conventional Beamforming with 𝜃 = 20∘, 𝐾=2,
𝐿=1, 𝑀=50, 𝜎𝑛 = 1, 𝜎𝑓 = 1 for ULA case.

where 𝑄 is the number of possible spatial steering frequencies. It is important to empha-
size, that in the strict sense, 𝜓 will never be equal to 𝜃 since they are real variables. The
Probability of Detection is an approach that is valid for a discrete problem and that is
the reason for the discretization of 𝜓.

In order to get an expression, we formulate the detection hypotheses:

∙ 𝐻0: 𝐻𝑈𝐿𝐴(𝜓,𝜃) has its maximum value at any angle frequency different from the real
AoA, that is 𝜓 ̸= 𝜃.

∙ 𝐻1: 𝐻𝑈𝐿𝐴(𝜓,𝜃) has its maximum value at the real AoA, that is 𝜓 = 𝜃.

As it is shown in section 3.1.1, the random variable 𝐻𝑈𝐿𝐴 defined in (2.11) and (3.1) turns
out to be the sum of two squared Gaussian random variables. Each one of these variables
corresponds to sum of 𝑀 Gaussian random variables.

For the hypothesis 𝐻0, that is, for 𝜓 ̸= 𝜃, the mean of each Gaussian variate
(after unitary variance normalization) will be given by 𝜋1√︁

𝑀·(𝜎2
𝑛+𝜎2

𝑓
)

2

, and 𝜋2√︁
𝑀·(𝜎2

𝑛+𝜎2
𝑓

)

2

, where

𝜋1 and 𝜋2 are given in (3.44) and (3.45), respectively. As the number of antennas 𝑀
goes to infinity, 𝜋1√︁

𝑀·(𝜎2
𝑛+𝜎2

𝑓
)

2

, and 𝜋2√︁
𝑀·(𝜎2

𝑛+𝜎2
𝑓

)

2

tend to zero. Under this condition, 𝐻𝑈𝐿𝐴 will

be distributed according to a central Chi-squared distribution. Therefore, the equivalent
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power random variable 𝐻𝑈𝐿𝐴 (equations (5.2), (5.3)) turns into :

𝐻𝑈𝐿𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜓,𝜃), (5.6)

where

Ω(𝜓,𝜃) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾, 𝐾𝐿
2 (02 + 02)

𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ , (5.7)

Ω(𝜓,𝜃) ∼ 𝜒2
𝑛𝑐

⎛⎝2𝐾, 𝐾𝐿2 · 0
𝑀
(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠ , (5.8)

Ω(𝜓,𝜃) ∼ 𝜒2
𝑛𝑐 (2𝐾, 0) , (5.9)

Ω(𝜓,𝜃) ∼ 𝜒2 (2𝐾) . (5.10)

where Ω(𝜓,𝜃) is a Chi-squared distributed random variable with parameter 𝜅 = 2𝐾 (degrees
of freedom). Note that equations (5.6) and (5.10) do not have the parameters 𝜓 or 𝜃,
which equalizes the associated random variable for all the spatial frequencies different
from the AoA (𝜓 ̸= 𝜃). In addition, the associated random variable for the 𝐻0 hypothesis
is (coincidentally) exactly the case when there is null LoS, as shown in sub-subsection
3.1.5.2.

The scenario for 𝐻1 indicates that the signals received by the array have the
information of the original AoA (𝜓 = 𝜃), in spite of the fading and noise. Therefore 𝜋1 =
𝑀 , and 𝜋2 = −𝑀 . Under this condition, the random variable 𝐻𝑈𝐿𝐴 will be distributed
according to a non-central Chi-squared as the one derived in subsection 3.1.4 (equations
(3.51), (3.52), and (3.57)):

𝐻𝑈𝐿𝐴(𝜓 = 𝜃) = 𝑃𝑈𝐿𝐴 =
𝜎2
𝑛 + 𝜎2

𝑓

2𝐾 Ω(𝜃,𝜃), (5.11)

where
Ω(𝜃,𝜃) ∼ 𝜒2

𝑛𝑐

(︃
2𝐾, 2𝐾𝑀𝐿2

𝜎2
𝑛 + 𝜎2

𝑓

)︃
. (5.12)

Now, for the hypothesis 𝐻0 case we define the PDF as (reducing from PDF (3.46) and
equivalently to (3.67)):

𝑓𝐻𝑈𝐿𝐴(𝑥|𝐻0) =
(︃

𝐾

𝜎2
𝑛 + 𝜎2

𝑓

)︃𝐾
𝑥𝐾−1𝑒

− 𝑥𝐾

𝜎2
𝑛+𝜎2

𝑓

Γ(𝐾) , (5.13)

where Γ(.) is the Gamma function (PAPOULIS; PILLAI, 2002; KAY, 2006).

On the other hand, for the hypothesis 𝐻1 case we define the PDF as (3.58):

𝑓𝐻𝑈𝐿𝐴(𝑥|𝐻1) = 𝑓𝑃𝑈𝐿𝐴(𝑥) = 𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−𝐾(𝑥+𝑀𝐿2)

𝜎2
𝑛+𝜎2

𝑓

(︂
𝑥

𝑀𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝐿
𝜎2
𝑛 + 𝜎2

𝑓

√
𝑀𝑥

)︃
,

(5.14)
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where 𝐼𝑐 (𝑑) is the modified Bessel function of the first kind with parameters 𝑐 ≥ 0 and
𝑑 ≥ 0 (PAPOULIS; PILLAI, 2002; KAY, 2006).

It is well known that the probability of a random variable 𝑋 be smaller than
other random variable 𝑌 , is defined as (PAPOULIS; PILLAI, 2002; KAY, 2006):

Prob[𝑋 < 𝑌 ] =
∫︁ ∞

−∞

[︂∫︁ 𝑦

−∞
𝑓𝑥(𝑥)𝑑𝑥

]︂
𝑓𝑦(𝑦)𝑑𝑦 (5.15)

In our particular case, we want to know the probability of a 𝑄 − 1 set of i.i.d. random
variables being smaller than a unique random variable. Once again, this case is well known
and is depicted as (PAPOULIS; PILLAI, 2002; KAY, 2006):

Prob[{𝑋1, . . . , 𝑋𝑄−1} < 𝑌 ] =
∫︁ ∞

−∞

[︂∫︁ 𝑦

−∞
𝑓𝑥(𝑥)𝑑𝑥

]︂𝑄−1
𝑓𝑦(𝑦)𝑑𝑦 (5.16)

In this work, the 𝑄− 1 associated PDFs are 𝑋1, 𝑋2, ·, 𝑋𝑄−1 associated to the hypothesis
𝐻0 (𝑓𝐻𝑈𝐿𝐴(𝑥|𝐻0)) and the 𝑌 is the variable associated to hypothesis 𝐻1 (𝑓𝐻𝑈𝐿𝐴(𝑥|𝐻1)).
Therefore, our Probability of Detection is outlined as:

𝑃𝐷 = Prob[{𝐻𝑈𝐿𝐴(𝜓1,𝜃) , . . . , 𝐻𝑈𝐿𝐴(𝜓𝑄−1,𝜃)} < 𝑃𝑈𝐿𝐴]

𝑃𝐷 =
∫︁ ∞

0

⎡⎢⎣∫︁ 𝑦

0

(︃
𝐾

𝜎2
𝑛 + 𝜎2

𝑓

)︃𝐾
𝑥𝐾−1𝑒

− 𝑥𝐾

𝜎2
𝑛+𝜎2

𝑓

Γ(𝐾) 𝑑𝑥

⎤⎥⎦
𝑄−1

𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−𝐾(𝑦+𝑀𝐿2)

𝜎2
𝑛+𝜎2

𝑓

(︂
𝑦

𝑀𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝐿
𝜎2
𝑛 + 𝜎2

𝑓

√︁
𝑀𝑦

)︃
𝑑𝑦 (5.17)

We get that: ⎡⎢⎢⎣∫︁ 𝑦

0

⎛⎝ 𝐾(︁
𝜎2
𝑛 + 𝜎2

𝑓

)︁
⎞⎠𝐾 𝑥𝐾−1𝑒

− 𝑥𝐾

(𝜎2
𝑛+𝜎2

𝑓)

Γ(𝐾) 𝑑𝑥

⎤⎥⎥⎦ = 1 −
𝛾
(︂
𝐾, 𝐾𝑦

𝜎2
𝑛+𝜎2

𝑓

)︂
Γ(𝐾) , (5.18)

where 𝛾(·, ·) is the incomplete Gamma function, and Γ(·) is the gamma function.
Recalling the binomial identity:

(𝑥+ 𝑎)𝑄−1 =
𝑄−1∑︁
𝑖=0

(︃
𝑄− 1
𝑖

)︃
𝑥𝑖𝑎𝑄−1−𝑖, (5.19)

thus (5.17) results on:

𝑃𝐷 =
∫︁ ∞

0

𝑄−1∑︁
𝑖=0

(︃
𝑄− 1
𝑖

)︃
(−1)𝑄+𝑖−1

⎛⎜⎜⎝𝛾
(︂
𝐾, 𝐾𝑦

𝜎2
𝑛+𝜎2

𝑓

)︂
Γ(𝐾)

⎞⎟⎟⎠
𝑄−1−𝑖

𝐾

𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−𝐾(𝑦+𝑀𝐿2)

𝜎2
𝑛+𝜎2

𝑓 ·

(︂
𝑦

𝑀𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝐿
𝜎2
𝑛 + 𝜎2

𝑓

√︁
𝑀𝑦

)︃
𝑑𝑦 (5.20)

Unfortunately, (5.17) does not present a closed form solution, but it is numerically in-
tegrable. This will be tested and compared to simulated results in the following section.
Although (5.17) is a complex expression, it is easy to implement in mathematical software.
Typical processing times take over 50 to 70 ms.
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5.2 Numerical Results

5.2.1 Influence of the number of antennas 𝑀

Our efforts now focus on the Massive MIMO context, where a huge number of
antennas are used for a particular application. So the first results show the influence of
the number of antennas in the Probability of Detection as shown in Fig. 5.2.

Figure 5.2 – Probability of Detection with, 𝐾=2, 𝐿=1, 𝑄=121 (Δ𝜓 = 1.5∘), 𝜎𝑛 = 1,
𝜎𝑓 = 1 for ULA case.

As a matter of fact, both simulated and analytical results show a clear ten-
dency: the greater the number of antennas the greater the probability of detection. In
other words, the AoA estimation is correct for a large number of antennas. However, the
simulated and analytical curves only overlap for high values of 𝑀 . The assumption for the
hypotheses 𝐻0 is that the received signal coming from these 𝑄 angles are all independent.
To visualize this, let’s consider the received signal without noise as

r(𝑡) = ̃︀a(𝜃) ∘ 𝑠(𝑡), (5.21)

Now we must compute the variable 𝐻𝑈𝐿𝐴 defined as

𝐻𝑈𝐿𝐴(𝜓) =
a𝜓Ra𝐻𝜓
𝑀

=
𝐾−1∑︁
𝑘=0

1
𝐾

a(𝜓)a𝐻(𝜃)a(𝜃)a(𝜓)𝐻
𝑀

=

⃒⃒⃒
a(𝜓)a𝐻(𝜃)

⃒⃒⃒2
𝑀

. (5.22)
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Remembering that for any 𝜓, 𝑎(𝜓) = [1 𝑒𝑗𝜇(𝜓) ... 𝑒𝑗(𝑀−1)𝜇(𝜓))] where 𝜇(𝜓) = 2𝜋
𝜆

Δ sin(𝜓),
and after proper algebraical/trigonometrical manipulation, the following is obtained:

𝐻𝑈𝐿𝐴(𝜓) =

(︁∑︀𝑀−1
𝑖=0 cos

(︁
𝑖2𝜋Δ
𝜆

Ξ
)︁)︁2

+
(︁∑︀𝑀−1

𝑖=0 sin
(︁
𝑖2𝜋Δ
𝜆

Ξ
)︁)︁2

𝑀
. (5.23)

where
Ξ = sin(𝜓) − sin(𝜃) (5.24)

Note that the variable 𝐻𝑈𝐿𝐴 will tend to zero as the number of antennas increases, except
for:

1. Ξ = 0, which implies 𝜓 = 𝜃, i.e. the AoA, as expected.

2. Ξ = 2 or Ξ = −2, which implies that either 𝜓 or 𝜃 are in the extremes of the range
[−𝜋

2 ,
𝜋
2 ].

Table 5.1 and figure 5.3 bellow show the values for the 𝐻𝑈𝐿𝐴 as a function of the difference
of the sines of the angles Ξ = sin(𝜓) − sin(𝜃). It is possible to observe that 𝐻𝑈𝐿𝐴(𝜓 ̸= 𝜃)
is zero for values of 𝑀 above 5. In short, although the variables might exhibit some
dependency, this dependency is negligible as the number of antennas is very high, which
is the Massive MIMO case.

Finally, in real life application, a Radio Base Station uses 3 arrays to cover
the 2𝜋 spatial span. The actual span covered by each array is 2𝜋

3 . In other words, the
array range will be [−𝜋

3 ,
𝜋
3 ], therefore the Ξ range will be [−1.7, 1.7]. This fact avoids the

maximum condition of the extremes [−2, 2] in 𝐻𝑈𝐿𝐴 and validates the initial assumptions.
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Figure 5.3 – 𝐻𝑈𝐿𝐴 without noise and fading for different values of Ξ and 𝑀 .

𝐻𝑈𝐿𝐴 Ξ = sin(𝜓) − sin(𝜃)
M −2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2
4 4 0.25 0.25 0.25 0.25 4 0.25 0.25 0.25 0.25 4
5 5 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 5
9 9 0.11 0.11 0.11 0.11 9 0.11 0.11 0.11 0.11 9
16 16 0.06 0.06 0.06 0.06 16 0.06 0.06 0.06 0.06 16
25 25 0.00 0.00 0.00 0.00 25 0.00 0.00 0.00 0.00 25
36 36 0.03 0.03 0.03 0.03 36 0.03 0.03 0.03 0.03 36
49 49 0.02 0.02 0.02 0.02 49 0.02 0.02 0.02 0.02 49
50 50 0.00 0.00 0.00 0.00 50 0.00 0.00 0.00 0.00 50
64 64 0.02 0.02 0.02 0.02 64 0.02 0.02 0.02 0.02 64
75 75 0.00 0.00 0.00 0.00 75 0.00 0.00 0.00 0.00 75
81 81 0.01 0.01 0.01 0.01 81 0.01 0.01 0.01 0.01 81
100 100 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100
121 121 0.01 0.01 0.01 0.01 121 0.01 0.01 0.01 0.01 121
125 125 0.00 0.00 0.00 0.00 125 0.00 0.00 0.00 0.00 125
144 144 0.01 0.01 0.01 0.01 144 0.01 0.01 0.01 0.01 144
150 150 0.00 0.00 0.00 0.00 150 0.00 0.00 0.00 0.00 150

Table 5.1 – 𝐻𝑈𝐿𝐴 without noise and fading for different values of Ξ and 𝑀 .
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Therefore, our spatial frequency approach is an approximated model and it
should be completed for a small number of antennas. In other words, the model shall be
extended to a general case, contemplating the "not massive MIMO" operation (𝑀 ≤ 50).
This task involves 2 issues:

1. Replace the associated PDF of the 𝐻0 hypotheses (which was modeled as pure noise
and fading) by the actual associated PDF of the 𝑄− 1 spatial frequency equivalent
random variables.

2. Due to the dependence between all the 𝑄 equivalent random variables of the power
spectrum, the hypotheses shall be formulated with the joint PDF in order to get
the exact calculation.

5.3 Numerical Results: Normalization by the Parameter 𝑀

Note that the received power increases as the number of antennas 𝑀 increases.
In order to make a fair comparison, we will normalize the associated random variables by
the number of elements 𝑀 . Note that when 𝜓 = 𝜃, we get that:

P𝑈𝐿𝐴 =
𝐾−1∑︁
𝑘=0

1
𝐾

a(𝜃)a𝐻(𝜃)a(𝜃)a𝐻(𝜃)
a(𝜃)a𝐻(𝜃) = a(𝜃)a𝐻(𝜃)a(𝜃)a𝐻(𝜃)

a(𝜃)a𝐻(𝜃) = 𝑀𝑀

𝑀
= 𝑀. (5.25)

It is clear that the parameter 𝑀 is within the vectors a(𝜃) and a(𝜓) (as their size is
1 ×𝑀). Thus to normalize the beamforming, we redefine both the steering vector of the
AoA and the power spectrum as:

ã(𝜃) = a(𝜃)√
𝑀

=
[︃

1√
𝑀

𝑒𝑗𝜇(𝜃)
√
𝑀

...
𝑒𝑗(𝑀−1)𝜇(𝜃))

√
𝑀

]︃
, (5.26)

ã(𝜓) = a(𝜓)√
𝑀

=
[︃

1√
𝑀

𝑒𝑗𝜇(𝜓)
√
𝑀

...
𝑒𝑗(𝑀−1)𝜇(𝜓))

√
𝑀

]︃
. (5.27)

Once again, for the perfect case, the received signal vector is a constant, therefore the
spatial covariance matrix becomes:

̃︁R =
𝐾−1∑︁
𝑘=0

1
𝐾

ã𝐻(𝜃)ã(𝜃) = ã𝐻(𝜃)ã(𝜃), (5.28)

then the conventional beamforming changes into:

̃︁𝐻𝑈𝐿𝐴(𝜓) =
𝐾−1∑︁
𝑘=0

1
𝐾

ã(𝜓) ã𝐻(𝜃)ã(𝜃)ã𝐻(𝜓)
ã(𝜓)ã𝐻(𝜓)

=
a(𝜓)√
𝑀

a𝐻(𝜃)√
𝑀

a(𝜃)√
𝑀

a𝐻(𝜓)√
𝑀

a(𝜓)√
𝑀

a𝐻(𝜓)√
𝑀

= 1
𝑀

a(𝜓) a𝐻(𝜃)a(𝜃)a𝐻(𝜓)
a(𝜓)a𝐻(𝜓) .

(5.29)
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Consequently, for the special case 𝜓 = 𝜃, we get that:

̃︀𝑃𝑈𝐿𝐴 =
𝐾−1∑︁
𝑘=0

1
𝐾

1
𝑀

a(𝜃)a𝐻(𝜃)a(𝜃)a𝐻(𝜃)
a(𝜃)a𝐻(𝜃) = 1

𝑀
P𝑈𝐿𝐴 = 𝑀

𝑀
= 1, (5.30)

where finally the power spectrum signal is normalized.

As a statement of the obvious, the normalization modifies all the equations of
the complete detection problem and its hypotheses. Consequently, we are going to show
the equations that serve our particular interest. The new associated random variable of
the hypotheses 𝐻0 and 𝐻1 become (after simplification):

̃︁𝐻𝑈𝐿𝐴(𝜓,𝜃) =
𝑀𝜎2

𝑛 + 𝜎2
𝑓

2𝐾𝑀
̃︀Ω(𝜓,𝜃), (5.31)

where ̃︀Ω(𝜓,𝜃) ∼ 𝜒2 (2𝐾) . (5.32)

and ̃︁𝐻𝑈𝐿𝐴(𝜓 = 𝜃) = ̃︀𝑃𝑈𝐿𝐴 =
𝑀𝜎2

𝑛 + 𝜎2
𝑓

2𝐾𝑀
̃︀Ω(𝜃,𝜃), (5.33)

where ̃︀Ω(𝜃,𝜃) ∼ 𝜒2
𝑛𝑐

(︃
2𝐾, 2𝐾𝑀𝐿2

𝑀𝜎2
𝑛 + 𝜎2

𝑓

)︃
. (5.34)

Eventually, the new associated PDFs of the hypotheses are stated as:

𝑓̃︀𝐻𝑈𝐿𝐴(𝑥|𝐻0) =
(︃

𝐾𝑀

𝑀𝜎2
𝑛 + 𝜎2

𝑓

)︃𝐾
𝑥𝐾−1𝑒

− 𝑥𝐾𝑀

𝑀𝜎2
𝑛+𝜎2

𝑓

Γ(𝐾) , (5.35)

where Γ(.) is the Gamma function (PAPOULIS; PILLAI, 2002; KAY, 2006), and

𝑓̃︀𝐻𝑈𝐿𝐴(𝑥|𝐻1) = 𝑓̃︀𝑃𝑈𝐿𝐴(𝑥) = 𝐾𝑀

𝑀𝜎2
𝑛 + 𝜎2

𝑓

𝑒
−𝐾𝑀(𝑥+𝐿2)

𝑀𝜎2
𝑛+𝜎2

𝑓

(︂
𝑥

𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝑀𝐿

𝑀𝜎2
𝑛 + 𝜎2

𝑓

√
𝑥

)︃
,

(5.36)
where 𝐼𝑐 (𝑑) is the modified Bessel function of the first kind with parameters 𝑐 ≥ 0 and
𝑑 ≥ 0 (PAPOULIS; PILLAI, 2002; KAY, 2006). Finally we get the new probability of
detection:

̃︀𝑃𝐷 = Prob[{̃︁𝐻𝑈𝐿𝐴(𝜓1,𝜃) , . . . ,
̃︁𝐻𝑈𝐿𝐴(𝜓𝑄−1,𝜃)} < ̃︀𝑃𝑈𝐿𝐴] =

̃︀𝑃𝐷 =
∫︁ ∞

0

𝑄−1∑︁
𝑖=0

(︃
𝑄− 1
𝑖

)︃
(−1)𝑄+𝑖−1

⎛⎜⎜⎝𝛾
(︂
𝐾, 𝐾𝑀𝑦

𝑀𝜎2
𝑛+𝜎2

𝑓

)︂
Γ(𝐾)

⎞⎟⎟⎠
𝑄−1−𝑖

· 𝐾𝑀

𝑀𝜎2
𝑛 + 𝜎2

𝑓

· 𝑒
−𝐾𝑀(𝑦+𝐿2)

𝑀𝜎2
𝑛+𝜎2

𝑓 ·

(︂
𝑦

𝐿2

)︂𝐾−1
2

I𝐾−1

(︃
2𝐾𝑀𝐿

𝑀𝜎2
𝑛 + 𝜎2

𝑓

√
𝑦

)︃
𝑑𝑦 (5.37)

Once again, equation (5.37) has not a closed form expression but it is numerically inte-
grable.
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5.3.1 Influence of the number of antennas 𝑀

The new derived probability of detection is evaluated variating the number of
antennas 𝑀 and compared to simulated results, as shown in Fig. 5.4.

Figure 5.4 – Probability of Detection with, 𝐾=2, 𝐿=1, 𝑄=121 (Δ𝜓 = 1.5∘), 𝜎𝑛 = 1,
𝜎𝑓 = 1 for ULA case.

Fig. 5.4 shows that ̃︀𝑃𝐷 is barely affected by the parameter 𝑀 , as desired. Also
note that there is a perfect match of simulated and analytical outcomes for all the range
that is considered massive MIMO (𝑀 ≥ 50).

5.3.2 Influence of the number of snapshots 𝐾

Fig. 5.5 depicts a clear relation: the greater the number of snapshots 𝐾 the
greater the probability of detection ̃︀𝑃𝐷. This behavior is expected considering that the as
the number of snapshots increases, the conventional beamformer has more information of
the signal. Therefore it can perform a better estimation. Also, analytical and simulated
curves are very close, with small differences.

5.3.3 Influence of noise standard deviation 𝜎𝑛

Fig. 5.6 depicts another expected performance: the greater the power of noise
𝜎2
𝑛 the smaller the probability of detection ̃︀𝑃𝐷. Definitely, any estimator receiving signals
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Figure 5.5 – Probability of Detection with, 𝐿=1, 𝑀=100, 𝑄=121 (Δ𝜓 = 1.5∘), 𝜎𝑛 = 1,
𝜎𝑓 = 1 for ULA case.

Figure 5.6 – Probability of Detection with, 𝐾=2, 𝐿=1, 𝑀=100, 𝑄=121 (Δ𝜓 = 1.5∘),
𝜎𝑓 = 1 for ULA case.
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with huge noise power will misbehave, therefore the AoA estimation would be incorrect. In
this particular simulated case, the absence of noise gives a unitary probability of detection,
portraying that the controllable parameters (𝐾 and 𝑀) overcome the fading phenomenon
(𝐿 and 𝜎𝑓 ).

5.3.4 Influence of the Fading Standard Deviation 𝜎𝑓

Figure 5.7 – Probability of Detection with, 𝐾=2, 𝐿=1, 𝑀=100, 𝑄=121 (Δ𝜓 = 1.5∘),
𝜎𝑛 = 1, for ULA case.

An increase in the fading standard deviation 𝜎𝑓 decreases the probability of
detection ̃︀𝑃𝐷, as shown in Fig. 5.7. This result is presumable, higher values of 𝜎𝑓 imply
higher values of randomness associated with the AoA information present in the received
signal, boosting the error of any estimator. In this specific result, in spite of the high
variability of 𝜎𝑓 , this parameter has the smaller influence on the ̃︀𝑃𝐷 outcome. Clearly,
the other parameters have more influence.

5.3.5 Influence of Fading Mean 𝐿 (LoS component)

Fig. 5.8 reveals that greater values of fading mean 𝐿 (LoS component) improve
the probability of detection. This tendency can be explicated by our model: parameter 𝐿
(LoS component) multiplies directly the AoA steering vector, increasing the power of the
signal. Hence it "strengthens" the AoA information in contrast to the "weakening" of other
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Figure 5.8 – Probability of Detection with, 𝐾=2, 𝑀=100, 𝑄=121 (Δ𝜓 = 1.5∘), 𝜎𝑛 = 1,
𝜎𝑓 = 1 for ULA case.

phenomena. However, this is a misleading result, because 𝐿 (LoS component) is part of a
two-parameter phenomenon: fading, where a great 𝜎𝑓 could worsen the detection.

5.3.6 Influence of the number of steering angles 𝑄

Resolution determines the level of detail of a measured variable. In our case,
the resolution is the angle step between the possible steering angles chosen to describe the
AoA spatial spectrum. According to beamforming principles, there is a maximum angular
resolution that can be achieved for proper signal array processing (RICHARDS, 2005).
This maximum is the denominated 3𝑑𝐵 beamwidth:

Δ3𝑑𝐵 = Δ𝜓 = 2
𝑀
, (5.38)

which is given in radians. This approximation is set for isotropic antennas, large number
of antennas, and antenna spacing equal to 𝑑 = 𝜆

2 conditions, as stated in section 2.1. Now
putting this statement on our application, we define:

𝑄 = 𝑆

Δ𝜓

, (5.39)
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Figure 5.9 – Probability of Detection with, 𝐾=2, 𝐿=1, 𝑀=100, 𝜎𝑛 = 1, 𝜎𝑓 = 1 for ULA
case.

where 𝑆 is the span of the steering angles. In our case the range is set as {−𝜋
2 to 𝜋

2 } in
order to avoid angle ambiguity in the estimation. Thus:

𝑄 =
𝜋
2 −

(︁
−𝜋

2

)︁
Δ𝜓

= 𝜋

Δ𝜓

, (5.40)

so finally, replacing (5.38) as a maximum condition:

𝑄 <
𝜋

2𝑀. (5.41)

In the simulation scenario , we established 𝑀 = 100, therefore 𝑄 < 157.07. Previous
results shown in subsections 5.3.2, 5.3.3, 5.3.4, and 5.3.5, considered this restriction for
simulation and analyses developments. For scenarios exposed in subsections 5.2.1 and
5.3.1, this restriction was liberated, in order to make a fair comparison of the influence of
the number of antennas.

It is predictable that the vaster the number of 𝑄 the smaller the ̃︀𝑃𝐷 because
there is a greater chance to miss the correct angle. Fig. 5.9 agrees with the previous
statement and shows that for a higher number of 𝑄 there are few differences in ̃︀𝑃𝐷
performance. In terms of probability if we want to eliminate the error induced by the
discretization we shall make 𝑄 tend to ∞. However, the 𝑄 frequencies represent the size
of the alphabet of the steering angles, and by probability theory, a distribution with a ∞
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size of alphabet becomes a continuous distribution. Therefore the probability associated
with an element of the alphabet is equal to 0. In other words, if we eliminate discretization
our metric (𝑃𝐷) will be useless. Hence, there is a practical limit in discretization that
gives sufficient information about the problem and prevents the use of unnecessary extra
computational resources. To sum up, there is a trade-off between precision and detection.
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Conclusions

We have derived the exact analytical probability of detection for conventional
beamforming on ULA and URA geometries considering fading and noise scenarios in a
massive MIMO context. The resulting equation is related to a scaled non-central Chi-
squared random variable and its associated PDF and CDF. Our simulated and analytical
curves matched perfectly, corroborating the analytical derivations.

The number of snapshots, 𝐾, and the number of antennas, 𝑀 , impacted di-
rectly the probability of detection and therefore the estimation angle. These parameters
can mitigate the effects of fading and noise. Particularly, in conventional beamforming,
a large number of antennas improved the probability of detection, useful justification for
Massive MIMO technique application.

Parameter 𝐾 did not affect the mean, but the variance of associated random
variable 𝐻𝑈𝐿𝐴. The absence of the fading mean (LoS) made the random variable 𝐻𝑈𝐿𝐴

very dependent on 𝐾, fading variance, and noise characteristics. Consequently, conven-
tional beamforming with arrays becomes useless for angle estimation (i.e. the probability
of detection tends to be null). The probability of detection was directly affected by the
dedicated number of steering frequencies 𝑄: the higher the 𝑄, the worse the estimation.

The probability of Detection for URA geometry behaved in a similar fashion
as ULA geometry, where all associated modeled equations change the parameter 𝑀 by
the 𝑀𝑥𝑀𝑦 product. This issue confirms previous known advantages of URA geometry
over ULA geometry: the possibility of 3D AoA estimation (elevation and azimuth angles)
and spatial efficiency for a massive number of antennas.

Conclusively, the proposed probability of detection metric depicted two pri-
mary benefits: showed some behavior issues for existent algorithms not exposed by other
metrics and unfolded a new way for research in the complex multivariate statistics.
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Future work

Future work could extend this framework considering other array layouts such
as fractal, Uniform Circular Array (UCA) or Uniform Cylindrical Array (UCyA).

Previous thesis deductions could be extended to a general case: Detect multiple
dedicated signals at the antenna array.

Analytical derivations of probabilities of detection for other power spectrum
based algorithms like Capon (CAPON, 1969) and MUSIC (SCHMIDT, 1986) are proposed
as future work in order to set forth new difficult mathematical developments (non-central
complex Wishart matrices and complex eigenvectors PDFs equivalences).

The derivation of the probability of detection for any number of antennas 𝑀
(outside the Massive MIMO condition) could be set for the general model.

Finally, the new probability of detection metric could be derived and assessed
by deepening the fading channel using generalizing distributions such as 𝜅 − 𝜇, 𝜂 − 𝜇

(YACOUB, 2007b) and 𝛼− 𝜇 (YACOUB, 2007a) models.
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Publications

The results from this work were condensed as a paper and submitted to the IEEE
Access Multidisciplinary Open Access Journal.
The article was named as "Probability of Detection of the Angle of Arrival for Massive
MIMO Arrays" and was accepted for publication with Digital Object Identifier (DOI):
10.1109/ACCESS.2018.2877364.
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