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Resumo 

 
O objetivo geral dessa dissertação foi o estudo da eletro-oxidação de 

glicerol em meio alcalino em superfícies de ouro e platina, modificadas por adátomos 

metálicos. A modificação das superfícies foi feita por deposição sobrepotencial e 

adsorção irreversível, e os metais escolhidos para modificar os eletrodos foram cobre, 

chumbo e bismuto. Por meio de voltametria cíclica, foi concluído que o ouro foi 

desativado para a oxidação do glicerol após modificação com esses metais, 

observado pela redução na densidade de corrente registrada. A platina, por sua vez, 

foi desativada após modificação com cobre, ao passo que a modificação com bismuto 

promoveu a catálise, visto como um aumento na densidade de corrente. A adição de 

10-5 M de óxido de bismuto ao eletrólito contendo glicerol em meio básico 

proporcionou o maior aumento em atividade e estabilidade do catalisador. Utilizando 

as técnicas de HPLC e FTIR, foi determinado que a adsorção do bismuto muda as 

vias de eletro-oxidação de glicerol da seguinte maneira: 1) inibe a formação de 

monóxido de carbono, um intermediário responsável pela desativação do catalisador, 

2) promove a obtenção de ácido glicérico a partir do glicerol e 3) Reduz a oxidação 

total do glicerol à carbonato. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

 
The main goal of this dissertation was to understand the glycerol 

electrooxidation on platinum and gold surfaces in alkaline media, modified by 

deposition of metal adatoms. Surface modification was done using underpotential 

deposition and irreversible adsorption, and the metals chosen to modify the surfaces 

were copper, lead and bismuth. Using cyclic voltammetry, it was determined that gold 

was deactivated to glycerol oxidation after modification with the three metals, which 

generated a reduction in the current density. Platinum was also deactivated after 

modification with copper, however, bismuth promoted the catalysis, increasing the 

current densities. The optimum condition for this enhancement, was the addition of 10-

5 M of bismuth oxide to the electrolyte containing glycerol. Using the HPLC and FTIR 

techniques, it was determined that the adsorption of bismuth modified the 

electrooxidation pathways as follows: 1) inhibits the formation of carbon monoxide on 

platinum, a poisoning intermediate responsible for catalyst deactivation, 2) promotes 

the conversion of glycerol into glyceric acid, and 3) hinders the glycerol complete 

oxidation towards carbonate. 
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1. Introduction 

 

1.1. The importance of Glycerol 

 

The combination of increasing global energy demand and depletion of fossil 

fuel reserves has inspired researches across various fields to look for alternative, 

renewable energy sources. The demand for these renewable sources has seen a 

constant increase throughout the years, in addition to the continuous advances in both 

technology and research on this field1. One of the several renewable energy sources 

is the biomass. Biomass can be used as an energy source either in its natural form, or 

refined into gaseous or liquid biofuels, such as syngas, biogas, bio-ethanol and 

biodiesel2. Biodiesel, in particular, has been proposed as a substitute for conventional 

diesel oil, and has attracted more attention in the recent years.  

Biodiesel is produced from the transesterification of vegetable oils and 

animal or waste fats. This process consists of breaking the fatty acids into smaller 

molecules, generating fat-derived esters (either methyl or ethyl), the biodiesel, and the 

glycerol (GOH) backbone, the main by-product, with a 10wt% yield3 (scheme 1).  

 

Scheme 1: Transesterification reaction of vegetable oils and fats, resulting in alkyl 

esters (biodiesel) and glycerol. 

 

The global production and demand for biodiesel has been continuously 

increasing throughout the years1, and with it the availability of GOH. This increasing 

demand caused a shift on its market, as the previous main supplier was the 

oleochemical industry, and now the main source is the biodiesel industry3. This surplus 
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of crude GOH, from biodiesel production, has caused a significant price drop on its 

value, negatively impacting the biodiesel industry, which already suffers with high 

production costs4. GOH is mainly used as an additive in food production and as a 

building block in the pharmaceutical and cosmetics industries, although the use of 

crude GOH is avoided, as its contaminants (methanol, salts and free fatty acids) cause 

damage to the piping and storage systems3. Refining this crude GOH involves high-

temperature vacuum distillation, which is only cost-efficient in large-scale operations3. 

Although deemed unsuitable for most industrial applications and electrochemical 

studies, there are reports citing its use as anode feedstock in alkaline fuel cells5–7. 

The combination of large availability and price drop has led many 

researchers to investigate the chemical valorization of GOH2–4,8–10, involving the 

synthesis of several value-added products (figure 1)2 and its use as an energy source 

in fuel cells9,11. 

 

 

Figure 1: Some possible chemical valorization routes for glycerol. Reproduced with 

permission from ref. [2]. 

 

Glycerol, or propane-1,2,3-triol, is a polyol with two primary hydroxyl groups 

and a secondary one. It is a molecule with a high theoretical energy density (5.0 

kWh.kg-1), since its complete oxidation to CO2 involves the exchange of 14 electrons11. 
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In addition to the valorization routes shown in scheme 2, GOH can be oxidized into 

several C3, C2 and C1 products (figure 2), often involving several parallel reactions, 

thus requiring highly specific catalysts in order to control the product selectivity, which 

also depends on the solution composition, pH, temperature, etc. 

 

 

Figure 2: Possible products obtained from glycerol oxidation. Reproduced with 

permission from ref. [2]. 

 

The catalytic conversion of GOH has not been commercially applied until 

now2. However, there have been several works reporting the selective oxidation of 

GOH to value-added products, mostly via conventional heterogeneous catalysis 

methods, but also by means of electrochemical oxidation. GOH has been selectively 

oxidized to dihydroxyacetone12–15, lactic acid16, glyceric acid15,17,18, among others2,19,20. 
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Table 1 shows the price of some C3 oxidation products of GOH, known to be generated 

via electrochemical conversion11,21. 

 

Table 1: Price of some C3 oxidation products of GOH, generated via electrochemical 

oxidation. In some cases, the price of the cheapest salt is presented, as the acids were 

not found on the online catalogue. Adapted from ref. [8]. 

Chemical compound Price (US$.g-1) 

Glycerol 0.33 

Sodium mesoxalate monohydrate (purity ≥ 

98%) 

5.95 

Tartronic acid (purity ≥ 97%) 6.53 

Glyceraldehyde (purity ≥ 90%) 86.50 

Dihydroxyacetone  1389.60 

Glyceric acid sodium salt (purity ≥ 95%) 3812.00 

Hydroxypyruvic acid (purity ≥ 95%) 18,740.00 

 

 

1.2. Electrochemical valorization of glycerol 

 

The glycerol electrooxidation reaction (GEOR), is one of the many options 

to GOH valorization. This process was first employed during the 1980s22,23 using gold 

and platinum electrodes as catalysts. After a significant time with no innovations on 

this field, as no major studies were conducted on it, the interest on the subject 

flourished in the early 2010s, when two major studies were published. In the first one, 

GOH was employed as a fuel source in direct alkaline alcohol fuel cells11, while in the 

other the GEOR was used as model reaction in the development of a technique which 

combined cyclic voltammetry with on-line sample collection, for later HPLC analysis 

(named as on-line HPLC by the authors)24. The results obtained in those works 

encourage many other groups around the world to study the GEOR. 
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The conversion of GOH using electrochemical reactors offers many 

advantages over conventional heterogeneous reactors. With electrochemical reactors, 

this process can be performed at room temperature and ambient pressure, as no 

thermal activation is required. Control of the electrode potential, electrolyte pH, GOH 

concentration and flow rate (when a flow cell is used) are other factors that, when 

combined, allow precise control of the reaction selectivity9.  

On the other hand, electrochemical systems are more complex than 

conventional heterogeneous processes, because the potential distribution across the 

reactor is influenced by the electrode material and its form, reactor design, mass 

transport of reactants and products, hydrodynamics and current distribution25. The 

potential distribution has a significant impact on selectivity and process scale up, thus 

an electrochemical process requires considerably more work than the heterogeneous 

counterpart in order to reach the level of industrial application. 

In addition to the aforementioned parameters, the use of shape-controlled 

nanoparticles as electrocatalysts26–29 allows tuning the catalyst surface to specific 

crystallographic orientations, since site-preference is observed during the 

electrooxidation of several organic molecules13,30–32. The surface of electrocatalysts 

can be easily modified via electrochemical methods33,34, using either the underpotential 

deposition or irreversible adsorption techniques, which will be explained in a later 

section. 

Another advantage of the electrochemical oxidation of alcohols is that it can 

be coupled with H2 generation in an electrolyzer8–10. Figure 3 shows the working 

principle of a GOH-based alkaline electrolysis cell. The application of an external 

electric field promotes the oxidation of GOH at the anode, producing value-added 

oxidation products, while releasing water and electrons. These electrons are forced 

towards the cathode side through an external circuit, where water is reduced to H2. 

The hydroxyl ions generated in the process flow across a permeable membrane 

towards the anode. 
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Figure 3: General scheme of a GOH-based electrolysis cell. GOH is oxidized at the 

anode (left side), releasing its value-added products, water and electrons. The 

electrons are forced to the cathode (right side) through an external circuit, where water 

is reduced to H2, releasing hydroxyl ions, which flow towards the anode side through 

a permeable membrane. 

 

The GOH at the anode side can be either completely oxidized, generating 

CO3
2− and releasing 14 electrons, maximizing the H2 production, or partially oxidized, 

where the reduced gaseous hydrogen production rate is compensated by the 

generation of value-added products on the anode, instead of carbonate8–10. The 

electrochemical reactions occurring on the electrolysis cell for the complete oxidation 

of GOH are: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 20 𝑂𝐻− → 3𝐶𝑂3
2− + 14𝐻2𝑂 + 14𝑒−       (1) 

2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻−             (2) 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 6𝑂𝐻− → 3𝐶𝑂3
2− + 7𝐻2          (3) 

where reactions (1) and (2) occur on the anode and cathode, respectively, and (3) is 

the overall reaction. The theoretical cell voltage (Ecell
° ), can be calculated using 𝐸𝑐𝑒𝑙𝑙

° =

−∆𝐺𝑟
°/𝑛𝐹 35, where ∆𝐺𝑟

° is the standard Gibbs free energy of the reaction, 𝑛 the number 

of electrons involved in the electrochemical reaction, and 𝐹 the Faraday constant. 

Using standard thermodynamic data36,37, the cell voltage for this cell is EEC,GOH
° =

+0.062 V, where EC stands for electrolysis cell. For a water-based electrolysis cell 
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(water splitting), this value is EEC,H2O
° = −1.229 V9,10. The cell voltage in an electrolyzer 

represents the minimum voltage that needs to be applied in order for electrolysis to 

occur, i. e. it is an energy barrier that must be surpassed. This thermodynamic data 

shows that a GOH-fed electrolyzer requires significantly less energy to operate than 

conventional water splitting devices, also valid for other alcohol-based electrolyzers, 

however several limitations lead to an increase in the potential difference between the 

electrodes, hence limiting their applicability10. It is interesting to note that EEC,GOH
° > 0, 

indicating that the reaction occurs spontaneously. However, due to this very low 

thermodynamic potential difference and the slow kinetics of GOH oxidation, an external 

energy supply is necessary in order for the electrolysis cell to operate at an appreciable 

rate.  

Another possibility for the electrochemical valorization of GOH consists on 

its use as an energy source in fuel cells9–11. A fuel cell is a device similar to the 

electrolyzer (figure 3), however no external potential needs to be applied to the device, 

i. e. the reaction occurs spontaneously, with generation of an electrical current 

(energy), that can be harnessed to power other devices. Figure 4 shows a general 

scheme of a GOH-fed fuel cell. Similar to the electrolyzer, GOH is fed on the anode 

side of the device, where it oxidizes, generating value-added products and releasing 

electrons. The electrons travel through the external circuit producing electric work, and 

later flow towards the cathode. In the cathode, oxygen is reduced into hydroxyl ions, 

which flow to the anode side through a permeable membrane9. 
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Figure 4: General scheme of a GOH-fed fuel cell. GOH is oxidized at the anode (left 

side), releasing its value-added products, water and electrons. The electrons travel 

outside the cell to perform electrical work, powering other devices. In the cathode, they 

reduce oxygen into hydroxyl ions. The hydroxyl ions flow towards the anode side 

through a permeable membrane. 

 

The electrochemical reactions on the GOH-based alkaline fuel cell are as 

follows: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 20 𝑂𝐻− → 3𝐶𝑂3
2− + 14𝐻2𝑂 + 14𝑒−       (1) 

1
2⁄ 𝑂2 + 𝐻2𝑂 + 2𝑒− → 2 𝑂𝐻−            (4) 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 7
2⁄ 𝑂2 + 6 𝑂𝐻− → 3𝐶𝑂3

2− + 7𝐻2𝑂       (5) 

Reaction (1) is the same as in the electrolyzer, while on the cathode side 

gaseous oxygen is reduced according to reaction (4), and (5) is the overall reaction. 

The calculated cell potential for this device is EFC,GOH
° = +1.291 𝑉, where FC stands for 

fuel cell. In comparison, the calculated cell potential for a hydrogen/oxygen alkaline 

fuel cell is EFC,H2/𝑂2

° = +1.229 𝑉 38. Instead of representing an energy barrier, like in the 

electrolyzer, the cell potential here represents the maximum power output (voltage) 

that can be obtained from such a device10,38. The typical cell voltage (useful) for high 

performance H2/O2 fuel cells is between 0.6 – 0.7 V9,10,38. This difference from the 

theoretical voltage is caused by losses during cell operation, caused by ohmic/internal 
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loss (internal resistance, mainly from the membrane, materials used, cell design), 

kinetics (activation loss, slow redox kinetics of oxygen, requiring high overpotentials) 

and mass transport/concentration losses (when the reactants cannot be delivered fast 

enough to the catalyst sites, and if there is anything preventing the reactant flow)10,38. 

As for electrolyzers, thermodynamic data supports the use of GOH and other alcohols 

as an energy source for fuel cells9–11,26, however their applicability still has several 

constraints10. 

To the best of our knowledge, no commercial GOH-powered fuel cell or 

electrolyzer is available on the market, and all known devices are in the prototype 

phase8. In both devices, the anode side is the same (fed by GOH), therefore, as was 

stated before, it is the cathode side that determines if the reaction is spontaneous (fuel 

cell) or not (electrolyzer). This spontaneity is controlled by thermodynamic 

considerations, mainly the standard cell potential (E°). Figure 5 provides a general 

overview to the significance of this parameter on these devices, where the theoretical 

current-potential curves for hydrogen, oxygen and GOH redox processes are 

represented according to the Butler-Volmer kinetics35. 
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Figure 5: Comparison of the theoretical current-potential curves for the redox 

processes of water, hydrogen and GOH, following the Butler-Volmer law. EH2O,FC and 

EH2O,EC are the cell voltages for water-based fuel cells and electrolyzers, respectively, 

while EGOH,FC and EGOH,EC  represent the same but for GOH-fed fuel cells and 

electrolyzers, respectively. E° =  1.23 V 𝑣𝑠 RHE is the H2O/O2 reversible reaction 

potential. Adapted from refs. [9,10]. 

 

In figure 5, the red curves represent the oxidation of both H2 and H2O, while 

the blue curves account for their oxidation, and the green curve represents the 

observed GOH oxidation. The kinetics of O2 oxidation-reduction are quite slow, 

therefore high overpotentials are necessary (1.8 – 2.0 V) to produce H2 in significant 

amounts in a water splitting electrolyzer. Feeding GOH or other alcohols may 

significantly reduce this overpotential9,10. In electrolyzers, catalysts who provide high 

current densities with minimal overpotential are desired, in addition to the selective 

oxidation of GOH. Whereas in a fuel cell, catalysts capable of oxidizing GOH to 

carbonate at low potentials with high currents are desired. 
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1.3. Electrooxidation of glycerol on gold 

 

Several mechanisms have been proposed for the GEOR on Au electrodes 

in alkaline media11,21,22,24,39–41. Nowadays, the most widely accepted mechanism is the 

one proposed by Kwon et. al.21,24, derived from a combination of electrochemical 

methods and HPLC.  

In this mechanism, GOH initially undergoes a primary alcohol oxidation 

where it is oxidized in a two-electron transfer step to glyceraldehyde, starting at 0.8 V, 

followed by a second two-electron transfer step to glyceric acid. However, 

glyceraldehyde consists of an unstable intermediate on gold, both due to the high 

effective overpotential on the electrode, a consequence of its delayed surface oxidation 

(around 1.3 V), and to its tendency to oxidize when in alkaline media42, therefore 

glyceric acid is apparently directly produced from GOH via glyceraldehyde. Glyceric 

acid is further oxidized by a two-electron transfer step, at 0.85 V, resulting in C-C bond 

breaking into glycolic acid and formic acid. Au has a high conversion rate of glyceric 

acid into glycolic acid, and formic acid, which was ascribed to the high effective 

overpotential applied on the electrode. The mechanism proposed by Kwon and co-

workers [21] is shown in scheme 3. 

 

 

Scheme 3: Reaction scheme for the GEOR on Au in alkaline media, proposed by 

Kwon and co-workers [21], from electrochemical and HPLC results. Full arrows 

indicate the observed reactions, the dashed arrows indicate the proposed reaction 

pathway. 
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The electrolyte pH, plays an important role in the GEOR on Au. Gold is 

inactive to the GEOR in acidic media21,22, and only slightly active in neutral media21. In 

order for the GEOR to occur on Au, the pH has to be high in order to maintain the 

catalyst surface covered with adsorbed hydroxyl molecules, forming the Au(OH) 

species on the electrode surface39,43: 

𝐴𝑢 + 𝑂𝐻− ⇌ 𝐴𝑢(𝑂𝐻)𝑎𝑑𝑠
𝛿− + 𝜆𝑒−            (6) 

where Au(OH)ads
δ−  is the catalyst active site with surface bound to hydroxyl species, and 

λ is the voltage dependent partial charge transfer39,43. This species is capable of 

combining with either GOH or the glycerolate anion, originated from GOH 

deprotonation41,43, into glyceraldehyde at the electrode surface. Reaction (7) shows 

the GOH deprotonation, while reactions (8) and (9) are the GOH and glycerolate 

oxidation, respectively.  

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 ⇌ 𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂− + 𝐻𝛼
+       (7) 

𝐶3𝐻8𝑂3 + 𝐴𝑢(𝑂𝐻)𝑎𝑑𝑠
𝛿− + 𝑂𝐻−  ⇌ 𝐴𝑢 + 𝐶3𝐻6𝑂3 + 2𝐻2𝑂 + (1 + 𝛿)𝑒−       (8) 

𝐶3𝐻7𝑂3
− + 𝐴𝑢(𝑂𝐻)𝑎𝑑𝑠

𝛿− ⇌ 𝐴𝑢 + 𝐶3𝐻6𝑂3 + 𝐻2𝑂 + (1 + 𝛿)𝑒−        (9) 

Reaction (7) shows a further role of the alkaline media as a catalyst. This 

scenario occurs when the solution pH approaches the pKa of GOH, 14.1543. This is a 

solution-phase reaction, where the electrode plays no role41,43. 

Since the glycerolate anion is more reactive than GOH41, reaction (9) can 

occur at lower overpotentials than reaction (8), accounting for the role of base-catalysis 

of the GEOR on gold43. The GOH and glycerolate molecules have a preferential 

adsorption configuration by adsorbing the CH/CH2 group at the Au(OH)ads
δ−  site, due to 

their weaker hydration43,44, which facilitates the dehydrogenation into glyceraldehyde. 

The overall reaction is obtained when reaction (6) is combined with reactions (8) and 

(9), as follows: 

𝐶3𝐻8𝑂3 + 2𝑂𝐻− ⇌ 𝐶3𝐻6𝑂3 + 2𝐻2𝑂 + 2𝑒−        (10) 

𝐶3𝐻7𝑂3
− + 𝑂𝐻− ⇌ 𝐶3𝐻6𝑂3 + 𝐻2𝑂 + 2𝑒−         (11) 

One of those reactions, either the dehydrogenation of GOH or glycerolate 

anion, is thought to be the rate-determining step of the GEOR on gold surfaces43. 
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Despite being often used as an electrocatalyst in the GEOR, more active 

than Pt in alkaline media at higher potentials22,24,41, few studies exist were the Au 

electrode is modified by metal adatoms19. On the other hand, Pt electrodes have been 

extensively modified via adatom deposition13,30–32,45, and their impact on catalyst 

activity and selectivity has been established. With this in mind, we decided to modify 

polycrystalline Au electrodes with metal adatoms to verify their influence on the activity 

and selectivity of the GEOR. 

 

1.4. Electrooxidation of glycerol on platinum 

 

The GEOR on Pt electrodes, unlike Au, occurs regardless of electrolyte pH, 

however the current densities shown in alkaline media are significantly higher21,22 than 

what is observed in neutral or acidic conditions. Pt has a lower onset potential than Au, 

it begins to oxidize GOH at 0.4 V, whereas oxidation on Au only begins at 0.8 V21. It 

was proposed that the GEOR is strongly promoted by hydroxyl anions, both in Au and 

Pt catalysts21. The GEOR on Pt electrodes has been more investigated in acidic media, 

where the GOH complete oxidation to CO2 has been detected46, and it is already 

known that the primary hydroxyl groups are more easily oxidized than the secondary 

one, although both groups contribute to the CO2 production47. The effect of electrode 

structure has also been investigated48–50, using low-index Pt single crystals [(111), 

(110) and (100)]. It has been found that the GEOR is highly sensitive to the electrode 

structure50, and that both CO and GOH bind more strongly on disturbed than on well-

ordered surfaces48. In order to oxidize GOH in acidic media without poisoning the 

electrode, moderately high potentials are required, in order to oxidize the adsorbed CO 

into CO2
49. The Pt – CO bond breaking has been considered as the rate-determining 

step to the GEOR in acidic media48. To the best of our knowledge, no such detailed 

investigation of the GEOR in alkaline media has been performed using Pt single-crystal 

electrodes, even though the current densities are significantly higher. In alkaline media, 

a study51 with a (111) Pt single crystal has hypothesized that electrode deactivation is 

due to strongly adsorbed acyl species, formed during the GEOR, and not CO 

poisoning. 
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The most widely accepted reaction scheme proposed for the GEOR on a Pt 

electrode in alkaline media is the one proposed by Kwon et. al.21,24, derived from 

electrochemical and HPLC analysis, shown below. 

 

 

Scheme 4: Reaction mechanism for the GEOR on Pt in alkaline media, proposed by 

Kwon and co-workers [21], from electrochemical and HPLC results. Full arrows 

indicate the observed reactions, the dashed arrows indicate the proposed reaction 

pathway. 

 

The main difference between this mechanism and the one shown in scheme 

3, for the GEOR on an Au electrode, is that on Pt the GOH can undergo either a primary 

or secondary alcohol oxidation pathway. In the path of primary oxidation pathway, 

GOH is initially oxidized to glyceraldehyde, now a stable product, through a two-

electron transfer step, and a subsequent two-electron transfer step into glyceric acid. 

Glyceric acid is further oxidized by cleavage of a C-C bond via another two-electron 

transfer step, resulting in formic acid and glycolic acid. This step occurs at a higher 

rate on the Au electrode than in Pt and was attributed to the delayed surface oxidation 

of the Au electrode. Glycolic and glyceric acid can be further oxidized into oxalic and 

tartronic acid, respectively. In the pathway of secondary alcohol oxidation, GOH is 
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oxidized into dihydroxyacetone by a two-electron transfer step, and further oxidized 

into hydroxypyruvic and ketomalonic acid. 

Modification of Pt with deposition of metal adatoms has been extensively 

described in the literature13,30–32,45. In particular, bismuth is known to enhance the 

catalytic activity of Pt towards the oxidation of several organics, such as formic 

acid30,32, methanol30 and GOH, both in acidic13 and alkaline52 media. With this in mind, 

we decided to investigate the effects of adatom modification on Pt to the GEOR in 

alkaline media, since previous studies were mainly focused on acidic media13,45,53. 

Modification with Bi was of particular interest, since in acidic media it was found to 

selectively oxidize GOH to dihydroxyacetone13, one of the high value-added GOH 

oxidation products (Table 1). 

 

1.5. Electrochemical modification of noble metals 

 

In this work, we modified Pt and Au electrodes using adatoms. Below, we 

introduce and explain the most relevant characteristics of the approaches used here, 

i.e., the under potential deposition and irreversible adsorption. 

 

1.5.1. Underpotential Deposition 

 

When a metal is electrodeposited on a foreign substrate, an apparent 

violation Nernst’s law is observed54. Metal deposition takes place at potentials lower 

than predicted by the Nernst equilibrium potential, however the opposite happens in 

the case of underpotential deposition (UPD)33,34. This process can be better visualized 

using the concept of overpotential (overvoltage), represented by the letter η, defined 

as: 

𝜂 = 𝐸 − 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞
𝑧+⁄  

where 𝐸 is the actual potential on the electrode, and 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞
𝑧+⁄  is the Nernst 

equilibrium potential of the following reaction: 

𝑀(𝑏𝑢𝑙𝑘) ⇄ 𝑀(𝑎𝑞)
𝑧+ + 𝑧𝑒− 
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where  𝑀(𝑏𝑢𝑙𝑘) stands for the metallic material and 𝑀(𝑎𝑞)
𝑧+  represents the corresponding 

metallic ion in aqueous solution and with charge 𝑧. Controlling the potential on the 

electrode dictates the direction of this reaction. When 𝐸 < 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞
𝑧+⁄ , the metal ions 

reduce and deposit on the electrode surface of the same origin, i.e., there is a 3D 

growth of the bulk metal phase due to cathodic deposition, and in this scenario 𝜂 < 0. 

This type of deposition, with a negative overpotential, is called overpotential deposition 

(OPD), and is associated with formation of 3D metal phases33. When 𝐸 > 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞
𝑧+⁄ , 

the bulk metal phase dissolves anodically and 𝜂 > 0. 

In the case of a M phase formation on a foreign substrate (S), the overall 

reaction on 𝑆/𝑀𝑧+ pair is: 

𝑀(𝑜𝑛  𝑆) ⇌ 𝑀𝑎𝑞
𝑧+ + 𝑧𝑒− 

where 𝑀(𝑜𝑛 𝑆) denotes the metal atom deposited on the foreign substrate S. The 

electrode potential determines the direction of this reaction, however the Nernst 

equilibrium potential on the overpotential equation is with respect to the substrate S, 

as follows: 

𝜂′ = 𝐸 − 𝐸(𝑀 𝑜𝑛 𝑆)/𝑀𝑎𝑞
𝑧+ 

The term 𝐸(𝑀 𝑜𝑛 𝑆)/𝑀𝑎𝑞
𝑧+ represents the Nernst equilibrium potential of the 

metal ion 𝑀𝑧+ reducing and depositing on the foreign substrate S. Under certain 

conditions33,34, a 2D metal phase is stable on this substrate S, and in this scenario, 

𝐸(𝑀 𝑜𝑛 𝑆)/𝑀𝑎𝑞
𝑧+ > 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞

𝑧+⁄ , that is, the metal ion can be deposited  in a potential range 

where only its cationic form is found without the presence of S. This potential range is: 

Δ𝐸 = 𝐸(𝑀 𝑜𝑛 𝑆)/𝑀𝑎𝑞
𝑧+ − 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞

𝑧+⁄  

This Δ𝐸 can be better visualized in figure 6 below. In this potential interval, 

the metal ion is reduced on top of substrate S, forming a 2D phase, in a region where 

𝐸 > 𝐸𝑀(𝑏𝑢𝑙𝑘) 𝑀𝑎𝑞
𝑧+⁄ , which corresponds to 𝜂 > 0. This deposition of a 2D metal phase on 

a foreign substrate, with a positive overvoltage, is named underpotential deposition, 

because the term overpotential was already coined for metal deposition in 𝜂 < 0, 

resulting in this contradictory denomination34.  
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Figure 6: Current-potential diagram showing the Nernst equilibrium potential for 

deposition of  𝑀(𝑎𝑞)
𝑧+  on 𝑀(𝑏𝑢𝑙𝑘) and on a foreign substrate S (blue and yellow circles, 

respectively). Δ𝐸, the difference between these two values, is the potential interval (red 

line) in which UPD takes place. 

 

The UPD is a reversible process, and the adatoms obtained by this method 

are more strongly bound to the foreign surface than to their bulk counterparts, which 

can be used to determine the binding energy of the substrate and adsorbate54. For 

UPD to occur, there must be an equilibrium between the interphase and the solution 

containing the metal ions, and it can only form, at most, two layers on the foreign 

substrate33. This allows precise surface modification; however, the coverage is a 

function of both applied potential and solution composition55. 

 

1.5.2. Irreversible adsorption 

 

Irreversible adsorption occurs when the metal adatoms, in their cationic 

form, undergo spontaneous reduction and subsequent adsorption on the electrode 

surface, without an applied potential (open circuit condition). Such scenario occurs by 

immersion of the electrode in a solution containing a soluble salt of the desired 

element. Different to UPD, in this case there is no equilibrium between the adsorbed 

species on the electrode surface and the cations in the solution55. This situation 



26 
 

 

constitutes a significant advantage over the UPD, since electrode coverage can be 

varied independently of electrode potential 

It is important to note, however, that the adsorption of these adatoms is not 

completely irreversible. Applying a sufficiently high potential on the electrode will cause 

the adatoms to leave the electrode surface, as seen in the case of Bi56 and Pb57 

adsorption on Pt. To the best of our knowledge, the mechanism of this process has not 

been completely elucidated, and several propositions have been made55. 

Even if several aspects of the Bi deposition on Pt have not been elucidated, 

the promotion of some reactions for the adatom motivate researchers to investigate 

fundamental aspects of this system that are enumerated as follow. Bi adsorbs 

irreversibly on Pt by immersion of the electrode on an acidic solution of a Bi salt at 

open circuit condition56. This deposition takes place even at an oxidized Pt surface, 

and the UPD of Bi on Pt coincides with the reduction of the surface oxides58. Bi deposits 

irreversibly on Pt in its metallic state, covering 1/3 of a monolayer on the electrode, 

while the other 2/3 is covered by adsorbed OH- species59. Besides a physical site 

blocking effect, Bi is capable of altering the electronic properties of Pt, by lowering the 

work function of Pt(111)60 and reducing the potential of zero charge (pzc) for both 

Pt(111) and Pt(100)59,61,62. This reduction of the pzc causes the Pt atoms neighboring 

the adsorbed Bi to be positively charged in respect to the unmodified Pt surface, 

resulting in an enhanced anion adsorption and, consequently, reduced H adsorption. 

Therefore, two distinct sites are present for OH adsorption, the Pt sites which are 

electronically influenced by Bi, and the unmodified Pt sites.  
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2. Objectives 

 

The primary objective of this work is to understand the impact of electrode 

modification on the GEOR in alkaline media on gold and platinum surfaces. We will 

modify the electrodes with a full or partial adlayer of metal atoms (Cu, Bi and Pb), and 

observe the impact on catalyst activity using cyclic voltammetry. For the catalysts that 

show a higher activity after modification, the oxidation products will be identified and 

quantified using a combination of in-situ FTIR and HPLC with on-line sample collection.  

Ultimately, we aim to understand the relationship between catalyst 

structure, activity and reaction pathways for the GEOR. 
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3. Experimental 

 

3.1. Electrochemical system 

 

A standard three-electrode cell was employed during the electrochemical 

measurements (figure 6). The working electrodes were polycrystalline platinum (Ptpoly) 

and gold (Aupoly), consisting of the metal wire (Alfa Aesar) with a spherical end. The 

counter electrodes used in those experiments were either platinum and gold foils (Alfa 

Aesar), when the Ptpoly and Aupoly electrodes were used as WE, respectively. The 

reference electrode was a reversible hydrogen electrode (RHE). All potentials in this 

text are referred to the RHE. The potential of the working electrode was measured 

always against the RHE and controlled by a potentiostat/galvanostat Autolab 

PGSTAT101, Methrom® (figure 7). 

 

 

  

Figure 7: (left) electrochemical cell used on the electrochemical measurements, 

highlighting the working (red) and reference (blue) electrodes; (right) the 

potentiostat/galvanostat used to control the cell. 
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All glassware was cleaned by immersion in an alkaline KMnO4 solution 

overnight. Afterwards, they were rinsed with ultrapure water and a solution of H2SO4 + 

H2O2.. Lastly, the glassware was again rinsed with deionized water, and boiled in 

ultrapure water for 10 minutes, three times. Before any electrochemical 

measurements, a voltammogram of the electrode is recorded in the blank electrolyte, 

commonly called the “blank voltammogram” of the electrode. This blank is necessary 

to confirm the cleanliness of the electrochemical system, i.e., the electrodes and the 

electrolytes. The blank voltammogram of Ptpoly and Aupoly in acidic and alkaline media 

is shown in figure 8. The electrochemical measurements were only initiated if the 

registered blank corresponds to the ones shown below.  

 

 

Figure 8: Blank voltammograms for Aupoly (left) and Ptpoly (right) in 0.5 M H2SO4 (black) 

and 0.1 M NaOH (red). Scan rate was 10 mV.s-1. 

 

3.2. Electrode Modification 

 

Electrode surface modification was performed using both the irreversible 

adsorption and UPD methods. Irreversible adsorption of Bi56 on Ptpoly was performed 

by immersion of the working electrode in an acidic bismuth solution, with 0.5 M H2SO4 

and Bi2O3 concentrations ranging from 10-3 to 10-5 M. The electrode was immersed at 

open circuit (no potential control) for a set amount of time, rinsed with ultrapure water 

and transferred to an electrochemical cell with a 0.1 M NaOH electrolyte, and a blank 

voltammogram was recorded in the potential window from 0.05 to 0.45 V to determine 
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the electrode coverage (θ). Due to the shape of our electrode, a Pt wire with a spherical 

end, the amount of the electrode that was immersed into the acidic Bi solution and into 

the electrochemical cell varies within an experimental error, therefore reproducing a 

specific value of θ is not guaranteed even if the Bi3+ concentration and the immersion 

time are fixed. 

 The electrode was immersed in the electrolyte solution polarized at the 

upper potential, followed by negative scan to the lower potential. The coverage was 

calculated from the decrease in the hydrogen desorption peaks, after a stable 

voltammogram was obtained (figure 9), using the equation below: 

𝜃 = 1 −
𝑄𝐻,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝑄𝐻,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
 

where 𝑄𝐻,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the charge associated with the hydrogen desorption in a modified 

Pt electrode, and 𝑄𝐻,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the charge associated with hydrogen desorption in a 

clean Pt electrode. This charge is obtained by integrating the faradaic portion of the 

positive-going scan of the blank voltammogram, the area above the red dashed line in 

figure 8, between 0.05 and 0.45 V, and dividing by the scan rate. The dashed red area 

in figure 8 represents the amount of charge lost after electrode modification, i. e. it 

represents 𝑄𝐻,𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑄𝐻,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 
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Figure 9: Calculation scheme of the electrode coverage determination. The hydrogen 

desorption charge for a clean Ptpoly electrode (black) and partially covered (blue) is 

obtained by integrating above the red dashed line. The dashed area between the 

curves represent the reduction in the hydrogen desorption zone. Electrolyte 

composition is 0.1 M NaOH, sweep rate was 10 mV.s-1. 

 

The partially covered Ptpoly was then removed from the electrolyte solution 

at fixed potential and transferred to another electrochemical cell, for the GEOR 

experiments.  

After the experiments, in order to remove the adsorbed adatoms and 

recover a clean Pt surface, the Ptpoly was cleaned by immersion in aqua regia for 30 

seconds, rinsed with ultrapure water and flame annealed, followed by quenching in 

ultrapure water. 

The UPD of Cu on both electrodes was performed in a 0.5 M H2SO4 

electrolyte, as well as the Bi UPD on Aupoly, while the Pb UPD on Aupoly was performed 

in 0.1 M NaOH. The metal salts used (CuSO4, Bi2O3 or Pb(NO3)2) were at a fixed 

concentration of 10-3 M. The electrodes were immersed into the electrolyte at fixed 

potential, between 0.8 and 0.9 V, followed by negative scan until a high negative 

current was observed with minimal changes in the applied potential, indicating that 

multiple layers of the metal adatom were being deposited on the electrode (bulk 
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deposition). The lower potential limit was then set to a value immediately before the 

beginning of the bulk deposition to obtain a complete monolayer (θ = 1) of the metal 

adatom on the electrode surface. The electrode was polarized for 10 s at this potential, 

removed from the cell, rinsed with ultrapure water and transferred to a second cell for 

the GEOR measurements. In the second cell, the electrode was immersed into the 

electrolyte while polarized at 0.1 V, followed by positive scan until 1 V. A bismuth 

electrode was made by depositing bulk amounts of Bi atoms on an Aupoly electrode. 

The Aupoly electrode was used as the working electrode,  and a Pt wire as a 

counter/reference electrode in a two-electrode arrangement, and a potential difference 

of – 2 V was applied for 20 min. This bulk Bi electrode had the same blank 

voltammogram as shown for Bi nanoparticles63 in the literature. The Au electrode was 

chosen instead of Pt due to its higher double layer region, no interference from 

hydrogen adsorption and to its high onset potential for the GEOR (0.6 V for Au, while 

Pt has an onset potential of 0.4 V in alkaline media21). 

 

3.3. High Performance Liquid Chromatography and on-line sample collection 

 

The system for electrochemical measurements with on-line sample 

collection is shown in figure 10. 
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Figure 10: Experimental scheme of the electrochemical measurements couple with 

on-line sample collection.  

 

The working electrode used during sample collection was a platinum (Ptdisk) 

disk (Alfa Aesar) with 0.9 cm diameter, cleaned in the same fashion as the Ptpoly 

electrode. The GEOR was performed using the hanging meniscus configuration on the 

working electrode. Samples were collected using a Shimadzu sample collector FRC – 

10A by placing a PEEK capillary tip as close as possible to the working electrode 

(figure 11). The capillary was thoroughly rinsed with ultrapure water before insertion 

into the electrochemical cell. To avoid forming a lateral meniscus between the Ptdisk 

and the glass tube in which the PEEK capillary is contained, the Cu wire holding the 

Ptdisk was slightly bent, and the capillary tip was bent towards the center of the Ptdisk. 
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Figure 11: (left) PEEK capillary, connected to the sample collector, placed close to the 

Ptdisk surface, while being held at place by a Teflon piece; (right) scheme of the PEEK 

capillary placement. 

 

The contact between the working electrode and electrolyte solution was 

made after polarization at 0.2 V. This potential was held for 3 min, followed by positive 

sweep to 0.85 V. The electrolyte composition was 0.1 M NaOH + 0.1 M GOH, and the 

sweep rate was 1 mV.s-1. Samples were collected at a flow rate of 60 µL.min-1, 

therefore each fraction collected corresponded to a 60 mV interval, when compared to 

the voltammogram. The collection was performed after 9 cycles at 10 mV.s-1, to 

precondition the working electrode. Samples were stored in 0.5 mL eppendorf tubes 

and had their pH correct to 2, by addition of 20 µL of a H2SO4 solution, to prevent 

further oxidation of intermediates42.  

The HPLC experiments were performed in an Agilent series 1200 

chromatograph, with a quaternary pump, a thermostatted column compartment, ALS 

autosampler, vacuum degasser and a refractory index detector, kept at 35°C. Three 

separation columns were used, in the following order: an Aminex HPX87-H and two 

Shodex Sugar SH1011. The columns were kept at 85°C, and a Bio-Rad 1250131 
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precolumn was used. Mobile phase was 0.5 mM H2SO4, with 0.6 mL.min-1 flow rate, 

and the injection volume was 20 µL. 

 

3.4. In-situ Fourier Transform Infrared Spectroscopy experiments 

 

In situ infrared experiments were performed in a glass cell using a reversible 

hydrogen electrode as the reference electrode and a gold wire as the counter 

electrode. The solutions were deaerated with Ar (N50, Air Liquide) and blanketed with 

this gas during the experiments. A Nexus 8700 (Thermo Scientific) spectrometer 

equipped with a MCT-A detector and a wire grid ZnSe polarizer (Pike Tech) was the 

instrument used. The cell was equipped with a CaF2 (IRRAS) window beveled at 60º 

and placed at the top of a Veemax (Pike Tech.) reflectance accessory. All the potential-

dependent spectra were collected with a resolution of 8 cm-1 and are presented in 

absorbance units (a.u.) as – log(R/Ro), where R and Ro represent, respectively, the 

reflectivity at the sample and reference potentials. Thus, positive and negative bands 

correspond, respectively, to gain or loss of species at the sample potential with respect 

to the reference potential. Dynamic experiments (rapid scan-RS) were carried out and 

the spectra were collected in a rapid scan mode while the electrode potential was 

swept at 2 mV·s-1. The spectra recording took place after the electrode was 

preconditioned by 9 cycles at 10 mV.s-1. In these experiments, each spectrum was the 

average of a set of 260 interferograms which were collected in a 50 mV interval. All the 

spectra are referred to the reference single beam spectrum collected in the glycerol-

containing solutions at 0.10 V.  

 

3.5. Chemicals 

 

All chemicals were employed without previous treatment. The chemicals 

used in the electrochemical measurements, with and without on-line sample collection,  

were sulfuric acid (ISO, Emsure®), nitric acid (PA ACS, LS Chemicals), hydrogen 

peroxide (30% wt, LS Chemicals), hydrochloric acid (PA, Ls Chemicals), glycerol (ACS 

grade, Sigma-Aldrich), copper (II) sulfate pentahydrate (ACS, Merck), bismuth (III) 
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oxide (ReagentPlus®, Sigma-Aldrich), lead (II) nitrate (99.999% trace metal basis, 

Sigma-Aldrich), sodium hydroxide (semiconductor grade, 99.99% trace metal basis, 

Sigma-Aldrich) and potassium permanganate (PA ACS grade, Vetec Química). All 

solutions were prepared using ultrapure water (18.2 MΩ ∙ cm @ 25ºC, Millipore). 

The in-situ Fourier transform spectroscopy experiments were performed 

using the following chemicals: glycerol (99.9% CalbioChem), sodium hydroxide 

monohydrate 99.99% (Merck Suprapur®), bismuth (III) oxide 99.999% (Sigma-

Aldrich), deuterium oxide 99.9% (Sigma-Aldrich) and ultrapure water (18.2 MΩ ∙ cm, 

TOC 50 ppb max, Elga Vivendi). 

The standard chromatograms for identification of several oxidation products 

(fig. S1), calibration curves (fig. S2) and standard FTIR spectra (fig. S3) were obtained 

using the following chemicals: sulfuric acid (ISO, Emsure®), sodium hydroxide 

(semiconductor grade, 99.99% trace metal basis, Sigma-Aldrich), glycerol (ACS grade, 

Sigma-Aldrich), 1,3-Dihydroxyacetone dimer (97%, Sigma-Aldrich), D-glyceric acid 

calcium salt dihydrate (99%, Sigma-Aldrich), DL-Glyceraldehyde (≥ 90%, Sigma-

Aldrich), Glycolic acid (99% ReagentPlus®, Sigma-Aldrich), sodium mesoxalate 

monohydrate (≥ 98.0%, Sigma-Aldrich), glyoxylic acid monohydrate (98%, Sigma-

Aldrich), tartronic acid (97%, Sigma-Aldrich), oxalic acid (99%, anhydrous, Sigma-

Aldrich) and sodium carbonate (99.5%, Labsynth).  
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4. Results and Discussion 

 

4.1. Surface Modification via Underpotential Deposition 

 

The voltammetric profiles for the UPD of Bi, Pb and Cu on Aupoly and of Cu on Ptpoly 

are shown in Figure 12. Bi and Pb adsorb irreversibly on Pt, and their only effect on 

the voltammogram of Ptpoly is the reduction of the hydrogen adsorption-desorption 

zone, in addition to a reversible peak associated to their redox process on the electrode 

surface56,57. 
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Figure 12: Voltammetric response for the UPD of Bi on Aupoly (top left), Pb on Aupoly 

(top right), Cu on Aupoly (bottom left) and Cu on Ptpoly (bottom right), exhibiting both the 

limit for monolayer formation (full line) and the bulk deposition (dashed line). The base 

electrolyte is 0.5 M H2SO4 for Bi and Cu deposition, and 0.1 M NaOH for Pb deposition, 

in addition to 10-3 M of the corresponding metal salt (Bi2O3, Pb(NO3)2 or CuSO4). 

Sweep rate is 10 mV.s-1 for all measurements. The arrows show the scan direction, 

and the red dotted circle indicates the potential for monolayer coverage. 

 

The UPD process is seen as a negative current during the negative scan, 

on what was originally the electric double layer region of both electrodes, as well as 

the hydrogen adsorption/desorption zone of Pt. This negative current is attributed to 

the reduction and deposition of the metallic ions (Cu2+, Bi3+ or Pb2+). Each adatom-

substrate pair follows distinct deposition mechanism, being both the thermodynamic 

and kinetics of the process influenced by the electrolyte composition, temperature, etc.  

When the applied potential reaches that of monolayer formation (red dotted 

circles in figure 12), the current remains approximately constant. Further reduction of 
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the applied potential generates a high reduction current (dashed lines in figure 12) 

associated with the bulk (massive) deposition of the adatom species, i.e., a 3D growth 

of the metal phase is taking place at the electrode surface33. Since our objective is to 

deposit complete or partial monolayers of the metal adatoms, this study was done in 

order to determine the potential window in which the electrodes could be modified.  

 

4.2. Irreversible adsorption of bismuth on platinum 

 

Due to the fact that in this work we studied the GEOR in presence of 

different concentrations of Bi ions in solution, we studied the changes in the surface of 

Ptpoly as it is cycled in a solution containing Bi ions. Figure 13 shows the effect of cycling 

the Ptpoly electrode in alkaline media with varying concentrations of Bi3+ in solution, as 

indicated on the inset of each voltammogram. The electrode was polarized at 0.3 V 

before immersion into the electrolyte and held at this potential for 3 min, followed by 

negative scan to 0.2 and positive scan to 0.85 V. 
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Figure 13: Effect of cycling the Ptpoly electrode in 0.1 M NaOH with varying 

concentrations of Bi2O3, as shown on the inset of each voltammogram. Sweep rate 

was 10 mV.s-1 during all measurements.  

 

The results shown in figure 13 reveal that the Ptpoly electrode was not 

completely covered by Bi when 10-8 or 10-7 M Bi2O3 was added to the electrolyte, 

because the hydrogen adsorption/desorption region can still be observed after 10 

cycles. The calculated value of bismuth coverage (θBi) was 0.79 and 0.73 for the 10-8 

and 10-7 M Bi2O3, respectively. With 10-6 M Bi2O3 in solution, however, a complete 

electrode coverage (θBi = 1) is achieved around the 5th cycle, evidenced by the 
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complete blockage of the hydrogen region and the new reversible peaks at 0.63 V, 

attributed to the Bi oxidation to Bi(OH)2 and its subsequent reduction to Bi on (111) 

sites56,64. A completely different behavior is observed for 10-5 M Bi2O3. The electrode 

is completely covered with Bi from the beginning of the experiment, and a broad 

oxidation region in the 0.5 – 0.8 V range is observed for the 1st cycle, as well as a 

reduction peak centered at 0.35 V. These features disappeared by the 3rd cycle, and 

the voltammetric profile stabilized. Lastly, at 10-4 M, the voltammogram did not stabilize 

even after 10 cycles, as seen by the continuous increase in a stepped cathodic peak 

at 0.30 V, attributed to a constant increasing of the reduction of massive Bi 

oxide/hydroxide and the consequent continuous deposition of Bi. Indeed, this profile is 

similar to the blank voltammogram obtained for a Bi electrode in 0.1 M NaOH (figure 

14), the anodic peak centered around 0.65 V, observed with 10-6 and 10-5 M Bi2O3 in 

figure 13, are in agreement with the Bi oxidation region observed in figure 14. 

  

 

Figure 14: Voltammetric response obtained for a bulk Bi electrode in 0.1 M NaOH, in 

the absence (black) and presence of 10-4 M Bi2O3 (green). Scan rate is 10 mV.s-1. 
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4.3. Glycerol electrooxidation on gold surfaces modified by metal adatoms 

 

The GEOR on the Aupoly modified with a full monolayer of underpotentially 

deposited Cu, Bi and Pb is shown in figure 15. The electrode was polarized at 0.1 V 

and immersed into the electrolyte at this potential, and after 3 min a positive scan until 

1 V was performed.  

 

Figure 15: (Top left) Positive scan of the 1st cycle of the voltammogram recorded for 

the GEOR on the Aupoly electrode modified by a full monolayer of Bi (red), Cu (green) 

and Pb (blue). First three positive-going scans of the GEOR in Aupoly modified by Bi 

(top right), Cu (bottom left) and Pb (bottom right). In all measurements, the electrolyte 

composition was 0.1 M NaOH + 0.1 M GOH, and the sweep rate was 10 mV.s-1. 

 

Initial examination of figure 15 indicates that the Aupoly electrode is 

completely deactivated for the GEOR after a full monolayer of the metal adatoms is 

deposited on its surface. The peaks near 0.2 and 0.4 V for the Au-Pb and Au-Bi 

systems, respectively, were attributed to the oxidation of those metals on the electrode 
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surface. Cycling the electrode in the potential window used in figure 15 revealed a 

continuous increase in the current density for the three electrodes. After several cycles, 

the electrodes recover the activity of Aupoly, indicating that the adatoms leave the 

electrode surface. Repeating these measurements with partial electrode coverage 

yielded similar results, i.e., the Au electrode was also deactivated and the diminution 

of the activity was proportional to the coverage. 

Out of the metals chosen to modify the electrode surface, Cu is expected to 

remain adsorbed on the surface of Au even at high potentials, in its oxidized Cu(II) 

form, forming a monolayer of CuO on the electrode surface65, which would explain why 

the recovery of the Aupoly is the slowest at this system, as seen on the slow increase 

of the current density in figure 15. The Pb atoms, on the other hand, seem to leave the 

Au electrode easily, evidenced by the fact that the current densities for the 3rd cycle 

are over two times higher than observed in the 1st cycle, although part of the Pb 

adatoms is known to irreversibly adsorb on Au66. Bi on Au shows a similar behavior as 

Pb 67,68. 

As previously mentioned, Au(OH) formation is considered necessary to the 

GEOR on Au electrodes39,41. We hypothesize that the reduction in the activity of the 

electrodes is due to the fact that when the adatoms were deposited on the electrode 

surface, they occupied the available active sites (one, two and three sites for Cu, Pb 

and Bi, respectively67), diminishing the availability of Au(OH) and reducing the 

electrode activity. These results confirm that the GEOR on Au occurs in a completely 

different way than on Pt, as we will see in the next section. 

 

4.4. Glycerol electrooxidation on platinum surfaces 

 

4.4.1. Copper-modified platinum 

 

The results for the GEOR on Ptpoly modified by UPD of Cu adatoms is shown 

in figure 16 below. The measurements were performed in the same way as previously 

described for the GEOR on Aupoly modified by adatoms.  
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Figure 16: Positive scans of the of the 1st cycle of the voltammogram recorded for the 

GEOR on Ptpoly (black) and the first three scans of the Cu-modified electrode (red, blue 

and green). Electrolyte composition is 0.1 M NaOH + 0.1 M GOH, and the scan rate 

used was 10 mV.s-1. 

 

Similar to the Au-Cu system, Cu also deactivates the Ptpoly electrode for the 

GEOR in alkaline media, both at full and partial electrode coverage. Continuous cycling 

did not increase the current densities, indicating that the adsorbed Cu atoms did not 

leave the electrode surface in the specified potential window.  

 The fact that even low quantities of Cu negatively affect the electrode activity is 

a clear evidence that there must be an electronic effect over Pt atoms that modified 

the binding energy of the intermediates of the reaction in a non-favorable way. DFT 

studies and X-rays absorption techniques could help to clarify this point.  

 

4.4.2. Bismuth-modified platinum 

 

The impact of partial Bi coverage on the Ptpoly electrode for the GEOR in 

alkaline media is shown in figure 17. As was stated before, Bi was irreversibly adsorbed 

by immersion of the Ptpoly electrode in an acidic solution at open circuit, rinsed with 



45 
 

 

ultrapure water and a blank voltammogram was recorded in order to determine θBi. 

Afterwards, the electrode was transferred to a second cell where the GEOR was 

performed. 

 

Figure 17: (left) Positive-going scan of the 1st cycle of the voltammetric profile obtained 

for the GEOR in alkaline media on the Bi-modified Ptpoly electrode, at different values 

of θBi; (right) jpeak evolution with cycle number, for the same values of θBi shown in the 

left image. Electrolyte composition was 0.1 M NaOH + 0.1 M GOH, and the scan rate 

was 10 mV.s-1. 

 

The results indicate that Bi impact is noticeable even at low coverage values 

(θBi < 0.50). Although jpeak had a considerable increase during the initial cycles for all 

values of θBi examined, it continuously diminishes with electrode cycling, tending to the 

behavior of Ptpoly. Besides the impact in jpeak, the onset of the reaction also shifted to 

lower potentials when θBi increased, by around 200 mV when θBi = 0.90, indicating 

again the promoting effect of the deposition of Bi for the GEOR. 

The unmodified Ptpoly electrode also showed deactivation with continuous 

cycling, which has been attributed to the adsorption of CO69, both linearly and bridge-

bonded, and to the adsorption of GOH residues39, likely to be acyl intermediates, as 

shown in recent literature reports in alkaline media51. Thus, even if the results showed 

in figure 17 suggest that θBi decreases along cycling, it cannot be discarded the 

poisoning of the modified surfaces.  
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The impact of θBi on the Pt activity was also evaluated by examining 

changes in the current density with electrode coverage, as seen in figure 18. 

 

 

Figure 18: Relationship between current density and electrode coverage at different 

electrode potentials. Data extracted from the left image in figure 17. 

 

The data in figure 18 shows that current density has a near linear 

relationship with electrode coverage in the range 0 < θBi < 0.60, for all potentials 

analyzed. This linearity could be an indicator that Bi enhances the Pt activity by means 

of a third body effect55. This effect consists of a selective blockage of catalyst active 

sites by adatom deposition, which is advantageous when the unmodified sites would 

otherwise participate in parallel reactions leading to formation of poisoning products or 

intermediates. In the case of Pt, CO is a well-known poisoning intermediate, formed 

during the oxidation of several organic molecules70. The third body effect is observed 

during methanol oxidation on the Pt-Bi system in acidic media30, where poison 

formation (CO adsorption) decreases linearly with θBi, coming to a stop at θBi > 0.23. 

As was stated before, the electrode deactivation can be caused by 

poisoning intermediates, and also by the progressive loss of the adatom layer56,58,71. 
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Therefore, the GEOR was investigated in the presence of Bi3+ ions in the electrolyte, 

in order to have a constant supply of adatoms (figure 19). 

 

Figure 19: Selected positive-going scans for 10 cycles of the GEOR in alkaline media 

on a Ptpoly electrode, with varying concentrations of Bi3+ in the electrolyte. Base 

electrolyte composition is 0.1 M NaOH + 0.1 M GOH, and the scan rate was 10 mV.s-

1. 
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Results in figure 19 show an increase in catalytic activity with increasing 

bismuth concentration, until 10-5 M Bi2O3, after which there is both a decrease in jpeak 

and increase in Epeak. 

At low Bi concentrations (10-8 and 10-7 M), the voltammetric profile obtained 

is similar to what was recorded in absence of Bi (0 M in figure 19), as well as to the 

partial electrode coverage experiments shown in figure 11. At the 10-6 M concentration, 

however, a change in the voltammetric response is observed during continuous 

cycling. The initial cycles resemble the GEOR response for low Bi concentrations (0 to 

10-7 M), however the last cycles resemble the response shown for the systems with a 

higher Bi (10-5 and 10-4 M) concentration. 

Figure 13 enables the rationalization of the results in figure 19. At low Bi 

concentrations (10-8 and 10-7 M) the electrode is only partially covered by Bi. Thus, the 

results resemble those obtained with partially covered electrodes. The complex 

behavior at at 10-6 M is due to the fact that in the first cycles the electrode is only 

partially covered by Bi, hence the response is similar to the one shown for the low Bi 

concentration systems and for partial θBi values. During the final cycles, the Bi 

monolayer is complete, then, the response shown is similar to that of the higher Bi 

concentration systems. 

To understand the electrocatalytic activity of bulk Bi, which could be present 

in the experiments performed with 10-4 M of Bi ions, the GEOR was performed at a Bi 

electrode (Figure 20), both in absence and presence of 10-4 M Bi2O3 in solution.  

The results are similar to those obtained in absence of GOH, indicating that 

bulk Bi is inactive to the GEOR. Besides, the features observed in figure 20 are 

essentially equal to those shown in figure 14, confirming that in presence of 10-4 M Bi 

ions there is a continuous deposition of Bi atoms on Pt, which explains the reduced 

current density observed when the concentration of Bi ions is increased from 10-5 to 

10-4 M. 
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Figure 20: GEOR profile at a Bi electrode, in absence (black) and presence of Bi3+ 

ions (red, blue and green), where a few selected cycles are shown. Electrolyte 

composition was 0.1 M NaOH + 0.1 M GOH, with 10-4 M Bi2O3 in the red, blue and 

green curves. Sweep rate was 10 mV.s-1. 

 

The stability of the performance of these Pt-Bi systems was examined by 

evaluating the changes in Epeak and jpeak with cycle number. These plots are shown in 

figure 21. 
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Figure 21: Plots of jpeak (left) and Epeak (right) vs. cycle number for the GEOR on a Pt 

electrode with different Bi3+ concentrations in solution: 0 M (black), 10-8 M (red), 10-7 M 

(blue), 10-6 M (green), 10-5 M (purple) and 10-4 M (orange). Data extracted from the 

voltammograms shown in figure 19. 

 

The drop in jpeak with continuous cycling for the systems with Bi in solution 

in figure 19 is significantly smaller than in the experiments with partial electrode 

coverage, shown in figure 17. The system with 10-5 M Bi2O3 in the electrolyte showed 

both the highest jpeak (5-6 times bigger than for 0 M Bi2O3) and lowest Epeak values 

among all Bi concentrations examined, for all cycles. This system also showed more 

stability than the unmodified Ptpoly electrode, evidenced by a 25% drop in jpeak by the 

10th cycle, when compared to jpeak on the 1st cycle, while for the GEOR in absence of 

Bi showed a 60% drop in jpeak. Those results lead to the conclusion that 10-5 M Bi2O3 

was the optimum concentration of Bi in order to enhance the GEOR on a Ptpoly 

electrode in alkaline media.  

 

4.4.2.1. In-situ Fourier Transform Infrared Spectroscopy Analysis 

 

The in-situ FTIR measurements were done with a Ptpoly electrode, both in 

presence and absence of 10-5 M Bi2O3 in solution. The spectra recorded for the Pt and 

Pt-Bi electrodes using deuterated water (D2O) is shown in figure 22. 
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Figure 22: Potential-dependent FTIR spectra for the clean (left) and Bi-modified (right) 

Pt electrode. Electrolyte composition was 0.1 M NaOH + 0.1 M GOH, with 10-5 M Bi2O3 

added for the Bi modification. Scan rate was 2 mV.s-1. 

 

The GEOR on Pt/C nanoparticles in similar conditions generated six main 

absorption bands in the 1100-1600 cm-1 range, according to literature reports72. We 

only observed two bands in this region, which we attribute mainly to the difference in 

catalyst of choice, where Pt/C nanoparticles have a significantly higher surface area 

than a polycrystalline Pt disk, allowing better peak resolution  

The spectra recorded for the clean Pt electrode (figure 22, left) shows that 

CO is adsorbed on the electrode surface since the beginning of the experiment, as 

seen by the bands at 1830 and 2040 cm-1, assigned to multiply and linear-bonded CO 

on Pt, respectively73. These bands are present since the beginning due to the electrode 

preconditioning, i.e. 9 cycles at 10 mV.s-1 prior to recording the spectra at 2 mV.s-1. 

The band at 1720 cm-1 corresponds to the stretching of a carbonyl (C=O) group48,49, 

and it is only observed after 0.60 V. From the spectra recorded for various oxidation 
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products (cf. fig. S1), oxalate, tartronate, glyoxylate and glycolate all produce a band 

at this wavelength. The lack of a feature at 1630 cm-1 rules out tartronate and oxalate, 

making glyoxylate and glycolate the most suitable candidates for the 1720 cm-1 band. 

The band at 1600 cm-1 was assigned to the stretching of the COO− group, 

indicating formation of glycerate ions11,72,74, according to the following reaction: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 5𝑂𝐻− → 𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝑂𝑂− + 4𝐻2𝑂 + 4𝑒−   (12) 

Substitution of H2O for D2O suppressed the H-O-H stretching mode of water  

at 1600 cm-1 73,74, allowing a better resolution of this feature (the spectra recorded with 

H2O is shown in fig. S2). In addition to glycerate, both formate and mesoxalate show 

a strong band at 1600 cm-1. However, only small amounts of formate are generated on 

Pt in alkaline media in our potential window, while mesoxalate is only a proposed 

reaction product, as it has not been previously detected21. Thus, glycerate is the most 

suitable candidate for this feature. Other products with a band at 1600 cm-1 are di-

hydroxyacetone, glyceraldehyde, glyoxylate and glycolate, however all of them have 

only a small feature in this region, significantly smaller than that of glycerate. In 

particular, glyceraldehyde and di-hydroxyacetone can only be properly identified below 

1300 cm-1, which is difficult to analyze due to superimposition of bands from several 

compounds. 

The large band centered at 1400 cm-1 is first detected around 0.50 V, and 

indicates the presence of carbonate (CO3
2−) ions74, originating from GOH complete 

oxidation: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 20𝑂𝐻− → 3𝐶𝑂3
2− + 14𝐻2𝑂 + 14𝑒−          (1) 

In the GOH complete oxidation, seen in reaction (1), three CO2 molecules 

are formed, however in alkaline media they combine with the hydroxyl ions into 

carbonate ions, and are detected as such during in-situ FTIR measurements21.  

Comparing the spectra registered for the Pt-Bi electrode (fig. 22 right) with 

that of clean Pt (fig. 22 left), several different features are observed. In the presence 

of Bi, no bands associated with CO adsorption are observed, confirming the hypothesis 

that Bi enhanced the activity of Pt by means of a third-body effect, blocking the CO 

adsorption on the Pt surface, as was thought from the data in figure 1713. The band at 

1720 cm-1 is now more prominent than in the unmodified Pt electrode, and is first 
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detected at the same potential. The COO− stretching band at 1600 cm-1 is now more 

intense, while the CO3
2− band at 1400 cm-1 is now significantly smaller. Two bands at 

1340 and 1310 cm-1 are detected at 0.60 V, previously seen as shoulders of the 

carbonate band in the clean Pt electrode. Identification of these bands was note 

possible due to the superimposition of several compounds in this region (cf. fig. S1). 

From the COO− stretching at 1600 cm-1, glycerate ions11 were identified as 

the main oxidation products for the GEOR on the Pt-Bi catalyst. To confirm this 

hypothesis, HPLC measurements were performed in order to identify and quantify the 

oxidation products of the GEOR on the Pt-Bi catalyst. 

 

4.4.2.2. High-Performance Liquid Chromatography Analysis 

 

The HPLC measurements were performed using the Ptdisk electrode, using 

a clean and Bi-modified electrode. The chromatographs for those systems are shown 

in figure 23. 
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Figure 23: Chromatographs obtained after HPLC analysis of the samples collected 

during the electrochemical sweep in absence (top) and presence (bottom) of Bi in the 

electrolyte, highlighting the peaks where products were identified. Retention times 

calculated with respect to the mobile phase (H2SO4). 

 

The peak at 11.6 min was labeled as a characteristic peak of the electrolyte, 

since it was present since the beginning of the experiment, in a potential range where 

Pt does not oxidize GOH21. The peak at 14 min was identified as being the glycerate 

ion (fig. S3), detected on both chromatograms from 0.55 V upwards. In the Bi-modified 

electrode, this peak is significantly more intense. These observations agree with the 
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previous assignment of the 1600 cm-1 band from the FTIR spectra (fig. 22) to the 

glycerate ion. The peaks at 18.9 and 20.5 min were observed only after the Bi 

modification, and they were identified as glycolate and formate ions (cf. fig. S3). This 

indicates that the 1720 cm-1 band (fig. 22) is due to glycolate, as glyoxylate was not 

detected. Even though this feature was observed on the clean Pt electrode, we are 

unable to ascertain it because we were unable to detect glycolate from the HPLC 

measurements, likely because its concentration was below our resolution limit (50 µM).  

These observations are in agreement with the results published by Kwon 

and co-workers21, where they identified glyceric acid production starting at 0.6 V vs 

RHE for a Pt electrode in alkaline media, and having its maximum concentration at 

0.85 V, the Epeak of the GEOR on Pt. Only small amounts of glycolic and formic acid 

were detected, since their production starts at high potentials, while the Pt surface 

starts to oxidize.   

 

4.4.2.3. Electrochemical, chromatographic and spectroscopic results 

 

Figure 24 shows the positive potential scan for Pt and Pt-Bi (A and B) 

together with the integration of the FTIR bands (C and D) and the HPLC bands (E and 

F) at different electrochemical potentials. 
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Figure 24: Results obtained for the GEOR on the Pt (left) and Pt-Bi (right) catalysts; 

(top row) positive sweep of the GEOR during on-line sample collection using a clean 

(left) and Bi-modified (right) Pt electrode. The electrolyte composition was 0.1 M NaOH 

+ 0.1 M GOH, with 10-5 M Bi2O3 for the Bi modification, with a sweep rate of 1 mV.s-1; 

(middle row) Concentration evolution of the oxidation products with applied potential, 

using data extracted from fig. 22; (bottom row) Band areas of CO3
2−, C=O, linearly (COL) 

and bridge-bonded (COB) CO on Pt, as a function of electrode potential, using data 

from figure 22.  
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Results in fig. 24 indicate that the measured current during the 

electrochemical experiments for the GEOR on a clean Pt electrode is mostly due to 

glycerate and carbonate ions, corresponding to the oxidation a primary hydroxyl group 

and the GOH complete oxidation, respectively. As previously mentioned, CO is 

adsorbed on Pt both linearly (COL) and bridge-bonded (COB) since the beginning of the 

FTIR experiments. The amount of COL reaches a maximum between 0.60 and 0.65 V, 

after which it gradually decreases, while the amount of COB remains fairly constant 

after the COL peak. This observation is significantly different from the behavior 

observed for the GEOR in acidic media, where no band corresponding to CO 

adsorption on Pt is observed above 0.6 V, because its oxidation to CO2 is faster than 

its accumulation on the electrode surface46. In the Pt-Bi catalyst, the current is mostly 

due to production of glycerate and carbonate (fig. 24), with a small contribution from 

glycolate and formate ions at high potentials (0.75 – 0.85 V). The current density 

increased considerably after the Bi modification, as well as the amount of glycerate 

generated. Besides this increase in glycerate production, the reaction pathways that 

lead to CO formation on Pt were completely blocked by Bi modification, seen by the 

absence of the COL and COB bands on the FTIR spectra.  

The [CO3
2− ]/[Glycerate] ratio is much higher in the clean Pt electrode, 

indicating that the Bi adatoms hinders the C-C bond breaking. At higher potentials (0.75 

– 0.85 V), glycolate and formate were detected by HPLC, thus this hindrance is also 

influenced by the electrode potential. Thus, the combination of our FTIR and HPLC 

results indicate that the currents observed in fig. 24 are primarily due to the complete 

oxidation of GOH to CO3
2− and glycerate, in the absence of the adatom, and to 

glycerate, glycolate and formate in the Pt-Bi catalyst.  

Based on our observations, and on the scheme proposed by Garcia and 

col.53,75, we propose the scheme below for the GEOR in alkaline media on the Pt and 

Pt-Bi catalysts. 
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Scheme 5: Proposed reaction scheme for the GEOR in alkaline media in both clean 

(black) and Bi-modified (green) Pt electrodes. 

 

In our proposal, the main active species is the glycerolate anion, originated 

from GOH deprotonation in alkaline media, according to reaction (7). This ion may bind 

through one or more carbons, in one or more steps. Due to a steric effect (availability 

of adjacent Pt sites) the glycerolate only forms multiple bonds on a clean Pt electrode 

(C1-C2-C3, C1-C2 or C1-C3), while on Pt-Bi only single-bonded intermediates are 

allowed (adsorbing on either the C1 or C2 carbons). This happens because our 
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electrode is completely covered by Bi adatoms, therefore there is a low probability of 

adjacent vacant Pt sites for the formation of multiple-bonded intermediates.  

Garcia and col.75 have shown that the C1-C2 intermediate on Pt(111) leads 

to oxidation of the secondary carbon, generating either di-hydroxyacetone or 

glyceraldehyde, while the C1-C3 intermediate is inactive on both Pt(111) and Pt(100). 

Since we could not detect di-hydroxyacetone from the HPLC experiments, and its 

identification from FTIR spectra is inconclusive due to band superimposition (cf. fig. 

S3), the C1-C2 intermediate was ruled out in our proposal, leaving only the triple-

bonded intermediate as the viable reaction pathway. The triple-bonded intermediate 

suffers C-C bond breaking, generating adsorbed CO (probably in multiple reaction 

steps), which is further oxidized into carbonate. 

An intermediate with a single bond is formed on both catalysts. Since we 

were unable to detect di-hydroxyacetone, the intermediate bonded through the 

secondary hydroxyl group was ruled out from this proposal, leaving only the 

intermediate formed from the primary carbon. The glycerolate adsorbs on the electrode 

surface through the −CH2O− group, as it is more reactive than −CH2OH. The fact that 

glycerate is produced at a much higher rate in Pt-Bi than in Pt indicates that this 

intermediate reacts faster in the presence of Bi or that higher amounts of the 

intermediate are being formed on the catalyst surface, or both at the same time. 

Lastly, at high potentials (E > 0.75 V), glycolate and formate may be 

generated from dissociation of the glycerate ion, which would adsorb through its 

unoxidized carbons on the catalyst surface. This intermediate would then suffer C-C 

bond breaking, and the carbons would be oxidized, likely in multiple reaction steps. As 

changes in the Bi adlayer happen during potential cycling (fig. 13), a rearrangement of 

the Bi adlayer could be occurring at high potentials, allowing adsorption of the glycerate 

ion and its further oxidation to glycolate and formate. Carbonate may be generated on 

Pt-Bi through further oxidation of the formate and glycolate ion, as the CO3
2− band is 

detected at the same time as the 1720 cm-1 band, associated to glycolate, as well as 

the potential range in which glycolate and formate are detected from HPLC 

measurements.  
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5. Conclusions 

 

We have investigated the impact of adatom modification in the activity of Pt 

and Au electrodes towards the GEOR. The Aupoly electrode is deactivated by Pb, Bi or 

Cu, probably due to the inhibition of the Au(OH) species on the electrode surface. 

The Pt electrode also showed deactivation after Cu deposition. On the other 

hand, the modification with Bi significantly enhance the electrode activity. 

The GEOR showed a fivefold increase in current density when 10-5 M Bi2O3 

was added to the electrolye solution. By using FTIR and HPLC, we demonstrated that 

the presence of Bi inhibited the formation of CO (a poisoning intermediate) and sped 

up the reaction pathway towards the production of glyceric acid. 

Based on our results and on previous papers, we propose two reaction 

intermediates for the reaction. In the first, the glycerolate adsorbs on the Pt surface 

through a double bond on the −CH2O− group, leading to glyceric acid formation. In the 

second intermediate, the glyceric acid adsorbs on the electrode surface through the 

other two carbons, leading to C – C bond breaking, generating glycolic acid and formic 

acid. 

 

 

 

 

 

 

 

 

 

 



61 
 

 

6. Perspectives 

 

In the next step of this work, we will publish our results for the GEOR in 

alkaline media for the Pt-Bi catalyst.  

During the course of this work, we also investigated the Pt-Pb system, 

and obtained similar results to the PtBi catalyst, while observing a further reduction 

to the oxidation onset potential. Due to time constraints, we were not able to finish 

the data treatment and discussion for this catalyst, therefore it was not included into 

the final version. This system will also be evaluated by a combination of 

electrochemical, spectroscopic and chromatographic techniques. 

We are also investigating the PtBi catalyst using platinum single crystals 

of the main crystallographic orientations, (111), (110) and (100), both organized 

and disturbed surfaces50. We have concluded the electrochemical measurements 

for those systems, and the next step is to use a combination of HPLC and FTIR to 

understand the changes in activity and reaction pathways.  

Lastly, we will perform in-situ X-ray absorption experiments (in-situ 

XANES and EXAFS) on both Pt-Bi and Pt-Pb catalyst, using spherical Pt 

nanoparticles to simulate a polycrystalline electrode. From the literature, we know 

that Bi lowers the work function of Pt(111)60 however this was performed using low-

energy electron diffraction (LEED) ex-situ, very different from our experimental 

conditions. With these experiments, we aim to understand the electronic effect of 

Pb and Bi on the activity of the Pt catalyst.  
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8. Appendix 

 

8.1.  Determination of theoretical cell voltages 

 

Table 2: Thermodynamic data used. Extracted from ref [37]. 

Chemical compound ∆𝐻°𝑓(𝑘 𝐽. 𝑚𝑜𝑙−1) ∆𝐺°𝑓(𝑘 𝐽. 𝑚𝑜𝑙−1) 𝑆° (𝐽/𝑚𝑜𝑙. 𝐾) 

𝐻2(𝑔) 0 0 130.684 

𝐻2𝑂𝑙 -285.83 -237.129 69.91 

𝐶𝑂3
2−

(𝑎𝑞)
 -677.14 -527.81 56.9 

𝑂𝐻𝑎𝑞
−  -229.994 -157.224 -10.75 

𝐶(𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) 0 0 5.74 

𝑂2(𝑔) 0 0 205.138 

𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) -669.6 - 206.3 

 

 

Using the data in Table 2,  ∆𝐺°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) is determined using the equations 

below: 

3𝐶(𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) +
3

2
𝑂2(𝑔) +

4

2
𝐻2(𝑔) → 𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙)        (13) 

∆𝑆°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) = 𝑆°𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) − [3𝑆°𝐶𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
+

3

2
𝑆°𝑂2(𝑔)

+
4

2
𝑆°𝐻2(𝑔)

] 

∆𝑆°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) = −379.995 𝐽/𝑚𝑜𝑙. 𝐾 

∆𝐺°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) = ∆𝐻°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙)  − 𝑇 ∙ ∆𝑆°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) 

∆𝐺°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙) = −556.361 k J/mol 

From reaction (3), EEC,GOH
°  is determined as follows: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 6𝑂𝐻− → 3𝐶𝑂3
2− + 7𝐻2          (3) 

∆𝐺°𝑟 = 7 ∆𝐺°𝑓,𝐻2(𝑔)
+ 3 ∆𝐺°𝐶𝑂3

2−
(𝑎𝑞)

− [6 ∆𝐺°𝑓,𝑂2(𝑔)
+ ∆𝐺°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙)] 
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∆𝐺°𝑟 = −83.605 𝑘 𝐽/𝑚𝑜𝑙 

EEC,GOH
° = −

∆𝐺°𝑟

𝑛𝐹
= +0.062 𝑉 

For a water electrolyzer, the reactions involved are  

2𝑂𝐻(𝑎𝑞)
− →

1

2
𝑂2(𝑔) + 𝐻2𝑂(𝑙) + 2𝑒−          (14) 

2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻−             (2) 

𝐻2𝑂(𝑙) → 𝐻2(𝑔) +
1

2
𝑂2(𝑔)           (15) 

where reaction (15) represents the overall reaction, and EEC,H2𝑂
°  is determined as 

follows: 

∆𝐺°𝑟 =
1

2
 ∆𝐺°𝑓,𝑂2(𝑔)

+  ∆𝐺°𝑓,𝐻2(𝑔)
− ∆𝐺°𝑓,𝐻2𝑂(𝑙)

 

∆𝐺°𝑟 = 237.129 𝑘 𝐽/𝑚𝑜𝑙 

EEC,H2𝑂
° = −

∆𝐺°𝑟

𝑛𝐹
= −1.229 𝑉 

Similarly, for a GOH-based fuel cell: 

𝐶𝐻2𝑂𝐻 − 𝐶𝐻𝑂𝐻 − 𝐶𝐻2𝑂𝐻 + 7
2⁄ 𝑂2 + 6 𝑂𝐻− → 3𝐶𝑂3

2− + 7𝐻2𝑂       (5) 

∆𝐺°𝑟 = 7 ∆𝐺°𝑓,𝐻2𝑂(𝑙)
+ 3 ∆𝐺°𝐶𝑂3

2−
(𝑎𝑞)

− [6 ∆𝐺°𝑓,𝑂𝐻(𝑎𝑞)
− +

7

2
∆𝑂2(𝑔) + ∆𝐺°𝑓,𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙(𝑙)] 

∆𝐺°𝑟 = −1743.508 𝑘 𝐽/𝑚𝑜𝑙 

EFC,GOH
° = −

∆𝐺°𝑟

𝑛𝐹
= +1.291 𝑉 

For a H2/O2 fuel cell: 

𝐻2(𝑔) + 2𝑂𝐻(𝑎𝑞)
− → 2𝐻2𝑂(𝑙) + 2𝑒−          (16) 

1
2⁄ 𝑂2 + 𝐻2𝑂 + 2𝑒− → 2 𝑂𝐻−            (4) 

𝐻2(𝑔) →
1

2
𝑂2(𝑔) → 𝐻2𝑂(𝑙)           (17) 

∆𝐺°𝑟 = ∆𝐺°𝑓,𝐻2𝑂(𝑙)
− [

1

2
 ∆𝐺°𝑓,𝑂2(𝑔)

+  ∆𝐺°𝑓,𝐻2(𝑔)
] 
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∆𝐺°𝑟 = −237.129 𝑘 𝐽/𝑚𝑜𝑙 

EFC,H2/𝑂2

° = −
∆𝐺°𝑟

𝑛𝐹
= +1.229 𝑉 

 

8.2. Supporting information 

 

 

Figure S1: Standard ATR spectra for the identification of the different oxidation 

products. Each spectrum was recorded from a solution of 0.1 M NaOH + 1 mM of the 

analyte. 
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Figure S2: Potential-dependent FTIR spectra for the clean (left) and Bi-modified (right) 

Pt electrode using H2O. Electrolyte composition was 0.1 M NaOH + 0.1 M GOH, with 

10-5 M Bi2O3 added for the Bi modification. Scan rate was 2 mV.s-1. 
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Figure S3: Chromatograms obtained for the identification of several GEOR oxidation 

products. Each sample consists of the base electrolyte (0.1 M NaOH + 0.1 M GOH + 

0.11 H2SO4) with 10-3 M of the chosen analyte. 
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Figure S4: Calibration curves used to quantify formate, glycolate and glycerate ions, 

from the HPLC measurements. 

 


