
Universidade de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Soares Padilha

Two-tiered facial verification for mobile devices

Verificação facial em duas etapas para dispositivos
móveis

CAMPINAS
2017

Rafael Soares Padilha

Two-tiered facial verification for mobile devices

Verificação facial em duas etapas para dispositivos móveis

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Jacques Wainer
Co-supervisor/Coorientadora: Dra. Fernanda Alcântara Andaló

Este exemplar corresponde à versão final da
Dissertação defendida por Rafael Soares
Padilha e orientada pelo Prof. Dr. Jacques
Wainer.

CAMPINAS
2017

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Padilha, Rafael Soares, 1991-
 P134t PadTwo-tiered facial verification for mobile devices / Rafael Soares Padilha. –

Campinas, SP : [s.n.], 2017.

 PadOrientador: Jacques Wainer.
 PadCoorientador: Fernanda Alcântara Andaló.
 PadDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Pad1. Aprendizado de máquina. 2. Redes neurais (Computação). 3.

Reconhecimento facial (Computação). 4. Biometria. 5. Dispositivos móveis. I.
Wainer, Jacques,1958-. II. Andaló, Fernanda Alcântara,1981-. III. Universidade
Estadual de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Verificação facial em duas etapas para dispositivos móveis
Palavras-chave em inglês:
Machine learning
Neural networks (Computer science)
Human face recognition (Computer science)
Biometry
Mobile devices
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Jacques Wainer [Orientador]
Sandra Eliza Fontes de Avila
Aparecido Nilceu Marana
Data de defesa: 01-09-2017
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Soares Padilha

Two-tiered facial verification for mobile devices

Verificação facial em duas etapas para dispositivos móveis

Banca Examinadora:

• Prof. Dr. Jacques Wainer (Supervisor)
Instituto de Computação - UNICAMP

• Prof. Dra. Sandra Eliza Fontes de Avila
Instituto de Computação - UNICAMP

• Prof. Dr. Aparecido Nilceu Marana
Faculdade de Ciências - UNESP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 01 de setembro de 2017

Acknowledgements

No research can be done without the support, directly or indirectly, from many people.
These individuals either pave the road before the researcher goes through it — in the
form of previous scientific works and technologies — or walk alongside with him or her —
as mentors, fellow researchers, family and friends. Both are equally important, however
here we pay our acknowledgements to the latter group, those in direct contact with us
throughout this work.

First and foremost, I would like to thank my parents, Reinaldo and Mara, for every-
thing they have done for me. They have taught me by example what is to be a decent
human being, putting effort and love into everything I do! I am very lucky to have such
amazing parents backing me up! We joke at home that a piece of my degree belongs to
them and, obviously, that could not be more true.

I would also like to thank my supervisors (Jacques Wainer, Fernanda Andaló, Anderson
Rocha and Ricardo Torres); their insights, advices, feedback and support were essential
not only to the success of this research but also to lead me in my initial steps through
scientific research! No less important are the other members of my research group. Waldir,
William and Gabriel, I am grateful for all the help and time we have spent together both
inside and outside of the laboratory. To all members of BioLive, thank you! I am glad
there were others with me walking this path through the ups and downs of it!

I would like to express my appreciation to all my other friends; the ones that live with
me, those I can see frequently and those that I can not. They all had their share of me
through all the phases of this work.

Finally, I would like to thank the support from Motorola — not only financially but
also with the huge help from Benicio Goulart and Thiago Resek — and from UNICAMP
(it has been more than 8 years with you... and counting).

Abstract

Mobile devices, such as smartphones and tablets, had their popularity and affordabil-
ity greatly increased in recent years. As a consequence of their ubiquity, these devices
now carry all sorts of personal data (e.g., photos, text conversations, GPS coordinates,
banking information) that should be accessed only by the device owner. Even though
knowledge-based procedures, such as entering a PIN or drawing a pattern, are still the
main methods to secure the owner’s identity, recently biometric traits have been employed
for a more secure and effortless authentication. Among them, face recognition has gained
more attention in past years due to recent improvements in image-capturing devices and
the availability of images in social networks. In addition to that, the increase in compu-
tational resources, with multiple CPUs and GPUs, enabled the design of more complex
and robust models, such as deep neural networks. Although the capabilities of mobile
devices have been growing in past years, most recent face recognition techniques are still
not designed considering the mobile environment’s characteristics, such as limited pro-
cessing power, unstable connectivity and battery consumption. In this work, we propose
a facial verification method optimized to the mobile environment. It consists of a two-
tiered procedure that combines hand-crafted features (histogram of oriented gradients and
local region principal component analysis) and a convolutional neural network to verify
if the person depicted in a picture corresponds to the device owner. We also propose
Hybrid-Fire Convolutional Neural Network, an architecture tweaked for mobile devices
that process encoded information of a pair of face images. Finally, we expose a technique
to adapt our method’s acceptance thresholds to images with different characteristics than
those present during training, by using the device owner’s enrolled gallery. The proposed
solution performs a par to the state-of-the-art face recognition methods, while having a
model 16 times smaller and 4 times faster when processing an image in recent smartphone
models. Finally, we have collected a new dataset of selfie pictures comprising 2873 im-
ages from 56 identities with varied capture conditions, that hopefully will support future
researches in this scenario.

Resumo

Dispositivos móveis, como smartphones e tablets, se tornaram mais populares e acessíveis
nos últimos anos. Como consequência de sua ubiquidade, esses aparelhos guardam di-
versos tipos de informações pessoais (fotos, conversas de texto, coordenadas GPS, dados
bancários, entre outros) que só devem ser acessadas pelo dono do dispositivo. Apesar
de métodos baseados em conhecimento, como senhas numéricas ou padrões, ainda esta-
rem entre as principais formas de assegurar a identidade do usuário, traços biométricos
têm sido utilizados para garantir uma autenticação mais segura e prática. Entre eles,
reconhecimento facial ganhou atenção nos últimos anos devido aos recentes avanços nos
dispositivos de captura de imagens e na crescente disponibilidade de fotos em redes soci-
ais. Aliado a isso, o aumento de recursos computacionais, com múltiplas CPUs e GPUs,
permitiu o desenvolvimento de modelos mais complexos e robustos, como redes neurais
profundas. Porém, apesar da evolução das capacidades de dispositivos móveis, os métodos
de reconhecimento facial atuais ainda não são desenvolvidos considerando as característi-
cas do ambiente móvel, como processamento limitado, conectividade instável e consumo
de bateria. Neste trabalho, apresenta-se um método de verificação facial otimizado para o
ambiente móvel. Ele consiste em um procedimento em dois níveis que combina engenharia
de características (histograma de gradientes orientados e análise de componentes princi-
pais por regiões) e uma rede neural convolucional para verificar se o indivíduo presente
em uma imagem corresponde ao dono do dispositivo. Também propõe-se a Hybrid-Fire
Convolutional Neural Network, uma arquitetura ajustada para dispositivos móveis que
processa informação de pares de imagens. Finalmente, é apresentada uma técnica para
adaptar o limiar de aceitação do método proposto para imagens com características di-
ferentes daquelas presentes no treinamento, utilizando a galeria de imagens do dono do
dispositivo. A solução proposta se compara em acurácia aos métodos de reconhecimento
facial do estado da arte, além de possuir um modelo 16 vezes menor e 4 vezes mais rá-
pido ao processar uma imagem em smartphones modernos. Por último, foi organizada
uma base de dados composta por 2873 selfies de 56 identidades capturadas em condições
diversas, a qual esperamos que ajude pesquisas futuras realizadas neste cenário.

List of Figures

1.1 Examples of selfies . 14

2.1 Enrollment and authentication pipeline on mobile 17
2.2 Face alignment . 18
2.3 Histogram of Oriented Gradients descriptor 19
2.4 Local Region Principal Component Analysis descriptor 19
2.5 Deep visual hierarchical learning . 21
2.6 AlexNet architecture . 22
2.7 VGGNet architecture . 23
2.8 Inception module . 24
2.9 Shortcut connections . 24
2.10 Fire module . 26
2.11 SqueezeNet architecture . 26

3.1 Examples from UVAD, MOT and OULU datasets 29
3.2 Examples from Recod Selfie Dataset . 30

4.1 2-tiered solution outline . 34
4.2 1st tier training and testing pipeline . 35
4.3 2nd tier multiview authentication . 37
4.4 Hybrid image . 39
4.5 Layer organization inside a Fire module . 42
4.6 Layer organization inside a Fire module . 42
4.7 User-specific threshold learning outline . 47

5.1 User-specific recognition (balanced training) 53
5.2 User-specific recognition (unbalanced training) 55
5.3 Threshold exploration for RCD-Test . 57

List of Tables

3.1 Datasets summary . 31
3.2 Train, validation and test sets . 31

4.1 VGG-Face Architecture . 40
4.2 Fire module hyperparameters . 41
4.3 HFCNN architecture . 43
4.4 HFCNN parameters and operations . 44

5.1 Multiview exploration for HOG, LRPCA and VGGFace 49
5.2 Hybrid-image exploration. 50
5.3 Fusion of hand-crafted and data-driven methods 51
5.4 Time analysis for 2nd tier methods . 51
5.5 Results for the complete 2-tiered method 54
5.6 User-specific threshold learning . 58
5.7 Comparison with existing methods . 59
5.8 Time and memory analysis for CNNs . 59

A.1 Higher and lower thresholds exploration for RCD-Test with HFCNN 112×112. 73
A.2 Higher and lower thresholds exploration for OULU-Test with HFCNN 112×112. 74

Contents

1 Introduction 12
1.1 Research questions . 14
1.2 Contributions . 15
1.3 Thesis Organization . 15

2 Background 16
2.1 Authentication pipeline . 16
2.2 Hand-crafted features . 18

2.2.1 Histogram of Oriented Gradients 18
2.2.2 Local Region Principal Component Analysis 19

2.3 Deep visual representations . 20
2.4 Mobile efforts . 23

3 Datasets and Evaluation Protocol 28
3.1 RECOD Selfie Dataset . 28
3.2 Motorola Selfie Dataset . 28
3.3 Unicamp Video-Based Attack Database . 29
3.4 Oulu-NPU Database . 29
3.5 Datasets summary . 31
3.6 Evaluation protocol and metrics . 31

4 Methods 33
4.1 1st Tier: user-specific . 34
4.2 2nd Tier: same-identity-or-not . 35

4.2.1 Multiview hand-crafted classifiers 36
4.2.2 Hybrid image and data-driven classifier 38
4.2.3 2nd tier fusion and decision . 39

4.3 Hybrid-fire convolutional neural network 39
4.4 User-specific threshold learning . 45

5 Results 48
5.1 Multiview and hybrid images . 48
5.2 Fusion of hand-crafted and data-driven features for the 2nd Tier 51
5.3 User-specific verification for the 1st tier . 52
5.4 2-Tiered method . 54
5.5 User-specific threshold learning for the 2nd tier 56
5.6 Comparison with existing methods . 58
5.7 Answering research questions . 60

6 Conclusion and Future Work 62

Bibliography 64

A Higher and Lower Thresholds Exploration 72

Chapter 1

Introduction

The need to secure one’s identity is present in a variety of everyday activities [42, 91],
such as allowing or denying access to a requested service, a place, or sensitive information.
Examples of these include ensuring the identity of a voter during an election, access-control
to work environments and bank accounts. Traditional methods, including the ones based
on knowledge (e.g., keywords, secret question) or based on tokens (e.g., smart cards),
might be ineffective as they can be shared, lost, stolen or manipulated with ease.

In this sense, several systems use biometric traits to secure the identity of an indi-
vidual [42]. These traits can be any human biological and/or behavioral characteristic
capable of uniquely identifying a person [43, 59, 90]. Examples of these include face
traces, voice, fingerprints, ear shape, hand geometry, iris, gait, keystroke, and infrared
veins thermogram of hand or face [21].

Biometric systems work in one of two different tasks: verification and identifica-
tion [42]. Verification, or authentication, is to verify a person’s claimed identity, i.e.,
the authentication of a person is performed by reading and comparing the input biomet-
ric identifier captured by an acquisition sensor (query) with the biometric identifier of
the same person previously stored in a database (template). The comparison between
the query and the template is performed by a matching algorithm, which produces a
similarity score used to decide whether or not the access should be granted to the user.
Identification is concerned with identifying a person by comparing the input biometric
identifier with a database of previously known identifiers and their respective owners.

Considering the importance of the information or service in question, a practical bio-
metric system is designed to be fast, accurate, easy to use, acceptable by the intended
population, and robust to attacks and fraudulent methods [41, 43]. They also have to
deal with a variety of problems [21], such as:

• Noisy captured data: either resulted by an external factor (voice altered by cold or
eyes covered by sunglasses, for example) or a defective sensor;

• Intra-class variations: variations caused by an interaction with a sensor or due to
external conditions for the same user;

• Inter-class similarities: similarities in the features used to represent a biometric trait
between a large range of different users;

12

CHAPTER 1. INTRODUCTION 13

• Non-universality: it may be difficult to extract a particular biometric trait from a
user. For example, people with irregular ridges using a fingerprint-based system.

Among the different biometric modalities, face recognition is a very important one [51].
During the past years, it has gained more attention with improvements regarding quality,
affordability and ubiquity of image-capturing devices (surveillance cameras, mobile phone
cameras), the many possible commercial uses, not only in security (e.g., to authenticate the
smartphone owner in payments [25, 61, 62, 65]), but in other areas such as entertainment
(e.g., video games and human-computer interaction) [96] and the huge amount of images
available in social networks. Boosted by this large volume of images, powerful statistical
models that otherwise struggled with the lack of data have not only become viable, but
also were able to improve the robustness of visual systems to noise and variation, such
as illumination, pose and occlusion [82]. In this work, we build upon one of such models:
deep neural network, which has already been applied in the face recognition pipeline for
tasks like face detection [63], alignment [78] and verification [16, 38].

With mobile and wearable devices becoming cheaper and more popular [6, 60], face
recognition systems are being integrated into them in a wide range of tasks. A growing
number of applications uses face recognition to analyze and interpret the user’s actions,
intentions and/or behaviors, acting according to some person’s preferences or state of
mind [67]. For example, through facial expressions, it is possible to identify if the user is
confused, happy or impatient and take that into account when presenting information on
the screen.

Although the capabilities of mobile devices have been growing in past years, it is
necessary to bear in mind their limitations when designing applications for them [14].
They have limited processing power that may not be sufficient to run many complex
vision and pattern recognition algorithms, as well as a small memory space that may not
be suitable to store several face features of high dimensionality. Despite all these resource
limitations, we still desire to have a fast and accurate face recognition system, that does
not consume too much energy, since these devices run in low-powered batteries [14].

Nonetheless, research and design aimed at the mobile environment are not only about
limitations and drawbacks; it also has some unique characteristics that can be explored
when implementing such a system. For example, unlike some technologies, mobile devices
are usually single-user which means that, even though usage behavior depends on the
owner profile [24], in most cases we can approach face recognition as a verification task,
rather than identification. We could also leverage from this by collecting new face pictures
from its user regularly, improving the system’s ability to recognize the device owner.

In this work, we design a set of techniques for verification on mobile devices that uses
selfie images to authenticate, i.e., self-portrait pictures usually taken with a smartphone
camera that have become very popular in past years. Fig. 1.1 shows examples of selfies
and possible variations in illumination, pose and occlusion present in them. Alongside
with a deep learning approach, we use traditional techniques as complementary tools, and
also as a way to extract specific information of the device owner.

CHAPTER 1. INTRODUCTION 14

Figure 1.1: Examples of selfies reproduced from Flickr with different acquisition condi-
tions regarding illumination, partial occlusion, head pose and alterations due to physical
changes, e.g., new hairstyle or make-up.

1.1 Research questions

The main research questions that guide us throughout this work are:

I. Recently, Deep Learning has become the state-of-art for face recognition, surpass-
ing traditional feature engineered methods. However complex deep networks are
computationally expensive, while the other tends to be fast and memory efficient.

(i) Considering the mobile environment’s resource limitations and the computa-
tional cost of running a deep network in it, is deep learning a necessary ap-
proach for this kind of application?

(ii) Is it possible to design a deep learning solution for the face verification problem
bearing in mind the environment’s characteristics?

(iii) Would a fusion of deep and hand-crafted approaches lead to better accuracy
than the methods separately?

II. The more face images from the device owner we have in the gallery, the more
information we will have to authenticate or reject a new picture.

(i) How many images should the gallery have?

(ii) In what resolution should these images be?

III. Most recent face recognition solutions address the identification scenario, usually
with multi-class deep networks. Is it possible to adapt multi-class networks for the
binary verification scenario, without a significant increase in memory and processing
time?

CHAPTER 1. INTRODUCTION 15

IV. Since mobile devices are usually single-user, would user-specific information improve
our solution?

(i) If so, how should we incorporate it to our method?

1.2 Contributions

This master’s thesis introduces a number of contributions to different aspects of facial
recognition and deep learning targeted to the mobile environment:

• We propose a facial authentication method that combines hand-crafted and deep
learning features. The process consists of a two-tier solution based on a set of user-
specific classifiers trained locally in the mobile device and on a group of pre-trained
classifiers to determine if two face pictures belong to the same person or not.

• We present a mobile-tweaked Convolutional Neural Network (CNN) architecture,
adapted from VGG network [64], resulting in a model up to 16 times smaller and
4 times faster than VGG. Besides the architectural details, we also discuss the
decisions taken during its design to aid reproducibility.

• As a way to better adapt our method to images with different characteristics that
those present during training, we propose a technique to automatically learn the
acceptance threshold of a classifier of our solution based on the face images provided
by the user.

• A public dataset composed of selfie pictures with different acquisition conditions
regarding illumination and head pose. The dataset comprises 56 identities and 2873
images, and is one of the first in literature to focus on selfies for authentication.

1.3 Thesis Organization

The face recognition problem has been extensively addressed in different perspectives and
approaches and is one of the most active topics of interest in computer vision [12]. How-
ever only recently there has been an effort to propose techniques that take into account the
mobile environment’s characteristics. Therefore, in order to better contextualize this the-
sis, in Chapter 2 we present a summary about the methods and techniques that we based
this work on, while also discussing previous researches, pointing out their characteristics
and relevance to the proposed system.

We describe in Chapter 3 the dataset proposed for this research, comparing them to
others available in the literature, and also how we evaluated our results. In Chapter 4, we
go in depth with each key aspect of the proposed solution. We discuss in Chapter 5 the
experimental results and the impact of each component presented in Chapter 4. We also
compare the solution with state-of-the-art methods and analyze their performance on the
proposed dataset. Finally, we compile the contributions and experimental findings of this
thesis in Chapter 6, outlining new directions to guide this work in the future.

Chapter 2

Background

Several psychophysics and neuroscience studies have been trying to answer questions
related to face recognition [96], such as “Is face recognition a dedicated process?”, or “Is
face perception the result of holistic or region-based analysis?”. This kind of question
is important when studying and proposing computational methods for face detection
and recognition. In fact, hints to answer them can be observed in the literature by the
study of holistic, region-based, and hybrid approaches. Before diving into the proposed
method, it is important to explore the concepts upon which we built our solution. In this
chapter, we begin by presenting a general authentication pipeline, as well as some of the
traditional techniques based on hand-crafted features applied to this task. We follow with
a discussion about state-of-the-art researches using CNNs to tackle this problem and the
efforts to integrate these solutions into the mobile environment.

2.1 Authentication pipeline

To perform face authentication in mobile devices, besides taking into consideration re-
source limitations, it is necessary to consider two tasks: face detection, which consists of
localizing a face in an image; and face verification, which is, given an image containing a
face, determining if they belong to the device owner.

A face verification pipeline consists of two main modules: enrollment, which is the
acquisition of biometric features (in this case, images of the face) of a user; and the
authentication itself, which compares the current acquired biometric trait with the ones
previously acquired, and determines if they belong to the same person.

In the enrollment process (Fig. 2.1a), the user acquire one or more images with the
mobile camera, then the system detects the face in each image, and extracts and stores
features of each face. In the authentication process (Fig. 2.1b), the user, who wants to
have access to the mobile phone, uses the mobile camera to acquire one image of one’s
face, then the system detects the face in the image, extracts the same type of features
of the face, and performs a matching algorithm to compare the incoming feature vector
with the ones previously stored, granting access if the person is the owner.

Automatic face detection is the foundation of all applications revolving around facial
image analysis. The literature on face detection is rich and dates back 50 years. Nowadays,

16

CHAPTER 2. BACKGROUND 17

(a) During the enrollment, the face is detected in each acquired image and its features are
extracted and stored.

(b) During the authentication, the detected face has the same type of features extracted and
the system compares them with previously stored feature vectors to determine if the captured
person is the owner.

Figure 2.1: Pipeline for (a) enrollment and (b) authentication on mobile

face detection algorithms can be appropriately applied in real-world settings, even in
constrained devices. Due to the copious availability of detection methods and the high
probability of user cooperation, our research efforts are not focused towards this matter.
Instead, we assume that the image already had its face detected before normalization.

During the normalization step (Fig. 2.2), the goal is to bring face images to a common
scale or into alignment, thus increasing the cohesion among previous and future inputs,
even in variably acquisition conditions. For instance, face images can be cropped and
aligned, and some of its properties, such as illumination, may be altered. In the proposed
method, we crop and align face images using the same method of several works [56, 68].
The location of the eyes in each image is fixed on standard pixel locations, i.e., the distance
of the center of the eyes to the image boundaries is the same for all images.

In the feature extraction step, we compute a representation of the face image, different
from the image space, where the relevant discriminative information is captured, while
redundant information is discarded, facilitating subsequent learning steps.

In this project, we studied and tested several feature extraction approaches, from

CHAPTER 2. BACKGROUND 18

Figure 2.2: Face alignment.

hand-crafted ones to directly learning useful representations from image pixels through
deep CNNs. In Sections 2.2 and 2.3, we discuss relevant works on both ends.

2.2 Hand-crafted features

Hand-crafted features are designed using domain knowledge of the data to create repre-
sentations of face images in a process called description or feature engineering.

In 1973, Kanade proposed a method [45] to automatically detect a face by representing
it with angles and distances of fiducial points, such as eye corners and mouth extrema.
However, methods based only on geometrical features are now known to discard important
information of the face appearance that could be used to identify a person.

In 1991, Turk and Pentland presented Eigenfaces [85], an holistic method that uses
Principal Component Analysis (PCA) for learning a low dimensional subspace of face
representations, whereto faces are projected before recognition. In a similar line, Fisher-
faces [2] incorporates labels to the learning procedure and performs a Linear Discriminant
Analysis (LDA) to find a subspace that maximizes the ratio between-class and within-class
variance.

An extension to Kanade approach was the use of the response of Gabor filters to repre-
sent appearance over the regions around fiducial points [92]. By incorporating appearance
and locally representing facial features, this method inspired a large range of techniques.
Following this path, Ahonen et al. [1] proposed the use of Local Binary Pattern (LBP) tex-
ture features to describe local regions in a dense grid on the face, computing a histogram
for each region that are further combined to compose the face representation.

Although hand-crafted features achieved promising results in the constrained scenario
— with little variation in illumination, pose, facial expression and occlusion — they lack
performance in the unconstrained one, and several researches combine them together to
increase robustness [19, 54, 83].

Two hand-crafted features have special importance to this work: Histogram of Oriented
Gradients (HOG) and Local Region Principal Component Analysis (LRPCA).

2.2.1 Histogram of Oriented Gradients

Dalal and Triggs [20] explored the use gradients features for human detection in images.
Although similar features have been proposed [26, 55], this method differs by evaluating
normalized local histograms of image gradient orientations in a dense grid.

CHAPTER 2. BACKGROUND 19

The basic idea is that local object appearance and shape can often be characterized
by the distribution of local intensity gradients. In practice, the image is divided into
small cells, and, for each cell, a local histogram of gradient directions over the pixels is
accumulated. The combined histograms are used to represent the face image (Fig. 2.3).
For better invariance, a measure of local histogram energy is accumulated over larger
spatial regions (blocks) and the results are used to normalize all cells in the block.

In this work, we use 128x128 resolution gray-scale images divided in 16x16 cells and
32x32 blocks with stride of 16. The output HOG feature vector has size 1764.

Figure 2.3: HOG descriptor outline, adapted from [11].

2.2.2 Local Region Principal Component Analysis

Phillips et al. [68] extended Eigenfaces [85] by calculating a low dimensional projection
space through PCA for the whole face and 13 local regions within it, centered relative to
the average location of the eyes, eyebrows, nose and mouth, as illustrated in Fig. 2.4.

The face image is aligned using the eyes’ position, normalized to weaken illumination
variations and its pixel values are adjusted to have a sample mean of zero and a sample
standard deviation of one. During training, the PCA subspaces are constructed for each
region, retaining only part of the eigenvectors. Whereas in testing, a face image has
its regions extracted and subsequently projected to the respective PCA subspace. The
outputs of each region are concatenated to form the final LRPCA feature vector.

In our method, instead of the 14 regions, we construct PCA subspaces for two 36x36
regions centered around each eye and a region comprising the whole 128x128 face image,
retaining 92% of the variance of the training data. The projections over these three

Figure 2.4: LRPCA descriptor outline, adapted from [68]. In our method, we only use
the green-boxed regions, two centered on each eye and one for the whole face.

CHAPTER 2. BACKGROUND 20

subspaces are concatenated into a feature vector of size 192, that is further whitened by
scaling each dimension to have a sample standard deviation of one on the training set.

2.3 Deep visual representations

Deep visual methods differs from feature engineered ones by introducing hierarchically
learned representations, i.e., the ability to build complex concepts out of simpler ones,
without depending completely on hand-crafted features. They are inspired by the biology
of the mammal brain, organized in a deep architecture [3], where each level of abstraction
corresponds to a different area of the cortex. The brain uses multiple hierarchical stages,
specially in the visual system, to process perceptive information [75]. Fig. 2.5 shows how a
deep learning model can build the concept of an image of a person, using simple concepts
like edges and contours, learned directly from the raw pixels. Because of it, these deep
visual representations are also called data-driven representations.

The architectures used in recent researches [17, 40, 48, 64] are composed of stacked
layers, where each one of them receives information from the layer below, process it,
and passes new stimulus to the layer directly above. The biologically-inspired intuition
is that, as information flows through the network, each layer is able to come up with
more complex concepts. Usually layers perform a sequence of operations: (a) linear
filtering followed by nonlinear activation, modeling the simple cell behavior, (b) local
pooling, modeling the complex cell behavior, and (c) local normalization, representing
the competitive interactions among neurons. A number of parameters is necessary to
determine the architecture of the network. They are called hyperparameters and are
essential to achieve good performance. Some of them are: which filters should be used
and in what order; the number of layers and how they are connected, etc.

Another important step in a deep architecture is the training procedure of the network,
usually performed with back-propagation [72]. The technique determines the weights of
the connections in the network by iteratively forward-propagating an input and comparing
the actual output to the desired one. Trying to minimize the difference between the two
outputs, this value is, then, propagated backwards and the weights are adjusted accord-
ingly. Until the early 2000s, it was believed to be too difficult to train deep multi-layer
neural networks [4]. Empirically, deep networks were outperformed by neural networks
with a couple of hidden layers [84], possibly because gradient-based optimization initial-
ized with random parameters got stuck near poor solutions [4]. However, in 2006, Hinton
et al. [34] presented a greedy layer-wise unsupervised learning algorithm, using restricted
Boltzmann machines, capable of speeding up the training of deep networks and achieving
good results in handwritten digit recognition. Following the same line of research, other
works [4, 37] explored variations of Hinton’s method and its limitations.

Despite the advances in training, early 2000s face recognition datasets [10, 69, 57]
were small and their images were captured in constrained conditions, with little varia-
tion in lightning, head pose, facial expression and occlusion. As a result of that, deep
architectures still struggled with the lack of data, limiting their depth and number of
parameters.

CHAPTER 2. BACKGROUND 21

Figure 2.5: Illustration of a deep learning model adapted from [28]. Raw pixels values are
given to the learning step through the input layer, or visual layer. Using the information
from the previous layer, each hidden layer builds a slightly higher level abstraction, e.g.,
edges, local shapes, object parts, etc. This mapping is done up to the output layer, where
the complex concept is retrieved to the user.

Chopra et al. [16] trained a six-layer siamese architecture [9], i.e., two identical convo-
lutional networks with shared weights, to map a pair of face images to a low-dimensional
space where a similarity metric could be used to verify a user’s identity. Although siamese
networks elegantly model the face verification task, they may not be suitable to mobile
devices, since they require more computational effort than a single equivalent CNN.

The work of Cox and Pinto [18] achieved impressive results in the unconstrained
Labeled Faces in the Wild dataset [39] with a deep architecture called L3+ representation.
This representation can be seen as a three-layer CNN whose hyperparameters were found
with brute-force optimization, while using random weights for the network’s convolutional
filters. Chiachia [13] improved the results by incorporating a supervised learning step on
top of the original architecture. The author used a linear support vector machine (SVM)
to learn person-specific characteristics from the output of L3+’s last layer.

As more data became available through the Internet, more complex deep architectures
were designed, and data-driven methods have started to achieve lower error rates than
engineered descriptors, since they are able to optimize features for the specific task at
hand [28].

Krizhevsky et al. proposed the AlexNet architecture [48], a deep CNN that won the
ImageNet Challenge (ILSVRC) [73] in 2012. As illustrated in Fig.2.6, it has stacked
convolutional layers and fully-connected layers, adding up to a total of 60 million param-
eters. The authors also incorporated max-pooling and ReLU non-linearity after layers,
while dropout [35] and data augmentation were used to reduce overfitting.

The work of Taigman et al. [82] proposed a face alignment method based on explicit
3D modeling of the face, as well as, DeepFace, a CNN with a slightly different architecture
than AlexNet. It has three locally connected layers, i.e., layers that learn a set of filters

CHAPTER 2. BACKGROUND 22

Figure 2.6: Representation of AlexNet architecture [48], with five convolutional layers
— whose filters have size 11×11, 5×5 and 3×3 — and max-pooling operation following
some of the them. At the end, three fully-connected layers feed a softmax of 1000 classes,
representing the categories of 2012 ImageNet Challenge.

for each location in the feature map, instead of a shared filter for the whole map as
a convolutional layer does. This allows the network to learn to respond according to
different spatial positions, however, greatly increases the number of parameters; of its 120
million, locally and fully connected layers account for 95% of them.

FaceNet [74] uses a deep convolutional network to learn a direct embedding from the
face images to a low-dimensional Euclidean space, where distances directly correspond
to a measure of face similarity. The authors define loss function using triplets, i.e., a
pair of face images from one identity (anchor and positive examples) and an image from
another identity (negative example). The network is trained by minimizing the distance
from the anchor to the positive representation, while maximizing the distance between
the anchor and the negative. The authors point out that, although the method achieves
highest accuracy up-to-date (99.63%) in the Labeled Faces in the Wild dataset [39], it
requires huge amounts of data and computational resources, which may be an issue when
running on a mobile device.

In [76], Simonyan and Zisserman evaluated the importance of increasing a network’s
depth to achieve good results and also how a composition of small convolutional filters
(3×3) could have similar effect of a bigger one (5×5 or 7×7), while reducing the number
of total parameters. They proposed VGGNet, a 16 or 19 layer CNN with 140 million
parameters, that achieved state-of-the-art results in some tasks of 2014 ILSVRC [73]. A
variation of VGGNet [64] was also trained for the face recognition task with 2.6 million
pictures using a triplet-loss approach similar to [74]. This version, whose architecture is
illustrated in Fig. 2.7, was used as basis for the architecture proposed in Section 4.3.

It was a fairly well-accepted idea that CNN layers should be stacked sequentially, how-
ever GoogLeNet [80] achieved outstanding results in ILSVRC 2014 Classification Chal-
lenge [73] by having layers processing the same input in parallel and then concatenating
their outputs into a single one. This allows layers with distinct parameters to learn dif-
ferent characteristics and patterns from an input. The set of parallel layers, referred as
Inception module (Fig. 2.8), is stacked sequentially to compose a 22 layers deep network.
Although deeper, GoogleLeNet has 12x fewer parameters than AlexNet, since it does
not use fully-connected layers — replaced by average pooling instead — and considers

CHAPTER 2. BACKGROUND 23

Figure 2.7: Representation of VGGNet architecture [64]. It receives a 256x256 RGB
input image, has 13 convolutional layers (in grey) and 3 fully-connected layers (in blue).
Detailed information about each layer, regarding its configuration, number of parameters
and operations executed, is presented later in Table 4.1.

convolutions of size 1×1 to reduce the input map before 3×3 and 5×5 convolutions.
A standard convolution maps both spatial and cross-channel correlations at once,

whereas Inception modules separate them by first learning cross-channel correlations us-
ing 1×1 convolutions and then mapping the spatial relation of their outputs via 3×3
and 5×5 convolutions. Besides improving accuracy, this also greatly reduce the number
of required parameters. In [15], Chollet points out the similarity between the Incep-
tion module’s architecture and depthwise separable convolutions — a spatial convolution
performed independently over each channel of an input, followed by a 1×1 convolution,
capturing the cross-channel correlations into a new channel space — and, using them,
proposes Xception architecture, capable of outperforming GoogLeNet.

In addition to this type of convolutions, Xception also uses residual connections, a
concept introduced by the ResNet [33]. In this work, He et al. manage to train very deep
networks, with up to 1000 layers, by adding shortcut connections between some layers.
These connections (illustrated in Fig. 2.9) force a layer to learn from a residual mapping,
instead of the map from the previous layer, which improves model convergence and allows
depth increase. In Chapter 5, we compare our proposed method to ResFace101 [58], a
ResNet with 101 layers trained for the face identification scenario.

2.4 Mobile efforts

Even though the networks discussed so far achieve impressive results in their designated
tasks, most of them are not suitable to run inside a mobile device. From the memory
footprint viewpoint1, AlexNet’s model has 240MB [86] and VGGNet’s has 580MB [89],
while GoogLeNet has a smaller model of 50MB [88]. With this in mind, several approaches

1Comparison made with publicly available Caffe [44] models downloaded from Caffe Model Zoo [87].

CHAPTER 2. BACKGROUND 24

Figure 2.8: Inception module adapted from [80]. The 1×1 convolutions act as dimension-
ality reduction before the 3×3 and 5×5 convolutions, in order to decrease the number of
input maps.

Figure 2.9: Shortcut connection skipping two layers, adapted from [33]. The layers in
between are tasked to learn only new information, i.e., the residual R(x) over the input
x.

CHAPTER 2. BACKGROUND 25

were designed to simplify, reduce and/or speed up existing architectures and techniques.
A fairly popular research line is referred as model compression, where a CNN model

is compressed in a lossy process, decreasing model size while trying to maintain accuracy.
Methods that fall in this line date to 1989, when LeCun et al. [49] proposed Optimal Brain
Damage, an approach to remove weights from a neural network with the least impact in
accuracy, determined by the second derivative of the objective function regarding each
weight.

Inspired by [22], Denton et al. [23] argued that lower convolutional layers of deep CNNs
are over-parametrized, i.e., they have a lot of redundancy that can be eliminated with
almost no accuracy loss. Using single value decomposition they were able to transform
weights matrices into a more computation and storage efficient representation.

Han et al. [31] proposed Network Pruning, replacing weights below a certain threshold
with zeroes to form a sparse CNN, reducing the number of parameters of AlexNet by a
factor of 9x and VGGNet by 13x, with no significant accuracy loss in both models. Deep
Compression [30], an extension of the previous work, combined the last approach with
quantization and Huffman encoding, decreasing the storage requirements of AlexNet by
35x and VGGNet by 49x.

Although model pruning and compression achieves interesting results, working with
sparse CNN, quantization and encoding is not often supported by CNN libraries, such as
Caffe [44], or may even require specialized hardware [30]. Considering this, Li et al. [50]
proposed to prune filters instead of weights, indicating that it is a more structured way to
prune, does not induce sparsity and is directly related to speed ups, since smaller feature
maps means less matrix multiplications. For a given set of 2D filters of a convolutional
layer, the selected filter to be pruned is the one that minimizes the sum of its absolute
weights. This value gives an expectation of the magnitude of the output feature map, so
a filter with a low sum contributes less to the overall performance of the network than
the others from the same layer.

Other researches go in the line of designing compact and efficient network architectures,
already tweaked to the limitations of low-powered devices. Bondi et al. [5] analyzed the
resources used during the inner steps of the L3+ architecture [18] and were able to propose
optimizations, bearing in mind the ratio between accuracy and consumed energy. The
authors reduced by 94% the average energy consumption, while maintaining an accuracy
rate of 86.73% with 1.06 seconds of processing time per image. Although in this research
we used a deeper and more complex architecture than L3+, many of the insights from
Bondi et al. were relevant in our designing process.

An architecture specially relevant to this work is SqueezeNet [40], which uses the
concept of a repeatable block of layers from [80]. To constrain the number of parameters
in the CNN, the authors propose to replace most of 3×3 filters with 1×1 — since the latter
have 9x less parameters — and, in case of a layer with 3×3 filters, decrease the number of
channels of the input map — which is directly related to the total parameters in that layer.
Besides that, they argue that higher accuracy can be achieved by delaying downsampling
(commonly performed with pooling or convolutions with stride > 1) to a late stage in the
network. This last decision is also reinforced by work of He and Sun [32] that compared
different CNN architectures and design choices under a time constraint. Considering these

CHAPTER 2. BACKGROUND 26

Figure 2.10: Fire module adapted from [40]. The number of 1×1 filters in the squeeze
layer is always less than the total number of filters in the expand layer, in order to reduce
the input map size to 3×3 convolutional filters.

Figure 2.11: SqueezeNet architecture adapted from [40]. As we move forward in the
network, the size of each Fire module (i.e., the number of filters in squeeze and expand
layers) is gradually increased.

strategies, Iandola et al. conceived the Fire module, depicted in Fig. 2.10. It consists
of two convolutional layers: a squeeze layer with 1×1 convolutional filters and a expand
layer with both 1×1 and 3×3 convolutional filters. The squeeze layer, similar to the
1×1 convolutions of GoogLeNet’s Inception module [80], acts as a bottleneck, reducing
dimensionality before the expensive 3×3 convolutions, decreasing the number of input
channels while also condensing relevant input information and discarding redundancy in
it. Additionally to stacked Fire modules, SqueezeNet architecture (illustrated in Fig. 2.11)
replaced traditional fully-connected layers with global average pooling. Fully-connected
layers often correspond to a big percentage of a network parameters, are susceptible to
overfitting and heavily dependent on dropout regularization [48, 35]. Whereas, average
pooling has no parameters to be optimized — avoiding overfitting —, is more robust to
spatial translation and its output feature maps can be interpreted as categories confidence
maps [52]. With all this, SqueezeNet has a model 50x smaller than AlexNet (4.8MB),
while, by complementing the design choices with Deep Compression [30], it is possible to
achieve a model 510× smaller (0.47MB).

In [36], Howard et al. designed MobileNet, a flexible architecture with two special

CHAPTER 2. BACKGROUND 27

hyperparameters α and ρ that limit the width and spatial resolution of each layer. While
the former determines the number of output channels of each layer, by altering the number
of convolutional filters; the latter limits the spatial resolution of the input images and,
consequently, each layer’s input. The authors analyze how these hyperparameters affect
accuracy, number of parameters and performed operations, and they apply diverse network
setups in different image recognition problems, comparing to state-of-the-art and pointing
out the accuracy-performance trade-off. In the architecture proposed in our work, we
apply a similar strategy of reducing the spatial resolution of each layer, by forwarding
a smaller image to the network, in order to greatly decrease the number of operations
performed by each layer.

Chapter 3

Datasets and Evaluation Protocol

Naturally, for a complex problem such as the one we tackl in this work, training data
is pivotal for the success of the research. Training complex deep neural networks often
requires huge quantity of data [74, 80, 82], representing a great number of identities
in diverse capture conditions, such as illumination, hairstyle, occlusion, facial pose and
expression. Although there are many publicly available datasets [39, 46, 68, 93], none
of them is focused on selfie images. In this work, we have used four datasets: RECOD
Selfie Dataset, Motorola Selfie Dataset, Unicamp Video-Based Attack Database, Oulu-
NPU database. Examples of each dataset are presented in Fig. 3.1 and Fig. 3.2 and each
image had its face detected and normalized as described in Section 2.1.

3.1 RECOD Selfie Dataset

The RECOD Selfie Dataset (RCD) is a public dataset1, created during this research. It
is formed by videos of 56 identities, filmed by themselves by pointing the frontal camera
of a mobile device to their faces and recording videos of approximately 30 seconds. The
videos were captured in outdoor and indoor environments, with different illumination
conditions, as well as varying head pose and facial expression. The dataset was collected
at University of Campinas (Unicamp), with the participation of members of its commu-
nity. Because capturing biometric data and making it available involve ethical aspects,
the project was sent to Unicamp’s Institutional Review Board, being approved under pro-
tocol CAAE 53035216.6.0000.5404. From these videos, we extract one frame per second,
totalizing 2, 873 images, where most of them have 1080x1920 resolution, while a minority
has 480x640.

3.2 Motorola Selfie Dataset

The Motorola Selfie Dataset (MOT) is a private dataset, created in cooperation with
Motorola company. It consists of videos from 49 identities, captured in the same setup of
RCD. From these videos, we extract one frame per second, totalizing 4, 900 images.

1dx.doi.org/10.6084/m9.figshare.5427142

28

dx.doi.org/10.6084/m9.figshare.5427142

CHAPTER 3. DATASETS AND EVALUATION PROTOCOL 29

Figure 3.1: Examples from (a) UVAD, (b) MOT and (c) OULU datasets.

3.3 Unicamp Video-Based Attack Database

The Unicamp Video-Based Attack Database (UVAD) [70] was specially developed to eval-
uate video-based face spoofing attacks, i.e., when an individual want to get access to a
mobile device by presenting to the face recognition software a picture or a video of the
device owner. It is comprised of valid access and attempted attack videos of 404 different
people. Each user was recorded in two sections in different scenarios and lightning condi-
tions. The database has 808 real access videos and 16, 268 videos of attempted spoofing
attacks, all in full high definition quality. Each real access video has around 9 seconds,
from which we extracted 1 frame per second. Although UVAD is not focused on selfie
images, individuals were recorded in a controlled frontal-facing view.

3.4 Oulu-NPU Database

TheOulu-NPU Database (OULU) [8] was created by the University of Oulu in Finland and
the Northwestern Polytechnical University in China for face presentation attack detection
in mobile scenarios. The dataset was used as part of the IJCB 2017 competition on
generalized face presentation attack detection in mobile authentication scenarios [7].

It consists of 4, 950 real access and attack videos, recorded from 55 individuals using
the frontal camera of six mobile devices. The videos were captured in three sessions with
different illumination conditions and background scene, and were split into three subsets

CHAPTER 3. DATASETS AND EVALUATION PROTOCOL 30

Figure 3.2: Examples from Recod Selfie Dataset. Each row corresponds to an identity,
captured under different illumination conditions, head pose and/or facial expression.

CHAPTER 3. DATASETS AND EVALUATION PROTOCOL 31

for training, validation and test with no identity overlap.
In this research, we used the real access videos from OULU’s Training and Develop-

ment sets, totaling 35 identities and 630 videos, from which we extracted around 4 frames
per second of each video.

3.5 Datasets summary

In this work, combining all datasets, we have worked with 564 identities, totaling 27, 817

images in a wide range of illumination, background, hairstyle, facial pose and expression.
Table 3.1 presents a summary of the four datasets used in this research.

Table 3.1: Datasets summary.

Dataset Identities Images Pairs
Sessions
per User Capture Device

RCD 56 2, 873 262, 164 2 Smartphones
MOT 49 4, 900 917, 216 13 Smartphones

UVAD [70] 404 7, 871 146, 326 2 Digital Cameras
OULU [8]2 35 12, 173 4, 222, 188 3 Smartphones

Total 564 27, 817 5, 547, 894

As will be explained in Section 4.2, we have also built pairs with pictures pertaining
to the same identity (positive pairs) and the same number of randomly selected pairs of
images from distinct identities (negative pairs). We further organize the datasets into
identity-disjoint train, validation and test sets. In order to verify generalization of the
proposed method, the datasets were split in a way that allows cross-dataset experiments,
as presented in Table 3.2.

Table 3.2: Train, validation and test sets.

Dataset Set Identities Images Pairs
MOT Train 49 4, 900 917, 216

UVAD [70] Train 404 7, 871 146, 326
OULU [8] Train 20 6, 965 2, 419, 628
RCD Validation 14 575 34, 382
RCD Test 42 2, 298 227, 782

OULU [8] Test 15 5, 206 209, 226 3

3.6 Evaluation protocol and metrics

Seven metrics that emphasize different aspects of a desirable solution were used for evalu-
ation. We have specific objectives for three of them that we aim to achieve while designing
our solution:

2We have only used Oulu-NPU’s Training and Development (referred here as OULU-Test) sets.
3Due to time restrictions, only a randomly selected subset of pairs generated from OULU-Test set was

used in our experiments.

CHAPTER 3. DATASETS AND EVALUATION PROTOCOL 32

• True Positive Rate (TPR) indicates how well a method is in authenticating the
device owner. A true positive (TP) occurs when an owner’s image is rightly classi-
fied. We aim for a TPR above 90%, which means the owner will have his or
her access to the device wrongly denied once for each 10 attempts. This metric is
given by Equation 3.1, where |TP | is the number of true positives and Nowner is the
number of verification attempts made with an owner’s picture.

TPR =
|TP |
Nowner

(3.1)

• True Negative Rate (TNR) indicates how well a method is in denying access to
an intruder. A true negative (TN) happens when an intruder’s picture is rightly
classified as not being from the device owner. We aim for a TNR above 99%,
which means an intruder would be allowed access once for each 100 attempts. This
metric is calculated by Equation 3.2, where |TN | is the number of true negatives
and Nintruder is the number of verification attempts made with an intruder’s picture.

TNR =
|TN |

Nintruder

(3.2)

• Authentication time in mobile device is also crucial to assess a good solution.
For this metric evaluation, we used two smartphones: Motorola X Force, with 3GB
RAM and Android 6.0.1 (Smartphone A) and Motorola Moto Z, with 3GB RAM
and Android 7.1.1 (Smartphone B); and aimed for our method to take around
1 second to authenticate or deny a face image on them.

The following four metrics are used as comparative measures between two methods or
CNN architectures, serving as secondary evaluation metrics in this work:

• Accuracy (ACC) indicates the overall performance of a method regarding true
positives and true negatives. It is given by Equation 3.3, with |TP | being the
number of true positives, |TN | being the number of true negatives and N is the
number of verification attempts.

ACC =
|TP |+ |TN |

N
(3.3)

• Number of multiplication and addition operations in a CNN layer is related
to its input and output sizes as well as the nature of the operation it performs. A
comparison between the total amount of multiply-add operations of two architec-
tures is a hardware-independent manner to estimate which one is faster.

• Number of parameters in model is related to the memory consumption during
training and testing of a CNN. The more parameters it has, the bigger its model
and the activation maps will be.

• Model size in memory is also important since mobile devices have limited memory
space available.

Chapter 4

Methods

We propose a facial recognition method that consists of a two-tier solution tailored for
the mobile environment, whose outline is illustrated by Fig. 4.1. Firstly, we use a set of
user-specific classifiers tweaked to identify the owner’s face pictures with a high confidence
level. These classifiers are trained using two hand-crafted features — HOG and LRPCA
— extracted from input face pictures. Since both features are fast to extract and the
classifiers are trained with user-provided images, we seek high true positive rate without
consuming too much time.

The second step consists of a group of classifiers trained to assess if a pair of faces
belongs to the same identity or not. Each pair consists of the image being verified and
one belonging to that user’s gallery. We use two classifiers trained on HOG and LRPCA
features separately and also a CNN trained on a combination of both images from each
pair, that we called hybrid image. Based on the score and an acceptance threshold of each
classifier, the user is authenticated or not.

We constantly check our phones for new messages and notifications [53], implicating
that most authentication attempts are made by the device owner. Considering this,
the proposed method must be fast and accurate for these frequent cases, however it is
acceptable to take more processing time to deny an intruder in case he or she tries to
authenticate.

We translated these ideas by having a fast 1st tier, whose confidence score is tested
against two thresholds, one higher than the other. In case its score surpasses the high-
est threshold, the user is automatically authenticated; if the score is in between both
thresholds, our method is not fully confident that the image belongs to the user, so we
follow to the 2nd tier; whereas if the score is below the lowest threshold, access to the
device is denied. In the 2nd tier, although more accurate, the fusion of hand-crafted and
data-driven methods takes more time to process an input, so it is desirable to avoid this
tier when possible.

Recent researches regarding CNNs have aimed to improve accuracy usually by making
the network deeper and more complex [76, 79, 81]. However, this means bigger and more
expensive models unfeasible to be used inside a smartphone. In this thesis, we propose
a new CNN architecture, called Hybrid Fire Convolutional Neural Network (HFCNN),
suitable for the mobile environment.

Also, as a way to better adapt the method to each user’s unique face characteristics,

33

CHAPTER 4. METHODS 34

Figure 4.1: Outline of the 2-tiered solution proposed in this work. The 1st tier consists of
a set of fast high confident user-specific classifiers, while the 2nd tier uses a fusion of deep
and hand-crafted features to identify if a pair of images belongs to the same identity.

we propose a technique to automatically learn the acceptance threshold of the 2nd tier
classifiers based on the face images provided by the user.

In the following sections we detail each component, discussing what decisions led to
their design.

4.1 1st Tier: user-specific

As explored by Chiachia [13], it is possible to improve facial recognition by incorporating
a supervised step to learn characteristics specific to a unique user. According to the
authors, this is directly inspired by how the human brain is better at recognizing familiar
faces than unfamiliar ones, probably because it leverages from previous experience to aid
recognition.

With fast advances in mobile technologies, smartphones, tablets and wearable devices
have established their ubiquity in our society. It is expected that the number of mobile
devices exceeds the world population by 2020 [60], achieving 1.5 device per capita. Mobile
devices are mostly single user, which means we could leverage this proximity with the
owner to optimize our solution to recognize his or her familiar face.

In order to do this, we train two linear SVM classifiers on top of HOG and LRPCA
features separately. A gallery composed of user’s images, captured during the enroll-
ment, is used as positive class, while non-user images already embedded into the device
beforehand are used as negative class. The training process is illustrated in Fig. 4.2a.

We have chosen these two hand-crafted features, because they are fast to compute and

CHAPTER 4. METHODS 35

(a) Training.

(b) Testing.

Figure 4.2: Pipeline for (a) training and (b) testing of the 1st tier step

have small representations, meaning they can be stored in memory without great impact.
This step’s parameters are adjusted to achieve a high TPR and the training can be

performed after the enrollment in an offline manner — e.g., when the device is idle — to
decrease impact over usability.

During test (Fig. 4.2b), after being normalized, an input image has its features ex-
tracted and tested by the SVMs. The average of the classifiers confidence score — which
is directly related to the distance between the feature vector and the SVM decision margin
— is used as the final score for this tier.

4.2 2nd Tier: same-identity-or-not

The next step in the method seeks to identify if two images belong to the same individual.
By slightly changing the target problem — from user-specific to image pair verification

CHAPTER 4. METHODS 36

— we wish to capture, using mostly the same features, different but complementary
characteristics that together with the 1st tier improve overall recognition.

For this step, we have created pairs of images from the datasets. Each positive pair
is composed by selecting two distinct images from the same identity, while a negative
pair consists of two images from distinct identities. In order to have a balanced training,
we randomly select among the negatives pairs — since their quantity is substantially
greater — the same number of pairs as the positives. Within each pair, the first image is
considered to be the probe, while the second is the reference. If instead of one reference
we need to simulate a gallery with n images, then n photos are randomly selected among
the ones depicting the reference’s identity to compose the gallery tuple.

Since the training process of both hand-crafted and data-driven classifiers does not
use device owner’s pictures, it is done outside the mobile device. This allows us to use
more complex and powerful models in this tier, that would not be possible if we resorted
to in-device training.

4.2.1 Multiview hand-crafted classifiers

Once the enrollment is completed, the device owner will have a gallery of selfies in dif-
ferent views, i.e., similar photos with small variations in head pose, facial expression and
illumination conditions. During the authentication we leverage from multiple views by
comparing a probe to as many gallery images as possible, in what we refer as a multiview
comparison. As the gallery increases in size and diversity, the method will have more
information to authenticate or reject a new picture. Considering this, we build pairs of
images, consisting of the probe and each image from the gallery.

To construct a feature vector Fpair for a pair of face images, feature vectors F1 and
F2 are first extracted for each image of the pair. Then, the module of the difference and
element-wise product of F1 and F2 are concatenated:

Fpair = [|F1 − F2|, F1 ◦ F2]. (4.1)

During training, considering a dataset of face images D = {I1, . . . , In}, we compute a
set of pair feature vectors Strain = {Fxy|Ix, Iy ∈ D, x 6= y}. Note that if Ix and Iy depict
the same person, then Fxy is labeled as positive, and negative otherwise.

The set Strain of pair feature vectors is used as input to a Logistic Regression classifier
(LogReg), in order to learn a model able to make a prediction as to the probability of the
input being positive.

The logistic regression is defined as

y = w0 + w1x1 + w2x2 + . . .+ wnxn, (4.2)

where w1, . . ., wn are the coefficients to be optimized, w0 is the bias, and x1, . . . , xn are the
components of one training sample Fxy. The output y is transformed into a probability
using the logistic function:

p = 1/(1 + e−y). (4.3)

CHAPTER 4. METHODS 37

Figure 4.3: Outline of a multiview authentication, performed in the 2nd tier. Each pair
consists of the probe and a gallery image that have their features extracted and combined
into a feature vector. A logistic regression model outputs the probability of that pair be-
longing to the same identity and the average probability among all pairs will be combined
with the data-driven output to determine the 2nd tier result.

We apply Stochastic Gradient Descent (SGD) to the problem of finding the coefficients
for the logistic regression model. For each training instance Fxy, we calculate a prediction
using the current values of the coefficients. The gradient of the function being optimized is
computed, and the coefficients are updated. After training the model (finding the optimal
coefficients), any test pair feature vector can be predicted as being positive or negative.

During test, considering a gallery of n face images G = {Igal1 , . . . , Igaln}, we compute
a pair feature vector between a gallery image Igali ∈ G and the probe Iprobe as:

Fviewi
= [|Fprobe − Fgali |, Fprobe ◦ Fgali] , i ∈ {1, . . . , n}. (4.4)

The set Smultiview = {Fviewi
, . . . , Fviewn} of view feature vectors is used as input to the

LogReg classifier, that outputs the probability pviewi
that the respective Fviewi

represents
a pair of images from the same identity. The final probability pmultiview is the average of
all pviewi

:

pmultiview =
1

n

n∑
i=1

pviewi
. (4.5)

We train a LogReg model on top of HOG features and another based on LRPCA
features. In an authentication attempt (Fig. 4.3), a probe will yield a final probability
for each type of feature — referred as pHOG and pLRPCA — that are combined with the
output from the data-driven classifier to compose the 2nd tier final result.

CHAPTER 4. METHODS 38

4.2.2 Hybrid image and data-driven classifier

In literature, face recognition is usually approached as a multi-class problem, where a face
image is assigned to one of many classes, each representing an identity. Thus, if we wanted
to use a CNN for a pair of images, we would use the network as a feature extractor and
feed it each image of the pair, construct the feature vector for the pair, and then train a
classifier on top of it. The idea behind this is that, besides capturing patterns regarding
each identity, the network’s features also have information on how to separate general
identities.

On the other hand, face verification is a binary problem, seeking to answer if two
pictures depict the same person or not. A common data-driven approach in literature is
to use CNNs with siamese networks [9], where each image of a pair is fed to the network
that outputs feature vectors in a projection space where distances relate to identity simi-
larity [36, 74, 80]. Besides learning the structural characteristics relative to faces, during
training the network is optimized taking into account how the feature vectors are posi-
tioned in the projection space, i.e., trying to approximate vectors from the same identity
and distancing the ones from different individuals.

However, in a resource-limited environment such as the mobile device, we want to limit
the number of forward passes in a network without sacrificing accuracy. In this sense, we
cannot use the multiview comparison from Section 4.2.1, since it implies multiple passes
through the network.

Therefore, as a way to limit the amount of processing done by the network, but also
to leverage from the user’s gallery, we propose hybrid images. We combine in a single
image the information regarding the probe and the gallery, as illustrated in Fig. 4.4. For
a probe Iprobe and a gallery of n face images G = {Igal1 , . . . , Igaln}, the input of the CNN
is constructed as:

• Transform Iprobe and each image of G to grayscale: I ′probe and G′ = {I ′gal1 , . . . , I
′
galn
};

• Create the average image I ′AV G for the grayscale gallery G′, where:

I ′AV G =
n∑

i=1

I ′gali
n
. (4.6)

• Create a single-channel image IZ filled with zeroes with the same dimensions of
I ′probe and I ′AV G;

• Stack three channels (I ′probe, I ′AV G, IZ) to form the input.

Hybrid images are used as inputs to train the CNN whose architecture and training
are discussed in Section 4.3. A softmax layer at the CNN’s end outputs the probability
pHFCNN of a hybrid image representing the same identity.

CHAPTER 4. METHODS 39

Figure 4.4: Generation of hybrid images, using a gallery with five images and two probes,
one depicting the same identity as the gallery and another from a different person. The
probe, the gallery average image and a zero image are stacked to compose the RGB hybrid
image that is fed to the network. Our intuition is that the CNN is able to learn patterns
that distinct same-identity hybrid images from different-identities ones.

4.2.3 2nd tier fusion and decision

Instead of a unique threshold for the 2nd tier, each classifier has a threshold associated with
it. Since each method — HOG, LRPCA and HFCNN — captures different characteristics
presented in data, we wanted to have different acceptance frontiers for each of them. Also,
in Section 4.4, we propose a way to fine-tune each threshold based on the device owner’s
pictures. Therefore, given a classifier with threshold t and a pair with probability p, the
classifier decision d is:

d =

{
same person if p ≥ t,

not the same person, otherwise.
(4.7)

With three classifiers decisions — dHOG, dLRPCA and dHFCNN — we use majority vote
to determine if a probe is authenticated or not.

4.3 Hybrid-fire convolutional neural network

As discussed in Section 2.4, there has been an effort in literature to propose adequate
CNN architectures for the mobile environment. Ultimately, we want a network with few
parameters that perform as few operations as possible, while also capable of achieving
great accuracy, TPR and TNR in our task.

CHAPTER 4. METHODS 40

Table 4.1: VGG-Face Architecture.

Layer Input Size
Filters

(number / size)
Million

Multiply-Add
Thousand
Parameters

conv1_1 3×224×224 64 / 3×3 86.7 1.73
conv1_2 64×224×224 64 / 3×3 1, 850 36.86
conv2_1 64×112×112 128 / 3×3 924.84 73.73
conv2_2 128×112×112 128 / 3×3 1, 850 147.46
conv3_1 128×56×56 256 / 3×3 924.84 294.91
conv3_2 256×56×56 256 / 3×3 1, 850 589.82
conv3_3 256×56×56 256 / 3×3 1, 850 589.82
conv4_1 256×28×28 512 / 3×3 924.84 1, 180
conv4_2 512×28×28 512 / 3×3 1, 850 2, 360
conv4_3 512×28×28 512 / 3×3 1, 850 2, 360
conv5_1 512×14×14 512 / 3×3 462.42 2, 360
conv5_2 512×14×14 512 / 3×3 462.42 2, 360
conv5_3 512×14×14 512 / 3×3 462.42 2, 360

fc6 512×7×7 40962 102.76 102, 760
fc7 4096×1×1 40962 16.78 16, 780
fc8 4096×1×1 26222 10.74 10, 740

Total 15, 478.76 144, 994.33

Training a neural network from scratch requires a huge amount of images and time,
therefore it is a common practice to fine-tune a model initialized with weights trained in
a similar domain [95]. Since early layers learn low-level features, such as edges and color
blobs, that usually are common to most image processing tasks, the fine-tune process can
skip directly into optimizing the weights of deeper layers for more specialized concepts.
This is also done by setting smaller learning rates for layers at the beginning of the
network, that are increased at the final layers or the ones being trained from scratch.

This research’s initial explorations with a data-driven method were done with VG-
GFace network [64], whose architecture is depicted in Fig. 2.7. Considering its impressive
results in facial recognition, we used the model’s weights as initialization for our architec-
ture. As a starting point, we altered the last fully-connected layer to reflect the binary
verification problem and we measured1 the number of parameters and multiply-add op-
erations for each convolutional and fully-connected layers. These statistics, exposed in
Table 4.1, gave us information about the resource consumption of each layer and pointed
us to possible layers that could be removed or altered in order to achieve a lighter network.

We opted to modify the layers at the network’s end instead of the ones at the beginning,
in order to preserve most of VGGFace initialization weights as possible. An alteration,
for example, in the number of filters of conv4_1 layer would require to train from scratch
all subsequent layers (conv4_2 to fc8).

1The number of multiply-add operations and parameters was measured using Netscope [29].
2 Fully-connected layers are a special case of convolutional layers, where the size of the filters matches

the size of the input data.

CHAPTER 4. METHODS 41

Table 4.2: Fire module hyperparameters for an image of size 224×224.

Layer Type
Input
Size

Filters
(number/size)

Output
Size

Thousand
Parameters

Million
Multiply-Add

squeeze1x1 Conv 512x14x14 64 / 1×1 64x14x14 32, 768 6.42
relu_squeeze1x1 ReLU 64x14x14 - 64x14x14 - -

expand1x1 Conv 64x14x14 256 / 1×1 256x14x14 16, 384 3.21
relu_expand1x1 ReLU 256x14x14 - 256x14x14 - -

expand3×3 Conv 64x14x14 256 / 3×3 256x14x14 147, 456 28.90
relu_expand3×3 ReLU 256x14x14 - 256x14x14 - -

concat Concat 2x256x14x14 - 512x14x14 - -
Total 196, 608 38.53

With this in mind, the first set of modifications was to remove fully-connected layers.
Although responsible for only 0.8% of multiply-add operations, they account for 90% of the
model’s total parameters. Instead of fully-connected operations, recent architectures [52,
40] make use of global average pooling. Besides acting as a regularizer, which makes the
network less prone to overfitting, it impels correspondence between previous convolutional
layer’s feature maps and each category.

As we move deeper in the architecture, the number of parameters in the convolutional
layers increases, due to the increase in the number of filters being learned. Once the
fc8, fc7 and fc6 are removed, all three conv5 layers account for 48% and 9% of the
remaining parameters and multiply-add operations respectively. Besides that, they are
responsible for learning most high-level concepts related to identities of VGGFace target
domain, which are not appropriate to differentiate identities present in hybrid images.
We removed conv5 layers replacing them with Fire modules from SqueezeNet [40]. The
addition of these modules serves not only to compensate the huge quantity of removed
parameters that would naturally decrease model accuracy, but also to add depth to the
network without greatly increasing the parameter count. We present in Table 4.2 the
Fire module hyperparameters used in our work, while Fig. 4.5 depicts how each layer is
organized inside a module.

In order to reduce the number of operations performed by the network, we follow a
similar strategy to MobileNets [36]. Rather than directly altering hyperparameters, we
feed smaller hybrid images to the network. By reducing each dimension of the network’s
input image by half, the internal maps also shrink by same ratio, thus decreasing the
amount of performed multiply-add operations. When the HFCNN is fed with a 224×224
image, the Fire’s internal activation maps are of size 14x14, decreasing to 7×7 when a
112×112 input image is used. Consequently, the number of multiply-add operations falls
from 38.53 million to 9.63 million (Table 4.4).

A simplified outline of Hybrid-Fire Convolutional Neural Network architecture is il-
lustrated in Fig. 4.6, whereas Tables 4.3 and 4.4 expose respectively each layer setup and
number of multiply-add operations for inputs of size 224×224 and 112×112.

Besides the proposed alterations, other details related to the architecture, training and
testing procedure, and deep learning framework also are fundamental in our approach:

• Dropout [77] with rate of 50% was applied on fire6, fire7 and fire8 layers for better
regularization;

CHAPTER 4. METHODS 42

Figure 4.5: Layer organization inside a Fire module. The internal maps dimensions are
14x14 for an input image of size 224×224, and 7×7 for a 112×112 input. The concat
layer receives two maps with 256 channels and outputs the concatenation of both maps
in the channel axis.

Figure 4.6: HFCNN architecture outline. Each convolutional layer (gray boxes) are fol-
lowed by ReLU operations and each Fire module (yellow boxes) have the internal config-
uration depicted by Fig. 4.5.

CHAPTER 4. METHODS 43

Table 4.3: HFCNN architecture, with correspondent internal maps for input images of
size 224×224 and 112×112.

Image Size
224×224 112×112

Layer
Filters

(number/size/stride/padding)
Input
Size

Output
Size

Input
Size

Output
Size

conv1_1 64 / 3×3 / - / 1 3x224×224 64x224×224 3x112×112 64x112×112
relu1_1 -

64x224×224 64x224×224 64x112×112 64x112×112conv1_2 64 / 3×3 / - / 1
relu1_2 -
maxpool1 - / 2x2 / 2 / - 64x224×224 64x112×112 64x112×112 64x56x56
conv2_1 128 / 3×3 / - / 1 64x112×112 128x112×112 64x56x56 128x56x56
relu2_1 -

128x112×112 128x112×112 128x56x56 128x56x56conv2_2 128 / 3×3 / - / 1
relu2_2 -
maxpool2 - / 2x2 / 2 / - 128x112×112 128x56x56 128x56x56 128x28x28
conv3_1 256 / 3×3 / - / 1 128x56x56 256x56x56 128x28x28 256x28x28
relu3_1 -

256x56x56 256x56x56 256x28x28 256x28x28
conv3_2 256 / 3×3 / - / 1
relu3_2 -
conv3_3 256 / 3×3 / - / 1
relu3_3 -
maxpool3 - / 2x2 / 2 / - 256x56x56 256x28x28 256x28x28 256x14x14
conv4_1 512 / 3×3 / - / 1 256x28x28 512x28x28 256x14x14 512x14x14
relu4_1 -

512x28x28 512x28x28 512x14x14 512x14x14
conv4_2 512 / 3×3 / - / 1
relu4_2 -
conv4_3 512 / 3×3 / - / 1
relu4_3 -
maxpool4 - / 2x2 / 2 / - 512x28x28 512x14x14 512x14x14 512x7x7

fire1 -

512x14x14 512x14x14 512x7x7 512x7x7

fire2 -
fire3 -
fire4 -
fire5 -
fire6 -
fire7 -
fire8 -
conv5 2 / 1×1 / - / - 512x14x14 2x14x14 512x7x7 2x7x7

relu_conv5 - 2x14x14 2x14x14 2x7x7 2x7x7
globalAVG_pool - 2x14x14 2x1x1 2x7x7 2x1x1

softmax - 2x1x1 2x1x1 2x1x1 2x1x1

CHAPTER 4. METHODS 44

Table 4.4: HFCNN parameters and operations for input images of size 224×224 and
112×112.

Million Multiply-Add
Layer Thousand Parameters 224×224 112×112
conv1_1 1.73 86.7 21.68
conv1_2 36.86 1, 850 464.42
conv2_1 73.73 924.84 231.21
conv2_2 147.46 1, 850 462.42
conv3_1 294.91 924.84 231.21
conv3_2 589.82 1, 850 462.42
conv3_3 589.82 1, 850 462.42
conv4_1 1, 180 924.84 231.21
conv4_2 2, 360 1, 850 462.42
conv4_3 2, 360 1, 850 462.42
fire1

196.63 38.53 9.63

fire2
fire3
fire4
fire5
fire6
fire7
fire8
conv5 1.02 0.2 0.05
Total 9, 208.23 14, 270 3, 570

CHAPTER 4. METHODS 45

• During training, layers from conv1 up to conv4 were initialized with VGGFace
weights, whereas Xavier initialization [27] was applied for Fire modules and conv5.
By inspecting the size of the network input, Xavier produces initial weights that
guarantee a signal will remain in a reasonable range of values while being forwarded
in the network;

• Adam [47] method was used to optimize the network. Similar to stochastic gradient
descent (SGD), Adam is a gradient-based optimization method that computes adap-
tive learning rates for each parameter from estimates of first and second moments
of the gradients. As suggested by the authors, we use β1 = 0.9, β2 = 0.999 and
ε = 10−8 for its internal parameters that approximate moments.

• We used mini-batches of 256 hybrid images balanced for both classes, shuffling the
training set after each epoch.

• Although the use of pair of images instead of single ones greatly increases the amount
of training pictures, we also used data augmentation to further improve the method’s
robustness to small variations. After normalization, both images of a pair are re-
shaped to 256x256 or 128x128 — depending on desired network configuration —
before hybrid construction. The following augmentations are applied to the resul-
tant hybrid image:

– Crop: during training, each time the optimization visits a hybrid image, a
random position crop of 224×224 (for 256×256 input images) or 112×112 (for
128×128 input images) is performed and fed to the network. However, during
test, the crop is always done in the center of the image.

– Mirror: each training image has a 0.5 probability of being horizontally flipped
before being processed by HFCNN.

• Loss in training and validation sets was registered during optimization. Training was
performed until convergence in validation set or validation loss started to increase
(early stopping).

• The deep learning framework Caffe [44] was used for network definition, training and
experiments. It was selected for its simplicity, the numerous available pre-trained
architectures [87] and for having a stable version ported for Android platform [71];

• All training and experiments were performed in a NVIDIA GeForce TITAN X (Pas-
cal) GPU with 12GB of memory.

4.4 User-specific threshold learning

Defining a probability threshold above which a probe is authenticated is not a trivial
task. Usually choosing a threshold requires balancing the trade-off between TPR and
TNR; a lower threshold means most attempts will be authenticated, increasing TPR at
the cost of lowering TNR, allowing access to intruders. On the other hand, a solution

CHAPTER 4. METHODS 46

with a higher threshold is more rigorous on which images will be authenticated, requiring
a higher confidence that the probe depicts the device owner. Consequently, this reflects in
a TPR decrease — some user’s images will be mistakenly negated — although it reduces
the probability an intruder will gain access to the device, i.e., higher TNR.

All methods implemented in the 2nd tier of our solution analyze pairs of face pictures
and determine if they belong to the same identity and, in contrast to the 1st tier, this
is done without using any information related to the device owner identity. Instead of a
unique threshold for the average of the three probabilities pHOG, pLRPCA and pHFCNN ,
we define a particular threshold associated to each method, in a way to better adjust how
strict or tolerant the final solution is to their individual decisions.

Given the wide range of facial attributes, there might be pairs of identities that are
easier to differentiate and, not only that, as complementary techniques with intrinsic weak
and strong points, a pair may be classified with more confidence by a method than by
other. Additionally, with a limited-sized training, the proposed solution may be deployed
to a device whose owner’s face has completely different characteristics than those present
in training, in which case, a pre-determined set of thresholds may hinder the method’s
performance.

Considering this, we propose a flexible technique to automatically choose the accep-
tance threshold of the 2nd tier classifiers using images from the gallery, balancing both
desired TPR and TNR. This user-specific threshold learning can be performed inside the
mobile device in an offline manner, i.e., when the device is idle, in order to avoid impact
in user experience.

Given the user’s gallery of n face images G = {Igal1 , . . . , Igaln} and a negative gallery
of m face images belonging to different identities O = {Ineg1 , . . . , Inegm}:

• For each Igali ∈ G, construct m sets Si,j using l randomly sampled images from
G− {Igali}, with l < n, i ∈ [1, n] and j ∈ [1,m];

• The positive set P consists of the tuples:

P = {(Igal1 , S1,1), . . . , (Igal1 , S1,m), . . . , (Igaln , Sn,m)}; (4.8)

• Construct n sets Si, where Si consists of all images from G− {Igali}, for i ∈ [1, n] ;

• The negative set N consists of the tuples:

N = {(Ineg1 , S1), . . . , (Ineg1 , Sn), . . . , (Inegn , Sn)}; (4.9)

• Run each tuple of P and N for each 2nd tier method (HOG, LRPCA and HFCNN)
and register their probability;

• For each method, perform a line search for the threshold, maximizing a desired
metric (e.g. accuracy or F-score).

CHAPTER 4. METHODS 47

Figure 4.7: User-specific threshold learning outline.

• In case of a draw, where multiple thresholds maximize the desired metric, the highest
threshold is selected in order to increase TNR.

In this work, during threshold search, we maximized accuracy, while trying to maintain
TPR > 0.9 and TNR > 0.99. Additionally, in this research, we have used galleries of
n = m = 10 images, which gave us equal-sized positive and negative sets of 100 tuples.
For the positive tuples, we sampled l = 7 images from the user’s gallery G. Fig. 4.7
illustrate the pipeline for a single 2nd tier method.

Since it requires all tuples to be processed by each of this tier’s classifiers, the size of
both sets pose a challenge to this method, specially for slower methods such as CNNs.
Suppose each forward takes 1 second, it would need around 3.5 minutes to process 200
tuples. Because of that, we suggest this step to be done when the device is idle to reduce
the usuability impact.

Chapter 5

Results

The complete solution designed in this research is the result of the combination of a series
of smaller, simpler and complementary techniques. In this chapter, we assess the impact
of these individual components, not only to evaluate the whole system’s performance,
but also as a way to examine the possibility of integrating them into other methods or
applying them to other problems.

For most experiments discussed in this chapter, MOT, UVAD and OULU-Train datasets
were used as training sets, while RCD-Test and OULU-Test were test sets (Table 3.2).
We also used RCD-Validation to select the best models when fine-tuning CNNs. The
only experiments that had different data setup were related to the user-specific threshold
learning (Section 5.5). Besides that, within each set, identity pairs and galleries were
constructed following the steps from Section 4.2.

As face detection was not the focus of this work, for experimental purposes, we use
a popular online API1 or a C++ library2, which returns, for a face image, the location
of each eye center. This information is subsequently used for the normalization purposes
exposed in Chapter 2. For the mobile implementation, it is crucial to use a fast local
method to detect faces and, for this reason, we opted for using the already available
Android APIs3.

5.1 Multiview and hybrid images

The multiview approach leverages from the existence of a user’s gallery to improve verifi-
cation. By comparing a probe to all gallery images and averaging the individual results,
it is possible to achieve a better accuracy at the cost of an increased processing time.

In Table 5.1 we explore different multiview setups, varying feature type and number
of gallery images used. For these experiments, we extracted features from each image of
the pair using HOG, LRPCA or VGGFace’s fc8 layer and constructed the final feature
vector by concatenating the absolute difference with the element-wise multiplication of the
individual feature vectors, as explained in Section 4.2.1. We trained a Logistic Regression
classifier with python library scikit-learn [66] on the feature vectors from training pairs,

1http://www.faceplusplus.com/demo-detect/, as of January 2017.
2http://dlib.net/, as of June 2017.
3http://developers.google.com/vision, as of August 2017.

48

http://www.faceplusplus.com/demo-detect/
http://dlib.net/
http://developers.google.com/vision

CHAPTER 5. RESULTS 49

Table 5.1: Multiview exploration for HOG, LRPCA and VGGFace. Accuracy, TPR and
TNR increase as more gallery images are used for authentication.

RCD-Test OULU-Test

Feature
Size of
Gallery

Accuracy
(%)

TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

HOG

- 81.60 74.30 88.90 81.85 77.27 86.42
3 87.21 81.55 92.88 85.08 80.59 89.57
5 88.70 83.60 93.79 85.43 81.09 89.76
7 89.47 84.73 94.21 85.63 81.24 90.02
10 90.05 85.58 94.52 85.83 81.50 90.15

LRPCA

- 83.05 85.79 80.31 89.23 96.01 82.45
3 89.14 92.37 85.90 92.57 99.00 86.14
5 90.71 94.01 87.40 93.37 99.60 87.14
7 91.50 94.73 88.28 93.70 99.86 87.54
10 92.19 95.37 89.00 93.92 99.96 87.89

VGGFace

- 96.40 94.57 98.23 88.90 83.19 94.61
3 98.07 97.25 98.89 90.06 85.10 95.02
5 98.46 97.92 99.00 90.51 85.90 95.12
7 98.56 98.08 99.05 91.01 86.83 95.18
10 98.69 98.29 99.09 91.57 87.95 95.20

using 10-fold cross-validation to find the best hyperparameter setup. Finally, each testing
pair had its feature vector constructed and classified.

For all three methods, the use of multiple images during testing significantly improves
the performance. However, it also means that for each authentication attempt we will
process a pair for each gallery image used in multiview. This may not be an issue with
HOG and LRPCA since they are considerably faster (in the order of milliseconds), however
processing multiple pairs with data-driven methods may not be possible in a real-time ap-
plication. To avoid this, instead of storing the gallery images, it is preferable to store their
extracted features and, when authenticating, only the probe is processed before building
the multiview feature vectors. However, this may still pose an obstacle in applications
where the gallery needs to be frequently updated.

Considering this, hybrid images offer an advantage and a disadvantage in relation to
multiview. They directly halve the number of forward passes of a network by combining
probe and gallery images into one, saving a lot of processing time for a gallery with several
images. Nevertheless, since they encode pair information, it is not possible to store the
features related to the gallery beforehand and only process the probe at testing time. This
last point has a negative impact on multiview’s efficiency and, in order to circumvent this,
we proposed the hybrid image setup from Section 4.2.2, using the probe and the average
image of the whole gallery. In our experiments, we have explored several hybrid image
formulations, obtaining the most promising results with two of them:

• (Probe, Gallery Image, 0): we stack the probe as the first channel, a gallery
image as the second and an image where every pixel has zero value as the third.

CHAPTER 5. RESULTS 50

Table 5.2: Hybrid-image exploration for fine-tuned VGGFace and both versions of
HFCNN. The hybrid formulation built with the gallery average image achieves a better
result in most cases while also decreasing the number of forward passes in the networks.

RCD-Test OULU-Test

Architecture
Hybrid

Formulation
Size of
Gallery

Accuracy
(%)

TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

VGGFace
Fine-tuned

(Probe, Gal, 0) 1 84.37 73.22 95.52 86.01 73.88 98.14
10 91.53 83.89 99.17 92.61 85.51 99.71

(Probe, Avg Gal, 0) 10 92.80 87.66 97.94 94.83 91.74 97.93

HFCNN
224×224

(Probe, Gal, 0) 1 88.22 87.58 88.87 87.38 84.46 90.29
10 96.08 95.73 96.42 95.81 97.43 94.20

(Probe, Avg Gal, 0) 10 93.82 90.89 96.76 97.69 96.72 98.65

HFCNN
112×112

(Probe, Gal, 0) 1 85.23 79.53 90.93 86.23 82.31 90.14
10 93.53 90.31 96.76 91.38 88.32 94.44

(Probe, Avg Gal, 0) 10 93.67 89.22 98.11 94.79 92.54 97.05

Since this formulation can be used with the multiview approach, besides reporting
results for a single image, we also experiment with a gallery of 10 images.

• (Probe, Gallery Average Image, 0): as a way to avoid processing multiview’s
multiple pairs, we build the hybrid image by averaging 10 gallery images. This
formulation is the same as the one explained in Section 4.2.2.

We have fine-tuned VGGFace and HFCNN architectures with these types of hybrid
images, using the same setups of dropout, data augmentation and optimization algorithm
explained in Section 4.3. We experimented with HFCNN with both 224×224 and 112×112
input sizes, however HFCNN 112×112 versions had its weights pre-initialized from the
correspondent HFCNN 224×224 model before fine-tuning. We tested the pairs from
RCD-Test and OULU-Test datasets and present the results in Table 5.2.

These experiments reinforce the importance of comparing the probe to more than one
gallery image. Similar to the multiview experiments, the accuracy is improved as more
images are used, either by averaging the scores of 10 hybrid images as well as processing a
single hybrid image built from the average image of the gallery. This is due mostly because
when multiple images are taken into account the influence of intra-class variations — such
as illumination, occlusion, imperfections on face alignment, make-up or facial expression
— are lessened, allowing the method to focus on the characteristics that differentiate two
identities.

Both hybrid formulations have similar performances, with the second setup achieving
a slightly better accuracy in most cases. More importantly, since it average all gallery
images, this formulation allows a single network forward pass despite the gallery’s size,
which is important to reduce processing time.

CHAPTER 5. RESULTS 51

5.2 Fusion of hand-crafted and data-driven features for
the 2nd Tier

In Table 5.3, we explore different combinations of the methods employed in the 2nd tier in
order to assess their overall importance to the solution. The fusion result is the majority
vote of the decision of each individual method (using a default threshold of 0.5) that a
probe belongs to the identity depicted in the gallery. For efficiency purposes, we have
selected HFCNNs versions trained with hybrid images constructed with the average of
a gallery of 10 images, while multiview approach with the same amount of pictures was
used for HOG and LRPCA. We expose in Table 5.4 a time estimate to process a single
image for each individual method.

Table 5.3: Fusion of hand-crafted and data-driven methods. As each feature capture
different facial attributes, their fusion achieves better results than each one separately.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

HOG (I) 90.05 85.58 94.52 85.83 81.50 90.15
LRPCA (II) 92.19 95.37 89.00 93.92 99.96 87.89

HFCNN 224×224 (III) 93.82 90.89 96.76 97.69 96.72 98.65
HFCNN 112×112 (IV) 93.67 89.22 98.11 94.79 92.54 97.05

I + II 94.44 92.52 96.36 95.84 97.81 93.88

I + III 94.69 91.25 98.13 97.83 96.74 98.93
II + III 94.73 92.07 97.38 98.37 97.91 98.84

I + II + III 95.49 92.55 98.43 98.28 97.69 98.87

I + IV 94.23 89.78 98.67 94.80 92.41 97.20
II + IV 94.30 90.32 98.27 95.32 93.47 97.17

I + II + IV 95.12 91.44 98.80 95.38 93.52 97.24

Table 5.4: Time analysis for 2nd tier methods for a single image. HOG and LRPCA feature
extraction have the advantage of being very fast, allowing them to process multiple images
per authentication attempt without impacting device usability. Whereas, HFCNN offers
an overall better accuracy, at the cost of a longer processing time.

Processing Time (ms)
Method Smartphone A Smartphone B
HOG 0.34 0.44

LRPCA 0.67 0.98
HFCNN 224×224 4, 567.00 2, 429.10
HFCNN 112×112 1, 153.80 798.40

Besides outperforming pairwise combinations, the fusion of HOG, LRPCA and HFCNN
almost achieves the aimed TPR and TNR (90% and 99%, respectively). Regarding both
HFCNN architectures, it is important to notice, by concomitantly examining Table 5.3

CHAPTER 5. RESULTS 52

and 5.4, the trade-off between a better accuracy (fusion with HFCNN 224 × 224) and a
smaller processing time (combining with HFCNN 112×112). However, both architectures
are considerably slower when compared with HOG and LRPCA.

In this sense, to further decrease the processing time of an authentication, it was nec-
essary to either speed up HFCNN or to limit the frequency an image would be processed
by the neural network. In view of the difficulty to make HFCNN faster without compro-
mising accuracy, this motivated us to introduce the user-specific tier, as a preliminary
step to filter the most common authentication cases in practice — i.e., the owner trying
to access his or her device — using only hand-crafted features for efficiency.

5.3 User-specific verification for the 1st tier

Training or fine-tuning a CNN inside a mobile device is a costly and time-consuming task,
besides strongly dependent on the framework or library being used and, because of that,
it is preferable to embed an already-trained CNN to the mobile instead. However this also
implicates that it is not straightforward to adapt the model with specific facial features of
the device owner. Differently, HOG and LRPCA can be used to train a classifier inside the
device, since they are features that are quickly extracted and have low memory footprint.

As a preliminary step to filter which images will be analyzed by the 2nd tier, we
explored inside-device training of classifiers with hand-crafted features. Instead of tackling
the pairwise "same identity or not" task, we use the owner’s gallery built during the
enrollment to train a user-specific single-image classifier; i.e., to determine if a probe
depicts the device owner or not. Aside from the enrollment gallery, referred as the positive
gallery, a negative gallery consisting of face images from different people was embedded
into the mobile device to be used in training.

It is important to note that, in order to forward as few images as possible to the 2nd

tier, this step must be able to correctly classify the most common authentication scenario;
which, in a single-user mobile device, would be the owner trying to access his or her own
device. Therefore, we want this step to have a high TPR.

For this experiments, we randomly sampled a negative gallery from the images of MOT,
UVAD and OULU-Train. For each pair of RCD-Test and OULU-Test, we considered its
gallery as positive images and trained a linear SVM. Once trained, the probe of the
pair was classified. Every experiment was performed 20 times — each one with a new
negative images — and the annotated accuracy, TPR and TNR is the average among
them. These steps were repeated using pairs from RCD-Validation in order to find the
best hyperparameters for the SVM.

In Fig. 5.1, we explore how the size of the gallery affects the performance of the
classifiers, varying from 3 to 10 images per gallery. We chose to limit to a 10-image
gallery, since it is the amount of images being captured during enrollment. Similar to
the multiview experiments (Table 5.1), as the gallery size increases, both methods, and
consequently their fusion, perform better.

Since the setup with 10 images in each gallery achieved the highest TPR, we fixed the
positive gallery size and, in Fig. 5.2, we explored how the user-specific classifiers behaved

CHAPTER 5. RESULTS 53

TP
R

(%
)

70

76

82

88

94

100

3 5 7 10

US-HOG US-LRPCA 1st TIER

TN
R

(%
)

70

76

82

88

94

100

3 5 7 10

NUMBER OF TRAINING IMAGES IN BOTH GALLERIES
(a) RCD-Test.

TP
R

(%
)

70

76

82

88

94

100

3 5 7 10

US-HOG US-LRPCA 1st TIER

TN
R

(%
)

70

76

82

88

94

100

3 5 7 10

NUMBER OF TRAINING IMAGES IN BOTH GALLERIES

(b) OULU-Test.

Figure 5.1: User-specific recognition (balanced training) for (a) RCD-Test and (b) OULU-
Test. As the number of images increases the overall performance also improves; besides
that, the fusion of HOG and LRPCA outperforms both of them separately.

CHAPTER 5. RESULTS 54

Table 5.5: Results for the complete 2-tiered method. We also report separate performances
for each tier and each method within it.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

US-HOG 96.73 96.07 97.39 90.26 99.83 80.69
US-LRPCA 94.18 93.43 94.93 91.19 99.78 82.59

1st Tier only 97.04 96.14 97.94 91.14 99.82 82.46

HOG 90.05 85.58 94.52 85.83 81.50 90.14
LRPCA 92.19 95.37 89.00 93.92 99.96 87.89

HFCNN - 112×112 93.67 89.22 98.11 94.79 92.54 97.05
HFCNN - 224×224 93.82 90.89 96.76 97.69 96.72 98.65

2nd Tier only
112×112 95.12 91.44 98.80 95.38 93.52 97.24

2nd Tier only
224×224 95.49 92.55 98.43 98.28 97.69 98.87

2-Tiered Method
112×112 96.51 93.39 99.63 98.26 99.65 96.86

2-Tiered Method
224×224 96.73 93.88 99.58 98.48 99.67 97.29

for bigger negative galleries. As the training involves more negative samples, the SVM
decision boundary is moved to better separate the negative class, however allowing some
positives to be incorrectly classified.

Considering we aim at the highest TPR possible in this step, we select the balanced
setup with 10 images in both galleries to compose the 1st tier step.

5.4 2-Tiered method

The components explored in previous sections are combined to form the complete 2-
tiered method. We use the late fusion of user-specific HOG and LRPCA as the 1st tier’s
probability and the majority vote of HOG, LRPCA and HFCNN is used as the 2nd tier’s
decision.

Since the 1st tier (user-specific) acts as a filter step, it is important to define when a
probe should be authenticated or denied by that tier’s classifiers, or it should proceed to
the 2nd tier. This is done by comparing the 1st tier score to two thresholds. If a score falls
above the higher threshold, access to the smartphone is allowed, while if it falls below the
lower threshold, access is denied; finally, if the score is between both thresholds, then the
image is processed by the 2nd tier.

In Table 5.5, we present a summary of the results from the methods that constitute
each tier and the complete 2-tiered method. For these experiments, we have selected a
higher threshold of 0.7 and a lower threshold of 0.5.

Although the 2-tiered method may not improve accuracy, TPR and TNR so much

CHAPTER 5. RESULTS 55

TP
R

(%
)

80

84

88

92

96

100

10 30 50 100

US-HOG US-LRPCA 1st TIER

TN
R

(%
)

80

84

88

92

96

100

10 30 50 100

NUMBER OF TRAINING IMAGES IN NEGATIVE GALLERY
(POSITIVE GALLERY SIZE = 10)

(a) RCD-Test.

TP
R

(%
)

80

84

88

92

96

100

10 30 50 100

US-HOG US-LRPCA 1st TIER

TN
R

(%
)

80

84

88

92

96

100

10 30 50 100

NUMBER OF TRAINING IMAGES IN NEGATIVE GALLERY
(POSITIVE GALLERY SIZE = 10)

(b) OULU-Test.

Figure 5.2: User-specific recognition (unbalanced training) for (a) RCD-Test and (b)
OULU-Test. With more negative samples in training, the model is able to better classify
the negative class, however this reflects in a lower TPR.

CHAPTER 5. RESULTS 56

when compared to each tier separately, it is important to note the impact of each tier
in the complete method. The 1st tier offers an expressive speed-up, since extracting and
classifying a probe takes in the order of milliseconds, in comparison to the 0.8 second taken
by HFCNN. On the other hand, to achieve a high TPR in this step we have selected the
training set proportions between negative and positive images and have strictly limited
the amount of images used in training. Naturally, just a few samples from each class are
not enough to capture the whole range of facial characteristics from identities distinct
from the device owner, nor to be robust to different capture conditions and alterations
like illumination, head pose or occlusion.

This strongly reinforces the need of a gallery captured in most distinct capture condi-
tions as possible. While RCD and MOT are diverse datasets, OULU-NPU has very little
variation in illumination and head pose, which reflects into homogeneous galleries. Since
we selected MOT images to compose the negative spectrum when training the user-specific
classifier, most samples from OULU’s identities that are different from the classifier’s tar-
get individual present conditions that approximate them to the positive spectrum. This
reflects to a lower TNR for OULU-Test, that is later fixed by the 2nd Tier.

Another important aspect of the 2-tiered method is the higher and lower threshold
selection. They provide a simple way to balance the trade-off between speed, TPR and
TNR. For example, by increasing the higher threshold it is possible to be stricter when
the 1st tier authenticates a probe. This increase false rejections (by lowering TPR), but
decrease false acceptances (by increasing TNR).

Besides security, there is also an efficiency aspect related to threshold selection. They
also control how many images follow to the 2nd tier and how many are automatically
authenticated or denied by the previous step, which directly relates to the overall speed
of the solution. Ultimately, we wish most attempts to be dealt with by the 1st tier, while
the next step only process those near the 1st tier’s decision frontier, where the classifiers
have low confidence. Different setup of both thresholds can be offered as an option to the
device owner, controlling the trade-off between speed and security. In Fig. 5.3, we expose
some threshold setups, the corespondent results for RCD-Test and HFCNN 112×112, and
the percentage of samples processed by each tier. A more complete exploration can be
found in Appendix A for both RCD-Test and OULU-Test.

5.5 User-specific threshold learning for the 2nd tier

The user-specific threshold learning was proposed as a way to adapt the methods to
images with different characteristics than the ones present during training, while also
incorporating information about the device owner into the 2nd tier.

We trained the 2-tiered method with MOT and UVAD datasets, keeping OULU-Train
outside training in order to emulate images with unseen characteristics when testing in
OULU-Test. With the threshold learning setup proposed in Section 4.4, 200 hybrid images
are processed for each testing sample per 2nd tier method, which is very time-consuming
for datasets as big as RCD-Test and OULU-Test. In this sense, we tested with 20% of
each dataset’s samples, randomly selected and balanced for positive and negative classes.

CHAPTER 5. RESULTS 57

% of examples  
solved in the 1st tier

%

75

81,25

87,5

93,75

100

LOWER THRESHOLD

0.2 0.3 0.4 0.5 0.6

TPR TNR

(HIGHER THRESHOLD = 0.7)

(a) Lower threshold exploration for RCD-Test.

% of examples  
solved in the 1st tier

%

73

79,75

86,5

93,25

100

HIGHER THRESHOLD

0.6 0.7 0.8 0.9

TPR TNR

(LOWER THRESHOLD = 0.5)

(b) Higher threshold exploration for RCD-Test.

Figure 5.3: Exploration of the (a) lower threshold, while maintaining the higher threshold
in 0.7; and (b) higher threshold, while keeping the lower threshold in 0.5. The selection of
lower and higher thresholds influences TPR and TNR, as well as the percentage of images
that must be analyzed by the 2nd tier (gray area in the graph).

CHAPTER 5. RESULTS 58

Table 5.6: User-specific threshold learning. The top block of rows presents information
regarding the 1st tier, that is not affected by threshold learning; the performance of the
2nd tier with and without threshold learning is shown in the middle and bottom blocks
respectively. By learning the 2nd tier acceptance thresholds we manage to adapt individual
methods to the image’s characteristics from OULU-NPU that were not present during
training.

RCD-Test (20%) OULU-Test (20%)

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

US-HOG 96.75 95.90 97.59 90.82 99.88 81.76
US-LRPCA 94.15 93.37 94.93 90.84 99.78 81.90
1st Tier 97.01 96.02 98.00 92.36 99.88 84.85

Without
Threshold
Learning

HOG 90.51 84.47 96.55 77.94 93.64 62.25
LRPCA 92.42 95.94 88.90 63.74 100.0 27.48

HFCNN 112×112 93.44 89.18 97.70 89.74 97.03 82.45
2nd Tier 95.59 93.05 98.14 90.00 98.10 63.89

2-Tiered Method 96.59 93.70 99.48 93.66 99.76 87.57

With
Threshold
Learning

HOG 90.25 86.82 93.68 94.99 98.69 91.29
LRPCA 91.45 88.45 94.45 93.63 99.26 87.99

HFCNN 112×112 88.27 76.75 99.78 93.15 94.41 91.89
2nd Tier 93.50 88.18 98.81 96.86 99.32 94.40

2-Tiered Method 95.55 91.64 99.46 97.67 99.77 95.57

Under these circumstances, we expose in Table 5.6 each tier’s components separately
and their fusion to achieve the tier performance. Furthermore, both tiers are combined
into the final 2-tiered method, that is tested with standard thresholds — a lower threshold
of 0.5 and a higher threshold of 0.7. Since the 1st tier (top block of Table 5.6) is not altered
by threshold learning, it is shared by both versions of the 2nd tier (middle block of Table 5.6
without learned thresholds — using an acceptance threshold of 0.5 for all three 2nd tier
methods — and bottom block with learned thresholds).

When not trained with OULU images, HOG and LRPCA are considerably affected.
However, threshold learning is able to adapt the 2nd tier methods, improving the complete
solution for OULU-Test dataset. For RCD dataset, the threshold learning has negatively
impacted individual methods — in most cases decreasing TPR and slightly increasing
TNR due to how the threshold is selected — but this was lessened by the fusion all
components and the combination with the 1st tier.

5.6 Comparison with existing methods

Many methods in the literature have approached the facial recognition task either in
verification or in identification scenarios. However, only few were focused in the mobile
environment, where it is necessary to ponder other factors besides accuracy. For this
comparison, we have considered:

• 2-Tiered Method: both versions of the proposed method, with HFCNN’s inputs
of size 224×224 and 112×112.

CHAPTER 5. RESULTS 59

Table 5.7: Comparison of the proposed 2-tiered method with existing methods proposed
for face recognition in the literature.

RCD-Test OULU-Test

Method
Accuracy

(%)
TPR
(%)

TNR
(%)

Accuracy
(%)

TPR
(%)

TNR
(%)

2-Tiered Method
112×112 96.51 93.39 99.63 98.26 99.65 96.86

2-Tiered Method
224×224 96.73 93.88 99.58 98.48 99.67 97.29
VGGFace 96.40 94.57 98.23 88.90 83.19 94.61

VGGFace Fine-tuned
(Probe, Avg Gal, 0) 92.80 87.66 97.94 94.83 91.74 97.93

ResFace101 92.76 93.84 91.67 91.30 93.77 88.84

Table 5.8: Time and memory analysis for CNNs

Forward Pass Duration (s)

Architecture
Million of

Multiply-add Smartphone A Smartphone B
Thousand of
Parameters

Model
Size (MB)

HFCNN 224×224 14, 270 4.57 2.43 9, 208 35
HFCNN 112×112 3, 570 1.15 0.80 9, 208 35

VGGFace 15, 468 10.27 3.03 134, 263 553
ResFace101 7, 610 4.31 2.35 64, 060 257
MobileNet 574 1.08 0.34 4, 230 16
SqueezeNet 388 0.23 0.21 1, 230 5
GoogLeNet 1, 600 0.97 0.89 6, 990 51

• VGGFace: we used the network’s fc7 layer as feature extractor. The feature
vector of a pair of images consists of the absolute difference and element-wise mul-
tiplication of the feature vectors of individual images. A linear SVM trained with
it determined the verification outcome. This corresponds to the method presented
in the experiments from Table 5.1 without multiview approach.

• Fine-tuned VGGFace: the network fine-tuned with hybrid images proposed in
Section 4.2.2. This corresponds to the method presented in the experiments from
Table 5.2 with hybrid image consisting of the probe and the gallery average image,
trained with the same protocol as HFCNN.

• ResFace101: a version of the ResNet-101 network, a residual network [33] with
101 layers, fine-tuned for face recognition with CASIA [94] images following the
data augmentation described in [58]. For the verification task, we have followed the
same steps performed with VGGFace, using the network as a feature extractor and
training a SVM with pair’s feature vectors.

In Table 5.7, we present the results for the considered methods for RCD-Test and
OULU-Test images. The method proposed in this work outperforms, or compares to, the
other solutions for both datasets.

We have also chosen state-of-the-art CNNs to compare with the architecture proposed
in this work. We present in Table 5.8 the analysis regarding number of operations, pa-

CHAPTER 5. RESULTS 60

rameters, and also time and memory consumption. Although MobileNet, SqueezeNet and
GoogLeNet were designed budgeting number of parameters and operations, they were not
trained for the face recognition scenario. Because of that, we did not included them in
the comparison presented in Table 5.7.

In comparison to VGGFace, the baseline architecture for this research, we have greatly
reduced the number of parameters and performed operations, however HFCNN still need
to be further modified to outperform architectures tweaked for efficiency, such as Mo-
bileNet and SqueezeNet. A step to improve our network would be to exchange the initial
convolutions before the Fire modules to depthwise separable convolutions from Xception
architecture [15], further reducing the number of parameters and operations performed,
but requiring all layers to be trained from scratch.

5.7 Answering research questions

With the proposed methods and the results exposed in this chapter, we are now able to
answer the research questions posed in Section 1.1:

I. Considering the mobile environment’s resource limitations and the com-
putational cost of running a deep network in it, is deep learning a neces-
sary approach for this kind of application?

Although the deep networks explored in this work are less efficient than methods
based on hand-crafted features, as exposed in Tables 5.8 and 5.4, data-driven models
are known to be powerful and robust, capable of overcoming several limitations of
feature engineered representations. Despite the gap in efficiency, in our experiments,
CNNs have achieved better results than HOG and LRPCA classifiers.

II. Is it possible to design a deep learning solution for the face verification
problem bearing in mind the mobile environment’s resource limitations?

Yes, the 2-tiered method proposed in this research performs up to par with VG-
GFace, one of the state-of-the-art methods for face recognition, while greatly reduc-
ing processing time and memory footprint. When compared to other CNNs tweaked
for efficiency, such as MobileNet or SqueezeNet (networks that were not trained for
facial verification), HFCNN is still up to four times slower and its model twice bigger.
However it is definitely a viable architecture for mobile real-time applications.

III. Would a fusion of deep and hand-crafted approaches lead to better ac-
curacy than the methods separately?

Yes, our experiments showed that hand-crafted and data-driven techniques can com-
plement each other and their fusion performs better than those methods separately
for the task at hand.

IV. How many images should a user’s gallery have and in what resolution
should they be?

CHAPTER 5. RESULTS 61

Our experiments showed a performance improvement as more images were used,
however it may also imply in increasing processing time (e.g., if we need to process
each multiview pair every time). We used images in 224×224 and 112×112 resolu-
tions and both HFCNN setups had similar performances, although 112×112 version
is 3 times faster.

V. Is it possible to adapt multi-class networks for the binary verification
scenario, without a significant increase in memory and processing time?

Yes, by using hybrid images we were able to encode information of the probe and
gallery images into a single one without increasing time and memory usage. With
this approach, no architectural modification is necessary to adapt a network for the
verification task.

VI. Would user-specific information improve our solution? If so, how should
it be incorporated?

Not only it improved accuracy, but by adding a user-specific classification with
fast-extraction features we were able to manage the method’s bottleneck regard-
ing processing time. In addition to that, learning a user-specific threshold for a
user-independent task, such as "same identity or not" verification, also improved
performance.

Chapter 6

Conclusion and Future Work

In this research, we have proposed a method for facial verification optimized for the mobile
environment. A real-time application in this scenario needs to take into account factors
such as memory usage, unstable connectivity, battery consumption and limited processing
power in order to impact neither its own performance nor the system as a whole.

The designed method consists of a 2-tiered procedure that combine hand-crafted and
data-driven features to verify if the person present in a picture corresponds to the device
owner. The 1st tier employs the fusion of two user-specific linear SVMs trained on HOG
and LRPCA features extracted directly from the user’s gallery images. This training
is done inside the device once the enrollment process is concluded and is focused on
authenticating with a high TPR. Whereas the 2nd tier fuses the results of a CNN and
two logistic regression classifiers trained on HOG and LRPCA features. Contrary to the
previous tier, this step’s techniques aim to check if two images depict the same identity,
without considering information about the device owner. Lastly, we adjust the acceptance
threshold of the 2nd tier’s classifiers with pairs of images constructed with the owner’s
gallery in order to better adjust this last step to his or her characteristics.

One of the main contributions of this work, the Hybrid-Fire CNN architecture was
inspired on VGGFace [64] and SqueezeNet [40] and was able to perform a par with VG-
GFace, but with a model 16 times smaller and 4 times faster. Besides architectural adjusts
thought directly for the mobile environment, HFCNN uses hybrid images that combine
the information of multiple face pictures into one, as a way to limit the necessity of
multiple forward passes. Hybrid images can also be viewed as a simple way to adapt a
multi-class formulation, in our case face identification in a domain with multiple identi-
ties, to a binary verification formulation, identifying if two pictures belong to the same
identity.

In addition to these contributions, we have also collected a new dataset focused on selfie
pictures1. The RECOD Selfie Dataset comprises 2873 images from 56 individuals with
varied capture conditions regarding illumination, head pose, partial occlusion, background
and facial expression.

Many research paths related to what have been done in this work can be explored in
future works. The proposed 2-tiered solution can be extended to the identification task,

1dx.doi.org/10.6084/m9.figshare.5427142

62

dx.doi.org/10.6084/m9.figshare.5427142

CHAPTER 6. CONCLUSION AND FUTURE WORK 63

where we need to relate a probe to a single identity among all present in a database. In
this scenario, it is not viable to compare a probe to the gallery of all possible identities
for a real-time application. In this case, an alternative to decrease processing time would
be to compare the probe with its cohorts, i.e., groups of identities that have similar
characteristics.

Additionally, we would like to further lighten HFCNN architecture by exploring a more
extensive use of depthwise separable convolutions [15], as a mean to decrease the number
of operations performed and consequently speed up the network. Although our model is
considerably small, deep compression and network pruning methods could still be used to
reduce it even more.

Regarding the hybrid image formulation, we believe that it is possible to improve
recognition by adding relevant information to its third channel. Besides that, this formu-
lation can also be applied to other tasks and problems, e.g., composing the hybrid image
with a channel for each of two consecutive frames and information related to their changes
for a video task.

Finally, we would like to explore different ways to compose the gallery, in order to
select — during enrollment or update of the gallery — the most discriminative images
among the full set and discard those that are not useful to the verification.

Bibliography

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary pat-
terns: Application to face recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(12):2037–2041, 2006.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces:
Recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):711–720, 1997.

[3] Y. Bengio. Learning deep architectures for AI. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-
wise training of deep networks. Advances in neural information processing systems,
19:153, 2007.

[5] Luca Bondi, Luca Baroffio, Matteo Cesana, Marco Tagliasacchi, G Chiachia, and
Anderson Rocha. Rate-energy-accuracy optimization of convolutional architectures
for face recognition. Journal of Visual Communication and Image Representation,
36:142–148, 2016.

[6] Danyl Bosomworth. Mobile marketing statistics 2015. Leeds: Smart Insights (Mar-
keting Intelligence) Ltd, 2015.

[7] Z. Boulkenafet, J. Komulainen, Z. Akhtar, A. Benlamoudi, S. Bekhouche, A. Ouafi,
F. Dornaika, A. Taleb-Ahmed, L. Qin, F. Peng, L.B. Zhang, M. Long, S. Bhilare,
V. Kanhangad, A. Costa-Pazo, E. Vazquez-Fernandez, D. Perez-Cabo, J. J. Moreira-
Perez, D. Gonzalez-Jimenez, A. Mohammadi, S. Bhattacharjee, S. Marcel, S. Volkova,
Y. Tang, N. Abe, L. Li, X. Feng, Z. Xia, X. Jiang, S. Liu, R. Shao, P. C. Yuen,
W. Almeida, F. Andalo, R. Padilha, G. Bertocco, W. Dias, J. Wainer, R. Torres,
A. Rocha, M. A. Angeloni, G. Folego, A. Godoy, and A. Hadid. A competition on
generalized software-based face presentation attack detection in mobile scenarios. In
IEEE International Joint Conference on Biometrics, To appear.

[8] Z. Boulkenafet, J. Komulainen, Lei. Li, X. Feng, and A. Hadid. OULU-NPU: A
mobile face presentation attack database with real-world variations. In IEEE Inter-
national Conference on Automatic Face and Gesture Recognition, 2017.

64

BIBLIOGRAPHY 65

[9] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
Signature verification using a ’siamese’ time delay neural network. In Advances in
neural information processing systems, pages 737–744, 1994.

[10] AT&T Laboratories Cambridge. The Database of Faces . http://www.cl.cam.ac.
uk/research/dtg/attarchive/facedatabase.html, May, 2017.

[11] Pierluigi Carcagnì, Marco Del Coco, Pier Luigi Mazzeo, Andrea Testa, and Cosimo
Distante. Features descriptors for demographic estimation: a comparative study. In
International Workshop on Video Analytics for Audience Measurement in Retail and
Digital Signage, pages 66–85, 2014.

[12] Rama Chellappa, Pawan Sinha, and P Jonathon Phillips. Face recognition by com-
puters and humans. IEEE Computer, 43(2), 2010.

[13] Giovani Chiachia. Learning person-specific face representations. PhD thesis, State
University of Campinas, 2013.

[14] Kwontaeg Choi, Kar-Ann Toh, and Hyeran Byun. Realtime training on mobile de-
vices for face recognition applications. Pattern Recognition, 44(2):386–400, 2011.

[15] François Chollet. Xception: Deep learning with depthwise separable convolutions.
arXiv preprint arXiv:1610.02357, 2016.

[16] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrim-
inatively, with application to face verification. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 539–546, 2005.

[17] D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach
to unconstrained face recognition. In IEEE International Conference on Automatic
Face and Gesture Recognition, pages 8–15, 2011.

[18] David Cox and Nicolas Pinto. Beyond simple features: A large-scale feature search
approach to unconstrained face recognition. In IEEE International Conference on
Automatic Face and Gesture Recognition, pages 8–15, 2011.

[19] Zhen Cui, Wen Li, Dong Xu, Shiguang Shan, and Xilin Chen. Fusing robust face
region descriptors via multiple metric learning for face recognition in the wild. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 3554–3561,
2013.

[20] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

[21] Kresimir Delac and Mislav Grgic. A survey of biometric recognition methods. In
IEEE International Symposium on Electronics in Marine, pages 184–193, 2004.

[22] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting
parameters in deep learning. In Advances in neural information processing systems,
pages 2148–2156, 2013.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

BIBLIOGRAPHY 66

[23] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
Exploiting linear structure within convolutional networks for efficient evaluation. In
Advances in neural information processing systems, pages 1269–1277, 2014.

[24] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,
Ramesh Govindan, and Deborah Estrin. Diversity in smartphone usage. In ACM In-
ternational Conference on Mobile Systems, Applications and Services, pages 179–194,
2010.

[25] TechCrunch Fitz Tepper. MasterCard launches its ‘selfie pay’ biomet-
ric authentication app in Europe. https://techcrunch.com/2017/09/12/
face-id-is-replacing-touch-id-on-the-new-iphone-x/, September, 2017.

[26] William T Freeman and Michal Roth. Orientation histograms for hand gesture recog-
nition. In International Workshop on Automatic Face and Gesture Recognition, vol-
ume 12, pages 296–301, 1995.

[27] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial Intelligence
and Statistics, pages 249–256, 2010.

[28] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[29] David Gschwend. Netscope CNN Analyzer . http://dgschwend.github.io/
netscope/quickstart.html, June, 2017.

[30] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[31] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015.

[32] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 5353–5360,
2015.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[34] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. MIT Neural Computation, 18(7):1527–1554, 2006.

[35] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

https://techcrunch.com/2017/09/12/face-id-is-replacing-touch-id-on-the-new-iphone-x/
https://techcrunch.com/2017/09/12/face-id-is-replacing-touch-id-on-the-new-iphone-x/
http://dgschwend.github.io/netscope/quickstart.html
http://dgschwend.github.io/netscope/quickstart.html

BIBLIOGRAPHY 67

[36] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[37] Fu Jie Huang, Y-Lan Boureau, Yann LeCun, et al. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2007.

[38] Gary B Huang, Honglak Lee, and Erik Learned-Miller. Learning hierarchical rep-
resentations for face verification with convolutional deep belief networks. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2518–2525, 2012.

[39] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical report, University of Massachusetts, Amherst, 2007.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
size. arXiv preprint arXiv:1602.07360, 2016.

[41] A. Jain, L. Hong, and S. Pankanti. Biometric identification. Communications of the
ACM, 43(2):90–98, 2000.

[42] A. K. Jain, R. Bolle, and S. Pankanti. Biometrics: personal identification in net-
worked society. Springer US, 2006.

[43] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition.
IEEE Transactions on Circuits and Systems for Video Technology, 14(1):4–20, 2004.

[44] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[45] T. Kanade. Picture processing system by computer complex and recognition of human
faces. PhD thesis, Kyoto University, 1973.

[46] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The
megaface benchmark: 1 million faces for recognition at scale. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4873–4882, 2016.

[47] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

BIBLIOGRAPHY 68

[49] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D
Jackel. Optimal brain damage. In Advances in neural information processing systems,
volume 2, pages 598–605, 1989.

[50] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[51] S. Z. Li and A. K. Jain. Handbook of face recognition. Springer-Verlag London, 2
edition, 2011.

[52] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[53] TIME Lisa Eadicicco. Americans Check Their Phones 8 Billion Times a Day . http:
//time.com/4147614/smartphone-usage-us-2015/, June, 2017.

[54] Chengjun Liu and Harry Wechsler. A shape-and texture-based enhanced fisher clas-
sifier for face recognition. IEEE Transactions on Image Processing, 10(4):598–608,
2001.

[55] David G Lowe. Distinctive image features from scale-invariant keypoints. Internatinal
Journal of Computer Vision, 60(2):91–110, 2004.

[56] J. Lu, V. E. Liong, X. Zhou, and J. Zhou. Learning compact binary face descriptor for
face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(10):2041–2056, 2015.

[57] Aleix M Martinez. The AR face database. CVC Technical Report, 24, 1998.

[58] Iacopo Masi, Anh Tran, Tal Hassner, Jatuporn Toy Leksut, and Gérard Medioni.
Do We Really Need to Collect Millions of Faces for Effective Face Recognition? In
European Conference on Computer Vision, 2016.

[59] B Miller. Everything you need to know about biometric identification. personal
identification news 1988 biometric industry directory. washington dc: Warfel & miller.
Inc., Washington DC, 1988.

[60] Cisco Mobile. Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2016–2021 . http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html, June, 2017.

[61] TechCrunch Natasha Lomas. MasterCard launches its ‘selfie pay’ biomet-
ric authentication app in Europe. https://techcrunch.com/2016/10/04/
mastercard-launches-its-selfie-pay-biometric-authentication-app-in-europe/,
September, 2017.

[62] Engadget Nick Summers. Mastercard’s ’selfie pay’ comes to Europe. https://www.
engadget.com/2016/10/04/mastercard-online-selfie-pay-europe/, Septem-
ber, 2017.

http://time.com/4147614/smartphone-usage-us-2015/
http://time.com/4147614/smartphone-usage-us-2015/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://techcrunch.com/2016/10/04/mastercard-launches-its-selfie-pay-biometric-authentication-app-in-europe/
https://techcrunch.com/2016/10/04/mastercard-launches-its-selfie-pay-biometric-authentication-app-in-europe/
https://www.engadget.com/2016/10/04/mastercard-online-selfie-pay-europe/
https://www.engadget.com/2016/10/04/mastercard-online-selfie-pay-europe/

BIBLIOGRAPHY 69

[63] Margarita Osadchy, Yann Le Cun, and Matthew L Miller. Synergistic face detec-
tion and pose estimation with energy-based models. Journal of Machine Learning
Research, 8(May):1197–1215, 2007.

[64] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition.
In British Machine Vision Conference, volume 1, page 6, 2015.

[65] Saffe Payments. Saffe, your money, your face. http://www.saffe.com.br/, Septem-
ber, 2017.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[67] Alex Pentland and Tanzeem Choudhury. Face recognition for smart environments.
IEEE Computer, 33(2):50–55, 2000.

[68] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. O’Toole, D. S. Bolme,
J. Dunlop, Y. M. Lui, H. Sahibzada, and S. Weimer. An introduction to the good, the
bad, & the ugly face recognition challenge problem. In IEEE International Conference
on Automatic Face and Gesture Recognition, pages 346–353, 2011.

[69] P Jonathon Phillips, Hyeonjoon Moon, Syed A Rizvi, and Patrick J Rauss. The
FERET evaluation methodology for face-recognition algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

[70] A. Pinto, W. R. Schwartz, H. Pedrini, and A. Rocha. Using visual rhythms for detect-
ing video-based facial spoof attacks. IEEE Transactions on Information Forensics
and Security, 10(5):1025–1038, 2015.

[71] GitHub repository. Porting Caffe to Android platform. https://github.com/
sh1r0/caffe-android-lib, June, 2017.

[72] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. Internatinal Journal of Computer Vision,
115(3):211–252, 2015.

[74] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-
bedding for face recognition and clustering. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 815–823, 2015.

[75] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio. A quantita-
tive theory of immediate visual recognition. Progress in Brain Research, 165:33–56,
2007.

http://www.saffe.com.br/
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-lib

BIBLIOGRAPHY 70

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[77] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[78] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade
for facial point detection. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 3476–3483, 2013.

[79] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016.

[80] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[81] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[82] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1701–1708, 2014.

[83] Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions. IEEE Transactions on Image Processing,
19(6):1635–1650, 2010.

[84] Gerald Tesauro. Practical issues in temporal difference learning. Machine learning,
8(3-4):257–277, 1992.

[85] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

[86] Berkeley Vision and Learning Center. AlexNet Caffe Model . https://github.com/
BVLC/caffe/tree/master/models/bvlc_alexnet, May, 2017.

[87] Berkeley Vision and Learning Center. Caffe Model Zoo. https://github.com/BVLC/
caffe/wiki/Model-Zoo, May, 2017.

[88] Berkeley Vision and Learning Center. GoogLeNet Caffe Model . https://github.
com/BVLC/caffe/tree/master/models/bvlc_googlenet, May, 2017.

[89] University of Oxford Visual Geometry Group. VGGFace Caffe Model . http://www.
robots.ox.ac.uk/~vgg/software/vgg_face/, May, 2017.

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/

BIBLIOGRAPHY 71

[90] J Wayman. A definition of biometrics. National Biometric Test Center Collected
Works, 1:21–23, 2000.

[91] J. Wayman, A. K. Jain, D. Maltoni, and D. Maio. An introduction to biometric
authentication systems. Biometric Systems, pages 1–20, 2005.

[92] L. Wiskott, J.-M. Fellous, N. Kuiger, and C. Von Der Malsburg. Face recognition by
elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):775–779, 1997.

[93] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos
with matched background similarity. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 529–534, 2011.

[94] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from
scratch. arXiv preprint arXiv:1411.7923, 2014.

[95] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

[96] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. Face
recognition: A literature survey. ACM Computing Surveys, 35(4):399–458, 2003.

Appendix A

Higher and Lower Thresholds
Exploration

As seen in Section 5.4, two thresholds determine when a probe analyzed by the 1st tier
should be authenticated, denied or processed by the following tier. Since the 2nd tier is
computationally more expensive, we want most probes to be processed and filtered by the
initial tier; therefore the threshold selection also controls the equilibrium between TPR,
TNR and the overall speed of the complete method.

Although a strategy similar to the user-specific threshold learning (Section 4.4) could
be devised to automatically determine both thresholds, we believe that an optimal trade-
off between efficiency and security is personal to each user and depends on how the device
is used. A user might prefer a faster authentication; other might value security more,
while a third may choose an in-between option. Because of that, we suggest that multiple
scenarios (threshold setups) should be offered to the users, allowing them to choose the
one that better fits their needs.

In this chapter, we explore different setups and how they affect TPR, TNR and the
percentage of images that are analyzed by 2nd tier. We present this exploration for RCD-
Test in Table A.1 and for OULU-Test in Table A.2, considering the 2-tiered method with
112×112 input size for HFCNN. We remark that part of Table A.1 was already presented
in Fig. 5.3.

It is important to point out some characteristics that are related to the process of
selecting the thresholds:

• The method speed is controlled by the difference between higher and
lower thresholds. A small gap between them means most authentication attempts
are only analyzed by the 1st tier, whereas, when this gap increases, more probes are
forwarded to the method’s second tier.

• The higher threshold determines how rigorous or tolerant the 1st tier is
to authenticate a probe. A smaller value requires a less confident prediction that
a probe depicts the device owner, increasing TPR and lowering TNR. A threshold
near 1.0 enforces a higher confidence, causing the opposite behavior on TPR and
TNR.

72

APPENDIX A. HIGHER AND LOWER THRESHOLDS EXPLORATION 73

• The lower threshold, on the other hand, establishes the 1st tier’s behavior
to deny a probe. A lower value (near 0.0) requires a strong confidence that a probe
does not belong to the device owner to be automatically denied in this tier. This
means more images will be forwarded to the 2nd tier. Whereas a value near 0.5

tends to deny more images, increasing TNR but decreasing TPR.

Table A.1: Higher and lower thresholds exploration for RCD-Test with HFCNN 112×112.

Higher
Threshold

Lower
Threshold

ACC
(%)

TPR
(%)

TNR
(%)

% of examples
in 1st tier

% of examples
in 2nd tier

0.6

0.2 97.38 96.19 98.57 80.80 19.20
0.3 97.43 96.06 98.80 89.95 10.05
0.4 97.38 95.71 99.05 94.78 5.22
0.5 97.06 94.88 99.25 97.60 2.40
0.6 96.11 92.81 99.42 100.00 0.00

0.7

0.2 96.82 94.70 98.95 77.51 22.49
0.3 96.88 94.57 99.19 86.66 13.34
0.4 96.83 94.22 99.43 91.49 8.51
0.5 96.51 93.39 99.63 94.30 5.70
0.6 95.56 91.32 99.80 96.71 3.29

0.8

0.2 96.03 93.05 99.01 71.54 28.46
0.3 96.09 92.92 99.25 80.69 19.31
0.4 96.04 92.58 99.49 85.52 14.48
0.5 95.72 91.74 99.69 88.33 11.67
0.6 94.77 89.67 99.86 90.74 9.26

0.9

0.2 95.40 91.78 99.01 56.80 43.20
0.3 95.45 91.65 99.25 65.95 34.05
0.4 95.40 91.31 99.50 70.78 29.22
0.5 95.08 90.47 99.69 73.59 26.41
0.6 94.13 88.40 99.86 76.00 24.00

APPENDIX A. HIGHER AND LOWER THRESHOLDS EXPLORATION 74

Table A.2: Higher and lower thresholds exploration for OULU-Test with HFCNN
112×112.

Higher
Threshold

Lower
Threshold

ACC
(%)

TPR
(%)

TNR
(%)

% of examples
in 1st tier

% of examples
in 2nd tier

0.6

0.2 95.53 99.78 91.27 68.18 31.82
0.3 95.58 99.78 91.39 81.21 18.79
0.4 95.80 99.78 91.82 89.95 10.05
0.5 96.09 99.78 92.41 96.00 4.00
0.6 96.47 99.76 93.18 100.00 0.00

0.7

0.2 97.69 99.66 95.72 65.45 34.55
0.3 97.75 99.66 95.84 78.48 21.52
0.4 97.96 99.66 96.27 87.21 12.79
0.5 98.26 99.65 96.86 93.26 6.74
0.6 98.63 99.63 97.63 97.26 2.74

0.8

0.2 98.30 99.49 97.11 63.80 36.20
0.3 98.36 99.49 97.23 76.83 23.17
0.4 98.57 99.49 97.66 85.57 14.43
0.5 98.87 99.49 98.25 91.62 8.38
0.6 99.24 99.47 99.02 95.62 4.38

0.9

0.2 97.26 97.27 97.24 54.85 45.15
0.3 97.31 97.27 97.35 67.88 32.12
0.4 97.53 97.27 97.78 76.62 23.38
0.5 97.82 97.27 98.38 82.67 17.33
0.6 98.20 97.25 99.15 86.67 13.33

	Introduction
	Research questions
	Contributions
	Thesis Organization

	Background
	Authentication pipeline
	Hand-crafted features
	Histogram of Oriented Gradients
	Local Region Principal Component Analysis

	Deep visual representations
	Mobile efforts

	Datasets and Evaluation Protocol
	RECOD Selfie Dataset
	Motorola Selfie Dataset
	Unicamp Video-Based Attack Database
	Oulu-NPU Database
	Datasets summary
	Evaluation protocol and metrics

	Methods
	1st Tier: user-specific
	2nd Tier: same-identity-or-not
	Multiview hand-crafted classifiers
	Hybrid image and data-driven classifier
	2nd tier fusion and decision

	Hybrid-fire convolutional neural network
	User-specific threshold learning

	Results
	Multiview and hybrid images
	Fusion of hand-crafted and data-driven features for the 2nd Tier
	User-specific verification for the 1st tier
	2-Tiered method
	User-specific threshold learning for the 2nd tier
	Comparison with existing methods
	Answering research questions

	Conclusion and Future Work
	Bibliography
	Higher and Lower Thresholds Exploration

