
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luan Cardoso dos Santos

Software implementation of authenticated encryption
algorithms on ARM processors

Implementação em software de cifradores autenticados
para processadores ARM

CAMPINAS
2018

Luan Cardoso dos Santos

Software implementation of authenticated encryption algorithms on
ARM processors

Implementação em software de cifradores autenticados para
processadores ARM

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Julio César López Hernández

Este exemplar corresponde à versão final
da Dissertação defendida por Luan
Cardoso dos Santos e orientada pelo Prof.
Dr. Julio César López Hernández.

CAMPINAS
2018

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Santos, Luan Cardoso dos, 1993-
 Sa59s SanSoftware implementation of authenticated encryption algorithms on ARM

processors / Luan Cardoso dos Santos. – Campinas, SP : [s.n.], 2018.

 SanOrientador: Julio César López Hernández.
 SanDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 San1. Microprocessadores ARM. 2. Arquitetura de computador. 3. Criptografia

de dados (Computação). 4. Engenharia de software. 5. Engenharia de software
- Medidas de segurança. 6. Software - Medidas de segurança. I. López
Hernández, Julio César, 1961-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Implementação em software de cifradores autenticados para
processadores ARM
Palavras-chave em inglês:
ARM microprocessors
Computer architecture
Data encryption (Computer science)
Software engineering
Software engineering - Safety measures
Software – Safety measures
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Júlio Cesar López Hernández
Marcos Antonio Simplicio Junior
Diego de Freitas Aranha
Data de defesa: 12-06-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luan Cardoso dos Santos

Software implementation of authenticated encryption algorithms on
ARM processors

Implementação em software de cifradores autenticados para
processadores ARM

Banca Examinadora:

• Prof. Dr. Julio César López Hernández
IC - UNICAMP

• Prof. Dr. Marcos Antônio Simplicio Junior
LARC - USP

• Prof. Dr. Diego de Freitas Aranha
IC - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 12 de junho de 2018

Dedicatória
Dedicated to

I dedicate this work to my father, Devaldite, who will always be in my heart, and will
always be my inspiration to walk forward, to be a good man like him.

Eu dedico esse trabalho a meu pai, Devaldite, que sempre está em meu coração, e que sempre será
minha inspiração para seguir em frente, ser um homem bom como ele.

The secret to doing anything is believing that
you can do it. Anything that you believe you
can do strong enough, you can do. Anything.
As long as you believe.

– Bob Ross

Acknowledgements

I want to thank all my friends, for their company helped me continue walking forward,
even in hard times. My laboratory friends, who helped me with both life and research,
always by my side. Some names to cite are Hayato and Renna, Camila and Klairton,
Samuel and Fabianna, Amanda, Alisson, Rafael, Marcelo, Armando, Sheila, Renan, so
many wonderful people I met in Unicamp –So many that it is impossible to type them
all– they will always have a special place in my memory. And I thank my old friends
as well, for Guilherme, Victor and Zé Lourenço were always there for me.

I thank my family, for trusting in me, and staying by my side, even if the distance
and time make the contact difficult. Enezina, Gabriel, Bruno, familia é para sempre, e para
sempre amo vocês.

I thank my teachers, Julio and Diego, which whom I worked closely, and learned
a lot with. I have to thank you for helping me grow as a student, scientist, and most
importantly, as a person. And I also thank all the teachers I had, even if our time was
short, every lesson was important.

I also thank LGE, and it’s team, for financing the research, and directly helping me,
financially and technically with this Master’s Degree.

And a very special thanks to Michael Trautsch, a great friend, that adopted me as
his little brother, and who helped me and guided me through hard times. And also a
very special thanks to his parents, Ute and Winfried, for they received me with open
arms, as part of their family. Mike, Ute, Winfried, Ihr seid meine zweite Familie; mein zweites
Zuhause. Ich werde immer dafür dankbar sein, Euch in meinem Leben zu haben.

And to all those that I may not have mentioned by name, but were with me during
these years, my sincere thank you.

Resumo

Algoritmos de cifração autenticada são ferramentas usadas para proteger dados, de
forma a garantir tanto sigilo quanto autenticidade e integridade.

Implementações criptográficas não possuem apenas exatidão e eficiência como seus
principais objetivos: sistemas computacionais podem vazar informação sobre seu com-
portamento interno, de forma que uma má implementação pode comprometer a segu-
rança de um bom algoritmo. Dessa forma, esta dissertação tem o objetivo de estudar
as formas de implementar corretamente algoritmos criptográficos e os métodos para
optimizá-los sem que percam suas características de segurança. Um aspecto impor-
tante a ser levado em consideração quando implementando algoritmos é a arquitetura
alvo. Nesta dissertação concentra-se na família de processadoresARM.ARMéumadas
arquiteturas mais utilizadas no mundo, com mais de 100 bilhões de chips vendidos.

Esta dissertação foca em estudar e implementar duas famílias de cifradores auten-
ticados: NORX e Ascon, especificamente para processadores ARM Cortex-A de 32 e
64 bits. Descrevemos uma técnica de optimização orientada a pipeline para NORX que
possui desempenho melhor que o atual estado da arte, e discutimos técnicas utilizadas
em uma implementação vetorial do NORX. Também analisamos as características de
uma implementação vetorial do Ascon, assim como uma implementação vetorial de
múltiplas mensagens.

Abstract

Authenticated encryption algorithms are tools used to protect data, in a way that guar-
antees both its secrecy, authenticity, and integrity.

Cryptographic implementations do not have only correctness and efficiency as its
main goals: computer systems can leak information about their internal behavior, and
a bad implementation can compromise the security of a good algorithm. Therefore, this
dissertation aims to study the forms of correctly and efficiently implementing crypto-
graphic algorithms and the methods of optimizing them without losing security char-
acteristics. One important aspect to take into account during implementation and opti-
mization is the target architecture. In this dissertation, the focus is on the ARM family
of processors. ARM is one of the most widespread architectures in the world, with
more than 100 billion chips deployed.

This dissertation focus on studying and implementing two different families of au-
thenticated encryption algorithms: NORX and Ascon, targeting 32-bits and 64-bits
ARMCortex-Aprocessors. We showapipeline oriented technique to implementNORX
that’s faster than the current state-of-art; and we also discuss the techniques used on
a vectorial implementation of NORX. We also describe and analyze the characteristics
of a vectorial implementation of Ascon, as well as a multiple message vectorial imple-
mentation.

List of Figures

2.1 The basic design of a sponge function . 23
2.2 The basic design of a duplexed sponge . 23
2.3 Basic block design of AEAD . 24
2.4 Basic block diagram of a E&M authenticated mode of operation. 25
2.5 Basic block diagram of a EtM authenticated mode of operation. 25
2.6 Basic block diagram of a MtE authenticated mode of operation. 26
2.7 Conceptual layout of a NEON instruction 35

3.1 The layout of NORX with parallelism degree p = 2 42
3.2 The layout of NORX with parallelism degree p = 1 42
3.3 Column and diagonal steps of NORX . 43
3.4 Overheads for NORX 3261 running on a Cortex-A15(32-bit processor) . 52
3.5 Overheads for NORX 6461 running on a Cortex-A53(64-bit processor) . 53
3.6 Pipeline/instruction parallelism . 54
3.7 2× optimization of the NORX F function 55
3.8 4× optimization of the NORX F function 56
3.9 Transformations needed for the diagonal step. 58
3.10 Cycles per byte results for NORX3261 on Cortex A15. 66
3.11 Cycles per byte results for NORX6461 on Cortex A53. 67
3.12 Cycles per byte results for BLAKE2s on Cortex A15. 70

4.1 Ascon mode of operation . 73
4.2 Ascon Sbox . 79
4.3 Scopes in the internal state for each step of the permutation. 80
4.4 Overheads for ASCON128 running on a Cortex-A15 (32-bit processor) . 81
4.5 Overheads for ASCON128 running on a Cortex-A53 (64-bit processor) . 82
4.6 Sponge layout for the NEON implementation of ASCON. 84
4.7 CPB results for ASCON128 on Cortex A7. 88
4.8 CPB results for ASCON128a on Cortex A7. 89
4.9 CPB results for ASCON128 on Cortex A15. 89
4.10 CPB results for ASCON128a on Cortex A15. 90
4.11 CPB results for ASCON128 on Cortex A53. 90
4.12 CPB results for ASCON128a on Cortex A53. 91

List of Tables

1.1 Notations used throughout this dissertation. 19

2.1 Fourth round candidates of CAESAR. 28
2.2 Third-round candidates of CAESAR . 29

3.1 The five instances of NORX . 41
3.2 Common Norx variables . 41
3.3 NORX’s rotation constants . 43
3.4 Norx domain separation constants . 45
3.5 Norx Initialization constants. 46
3.6 Cycles per byte for NORX encryption . 65
3.7 Cycles per byte for NORX encryption on the 64-bit platform 65
3.8 Perfomance of NORX3261 on Cortex-M 66
3.9 Cycles per byte for BLAKE2s digest . 69

4.1 Recommended instances of Ascon . 72
4.2 Common Ascon variables . 73
4.3 Ascon Sbox . 78
4.4 Times in CPB for ASCON128 on 32-bit processors 86
4.5 Times in CPB for ASCON128 on 64-bit processors 86
4.6 Costs of Ascon permutation on A53 . 88

A.1 Inputs for NORX . 100

B.1 Inputs for Ascon128 . 103

E.1 Results in cycles per byte for NORX3261 on Cortex-A7 112
E.2 Results in CBP for NORX3261 on Cortex-A15 112
E.3 Results in cycles per byte for NORX3261 on Cortex-A53 113
E.4 Results in cycles per byte for NORX3264 on Cortex-A7 113
E.5 Results in cycles per byte for NORX3264 on Cortex-A15 114
E.6 Results in cycles per byte for NORX3264 on Cortex-A53 114
E.7 Results in cycles per byte for NORX6461 on Cortex-A7 115
E.8 Results in cycles per byte for NORX6461 on Cortex-A15 115
E.9 Results in cycles per byte for NORX6461 on Cortex-A53 116
E.10 Results in cycles per byte for NORX6464 on Cortex-A7 116
E.11 Results in cycles per byte for NORX6464 on Cortex-A15 116
E.12 Results in cycles per byte for NORX6464 on Cortex-A53 117

F.1 Results in cycles per byte for ASCON128 on Cortex-A15 118
F.2 Results in cycles per byte for ASCON128 on Cortex-A7 118

F.3 Results in cycles per byte for ASCON128 on Cortex-A53 119
F.4 Results in cycles per byte for ASCON128a on Cortex-A15 119
F.5 Results in cycles per byte for ASCON128a on Cortex-A7 119
F.6 Results in cycles per byte for ASCON128a on Cortex-A53 120

List of abreviations and acronyms

AEAD . Authenticated encryption with additional data

AES . Advanced Encryption Standard

AE .Authenticated encryption

ARM . Advanced RISC Machine

ARX .Add-Rotate-XOR

CISC . Complex instruction set computing

CPB . Cycles per byte

DDoS . Distributed denial of service

eBAEAD .ECRYPT Benchmarking of Authenticated Ciphers

ECRYPT .European Network of Excellence for Cryptology

ENISA European Union Agency for Network and Information Security

IoT . Internet of Things

LSB . Least significant bit

MAC . Message authentication code

MSB . Most significant bit

NIST . National Institute for Standards and Technology

NSA . National Security Agency

RISC . Reduced instruction set computing

SHA . Secure hashing algorithm

SIMD . Single Instruction Multiple Data

SPN . Substitution-permutation Network

SUPERCOPSystem for Unified Performance Evaluation Related to
Cryptographic Operations and Primitives

VM . Virtual Machine

Contents

1 Introduction 17
1.1 Contributions of this work . 17
1.2 Document structure . 18

2 Background 20
2.1 Cryptography . 20

2.1.1 Block ciphers . 21
2.1.2 Lightweight cryptography . 22
2.1.3 Sponge Functions . 22

2.2 Authenticated encryption . 23
2.2.1 Authenticated mode of operations 24
2.2.2 Dedicated AE(AD) schemes . 25
2.2.3 Current Standards . 26

2.3 Cryptographic competitions . 27
2.3.1 CAESAR . 28
2.3.2 CAESAR selection criteria . 30

2.4 ARM Architecture . 33
2.4.1 Cortex A processors . 34
2.4.2 SIMD instructions - NEON . 34
2.4.3 Cortex M processors . 35
2.4.4 Other lines of processors . 35

2.5 Algorithm choice . 36
2.6 Software implementation for cryptographic functions 36
2.7 ARM Architecture: Target processors . 37
2.8 Testing methodology . 38

3 Software implementation: NORX AEAD 40
3.1 Description of NORX family of algorithms 40

3.1.1 Padding . 45
3.1.2 Domain separation constants . 45
3.1.3 Sponge initialization . 46
3.1.4 Absorption . 47
3.1.5 Branching and Merging . 47
3.1.6 Encryption and decryption . 48
3.1.7 Finalization . 50
3.1.8 Tag verification . 50

3.2 Code profiling . 51
3.3 Permutation optimization . 51

3.4 Pipeline oriented optimization . 53
3.5 NEON implementation . 57

3.5.1 NEON word-wise rotations . 57
3.5.2 Register wide rotations . 58
3.5.3 NEON Permutation . 60

3.6 Other implementations . 62
3.7 Results and considerations . 64
3.8 Applying the ideas to the BLAKE2 hash algorithm 67

4 Software implementation: Ascon AEAD 71
4.1 Description of Ascon algorithms . 72

4.1.1 Ascon Mode of Operation . 72
4.1.2 Padding rule . 74
4.1.3 Initialization . 75
4.1.4 Additional data processing . 75
4.1.5 Plaintext processing . 76
4.1.6 Finalization . 77

4.2 Ascon permutation . 78
4.3 Code profiling . 80
4.4 NEON implementation and optimizations 80
4.5 Results and considerations . 86

5 Conclusion and final remarks 92

References 94

A NORX test vectors 100
A.1 Computations of F . 100
A.2 Full AEAD computations . 100

A.2.1 NORX32-4-1 . 100
A.2.2 NORX32-6-1 . 101
A.2.3 NORX64-4-1 . 101
A.2.4 NORX64-6-1 . 102
A.2.5 NORX64-4-4 . 102
A.2.6 NORX64-6-4 . 102

B Ascon test vectors 103
B.1 Ascon128 . 103

B.1.1 Sponge states . 103
B.1.2 Full AEAD results . 105

B.2 Ascon128a . 105
B.2.1 Sponge states . 105
B.2.2 Full AEAD results . 106

C C code for benchmarking 107
C.1 Kernel modules . 107
C.2 Cycle counter . 109

D Code profilling with Perf 111
D.1 Use . 111

E NORX full result tables 112

F Ascon full result tables 118

G Object dump of Ascon’s LBOX. 121

17

Chapter 1

Introduction

In the last decade or so, there was a deep change in computation: powerful devices as
small as the palm of a hand are carried in our pockets day in and out. These devices
connect us with services, other people, with the Internet in general, with almost no
downtime. Our televisions, once passive entertainment devices are now full-fledged
computers. Light-bulbs are connected, refrigerators, watches, even little buttons that
can immediately order goods from an online store with a single touch. This move-
ment, aptly named with the buzzword “Internet of Things” shows no signal of chang-
ing. However, these devices hold a large amount of information about themselves and
their owners, information that could be leveraged by adversaries, and the devices them-
selves could be taken and turned into silent zombies, part of a botnet. Far from spec-
ulation, such a thing already happened: Mirai was a malware that turned IoT devices
into workers of a botnet in 2016, being used on DDoS attacks [1].

With those dangers in mind, cryptography is a tool that can be used to protect
data, both at rest and in transit. IoT devices are normally constrained by processing
power and even in energy consumption by using batteries, what introduces challenges
when using cryptographic algorithms. Historically, cryptography was designed and
deployedmostly with security inmind, leaving efficiency as a secondary concern, what
can prove to be an issue when deploying crypto to IoT. A solution to this problem is the
area of cryptography known as Lightweight cryptography, where both security and effi-
ciency are considered in the design and implementation of cryptographic services.

The focus of this work is on Authenticated Encryption, a subset of symmetric key
encryption, useful for providing both confidentiality and authenticity to data. Keep-
ing in mind the scenario of constrained devices, this dissertation aims to study AEAD
algorithms, how to correctly implementing them in software, and optimize these im-
plementations for ARM processors, the de facto standard for IoT devices.

1.1 Contributions of this work
This dissertation discusses software techniques to optimize two sponge-based authen-
ticated encryption algorithms, namely NORX[2] and Ascon[3]. These techniques are
based on the characteristics of ARM processors, such as instruction pipeline and vecto-

18

rial engines, with focus on performance.
Regarding NORX, it is presented a pipeline oriented optimization technique that

improves on the state-of-art, being faster than vectorial implementations in some sce-
narios. NORX’s results were published on the XVII SBSEG – Brazilian Symposium in
Information and Computational Systems Security – in a paper titled “Pipeline Oriented
Implementation of NORX" [4]. The paper’s abstract follows:

Abstract: NORX is a family of authenticated encryption algorithms that
advanced to the third-round of the ongoing CAESAR competition for au-
thenticated encryption schemes. In this work, we investigate the use of
pipeline optimizations onARMplatforms to accelerate the execution ofNORX.
We also provide benchmarks of our implementation using NEON instruc-
tions. The results of our implementation show a speed improvement up to
48% compared to the state-of-art implementation on Cortex-A ARMv8 and
ARMv7 processors.

On Ascon, this dissertation shows a multiple message processing technique that
uses ARM vector instructions to execute parallel processing of independent payloads,
as well as a technique to implement Ascon using 128-bit NEON registers.

1.2 Document structure
This document is divided into three main parts. Chapter 2 briefly introduces the main
concepts used throughout this work, such as cryptography, authenticated encryption,
cryptographic competitions and the ARM architecture.

Chapter 3 will present the work done on the NORX family of algorithms, and Chap-
ter 4 will present the work done on the Ascon family of algorithms.

Lastly, Chapter 5 will group the closing remarks on this work. Further technical
information and references will be in the Appendices.

Throughout this dissertation, we will use the notation shown in Table 1.1 for algo-
rithms and equations, except where pointed otherwise.

19

Table 1.1: Notations used throughout this dissertation.
Notation Description
0n All-zero bitstring of lenght n
ε Empty bitstring
|x| Legth of x in bits
|x|n Length of x in blocks of n bits
x ∥ y Concatenation of x and y
x≪ n, x≫ n Left or Right shift of x by n bits
x ≪ n, x ≫ n Left or Right rotation of x by n bits
¬, ∧, ∨, and ⊕ Bitwise negation, AND, OR, and XOR
~, & ,|, and ˆ Bitwise negation, AND, OR, and XOR (code notation)
← Variable assignment
= Variable assignment (code notation)
leftl(x) Truncation of x to the l leftmost bits
rightr(x) Truncation of x to the r leftmost bits

20

Chapter 2

Background

In this chapter, the reader will be introduced to key concepts used throughout this dis-
sertation. General concepts on cryptography will be presented on Section 2.1. On Sec-
tion 2.2, concepts specific to authenticated encryption will be briefly presented. Sec-
tion 2.3 will introduce the reader to cryptographic competitions and, lastly, Section 2.4
will present a high level description of the ARM architecture.

2.1 Cryptography
Cryptography, from the Greek words kruptós gráphō meaning “hidden” and “writing”,
is the “study of mathematical techniques for securing digital information, systems, and
distributed computations against adversarial attacks” [5].

Historically, cryptography was used mainly by military organizations, as a way to
keep secrets. Back then, cryptography was more based on the feelings and intuition
of the cryptographer designing the codes, without formal mathematical rigor in their
construction. As historical example, one of the first use was the Caesar cipher, a very
simple cipher, where each letter of amessagewas exchanged for another a fewpositions
forward on the alphabet. After that, techniques somewhat more advanced started to be
employed, such as the Vigenère cipher, a polyalphabetic substitution scheme. It was not
until the 20th century that cryptography started to be studied as a proper science and
mathematical discipline. From that period, a very prominent use of cryptography was
the Enigma machine. The Enigma was a series of electromechanical cipher machines,
based on rotors and developed byArthur Scherbius, a German engineer, near the end of
WorldWar I. The machine was adopted by the GermanMilitary as a form of protecting
sensitive information during the Second World War. A great triumph of the Allies was
the breaking of the Enigma cipher: The techniques and technologies created during the
analysis of the Enigma eventually led to the construction of the first modern computers,
and by itself was one of the factors responsible by the outcome of the war [6].

Nowadays, cryptography is not a military-only tool, but a constant tool used on a
day-to-day basis: From authenticating users on our personal computers, to securing
financial transactions, to protecting mission-critical systems, cryptography is as ubiq-
uitous as computing itself. Adding to that, there is a trendwhere the common person is

21

more andmore entangledwith computing applications, with sensible data being trans-
mitted back and forth: with that, the need for well designed and secure cryptographic
tools is also growing.

One sub-area of modern cryptography is called symmetric cryptography –or secret-
key cryptography– and studies the cryptographic schemeswhere a shared secret is used
to , for example, encrypt and decrypt a message or authenticate it. A secret-key en-
cryption scheme is defined by the tuple of probabilistic polynomial-time algorithms
(Gen,Enc,Dec)with the following characteristics[5]:

• Gen is the key-generation algorithm; it takes as input 1n –the security parameter
written as unary– and outputs a key k. Gen is a randomized algorithm, and any
key output by Gen(1n) satisfies |k| ≥ n.

• Enc is the encryption algorithm; it takes as inputs a key k and a plaintext message
m ∈ {0, 1}∗, and outputs a ciphertext c.

• Dec is the decryption algorithm; it takes as input a key k and a ciphertext c, and
outputs a messagem.

• It is required that, for every n, every key k generated by Gen(1n) and every mes-
sagem ∈ {0, 1}∗, it holds that Deck(Enck(m)) = m.

In the following sections, relevant concepts from the area of symmetric cryptogra-
phy will be briefly described.

2.1.1 Block ciphers
A block cipher is a deterministic function that operates over a fixed-length input –the
block– parametrized by a symmetric key. Block ciphers are also an important construc-
tion block of various cryptographic services, algorithms, and protocols. According to
Katz et.al [5], a block cipher is an efficient keyed permutation F : {0, 1}n × {0, 1}ℓ →
{0, 1}ℓ, defined as Fk(x) = F (k, x), with the function Fk being a bijection. Furthermore,
Fk and F−1

k are efficiently computable given k [5]. Nowadays, the common method
of designing block ciphers consists in an iterating transformation that combines data
substitution and permutation. The design of block ciphers based on iterating simple
transformations was proposed by Shannon in 1949 [7].

One of the first block ciphers to be standardized was the Data Encryption Stan-
dard –DES–, which is very influential to modern cryptology. DES was published by
the U.S. National Bureau of Standards, currently NIST, in 1977 [8]. It can be said that
DES started the development and study of encryption algorithms, opening the field to
the general public, and not restricting it to military institutions and military use [9].

The successor of DES is the Advanced Encryption Standard –AES–, published in
2001 by NIST, and based on Rijndael [10]. The algorithm was chosen via a public com-
petition that had the objective of “specifying a public encryption algorithm, capable
of protecting sensitive data beyond this century”. Cryptographic competitions will be
presented in more depth in Section 2.3. AES is standardized by FIPS PUB 197 [11], it

22

became the official US symmetric encryption algorithm in May 2002, and it was also
included in ISO/IEC 18033-3. In relation to security, in July 2003, the US government
announced that “All AES key lengths (128, 192, and 256 bits) are adequate to protect
information up to SECRET level. TOP SECRET data require the use of 192 or 256-bit
keys” [12].

2.1.2 Lightweight cryptography
A somewhat recent concept, lightweight cryptography is area of study driven by the
lack of cryptographic primitives capable to run on devices with low computing power.
At its core, Lightweight cryptography is the area of classical cryptography that stud-
ies algorithms pertinent to constrained devices, such as RFID tags, sensors in wireless
networks, small devices and Internet-of-things devices [13]. Another important char-
acteristic of Lightweight cryptography is that it is capable of obtaining the adequate
levels of security, without necessarily resorting to security-efficiency trade-offs. The
properties of lightweight cryptography have been discussed in ISO/IEC 29192.

The “lightweightness” of a cryptographic primitive can be measured against soft-
ware and hardware constraints. In software implementations, smaller footprints in
RAM and ROM are desirable, and so are factors such as latency, power consumption,
and throughput. Latency is especially relevant for real-time applications, where high
agility in handling encryption and decryption is desirable. For Hardware implemen-
tations, the area needed for the cryptographic primitive is usually as important as its
speed. As important as that, many of those constrained devices operate with batteries
or even with power harvested from the surroundings, so the energy consumption is an
important metric of performance for a lightweight implementation [14].

2.1.3 Sponge Functions
A cryptographic sponge function, introduced as a primitive for authenticated encryp-
tion in “Duplexing the sponge” [15] and as a general cryptographic function in ”On the
Indifferentiability of the SpongeConstruction” [16][17], is an algorithmwith a finite in-
ternal state that receives as input a string of any length and produces as output a string
of any desired length. Sponge functions can be used to create various cryptographic
primitives, such as hash functions, message authentication codes –MACs–, stream ci-
phers, pseudorandom number generators and authenticated encryption schemes. A
sponge function can be compared as a real-world sponge, where data is absorbed and
then squeezed from it.

A sponge is based on three main components: A state S of b bits, subdivided into
rate and capacity sections of respectively r and c bits; a round permutation function
F l of b bits with a round number l defined in terms of a permutation F of b bits as
the l-fold iteration F l(S) = F (F (...F (S))) which is used to transform the state in each
round; and a padding rule P for the input. A sponge works by initializing the state
value and “absorbing” r bits from the padded input and transforming the state with
F l(S). After that, the sponge is ready to be “squeezed”, removing up to r bits before

23

R
a
te

C
a
p
a
ci
ty

Input

Pad

Output

...

Figure 2.1: The basic design of a sponge
function, showing the absorption and
squeeze processes [15].

R
a
te

C
a
p
a
ci
ty

Inn

Pad

Out2

...

In1

Pad

Out0
In0

Pad

In2

Pad

Out1 Outn

Figure 2.2: The basic design of a du-
plexed sponge function, showing the
absorption and squeeze processes [15].

needing to evaluate F l(S) again. Figure 2.1 and Figure 2.2 illustrate the operation of a
cryptographic sponge [15].

An example of a practical use of sponge functions in cryptographic primitives is the
SHA-3[18] hash algorithm, that uses a 1600-bit sponge.

2.2 Authenticated encryption
An authenticated encryption scheme is an algorithm that uses a secret key and a pub-
lic nonce to process a plaintext and generate a ciphertext and an authentication tag.
Furthermore, an authenticated encryption (AE) scheme can also accept as input ex-
tra data that is authenticated together with the plaintext. In that mode of operation,
this scheme is called Authenticated Encryption with Additional Data (AEAD). Such
a scheme is useful, for example, to encrypt the body of a message, while keeping the
receiving address in plain form, and authenticating the whole. This way, the recipient
of a message can guarantee that public data was not modified by a third party. A basic
block diagram of an authenticated encryption algorithm is shown in Figure 2.3.

Formally an AEAD scheme is defined by the tuple Π = (K, E ,D) and the associated
sets Nonce = {0, 1}n, Header ⊂ {0, 1}∗ and Message ⊆ {0, 1}∗. The Message set must
satisfy the membership test M ∈ Message ⇒ M ′ ∈ Message for any M ′ with the same
length of M .

The keyspace K is a non-empty finite set of strings. The encryption algorithm E is
a deterministic algorithm that receives as input the strings K ∈ K, N ∈ Nonce, H ∈
Header and M ∈ Message. The encryption algorithm returns a string C = EN,H

K (M) =

EK(N,H,M). The decryption algorithm D is a deterministic algorithm that receives
as input the strings K ∈ K, N ∈ Nonce, H ∈ Header and C ∈ {0, 1}∗ and returns
DN,H

K (C) = DK(N,H,C), that is either a string from the set of possible messages, or a
symbol ⊥meaning that the set of ciphertext, nonce, and key is invalid.

Beyond that, it is required that DN
K(ENK (M)) = M for all K ∈ K, N ∈ Nonce, and

M ∈ Message; and that |EN,H
K | = l(|M |) for some linear-time length function l [19].

In the current state of the art, authenticated encryption is considered the minimum

24

acceptable in terms of data encryption, as it offers advantages over simple encryption,
with very little extra cost. An example of the movement from encryption to authenti-
cated encryption is TSL 1.3, where support for non-AEAD ciphers was removed. An-
other noteworthy characteristic of authenticated encryption implies that a Chosen Ci-
phertext Attack cannot be mounted, as no plaintext is returned to the attacker if the
authentication fails.

AEAD

Cipher text Tag

Nonce

Key

Plain text Additional data

Additional data

Sent to the recipient

Figure 2.3: Basic block design of an authenticated encryption scheme with additional
data, where ciphertext and authentication tag are produced by processing plaintext,
additional data, key, and nonce.

2.2.1 Authenticated mode of operations
The first approaches for creating authenticated encryption were based on combining
a block cipher and a MAC together in an authenticated mode of operation, also called
“generic composition”. In 2001, Krawczyk examined the 3mainmethods used to create
an authenticated mode of operation [20]. They are as following:

• Encrypt-and-MAC (E&M): In this construction, an authentication code is gener-
ated from the plaintext, and this value is sent together with the ciphertext to the
message recipient. This construction has no strong proofs of being secure against
forging attacks[21]. Figure 2.4 illustrates a basic block diagram of an E&M au-
thenticated encryption scheme. It does not provides IND-CCA, NM-CPA, and
INT-CTXT.

• Encrypt-then-MAC (EtM): In this design, the plain text is encrypted, then an au-
thentication tag is computed over the ciphertext. This is the method used, for ex-
ample, in the IPSec protocol, and is the standard according to ISO/IEC 19772:2009.
EtM is illustrated in Figure 2.5. This construction provides INT-PTXT and IND-
CPA, and it does not provide NM-CPA, IND-CCA and INT-CTXT.

• MAC-then-encrypt (MtE): In this construction, an authentication code is com-
puted over a plaintext, and both plaintext and authentication code are encrypted
together. This is used, for example, in SSL/TLS(RFC7366) [20]. Figure 2.6 illus-
trates a basic block diagram of an EtM authenticated encryption scheme. This

25

Plain text

Cipher Authenticator

Key

Cipher text Tag

Key

Sent to the recipient

Figure 2.4: Basic block diagram of a E&M authenticated mode of operation.

Plain text

Cipher

Authenticator

Key

Cipher text Tag

Key

Sent to the recipient

Figure 2.5: Basic block diagram of a EtM authenticated mode of operation.

construction provides IND-CPA and INT-PTXT. It does not provide NM-CPA,
IND-CCA, and INT-CTXT.

2.2.2 Dedicated AE(AD) schemes
The methods previously shown to implement authenticated encryption may not be the
best solution for all scenarios. One of the characteristics of the “Generic Composition”
is the need to use two different algorithms to construct an authenticated encryption
algorithm. Given that, is there a way to construct an AE without using two different
algorithms, two keys, and two separate passes over the message?

For a long time, cryptographers wanted to find such an operation that achieves AE,
andmany attempts were broken, until 2000, when Jutla at IBM, created the first correct-
proven single-pass AE modes: IAPM and IACBC [22]. Compared to the generic com-
position, where one needed 2m encryption/authenticator calls per message (assuming
a value m related to the message and block lengths), these AE schemes needed only
m log(m) calls. With further refinements, this number was almost m, what allows one
to achieve authenticated encryption at the same cost of only encryption.

After the announcement of IACBCand IAPM,Rogaway announced theOCB scheme,
a follow-up of IAPM, with several improvements [23]. Simultaneously, Gligor and
Donescu presented the classes of schemes XCBC and XECB, respectively similar to CBC

26

Plain text

Cipher

Authenticator

Key

Cipher text

TagPlain text

Key

Sent to the recipient

Figure 2.6: Basic block diagram of a MtE authenticated mode of operation.

and ECB modes of operation.
Given the importance of these efficient AE algorithms, patents were filled by the

authors. Because of that, many of the probable users of these algorithms were thrown
away by the possible legal difficulties being not worth the technical benefits. And, with
these complications in mind, new teams of researchers started working on creating fur-
ther efficient AE algorithms not covered by patents. These schemes includemodes such
as CCM [24], CWC [25], EAX [26], and newer single-pass dedicated algorithms.

2.2.3 Current Standards
NIST –National Institute of Standards and Technology– standardized the authenticated
mode of operations CCM and GCM, through SP 800-38C and SP 80038D standards[24,
27]. Additionally, the European Union Agency for Network and Information Security
(ENISA) recommends the use of EtM authenticated modes of operation, namely OCB,
CCM, EAX, CWC, and GCM [28]. These modes of operations are briefly presented
below:

• CCM: Counter with CBC-MAC is an authenticated mode of operation for block
ciphers, with the main objective of providing both authentication and secrecy.
CCM is defined only for ciphers with a block size of 128-bits and was based on
the CTRmode of operation. CCMworks as a stream cipher, and as such, is prone
to the same issues regarding reuse of initialization vectors [24].

• GCM: Galois/Counter mode is an authenticated mode of operation for block ci-
phers, designed to provide authentication and secrecy. The main characteristic of
GCM is the use of 128 × 128 bits multiplications over a binary finite field, what
in turns allows GCM to reach throughputs larger than the other modes of oper-
ation. This efficiency is due to the fact that GCM can make use of parallelism,
specific instructions, and pipelining onmodern processors [27], although the im-
plementation of the Galois operations is a difficult matter to tackle in simpler and
more limited architectures that does not feature adequate hardware instruction
e.g. 64× 64 bit carryless multiplications.

27

• OCB: Offset codebook is a mode of operation based on IAPM [29]. It is an efficient
mode of operation, that uses n+2 calls to the block cipher to encrypt and authen-
ticate n blocks of the message. The use of this mode of operation is restricted due
to two North American patents. Since 2013, this mode of operation is licensed
under GNU General Public License, with restrictions for use in military applica-
tions [30].

• EAX: EAX is a mode of operation similar to CCM, created with the objective of
superseding the latter, by adding resources not present in CCM, and it is a se-
quential two-pass authenticated encryption mode of operation. The authors of
this mode operation made the code available to the public domain [26] and is a
NIST recommendation, with a simple design.

• CWC: Carter-Wegman + Counter is a mode of operation that combines the Carter-
Wergman MAC algorithm with the CTR mode of operation. This mode was con-
sidered by NIST for standardization, but GCM was chosen instead [25].

2.3 Cryptographic competitions
Cryptographic competitions are public competitions where proposals for algorithms
are submitted and analyzed by academic and private organizations, with the main ob-
jective of choosing one or more standard algorithms for widespread use.

The first1 open cryptographic competition was announced in January of 1997, by
NIST, with the objective of selecting a new block cipher and successor to DES: the Ad-
vanced Encryption Standard, or AES [31]. The competition started with an open call to
submit candidate block ciphers. With a total of 15 different algorithms submitted, they
were intensively analyzed by the public, members of NIST, and other competitors. In
October of 2000, the winning algorithm –Rijndael [10]– was announced amongst the
five finalists. According toNIST, any of the five finalists –Rijndael, MARS, RC6, Serpent,
and Twofish– would be adequate as the winner, but Rijndael was chosen mostly based
on properties such as efficiency and security.

The important characteristic of the AES competition, and by extension of the other
competitions, was that any group who submitted an algorithm had a very strong moti-
vation for analyzing and finding attacks on their adversaries submissions. With that in
mind, the result was a group formed by the best cryptanalysts and designers focusing
their efforts on analyzing the block ciphers submitted to the competition. In a short
time, all algorithms in the AES competition were subjected to deep and careful analy-
sis, what only increases the confidence in the security of the winner. A proof of that is,
AES is still widely used, and as of 2017, the best key recovery attack has a complexity
of 2126.1 on the 128-bit key AES 2[32].

Following the footsteps of the AES competition, in 2004, ECRYPT announced the
eSTREAM –ECRYPT Stream Cipher Project– with the objective of selecting new stream

1DES was also a competition, held by NBS, but closed only to invited designers.
2This attack has a complexity of 2189.7 for AES-198, and 2254.4 for AES-256.

28

ciphers suitable for widespread adoption. The competition received 34 submissions,
and resulted in a portfolio of several stream ciphers announced in 2008: HC128, Rab-
bit, Salsa20/12, and SOSEMAUK for high-throughput software applications; Grain v1,
MICKEY2.0, and Trivium for highly restricted hardware [33].

After eSTREAM, in 2007 NIST announced a new competition, this time to choose
a new hash standard –SHA-3. This competition had the objective of specifying a new
hash algorithm to augment and revise FIPS 180-2, theNIST standard that specified both
SHA-1 and SHA-2. Amongst the 64 initial submissions, Keccak was chosen as the base
for the specification of SHA-3, in October of 2012 [18]. SHA-3 was standardized as a
subset of the Keccak family of hash functions by FIPS 202, in 2015.

Currently, and following the tradition of previous competitions, CAESAR is a cryp-
tographic competitionwith the objective of selecting a portfolio of authenticated ciphers
that offer advantages over NIST’s AEC-GCM, and that is also suitable for widespread
adoption. This competition is of special interest to the scope of this work, and it will be
presented in more detail in the next Section.

2.3.1 CAESAR
CAESARwas officially announced on January 15th, 2013, at the Early Symmetric Crypto
workshop. In March 5th, 2018, the fourth round finalists of CAESAR were announced
at the FSE 2018 rump session, a total of 7 competitors out of 55 initial submissions were
selected as finalists. The current competitors are listed in Table 2.1 with the third round
competitors that were not selected as finalist being listed in Table 2.2, as well as their
underlying primitives andmain characteristics in relation to parallel encryption and de-
cryption, inverse-free construction, the existence of security proofs, and security against
nonce misuse. As of the writing of this dissertation, there was no publically available
information on when the final portfólio will be available, or the reasons behind the
choice of the current competitors, or disqualification critéria for the ones that did not
make into the fourth round.

Table 2.1: Fourth round candidates and finalists of CAESAR. Source: AE zoo [34]
Name Type Primitive Parallel E/D Online Inverse-

free
Security
proof Nonce-MR

ACORN SC LFSR X/X X X × NONE
AEGIS BC AES X/× X X × NONE
Ascon Sponge SPN ×/× X X X
Deoxys-II BC AES X/X X × X
MORUS SC LRX ×/× X X × NONE
OCB BC AES X/X X × X NONE

CAESAR defines an authenticated encryption algorithm as a function that receives
five input arguments in the format of byte strings and outputs a byte string. The inputs
are the plaintext p ∈ {0, 1}∗, the additional data z ∈ {0, 1}∗, secret number nsec, public
number npub, and key k. Plaintext and additional data have variable length, and the
other three inputs have a fixed length for a given algorithm. The output is the cipher-

29

Table 2.2: Third-round candidates of CAESAR that were not selected to the final round.
Source: AE zoo [34]
Name Type Primitive Parallel E/D Online Inverse-

free
Security
proof Nonce-MR

AES-JAMBU BC AES ×/× X X ×
AES-OTR BC AES X/X X X X NONE
AEZ BC AES X/X × X X OFF-MAX
CLOC BC AES,TWINE ×/× X X X NONE
Ketje Sponge Keccak-f ×/× X X X NONE
Keyak Sponge Keccak-f X/× X X X NONE
NORX Sponge LRX X/X X X X NONE
SILC BC AES, PRESENT, LED ×/X X X X NONE
Tiaoxin BC AES X/X X X × NONE

text c ∈ {0, 1}∗. It must also be possible to recover p and nsec given c, z, npub, and k.
The CAESAR algorithms can specify a limit for the length of plaintext and additional
data, as long as it is not smaller than 216 bytes. Beyond that, ciphers are not obligated
to support public and secret numbers, by defining their length to 0 bytes. It is expected
that the ciphers’ security characteristics are not affected by the choice of message num-
bers or their length. The ciphers also cannot define any rules for the choice of message
numbers, although it is allowed that the security characteristics of the cipher be lost
if message numbers are reused, as long as this characteristic is documented. It is also
allowed that the length of plaintext can be leaked by the length of the ciphertext, and
no other information about the inputs be derived from the ciphertext. It is also recom-
mended that the ciphers support the default lengths for keys (80, 128, and 256 bits),
public message numbers (96 and 104 bits), and authentication tag (32, 64, 96, 128, and
160 bits). The submissions are not required to support these sizes neither are limited
to these sizes.

Amongst the CAESAR candidates, the common constructions are[35]:

• AES Based: Many of the CAESAR competitors are designed to use a block ci-
pher as their basic construction block, many of them choosing AES mainly due to
the extensive analysis and work put into it by the cryptographic community. Be-
yond that, many modern processors are outfitted with native instructions for fast
computation of AES (such as Intel AES-NI), allowing the candidates to use those
native instructions to optimize their ciphers. AEGIS[36], AES-JAMBU [37], AES-
OTR [38], AEZ [39], CLOC [40], COLM [41], Deoxys [42], OCB [43], SILC [40],
and Tiaoxin [44] are the 3rd round candidates that use AES as a building block.
From those, AEGIS, COLM, Deoxys and OCB were selected as finalists.

• Stream cipher based: A stream cipher can be seen a symmetric pseudorandom
number generator, that use a fixed-length key to generate a variable-length bit-
stream. In the third round of CAESAR,MORUS [45] andACORN [46] use stream
ciphers as their underlying block. ACORN has a full key recovery attack with
complexity of 255,85 [47], and MORUS was the only candidate selected as finalist
amongst the stream cipher based candidates.

• Keyless permutation based: A key-less permutation is a bijection mapped be-

30

tween fixed-length strings. An example of keyless permutation is the sponge
construction [16]. Ascon [3], Ketje [48], Keyak [49], and NORX [50] are the
3rd round candidates that use a cryptographic sponge as their base construction.
Amongst those, Ascon was selected as finalist.

• Hash function based: A hash function maps strings of arbitrary length into fixed
length strings [51]. For a cryptographic hash function, it is computationally dif-
ficult to find an output collision, preimage, and second preimage. There are no
candidates using hash-based constructions in the third round of CAESAR, and
only a candidate in the previous rounds, called OMD [52].

• Dedicated constructions: Some candidates of CAESAR are simular to Type-3
Feistel schemes[53], featuring unique constructions that do not fit in the previous
categories. The current candidates of such type are AEGIS, MORUS, and Tiaoxin.
AEGIS and MORUS were selected as finalists of CAESAR.

2.3.2 CAESAR selection criteria
The selection criteria and evaluation processes used by the CAESAR committee are
not publicly available, but it is expected that authenticated encryption algorithms have
some specific design characteristics, some of which are common to symmetric cryptog-
raphy schemes. They are [54]:

1. Protection against various attacks: It is expected that authenticated encryption
primitives resist to various types of attacks. Each type of attack creates a potential
design point for the encryption scheme, with the objective of protecting against
said attack. Some of these attacks are:

• Corruption: An authenticated encryption scheme produces as output an au-
thenticated ciphertext. This cyphertext authenticates and encrypts a plain-
text, and authenticates additional plaintext data. The main objective of cor-
ruption is to forge a combination of plaintext, associated data and message
numberwhere the recipient calculates the authentication of this data as valid,
whereas the legitimate sender never produced this message.

• Ciphertext Corruption: The objective if this attack is to forge a ciphertext
that the recipient accepts as valid, but was never produced by the sender.
Notice that the integrity of the plaintext does not imply the integrity of the
ciphertext. A practical example would be a function that calculates a MAC
as a 100-bit string and pads it to 128 bits using random data. These 28 bits
are now malleable, and an attacker can easily forge them, without breaking
the plaintext integrity.

• Prediction: The attacker has the objective of being capable of distinguishing
ciphertext from random data.

• Replay and reordering: Replay has the objective of convincing a recipient
of receiving a valid data more times than it was generated by the sender.

31

Reordering has the objective of convincing the recipient of receiving valid
data in a different order from that in which they were generated.

• Sabotage: The objective is disabling the system, violating its disponibility.
• Espionage: The attacker simply tries to discover the plaintext or secret mes-

sage number. Ideally, there should be no better way to discover a secret data
than simply trying to guess it by chance.

2. Protection against resourceful adversaries: The resources of an attacker must
be modeled in a valid way, and the encryption schememust offer security against
variousmodels of adversary computational performance. Eachperformancemodel
can offer a potential design characteristic for the encryption scheme, in which it
resists to adversaries with that capacity.

• High-Performance computing: The computation power of an adversary is
one the factors the determines the size of cryptographic keys. Nowadays,
the most common key sizes are 80, 128, and 256 bits. The question is, what is
an adequate size. Arguments towards using smaller keys are about the cost
of breaking such keys being larger than the probable benefits of breaking it,
therefore no adversary would engage in an attack that would result in a net
loss. Furthermore, smaller keys offer a better performance on cryptographic
schemes. Arguments in favor of larger keys include distributed efforts in at-
tacks, and the fact that some adversaries, such as governmental entities can
use virtually limitless resources, and can engage in activities economically
irrational. Beyond that, larger keys can still be used with adequate perfor-
mance.

• Quantum computers: It is possible that, in the future, a scalable quantum
computer be feasible. That can drastically decrease the number of opera-
tions necessary to recover a cryptographic key. For example, the Groover
algorithm could be capable of recovering a 128-bit key in only 264 quantum
operations.

• Multiple messages: A encryption scheme can have its security level de-
gradedwhen the number ofmessages encryptedwith the samekey increases.

• Chosen plaintext, ciphertext, and nonce attacks: Some designs of encryp-
tion schemes can experience a degradation in security level when active ad-
versaries have some control over plaintext and message numbers, or when
they can forge ciphertexts.

• Multiple users: Some encryption schemes can have variations in its security
level when the number of active keys increases.

• Messagenumber reuse: Many encryption schemes require the use of a unique
public number –nonce– and they lose all their security characteristics when
the same nonce is reused with the same key.

• Side channel: In this case, it is necessary to take extra security measures
not only in the project, but also on the implementation of the encryption

32

schemes. The implementation can leak information through its behavior.
For example, cryptographic primitives can leak information on secret data
by means of branching, or by execution timing. From a hardware point of
view, secret information can be leaked through power consumption or elec-
tromagnetic emanations from the system.

• Fault: Adversaries can alter bits in a computation, for example by using a
laser on a chip, and deduct secret data by analyzing the output.

• Thief and Monitoring: It is possible that attacker can steal a copy of the
secret key, or even implant a sensor inside a cryptographic device to monitor
its computations. While it is not plausible to protect future communications
in such a scenario, it is possible to construct cryptographic services capable
of securing past messages. This property is known as forward secrecy.

3. Performance:Authenticated encryption schemes are expected to have good per-
formance characteristics. The performance itself can be evaluated in various forms:

• Low byte energy: Power consumption is a visible cost to the user, be it on
a device’s battery or on electricity bills. Normally, power consumption is
measured in joules per byte.

• Low potency: One must observe that many devices execute cryptographic
operations togetherwith other operations, and the power consumptionmust
be in the device limitations. This also limits the design in terms of parallel
operations.

• Low area: For hardware implementations, the cryptographic hardwaremust
fit in the available chip area. Normally, area ismeasured inGate Equivalents.

• High transfer rates: Different applications needs different transfer rates, and
the encryption scheme must be able to provide data at the right rate.

• Low latency: In the same way, applications also impose limits on the maxi-
mum time between providing an input and receiving an output.

• Cycles per byte: From a software implementation point of view, the perfor-
mance is measured in cycles per byte. Ideally, it is considered that a pro-
cessor always takes the same number of cycles to execute each kind of in-
struction, allowing then that time estimates be derived from cycles per byte
measures.

4. Performance in different scenarios: User activity can affect the performance of
cipher under the previously discussed metrics, and result in possible scenarios
where ciphers perform well under.

• Authentication or Encryption and authentication? An AE scheme authen-
ticates both ciphertext and plaintext. Normally, the cost per authenticated
byte is sensibly smaller than the cost for plaintext byte.

33

• Sending and receiving costs: The cost of sending data is not necessarily the
same as receiving data. For example, in the construction of the type encrypt-
then-MAC, the decryption is not computed if there is a failure in authenticat-
ing.

• Number of inputs: The encryption scheme can be able to combine the pro-
cessing of multiple inputs, operating over them in a more efficient form than
processing each one.

• Key reuse: Some encryption schemes are capable of improving their perfor-
mance by storing precomputed expanded keys.

• Input reordering: The latency of some encryption schemes can be improved
by computing data that are related to only the key and nonce before plaintext
and additional data are ready. Similar scheduling tactics are applied to the
plaintext and ciphertext, where they are received in a gradual way. The en-
cryption scheme can then achieve better latency computing operations over
the received plaintext while waiting for the rest of data.

• Intermediate tags: In the case of a long plaintext, separated into smaller
packages, each one can have their own authentication tag. In this case, it is
not necessary to process the whole plaintext in order to detect a falsification.

5. Suport to cryptanalysis: Cryptanalysis is the most important tool to evaluate the
security of a symmetric key cryptosystem. Manydesigners announce projects and
characteristics to help with the cryptanalysis of the proposed schemes, but those
characteristics themselves can be hard to analyze in an objective way. Nonethe-
less, they are

• Simplicity: Cryptographic schemes without unnecessary complexities and
with simple constructions are easier to analyze than more complex designs.

• Escalability: Encryption schemes are normally constructed and structured
as a series of similar rounds, providing the cryptanalysis targets by mean
of reducing the number of rounds. Some schemes also offer versions with
smaller word size or other simplified versions for analysis.

• Proofs: Some encryption schemes offer proofs that some attacks, in specific
scenarios, are hard or of similar hardness to a related easier-to-solve prob-
lem. It is important to note that, those proofs are not strictly security proofs,
even though being often presented as so.

2.4 ARM Architecture
ARM –Advanced RISCMachine– is an architecture similar to RISC (Reduced instruction
set computer), developed by the British company ARM Holdings. A RISC processor,
in comparison to CISC (complex instruction set computer), is relatively simpler and
requires fewer transistors in the design. in terms of manufacture numbers, ARM is the
most used architecture in the world. One of themain reasons behind such popularity is

34

the large gamut of applications and markets the ARM processor is capable of catering
to, from small sensors to real-time applications, from consumer electronics to enterprise
servers. The majority of ARM processors support 32-bit fixed-length instructions, and
a variable-length 32-bit and 16-bit instruction set for improved code density. The newer
ARMv8-A architecture, announced in 2011, adds support for 64-bit address space and
arithmetic using a new set of 32-bit fixed-length instructions. Beyond that, some ARM
cores also feature the Advanced SIMD extension, also known as NEON: a combined
64- and 128-bit SIMD instruction set, used to provide an acceleration for media, signal
processing, and other applications. Further details about the NEON extension will be
discussed in Section 2.4.2.

The main features of the ARM instruction set are:

• Load/store architecture, where the instructions are divided into two types: mem-
ory access and logic/arithmetic operations. In a simple manner, it means that,
differently from register memory architecture, all the operands for a logic/arithmetic
operation must be previously loaded in registers.

• Uniform 32-bit or 64-bit registers.

• Most instructions can be executed in a single cycle, andmost instructions can also
be conditionally executed.

• A barrel shifter, with zero performance penalty, that can be used with most of the
arithmetic instructions.

In Section 2.7 further details about the specific processors used in this work will
be presented, while in the next sections it will be described the main families of ARM
processors: Cortex and SecurCore.

2.4.1 Cortex A processors
Cortex-A is a family of processors adequate for a wide range of mobile, consumer, em-
bedded and infrastructure devices. They feature processors using the ARMv7 architec-
ture, with support to 32-bit instruction set and mixed 16/32-bit Thumb2 instructions;
and it also features ARMv8 processors, that support AArch32 and AArch64 execution
states. Cortex-A processors also offer support for rich Operating Systems, including
Linux, Android, and Chrome. Cortex-A processors can also feature architecture exten-
sions, such as SIMD and Advaced SIMD(NEON), VFP, ThrustZone and others [55].

2.4.2 SIMD instructions - NEON
All the processors used in this work have the general-purpose SIMD extension engine
called NEON. It is a technology that uses a 128-bit Single Instruction Multiple Data ar-
chitecture extension, designed to provide acceleration for algorithms such as video en-
coding and decoding, gaming, audio processing, image processing and cryptography.
The NEON technology was introduced on ARMv7-A and ARMv7-R. Each processor

35

0313263649596127

0313263649596127

0313263649596127

NEON Register

Figure 2.7: Conceptual layout of a NEON instruction, with the same operation being
performed on multiple elements stored in a NEON register.

has thirty-two 64-bit wide registers, which can be reinterpreted as sixteen 128-bit wide
registers. Those registers can be seen as vectors of elements with the same data type
(8-bit, 16-bit, 32-bit, 64-bit signed/unsigned; single precision floats and polynomials).

Each NEON instruction performs the same operation in all elements of the vector,
as shown in Figure 2.7. NEON can be used in various ways, such as NEON enabled
libraries, auto-vectorization features on compilers, intrinsics, and assembly code.

2.4.3 Cortex M processors
ARM Cortex-M is a family of energy-efficient processors, adequate for use on embed-
ded applications. The Cortex-M line of processors use the Thumb-2 instruction set, that
offers advantages over 8-bit, 16-bit, and fixed 32-bit architectures by reducing memory
requirements and saving on-chip flash memory. This instruction set supports the 16-
bit Thumb instructions and is extended with 32-bit instructions. In many cases, the
compiler will optimize code using the smaller 16-bit instructions, only using 32-bit in-
structions where they are more efficient. The Cortex-M processors are used in a variety
of applications, including sensor fusion, environmental, wearable technology, medical
instruments, smart cities, and automotive systems [56].

2.4.4 Other lines of processors
ARMalso designs and licenses real-time processors –theCortex-R family of processors–
, adequate for embedded systems with characteristics such as reliability, high availabil-
ity, and fault tolerance. Beyond that, those processors are also adequate for applications
where the system functionality is directly responsible to avoid hazardous situations,
such as in autonomous and medical systems [57].

Another new addition to the ARM family are the SecurCore processors. Those pro-
cessors are based on pre-existent ARM cores, coupled togetherwith features specific for
security applications. Those are cores designed for tamper-resistant applications, such
as smart cards, payment systems, electronic passports, SIM cards and electronic tickets.
SecurCore is built over the Cortex-M designs, and as such may share various charac-

36

teristics with those, but further details about the features are only obtainable under a
non-disclosure agreement from ARM [58].

2.5 Algorithm choice
For this work, two algorithms from CAESAR were selected amongst the second round
candidates3. Characteristics such as documentation, the existence of reference code,
cryptanalysis and performance on ARM processors were taken into account. The qual-
ity of documentation was a subjective point for choosing the algorithms and was based
on personal preferences and perceptions; cryptanalysis was a quantitative one: check-
ingwhether a determinate algorithm had been analyzed and no defects found. The two
main sources of information for that choicewere theAuthenticated Encryption Zoo[34]
–Anwebsite hosted by DTUCompute at the Technical University of Denmark, with the
objective of providing an up-to-date overview of the cryptanalysis results of CAESAR–
and the CAESAR newsgroup4 [59]. Regarding performance, the results from SUPER-
COP’s eBAEAD [60] were used to choose the algorithms.

Initially, an algorithm based on a sponge design and another based on a tweakable
block cipherwere chosen, to better represent the different constructions. The tweakable
block cipher candidate –SCREAM [61]– was not chosen for the third round of CAESAR
and was replaced by another sponge-based candidate. The chosen family of ciphers
were NORX, with two different algorithms with 128-bit security and two with 256-bit
security; and Ascon, with two different algorithms both with 128-bit security.

2.6 Software implementation for cryptographic functions
The author of Secrets and Lies said “theweak points [of cryptographic implementations]
had nothing to do with mathematics [...] Beautiful pieces of mathematics were made
irrelevant through bad programming” [62]. When cryptographic algorithms are im-
plemented, either in software or hardware, correctness and efficiency are not the only
goals: Computer systems leak information about their processing through various side-
channels. Leakage can occur via execution time, cache operations, power consumption,
electromagnetic emanations and others. These leaks of information can be exploited
to construct side-channel attacks with the objective of recovering secret data that has
been processed. Particularly vulnerable to these attacks are mobile devices and sensor
nodes, due to the fact of being usually deployed for work in non-controlled and hostile
environments.

Secure implementations in software normally target protection against side chan-
nel attacks on execution time, cache operations, and memory access. Timing attacks
are based on measuring the time taken by various computations in order to recover se-

3At the time of the start of this work, the second round candidates were the latest announcement from
the committee.

4As of December 2017, the public group was moved to a mailing list at http://cr.yp.to. The old
messages are still accessible on http://groups.google.com/forum/#!forum/crypto-competitions.

http://cr.yp.to
http://groups.google.com/forum/#!forum/crypto-competitions

37

cret information. For example, a secret-dependent multiplication can finish in a time
related to the bit pattern in the operands. Implementations must then use operations
and techniques that allow the code to execute in constant time, independent of its se-
cret inputs. Cache attacks are based on the attacker’s ability to monitor cache access.
For example, a table lookup can generate cache misses, forcing a new part of the table
to be loaded into the cache memory. An attacker can then use this information to in-
fer the table’s access pattern and correlate it with secret data [63]. Furthermore, such
construction can also lead to time leaks, via the difference in time needed to access
cached and uncached information. This type of attack is known to even compromise
cross-VM data in Cloud computing platforms [64]. This concept can also be broadened
to RAM and disk access. The use of secret-dependent tables should be avoided when
implementing secure algorithms, or when ultimately needed, using countermeasures
to protect the data, such as Masking [65][66] and Randomization [67]. Another weak
point in cryptographic implementations is branching: Different execution paths can
also be leveraged by an attacker to recover information about the algorithm execution,
andmathematical techniques should be employedwhen decision structures are needed
in the code.

While not relevant to the scope of thiswork, software can also be tweaked tomitigate
some side channels more easily solved using on hardware implementations. For exam-
ple, power attacks can be mitigated by representing data in a constant-weight code,
what in turns can reduce leakage about the hamming weight of secret data [68]. Other
side channels, such as magnetic, optic, and acoustic emanations, are hard to protect
via only software and need specific countermeasures in a hardware implementation.
One example of side channel attack tackling these channels is NSA TEMPEST, a pro-
gram and NATO certification on spying systems through radio and electrical signals,
sounds, and vibrations.

2.7 ARM Architecture: Target processors
In this dissertationwe choose to target ARMprocessorsmainly due to their widespread
presence in IoT and small devices. Specifically, we choose two 32-bit ARMv7 cores
–Cortex A7 and A15–, a 64-bit ARMv8 processor –Cortex A53–, and smaller Cortex
M for validation. In this section, some specific characteristics of those cores will be
introduced.

Target processors: Cortex A

Cortex A processors are ARMv7 and ARMv8 cores, used on a range of devices capable
of undertaking complex tasks, such as hosting rich operating systems. In this work, we
focused on two 32-bit ARMv7 cores, and one 64-bit ARmv8 core. The main character-
istics of the cores targeted in this work are as follows [55]:

• Cortex-A7: Currently the most power efficient ARMv7-A core, with over a bil-
lion shipped units in production. The processor is capable of 40-bit physical

38

addressing and has an eight-stage in-order pipeline. The A7 core is compatible
with higher performance cores such as the Cortex-A15 and A17 for use with the
big.LITTLE technology, where high-performance cores are combined with highly
efficient cores in a heterogeneous computation approach.

• Cortex-A15: A high-performance ARMv7-A core, well suited to consumer items
such as smartphones and embedded applications. As with other processors of
the same line, it is capable of 40-bit physical addressing. It also features a 15 stage
pipeline for integer calculations.

• Cortex-A53: AnARMv8-A core capable of seamlessly running both 32-bit and 64-
bit code, and is made as an efficient 64-bit core for a low area and power footprint.
Like the Cortex-A7, it is capable of being deployed together with high-end CPUs
for chips with heterogeneous cores. The Cortex-A53 uses an efficient eight-stage
in-order pipeline.

Reference processors: Cortex M

The Cortex M is a family of low-power, energy efficient processors, specially designed
for embedded applications. In this work, three cores of this family are used:

• Cortex-M0: TheM0 is a very small core, with a footprint as low as 12K gates, being
the low-cost low-power core made for deeply embedded applications. The entire
instruction set of this core is composed of 56 instructions, with a C-friendly con-
struction, withmost of them being 16-bit Thumb-2 instructions, what yields good
code density and reduced usage of on-chip flash memory. This core is used on
cost-sensitive devices, such as analog mixed signal devices, finite state machines,
power management, motor controllers, health and environment monitoring, and
wearables.

• Cortex-M3: It is considered an optimal System-on-chip processor, with a good
balance between power and performance. This core also takes advantage of the
Thumb-2 code density, that mixes 16-bit and 32-bit instructions. This core is used
in wearable and IoT devices, motor control, domestic appliances, smart homes
and connectivity applications.

• Cortex-M4: The M4 core is a high-performance embedded processor, developed
with a focus on digital signal control. The M4 provides all the features of the
Cortex-M3 plus SIMD instructions and fast, single-cycle MAC operations. It can
optionally support IEEE 754 floating point operations. Another key feature of
this core is low dynamic power for 32-bit instructions, what delivers a good sys-
tem energy efficiency. This core is used on IoT applications, sensor fusion, signal
processing, audio processing, and smart homes.

2.8 Testing methodology
The implemented algorithms were validated for correctness in the following ways:

39

• Matching the algorithm outputswith the test vectors published in their respective
specifications, when such data is available.

• Matching the algorithm outputs and internal state in various steps –for example,
after each sponge permutation– with reference implementations, as to guarantee
both have the same behavior.

• Testing sanity, by checking if Dh
k,n(Ehk,n(m)) = m for random values of key, nonce,

additional data and message. The last two, also with variable lengths.

Beyond that, the algorithms are implemented in such a way that benchmarks are only
executed after a successful correctness check, in order to guarantee that the optimiza-
tions do not change the algorithm specification.

For benchmarking, a series of macros were used to instrument the calls to encrypt
and decrypt functions. All measurements are done using the cycle counter of each
architecture, and the reported numbers are the average of at least five executions. Since
empirically there is a small variance in the reported values (less than 0.1 cycles per
byte), the average is a good compromise for the representing value. In cases where
there is a larger variance, computing the median of the iterations, or other statistical
approaches may be more adequate, but won’t be discussed in the scope of this work.
All the comparisons are carried between code compiled on the samemachine, using the
same versions of kernel and compiler, with measurements being taken in succession.
Measuring cycles with precision is a fairly difficult problem in various architectures,
therefore it is difficult to make claims regarding the absolute precision of the reported
figures. On the other hand, tests show that the used method is self consistent across
different implementations, and matches published values for known implementations.

For ARM-v7-A architectures, the following code is used to access the contents of the
performance counter, that is used to measure elapsed clock cycles:

1 asm("mrc p15 , 0, %0, c9 , c13 , 0" : "=r"(value));

For ARM-v8 AArch64 processors, the following code is used:

1 asm ("mrs %0, pmccntr_el0 " : "=r" (r));

In order to use these measurements, the performance counters need to be enabled via
a loadable kernel module, using the following code:

1 asm ("MCR p15 , 0, %0, C9 , C14 , 0\n\t" :: "r"(1));

The performance counter can be disabled by executing the same code but with the
constant 0x8000000f instead of 0x01.

These calls, wrapped with report macros, are done right before and after the mea-
sured function, together with a forceful sync instruction. This method is similar to the
one used by ECRYPT’s SUPERCOP [60] benchmarking platform, albeit simpler. Com-
plete benchmark code is shown in Appendix C

40

Chapter 3

Software implementation: NORX
AEAD

NORX is an authenticated encryption scheme due to Jean-Philippe Aumasson, Philipp
Jovanovic and Samuel Neves [50], supporting associated data in the form of both head-
ers and trailers. NORX also supports arbitrary parallelism and is optimized for efficient
hardware and software implementations, with a SIMD-friendly construction, no secret
array indexing, and only bitwise operations. ARX1 primitives are thoroughly used,
without modular additions, and is based on the monkey-duplex construction. NORX’s
core permutation function is based on ChaCha’s permutation [69], with the integer ad-
dition (a+b) replaced by the approximation2a⊕b⊕(a∧b)≪ 1, which in turn –according
to the design teamofNORX– simplifies cryptanalysis and improves hardware efficiency
[50].

3.1 Description of NORX family of algorithms
The NORX family of algorithms is parametrized by the word size in bits w; a round
number ℓ with 1 ≤ ℓ ≤ 63; a parallelism degree p with 0 ≤ p ≤ 255 (where p = 0

defines arbitrary parallelism) and a tag length t. Regarding the key length, NORX32
uses a 128-bit key, NORX64 a 256-bit key, while NORX16 and NORX08 use a 96-bit and
an 80-bit key respectively. The 32 and 64-bit versions of NORX also use an n = 4w bits
nonce; the 8-bit and 16-bit variants have a nonce of n = 32 bits.

On the CAESAR submission, Aumasson et al. [50] propose five instances of NORX
for different uses cases. They are listed in Table 3.1, from the highest recommendation
at the top to the lowest. The naming convention for a specific instance of the algorithm
is NORXw-l-p-t, with w, l, p and t being the instance parameters. When the tag length
is the default t = 4w, then the notation is shortened as NORXw-l-p.

NORX parametrized with w = 32 bits is adequate for lightweight applications and
resource-constrained environments, requiring small hardware area and small ROMsize
for software implementations. On the other hand, the instances with w = 64 bits are

1Addition, rotation, and exclusive OR.
2This approximation is derived from the identity a+ b = (a⊕ b) + (a ∧ b)≪ 1.

41

adequate for high-performance and high-security applications, being efficient in both
64-bit and 32-bit CPUs3. Requirements for ASIC implementations are about 64 kGE,
and at most 64 bytes of ROM for the initialization constants. It is also possible to imple-
ment NORX using only one byte plus the sponge size of data in RAM [50].

Table 3.1: The five instances of NORX
Instance name w l p t k n
NORX64-4-1 64 4 1 256 256 128
NORX32-4-1 32 4 1 128 128 64
NORX64-6-1 64 6 1 256 256 128
NORX32-6-1 32 6 1 128 128 64
NORX64-4-4 64 4 4 256 256 128

NORX follows a duplexed sponge layout, as shown in Figure 3.1. NORX’s construc-
tion allows parallel processing of the payload, def ined by p. For serial processing, with
p = 1, the layout of NORX is that of a standard duplexed sponge. For a value p > 1, the
number of parallel processing lanes is given by the value of p; for example, Figure 3.1
illustrates the case of p = 2. For p = 0, the number of processing lanes is bounded by the
size of the payload itself, making the layout of NORX similar to that of the PPAE con-
struction [70]. In this section, we will follow the same convention for variable names
as the original NORX specification, summarized in Table 3.2.

Table 3.2: Common Norx variables
Variable Description
S The 16-word internal state of the sponge construction
s0, · · · , s16 The individual words of S
S̄ State for the parallel payload processing
F and F ℓ The permutation function and ℓ applications of F
G() The column/diagonal transformation function
r0, · · · , r3 NORX rotation constants
K, N , T Respectively key, nonce and authentication tag
Msg,Cipher Respectively plaintext, ciphertext
A, Z Additional data as header and trailer, respectively
u0, · · · , u15 Norx initialization constants
v Domain separation tag
w Word size, in bits
b, r, c Size on bits of Sponge, Sponge rate, and Spong capacity

3A draft of these use-cases can be found in the CAESARmailing list at the address https://groups.
google.com/forum/#!topic/crypto-competitions/DLv193SPSDc.

https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc
https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc

42

0

0

r

c

01 01 10

02 2002

02 2002

04 04 08

Header processing Trailer Processing Tag Generation

Payload Processing
With 2 execution lanes

Sponge
initialization

T
t

Figure 3.1: The layout of NORX with parallelism degree p = 2. Notice that the sponge
is divided into multiple execution lanes in the payload processing step. Those lanes
can be computed in parallel, as there is no data dependency amongst them. Based on
a figure from [50].

0

0

r

c

01 01 10 04 08

T

Header processing Trailer Processing Tag GenerationPayload ProcessingSponge
initialization

02 04

t

Figure 3.2: The layout of NORX with parallelism degree p = 1. Based on a figure from
[50].

NORX’s core is the permutation function F ℓ(), applied to the NORX internal state
S, with ℓ being the number of rounds, and defined as the ℓ fold iteration F ℓ(S) =

F (F (· · ·F (S))). The state is a concatenation of 16 w-bit words in the form S = s0 ∥
· · · ∥ s15, where thewords s0, · · · , s11 are called the rate words, where data is injected and
extracted from, and the remaining words s12, · · · , s15 are called capacity words. Concep-
tually, the state S can be viewed as a 4× 4matrix:

S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


Asingle permutationF ()processes the stateS by applying the functionG : (a, b, c, d)→

(a, b, c, d) to the matrix’s columns and then diagonals. G() is described in Algorithm 1,
and the permutation F () is specified in Algorithm 2. The round permutation F ℓ(S) is
also illustrated in Figure 3.3. The rotation constants are shown in Table 3.3

43

Table 3.3: NORX’s rotation constants [50]
w r0 r1 r2 r3
32 8 11 16 31
64 8 19 40 63

G()

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15 s12

s8

s13

s4

s9

s14

s0

s5

s10

s15

s1

s6

s11

s2

s7

s3

G()

G() G()

G()

G()

G()

G()

Figure 3.3: Column (left) and diagonal (right) steps of NORX, composing F ℓ(S).
Adapted from: Norx v3.0 specification [50].

Algorithm 1 Function G() of NORX
Input: a, b, c, d ◃ Four w-bit words of the internal State
Output: a, b, c, d ◃ Four w-bit words of the internal State
Function G(a, b, c, d)

a← (a⊕ b)⊕ ((a ∧ b)≪ 1)

d← (a⊕ d) ≫ r0
c← (c⊕ d)⊕ ((c ∧ d)≪ 1)

b← (c⊕ b) ≫ r1
a← (a⊕ b)⊕ ((a ∧ b)≪ 1)

d← (a⊕ d) ≫ r2
c← (c⊕ d)⊕ ((c ∧ d)≪ 1)

b← (c⊕ b) ≫ r3
return a, b, c, d

end Function

44

Algorithm 2 Round function F () of NORX
Input: S,G : (a, b, c, d)→ (a, b, c, d) ◃ Norx State S = {s0, · · · , s15} and function G

Output: S ◃ Norx State after one permutation round
Function F

/* Processing the columns */
s0, s4, s8, s12 ← G(s0, s4, s8, s12)

s1, s5, s9, s13 ← G(s1, s5, s9, s13)

s2, s6, s10, s14 ← G(s2, s6, s10, s14)

s3, s7, s11, s15 ← G(s3, s7, s11, s15)

/* Processing the diagonals */
s0, s5, s10, s15 ← G(s0, s5, s10, s15)

s1, s6, s11, s12 ← G(s1, s6, s11, s12)

s2, s7, s8, s13 ← G(s2, s7, s8, s13)

s3, s4, s9, s14 ← G(s3, s4, s9, s14)

return s0 · · · s15
end Function

NORX’s encryption and decryption primitives are described in Algorithm 3 and 4,
where header, branch, payload, merge, trailer and tag are domain separation con-
stants; K is the key, N is the nonce, A is the additional data to be processed before the
plaintext, Msg is the plaintext, Z is the additional data to be processed after the plain-
text, Tag is the authentication tag, and Cipher is the ciphertext. For more details on the
algorithm’s description, the reader is invited to see chapter 2 of [50].

Algorithm 3 NORX AEAD encryption
Input: K,N,A,Msg, Z ◃ Key, Nonce, Additional header data, plaintext, and
Additional trailer data
Output: Cipher, Tag ◃ Encrypted plaintext and authentication tag
Function Encrypt(K,N,A,Msg, Z)

S ← initialise(K,N)

S ← absorb(S,A, header)

S̄ ← branch(S, |Msg|, branch)

S̄, Cipher ← payloadEncrypt(S̄,Msg, payload)

S ← merge(S̄, |Msg|, merge)

S ← absorb(S, Z, trailer)

S, Tag ← finalise(S, tag)

return Cipher, Tag

end Function

45

Algorithm 4 NORX AEAD Decryption
Input: K,N,A,Cipher, Z, T ◃ Key, Nonce, Additional header data, ciphertext,
Additional trailer data, and tag
Output: Msg, Tag or ⊥ ◃ Decrypted message and authentication code, or failure
symbol
Function Decrypt(K,N,A,Cipher, Z, T)

S ← initialise(K,N)

S ← absorb(S,A, header)

S̄ ← branch(S, |Cipher|, branch)

S̄,Msg ← payloadDecrypt(S̄, Cipher, payload)

S ← merge(S̄, |Cipher|, merge)

S ← absorb(S, Z, trailer)

S, Tag′ ← finalise(S, tag)

if Tag′ == T then return Msg, Tag

else
return ⊥ ◃ Symbol for failed decryption

end if
end Function

The functions for absorb, branch, decryptPayload, encryptPayload, finalise,
initialise, and merge are described, in order, on Algorithm 6, 7, 10, 9, 11, 5, and 8.
The initialization constants (u0, · · · , u15) are given in Table 3.5

3.1.1 Padding
NORX uses a multi-rate padding, defined by the map padr : X → X ∥ 10u1 where X is
a bit string and u = (−|X| − 2 mod r). In the case where |X| and r are divisible by 8

and X is a sequence of bytes, then the padding rule can be written as:

padr :

{
X → X ∥ 0x01 ∥ 0x00u ∥ 0x80 if u > 0

X → X ∥ 0x81 if u = 0

3.1.2 Domain separation constants
NORX features a simple domain separation mechanism, where different constants are
XORed to the least significant byte of s15 before a transformation of the state by F ℓ.
Table 3.4 specifies the values of those constants, while Figure 3.1 and Figure 3.2 illustrate
the constant integration into the mode of operation.

Table 3.4: Norx domain separation constants
header payload trailer tag branching merging

01 02 04 08 10 20

46

3.1.3 Sponge initialization
The initialization function prepares the internal 16w-bit state by combining the key,
nonce, instance parameters, and the initialization constant as described in Algorithm 5.
The initializations constants are listed in Table 3.5 and can be calculated as

(u0, · · · , u15)← F 2(0, · · · , 15)

with the parameters of F having the adequate bit-length for the NORX instance. Notice
that only the subset of values {u8, · · · , u15} are used in the sponge initializationmethod.

Algorithm 5 NORX AEAD initialization
Input: K,N ◃ Key and public nonce
Output: S ◃ Initialized state
Function initialise(K,N)

k0, k1, k2, k3 ← K, s.t. |ki| = w

n0, n1, n2, n3 ← N , s.t. |ni| = w

S ← (n0, n1, n2, n3, k0, k1, k2, k3, u8, u9, u10, u11, u12, u13, u14, u15)

(s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (w, ℓ, p, t) ◃ Parameter addition
S ← F ℓ(S) ◃ State permutation
(s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3) ◃ Key addition
return S

end Function

Table 3.5: Norx Initialization constants.
w 32 64
u0 0454EDAB E4D324772B91DF79
u1 AC6851CC 3AEC9ABAAEB02CCB
u2 B707322F 9DFBA13DB4289311
u3 A0C7C90D EF9EB4BF5A97F2C8
u4 99AB09AC 3F466E92C1532034
u5 A643466D E6E986626CC405C1
u6 21C22362 ACE40F3B549184E1
u7 1230C950 D9CFD35762614477
u8 A3D8D930 B15E641748DE5E6B
u9 3FA8B72C AA95E955E10F8410
u10 ED84EB49 28D1034441A9DD40
u11 EDCA4787 7F31BBF964E93BF5
u12 335463EB B5E9E22493DFFB96
u13 F994220B B980C852479FAFBD
u14 BE0BF5C9 DA24516BF55EAFD4
u15 D7C49104 86026AE8536F1501

47

3.1.4 Absorption
The absorption method, used on the trailer and header authentication, takes a stringX

of arbitrary size and “absorbs” it into the internal states as blocks of r bits. If the last
block of data is smaller than r, it is extended using the previously described padding
rule. The absorption method is skipped if the input is an empty bit string. Algorithm 6
describes the absorb function.
Algorithm 6 NORX AEAD additional data absorption

Input: S,X, v ◃ State, data to be authenticated and domain constant.
Output: S ◃ NORX State after data absorption
Function absorb(S,X, v)

X0 ∥ · · · ∥ Xm−1 ← X , s.t. |Xi| = r, 0 ≤ |Xm−1| < r

if |X| > 0 then
for i ∈ {0, · · · ,m− 2} do

s15 ← s15 ⊕ v

S ← F ℓ(S)

S ← S ⊕ (Xi ∥ 0c)
end for
s15 ← s15 ⊕ v

S ← F ℓ(S)

S ← S ⊕ (padr(Xm−1) ∥ 0c)
end if

return S

end Function

3.1.5 Branching and Merging
If the parallelism degree p ̸= 1, the branch method is used to prepare the internal state
for parallel payload processing, effectively creating multiple independent sponges by
extending the internal state into the multi-state S̄. The branching method is skipped if
the parallelism degree p = 1 or if the message M is empty. Algorithm 7 describes the
branching process.

Algorithm 7 NORX AEAD sponge branching
Input: S,m, v ◃ State, message length, and domain constant
Output: S̄ ◃Multistate for parallel payload processing
Function branch(S,m, v)

S̄ ← 0b

if p ̸= 1 and m > 0 then
s← p

if p = 0 then
s← ⌈m/r⌉

end if
S̄ = (S̄0, · · · , S̄s−1)← (0b, · · · , 0b)
s15 ← s15 ⊕ v

48

S ← F ℓ(S)

for i ∈ {0, · · · , s− 1} do
S̄ ← S ⊕ (i, i, i, i, i, i, i, i, i, i, i, i, 0, 0, 0, 0)

end for
else

S̄ ← S

end if
return S̄

end Function

After the payload processing, themerge function is executed reduce theMultistate S̄
of 16wp bits back into the 16w-bit single sponge internal state S. Algorithm 8 describes
the merge function.

Algorithm 8 NORX AEAD sponge merge
Input: S̄,m, v ◃Multistate, message length and domain constant
Output: S ◃ Single 16w-bit state
Function merge(S̄,m, v)

S ← 0b4

if p ̸= 1 and m > 0 then
for i ∈ {0, · · · , |S̄b| − 1} do

s̄i,15 ← s̄i,15 ⊕ v

S̄i ← F ℓ(S̄i)

S ← S ⊕ S̄i

end for
else

S ← S̄

end if
return S

end Function

3.1.6 Encryption and decryption
The payload encryption method takes an arbitrary long bit-string M and encrypts it,
producing the encrypted payload C. The message M is absorbed into the sponge dur-
ing this processes, therefore ensuring its authenticity. Similarly, the payload decryption
method takes the ciphertext C and output the decrypted payload. Both functions pro-
cess their inputs in blocks of r bits, with the last block being padded when it is smaller
than r.

Regarding NORX’s parallel processing feature, p = 1 executes the encryption and
decryption as a usual duplexed sponge. In the case where p > 1, p lanes are used for
data processing, with data blocks of r bits being distributed in a round-robin fashion,
e.g. the i-th data block will be processed by the state i mod p. When p = 0, each data
block is processed by its own separate lane. Since the lane number is integrated into
the state during branching, that implies a maximum message size of 2wr bits, what is

49

approximately 232,58 bytes for NORX32 and 264,58 bytes for NORX64. Algorithm 9 and
Algorithm 10 show the encryption and decryption procedures, respectively.

Algorithm 9 NORX AEAD payload encryption
Input: S̄,M, v ◃ (Multi)State, plaintext and domain constant
Output: S̄, C ◃ (Multi)State and ciphertext
Function encryptPayload(S̄,M, v)

C ← ε

M0 ∥ · · · ∥Mm−1 ←M s.t. |Mi| = r, 0 ≤ |Mm−1| < r

if |M | > 0 then
for i ∈ {0, · · · ,m− 2} do

j ← i mod |S̄|b
s̄j,15 ← s̄j,15 ⊕ v

Sj ← F ℓ(S̄j)

Mi ← leftr(S̄j)⊕Mi

S̄j ← Ci ∥ rightc(S̄j)

end for
j ← (m− 1) mod |S̄|b
s̄j,15 ← s̄j,15 ⊕ v

S̄j ← F ℓ(S̄j)

Cm−1 ← left|Mm−1|(S̄j)⊕Mm−1

S̄j ← S̄j ⊕ (padr(Mm−1) ∥ 0c)
C ← C0 ∥ · · · ∥ Cm−1

end if
return S̄, C

end Function

Algorithm 10 NORX AEAD payload decription
Input: S̄, C, v ◃ (Multi)State, ciphertext and domain constant
Output: S̄,M ◃ (Multi)State and plaintext
Function decryptPayload(S̄, C, v)

M ← ε

C0 ∥ · · · ∥ Cm−1 ← C s.t. |Ci| = r, 0 ≤ |Cm−1| < r

if |C| > 0 then
for i ∈ {0, · · · ,m− 2} do

j ← i mod |S̄|b
s̄j,15 ← s̄j,15 ⊕ v

Sj ← F ℓ(S̄j)

Mi ← leftr(S̄j)⊕ Ci

S̄j ← Ci ∥ rightc(S̄j)

end for
j ← (m− 1) mod |S̄|b
s̄j,15 ← s̄j,15 ⊕ v

S̄j ← F ℓ(S̄j)

50

Mm−1 ← left|Cm−1|(S̄j)⊕ Cm−1

S̄j ← S̄j ⊕ (padr(Mm−1) ∥ 0c)
M ←M0 ∥ · · · ∥Mm−1

end if
return S̄,M

end Function

3.1.7 Finalization
The finalization function generates the authentication tag by executing two permuta-
tions F ℓ and two key additions. The sponge capacity c is used as the authentication tag.
The finalization function is described in Algorithm 11.

Algorithm 11 NORX AEAD finalization and tag generation
Input: S,K, v ◃ State, key and domain constant
Output: S, T ◃ Finalized State and Authentication tag
Function finalise(S,K, v)

s15 ← s15 ⊕ v

S ← F ℓ(S)

(s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)

S ← F ℓ(S)

(s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)

T ← rightt(S)
return S, T

end Function

3.1.8 Tag verification
The tag verification, used in the decryption algorithm, while not an explicit part of the
NORX specification, should be implemented in a secure way. This function verify is the
received tag T is equal to the generated tag T ′. The tag verification procedure should
execute in constant time and should not leak any kind of information regarding the
values of the bit-strings being compared. Another important feature of the Tag Verifi-
cation procedure is that no payload should be returned after a failed verification, but
rather a failure symbol⊥. Ideally, the “decrypted” bits generated previously should be
securely erased from memory after a failed verification. A proposal for implementing
this function is given in Algorithm-12, using a notation closer to the C language.

Algorithm 12 NORX AEAD Tag Verification
Input: T, T ′ ◃ Received tag and generated tag as bytestrings.
Output: r ◃ Return 0 if T = T ′

Function verify(T, T ′)
let |r| ≥ 16-bit
r ← 0

for 0 < i < byte lenght of Tag do

51

r ← r ∨ (Ti ⊕ T ′
i)

end for
r ← (((r − 1)≫ 8) ∧ 1)− 1

return r

end Function

3.2 Code profiling
The first step to successfully optimize an algorithm is to identify points of interest,
where most of the execution time is spent. In order to do that, after the first imple-
mentation of NORX, the Linux perf tool was used to determine the hotspots in both
NORX32 and NORX64.

Perf is a Linux tool, available on the Linux kernel since version 2.6.31 [71], capable
of lightweight profiling. It is included in the Linux kernel and uses the CPU hardware
performance counters to detect events such as the number of instructions executed,
cache-misses, branch mis-predictions, and others. Performance counters are the ba-
sis for profiling applications, and perf provides an easy-to-use abstraction over specific
hardware capabilities. A small description of the usage of perf, as well as links to doc-
umentation is given in Appendix D.

For both NORX32 andNORX64, a basic encryption-decryption procedure was used
tomeasure the function overheads. The only change done to code prior tomeasurement
was disabling function inlining, what results in a better granularity and ease of analysis.
The main loop of the code executes a call to the encryption function, with randomized
inputs, and a 256KB payload length to minimize the impact of initialization overheads.

Figure 3.4 shows the relative overhead values for NORX3261 symbols, running on
a 32-bit Cortex-A15. Similarly, Figure 3.5 shows the overhead results for NORX6461
on a 64-bit Cortex-A53. On both base cases, the empirical results match the expected
behavior: The permutation function, used in all steps of the algorithm, is responsible for
the largest code overhead and is, therefore, a great candidate for optimization. It should
be noted that the symbol sha256_compress is not a part of NORX, but instead used by
the pseudo-random number generator employed to feed the cipher inputs. Perf also
allows the annotation of individual instruction overhead: Such deeper analysis shows
a somewhat evenly distributed instruction overhead, with the presence of some load
instructions with four times more overhead contribution than other close instructions.
This fact suggests that an improvement in data handling could also result in positive
gains. With that inmind, a pipeline-oriented code optimizationwas chosen as themain
optimization strategy for NORX

3.3 Permutation optimization
Some smaller improvements were applied to the code, not strictly restricted to the per-
mutation. The ones with a positive impact on the code performance were:

52

Figure 3.4: Overheads for NORX 3261 running on a Cortex-A15(32-bit processor)

• Extensive use of preprocessor macros and function inlining, which avoids over-
head while still keeping code readability.

• Avoid the use of temporary variables whenever possible, performing most of the
encryption, decryption, and additional data processing in place.

• Use a prefix operation instead of a postfix one on loop counters yields small im-
provements, more visible on Cortex-M based processors.

• Initialize the spongeusing constants instead of calculating it asF 2(0 ∥ 1 ∥ · · · ∥ 15),
where each number j is represented using w bits.

• Where possible, concatenate shift and rotate operations together with arithmetic
operations, in order to use the target processor’s barrel shifter, causing the shift
operation to be executed at no cost.

Other approacheswere tested, such as replacing memcpy() callswith loops of byte assig-
nations, manually unrolling loops and changingmemory alignment. Those did not im-
pact the performance in any significant way, resulting in negligible variations in cycle
count.

53

Figure 3.5: Overheads for NORX 6461 running on a Cortex-A53(64-bit processor)

3.4 Pipeline oriented optimization
The function G is executed on the columns and then on the diagonals of the 4× 4 ma-
trix representation of NORX State, using Algorithm 1 for each column and diagonal.
Since there is no dependency between each column and diagonal, the function G can
be rewritten in a way that each step of G is executed right after the other, for each col-
umn or diagonal. This way, the execution can be arranged in groups of two columns
or four columns. This approach allows a better use of the processor’s pipeline, improv-
ing the execution time. Figure 3.6 illustrates the idea behind using a pipeline-oriented
implementation to optimize an algorithm.

In this way, the optimized code of function G for a 4-way pipeline is described in
Algorithm 13 and the same function, optimized for a 2-way pipeline is described in
Algorithm 14. In a similar way, Figure 3.8 and Figure 3.7 shows the domains of the new
implementations of G().

In those algorithms ROR(a, r) is the bitwise right rotation of a by r bits; ROR4({a,
b, c, d}, r) is each word in the tuple {a,b,c,d} rotated by r bits, and r1, r2, r3,
r4 are NORX rotation constants. Notice that, in order to execute the function F (), the
function G4() must be called twice, with a different argument order in the second call
to execute the diagonal step. Similarly,G2()must be called a total of four times in order
to execute the column and diagonal steps.

54

instruction1 instruction2 instruction1 instruction2

instruction1 instruction2 instruction1 instruction2

2-way Instruction pipelining

No Instruction pipelining

instruction1 instruction2 instruction1 instruction2 instruction1 instruction2 instruction1 instruction2

4-way Instruction pipelining

instruction1 instruction2

instruction1 instruction2

instruction1 instruction2

instruction1 instruction2

Figure 3.6: Illustration of the basic idea behind a pipeline/instruction parallelism ap-
proach of optimization.

Algorithm 13 The function Gwith 4-way pipeline optimization
1: Input: S = (s0, · · · , s15) ◃Whole Norx State
2: Output: S = (s0, · · · , s15) ◃Whole Norx State
3: Function G4(S)
4: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)≪ 1)

5: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)≪ 1)

6: s2 = (s2 ⊕ s6)⊕ ((s2 ∧ s6)≪ 1)

7: s3 = (s3 ⊕ s7)⊕ ((s3 ∧ s7)≪ 1)

8: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
9: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3

10: {s12, s13, s14, s15} = ROR4({s12, s13, s14, s15}, r0)
11: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)≪ 1)

12: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)≪ 1)

13: s10 = (s10 ⊕ s14)⊕ ((s10 ∧ s14)≪ 1)

14: s11 = (s11 ⊕ s15)⊕ ((s11 ∧ s15)≪ 1)

15: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
16: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
17: {s4, s5, s6, s7} = ROR4({s4, s5, s6, s7}, r1)
18: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)≪ 1)

19: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)≪ 1)

20: s2 = (s2 ⊕ s6)⊕ ((s2 ∧ s6)≪ 1)

21: s3 = (s3 ⊕ s7)⊕ ((s3 ∧ s7)≪ 1)

22: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1

55

G2()

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15 s12

s8

s13

s4

s9

s14

s0

s5

s10

s15

s1

s6

s11

s2

s7

s3

s4

s8

s12

s0

G2() G2()

G2()

Figure 3.7: 2× optimization of the NORX F function. The function G2 : {0, 1}8w →
{0, 1}8w operates over 8 words of the internal state each time.

23: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
24: {s12, s13, s14, s15} = ROR4({s12, s13, s14, s15}, r2)
25: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)≪ 1)

26: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)≪ 1)

27: s10 = (s10 ⊕ s14)⊕ ((s10 ∧ s14)≪ 1)

28: s11 = (s11 ⊕ s15)⊕ ((s11 ∧ s15)≪ 1)

29: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
30: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
31: {s4, s5, s6, s7} = ROR4({s4, s5, s6, s7}, r3)
32: return S

33: end Function

Algorithm 14 The function Gwith 2-way pipeline optimization
1: Input: s0, s1, s4, s5, s8, s9, s12, s13
2: output: s0, s1, s4, s5, s8, s9, s12, s13
3: Function G2(s0, s1, s4, s5, s8, s9, s12, s13)
4: ◃ Either two columns or diagonals of the 16× 16 State representation.
5: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)≪ 1)

6: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)≪ 1)

7: s12 = s12 ⊕ s0
8: s13 = s13 ⊕ s1
9: s12 = ROR(s12, r0)

10: s13 = ROR(s13, r0)
11: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)≪ 1)

12: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)≪ 1)

13: s4 = s4 ⊕ s8
14: s5 = s5 ⊕ s9

56

G4()

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15

s4

s8

s12

s0

G4()

s1

s

s

s

s2

s6

s

s

9

s3

s7

s

s13

10

5

1415

s 4

s 11 8

s 12

s0

Figure 3.8: 4× optimization of the NORX F function. The function G4 : {0, 1}16w →
{0, 1}16w operates over 16 words of the internal state at once. Notice that the diagonal
step is done by simply reordering the inputs of G4.

15: s4 = ROR(s4, r1)
16: s5 = ROR(s5, r1)
17: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)≪ 1)

18: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)≪ 1)

19: s12 = s12 ⊕ s0
20: s13 = s13 ⊕ s1
21: s12 = ROR(s12, r2)
22: s13 = ROR(s13, r2)
23: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)≪ 1)

24: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)≪ 1)

25: s4 = s4 ⊕ s8
26: s5 = s5 ⊕ s9
27: s4 = ROR(s4, r3)
28: s5 = ROR(s5, r3)
29: return s0, s1, s4, s5, s8, s9, s12, s13
30: end Function
31:
32: Input: S = (s0, · · · , s15), GH() ◃Whole Norx State and the half permutation
33: Output: S = (s0, · · · , s15) ◃ Norx State after permutation
34: Function FG2(S = (s0, · · · , s15)) ◃ Permutation using G2

35: ◃ Column step
36: (s0, s1, s4, s5, s8, s9, s12, s13)← (GH)(s0, s1, s4, s5, s8, s9, s12, s13)
37: (s2, s3, s6, s7, s10, s11, s14, s15)← (GH)(s2, s3, s6, s7, s10, s11, s14, s15)
38: ◃ Diagonal step
39: (s0, s1, s5, s6, s10, s11, s15, s12)← (GH)(s0, s1, s5, s6, s10, s11, s15, s12)
40: (s2, s3, s7, s4, s8, s9, s13, s14)← (GH)(s2, s3, s7, s4, s8, s9, s13, s14)
41: return S

57

42: end Function

In Algorithm 14, the even-numbered lines of G2() execute G() : s4 → s4 on a col-
umn or diagonal of the internal state, while the odd numbered lines execute the same
instructions on a different and independent diagonal or column of the state. This then
allows the issue of independent instructions and loads, for example, the XORs in lines
7 and 8. This same idea is applied even further in Algorithm 13, where 4 independent
instructions are issued one after another, what makes this implementation better suited
for a processor with a deep pipeline.

3.5 NEON implementation
Cortex-A processors usually feature a SIMD engine called NEON. The structure of
NORX, with processing being executed in a matrix’s columns and diagonals, with no
data dependency between these structure makes it a great candidate for a NEON im-
plementation. Furthermore, a single 128-bit NEON register is able to hold a whole line
of NORX32 state matrix, and while two of these registers are necessary for each line of
NORX64 state, the native NEON instructions are capable of working directly on 64-bit
words.

A straightforward way to implement NORX using NEON is defining the internal
state as an array of type-Q registers: uint32x4_t[4] for NORX32 and uint64x2_t[8] for
NORX64.

3.5.1 NEON word-wise rotations
NORX F () needs four word-wise right-rotations with different rotation constants, ex-
ecuted inside the NEON register lanes. An implementation for NORX32 rotations is
shown in Algorithm 15, and the 64-bit version is shown in Algorithm 16.

Regarding NORX32, the default rotation (ROTRN) uses the vector shift right and insert
(VSRIQ) instruction, with a left shift to execute the rotation without need for an exclu-
sive or to combine intermediate shift values. The 16-bit optimized rotation is executed
by interpreting the NEON register as 8 16-bit words; using the 32-bit swap endianness
intrinsic and then casting the variable back to uint32x4_t. While this may look coun-
terproductive in a first analysis, this code is compiled into a single instruction VREV32
.16 q0,q0. The instruction VREVn.m reverses the order of the m-bit lanes within a set
that is n bits wide [72]. Regarding NORX64, the 63-bit rotation (ROTRN) follows a sim-
ple shift-and-XOR approach, while the default rotation is similar to the one used by
NORX32.

58

Algorithm 15 Optimized rotations for NORX32

1 // ROTate Right Neon
2 # define ROTRN (X, C) vsriq_n_u32 ((X << (32-C)), (X), (C))
3

4 // optmized for (16) r2: reinterprets vector as 16 bit and reverse
every 32 bits

5 # define ROTRNR2 (X) ((uint32x4_t)(vrev32q_u16 ((uint16x8_t)(X))))
6

7 // optmized for (31) r3:
8 # define ROTRNR3 (X) ((X > >31) ^(X<<1))

Algorithm 16 Optimized rotations for NORX64

1 // ROTateRightNeon
2 # define ROTRN (X, C) vsriq_n_u64 (X << (64-C), (X), (C))
3

4 // Optmized for (63) r3:
5 # define ROTRNR3 (X) veorq_u64 ((X >> 63) , (X << 1))

3.5.2 Register wide rotations
The application of the function G() to the state columns is straightforward in NEON.
On the other hand, the diagonal step results in misaligned data. One way to implement
the diagonal-step is rotating the state’s lines, applyingG() to columns –nowmade of the
aligned diagonals, and them rotating the lines back into the initial state, in preparation
for the next round of F (). These transformations, that will be called DIAG and UNDIAG,
are illustrated in Figure 3.9.

s1s0 s2 s3

s5s4 s6 s7

s9s8 s10 s11

s13s12 s14 s15

s1s0 s2 s3

s5 s4s6 s7

s9s8s10 s11

s13s12 s14s15

DIAG()

UNDIAG()

Figure 3.9: Transformations needed for the diagonal step.

59

ForNORX32, the DIAG and UNDIAG functions are shown inAlgorithm 17. The 3-word
and single word rotations are executed using the vector extract (VEXT{cond}.8 {Qd},
Qn, Qm, #imm) instruction. This instruction extracts 8-bit elements from the bottom of
the second operand and from the top of the first operand, concatenates and stores the
result in the destination vector. By using the same register as inputs to the function,
this function executes a register-wide rotation. While this approach could also be used
to implement the 2-word rotation, one can use the fact that physically a type-Q register
is a pair of type-D rotation to improve even further: by using the vcombine, vget_high,
and vget_low intrinsics, the compilator generates a single VSWP instruction operating on
the 64-bit type-D registers.

Algorithm 17 Optmized register-wide rotations for NORX32

1 //{A, B, C, D} are of type uint32x4_t
2 # define DIAG(A, B, C, D) do{ \
3 D = vextq_u32 (D, D, 3); \
4 /*C = vextq_u32 (C, C, 2); */ \
5 C = vcombine_u32 (vget_high_u32 (C), vget_low_u32 (C)); \
6 B = vextq_u32 (B, B, 1); \
7 } while (0)
8

9 # define UNDIAG (A, B, C, D) do{ \
10 D = vextq_u32 (D, D, 1); \
11 /* C = vextq_u32 (C, C, 2); */ \
12 C = vcombine_u32 (vget_high_u32 (C), vget_low_u32 (C)); \
13 B = vextq_u32 (B, B, 3); \
14 } while (0)

For NORX64, the DIAG and UNDIAG functions are shown in Algorithm 18. Similar
to NORX32, the rotations uses the combination of vcombine, vget_high, and vget_low
intrinsics to generate the swaps.

Algorithm 18 Optmized register-wide rotations for NORX64

1 //{Al , Ah , Bl , Bh , Cl , Ch , Dl , Dh} are of type uint64x2_t
2 # define DIAG(Al , Ah , Bl , Bh , Cl , Ch , Dl , Dh) do{ \
3 uint64x2_t x, y; \
4 x = vcombine_u64 (vget_high_u64 (Bl), vget_low_u64 (Bh));\
5 y = vcombine_u64 (vget_high_u64 (Bh), vget_low_u64 (Bl));\
6 Bl=x; Bh=y; \
7 \
8 x = Cl; \
9 Cl = Ch; \

10 Ch = x; \
11 \
12 x = vcombine_u64 (vget_high_u64 (Dl), vget_low_u64 (Dh));\
13 y = vcombine_u64 (vget_high_u64 (Dh), vget_low_u64 (Dl));\

60

14 Dl = y; Dh = x; \
15 } while (0)
16

17 # define UNDIAG (Al , Ah , Bl , Bh , Cl , Ch , Dl , Dh) do{ \
18 uint64x2_t x, y; \
19 x = vcombine_u64 (vget_high_u64 (Bh), vget_low_u64 (Bl));\
20 y = vcombine_u64 (vget_high_u64 (Bl), vget_low_u64 (Bh));\
21 Bl=x; Bh=y; \
22 \
23 x = Cl; \
24 Cl = Ch; \
25 Ch = x; \
26 \
27 x = vcombine_u64 (vget_high_u64 (Dh), vget_low_u64 (Dl));\
28 y = vcombine_u64 (vget_high_u64 (Dl), vget_low_u64 (Dh));\
29 Dl = y; Dh = x; \
30 } while (0)

3.5.3 NEON Permutation
Given the word-wide and register-wide rotations the permutation can then be imple-
mented using the NEON instructions. The function G() is given in Algorithm 19 for
NORX32 and Algorithm 20 for NORX64.

Algorithm 19 NEON implementation of the function G() NORX32

1 # define G(A, B, C, D) \
2 do{ \
3 ALIGN uint32x4_t t, y; \
4 \
5 t = A ^ B; y = A & B; y = SHL(y); \
6 A = t ^ y; \
7 D = D ^ A; D = ROTRN (D, r0); \
8 \
9 t = C ^ D; y = C & D; y = SHL(y); \

10 C = t ^ y; \
11 B = B ^ C; B = ROTRN (B, r1); \
12 \
13 t = A ^ B; y = A & B; y = SHL(y); \
14 A = t ^ y; \
15 D = D ^ A; D = ROTRNR2 (D); \
16 \
17 t = C ^ D; y = C & D; y = SHL(y); \
18 C = t ^ y; \
19 B = B ^ C; B = ROTRNR3 (B); \
20 } while (0)

61

Algorithm 20 NEON implementation of the function G() NORX64

1 # define G(Al , Ah , Bl , Bh , Cl , Ch , Dl , Dh) \
2 do{ \
3 uint64x2_t tl , th , yl , yh; \
4 \
5 tl = Al ^ Bl; th = Ah ^ Bh; \
6 yl = Al & Bl; yh = Ah & Bh; \
7 yl = SHL(yl); yh = SHL(yh); \
8 Al = tl ^ yl; Ah = th ^ yh; \
9 Dl = Dl ^ Al; Dh = Dh ^ Ah; \

10 Dl = ROTRN (Dl , r0); Dh = ROTRN (Dh , r0); \
11 \
12 tl = Cl ^ Dl; th = Ch ^ Dh; \
13 yl = Cl & Dl; yh = Ch & Dh; \
14 yl = SHL(yl); yh = SHL(yh); \
15 Cl = tl ^ yl; Ch = th ^ yh; \
16 Bl = Bl ^ Cl; Bh = Bh ^ Ch; \
17 Bl = ROTRN (Bl , r1); Bh = ROTRN (Bh , r1); \
18 \
19 tl = Al ^ Bl; th = Ah ^ Bh; \
20 yl = Al & Bl; yh = Ah & Bh; \
21 yl = SHL(yl); yh = SHL(yh); \
22 Al = tl ^ yl; Ah = th ^ yh; \
23 Dl = Dl ^ Al; Dh = Dh ^ Ah; \
24 Dl = ROTRN (Dl , r2); Dh = ROTRN (Dh , r2); \
25 \
26 tl = Cl ^ Dl; th = Ch ^ Dh; \
27 yl = Cl & Dl; yh = Ch & Dh; \
28 yl = SHL(yl); yh = SHL(yh); \
29 Cl = tl ^ yl; Ch = th ^ yh; \
30 Bl = Bl ^ Cl; Bh = Bh ^ Ch; \
31 Bl = ROTRNR3 (Bl); Bh = ROTRNR3 (Bh); \
32 } while (0)

Finally, given these functions, the permutation F () is given in Algorithm 21 for
NORX32 and Algorithm 22 for NORX64.

62

Algorithm 21 NEON implementation of the function F () for NORX32

1 static inline void roundF (uint32x4_t S[4]){
2 G(S[0] , S[1], S[2], S[3]);
3 // Diagonal transformation
4 DIAG(S[0], S[1] , S[2], S[3]);
5 G(S[0] , S[1], S[2], S[3]);
6 // Back to original layout
7 UNDIAG (S[0], S[1], S[2], S[3]);
8 }

Algorithm 22 NEON implementation of the function F () for NORX64

1 static inline void roundF (uint64x2_t S[8]) {
2 G(S[0] , S[1], S[2], S[3] , S[4], S[5], S[6], S[7]);
3 // columns transformation
4 DIAG(S[0], S[1] , S[2], S[3], S[4], S[5], S[6], S[7]);
5 G(S[0] , S[1], S[2], S[3] , S[4], S[5], S[6], S[7]);
6 // Back to original layout
7 UNDIAG (S[0], S[1], S[2], S[3] , S[4], S[5], S[6], S[7]);
8 }

3.6 Other implementations
Some novel ways to implement NORX were thought of, but ultimately had no measur-
able improvement in comparison with the state-of-art implementations. For complete-
ness, those negative results will be reported in this Section.

For NORX3261, a implementation using uint64_t to pack twowords of the internal
state was tried. Beyond the less legible code, this implementation had impact similar
to the 2× pipeline implementation, due to the fact that, internally, the 32-bit processors
was transforming back the operations into 32-bit ones. On the 64-bit processor, this code
showed, again, no tangible improvements due to the data manipulation overheads.

The original NORX paper [50] defines a permutation with temporary variables and
a “low latency” construction. In our tests, this different permutationwas either equal or
worse than the default permutation. The same behavior was found when the pipeline
optimization were applied to the low latency permutation.

The code from Algorithm 23 is a different way to implement the function
G : {0, 1}4w → {0, 1}4w. Overall, this method was 23% slower than the optimized code
on the 32-bit platforms, and 11% on the 64-bit ones.

63

Algorithm 23 Different approach of implementing G().

1 # define G(a, b, c, d) do{ \
2 uint32_t t1 , t2; \
3 \
4 d = d ^ a; \
5 t1 = a & b; \
6 t2 = b ^ (t1 << 1); \
7 b = b ^ c; \
8 a = a ^ t2; \
9 d = d ^ t2; \

10 d = ROR(d, r0); \
11 \
12 t1 = c & d; \
13 t2 = d ^ (t1 << 1); \
14 d = d ^ a; \
15 c = c ^ t2; \
16 b = b ^ t2; \
17 b = ROR(b, r1); \
18 \
19 t1 = a & b; \
20 t2 = b ^ (t1 << 1); \
21 b = b ^ c; \
22 a = a ^ t2; \
23 d = d ^ t2; \
24 d = ROR(d, r2); \
25 \
26 t1 = c & d; \
27 t2 = d ^ (t1 << 1); \
28 c = c ^ t2; \
29 b = b ^ t2; \
30 b = ROR(b, r3); \
31 } while (0)

On the NEON implementation, a different approach to implement a SIMD function
G : ({0, 1}4w)4 → ({0, 1}4w)4 was tried, but it had slightly worse (≤ 5%) performance
than the reference NEON implementation. This code is shown in Algorithm 24.

64

Algorithm 24 Different approach of implementing G() using NEON.

1 # define G(A, B, C, D) \
2 do{ \
3 ALIGN uint32x4_t t0 , \
4 t0 = A & B; \
5 t1 = SHL(t0); \
6 A = A ^ t1; \
7 A = A ^ B; \
8 D = D ^ A; \
9 D = ROTRN (D, r0); \

10 \
11 t0 = C & D; \
12 t1 = SHL(t0); \
13 C = C ^ t1; \
14 C = C ^ D; \
15 B = B ^ C; \
16 B = ROTRN (B, r1); \
17 \
18 t0 = A & B; \
19 t1 = SHL(t0); \
20 A = A ^ t1; \
21 A = A ^ B; \
22 D = D ^ A; \
23 D = ROTRNR2 (D); \
24 \
25 t0 = C & D; \
26 t1 = SHL(t0); \
27 C = C ^ t1; \
28 C = C ^ D; \
29 B = B ^ C; \
30 B = ROTRNR3 (B); \
31 } while (0)

3.7 Results and considerations
Regarding the security of those implementations, the tool FlowTracker [73] was used to
analyze the behavior of the algorithm and check if it runs in constant-time. FlowTracker
is a tool used to detect timing attack vulnerabilities in cryptographic codes written in
C/C++, capable of finding data traces or control sequences with dependencies in se-
cret information. Beyond that, NORX is designed to be resistant against side-channel
attacks, with no table-lookups, branching or looping dependent on secret data. Further-
more, there are cryptanalysis works regarding differential, algebraic, fixed-point, slide,
and rotational attacks [2]. For implementation correctness, test vectors were used to
compare outputs with the reference implementation, and internal consistency was ver-

65

ified using encryption-decryption of random sets of plaintext, nonce, additional data
and keys.

Table 3.6 shows the results for the 32-bit processors, namely Cortex A7 and Cortex
A15; Table 3.7 shows the results for the 64-bit Cortex A53 processor. Lastly, for com-
pleteness, Table 3.8 on the embedded Cortex-M micro-controllers An input length of
256KB was chosen to report the average CPB –cycle per byte– since it better dilutes the
initialization overheads, without risking overflow of the performance counter registers,
except in the Cortex-Mmicro-controllers, due tomemory constraints. The initialization
overhead can be seen in Figures 3.10 and 3.11. In these tables, “reference code" refers
to the C code submitted by the NORX authors to CAESAR.

Table 3.6: Cycles per byte for NORX encryption. Plaintext length of 256KiB on the 32-
bit processors. Reference code from CAESAR [74]. NORX3261 and NORX3264 use a
128-bit key, and NORX6461 uses a 256-bit key.

Ref. code 4x pipe 2x pipe Ref. NEON Speedup

NORX 3261 Cortex A7 29.45 29.70 24.72 26.99 16%
Cortex A15 17.77 14.23 15.16 18.25 20%

NORX 3264 Cortex A7 28.46 33.74 26.50 33.27 7%
Cortex A15 16.88 15.26 15.37 18.21 10%

NORX 6461 Cortex A7 48.52 50.09 46.65 17.81 4%
Cortex A15 33.83 26.76 28.33 10.90 21%

NORX 6464 Cortex A7 47,86 48,85 44,98 38,75 6%
Cortex A15 35.54 25.00 26.73 22,94 25%

Table 3.7: Cycles per byte for NORX encryption on the 64-bit platform Cortex-A53.
Plaint text length of 256KiB. Reference code from CAESAR [74]. NORX3261 and
NORX3264 uses a 128-bit key, and NORX6461 uses a 256-bit key.

Ref. 4x pipe 2x pipe Ref. NEON Speedup
NORX 3261 19.55 10.94 12.27 10.81 44%
NORX 3264 19.42 12.08 13.06 9.56 38%
NORX 6461 10.29 5.84 6.58 9,54 43%
NORX 6464 9.43 6.09 9.62 8,92 35%

For the 32-bit variant of NORX, a 4× pipeline implementation is faster than the ref-
erence code in up to 20% on a 32-bit ARM and 44% on the 64-bit Cortex-A53. Our
optimized implementation is faster than the reference NEON implementation: the 2×
pipeline implementation is 12% faster than the reference code on the Cortex A7 core;
the 4× pipeline implementation is 22% faster on the Cortex A15. While NORX has a
SIMD friendly construction, with the internal state fitting in four 128-bit NEON regis-
ters, there are two extra transformations needed in each application of the functionG in
order to align the words between the column and diagonal steps. This transformation
requires three extra pairs of SIMD load and store instructions, two vext.8 instructions,
and a vwsp instruction. We believe that this, togetherwith the extra cost needed to trans-
fer data from the NEON registers back to the ARM registers every round, coupled with

66

Table 3.8: Perfomance of NORX3261 (cycles per byte) on 32-bit Cortex-M architecture.
Cortex
model Size No pipeline

optimizations Ref. code 4x pipe 2x pipe

M0 8KiB 99.52 100.12 111.84 99.96
M3 32KiB 49.96 50.49 67.21 66.26
M4 16KiB 49.96 50.49 47.28 66.26

Figure 3.10: Cycles per byte results for NORX3261 on Cortex A15.

the optimal usage of the pipeline makes our solution better than using SIMD instruc-
tions for these cores. Notice that the pipeline implementations cannot be implemented
in theNEON implementation of the 32-bit variants of NORX: The idea behind these op-
timizations is to explore the lack of data dependencies between different columns and
diagonals of the internal state, and the NEON implementation keeps all these elements
inside the register lanes.

For the 64-bit variant of NORX, a 2× pipeline is better suited for the Cortex-A7 pro-
cessor, and a 4× pipeline for the Cortex-A15 processor, due to the differences in pipeline
length. With SIMD instructions being adequate for larger volume of data, NORX6461
on the 32-bit platform shows better performance using SIMD instructions, mainly due
to the 64-bit word rotations being expensive using the 32-bit ARM registers, in com-
parison to the NEON approach, where the rotations of two words can be done at the
same time in the 128-bit register. For Cortex A53, both pipeline implementations show
satisfactory results, being 43% faster than the reference code. In relation to a NEON

67

Figure 3.11: Cycles per byte results for NORX6461 on Cortex A53.

implementation, the 4× pipeline implementation is 39% faster and the 2× pipeline im-
plementation is 31% faster. Similarly to NORX3261, the presence of a native 64-bit reg-
ister and a deep pipeline with 8 stages makes a pipeline oriented approach superior
to the SIMD alternative. Notice that an “optimization" similar to the 2× pipeline code
is already implemented in the NEON code of NORX6461 and NORX6464, where the
NEON instructions operate in a round-robin fashion on the pairs of columns and diag-
onals of the state, but in our tests, there is no performance difference between this and
a serial approach on the operation order on the sponge registers.

The multi-sponge algorithms –NORX3264 and NORX6464– show a similar behav-
ior to their single-sponge counterparts: NORX3264 gets a small speed improvement
using the 2× pipeline implementation on Cortex-A7, and a more pronounced speedup
using the 4× implementation in both Cortex-A15 and Cortex-A53. The 64-bit multi-
sponge algorithm –NORX6464– also shows a small speedup using the 2× implementa-
tion on Cortex-A7, and a better speedup using the deeper pipeline implementation on
the Cortes-A15 and Cortex-A53 processors. Those tests are referent to a single-thread
implementation. The multi-sponge algorithms can be further improved by using mul-
tiple threads to execute the parallel sponges.

3.8 Applying the ideas to the BLAKE2 hash algorithm
BLAKE2 [75] is a family of cryptographic hash functions due to the same creators of
NORX, specified in RFC 7693, and finalist of the SHA-3 competition. This family of hash
functions are, according to the authors, faster than MD5, SHA-1, SHA-2, and SHA-3,

68

while still being at least as secure as the standard SHA-3. Due to its performance, sim-
plicity, and security, BLAKE2 is used in many projects: WolfSSL [76], OpenSSL [77],
Bouncy Castle [78], Noise protocol [79], Sodium, WinRAR, etc. It’s also part of pass-
word hashing schemes such as Catena [80] and others.

BLAKE2 shares many common traits with NORX:

• BLAKE2 features a 16-word state, organized as a 4×4matrix, with a permutation
function being applied to it’s columns and diagonals.

• BLAKE2 has two variations that resemble NORX32 and NORX64, with a similar
G : s4 → s4 function, made from XOR, rotations and additions

• A combination of G() functions create a round permutation F (), that is then iter-
ated for a given number of rounds on the internal state.

For this work, we modified BLAKE2s, the 32-bit optimized version of BLAKE, with
the 2× and 4× optimizations, and executed tests in the same environment as the tests of
NORX. Snippets for these optimizations are given in Algorithm 25 and Algorithm 26.

Algorithm 25 G() snippet for the 2× optimization

1 # define G(m,r,i,a,b,c,d,I,A,B,C,D) { \
2 a = a + b + m[blake2s_sigma [r][2*i +0]]; \
3 A = A + B + m[blake2s_sigma [r][2*I +0]]; \
4 d = ROR(d ^ a, 16); \
5 D = ROR(D ^ A, 16); \
6 c = c + d; \
7 C = C + D; \
8 b = ROR(b ^ c, 12); \
9 B = ROR(B ^ C, 12); \

10 a = a + b + m[blake2s_sigma [r][2*i +1]]; \
11 A = A + B + m[blake2s_sigma [r][2*I +1]]; \
12 d = ROR(d ^ a, 8); \
13 D = ROR(D ^ A, 8); \
14 c = c + d; \
15 C = C + D; \
16 b = ROR(b ^ c, 7); \
17 B = ROR(B ^ C, 7); \
18 }

69

Algorithm 26 G() snippet for the 4× optimization

1 # define G(m,r,i,a,b,c,d,I,A,B,C,D,j,e,f,g,h,J,E,F,G,H) {\
2 a = a + b + m[blake2s_sigma [r][2*i +0]]; \
3 e = e + f + m[blake2s_sigma [r][2*j +0]]; \
4 A = A + B + m[blake2s_sigma [r][2*I +0]]; \
5 E = E + F + m[blake2s_sigma [r][2*J +0]]; \
6 d = ROR(d ^ a, 16); \
7 h = ROR(h ^ e, 16); \
8 D = ROR(D ^ A, 16); \
9 H = ROR(H ^ E, 16); \

10 c = c + d; \
11 g = g + h; \
12 C = C + D; \
13 G = G + H; \
14 b = ROR(b ^ c, 12); \
15 f = ROR(f ^ g, 12); \
16 B = ROR(B ^ C, 12); \
17 F = ROR(F ^ G, 12); \
18 a = a + b + m[blake2s_sigma [r][2*i +1]]; \
19 e = e + f + m[blake2s_sigma [r][2*j +1]]; \
20 A = A + B + m[blake2s_sigma [r][2*I +1]]; \
21 E = E + F + m[blake2s_sigma [r][2*J +1]]; \
22 d = ROR(d ^ a, 8); \
23 h = ROR(h ^ e, 8); \
24 D = ROR(D ^ A, 8); \
25 H = ROR(H ^ E, 8); \
26 c = c + d; \
27 g = g + h; \
28 C = C + D; \
29 G = G + H; \
30 b = ROR(b ^ c, 7); \
31 f = ROR(f ^ g, 7); \
32 B = ROR(B ^ C, 7); \
33 F = ROR(F ^ G, 7); \
34 }

The results of our tests are shown in Table 3.9. The overhead dilution behavior can
be seen in the chart shown in Figure 3.12.

Table 3.9: Cycles per byte for BLAKE2s digest. Plaintext length of 64KB.
Ref. Code 4x pipe 2x pipe Speedup

Cortex A7 123,09 123,07 123,08 0%
Cortex A15 79,91 45,14 59,63 44%
Cortex A53 110,81 97,73 110,82 12%

70

Figure 3.12: Cycles per byte results for BLAKE2s on Cortex A15.

While the optimization had neither a positive or negative effect on the shallow
pipeline of Cortex A7, there were positive results on other processors: On the 32-bit
Cortex A15, a 4× pipeline resulted in 44% of speedup. On a Cortex A53, 12% of
speedup was found.

71

Chapter 4

Software implementation: Ascon
AEAD

Ascon is a family of AEAD algorithms currently in the fourth round of the CAESAR
competition. It was designed by Christoph Dobraunig, Maria Eichlseder, Florian
Mendel and Martin Schläffer, from Graz University of Technology and Infineon
Technologies. The main goal of Ascon is to have a very low memory footprint in
both hardware and software implementations, while still providing adequate speed,
simplicity of analysis, and good bounds for security. The rationale behind the design
of this AEAD scheme is to provide the best combination of security, speed and size on
hardware and software, with a focus on the size. Ascon is based on the sponge design,
being very similar to the SpongeWrap [15] and MonkeyDuplex [81] designs, but with
a stronger keyed initialization and finalization steps. The permutation of Ascon is
an iterated SPN, designed to provide fast diffusion at low cost. The Sbox used in the
permutation function is an improved version of the χmapping of Keccak [82], and the
linear layer uses a function similar to the Σ functions of SHA-2.

The design ofAscon allows it to have lightweight implementations on both software
and hardware, with a good performance, although it was not designed with the inten-
tion to compete with very fast parallel AEAD schemes on unconstrained devices. On
the other hand, the scheme was designed with good instruction parallelism. Amongst
the characteristics of Ascon, we can cite:

• Light and flexible in Hardware. Current implementations of Ascon can achieve
a throughput of 4.9-7.3 Gbps using less than 10kGE. It is also possible, with trade-
offs, to implement Ascon in as low as 2.5 kGE or with throughput as high as 13.2
Gbps [3].

• Bitsliced software implementation. The design of Ascon allows for an easy bit-
sliced implementation in software, thanks to the internal state and permutation
being defined in standard operations over 64-bit words. Beyond that, the small
size of the internal state(320 bits) allows the whole sponge to be kept in registers,
even on constrained architectures.

• Easy side-channel countermeasures. The bitsliced Sbox implementation pre-

72

vents cache-timing attacks, since there are no secret-data dependencies on lookup
tables. Furthermore, the Sbox design facilitates side-channel leakage countermea-
sures such as Masking.

• Online, single-pass, and inverse-free. Ascon can encrypt plaintext blocks be-
fore subsequent blocks or plaintext length is known. This property is also true
for decryption. Both operations can be executed in a single pass, what also allows
in-place encryption and decryption. Beyond that, the permutations are only eval-
uated in a single direction, without the necessity of inverse operations, which in
turn significantly reduces area overhead in hardware implementations.

• Key agility and simplicity. The scheme does not need a key schedule or expan-
sion, therefore there are no hidden setup costs. The implementation of the scheme
is defined over 64-bit words and uses only common bitwise boolean functions,
namelly AND, OR, NOT, and bitwise rotation.

The Ascon family of AEAD algorithms will be described in the next section.

4.1 Description of Ascon algorithms
The algorithms in theAscon family have names in the formASCONa,b−k−r. The algo-
rithms are parametrized by the key length k ≤ 128 bits, the rate r and the internal round
numbers a and b. TheAscon authors define two algorithms namedAscon-128 andAs-
con-128a, with their parameters shown in Table 4.1 [3]. There are twomain differences
between Ascon128 and Ascon-128a: The permutation pb –executed in all steps except
sponge initialization and finalization– of Ascon-128a has two extra rounds in compari-
son toAscon-128; andAscon-128a processes 128 bits of data at a time, versus 64 bits of
Ascon-128. The authors of the AEAD scheme define Ascon-128 as their primary rec-
ommendation for Ascon parameters and Ascon128a as a secondary recommendation,
and is a modification of a version of Ascon with lower security bounds, specified on
the first version of their CAESAR submission.

Table 4.1: Recommended instances of Ascon
Name Algorithm Bit size of Rounds

Key Nonce Tag rate pa pb

Ascon-128 ASCON12,6 − 128− 64 128 128 128 64 12 6
Ascon-128a ASCON12,8 − 128− 128 128 128 128 128 12 8

Throughout thiswork, when referring to theAscon algorithms,wewill use the same
variable names as in the original work[3]. These variables and a short description of
each one is given in Table 4.2.

4.1.1 Ascon Mode of Operation
The Ascon mode of operation is based on duplexed sponges, such as the MonkeyDu-
plex [81], but with stronger keyed initialization and finalization functions. The core

73

Table 4.2: Common Ascon variables
Variable Description
S The 320-bit internal state of the sponge construction
Sr, S − c The r-bit rate and the c-bit capacity parts of S
x0, · · · , x4 The five 64-bit words of the state
K, N , T Respectively key, nonce and tag (128-bits)
P , C, A Respectively plaintext, ciphertext and aditional data
⊥ Symbol of failed authentication
p, pn Single permutation, and n update rounds of p

permutations pa and pb operate on a 320-bit Sponge S, with a rate r and capacity c.
The rate and capacity of the state S are denoted by, respectively, Sr and Sc. Figure 4.1
illustrates the mode of operation of Ascon.

r

c

320 bits

r bits

c bits t bits

Sponge
initialization

Payload Processing Tag GenerationAdditional data Processing

Figure 4.1: Ascon mode of operation. Adapted from [3]

A high-level description of the encryption and decryption algorithms of Ascon is
given in Algorithm 27 and Algorithm 28.

Algorithm 27 Ascon AEAD Encryption
Input: Key, nonce, additional data and plaintext
Output: Ciphertext and authentication tag
Function Encryption Ea,b,k,r (K,N,A, P)

c← 320− r ◃ Sponge initialization
P1, · · · , Pt ← padr(P)

ℓ = |P | mod r

S ← IV ∥ K ∥ N
S ← pa(S)⊕ (0320−k ∥ K)

for i == 1, · · · , s do ◃ Additional data processing
S ← pb((Sr ⊕ Ai) ∥ Sc)

end for
S ← S ⊕ (0319 ∥ 1)
for i = 1, · · · , t− 1 do ◃ Plaintext processing

Sr ← Sr ⊕ Pi

74

Ci ← Sr

S ← pb(S)

end for
Sr ← Sr ⊕ Pt

Ct ← ⌊Sr⌋
S ← pa(S ⊕ (0r ∥ K ∥ 0c−k)) ◃ Finalization
T ← ⌈S⌉r ⊕K

return C1 ∥ · · · ∥ Ct, T
end Function

Algorithm 28 Ascon AEAD Decryption
Input: Key, nonce, additional data, ciphertext, and tag
Output: Plaintext or ⊥
Function Decryption Da,b,k,r (K,N,A,C, T)

c← 320− r ◃ Sponge initialization
ℓ = |P | mod r

S ← IV ∥ K ∥ N
S ← pa(S)⊕ (0320−k ∥ K)

for i == 1, · · · , s do ◃ Additional data processing
S ← pb((Sr ⊕ Ai) ∥ Sc)

end for
S ← S ⊕ (0319 ∥ 1)
for i = 1, · · · , t− 1 do ◃ Ciphertext processing

Pi ← Sr ⊕ Ci

S ← Ci ∥ Sc

S ← pb(S)

end for
Pt ← ⌊Sr⌋l ⊕ Ct

Sr ← Ct ∥ (⌊Sr⌋r−ℓ ⊕ (1 ∥ 0r−1−ℓ))

S ← pa(S ⊕ (0r ∥ K ∥ 0c−k)) ◃ Finalization
T ∗ ← ⌈S⌉r ⊕K

if T = T ∗ then
Return P1 ∥ Pt

else
Return ⊥

end if
end Function

4.1.2 Padding rule
The padding rule of Ascon appends a singe bit 1 and the smallest number of 0s to the
plaintext P so that the length of the padded plaintext is a multiple of r bits. The same
is done for the additional data A, except when |A| = 0, where no padding is added.
Formally, the padding rule can be described as:

75

P1, · · · , Pt ← padr(P) = r-bit blocks ofP ∥ 1 ∥ 0r−1−(|P | mod r)

A1, · · · , As ← pad∗
r(A) =

{
r-bit blocks ofA ∥ 1 ∥ 0r−1−(|A| mod r) if|A| > 0

∅ if|A| = 0

4.1.3 Initialization
The state of Ascon is formed by the concatenation of an initialization vector IV , the
secret keyK and the nonce N , in a total of 320 bits. The IV specifies the parameters of
the instance of Ascon and is defined as:

IV = k ∥ r ∥ a ∥ b ∥ 0288−2k =

{
80400c0600000000 for Ascon-128
80800c0800000000 for Ascon-128a

With S = IV ∥ K ∥ N , the initialization finishes by calculating a rounds of the
permutation p on S, followed by XORing the secret keyK:

S ← pa(S)⊕ (0320−k ∥ K)

The initialization function is also described in Algorithm 29.

Algorithm 29 Ascon AEAD sponge initialization
Input:k, n ◃ Key and nonce
Output:S ◃ Initialized sponge
Function initialize(k, n)

let S = {s0 ∥ · · · ∥ s4}
s0 ← IV
s1, s2 ← k0, k1
s3, s4 ← n0, n1

S ← pa(S)

s3 ← s3 ⊕ k0
s4 ← s4 ⊕ k1
return S

end Function

4.1.4 Additional data processing
For each padded block of Ai, with i = 1, · · · , s, the following transformation is applied
to the state:

S ← pb((Sr ⊕ Ai) ∥ Sc), for 1 ≤ i ≤ s

After the last block of additional data is processed, or if the A = ∅, a single bit
domain separation constant is XORed to the state S ← S ⊕ 01. The Additional data
processing function is also described in Algorithm 30

76

Algorithm 30 Ascon additional data processing
Input: S = Sr ∥ Sc, A ◃ State and additional data
Output: S ◃ Initialized sponge
Function absorb(S,A)

if |A| > 0 then
let A← pad∗

r(A)

let A = A0 ∥ · · · ∥ An with |Ai| = |Sr|
for all Ai in A do

S ← Sr ⊕ Ai ∥ Sc

S ← pb(S)

end for
end if
S ← S ⊕ 01

return S

end Function

4.1.5 Plaintext processing
For encryption, each iteration XORs a plaintext block Pi with Sr, followed by the extrac-
tion of a ciphertext block Ci. For each block, except the last one, the internal state S is
transformed by the permutation pb:

Ci ← Sr ⊕ Pi

S ←

{
pb(Ci ∥ Sc) if 1 ≤ i < t

(Ci ∥ Sc) if 1 ≤ i = t

The last ciphertext block is truncated to the unpadded length of the last plaintext
fragment, therefore Ct ← ⌊Ct⌋|P | mod r. The payload encryption algorithm is described
in Algorithm 31.

Algorithm 31 Ascon payload encryption
Input: S = Sr ∥ Sc, P ◃ State and key
Output: S,C ◃ State and Ciphertext
Function encPayload(S, P)

let C = C0 ∥ · · · ∥ Cn with |Ci| = |Sr| and |C| = |P |
let P ← padr(P)

let P = P0 ∥ · · · ∥ Pn and |Pi| = |Sr|
for all Pi from i = 0 to i = n− 1 do

Sr ← Sr ⊕ Pi

Ci ← Sr

S ← pb(S)

end for ◃ Last block
Sr ← Sr ⊕ Pn

Ci ← ⌊Sr⌋|P | mod r

77

return S,C

end Function

For decryption, in each iteration except the last one, the plaintext block Pi is com-
puted by XORing the ciphertextCi with Sr. Sr is then replacedwithCi, and the internal
state is transformed with the permutation pb:

Pi ← Sr ⊕ Ci

S ← pb(Ci ∥ Sc), 1 ≤ i < t

The last truncated ciphertext block with length 0 ≤ ℓ < r, is calculated as following:

Pt ← ⌊Sr⌋ℓ ⊕ Ct

S ← Ct ∥ (⌈Sr⌉r−ℓ ⊕ (1 ∥ 0r−1−ℓ)) ∥ Sc

The payload decryption algorithm is described in Algorithm 32

Algorithm 32 Ascon payload decryption
Input: S = Sr ∥ Sc, C ◃ State and key
Output: S, P ◃ State and Plaintext
Function decPayload(S,C)

let P = P0 ∥ · · · ∥ Pn and |Pi| = |Sr| and |P | = |C|
let C ← padr(C)

let C = C0 ∥ · · · ∥ Cn and |Ci| = |Sr|
for all Ci from i = 0 to i = n− 1 do

Pi ← Sr ⊕ Ci

S ← Ci ∥ Sc

S ← pb(S)

end for ◃ Last block
Pn ← ⌊Cn⌋|P | mod r ⊕ ⌊Sr⌋|P | mod r

S ← ⌊Cn⌋|P | mod r ∥ (⌈Sr⌉r−(|P | mod r) ⊕ (1 ∥ 0r−1−(|P | mod r))) ∥ Sc

return S, P

end Function

4.1.6 Finalization
The finalization step XORs the keyK to the internal state, and then applies the permu-
tation pa to it. The authentication tag is defined as the last k bits of the sponge XORed
with K:

S ← pa(S ⊕ (0r ∥ K ∥ 0c−k))

T ← ⌈S⌉k ⊕K

The finalization algorithm is described in Algorithm 33. The encryption algorithm
returns the ciphertextC and the tag T , while the decryption algorithm return the plain-
text P only if the calculated tag matches the one received by the function as input.

78

Algorithm 33 Ascon finalization and tag generation
Input: S = Sr ∥ Sc, K ◃ State and key
Output: S, T ◃ State and authentication tag
Function finalize(S,K)

let k = |K|
S → S ⊕ (0r ∥ K ∥ 0c−k) ◃ Key is aligned to the first bits of Sc

S → pa(S)

T → ⌈S⌉k ⊕K ◃ Last k bits of S
return S, T

end Function

4.2 Ascon permutation
Themain component of Ascon is the 320-bit permutation p, parametrized by the round
numbers a and b, that iteratively apply an SPN-like round transformation to the internal
state. The permutation p can be subdivided in three steps: pC , pS , and pL. Those steps
are, respectively, constant addition, substitution layer, and permutation layer.

For the application of the permutation p, the 320-bit state is split into five 64-bit
words xi such that S = Sr ∥ Sc = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4.

Each round of pa starts with the constant addition operation pC , which adds the
constant cr to theword x2. For pb, the constant added to x2 is c−a− b+ r. The constants
are defined as ci = (0x0f− i)≪ 4⊕ iwith 0 ≤ i < 16. This round constant was chosen
to avoid slide, rotational, self-similarity and other attacks, andwas designed in a simple
obvious way, e.g. increasing and decreasing the halves of a byte. More than 16 rounds
for the permutation pa is not expected by the cipher designers [3].

The substitution layer pS consists in 64 parallel applications of the 5-bit Sbox S(x),
in a bitsliced manner on the five words of the state. For that matter, the bits of x0 are
the MSB and the bits of x4 are the LSB. Table 4.3 defines the Sbox and Figure 4.2 shows
the diagram for the bitsliced implementation of S(x). The Sbox design is based on the
χ mapping of Keccak.

Table 4.3: Ascon Sbox
x 00 01 02 03 04 5 06 07 08 09 0a 0b 0c 0d 0e 0f
S(x) 04 0b 1f 14 1a 15 09 02 1b 05 08 12 1d 03 06 1c
x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
S(x) 1e 13 07 0e 00 0d 11 18 10 0c 01 19 16 0a 0f 17

The bitsliced Sbox can be implemented with the pipelinable instructions shown in
Algorithm 34.

79

= XOR

= NOT

= AND

Figure 4.2: Ascon Sbox S(x). Adapted from [3]

Algorithm 34 Pipelinable C implementation of Ascon Sbox
Input: x0, x1, x2, x3, x4 ◃ State words
Output: x0, x1, x2, x3, x4

Function sbox(x0, x1, x2, x3, x4)
Let t0, t1, t2, t3, and t4 be temporary variables
x0 ^= x4; x4 ^= x3; x2 ^= x1; /*01*/
t0 = x0; t1 = x1; t2 = x2; t3 = x3; t4 = x4; /*02*/
t0 =~ t0; t1 =~ t1; t2 =~ t2; t3 =~ t3; t4 =~ t4; /*03*/
t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0; /*04*/
x0 ^= t1; x1 ^= t2; x2 ^= t3; x3 ^= t4; x4 ^= t0; /*05*/
x1 ^= x0; x0 ^= x4; x3 ^= x2; x2 =~ x2; /*06*/
return x0, x1, x2, x3, x4

end Function

Lastly, the linear diffusion layer pL of Ascon operates over each of the 64-bit register
words of the state, and it is defined as:

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

The design of the linear diffusion layer and the rotation values are similar to the Σ

function in SHA-2. In Figure 4.3, each gray box represents a byte of the internal state
of Ascon: pc modifies only a byte of x2, the substitution-step pS operates on each bit

80

of the five words vertically aligned, and the linear-step pL operates inside each word
independently of each other.

Figure 4.3: Scopes in the internal state for each step of the permutation.

4.3 Code profiling
In a similar manner to the profiling of NORX, Ascon was profiled using a basic
encryption-decryption procedure to measure the function overheads. The only change
done to code prior to measurements was disabling function inlining, what results in
a better granularity and ease of analysis. The main loop of the code executes a call
to the encryption function, with randomized inputs, and a 64KB payload length to
minimize the impact of initialization overheads. The results for Cortex A15 are shown
in Figure 4.4 and Figure 4.5 for Cortex A53. As expected for a sponge-based algorithm,
the round permutation function p is the largest overhead, and therefore the best target
for algorithm optimization.

4.4 NEON implementation and optimizations
At first, it may not be entirely clear on the CAESAR submission, but Ascon uses a big-
endian data layout. This makes an efficient implementation of this procedure an impor-
tant step in implementing and optimizing the algorithm. In Algorithm 35, it is shown
the schoolbook approach to endianness change on a 64-bit word. This procedure uses
six different masks, six shifts, six logical AND operations and three logical or opera-
tions.

81

Figure 4.4: Overheads for ASCON128 running on a Cortex-A15 (32-bit processor)

Algorithm 35 Naive approach to an endianness change function.

1 static uint64_t swap(uint64_t a){
2 a = (a & 0 x00000000FFFFFFFF) <<32 | (a & 0 xFFFFFFFF00000000)

>>32;
3 a = (a & 0 x0000FFFF0000FFFF) <<16 | (a & 0 xFFFF0000FFFF0000)

>>16;
4 a = (a & 0 x00FF00FF00FF00FF) <<8 | (a & 0 xFF00FF00FF00FF00)

>>8;
5 return a;
6 }

On ARMv7-A (32-bit) architectures, the swap can be implemented with some as-
sembler in order to use the REV instruction. This approach gets even simpler onARMv8-
A (64-bit), were a single REV instruction needs to be issued to change the endianness of a
whole 64-bit word. These approaches are shown, respectively, in Algorithm 36 and Al-
gorithm 37. Lastly, aNEON implementation of the swap is then shown inAlgorithm 38,
and it is done via a simple call to the vrev\lstinline intrinsic.

82

Figure 4.5: Overheads for ASCON128 running on a Cortex-A53 (64-bit processor)

Algorithm 36 Endianness change on ARM32.

1 static uint64_t swap(uint64_t a){
2 uint32_t h=(uint32_t)(a > >32);
3 uint32_t l=(uint32_t)(a);
4 __asm__ (
5 "rev %0, %0 \n\t"
6 "rev %1, %1 \n\t"
7 :"+r"(h), "+r"(l)
8 :
9);

10 a=((uint64_t)(l) <<32)|(uint64_t)(h);
11 return a;
12 }

83

Algorithm 37 Endianness change on ARM64.

1 static uint64_t swap(uint64_t a){
2 __asm__ ("rev %0, %0 \n\t"
3 :"+r"(a)
4 :
5);
6 return a;
7 }

Algorithm 38 Endianness change on ARM64.

1 # define swap_d (X) (uint64x1_t)(vrev64_u8 ((uint8x8_t)X))
2 # define swap_q (X) (uint64x2_t)(vrev64q_u8 ((uint8x16_t)X))

In order to better and easily implement Ascon, the NEON load and store intrinsics
were wrapped together with the vrev instructions, as shown in Algorithm 39

Algorithm 39 Load and Store instructions for the NEON implementation of Ascon.

1 # define LOAD64x1 (in) \
2 (uint64x1_t)(vrev64_u8 (vld1_u8 ((uint8_t *)(in))))
3 # define LOAD64x2 (in) \
4 (uint64x2_t)(vrev64q_u8 (vld1q_u8 ((uint8_t *)(in))))
5 void inline static STORE64x1 (uint8_t *out , uint64x1_t x){
6 vst1_u8 (out , vrev64_u8 ((uint8x8_t)(x)));
7 }
8 void inline static STORE64x2 (uint8_t *out , uint64x2_t x){
9 vst1q_u8 (out , vrev64q_u8 ((uint8x16_t)(x)));

10 }

With those rotations in mind, a good implementation of Ascon can be made using
the native 64-bit registers to hold the fivewords of the internal state. In pureC language,
it is done using the uint64_t type and a trivialNEON implementation can be done using
the 64-bit registers. But in order use the full potential of theNEONSIMDengine,Ascon
can be implemented using two 128-bit NEON registers, and an additional 64-bit one,
bymeans of a different state representation. Figure 4.6 illustrates the word layout in the
NEON implementation of ASCON.

In this new representation, the SBOX can then be implemented as shown in Algo-
rithm 40. Notice that, as withNORXNEON implementation, calls to vcombine_u64 with
vget_high_u64 and vget_low_u64 as arguments compiles into vmov and vswp instructions.

84

(uint64x2_t)Q0
0 6364 127

(uint64x2_t)Q1
0 6364 127

(uint64x1_t)D0
0 63

Figure 4.6: Sponge layout for the NEON implementation of ASCON.

Algorithm 40NEON implementation of Ascon SBOX. This algorithm uses the sponge
representation shown in Figure 4.6. The comment numbering inside the code refers to
the pipelined steps in Algorithm 34.

Input: Q0 = {x0 ∥ x2}, Q1 = {x4 ∥ x1}, D0 = {x3} ◃ State words
Output: Q0 = {x0 ∥ x2}, Q1 = {x4 ∥ x1}, D0 = {x3}
Function sbox(Q0, Q1, D0)

1 # define high(n) (vget_high_u64 (n))
2 # define low(n) (vget_low_u64 (n))
3 # define vcmbn(low ,high) (vcombine_u64 (low ,high))
4 // vars
5 uint64x2_t Q0 , Q1 , Qt0 , Qt1; uint64x1_t Dt0 ={0};
6 /* 01 */
7 Q0 ^= Q1;
8 Q1 ^= vcmbn (D0 , Dt0);
9 /* 02 and 03 */
10 Qt0 = ~Q0;
11 Qt1 = ~Q1;
12 Dt0 = ~D0;
13 /* 04 */
14 Qt0 &= vcmbn (high(Q1), D0);
15 Qt1 &= vcmbn (high(Q0), low(Q0));
16 Dt0 &= low(Q0);
17 /* 05 */
18 Q0 ^= vcmbn (high(Qt1), Dt0);
19 Q1 ^= vcmbn (high(Qt0), low(Qt0));
20 D0 ^= low(Qt1);
21 /* 06 */
22 Dt0 = (uint64x1_t){0};
23 Q1 ^= vcmbn (0, high(Q0));
24 Q0 ^= vcmbn (low(Q1), Dt0);
25 D0 ^= low(Q0);
26 Q0 ^= vcmbn (low(Q0), ~high(Q0));

return Q0, Q1, D0
end Function

85

Keeping the same representation, the Lbox can be rewritten using vector shifts to
implement the rotation. The function vshlq_u64 allows to execute a left shift of the
elements inside a 128-bit register by the elements stored as signed integers in a 128-bit
register. This instruction also allows to use negative displacements to represent right
shifts. The NEON implementation of the Lbox is shown in Algorithm 41. Notice that
the 64-bit variable D0 is rotated using the single element rotation vshr_n_u64.

Algorithm 41 NEON implementation of Ascon Lbox. This algorithm uses the sponge
representation shown in Figure 4.6.

Input: Q0 = {x0 ∥ x2}, Q1 = {x4 ∥ x1}, D0 = {x3} ◃ State words
Output: Q0 = {x0 ∥ x2}, Q1 = {x4 ∥ x1}, D0 = {x3}
Function lbox(Q0, Q1, D0)

1 # define high(n) (vget_high_u64 (n))
2 # define low(n) (vget_low_u64 (n))
3 # define vcmbn(low ,high) (vcombine_u64 (low ,high))
4 // Vector rotations
5 int64x2_t r1 ={-19, -1};
6 int64x2_t r2 ={45 , 63};
7 int64x2_t r3 ={-28, -6};
8 int64x2_t r4 ={36 , 58};
9 int64x2_t r5={-7, -62};
10 int64x2_t r6 ={57 , 3};
11 int64x2_t r7 ={-41, -39};
12 int64x2_t r8 ={23 , 25};
13 uint64x1_t t3; // temporary variable
14

15 Q0 ^= (vshlq_u64 (Q0 , r1) | vshlq_u64 (Q0 , r2))^ \
16 (vshlq_u64 (Q0 , r3) | vshlq_u64 (Q0 , r4));
17

18 Q1 ^= (vshlq_u64 (Q1 , r5) | vshlq_u64 (Q1 , r6))^ \
19 (vshlq_u64 (Q1 , r7) | vshlq_u64 (Q1 , r8));
20

21 # define ROTR(x,n) (veor_u64 (vshr_n_u64 ((x) ,(n)), \
22 vshl_n_u64 ((x) ,(64-n))))
23 t3 = veor_u64 (ROTR(S[4], 7), ROTR(S[4], 41));
24 D0 = veor_u64 (D0 ,t3);

return Q0, Q1, D0
end Function

Another method that can be used to further improve Ascon in a NEON implemen-
tation is data pre-fetching. Since the whole state uses only 5 NEON registers, the pay-
load processing functions can load data for the next n iterations, execute them and only
then save those back into the memory. Such an approach allows a better use of the
NEON pipeline, which allows the issue of load/store instructions together with log-
ic/arithmetic ones. In our tests, Ascon-128 gets the best performance improvement

86

with a 4-word pre-fetching, while Ascon-128a shows the best improvement with a 2-
word pre-fetching.

Adifferent approachwould be using aMultipleMessage implementation. Themain
characteristic this multiple message implementation is to make use of the second 64-
bit lane of a NEON type-Q register to perform two parallel instances of Ascon. This
allows some parallelization to be achieved, even with the internal data dependencies
seen in a single-message implementation. Such approach is useful, for example, when
a somewhat simpler device has a higher volume of data to encrypt and authenticate,
and the payloads share their length: For example, a sensor that must send data to more
than one recipient, and they cannot share key, nonce or authenticated data.

4.5 Results and considerations

Table 4.4: Times in CPB for ASCON128 and ASCON128a on the 32-bit processors, with
payload size of 64KB. Speedups given in relation to the reference code.

Ref. Code Our code NEON64 NEON128 NEON64
Speedup

NEON128
Speedup

Own code
speedup

ASCON128 Cortex A7 174.10 127.49 120.11 91.45 31.0% 47.5% 26.8%
Cortex A15 90.14 68.20 55.10 49.32 38.9% 45.3% 24.3%

ASCON128a Cortex A7 111.75 91.19 81.62 64.13 27.0% 42.6% 18.4%
Cortex A15 57.62 42.66 35.60 30.29 38.2% 47.4% 26.0%

Table 4.5: Times in CPB for ASCON128 and ASCON128a on the 64-bit processor, with
payload size of 64KB. Speedups given in relation to the reference code.

Ref. code Our code NEON64 NEON128 NEON64
Speedup

NEON128
Speedup

Own code
speedup

ASCON128 22.28 10.79 10.72 40.65 51.9% -82.3% 51.57%
ASCON128a 28.83 12.90 14.97 27.63 48.1% -3.0% 55.25%

Ascon is well rounded-up andwell-designed algorithm – a fact acknowledged by its
performance on CAESAR –, what makes optimization efforts very challenging. For ex-
ample, changing the algorithm endianness could result in performance improvements
on the target architecture, but there is not a good mapping of the linear permutation
to a little-endian equivalent. On the other hand, making good use of the endianness
changing instructions present on ARM keeps this overhead at a minimum: Compar-
ing the times of a C implementation using the endianness swap instructions with a
non-compatible one without the endianness change instruction, the difference in per-
formance was less than 1%.

Regarding a C implementation, good practices such as using adequate data types,
macros, and function inlining yield a good performance gain in relation to the refer-
ence code, and match the performance of other state-of-art implementations, without
sacrificing code readability. The clever use of preprocessor macros allows one to use
the architecture-specific endianness change functions while also keeping code compat-
ibility with other architectures.

87

The internal structure of Ascon makes it a challenging algorithm to implement us-
ing NEON SIMD engine: the algorithm uses simple bit-wise operations, and the inter-
nal data dependencies make it difficult to offset the intrinsic overheads of moving data
around the NEON register, in comparison with the native registers. This fact makes
a NEON implementation attractive only on 32-bit processors, since the native 64-bit
registers are superior to the NEON registers.

Ascon shows no speedup on the 64-bit processor Cortex-A53, when compared with
an optimized C implementation; mainly due to the design of the linear layer. The Lbox
is an operation executed in each line of the internal state, having the form xn ← xn ⊕
(xn ≫ rn1) ⊕ (xn ≫ rn2), where xn is one of the five 64-bit words of Ascon’s state,
and rnm are the rotation constants. An implementation using the native 64-bit registers
of this function can be done as 2 XORs, with the one rotation being executed “for free"
using ARM’s barrel shifter, as shown in Algorithm 42. The NEON code for the same
function is more complicated, due to the lack of a ror instruction and the barrel shifter,
the rotation must be calculated as shifts and and operations1. The situation is slightly
improved in the case of a 128-bit NEON implementation of Ascon, where using the
vector shift operation four of the five rotations can be executed in parallel.

Beyond that, upon analysis of the generated binaries, the GCC compiler will, start-
ing at -O1, move as much as possible of the 64-bit operations from the NEON registers
back to the native 64-bit registers. The dump of the NEON code for a Lbox, with -O3
compiler optimizations, is shown in Appendix 48. With that in mind, a 64-bit NEON
implementation of Ascon on a ARMv8 core will actually be a native 64-bit implemen-
tation, except when using NEON-only instructions. Table 4.6 shows the cycle-per-byte
costs for the Lbox and Sbox code, showing that the cost of a NEON 64-bit implemen-
tation is very close to a native C implementation, what further confirms that the pro-
cessing is not being done in the SIMD engine, but instead inside the native 64-bit reg-
isters. Another interesting comparison is that of the performance of a 128-bit NEON
implementation across different platforms: Comparing with Cortex-A15, the same im-
plementation is faster on the Cortex-A53, what suggests that, in this scenario, the native
64-bit registers and instructions are exceedingly good in performing the computations
of Ascon.
Algorithm 42 Native assembler of ASCON LBOX. Immediate values are the ones
applied to x0.

1 <lbox >:
2 ;*x ^= ROTR (*x, 19) ^ ROTR (*x, 28);
3 ldr x1 , [x0]
4 ror x2 , x1 , #28 ;
5 eor x3 , x2 , x1 , ror #19 ;
6 eor x4 , x1 , x3
7 str x4 , [x0]
8 ret

1A 64-bit NEON rotation of x by n bits is defined as veor_u64(vshr_n_u64((x),(n)),
vshl_n_u64((x),(64-n))).

88

Table 4.6: Costs of Ascon permutation on Cortex A53
Ascon128 Ascon128a

NEON 128bit SBOX 25.87 17.06
LBOX 18.84 12.41

Native C SBOX 6.78 4.52
LBOX 4.39 4.40

NEON 64bit SBOX 7.65 4.52
LBOX 5.90 4.09

Comparing the performance of implementations written during this dissertation,
both the native and NEON implementations were faster than the reference code from
theAscon team. The speedupwas, in relation to this reference code, 27% on the Cortex
A7, 24% on the Cortex A15, and 55% on the Cortex A53, with the NEON implementa-
tion being 47% faster on the Cortex-A7 and 45% on the Cortex-A15. And in relation to
ASCON128a, the native C implementation showed a speedup of 18% in Cortex A7, 26%
on Cortex A15, and 51% on Cortex A53. The NEON implementation shows speedups
of 47% and 45% on Cortex A7 and A15, respectively. In Table 4.4 it is shown the re-
sults for ASCON128 and ASCON128a on the 32-bit processors, and in Table 4.5, the
results for the 64-bit Cortex-A53 processor. Figures 4.7 through 4.12 show the charts
with cycle-per-byte results for inputs ranging from 128 bytes to 64 Kilobytes.

The Multi-message version of the algorithm shows a speedup of 53% in relation to
the single-message NEON implementation con Cortex A15 and A7 (respectively 43,44
and 82,19 cycles per byte). The performance gain is small compared to the 128-bit
single-message SIMD implementation mainly due to unaligned load-stores. Similarly
to the other NEON implementations, this code is not adequate for the 64-bit processors
due to the lack of ror instruction and barrel shifter.

Figure 4.7: CPB results for ASCON128 on Cortex A7.

89

Figure 4.8: CPB results for ASCON128a on Cortex A7.

Figure 4.9: CPB results for ASCON128 on Cortex A15.

90

Figure 4.10: CPB results for ASCON128a on Cortex A15.

Figure 4.11: CPB results for ASCON128 on Cortex A53.

91

Figure 4.12: CPB results for ASCON128a on Cortex A53.

92

Chapter 5

Conclusion and final remarks

In this dissertation, we investigate the software implementation of authenticated en-
cryption algorithms on ARM Cortex-A processors. We show techniques to optimize
NORX and Ascon, two sponge-based AEAD schemes, using characteristics of the tar-
get processors such as instruction pipelines and vectorial instructions. The study of
AEAD algorithms allowed a deeper insight into the current design paradigms; for ex-
ample, these algorithms are built without key-dependent table lookups or branchings
as to make them more secure against attacks.

During this dissertation, the structure of AEAD algorithms was studied, what al-
lowed a deeper insight in the current paradigm of construction; not only performance
is taken into account when designing an algorithm, as they already have side-channel
countermeasures built right in. For example, neither NORX or ASCON have key de-
pendent operations, table lookups, or key-dependent branching. Their construction is
simple, feature mostly the ARX operations. With that in mind, the CAESAR finalists
are very well thought algorithms, and hard to find purely mathematical optimizations.
On the other hand, there is still space for improvement in a more “Cryptographic En-
gineering” approach, albeit not as pronounced as one would expect from less polished
algorithms, but still relevant.

Sponge-based algorithms with a construction similar to NORX can profit from a
well-crafted C implementation, when the characteristics of the target architecture, such
as instruction pipelining, are taken into account. In some cases, such an implementa-
tion can be superior to a SIMD oriented implementation. This can be counter-intuitive
at first: One would expect that a vectorized implementation will be faster than a code
running on the native registers. The behavior of NORX is explained by the cost of load-
ing and storing data on NEON registers, and extra transformations needed to execute
the sponge permutation –Namely, the diagonalization and undiagonalization steps.
With this, one conclusion is that vectorization is not a panacea and overheads must
be taken into account in order to determine the best solution for each scenario: In this
case, speedups of up to 44% can be achieved with a pipeline-oriented implementation.

ASCON proved to be a difficult target to optimization: its structure and construc-
tion left little to work with in terms of implementation, and no mathematical improve-
ment was found. It’s 64-bit per word internal state makes it a fast algorithm in 64-bit
platforms. On the other hand, those same characteristics make it a bad candidate for

93

a NEON implementation, with overheads offsetting any gains from a SIMD engine,
and those overheads get even more pronounced on ASCON128a since it has double
the load/store overheads in relation to ASCON128. Even with that, ASCON is a very
simple and efficient algorithm and a strong participant of CAESAR. Even with those
characteristics in mind, a diligent change of the internal layout of the cipher allows an
efficient NEON implementation, with up to 47% of speedup in relation to the CAESAR
code on the 32-bit ARM processors.

In a nutshell, we introduced amethod of implementing and optimizing two families
of AEAD schemes by using well-crafted C implementations, tailored for ARM proces-
sors. The work on NORX resulted in performance improvements over the state-of-art
software implementations that were published on SBSEG 2017; andwe also introduced
and analyzed a vectorial implementation of Ascon, that makes full use of the 128-bit
NEON SIMD engine, as well as a multiple-message vectorial implementation. A future
step in this work would be to apply these optimization techniques to other algorithms
of interest, as they allow fast code, with the flexibility of a C implementation. Of great
interest are the algorithms of the upcomingNIST ”Call for Lightweight Cryptography",
that aims to define cryptographic standards for the Internet of Things.

94

References

[1] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
Ddos in the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017.

[2] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0.
norx.io/data/norx.pdf, September 2016.

[3] ChristophDobraunig,Maria Eichlseder, FlorianMendel, andMartin Schläffer. As-
con v1. 2. Submission to the CAESAR Competition.

[4] L. C. d. Santos and J. López. Pipeline Oriented Implementation of NORX for ARM
Processors. InXVII Simpósio Brasileiro em Segurança da Informação e de Sistemas Com-
putacionais: SBSEG 2017: Anais, pages 2–15. Sociedade Brasileira de Computação
- SBC, Nov 2017.

[5] JonathanKatz and Yehuda Lindell. Introduction toModern Cryptography. Chapman
and Hall/CRC Press, 2007.

[6] F.W. Winterbotham. The Ultra Secret: The Inside Story of Operation Ultra, Bletchley
Park and Enigma. Orion (an Imprint of The Orion Publishing Group Ltd), 2000.

[7] Claude E Shannon. Communication theory of secrecy systems*. Bell system tech-
nical journal, 28(4):656–715, 1949.

[8] National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES). National Institute for Standards and Technology, Gaithersburg,
MD, USA, October 1999. supersedes FIPS 46-2.

[9] WilliamE Burr. Data encryption standard. ACentury of Excellence inMeasurements,
Standards, and Technology–A Chronicle of Selected NBS/NIST Publications, 2000:250–
253, 1901.

[10] Joan Daemen and Vincent Rijmen. Rijndael for AES. In AES Candidate Conference,
pages 343–348, 2000.

[11] NIST-FIPS Standard. Announcing the advanced encryption standard (aes). Fed-
eral Information Processing Standards Publication, 197:1–51, 2001.

[12] Lynn Hathaway. National policy on the use of the advanced encryption standard
(aes) to protect national security systems and national security information. Na-
tional Security Agency, 23, 2003.

95

[13] Masanobu Katagi and ShihoMoriai. Lightweight cryptography for the internet of
things. Sony Corporation, pages 7–10, 2008.

[14] Kerry A McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Re-
port on lightweight cryptography. NIST DRAFT NISTIR, 8114, 2016.

[15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: single-pass authenticated encryption and other applications. IACR
Cryptology ePrint Archive, 2011:499, 2011.

[16] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, volume 2007. Citeseer, 2007.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[18] Bart Preneel. AHS competition/sha-3. In Encyclopedia of Cryptography and Security
(2nd Ed.), pages 27–29. Springer, 2011.

[19] Phillip Rogaway. Authenticated-encryption with associated-data. In ACMConfer-
ence on Computer and Communications Security, pages 98–107. ACM, 2002.

[20] Hugo Krawczyk. The order of encryption and authentication for protecting com-
munications (or: How secure is ssl?). In Joe Kilian, editor, Advances in Cryptol-
ogy - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 310–331. Springer, 2001.

[21] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of Cryp-
tology, 21(4):469–491, 2008.

[22] Charanjit S. Jutla. Encryption modes with almost free message integrity. IACR
Cryptology ePrint Archive, 2000:39, 2000.

[23] Phillip Rogaway, Mihir Bellare, and John Black. Ocb: A block-cipher mode of
operation for efficient authenticated encryption. ACM Transactions on Information
and System Security (TISSEC), 6(3):365–403, 2003.

[24] Morris J. Dworkin. Sp 800-38c. recommendation for block cipher modes of op-
eration: The ccm mode for authentication and confidentiality. Technical report,
Gaithersburg, MD, United States, 2004.

[25] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance
conventional authenticated encryption mode. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science,
pages 408–426. Springer, 2004.

96

[26] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation.
In Bimal K. Roy andWilli Meier, editors, Fast Software Encryption, 11th International
Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of
Lecture Notes in Computer Science, pages 389–407. Springer, 2004.

[27] Morris J. Dworkin. Sp 800-38d. recommendation for block cipher modes of op-
eration: Galois/counter mode (gcm) and gmac. Technical report, Gaithersburg,
MD, United States, 2007.

[28] Algorithms, key size and parameters report 2014. Technical report, EuropeanNet-
work and Information Security Agency (ENISA), November 2014.

[29] Charanjit S. Jutla. Encryption modes with almost free message integrity. Cryptol-
ogy ePrint Archive, Report 2000/039, 2000. http://eprint.iacr.org/.

[30] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of
operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, 2003.

[31] National Institute of Standards and Technology. Aes: the advanced encryption
standard. http://competitions.cr.yp.to/aes.html, January 2014.

[32] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology - ASI-
ACRYPT 2009, 15th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume
5912 of Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

[33] Marion Videau. estream. In Encyclopedia of Cryptography and Security (2nd Ed.),
pages 426–427. Springer, 2011.

[34] CAESAR Committee. Autheticated encryption zoo. http : / / aezoo . compute .
dtu.dk/doku.php, 2016.

[35] Farzaneh Abed, Christian Forler, and Stefan Lucks. General overview of the first-
round caesar candidates for authenticated ecryption. Technical report, Cryptol-
ogy ePrint report 2014/792, 2014.

[36] HongjunWu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm.
IACR Cryptology ePrint Archive, 2013:695, 2013.

[37] Hongjun Wu and Tao Huang. The JAMBU lightweight authentication encryption
mode (v2. 1). CAESAR competition proposal, 2016.

[38] Kazuhiko Minematsu. AES-OTR v3. CAESAR competion proposal, 2016.

[39] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ v1: Authenticated-
encryption by enciphering. CAESAR 1st Round, competitions. cr. yp.
to/round1/aezv1. pdfl, 2014.

http://eprint.iacr.org/
http://aezoo.compute.dtu.dk/doku.php
http://aezoo.compute.dtu.dk/doku.php

97

[40] Kazuhiko Minematsu, Jian Guo, and Eita Kobayashi. Cloc and silc. 2016.

[41] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. Colm v1 (2016). Submission
to the CAESAR competition.

[42] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1. 41.
CAESAR candidate, 2016.

[43] Ted Krovetz and Phillip Rogaway. Ocb (v1. 1). submission to caesar (2016), 2016.

[44] Ivica Nikolić. Tiaoxin-346. Submission to the CAESAR competition, 2015.

[45] Hongjun Wu and Tao Huang. The authenticated cipher morus (v1). CAESAR
submission, 2014.

[46] Hongjun Wu. Acorn: a lightweight authenticated cipher (v3). Candidate for the
CAESAR Competition. See also https://competitions. cr. yp. to/round3/acornv3. pdf,
2016.

[47] PrakashDey, Raghvendra SinghRohit, andAvishekAdhikari. Full key recovery of
acorn with a single fault. Journal of Information Security and Applications, 29:57–64,
2016.

[48] G Bertoni, J Daemen, M Peeters, and GV Assche. Caesar submission: Ketje v2.
online at http://ketje. noekeon. org/ketje-1.1. pdf, 2014.

[49] Guido Bertoni, Joan Daemen, Michaël Peeters, GV Assche, and RV Keer. Caesar
submission: Keyak v2 (2015), 2016.

[50] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX: parallel
and scalable AEAD. In ESORICS (2), volume 8713 of Lecture Notes in Computer
Science, pages 19–36. Springer, 2014.

[51] Douglas R. Stinson. Universal hashing and authentication codes. Des. Codes Cryp-
tography, 4(4):369–380, 1994.

[52] Simon Cogliani, DS Maimut, David Naccache, Rodrigo Portella do Canto, Reza
Reyhanitabar, Serge Vaudenay, and D Vizźar. Offset merkle-damgård (omd) ver-
sion 1.0 a caesar proposal. Proposal in CAESAR competition (March 2014), 2014.

[53] Viet Tung Hoang and Phillip Rogaway. On generalized feistel networks. In Tal
Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of
Lecture Notes in Computer Science, pages 613–630. Springer, 2010.

[54] CAESAR committee. Features of various secret-key primitives.
http://competitions.cr.yp.to/features.html, January 2014.

98

[55] ARM Holdings. Processors cortex-a series family. http : / / www . arm . com /
products/processors/cortex-a, March 2017.

[56] ARM Holdings. Processors cortex-m series family. http : / / www . arm . com /
products/processors/cortex-m, March 2017.

[57] ARM Holdings. Processors cortex-r series family. http : / / www . arm . com /
products/processors/cortex-r, March 2017.

[58] ARM Holdings. Processors securcore family. http://www.arm.com/products/
processors/securcore, March 2017.

[59] CAESAR Committee. Cryptographic competitions google group. http : / /
groups.google.com/forum/#!forum/crypto-competitions, 2017.

[60] Daniel J Bernstein. Supercop: System for unified performance evaluation related
to cryptographic operations and primitives. https : / / bench . cr . yp . to /
supercop.html, 2009.

[61] Vincent Grosso, Gaëtan Leurent, François Durvaux, Lubos Gaspar, and Stéphanie
Kerckhof. Caesar candidate scream. In DIAC 2014, 2014.

[62] Bruce Schneier. Secrets and lies: digital security in a networked world. John Wiley &
Sons, 2011.

[63] Daniel J Bernstein. Cache-timing attacks on AES. http://palms.ee.princeton.
edu/system/files/Cache-timing+attacks+on+AES.pdf, 2005.

[64] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 368–388.
Springer, 2016.

[65] Paul C Kocher, Joshua M Jaffe, and Benjamin C Jun. Cryptographic computation
using masking to prevent differential power analysis and other attacks, Febru-
ary 23 2010. US Patent 7,668,310.

[66] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 142–159.
Springer, 2013.

[67] Bodo Möller. Securing elliptic curve point multiplication against side-channel at-
tacks. In International Conference on Information Security, pages 324–334. Springer,
2001.

http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-r
http://www.arm.com/products/processors/cortex-r
http://www.arm.com/products/processors/securcore
http://www.arm.com/products/processors/securcore
http://groups.google.com/forum/#!forum/crypto-competitions
http://groups.google.com/forum/#!forum/crypto-competitions
https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf

99

[68] Ljiljana Spadavecchia. A network-based asynchronous architecture for cryptographic
devices. PhD thesis, University of Edinburgh, UK, 2006.

[69] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of SASC,
volume 8, 2008.

[70] Alex Biryukov and Dmitry Khovratovich. PAEQ: parallelizable permutation-
based authenticated encryption. In ISC, volume 8783 of Lecture Notes in Computer
Science, pages 72–89. Springer, 2014.

[71] Jake Edge. Perfcounters added to the mainline, 2009. https : / / lwn . net /
Articles/339361/, 2016.

[72] ARM. Arm compiler user guide. http://infocenter.arm.com/help/topic/
com.arm.doc.dui0472m/DUI0472M_armcc_user_guide.pd.

[73] Bruno R Silva, Leonardo Ribeiro, Diego Aranha, and Fernando MQ Pereira.
Flowtracker-detecç ao de código nao isócrono via análise estática de fluxo.

[74] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Norx reference
implementations (software). https://github.com/norx/norx, 2015.

[75] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-OHearn, and Christian
Winnerlein. Blake2: simpler, smaller, fast as md5. In International Conference on
Applied Cryptography and Network Security, pages 119–135. Springer, 2013.

[76] SSL WolfSSL-Embedded. Library for applications, devices, iot, and the cloud.

[77] OpenSSL Project.

[78] Bouncy Castle. Bouncy castle crypto apis. http://www. bouncycastle. org/, 2007.

[79] Trevor Perrin. The noise protocol framework. https : / / noiseprotocol . org /
noise.pdf, 2016.

[80] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-consuming
password-scrambling framework. Technical report, Citeseer, 2013.

[81] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption. Di-
rections in Authenticated Ciphers, 2012.

[82] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak reference. Sub-
mission to NIST (Round 3), 2011.

[83] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Norx a parallel
and scalable authenticated encryption algorithm. https : / / github . com / norx,
2016.

https://lwn.net/Articles/339361/
https://lwn.net/Articles/339361/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/DUI0472M_armcc_user_guide.pd
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472m/DUI0472M_armcc_user_guide.pd
https://github.com/norx/norx
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://github.com/norx

100

Appendix A

NORX test vectors

A.1 Computations of F
Given the values of the initialization constants, an implementation of F can be verified
by recalculating the constants as:

u0, · · · , u15 = F 2(0, · · · , 15)

Where the elements {0, · · · , 15}) are words of adequate bit-length: 32 bits for NORX32
constants and 64 bits for NORX64. The values of the initialization constants are given
on table 3.5

A.2 Full AEAD computations
Given the input values in Table A.1, the values of the full AEAD computations are
given on the next sections. For a more in depth trace of the full AEAD computations,
the reader is invited to see the original NORX paper [2] and the official NORX reposi-
tory [83].

Table A.1: Inputs for NORX
NORX32 NORX32

Var Data Length Var Data Length
K 00 01 ... 0E 0F 16 K 00 01 ... 1E 1F 32
N 20 21 ... 2E 2F 16 N 20 21 ... 3E 3F 32
A 00 01 ... 7E 7F 128 A 00 01 ... 7E 7F 128
M 00 01 ... 7E 7F 128 M 00 01 ... 7E 7F 128
Z 00 01 ... 7E 7F 128 Z 00 01 ... 7E 7F 128

A.2.1 NORX32-4-1
Ciphertext:

6C E9 4C B5 48 B2 0F ED 7B 68 C6 AC 60 AC 4C B5

101

EB B1 F0 9A EC 5A 75 0E CF 50 EC 0E 64 93 8B F2
40 17 A4 FF 06 84 F8 08 A6 7C 19 6C 31 A0 AF 12
56 9B E5 F7 C5 6A D3 BC AC 88 DA 36 86 57 5F 93
43 96 8D A2 20 77 EE CC E7 D6 63 17 49 08 A3 F7
3C 9E 9A C1 49 B5 CE 6B E6 9C 9E 31 7C D7 E7 E8
0C 85 69 97 74 02 24 41 3A E0 64 A2 5A 81 08 B8
D3 A6 85 92 74 C7 65 86 E2 9C 27 ED 11 FB 71 95

Tag:

D5 54 E4 BC 6B 5B B7 89 54 77 59 EA CD FF CF 47

A.2.2 NORX32-6-1
Ciphertext:

20 9B 0B 2A FE 36 2A 83 3B B1 8A CF 03 E1 D0 C2
7C 69 47 52 66 79 47 FC 73 8C 0E 40 E3 D5 97 C2
2D 74 E9 06 E8 C4 73 AD F0 DB 63 61 D3 97 41 C4
26 0F B3 D3 9F 84 22 A3 CF DF 93 0D 2D 17 75 EB
3F 97 0E 52 95 23 07 C9 AA 07 3F C5 E1 19 BA DF
B2 FF 00 9E 69 7C 8E 85 61 4F 44 78 C5 7B D2 B4
AC C5 57 F3 D2 DC E7 11 A5 43 0A 48 8C 16 63 A2
07 67 81 48 9A C7 3A 6B FB 6A FE 39 6A E7 9F 97

Tag:

B3 B1 1A 8F 9A 94 F1 B1 AC 18 53 E9 4C 43 26 4A

A.2.3 NORX64-4-1
Ciphertext:

C0 81 6E 50 8A E4 A0 50 0B 93 38 7B BB AB C2 41
AC 42 38 7E F5 E8 BF 0E C3 82 6C ED E1 66 A1 D5
CA A3 E8 D6 2C D6 41 B3 FA F2 AA 2A DD E3 E5 ED
0A 13 BD 8B 96 D5 F0 FB 7F E3 9C A7 80 95 31 75
E2 45 BC 3E 53 4B 80 0E 96 46 77 1F 13 EA 40 85
CB 3E 26 7F 10 6F 5F 17 A0 64 FF 23 4A 02 7C 64
4B E7 86 65 DB 1C 46 A4 B0 1A 4F BF 52 76 DF BD
30 EB BF B8 84 66 F8 DC 89 7A 78 16 D0 D0 70 D8

Tag:

D1 F2 FA 33 05 A3 23 76 E2 3A 61 D1 C9 89 30 3F
BF BD 93 5A A5 5B 17 E4 E7 25 47 33 C4 73 40 8E

102

A.2.4 NORX64-6-1
Ciphertext:

50 CE 69 2C 19 CB 91 02 C6 12 96 6F 0F 62 6B 62
96 DE 89 27 1C 98 29 10 AA C1 C3 55 52 2E 8F A7
13 03 F8 D5 C9 DE 39 04 84 BA 91 A9 94 CF F9 1B
F7 15 D6 CB 22 CC 00 F3 64 02 10 03 17 19 61 68
72 39 DD 94 53 02 9B 87 85 9C 10 93 21 13 59 40
BC 1B C8 1A 55 A9 51 C7 1B 29 42 FF DE BF 8D 13
C4 F3 87 2B 78 D4 50 6F 40 DB 65 3C E3 B8 D2 BE
A7 A2 F9 E9 7F F4 56 B7 F0 DB 8C 92 27 E2 2F 23

Tag:
A0 D1 0D 28 52 91 BE DB 7B 7C BD C4 7E 0F E2 38
5B F5 5B C5 F0 57 BC AB 2C 57 CC D0 83 D2 9B 2C

A.2.5 NORX64-4-4
Ciphertext:

B6 5A D4 9D 08 12 87 73 03 76 A0 38 F1 32 B2 0C
33 E5 58 30 20 27 C0 D9 1C 03 0B 9C 7D DA 19 C7
51 1A 4F 02 5A FD 40 FD A2 95 C9 22 29 FA EA 13
A6 14 05 36 44 0B EB FC D3 62 72 5D 9E E9 0F 2C
2A AC 10 6B 5F 49 86 9B 9F E2 2C D9 F1 84 84 FC
70 C2 22 8C 1D A3 07 21 21 97 2C 2B D9 9A 29 2A
15 51 52 B1 67 72 3F F7 CD A5 BB A3 DA 09 E3 69
F2 7B FE 53 88 63 FF 56 18 40 01 28 8C C1 BE EC

Tag:
01 61 3B 7E 49 80 00 A7 67 F5 D5 35 3F 8F FD 99
78 72 05 7C 1F DC 50 14 CF 82 27 EB B8 A7 5C AC

A.2.6 NORX64-6-4
Ciphertext:

B3 16 97 9C 8B 60 D2 0E 83 43 B2 A5 AD DB CF 61
68 CF E1 B4 C8 3C 3E C8 5E CE 1B 08 E8 BB 12 1F
A5 D1 08 D5 27 09 5C F5 56 36 26 A9 DD 6D 5F 56
03 DD 94 2C 6E 6B D2 01 96 37 84 18 94 02 21 78
E5 9E 03 6D FD 2C 01 AC 7D 45 D3 17 B2 6F F9 C0
AC AD F7 BD 36 05 B4 54 69 F0 30 79 4F 41 40 65
E8 B9 F7 F0 5E 22 7D 1D 17 93 EF 1E 50 2E 41 B4
45 6D B7 09 A6 67 48 F7 44 4F BB 33 16 03 91 CE

Tag:
1A 71 F3 76 B4 C5 D2 FD 61 95 D4 84 CD 11 0E 4D
61 A8 03 2F 11 C9 00 9E BF 9D F9 6A F7 52 D2 CD

103

Appendix B

Ascon test vectors

Table B.1: Inputs for Ascon128
Ascon 128

Var Data Length
K 00 01 ... 0E 0F 16
N 20 21 ... 2E 2F 1P6
A 00 01 ... 7E 7F 32
M 00 01 ... 7E 7F 32

Given the input values in Table B.1, the values of the internal state and full AEAD
computations are given on the next sections.

B.1 Ascon128

B.1.1 Sponge states
In this section, we show the intermediate states of the processing of data given in Ta-
ble B.1. Two representations are given, the first being the 64-bit contents of the registers
containing the sponge (x0 · · · x4). The second representation is the byte stream, taking
into account the big-endian nature of Ascon.

State after initialization

Sponge registers (64-bit):
x0 = CE2216A1AB6D5D35
x1 = 75C69BB8FF3B7667
x2 = 65571B3F35C46164
x3 = 00E8BC75DD6CB55A
x4 = 3B0E5E1E4C7FBE72

Byte representation:
35 5D 6D AB A1 16 22 CE 67 76 3B FF B8 9B C6 75
64 61 C4 35 3F 1B 57 65 5A B5 6C DD 75 BC E8 00
72 BE 7F 4C 1E 5E 0E 3B

104

State after additional data processing

Sponge registers (64-bit):

x0 = 2608D8471412873D
x1 = 4B168A364AC530F5
x2 = E75CED7AD5F522E0
x3 = 32C364DBE0157218
x4 = 7862D4BF24BE3B62

Byte representation:

3D 87 12 14 47 D8 08 26 F5 30 C5 4A 36 8A 16 4B
E0 22 F5 D5 7A ED 5C E7 18 72 15 E0 DB 64 C3 32
62 3B BE 24 BF D4 62 78

State after plaintext data processing

Sponge registers (64-bit):

x0 = B10D8442E8CAD002
x1 = 9AB6FC946C6E5940
x2 = FF87A048C3F7B306
x3 = 3833BBCF92DDF237
x4 = 8CA249B696C66170

Byte representation:

02 D0 CA E8 42 84 0D B1 40 59 6E 6C 94 FC B6 9A
06 B3 F7 C3 48 A0 87 FF 37 F2 DD 92 CF BB 33 38
70 61 C6 96 B6 49 A2 8C

State after tag generation

Sponge registers (64-bit):

x0 = 232BC5A5B01F1AF8
x1 = 5C07B505E9FB7AD3
x2 = 1111085EE3DF8933
x3 = 484751CAADDE9EF2
x4 = BA3BBEEA1ED53F1E

Byte representation:

F8 1A 1F B0 A5 C5 2B 23 D3 7A FB E9 05 B5 07 5C
33 89 DF E3 5E 08 11 11 F2 9E DE AD CA 51 47 48
1E 3F D5 1E EA BE 3B BA

105

B.1.2 Full AEAD results
Ciphertext:

26 09 DA 44 10 17 81 3A 3F 0F B2 0D 9B 0D E8 9C
34 2F 21 81 D5 26 5D 22 8C 8F 2F 07 66 04 77 5F
60 53 7A 29 DC 64 E7 01 C8 B3 39 AA 61 1E FE DE
8C 7F A4 52 04 91 E6 D3 3F 30 73 95 1B FF 0D 31
D0 88 85 D4 F6 35 F9 22 3B EA AA 2B FE 6E 15 12
20 31 58 F9 3C 48 A3 FC 23 7B F6 E8 44 E0 03 B4
E2 1C 43 3A 3F A6 09 91 E0 9E 54 44 D0 CC 05 42
2A EB 8E B5 4B 62 13 AC 96 9C 6F 11 67 DE 92 AE

Tag:

48 47 51 CA AD DE 9E F2 BA 3B BE EA 1E D5 3F 1E

B.2 Ascon128a

B.2.1 Sponge states
In this section, we show the intermediate states of the processing of data given in Ta-
ble B.1. Two representations are given, the first being the 64-bit contents of the registers
containing the sponge (x0 · · · x4). The second representation is the byte stream, taking
into account the big-endian nature of Ascon.

State after initialization

Sponge registers (64-bit):

x0 = E7429E34CC44D82C
x1 = FDBE752EEE81EA4F
x2 = 8CD33290A4E70044
x3 = A16477EAE2FDAD81
x4 = D85139D0A93DC5AA

Byte representation:

2C D8 44 CC 34 9E 42 E7 4F EA 81 EE 2E 75 BE FD
44 00 E7 A4 90 32 D3 8C 81 AD FD E2 EA 77 64 A1
AA C5 3D A9 D0 39 51 D8

State after additional data processing

Sponge registers (64-bit):

x0 = 73CDC2A420275096
x1 = 06C1BA39E833DAE0
x2 = 6724824C1B2D47C8
x3 = 1924A379931FE37D
x4 = 294CC6C1657BEA5C

106

Byte representation:
96 50 27 20 A4 C2 CD 73 E0 DA 33 E8 39 BA C1 06
C8 47 2D 1B 4C 82 24 67 7D E3 1F 93 79 A3 24 19
5C EA 7B 65 C1 C6 4C 29

State after plaintext data processing

Sponge registers (64-bit):
x0 = 60B7645344108008
x1 = 2C6FF01EDF18C653
x2 = 671190B4AF96F078
x3 = DDC17CABDB1A13F8
x4 = 56F805E5A956926C

Byte representation:
08 80 10 44 53 64 B7 60 53 C6 18 DF 1E F0 6F 2C
78 F0 96 AF B4 90 11 67 F8 13 1A DB AB 7C C1 DD
6C 92 56 A9 E5 05 F8 56

State after tag generation

Sponge registers (64-bit):
x0 = 5ED80E70E9ADB5E9
x1 = D0F3067A4EF24B9D
x2 = 96AA97679295684F
x3 = 86EF4786ADCE94BB
x4 = 57712DFA87406CAB

Byte representation:
E9 B5 AD E9 70 0E D8 5E 9D 4B F2 4E 7A 06 F3 D0
4F 68 95 92 67 97 AA 96 BB 94 CE AD 86 47 EF 86
AB 6C 40 87 FA 2D 71 57

B.2.2 Full AEAD results
Ciphertext:

73 CC C0 A7 24 22 56 91 0E C8 B0 32 E4 3E D4 EF
17 8D 8B 2D A6 BC 73 71 20 41 B4 2D DD D2 AC 5A
75 EC 46 46 26 5D 50 30 A7 CC E7 A7 58 51 CF 1E
10 9A A4 AB B5 40 D7 45 0B 76 DB 6B 23 4F 15 C6
0B 24 D7 85 E9 21 CD 4E 3A DF BD A7 53 2C EE 82
9B 34 E4 B1 1A D9 71 A8 C7 00 2D D6 77 20 D0 2A
C5 F6 CD 95 D1 8E 41 1D A9 AA AD 3E 06 A7 B7 0F
62 4E 20 25 AF 62 3B B4 A3 B6 24 78 5F 67 03 DC

Tag:
86 EF 47 86 AD CE 94 BB 57 71 2D FA 87 40 6C AB

107

Appendix C

C code for benchmarking

C.1 Kernel modules
These kernelmodules are used to enable the performance counters onARMprocessors,
used by the benchmark code to calculate elapsed cycles. Algorithm 43 is used for ARM-
V7a processors, and Algorithm 44 is used for AArch64 compatible processors.

Algorithm 43 Kernel module for enabling counter on ARM7a

1 # include <linux/ module .h>
2 # include <linux/ kernel .h>
3 MODULE_LICENSE ("Dual BSD/GPL");
4

5 # define DEVICE_NAME " enableccnt "
6

7 static void
8 enableccnt_init (void *data)
9 {

10 printk (KERN_INFO DEVICE_NAME " starting \n");
11 asm volatile ("mcr p15 , 0, %0, c9 , c14 , 0"::"r" (1));
12 // return 0;
13 }
14

15 static void
16 enableccnt_exit (void *data)
17 {
18 asm volatile ("mcr p15 , 0, %0, c9 , c14 , 0"::"r" (0));
19 printk (KERN_INFO DEVICE_NAME " stopping \n");
20 }
21 static int
22 enableccnt_init_counters (void)
23 {
24 on_each_cpu (enableccnt_init , NULL , 1);
25 return 0;
26 }

108

27

28 static void
29 enableccnt_exit_counters (void)
30 {
31 on_each_cpu (enableccnt_exit , NULL , 1);
32 }
33

34 module_init (enableccnt_init_counters);
35 module_exit (enableccnt_exit_counters);

Algorithm 44 Kernel module for enabling counter on AArch64 processors

1 static inline void
2 enable_pmu (uint32_t evtCount)
3 {
4 #if defined (__GNUC__) && defined __aarch64__
5 evtCount &= ARMV8_PMEVTYPER_EVTCOUNT_MASK ;
6 asm volatile ("isb");
7 /* Just use counter 0 */
8 asm volatile ("msr pmevtyper0_el0 , %0" : : "r" (evtCount))

;
9 /* Performance Monitors Count Enable Set register bit

30:1
10 disable , 31,1 enable */
11 uint32_t r = 0;
12

13 asm volatile ("mrs %0, pmcntenset_el0 " : "=r" (r));
14 asm volatile ("msr pmcntenset_el0 , %0" : : "r" (r|1));
15 #else
16 # error Unsupported architecture / compiler !
17 # endif
18 }
19

20 static inline void
21 disable_pmu (uint32_t evtCount)
22 {
23 #if defined (__GNUC__) && defined __aarch64__
24 /* Performance Monitors Count Enable Set register :

clear bit 0 */
25 uint32_t r = 0;
26

27 asm volatile ("mrs %0, pmcntenset_el0 " : "=r" (r));
28 asm volatile ("msr pmcntenset_el0 , %0" : : "r" (r&&0

xfffffffe));
29 #else
30 # error Unsupported architecture / compiler !
31 # endif

109

32 }

C.2 Cycle counter
The code shown in Algorithm 45 returns the value stored in the ARM performance
cycle counter.

Algorithm 45 Code for returning the cycle counter in ARM processors

1 static inline uint32_t cycles (void) {
2 #if defined (__GNUC__)
3 uint32_t r = 0;
4 #if defined __aarch64__
5 asm ("mrs %0, pmccntr_el0 " : "=r" (r));
6 #elif defined (__ARM_ARCH_7A__)
7 asm ("mrc p15 , 0, %0, c9 , c13 , 0" : "=r"(r));
8 #else
9 # error Unsupported architecture / compiler !

10 # endif
11 return r;
12 # endif
13 }

The code shown in Algorithm 46 returns the value stored in cycle counter of x86
processors.

Algorithm 46 Code for returning the cycle counter in ARM processors

1 unsigned long cycles (void) {
2 unsigned int hi , lo;
3 asm (
4 "cpuid \n\t"/* serialize */
5 "rdtsc \n\t"/* read the clock */
6 "mov %%edx , %0\n\t"
7 "mov %%eax , %1\n\t"
8 : "=r" (hi), "=r" (lo):: "%rax", "%rbx", "%rcx",

"%rdx"
9);

10 return ((unsigned long long) lo) | (((unsigned long long)
hi) << 32);

11 }

The code shown in Algorithm 47 is a wrapper for these functions, to facilitate code
benchmarking.

110

Algorithm 47 Wrapper for cycle counter

1 # define BENCH_PRINT printf ("%lu cycles \r\n", bench_total ());
2

3 # include <time.h>
4 static clock_t before , after , total ;
5

6 # define BENCH_ONCE (LABEL , FUNCTION) \
7 printf ("BENCH : " LABEL " = "); \
8 total =0; \
9 before = cycles (); \

10 FUNCTION ; \
11 after = cycles (); \
12 result = (after - before); \
13 printf ("%lu cycles \r\n", result);

111

Appendix D

Code profilling with Perf

Perf is a set of performance analysis for Linux, that cover both hardware and software
performance counters.

D.1 Use
Simple code profiling can be easily done in Perf, with little to no modification of the
original code. For better results, one should avoid function inlining, and compile the
code with debug information.

To record execution traces on Perf, use the command:
$ perf-record ./program_to_trace
An interactive interface for exploring the trace can then be called by executing the

following command in the same directory:
$ perf report
Alternatively, a static text report can be generated with the command:
$ perf report –stdio
Bydefault, the number of clock cycles is used as the event to trace. More events, such

as branch mispredictions and cache access can be used instead, passing them with the
switch -e. A list of the supported events can be retrieved via the command $ perf
list.

For a larger measurement resolution, the switch -F can be used to specify the fre-
quency, in Hertz, of sampling.

Perf is a very powerful tool, and while this work does not aim to list all the charac-
teristics of the tool and scenarios where it can be used, two good sources of information
are given below:

https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
Alternatively, archive links for these pages are given below:
https://web.archive.org/web/20180225014548/https://perf.wiki.kernel.

org/index.php/Main_Page
https://web.archive.org/web/20180724055416/http://www.brendangregg.

com/perf.html

https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
https://web.archive.org/web/20180225014548/https://perf.wiki.kernel.org/index.php/Main_Page
https://web.archive.org/web/20180225014548/https://perf.wiki.kernel.org/index.php/Main_Page
https://web.archive.org/web/20180724055416/http://www.brendangregg.com/perf.html
https://web.archive.org/web/20180724055416/http://www.brendangregg.com/perf.html

112

Appendix E

NORX full result tables

In this Appendix, it is shown the full results for NORX benchmarks on the target archi-
tectures.

Table E.1: Results in cycles per byte for NORX3261 on
Cortex-A7

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 60.25 70.58 58.61 59.56
256B 44.57 52.62 43.85 44.56
512B 34.17 41.85 35.50 34.23
1KiB 31.06 36.88 30.08 31.21
2KiB 27.90 32.98 27.57 28.15
4KiB 26.79 32.23 27.03 27.24
8KiB 26.19 31.47 26.23 26.60
16KiB 25.99 31.23 26.00 26.25
32KiB 25.80 31.12 25.99 26.12
64KiB 25.80 30.99 25.98 26.20
128KiB 25.86 31.07 26.03 26.34
256KiB 26.28 31.94 26.87 26.62
512KiB 27.31 33.40 28.32 27.66
1MiB 28.32 33.79 28.78 28.68

Table E.2: Results in CBP for NORX3261 on Cortex-A15

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 38.22 32.72 32.75 45.13
256B 28.44 30.99 24.86 33.39
512B 21.82 18.63 19.42 25.80
1KiB 19.32 16.47 17.40 22.86
2KiB 18.23 15.07 16.04 21.36
4KiB 17.31 14.52 15.80 20.50
8KiB 16.94 14.17 15.34 20.00

113

Table E.2 – Continued from previous page
Input Len Ref 4xpipe 2xpipe Ref. NEON
16KiB 16.75 14.10 15.20 19.71
32KiB 16.59 14.15 15.20 19.67
64KiB 16.59 14.23 15.18 19.61
128KiB 16.60 14.24 15.17 19.58
256KiB 16.58 14.23 15.16 19.57
512KiB 16.57 14.22 15.15 19.56
1MiB 16.60 14.24 15.16 19.60

Table E.3: Results in cycles per byte for NORX3261 on
Cortex-A53

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 39.62 25.13 28.34 26.35
256B 29.02 18.68 25.16 19.92
512B 22.21 14.46 16.23 15.57
1KiB 19.57 12.85 14.40 13.93
2KiB 17.86 11.80 13.21 12.84
4KiB 17.42 11.70 12.84 12.43
8KiB 16.78 11.13 12.49 12.16
16KiB 16.64 11.08 12.39 12.11
32KiB 16.54 11.08 12.31 12.05
64KiB 16.50 10.97 12.35 12.10
128KiB 16.52 10.95 12.26 12.00
256KiB 16.50 10.94 12.27 12.00
512KiB 16.50 10.97 12.38 12.07
1MiB 16.64 11.03 12.45 12.13

Table E.4: Results in cycles per byte for NORX3264 on
Cortex-A7

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 147.00 173.26 137.18 167.09
256B 93.74 108.30 86.84 101.33
512B 56.85 67.98 53.58 65.48
1KiB 43.13 51.68 40.98 49.08
2KiB 34.84 42.16 33.35 40.65
4KiB 31.12 37.81 29.56 36.63
8KiB 29.00 35.61 27.91 34.12
16KiB 28.19 34.35 26.88 33.07
32KiB 27.65 33.80 26.50 32.51
64KiB 27.46 33.64 26.41 32.33

114

Table E.4 – Continued from previous page
Input Len Ref 4xpipe 2xpipe Ref. NEON
128KiB 27.41 33.59 26.30 32.23
256KiB 28.46 33.74 26.50 32.28
512KiB 29.75 34.54 27.35 33.27
1MiB 30.18 35.87 28.57 34.61

Table E.5: Results in cycles per byte for NORX3264 on
Cortex-A15

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 105.70 99.04 83.04 99.29
256B 56.97 57.39 49.90 58.68
512B 36.80 33.41 32.43 37.18
1KiB 27.52 25.04 24.42 27.78
2KiB 23.12 20.99 20.65 22.69
4KiB 20.41 18.67 18.40 20.37
8KiB 19.27 17.22 17.31 19.65
16KiB 18.68 16.89 16.61 18.79
32KiB 18.22 16.81 16.42 18.44
64KiB 18.06 16.71 16.33 18.31
128KiB 17.98 16.64 16.26 18.25
256KiB 17.96 16.62 16.25 18.21
512KiB 17.96 16.61 16.22 18.20
1MiB 18.59 16.61 16.23 18.19

Table E.6: Results in cycles per byte for NORX3264 on
Cortex-A53

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 233.77 60.99 66.47 74.92
256B 66.59 37.20 40.59 51.13
512B 42.55 24.21 26.43 36.97
1KiB 31.47 18.25 21.25 31.01
2KiB 25.64 15.00 16.42 27.98
4KiB 22.69 13.75 14.80 26.08
8KiB 21.23 12.75 13.94 25.16
16KiB 20.61 12.35 13.53 24.80
32KiB 20.25 12.17 13.32 24.56
64KiB 20.07 12.10 13.23 24.48
128KiB 19.98 12.04 13.17 24.42
256KiB 20.08 12.02 13.15 24.40
512KiB 20.32 12.08 13.17 24.45

115

Table E.6 – Continued from previous page
Input Len Ref 4xpipe 2xpipe Ref. NEON
1MiB 20.38 12.15 13.17 24.47

Table E.7: Results in cycles per byte for NORX6461 on
Cortex-A7

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 199.86 237.81 212.02 87.23
256B 121.01 134.45 127.07 50.93
512B 87.63 96.47 89.00 36.23
1KiB 65.20 71.19 65.95 27.13
2KiB 57.96 61.89 57.06 23.84
4KiB 52.55 54.87 50.98 21.36
8KiB 50.52 52.47 48.70 20.53
16KiB 49.20 50.82 47.39 20.06
32KiB 48.77 50.26 46.88 19.75
64KiB 48.55 50.12 46.65 19.66
128KiB 48.53 50.09 46.65 19.67
256KiB 49.01 50.37 46.87 19.72
512KiB 50.15 51.60 48.08 20.55
1MiB 9.94 11.40 8.05 21.96

Table E.8: Results in cycles per byte for NORX6461 on
Cortex-A15

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 130.64 115.35 120.12 54.91
256B 78.01 67.79 70.64 32.13
512B 57.83 48.47 54.71 21.96
1KiB 44.65 36.53 38.46 16.26
2KiB 39.58 31.74 33.54 14.03
4KiB 36.89 29.31 30.72 12.64
8KiB 35.47 27.80 29.39 12.36
16KiB 34.64 27.05 28.67 11.94
32KiB 34.42 26.92 28.51 11.88
64KiB 34.19 26.84 28.39 11.78
128KiB 34.14 26.76 28.33 11.76
256KiB 34.08 26.72 28.29 11.73
512KiB 34.05 26.70 28.26 11.72
1MiB 34.04 26.70 28.26 11.71

116

Table E.9: Results in cycles per byte for NORX6461 on
Cortex-A53

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 49.84 32.43 45.96 47.02
256B 28.78 18.44 24.20 31.16
512B 20.15 12.46 15.74 19.92
1KiB 15.56 8.95 10.85 15.02
2KiB 12.70 7.45 9.07 13.01
4KiB 11.38 6.57 7.59 12.05
8KiB 10.83 6.19 7.09 11.35
16KiB 10.53 6.00 6.78 11.07
32KiB 10.39 5.90 6.72 11.00
64KiB 10.34 5.86 6.60 10.94
128KiB 10.31 5.84 6.58 10.90
256KiB 10.29 5.83 6.56 10.90
512KiB 10.31 5.87 6.61 10.96
1MiB 10.37 6.03 6.71 10.96

Table E.10: Results in cycles per byte for NORX6464 on
Cortex-A7

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 379.89 504.84 440.57 379.29
256B 203.57 271.13 237.47 204.61
512B 123.18 163.12 143.44 123.45
1KiB 79.71 104.29 92.61 80.00
2KiB 59.46 77.14 69.12 59.75
4KiB 48.62 62.38 56.57 48.80
8KiB 43.65 55.59 50.71 43.77
16KiB 40.82 51.97 47.55 41.13
32KiB 39.70 50.35 46.16 39.81
64KiB 39.11 49.50 45.45 39.18
128KiB 38.82 49.05 45.12 38.89
256KiB 38.78 48.85 44.98 38.75
512KiB 7.49 17.67 13.84 7.45
1MiB 8.70 3.04 14.95 8.79

Table E.11: Results in cycles per byte for NORX6464 on
Cortex-A15

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 223.03 245.52 283.33 222.88

117

Table E.11 – Continued from previous page
Input Len Ref 4xpipe 2xpipe Ref. NEON
256B 120.01 130.51 151.44 119.96
512B 72.51 78.94 91.95 72.14
1KiB 47.06 50.94 57.73 46.88
2KiB 34.97 38.40 42.33 35.17
4KiB 28.57 31.33 34.28 28.75
8KiB 25.66 28.08 30.41 25.79
16KiB 24.11 26.35 28.37 24.39
32KiB 23.37 25.66 27.63 23.64
64KiB 23.04 25.37 27.10 23.23
128KiB 22.87 25.11 26.90 23.09
256KiB 22.77 25.00 26.73 22.94
512KiB 22.73 24.95 26.60 22.90
1MiB 6.71 8.93 10.57 6.90

Table E.12: Results in cycles per byte for NORX6464 on
Cortex-A53

Input Len Ref 4xpipe 2xpipe Ref. NEON
128B 105.83 61.56 94.80 49.10
256B 57.63 33.93 51.01 27.94
512B 34.46 19.82 30.89 18.91
1KiB 22.27 12.67 19.92 13.61
2KiB 16.62 9.42 14.88 11.35
4KiB 13.60 7.58 12.16 10.02
8KiB 12.15 6.77 10.88 9.48
16KiB 11.50 6.34 10.21 9.14
32KiB 11.05 6.20 9.91 9.01
64KiB 10.86 6.09 9.75 8.93
128KiB 10.77 6.04 9.66 8.91
256KiB 10.74 6.09 9.62 8.88
512KiB 10.75 6.12 9.62 8.92
1MiB 10.75 6.02 9.69 8.92

118

Appendix F

Ascon full result tables

In this Appendix, it is shown the full results forAscon benchmarks on the target archi-
tecture.

Table F.1: Results in cycles per byte for ASCON128 on
Cortex-A15

Input Len Ascon128 ref. Own code NEON 64-bit NEON 128-bit NEONM. Msg.
128B 109.31 84.48 68.62 64.01 53.34
256B 98.75 74.88 62.52 55.47 49.14
512B 94.30 72.00 58.55 52.19 46.27
1KiB 91.92 68.09 56.77 50.96 43.92
2KiB 90.61 66.91 55.79 50.10 43.07
4KiB 89.83 66.51 55.41 49.69 42.46
8KiB 89.72 66.10 55.15 49.46 42.40
16KiB 90.35 66.00 55.04 49.44 43.05
32KiB 89.67 65.98 55.05 49.32 42.80
64KiB 90.14 66.02 55.10 49.32 43.44

Table F.2: Results in cycles per byte for ASCON128 on
Cortex-A7

Input Len Ascon128 ref. Own code NEON 64-bit NEON 128-bit NEONM. Msg.
128B 214.48 166.33 152.93 117.26 104.37
256B 194.77 146.47 137.03 105.33 93.10
512B 183.89 137.79 127.85 98.01 87.68
1KiB 178.85 133.24 123.98 94.78 84.78
2KiB 176.43 130.63 121.97 92.96 83.42
4KiB 175.82 129.54 120.95 92.11 82.76
8KiB 175.46 128.87 120.41 91.68 82.41
16KiB 174.44 128.62 120.16 91.47 82.30
32KiB 174.18 128.52 120.08 91.46 82.22
64KiB 174.10 128.50 120.11 91.45 82.19

119

Table F.3: Results in cycles per byte for ASCON128 on
Cortex-A53

Input Len Ascon128 ref. Own code NEON 64-bit NEON 128-bit NEONM. Msg.
128B 35.99 17.75 19.98 51.29 29.10
256B 32.35 15.33 17.40 45.91 25.77
512B 30.55 14.09 16.15 44.11 24.36
1KiB 29.66 13.48 15.53 41.96 23.33
2KiB 29.13 13.18 15.21 41.55 22.88
4KiB 28.95 13.06 15.09 40.86 22.67
8KiB 28.81 12.96 15.00 41.28 22.55
16KiB 28.90 12.92 14.98 40.97 22.58
32KiB 28.85 12.92 14.97 40.65 22.50
64KiB 28.83 12.90 14.96 40.62 22.52

Table F.4: Results in cycles per byte for ASCON128a on
Cortex-A15

Input Len Ascon128a ref. Own code NEON 64-bit NEON 128-bit
128B 77.87 60.47 49.94 44.39
256B 68.14 51.39 42.45 36.00
512B 62.56 47.30 39.11 32.84
1KiB 59.93 44.91 36.99 31.68
2KiB 58.59 43.68 36.23 30.68
4KiB 57.87 43.10 35.66 30.28
8KiB 57.50 42.68 35.36 30.03
16KiB 57.60 42.49 35.24 29.96
32KiB 57.70 42.62 35.48 30.10
64KiB 57.62 42.66 35.60 30.29

Table F.5: Results in cycles per byte for ASCON128a on
Cortex-A7

Input Len Ascon128a ref. Own code NEON 64-bit NEON 128-bit
128B 151.88 127.77 113.48 92.37
256B 132.47 108.97 97.19 77.35
512B 122.12 100.10 89.50 70.66
1KiB 116.36 95.49 85.33 67.62
2KiB 113.98 93.34 83.52 65.72
4KiB 112.84 92.15 82.43 64.75
8KiB 112.09 91.53 81.98 64.42
16KiB 112.00 91.28 81.76 64.06
32KiB 111.80 91.18 81.66 64.13

120

Table F.5 – Continued from previous page
Input Len Ascon128a ref. Own code NEON 64-bit NEON 128-bit
64KiB 111.75 91.19 81.62 64.13

Table F.6: Results in cycles per byte for ASCON128a on
Cortex-A53

Input Len Ascon128a ref. Own code NEON 64-bit NEON 128-bit
128B 29.50 15.89 15.80 40.48
256B 25.89 13.40 13.40 32.95
512B 24.07 12.19 12.16 30.35
1KiB 23.18 11.56 11.57 29.24
2KiB 22.76 11.27 11.35 28.51
4KiB 22.52 11.12 11.11 28.13
8KiB 22.34 11.03 11.06 27.96
16KiB 22.47 10.98 11.01 27.89
32KiB 22.45 10.94 10.92 27.88
64KiB 22.28 10.79 10.72 27.63

121

Appendix G

Object dump of Ascon’s LBOX.

Algorithm 48 Dump of the NEON code for Ascon LBOX, generated without compiler
optimizations in order to force the use of NEON registers. Immediate values are the
ones applied to x0.

1 0000000000000 b10 <lbox >:
2 void lbox(uint64x1_t *x){
3 b10: f8190ffe str x30 , [sp , # -112]!
4 b14: f9000fe0 str x0 , [sp , #24]
5 b18: 900000 a0 adrp x0 , 14000 <__FRAME_END__

+0 xf428 >
6 b1c: f947e000 ldr x0 , [x0 , #4032]
7 b20: f9400001 ldr x1 , [x0]
8 b24: f90037e1 str x1 , [sp , #104]
9 b28: d2800001 mov x1 , #0 x0

// #0
10 ;# define GGG(x,n) (veor_u64 (vshr_n_u64 ((x) ,(n)),

vshl_n_u64 ((x) ,(64-n))))
11 ;*x ^= GGG (*x, 28) ^ GGG (*x, 29);
12 b2c: f9400fe0 ldr x0 , [sp , #24]
13 b30: f9400000 ldr x0 , [x0]
14 b34: f90023e0 str x0 , [sp , #64]
15 ; return (uint64x1_t) { __builtin_aarch64_lshr_simddi_uus (__a

[0] , __b)};
16 b38: f94023e0 ldr x0 , [sp , #64]
17 b3c: d35cfc00 lsr x0 , x0 , #28
18 b40: d2800001 mov x1 , #0 x0

// #0
19 b44: aa0003e1 mov x1 , x0
20 b48: aa0103e0 mov x0 , x1
21 b4c: aa0003e1 mov x1 , x0
22 b50: f9400fe0 ldr x0 , [sp , #24]
23 b54: f9400000 ldr x0 , [x0]
24 b58: f9001fe0 str x0 , [sp , #56]

122

25 ; return (uint64x1_t) { __builtin_aarch64_ashldi ((int64_t) __a
[0] , __b)};

26 b5c: f9401fe0 ldr x0 , [sp , #56]
27 b60: aa0003e2 mov x2 , x0
28 b64: 52800480 mov w0 , #0 x24

// #36
29 b68: 9 ac02040 lsl x0 , x2 , x0
30 b6c: aa0003e2 mov x2 , x0
31 b70: d2800000 mov x0 , #0 x0

// #0
32 b74: aa0203e0 mov x0 , x2
33 b78: f9002fe1 str x1 , [sp , #88]
34 b7c: f90033e0 str x0 , [sp , #96]
35 ; return __a ^ __b;
36 b80: f9402fe1 ldr x1 , [sp , #88]
37 b84: f94033e0 ldr x0 , [sp , #96]
38 b88: ca000020 eor x0 , x1 , x0
39 b8c: d2800001 mov x1 , #0 x0

// #0
40 b90: aa0003e1 mov x1 , x0
41 b94: aa0103e0 mov x0 , x1
42 b98: aa0003e3 mov x3 , x0
43 b9c: f9400fe0 ldr x0 , [sp , #24]
44 ba0: f9400000 ldr x0 , [x0]
45 ba4: f9001be0 str x0 , [sp , #48]
46 ; return (uint64x1_t) { __builtin_aarch64_lshr_simddi_uus (__a

[0] , __b)};
47 ba8: f9401be0 ldr x0 , [sp , #48]
48 bac: d35dfc00 lsr x0 , x0 , #29
49 bb0: d2800001 mov x1 , #0 x0

// #0
50 bb4: aa0003e1 mov x1 , x0
51 bb8: aa0103e0 mov x0 , x1
52 bbc: aa0003e1 mov x1 , x0
53 bc0: f9400fe0 ldr x0 , [sp , #24]
54 bc4: f9400000 ldr x0 , [x0]
55 bc8: f90017e0 str x0 , [sp , #40]
56 ; return (uint64x1_t) { __builtin_aarch64_ashldi ((int64_t) __a

[0] , __b)};
57 bcc: f94017e0 ldr x0 , [sp , #40]
58 bd0: aa0003e2 mov x2 , x0
59 bd4: 52800460 mov w0 , #0 x23

// #35
60 bd8: 9 ac02040 lsl x0 , x2 , x0
61 bdc: aa0003e2 mov x2 , x0
62 be0: d2800000 mov x0 , #0 x0

// #0

123

63 be4: aa0203e0 mov x0 , x2
64 be8: f90027e1 str x1 , [sp , #72]
65 bec: f9002be0 str x0 , [sp , #80]
66 ; return __a ^ __b;
67 bf0: f94027e1 ldr x1 , [sp , #72]
68 bf4: f9402be0 ldr x0 , [sp , #80]
69 bf8: ca000020 eor x0 , x1 , x0
70 bfc: d2800001 mov x1 , #0 x0

// #0
71 c00: aa0003e1 mov x1 , x0
72 c04: aa0103e0 mov x0 , x1
73 c08: aa0303e1 mov x1 , x3
74 c0c: ca000020 eor x0 , x1 , x0
75 c10: f9400fe1 ldr x1 , [sp , #24]
76 c14: f9400021 ldr x1 , [x1]
77 c18: ca010000 eor x0 , x0 , x1
78 c1c: d2800001 mov x1 , #0 x0

// #0
79 c20: aa0003e1 mov x1 , x0
80 c24: f9400fe0 ldr x0 , [sp , #24]
81 c28: f9000001 str x1 , [x0]
82 ; }
83 c2c: d503201f nop
84 c30: 900000 a0 adrp x0 , 14000 <__FRAME_END__

+0 xf428 >
85 c34: f947e000 ldr x0 , [x0 , #4032]
86 c38: f94037e1 ldr x1 , [sp , #104]
87 c3c: f9400000 ldr x0 , [x0]
88 c40: ca000020 eor x0 , x1 , x0
89 c44: f100001f cmp x0 , #0 x0
90 c48: 54000040 b.eq c50 <lbox +0 x140 > //

b.none
91 c4c: 97 ffff39 bl 930 <__stack_chk_fail@plt

>
92 c50: f84707fe ldr x30 , [sp], #112
93 c54: d65f03c0 ret

	Introduction
	Contributions of this work
	Document structure

	Background
	Cryptography
	Block ciphers
	Lightweight cryptography
	Sponge Functions

	Authenticated encryption
	Authenticated mode of operations
	Dedicated AE(AD) schemes
	Current Standards

	Cryptographic competitions
	CAESAR
	CAESAR selection criteria

	ARM Architecture
	Cortex A processors
	SIMD instructions - NEON
	Cortex M processors
	Other lines of processors

	Algorithm choice
	Software implementation for cryptographic functions
	ARM Architecture: Target processors
	Testing methodology

	Software implementation: NORX AEAD
	Description of NORX family of algorithms
	Padding
	Domain separation constants
	Sponge initialization
	Absorption
	Branching and Merging
	Encryption and decryption
	Finalization
	Tag verification

	Code profiling
	Permutation optimization
	Pipeline oriented optimization
	NEON implementation
	NEON word-wise rotations
	Register wide rotations
	NEON Permutation

	Other implementations
	Results and considerations
	Applying the ideas to the BLAKE2 hash algorithm

	Software implementation: Ascon AEAD
	Description of Ascon algorithms
	Ascon Mode of Operation
	Padding rule
	Initialization
	Additional data processing
	Plaintext processing
	Finalization

	Ascon permutation
	Code profiling
	NEON implementation and optimizations
	Results and considerations

	Conclusion and final remarks
	References
	NORX test vectors
	Computations of F
	Full AEAD computations
	NORX32-4-1
	NORX32-6-1
	NORX64-4-1
	NORX64-6-1
	NORX64-4-4
	NORX64-6-4

	Ascon test vectors
	Ascon128
	Sponge states
	Full AEAD results

	Ascon128a
	Sponge states
	Full AEAD results

	C code for benchmarking
	Kernel modules
	Cycle counter

	Code profilling with Perf
	Use

	NORX full result tables
	Ascon full result tables
	Object dump of Ascon's LBOX.

