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Resumo

Um dos problemas centrais na ciência social computacional é entender como a informa-
ção se espalha em redes sociais online. Alguns trabalhos afirmam que pessoas que usam
estas redes podem não ser capazes de lidar com a quantidade de informação devido às
restrições cognitivas, o que resulta em um limite de atenção gasta para ler e compartilhar
mensagens. Disso emerge um cenário de competição, em que memes das mensagens visam
ser lembrados e compartilhados para que durem mais do que os outros. Esta pesquisa
está preocupada em construir uma evidência empírica de que a homofilia desempenha
um papel no sucesso de cada meme na competição. A homofilia é um efeito observado
quando pessoas preferem interagir com aqueles com os quais se identificam. Coletando
dados no Twitter, nós aglomeramos memes em tópicos que são usados para a caracteri-
zação da homofilia. Executamos um experimento computacional, baseado num modelo
simplificado de memória para adoção de memes, e verificamos que a adoção é influenciada
pela homofilia por tópicos.



Abstract

One of the central problems in the computational social science is to understand how
information spreads in online social networks. Some works state that people using these
networks may not cope with the amount of information due to cognitive restrictions,
resulting in a limit of attention spent reading and sharing messages. A competition
scenario emerges, where memes of messages want to be remembered and shared in order to
outlast others. This research is concerned with building empirical evidence that homophily
plays a role in the success of each meme over the competition. Homophily is an effect
observed when people prefer to interact with those they identify with. By gathering data
from Twitter, we clustered memes into topics that are used to characterize the homophily.
We executed a computational experiment, based on a simplified memory model of meme
adoption, and verified that the adoption is influenced by topical homophily.
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Chapter 1

Introduction

Back in 1976, Richard Dawkins defined meme as a "unit of culture" [22], i.e., a small
piece of information which could be an idea, belief, or even a pattern of behavior that is
also analogous to a gene. This analogy means that it is subjected to evolutionary dynam-
ics, such as reproduction, mutation and selection. Memes reproduce to transmit cultural
information when people adopt ideas or behaviors as in a contagion pattern. Because it is
thought to be hosted in each person’s mind, it can be altered or incorporated with other
ideas and hence mutate. As for the selection process, it is hard to reach a consensus about
what happens to memes which survive or not. The cultural selection theory is the effort
to grasp how the natural selection-based evolution principles promote culture change, but
it spans through so many disciplines that epistemological and conceptual problems arise
to the scientific point of view [21].

In the recent decades, a revolution took place in the core of the scientific method [34].
The so-called fourth research paradigm emerges from the conjuncture of massive data
production – from a diversity of devices and simulators – and data access through networks
and the web. It enables the scientific method to transit around theory generalization,
computational reproduction and empirical validation in a fast pace, because of the range
of new knowledge discovery possibilities opened by the available data. The remaining
of the chapter is organized as follows: Section 1.1 introduces the main field of study of
this work; Section 1.2 states our research problem; Section 1.3 presents our objective and
contributions; Section 1.4 sums up our methods and challenges; Section 1.5 summarizes
the organization of this document.

1.1 Research Scenario

A very important research area has been gaining attention in this period of data-intensive
research. The network science [8] grounds itself in the graph theory in conjunction with
the mechanical statistics to reveal, in a first moment, the structure and dynamics behind
such an omnipresent formation as the networks. The concept of complex systems embraces
systems formed by interacting parts with relatively simple behavior which show global
patterns that defy reductionism. Such systems appear in many places in our world. This
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is also the case for complex networks [11]. Social networks commonly figure among the
complex networks. This field is fundamental to the investigation of spreading processes
in networks [50]. For instance, it defines two types of contagions: the simple contagion,
which can succeed with only one exposition, common to biological mechanisms such as
epidemic disease outbreaks and the complex contagion, which require reinforcement from
multiple sources to trigger and are usually seen in social mechanisms such as the diffusion
of innovations [16].

In the wake of the scientific progress of the complex systems, the computational social
science was formed to tackle great modern challenges of our increasingly interconnected
world, such as infectious diseases dissemination; economic and social crises; unethical
use of communication technology; and other collective behavior phenomena [20] [40]. It
also opened new opportunities by revisiting several concepts of the quantitative social
sciences and promoting their integration with new models and techniques, also from the
network science. For example, the triadic closure [33], a principle that participates in the
formation of some network, or the cultural diffusion, a model created by Robert Axelrod
[4] in 1997 that describes the interplay of social influence and homophily. Homophily
is a long-standing concept in the social sciences, which reflects our tendency to interact
with people that we see as resembling ourselves, i.e., as it was simply put in the seminal
paper by McPherson et al. [45], "similarity breeds connection". Although interaction
or connection has several meanings to this field, in the context of social networks, we
are talking mostly of tie formation between individuals to represent whatever the social
network proposed to abstract, e.g. friendship, work, recommendation or exchange.

1.2 Problem Definition

In 1992, Robin Dunbar found a correlation between the size of the neocortex and the
social group size of primates [24]. This result points to a limitation of the cognitive func-
tions, in the sense that the animal can not surpass a number of relationships due to the
information overload. Gonçalves et al. [32] revisited this work in the Twitter social media
platform. They concluded that indeed the users cannot hold more than a certain number
of stable social relationships – those which they use to communicate actively – in an online
social network. Michael Goldhaber anticipated [31] that we live in an attention economy,
meaning that attention is the currency that people base upon to decide how to navigate
through the information ambiance.

The online social network’s users receive much more information that they can man-
age to interact with. An important work by Weng et al. [60] found that the memory of
these users is a strong constraint in this system. Seeking elements to explain the long-
term persistence of very few memes, they observed that, while the proportion of meme
diversity in posts over the network grows, the messages of each user cannot cope with
this growth. Therefore, the diversity of these messages would remain practically constant
in comparison. This result means that users have limitations to deal with the overload
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of information. It indicates a selective pressure among memes, in the sense that users
have to choose which memes adopt and share, due to their limited cognitive capacity. In
the present research, we attempt to understand how memes are selected in a restrained
attention environment, such as the online social networks, by asking ourselves how can
this memory limit be embodied into a model. In this context, memes can be phrases,
images, videos or hashtags. Our work is limited to hashtags.

In this setting, we pose the following research question: how the homophily with users
interplays with the memes competition for attention?

Since there is an intensification in the usage of online social networks in contemporary
communication, this research challenge is increasingly imperative. Firstly, we face a grow-
ing demand for curating the instruction and claims in these platforms [41]. The scientific
comprehension of the underlying diffusion processes should prove itself a paramount con-
tribution to policy-making, regulation and ultimately the integrity of institutions since
this new technology is affecting individual decisions to an unknown degree so far [59].
For instance, it could lead to the development of methods to identify effects in opinion
propagation, such as the echo-chambers [6]. There are also possibilities to accelerate the
broadcasting of public-interest information, such as missing-person searches, health alerts
or disaster relief, as well as industry-relevant implications, such as the engineering and
control of mechanisms for viral marketing.

1.3 Objective and Contributions

Our objective is to model a function for the fitness of shared memes – concerning their
reuse in messages produced in online social networks – in correspondence with data ob-
tained empirically.

To advance towards it, we have investigated the hypothesis that homophily plays a
role in a meme fitness measure. This investigation was conducted with a novel model
which captures a simplified memory behavior from the online social network users. It also
produced empirical indications from a real dataset that the competition exists and that
a specific formulation of homophily has influence in this scenario.

We expect that our model will contribute, in the immediate scope, to applied popula-
tional studies for prediction and meme control and, to a mid-term scope, supporting the
mathematical formalization of meme evolution in the social spreading phenomena.

1.4 Methods and Challenges

This research endeavor comprises an abstraction of the meme adoption process to accom-
modate a fitness function which characterizes how likely memes are remembered. This
abstraction has been based on aspects of different models of the literature, such as the
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two-phase adoption from Gleeson et al. [29] and the discrete memory slots from Qiu et
al. [51]. While these works account for careful representations of memes spreading in a
highly heterogeneous fashion, as observed in the online social networks, they do not define
a direct competition among memes to obtain attention from the users, in the sense of one
meme having characteristics which are more attractive to a specific user.

We modelled this advantage in the competition for attention as a particular case of
homophily. The topics of information are clusters of memes, which allow a quantitative
characterization of the homophily, called topical homophily. Homophily is observed when
users interact more with their similar peers - which, in our case, means users interacting
more with those that use more memes from the same topics. We have built a fitness func-
tion based on this kind of meme adoption. Our experiments with this function are based
on simplifications of time, which can potentially lose parts of the involved dynamics, as
memes are ephemeral entities and their spreading processes can take place in very short
periods.

We performed a study of meme adoption with the proposed fitness function using real
data, Meme spreading simulations are difficult because a tiny number of them become
massively popular, while most die out quickly, what characterizes an erratic dynamical
system.

1.5 Thesis Outline

This thesis is organized into six chapters. Chapter 2 inspects the foundations of our
research and related work. Chapter 3 details the models, definitions and methods that
we used to reach our research question. We provide a simplified model to be developed
later in a computational experiment, with a real dataset that will help us to understand
how topical homophily exerts influence in meme adoption. Chapter 4 details our results.
Chapter 5 evaluates the results and methodology, recapitulates our main findings and
identifies the opportunities for future works.
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Chapter 2

Foundations and Related Work

The present research comprehends a social network analysis and this task involves inves-
tigating the relations between the information that individuals in a network share and the
structure of connections among them. We start in Section 2.1 by examining how social
influence investigations characterized the social spreading phenomena and subsequently
layed the groundwork for various mathematical formulations to the spreading processes.
Section 2.2 addresses the conceptual basis of content classification, in terms of topics of
information, or clusters of semantically related pieces of information. Finally, in Section
2.3 we discuss the concept of homophily, how it is used in the context of social dynamics
and the later developments.

2.1 Social Spreading Phenomena

The social spreading phenomena comprise the diffusion of information and its inherent
dynamics over social networks. Online social media, such as Facebook1 and Twitter2, offer
large-scale sources of data concerning human behavior and relations [38], which enabled
robust lines of investigation in the social context. In these platforms, the social network
is defined mostly by users linking to each other through following or friendship relations,
and the information analyzed are mainly the messages exchanged by these agents in the
network.

We remind that the concept of the meme was defined in an evolutionary perspective,
so that it is subject to reproduction, selection and mutation [1]. In the context of the
research of online social networks, memes are treated as transmissible units of information
[26] and they are embedded in the messages posted by each person in the network, e.g.,
small phrases, images, videos, audios, URLs or hashtags. We are interested in hashtags
due to their capacity to tag posts with one or few words, making them easier to track than
a short phrase [43] and harder to mutate [57], which allow a clearer handling of semantic
association.

1https://facebook.com
2https://twitter.com
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One of the most studied online social networks is Twitter [65]. The platform makes
publicly available about 1% [47] of all the posted messages through its application pro-
gramming interface. Its messages are called tweets. It is known as a microblogging service
because there is a size limit to each tweet: it rose from 140 characters to 280 recently, in
September of 2017. This is an interesting feature in comparison to blogging platforms,
as the bounded size eases the automated analysis of the content in each message. It also
has a formal mechanism to reshare the messages named retweet, although it is possible
to reshare a fragment of a tweet without using this mechanism. Twitter’s social net-
work is established with the following relationship so that the follower is notified about
the messages posted by the followee. The directionality of this network is also an ap-
pealing attribute to conduct scientific research, as it is easier to generalize models from
directed networks to undirected networks than the contrary. These characteristics sup-
port a rapidly changing environment of messages, which makes Twitter a good source of
data to examine the social spreading phenomena.

The online social networks bear intricate structural patterns, such as power-law degree
distributions [46]. It means that there are very few hub nodes which are much more con-
nected than the others, while the majority of nodes display a tiny number of connections.
The hubs retain a broader audience than the majority of other nodes, as the messages
they emit are received by each of the numerous users around them. Therefore, they amass
much more influence than other people, as largely spread messages will likely pass or even
be started by them. A reasonable deal of the effort in the field of computational social
science revolves around the problem of identifying key influencers in a social network.

This problem, closely related to our investigation, is known as the influence maximiza-
tion problem. It was first posed in the algorhtimic sense by Domingos et al. [52] in 2002.
Kempe et al. [36] achieved a noteworthy advance in the theoretical perspective by show-
ing an efficient approximation on how to maximize the number of activated nodes given
an initial number of activations. They also demonstrate the equivalence of two diffusion
models for the diffusion of ideas, the threshold model and the cascade model. Even though
the problem had such algorithmic development, many empirical endeavors were conducted
to recognize the characteristics of heavy influencers in realistic settings [42] [3] [17] [5] [53].

One of the most intriguing aspects yielded by the unbalanced influence of a social
network is its popularity distribution. Notably, most of the memes stop to be reshared
quickly, while a few of them outlive the rest by being continuously spread through the
network. A specific spreading pattern occurs when edges are successively activated in a
cascade-fashion process [30]. We say these memes become viral, due to the similarity to
a virus diffusion in epidemic models. We use Figure 2.1 from [30] to depict the difference
between viral diffusions and broadcasts, as both of them can be associated with popular
memes. From the empirical point of view, the modelling of the information cascades
proved to be rather intricate, as seen in [62], [7] and [18]. The cascade sizes vary greatly,
as does the activity patterns of the users, and these cascades are also very sensitive to the
network structure.
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Figure 2.1: Difference between broadcast (left) and viral diffusion (right). Edges represent
meme adoptions. Source: [30].

Zhang et al. provide an extensive review [64] of several endeavors to approach the
social spreading phenomena, from pragmatic to theoretical viewpoints, ranging through
various social media platforms and different modelling choices. We use this review as a
reference to what kind of modelling direction we choose to follow.

For the sake of investigating if memes possess innate traits that make some more at-
tractive than others, we have opted to guide our investigation by the cascading models
and equivalent forms, because the cascade size - resulting from consecutive adoptions of
a meme - is a good indicator of how well it fares in this dynamic landscape. This class
of models is built to describe the sequential activation of nodes in a network, and thus
it often features processes with a strong time-dependence assumption. A single change
in the middle of the process may deeply alter the cascade structure and size. This is a
defining choice in the efforts to tackle the modelling challenge in the problem of informa-
tion diffusion, because as seen in [64], the problem may be approached by different kinds
of models. For instance, models with the Markovian property are dubbed as memoryless
because they generally assume the next state of the system only depends on the previous.

The experimental findings of Weng et al. led them to create an agent-based model,
assuming a static social network, which considers users with a time-ordered list of posts,
each containing memes. A single meme may appear in more than one post of the same
user. Users are notified only about the memes posted of other users they follow. They
decided to treat the memory of each user as discrete slots being constantly updated, so
each person, exposed to new memes, must select which memes will be kept in mind, be-
tween old and new ones. This mechanism is illustrated in Figure 2.2.
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Figure 2.2: Each user has two discrete memory slots. At a given time, the shaded user
may create a new meme (m9) with probability µ or reshare an old one in his memory
(m6) with probability 1−µ, and his followers may adopt it by replacing one of the memes
in their memories. Source: [51].

A competition among memes is established and those which succeed outlive the forgot-
ten contenders. Through this model, the memory slot mechanism and the social network
structure are combined to approach the real-world heterogeneous popularity. The authors
analyzed the model against a dataset collected in four months, amounting up to 120 mil-
lion retweets, 12.5 million users and 1.3 million hashtags, in order to validate the outputs
of the simulated model. Even though achieving noteworthy results in the explanation of
the heterogeneity in popularity and persistence of memes, the model still cannot clarify
the conditions that trigger a phase transition in which a single meme diverts the node
activations towards itself, producing a large cascade of retweets.

Pursuing a mathematical formalism to the emergence of cascades in a memory-constrained
setting, Gleeson et al. applied branching processes to describe the criticality of popularity
distributions [28]. The critical point is a physical concept from thermodynamics which
marks the condition for a phase transistion for a system in equilibrium to disequilibrium.
In the context of social networks, this equilibrium is a state of meme sharing which sequen-
cies of adoptions are modest and no meme becomes viral, as opposed to the disequilibrium
represented by a huge cascade of adoptions. A branching process is a random process that
proceeds through generations, each of which has some number of individuals that produce
more individuals in the following generation, according to some distribution. In the study
of Gleeson et al., the individuals were mapped to edge activations, the equivalent to meme
adoption, in the social network. This work presumes a setting with no innovation, i.e.,
the memes being shared already exist in the network and users are not allowed to create
new memes.
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Under this hypothesis, their equations can produce the same power law distributions
of popularity encountered in previous empirical investigations, e.g., [7]. When there is no
original meme during the evolution of the system, the exhibited critical behavior is pro-
voked by the competition for the users’ limited memory. Despite the meaningful insights
given by this analytically tractable theoretical framework, the model considers only sim-
ple extensions to the update of memory slots. It was not much concerned on how memes
are accepted or rejected into memory, and if any meme could have an advantage in the
competition.

Gleeson et al. proceeded to generalize the equations of competition-induced criticality
in the next endeavor [29]. The mapping of a branching process to the cascade model is
developed to approximate several distributions in the dynamics. Their model regards a
meme adoption process in two phases. Firstly, memes deemed interesting are taken by
the user into his memory, from the possible memes at that time - those being shared by
the user’s neighbours. In the second phase, the user will select one of the memes in his
memory or create a new one and share it with the social network.

In the first phase, memes are remembered with an equal probability λ and the lim-
itation of memory is explained with a distinct structure. Instead of a fixed number of
memes being remembered at each time step, each meme has an expiration time. This
time is drawn randomly under a memory-time distribution, a probability density defined
to control the duration of memes in memory. The method is convenient to run simulations
and indirectly estimate meme duration in memory in a macroscopic observation of a real
dataset, especially because it is not feasible to measure exact amounts of time that each
person remembers a meme.

Furthermore in the second step - the election of memes to be posted in a message -
users may generate original memes, instead of picking one in their memory, with a chance
given by the innovation rate µ, an important parameter in this system. The decision of
which meme is shared is also based on the frequency that the user sends his messages.
The rate in which users produce messages is heterogeneous, so the authors studied how
this rate affects the process by classifying it accordingly to the out-degree of the users.
That proportionality makes sense because users with a bigger audience are likely to take
advantage of the bigger influence exerted with the increase of their own messaging effort.

They performed numerical simulations to examine the quality of the results obtained
to the equations of cascade sizes, i.e., the population of memes and the prediction per-
formance in two network topologies. The simulations reasonably fit the curves foretold
by the asymptotic analysis for large values of the age and popularity of memes. The
age of a meme is the measurement of how many days it lasted. In addition, the model
is confronted against real-world data, gathered for a year, with careful adjusts to the
considerations made in theory. This confrontation results in the correct prescription of
distributions given by the model to what was seen in the empirical settings.
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Nevertheless, this robust work aims to be a neutral model, in the sense that all memes
are deemed interesting with constant probability given by the parameter λ. The null
models, models that match structural properties of interest, are fundamental to set a
baseline which complement data-driven approaches, and their work promotes this fact.
Still, there is an opening challenge we intend to work in this thesis, which is the study of
how λ varies to each meme and each user, the so-called fitness of memes, or their inherent
advantage in the competition to be retained in one’s memory.

A study seeking to discern meme features behind their success was done by Qiu et
al. [51]. The authors proposed a property named quality, intrinsic to each meme and
proportional to the likelihood of adopting it from other people. It does not represent
an advantage in the dispute for attention, but weights to how probable the meme will
be posted when it has already been taken into the user’s memory. To tie this memory
adoption aspect, the authors also consider the system has discriminative power, a corre-
lation between quality and popularity. A high discriminative power means that the social
network users are able to identify memes of high quality. From those assumptions, they
set out to understand how the ability of people to distinguish quality in information may
affect its virality.

An agent-based model was designed to reproduce the meme adoption mechanism, ren-
dered in Figure 2.2. Each agent has a number of memory slots, constant to all of them
and given as a parameter to the system. These memory slots are updated in chronological
order, i.e., whenever a user is exposed to a new meme, if his slots are all occupied, the
oldest meme will be forgotten and replaced by the new one. A randomly chosen agent,
at each time step, may generate a new meme (with chance µ) or take one from his mem-
ory accordingly to its quality to generate a new message. Every created meme have its
quality randomly drawn in the uniform interval between 0 and 1. Then, simulations were
performed through synthetic networks with variations in the number of memory slots and
the information load - the average number of memes being exposed to a user.

The model calibration with empirical inputs was carried out with several data sources.
The first was the Twitter Streaming API, which provided hashtag popularities and a prac-
tical measure of the innovation rate, as the fraction of tweets over the sum of tweets and
retweets. Then, the microblogging service called Tumblr was used to estimate the dis-
tribution of the number of memory slots, by recording how many stops were made when
people scrolled batches of at least 500 pixels during sessions in mobiles. These stops act
like a proxy for an attention effort, supposing that people would not pay attention to
content when they are rolling in the screen. Finally, the researchers collected data from
a rumor tracking project named Emergent, which is deactivated now. This project was
created to check the integrity of claims from articles shared on Facebook. Trustworthy
claims were classified as high-quality articles and poor or false claims as low-quality. This
binary designation was fed to the model as an empirical measurement of quality.



23

These works investigating and mathematically structuring the spreading processes
carve a course of valuable perception on the effects of the local memory for the emergence
of collective patterns of behavior. We should pay attention to them in order to ascertain
assessments of the meme dynamics.

2.2 Topics of Information

When studying the flow of information, it is possible to focus on the information itself,
rather than the propagator agents. Social network users may want to participate in trend-
ing movements, redirecting their attention to emerging groups of memes [35]. This means
the evolution of messages’ content takes part in the behavior of the agents. It is important
to consider how to characterize the information flowing and changing in the networks and
the interaction among their distinct kinds. We consider a manner of characterizing this
content with topics of information, clusters of semantically related pieces of information,
which in our work are hashtags.

A study deals with the interaction of different topics in conjunction with the limited
attention scenario [19]. Ciampaglia et. al evaluated the demand and supply of informa-
tion across different topics, to support the vision of an attention economy in this system.
By examining attention bursts in Wikipedia traffic, they confirmed that the emergence
of high traffic in a specific topic - i.e., demand - precedes the creation of content related
to that topic, which is supply in this context. The collective attention shifts reinforce the
effectiveness of trending topics changing local behaviors.

In Twitter, the overwhelming information generated on a daily basis is often easier
to group than to isolate in different kinds. Earlier attempts to arrange together different
pieces of information took advantage of the semantic similarity among memes. Sayyadi
et al. [55] isolated keywords from documents to build a graph of co-occurrence, which
have low text frequencies filtered out. Then, they performed a community detection to
group the keywords. Cataldi et al. [14] designed a method to spot emerging topics in real
time using keywords with high text frequency and usage in defined time intervals. They
also built a topic graph representing the semantical relationships between co-occurrent
keywords which generated the topics. These are good directions to group keywords, but
these keywords were not necessarily hashtags, terms created expressly to identify the con-
tent of messages.

Ferrara et al. [26] tackled the challenge of defining groups of memes and assigning
memes to groups. They developed a framework to cluster memes by several similarity
measures considering four different types: hashtags, URLs, mentions and phrases. They
defined four base similarity measures and studied combinations of them to determine the
best performance for the comparison between hierarchical clustering and K-means clus-
tering techniques. With a careful experimental setup and cross-validation, they found out
that the hierarchical clustering - a method often used to detect community structures in
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networks - returns a higher trade-off between the number of clusters and their quality.

By improving the approaches to cluster memes or keywords, Weng et al. [61] produced
a work about the relationship between social influence and topics of information. They
considered hashtags facilitators for information retrieval, which can connect people with
shared interests in a space with a high diversity of content. After the application of
a noise filter to hashtags, a network of hashtags was built by linking pairs that figure
together in at least three messages, resulting in a hashtag co-occurrence network.
By also assuming that semantically close hashtags may appear together more likely than
those semantically distant, the resulting network is densely connected and counts with
community structures. They performed a community detection task in this network with
the Louvain method and assigned a topic of information to each cluster of hashtags. Some
of these clusters are illustrated in Figure 2.3.

Figure 2.3: Examples of different topic clusters and how they are connected after being
retrieved from the hashtag co-occurrence network. The size of each circumference indicates
how many hashtags are inside the cluster. Source: [61].

Weng et al. also designate the interests of each user as a function of the topics con-
taining hashtags used by that user. This is an appealing representation because it makes
possible to understand how the diversity of themes affect the communication and social
influence exerted by users. It can also be used to analyze the content diversity in hash-
tags since a hashtag in several topics is closer to more diverse content. There are also two
experimental setups to predict hashtag popularity and social influence metrics. Finally,
their findings point to messages more diversified hoarding more popularity, as well as
users focused on fewer topics.

Another study of influence which identifies social network users by the topics they are
talking about was done by Bogdanov et al. [12]. They focused on evolutionary aspects
of the topical behavior of users and how these aspects can be used to predict influence
in social media, even improving results obtained from structural network metrics, such
as centralities. It is another indication of the value in characterizing interest of the users
with topics of information.
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After inspecting how the topics of information are formed and how they can be used to
distinguish content interests in social networks communication, we will now examine some
fundamental notions behind our hypothesis and a very important work that interlaces
topical interests and homophily.

2.3 Homophily

The tendency of people of linking themselves to those they judge similar, also known as
homophily, has been studied for several decades in the social sciences [56]. The notion of
homophily has been generalized from the older idea of triadic closure [37]. Considering
three nodes in a graph, this concept can be seen as the impulse to form a third edge in
a triad of nodes possessing already two edges, e.g., how likely one forms friendship with
the friend of a friend. Even though this may not be ubiquitous in complex networks of
large-scale [25], it is a simplification used to advance the understanding of social networks
formation for many years.

The social media came to offer not only enough data to statistically deepen our dis-
cernment of the predominance of these ideas in social systems but also several other op-
tions of ties formation among people [23]. Online social network users form ties amongst
themselves considering static socioeconomic or geographic characteristics, but also traits
regarding their activities or the content they like to consume and communicate over.

In particular, Weng et al. [63] looked at how much the creation of links can deviate
from a triadic closure when people decide to connect after reading messages that were
spread in the network. They found that popular users have the capacity of shortening the
paths traveled by messages due to the generation of intense traffic around them. These
users draw links to increase the efficiency of the information diffusion, so that the net-
work has an evolution setting contrary to the intuition of local growing shaped by triadic
closures.

In fact, the ability of using social influence to create interaction is another princi-
ple closely related to homophily. The Axelrod model for cultural diffusion [15] poses a
mechanism in which both homophily and social influence reinforce each other enabling,
counterintuitively, a consistent diversity of the cultural configuration in a group of people.

Even though this is another abstraction hard to find correspondence over significantly
large realistic scenarios, it sets the foundations for important investigations such as the
one done by Aral et al. [2]. They dissect the predominance between social influence and
homophily by exhibiting a method to separate when a complex contagion is an effect of
one or the other. An experiment is also executed in a network of more than 27 million
users of a messaging platform, based on their adoption of a mobile product. The re-
sults have shown that the number of adoptions triggered by homophily can be severely
misjudged by methods based on the network structure, which attribute them to a social
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influence instead.

We are interested in understanding how homophily affects the adoption of memes,
so it is essential to characterize it with behavior traits rather than structural properties
of the social network, like centrality indexes. In this scenario, the topics of information
open a compelling opportunity to work with. Cardoso et al. [13] supply a framework to
describe homophily based on topical interests. As the topics of information groups hash-
tags, this framework allows a quantification of how similar the social network users are
based on how they use hashtags from the same groups. This is a specific representation
of homophily they call topical homophily. The topics are produced similarly to the
model of Weng and Menczer [61] described in the previous subsection. They analyzed
several messages in Twitter and concluded that higher topical similarity yields stronger
interactions between users, on average, and that this measure even allows link prediction
to some extent. We consider the framework they used as a simple yet powerful way to
establish homophily in the online social network dynamics.

In the next section, we will describe how we can take advantage of this framework in
the meme adoption context.
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Chapter 3

Topical Homophily on the Meme
Spreading

In this chapter, we recall the important aspects observed in the literature about the prob-
lem; state our hypotheses; and present our proposal. This proposal to obtain empirical
evidence of the influence of topical homophily in meme adoption is built from a simpli-
fied abstraction presented in Section 3.1. Section 3.2 presents our process of gathering
data from Twitter and preparing it to our analysis. Finally, we present the design of
a computational experiment in Section 3.3 and how we validate the model through this
experiment in Section 3.4.

3.1 Model

In this Section, we describe how our model is thought. Consider a directed social network
where the users establish a relationship of following. This kind of relationship works like
a passive subscription, in which each user receives messages from those he follows. People
being followed can be called followees or neighbours. Each message contains memes
which, in our case, will be restricted to hashtags. When producing a message, the user
may generate an original meme, or adopt one of the previously seen and embed it in the
message. The later is the case that concerns this research.

3.1.1 Meme Adoption Process

The meme adoption process is thought to happen in two phases, based in Gleeson et al.
[29]. Let us assume we have the time split into a discrete set. Suppose that a user u posts
a message in time t after receiving all messages posted by the other users he follows at the
previous time t−1. He can adopt memes from previous messages that he remembers, but
not all of them are remembered because u has a memory limit. At the first phase, some
memes are stored in his memory, while some of the ones already in memory may persist or
not. In the second phase, u composes a message by inserting one or more memes from his
memory or generating new memes, which are not found in the messaeges of his followees.
We are interested in the former case. If a meme h posted at time t− 1 by the neighbours
of u is successfully stored in his memory and then used in a message composed by u at
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time t, we say that u adopted the meme h.

While we can observe when a meme h is posted by u right after it has been posted by
his neighbours, it is not feasible to gather data about which memes are remembered by
him in such a dynamical context as the online social networks. So we take a simplified
memory model, inspired by the model of Qiu et al. [51], to simulate what happens in
the first phase of meme adoption. We consider that each user has a number α of slots
that can be used to store memes. At each adoption event, i.e., when the user receives
possible memes to adopt from his followees, each meme may be accepted into his memory
with probability λ. In the null model provided by Gleeson et al. [29], the parameter λ is
considered constant, which means that no meme holds an advantage in the competition
for the attention of the user, a limited resource.

Our hypothesis is that memes have different probabilities to be remembered according
to a fitness function. This work is focused in studying what is behind the fitness of a
meme and how it stands in the competition. Therefore, our model defines a function λ
to weight the adoption probability among memes. Such probability is distributed among
memes eligible for adoption from a specific period of time. We summarize how we model
the adoption process in Figure 3.1.

Figure 3.1: Adoption of the meme h4 in a two-phase process.

Let us take an instance of an online social network where user u follows users a, b and
c, he has α = 3 memory slots and adopts meme h4 in a two-phase process. In the first
phase (a), user u incorporates one meme between h3, h4 and h5 from his followees to one
of his three memory slots. h4 is drawn with probability λ(h4), and in the second phase
(b), user u chooses to use it in his message from the three possible memes.

Our investigation wants to verify whether the topical homophily affects the process,
considering hashtags as our selected meme type to the object of study. We further char-
acterize how the topical homophily can constitute such a function λ denoting how likely
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a meme is remembered.

3.1.2 Topics of Information

As seen in Bogdanov et al. [12], it is possible to identify users in terms of their topic
interests, or the topics of information which contain their memes. The topics, in turn,
can be detected from communities in a hashtag co-occurrence network. This is an undi-
rected network obtained by linking nodes representing hashtags that appear together in
any given message. Its edges may also be weighted by the number of joint occurrences of
each meme. In the example given in Figure 3.1, if h3 and h4 appeared together in three
messages, their corresponding edge would have weight equal to 3.

We then perform a community detection in this undirected weighted network with
statistical inference and modularity maximization techniques [49]. Each module returned
by this process is designated as a topic of information, in a procedure defined by Weng
et al. in [61]. If C(h) are the communities which contain h, then the set of topics of
information of h is given by C(h).

That is, a module or community in the hashtag co-ocurrence network is a topic of
information, so that each hashtag is attached to the topics accordingly to all the com-
munities containing it. We opted to not use the singletons, i.e., the nodes isolated from
communities. Once this is done, we can use the topics to identify the interests of users.

3.1.3 Topical Homophily

We consider a discrete set of time T = {1, 2, ..., n} as our observation window. At each
time t, a possible adoption event occurs for user u whenever a hashtag was used by a
neighbour of u in time t− 1. We define in our notation a set N(t) of all neighbours which
caused possible adoption events in time t.

At this point, we also reproduce the work of Cardoso et al. [13] to make use of the
topical homophily. We chose their quantitative framework due to its simplicity and the
versatility to deal with very different memes, but opposed to their general measurements,
we adapt it to the specific situations of meme adoption.

In the same fashion of their model, each user may have his set of topics of interest
expressed by a feature vector. But we build different feature vectors for u and his neigh-
bours. To u, we acumulate all hashtags posted from 1 to t − 1 to identify his interests,
and to his neighbours, only those of t− 1.

Let us name T the set of detected topics and H(u) is a multiset composed by the
hashtags used by user u, so that each hashtag has a multiplicity to reflect its usage. The
topical interests of u are a feature vector f(u) given by
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fi(u) =
∑

h∈H(u)∩Ti

multiplicity of h in H(u)

#topics with h
(3.1)

where each position i corresponds to a detected topic Ti ∈ T . It means we weight the
number of uses of each hashtag h over the number of topics which h pertains.

If we build a feature vector for each neighbour v ∈ N(t) but using a multiset H(v)

with hashtags used during time t − 1, it is possible to calculate the similarity sim(u, v)

between a user u and v, based on their topical interests, as

sim(u, v) =
f(u) · f(v)
‖f(u)‖‖f(v)‖

(3.2)

that is, the cosine similarity between their feature vectors. It is possible that there are
null feature vectors if all the hashtags used are singletons. If we set this similarity to 0
when there is a null feature vector, it becomes well defined to ponder how close is the top-
ical interests of neighbours. This is a way to position users regarding the content in their
messages proposed by Cardoso et al. [13]. But as we apply it to adoption situations, by
considering different sets of hashtags between the agent of adoption and his neighbours,
we want to express that the agent has coherent topic interests and do not have to account
for past interactions with his neighbours.

We will, again, build this concept by example. Consider we have two other past hash-
tags h1 and h2 and the five hashtags are grouped in two topics, given by T1 = {h1, h3, h4}
and T2 = {h2, h4, h5}. This means that our feature vectors will have two positions. Let us
suppose that, just like it is rendered in Figure 3.1, we are in a time t such that we want
to know the similarity between u and his three neighbors that used hashtags in t− 1, so
N(t) = {a, b, c}.

Figure 3.2: Building of feature vectors.

Let us say that, in our entire observation from time 1 to t − 1, u used hashtags such
that H(u) = {h1, h2, h2}. If we consider the neighbours used the hashtags as showed
before in Figure 3.1, H(a) = {h3}, H(b) = {h3, h4} and H(c) = {h4, h5}, we build feature
vectors by applying Expression 3.1 as:
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f(u) = (1

1
, 2
1
) = (1, 2)

f(a) = (1
1
, 0) = (1, 0)

f(b) = (1
1
+ 1

2
, 1
2
) = (1.5, 0.5)

f(c) = (0, 1
1
+ 1

1
) = (0, 2)

(3.3)

We summarise the steps of initializing feature vectors with positions equal to the num-
ber of topics, defining the multisets of hashtags and filling each position based on hashtag
pertinence in topics belongs to which topic with a illustration in Figure 3.2.

In our example, we calculate the cosine similarity yielded by u and his neighbours
with approximations as defined in Expression 3.2:

sim(u, a) = (1∗1+2∗0)
(2.23)(1)

= 1
2.23
≈ 0.45

sim(u, b) = (1∗1.5+2∗0.5)
(2.23)(1.58)

≈ 2
3.52
≈ 0.57

sim(u, c) = (1∗0+2∗2)
(2.23)(2)

= 4
4.46
≈ 0.90

(3.4)

3.1.4 Topical Fitness

Based on the found similarities, we define the topical fitness of a meme h to a user u as

TFu(h) =

∑
v∈Nh(t)

sim(u, v)∑
v∈N(t)

sim(u, v)
(3.5)

where N is the set of neighbours followed by u. Back to the example of Figure 3.1,
N(t) = {a, b, c}, and Nh(t) those which posted the hashtag h (e.g. Nh4(t) = {b, c}).
Therefore, this is the fraction of similarity between u and neighbours who have used the
meme h. We will study this measure of topical fitness by assuming the adoption proba-
bility is proportional to it, i.e., λ(h) ∝ TFu(h). This is possible by applying a normalizing
factor of the topical fitness considering all memes related in the possible adoption events
of t, so that it sums to 1.

To further clarify it, we will move back to the example based in Figure 3.1. We have
already determined the topics of information and calculated the feature vectors between u
and his followees, taking into account memes posted by them in the desired time instant.
The similarities yielded are sim(u, a) = 0.45, sim(u, b) = 0.57 and sim(u, c) = 0.90, so
when analyzing TFu over the set of memes {h3, h4, h5}, we would have

TFu(h3) =
0.45+0.57

0.45+0.57+0.9
= 1.02

1.92
≈ 0.53

TFu(h4) =
0.57+0.9

0.45+0.57+0.9
= 1.47

1.92
≈ 0.77

TFu(h5) =
0.9

0.45+0.57+0.9
= 0.9

1.92
≈ 0.47

(3.6)
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To shape these numbers to a probability distribution, we normalize them by multi-
plying by the inverse of the sum of these three Topical Fitnesses. Then we would remain
with λ(h3) = 0.53

1.77
≈ 0.30, λ(h4) = 0.77

1.77
≈ 0.43 and λ(h5) = 0.47

1.77
≈ 0.27.

This is how we establish the probability of adopting a meme based on the topical
homophily when an adoption can happen. Moving forward, we planned a computational
experiment over a real dataset to investigate the behavior of the proposed function λ. Its
outline is detailed in the next sections.

3.2 Data Handling

In this Section, we explain how the data is gathered, pre-processed and prepared to our
computational experiment.

3.2.1 Tweets Collection

To properly investigate the effects of topical homophily we have retrieved real data from
Twitter. Its Streaming API makes about 1% of its tweets available [47]. To track the
meme adoption we exploited two mechanisms. The platform includes a formal mecha-
nism of adoption called retweet. It is also possible to quote the entire message without
this mechanism [9], i.e., people can refer to pieces of messages with their own messages
without the explicit retweet label. Both cases were treated equally as adoptions.

The social network, behind the analyzed messages, is inferred from the mentioning
relationship instead of following. A user mentions another user in his message to call
attention to that message, e.g., when one message replies another. Previous works [13]
show that the network formed by this kind of relationship yields similar significance of
interaction properties regarding homophily.

Tweets were collected with the Streaming API between September 18th and October
30th of 2017, totalizing a 45-day observation window. We chose the Portuguese language
to filter them and used 137 keywords concerning brazilian politics, in order to narrow
down a subject. We chose this subject since we judged that people are usually highly
participative in it and also take positions. Nevertheless, hashtags about various other
subjects and several other languages were retrieved from the entities annotated in each
tweet, and we did not considered alternative memes embedded in them, as figures or text
inside images. For instance, many of them are in the Spanish language and talk about
the situation in the Catalunya province, which was a recurrent theme of debate back at
that time.

3.2.2 Basic Networks Preparation

Figure 3.3 summarizes the preparation process of the dataset to identify the topics of
information and to produce the mentions network.
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Figure 3.3: Implementation scheme for the basic networks preparation in three steps.

In the tweets collection phase, the tweets were collected and stored in the JSON doc-
ument format1, with annotations for the mentions and hashtags in each tweet. In step
1, we extracted the mentions and built a mentions network, by assigning a directed edge
from the mentioning user to the mentioned user. We also applied two filters, one to select
users with significant activity, which are those with 9 or more hashtags, and another to
exclude users with less than three followees.

In step 2, we built a hashtag co-occurrence network, counting their join occurrences
over all the collected tweets. The resulting network is undirected and each pair of hash-
tags is linked with positive weight, equal to the counted pairwise occurrences. We chose
to omit this weight in Figure 3.3 to mantain a clean visualization. We filtered out every
edge with weight of one or two, to discard hashtags that could have co-occurred randomly
and reduce the noise in co-occurrences.

In step 3, we ran the community detection implementation of the Order Statistics
Local Optimization Method2 found in [39], setting it to iterate along with the infomap
method [54] two times and Louvain’s method [10] one time. The output was formed by
the best modules from the three methods, without assigning nodes isolated from modules
- singletons - to any communities.

It is important to highlight that we worked a single co-occurrence network and a single
mentions network, both static and being formed from the accumulated tweet activity
throughout the entire observation time window of the dataset, comprising 45 days. We
assumed that hashtag associations do not suffer much seasonal effects in short periods of
time and therefore remains relevant though the time measured. The mentions network

1https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.htm
2http://www.oslom.org/
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works as a proxy for the interaction, so it is plausible to look at the global representation
from accumulated interactions.

3.2.3 Adoption Networks Preparation

To preparate the dataset for the computations prescribed by our model in Subsection
3.1.3, we discretized the time in our observation window. Notice that this phase is no
longer static, as each different discretization leads different possible adoption events and
a different baseline. We further summarize this phase.

Figure 3.4: Implementation scheme for the simulations preparation in three steps.

Figure 3.4 departs from the two graphs produced in the Basic Networks Preparation
phase, presented in Figure 3.3.

At step 4, we chose to set a time step size of one day. It means that we have a discrete
set T = {1, 2, ..., 45} and then, all the tweets are assigned to the relative day that they
occurred. We produced this discretization by mapping each tweet of timestamp between
00:00:00 and 23:59:59 to the corresponding day, starting by t = 1 at September 18th of
2017. For example, a tweet with timestamp 22:56:47 of September 23th is mapped to
t = 6. Now, at every time t, we observe a number of possible adoption events. We group
each of them by the user agent, i.e., the user which received hashtags elligible for adop-
tion. In Figure 3.4, we show the example of user u4. We produced a graph of possible
adoption events with each user pointing to all his neighbours and the hashtags used by
his neighbours at time t− 1.

In order to validate our simulations, we set a baseline of adoptions in step 5. We
considered an actual adoption whenever user u used a hashtag h in one of his messages
at time t and this hashtag h figures in a possible adoption event of the same time t. In
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other words, if his neighbours used h at time t − 1 and he uses h at time t, we count it
as an actual adoption in our baseline. The baseline works as a reference for real meme
adoptions extracted from our dataset.

Moving to step 6, we characterize the homophily among users through the topics that
they participate. We built feature vectors to represent the topic interests of each user,
as defined in Expression 3.1. The feature vector of each user agent is built from every
hashtag from time 1 to t− 1.

From these feature vectors, we can determine in step 7 how similar the users are, by
taking the similarity defined in Expression 3.2. At the end of this process, we have all
the possible adoption events, all the candidates for adoption at each situation, and all the
similarities between the users that we are interested in. In the next section, we outline
how we use these elements to simulate the adoption of memes and how the results of these
simulations are used to validate our model.

3.3 Computational Simulation

Our objective is to simulate a meme adoption process that leads to the baseline of adop-
tions. At time t and given a number α of memory slots, let us consider that u emptied
his memory slots and all the memes of the possible adoption events may fit his memory
slots with some chance. If the user in time t posted a hashtag selected from the possible
adoption events, the simulation considers he adopted it.

To evaluate the influence of the topical homophily in the meme adoption and whether
it improves the adoption prediction, we performed two different kinds of simulation. The
first one with chances equal to the λ function built from the topical homophily, i.e., the
values given by the normalization of Expression 3.5. The second one have uniformly
random chances. This is depicted in Figure 3.5.
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Figure 3.5: Simulation of adoptions. Either memes can be remembered with chances
given by (a) the λ function from topical homophily or (b) equal chances.

We want to observe whether the memory configuration oriented by topical homophily
is closer to the baseline than a random scheme of memory update. If the memes drawn
in uniformly random chances provide a better or equal approximation to the baseline
than our proposal, the topical homophily is not a good explanation to what is behind the
selection mechanism in their competition for attention.

Therefore, we established different criteria to measure how distant these two simulation
schemes are to the baseline.

3.4 Validation

We checked three properties regarding each set of adoptions generated by simulation and
the adoptions from the baseline. They are the Kendall rank correlation coefficient, the
meme lifespan precision and the third one we dubbed simply as precision.

By studying different values of α, we expected to obtain higher values of each metric
to the simulations based on the topical homophily than those with uniformly random
drawing. This would be an indication that topical homophily yields a closer process than
the random selection.

3.5 Kendall rank correlation coefficient

To the first criterion, we summarized the adoptions of the baseline and the simulation by
ranking the memes with their number of adoptions. We compare both with the Kendall
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rank correlation coefficient. This number, also known as Kendall tau metric [48], measures
how much two ordinal associations in a set of variables are close. The Kendall τ coefficient
is defined as:

τ =
(# concordant pairs) − (# discordant pairs)

n(n− 1)/2
(3.7)

If we know that there is a strict total order relation in the ranked elements, it is possi-
ble to determine if the order of each pair of elements concord or discord between the two
ranks. This number then goes from -1, when there is no pair of elements with the same
order in the two ranks, to 1, when the ranks are exactly the same.

We chose this metric to validate our results as it is responsive to fluctuations in the
number of adoptions. While the lowest and highest values will probably appear in sim-
ilar positions in the two adoption ranks, there is a large space for discrepancies in the
intermediate numbers of adoptions.

3.5.1 Meme Lifespan Precision

The second validation metric is based on the meme lifespan. The lifespan of a meme is
defined as the longest time period in which the meme kept being adopted. In our choice
of discretization, this value peaks at 45, if the meme was shared regularly through the
entire observation window, and has a minimum of 1 if this meme could not last for more
than one day in the social network.

The meme lifespan precision is built from both the simulated adoptions and the base-
line adoptions. It is the fraction of memes with the same lifespan in both over the total
number of memes. That is, if the simulation has a null meme lifespan precision, no meme
lived as long as the memes in baseline lived. Notice that this case is impossible, due to
the way we consider the simulated adoptions.

On the other hand, a simulation with meme lifespan precision equal to 1 prescribes
memes which survive the exact same amount of the time as the baseline. Even though
this number is not directly bonded with the popularity of a meme – memes may spread
in a burst, reach the entire network and die fast –, it is an interesting metric because it
is sensitive to time. A single miss of simulated adoption will rule the meme out of the
correct prescriptions, and the chance of missing increases with the lifespan in the baseline.

3.5.2 Precision

This measure is obtained from simply counting how many adoptions happened in both the
simulation and the baseline and dividing this amount by the total of baseline adoptions.
We looked at this fraction because it is a clear calculation related to the two previous
validation criteria.
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Chapter 4

Results

In this chapter, we bring together the most important results in this work. Starting by
Section 4.1, we reproduced the related work to check whether the similarities in our social
network have a similar behavior to the literature. Section 4.2 shows the product of our
discretization choice, in terms of possible adoption events. Section 4.3 is dedicated to
describe the baseline of adoptions we obtained and what the simulations are aiming for.
Finally, Section 4.4 compiles results of the simulations of our model.

A deeper description of the dataset is encountered in Appendix A, provided for sup-
plementary material. We display frequency distribution plots by using a notation of ’n’ to
the observed value in the x-axis and ’P(n)’ to the fraction of observations corresponding
to ’n’ in a semi-log scale y-axis. Unless expressly stated, all plots generated condense
values in 100 bins to improve visualization. We decided to show most of the results this
way because the majority of the distributions have high skewness, so a default histogram
would have most of the values concentrated in the first bars, near the zero of the x-axis.

4.1 Topical Homophily

Based on a similar approach from Cardoso et al. [13] in our first analysis, we wanted
to see the distribution of similarities over the set of all 261,521 users, selected by being
considered active - i.e., those with 9 or more hashtags - as well as the same values averaged
over the neighbours of each user. The plots are in Figure 4.1.
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(a) Similarity measures. (b) Average similarities over each user.

Figure 4.1: Distribution of the calculated similarity values.

In Figure 4.1a, n represents a similarity measure between each pair of neighbours in
the entire mentions network. P(n) represents the fraction of users that bears the respec-
tive similarity. As the chart shows, most of the connections have small similarities and
the fraction decreases for higher similarities.

Figure 4.1b has the same kind of visualization for the average values of similarities
over each user’s neighbours. The similarity is calculated so that it is 0 if we are comparing
two social network users who share no topic of information in their messages, as opposed
to 1 if the pair of users talks about the exact same topics. There is a continuous and
steep increase starting in similarities values nearly 0.9. We started a small investigation
to understand what could cause a significant number of users with identical topic interests
with all their neighbours and, but we could not reach noteworthy results. This is left to
Appendix B.

4.2 Possible Adoption Events

In this section, we specify the set of possible adoption events found in our dataset for
the time step size of 1 day, as we mentioned earlier in Subsection 3.1.4 of Chapter 3.
The 17,239,972 possible adoption events retrieved formed a highly heterogeneous set with
115,054 memes and 106,994 users. Therefore, we opted to plot how they are distributed
over the 45 time points, instead of the semi-log format specified at the beginning of this
chapter. The chart in Figure 4.2 shows the daily quantity of possible adoption events
in blue in opposition to actual adoptions in yellow. In the average of all observed days,
nearly 6% of the possible adoption events resulted in actual adoptions. Each possible
adoption event can be mapped to a hashtag eligible for adoption through the criteria
defined in our methodology.
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Figure 4.2: Observed quantity of possible adoption events in blue and actual adoptions
in yellow for each time value.

In the ten first days, the values are regularly low. We think this may be caused due
to problems in the first period of the collection of the data. We can see that, after day
10 onwards, the number of events shows high fluctuation, what is expected from such a
dynamical system as the social media. The actual adoptions have much less variation
in comparison to the possible ones. The next two charts carry similar information but
counting how many agent users and how many memes were implicated with possible
adoption events in the same period.

(a) Different users. (b) Different memes.

Figure 4.3: Quantity of users (a) and memes (b) related in the possible adoption events
over time.
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At each possible adoption event, we found its topical fitness values defined by the
Expression 3.5. They are distributed as Figure 4.4 displays.

Figure 4.4: Distribution of the calculated topical fitnesses.

We remind that the topical fitness of each meme is a fraction of the similarities to every
neighbour, so n goes from 0, when the neighbours posting the meme have null similarity,
to 1 when every neighbour with positive similarity posted the meme. P(n) represents the
fraction of topical fitnesses taking the value of n.

The values exhibit an interesting behavior of a high specialization of topical interests
- i.e., most of the adoption events are similar to few topics -, aside from outliers between
P (n) = 1e-2 and P (n) = 1e-3. This wide variation of hashtag attractiveness may suggest
a greater difference later in our simulations when differentiating topical homophily adop-
tion from the uniformly random one. The outliers jumps from fractions which appear to
be 1/4, 1/3, 1/2 and 1, which would reflect people with very few options of adoption and
possibly too similar neighbours. This explanation is consistent with the degree distribu-
tion of the mentions network and the similarity values in Figure 4.1b.

We averaged the topical fitnesses values for each meme and for each user to improve
the visualization between the distribution of adopted and non-adopted memes.
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(a) Averaged over users (b) Averaged over hashtags

Figure 4.5: Distribution of average topical fitnesses of adopted memes (red/brown) and
non-adopted memes (blue/cyan).

It is possible to see that the values of fitness for adopted memes are slightly more
distributed to the right, meaning they average at higher topical fitnesses than the cor-
respondent for non-adopted. This is a good indicator if we want to use this measure to
predict adoption.

When the λ function is derived from a topical fitness equal to 1 does not necessarily
mean that a meme is adopted for sure. For instance, in the event that all memes eligible
for adoption have fitness equal to one, the selection using λ is the same as the uniformly
random. After analyzing the adoptions in the timeline and computing the values for a λ
function, we further inspect the baseline.

4.3 Baseline Characterization

In this section, we analyze the baseline collected for our observation of actual adoptions,
a procedure elucidated in step 5 of Subsection 3.2.3. We gathered information on the
behavior of the baseline extracted from our dataset to clarify the challenge of simulating
it. We initiate with Table 4.1 by showing the most adopted memes, with their designating
hashtags, the number of possible adoption events they figure in, the total number of
adoptions they amassed over the observation window, and the ratio between adoptions
and events.
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Table 4.1: The 10 most adopted memes in the baseline.

Hashtag Events Adoptions Ratio
MPN 24,422 17,515 0.7172

Venezuela 78,764 6,754 0.0857
BTSShow 9,434 6,257 0.6632
Catalunya 57,450 5,105 0.0889

LulaPorMinasGerais 26,023 4,891 0.1879
GloboLixo 26,638 4,735 0.1778

Bolsonaro2018 40,196 4,696 0.1168
Política 56,393 4,141 0.0734

1Oct 43,441 3,834 0.0883
1O 40,704 3,707 0.0911

Even though these memes are successful by virtue of the number of adoptions - our
closest metric to the popularity or cascade size [30] - the ratio between how many times
they are adopted and how many times they are exposed is generally low, with four of
the memes having a ratio of less than 10%. We looked at the sum of adoptions over the
observation period to all memes in the baseline and examined the distribution of these
values in Figure 4.6.

Figure 4.6: Distribution of the number of adoptions of each meme in the baseline.

This is a very highly skewed distribution, an evidence to the adversity of simulating it.
It is possible to see that the 10 first memes in the rank of adoptions populate nearly 4/5 of
the axis to measured values of the number of adoptions. Even the semi-log representation
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hardly eases the concentration of values near 0.

We further checked another measure, the lifespan of memes. This quantity is observed
from the longest period of time in days that the meme kept being adopted. We built a
table analogous to Table 4.1, but this time with data grouped by meme lifespan. The
second column has the number of different memes which achieved the lifespan, the third
accounts for the sum of their adoptions, and the fourth the average number of adoptions
to memes in this level.

Table 4.2: The top 10 longest meme lifespans in the baseline.

Lifespan # Memes Total Adoptions Avg # Adoptions
38 10 15,177 1,517.70
37 45 96,625 2,147.22
36 13 9,422 724.77
35 2 1,106 553.00
33 1 1,23 123.00
31 3 1,701 567.00
29 3 2,755 918.33
28 2 1,965 982.50
27 3 2,363 787.66
25 2 1,467 733.50

The first thing to draw attention is that the memes indeed face a fierce competition,
as only 84 of the 115,054 achieved the top lifespans. More than half lived to near the
maximum observed for our baseline, but they had a very good performance of adoptions
in average. We present the distribution of lifespans in Figure 4.7.
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Figure 4.7: Adoptions counted to each meme over its lifespan.

Albeit the lifespans have a small range of values, the semi-log axis still help us to
visualize where the memes concentrate their duration. We can spot that past 20 days, it
is difficult to survive. We also offer the relation between the number of adoptions and the
lifespan of memes in our dataset in Figure 4.8.

Figure 4.8: Adoptions counted to each meme over its lifespan.
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We notice that memes with a given lifespan value are poorly represented by their
average number of adoptions because the distribution is largely spread across the y-
axis. This fact reinforces the heterogeneous character of the baseline, as the relationship
between the lifespan of a meme and its number of adoptions is not direct. Now that we
know better our baseline, we proceed with our plan to simulate it.

4.4 Simulations

In this section, we visualize the three kinds of validation described in Section 3.4 which
are yielded by the comparison of our simulations with the baseline. We performed five
simulations of two types, topical homophily simulations and uniformly random simula-
tions. Each of the ten simulations was executed for five different values α of memory slots,
which are α = 5, α = 10, α = 20, α = 30 and α = 40, in a total of fifty simulations. The
results are demonstrated in a standardized structure of two tables with values yielded
by the two simulation types and a summarizing table with average numbers, standard
deviations and differences between the averages. Finally, a line chart presents a visual
representation of the third table.

We are interested in recognizing a consistent difference between the topical homophily
and the uniformly random scheme. The difference is appreciable when it is significantly
higher than the standard deviations of the validation metric of the simulations, and it is
consistent if it remains appreciable for a varying number α of memory slots.

4.4.1 Kendall Rank Correlation

As described in Subsection 3.5, we built an adoptions rank by counting how many adop-
tions each meme had and sorting them in decreasing order. Then, these relations are
compared with the Kendall rank correlation coefficient implemented in the R package
’Kendall’ 1. The resulting comparisons between the baseline rank and the ranks obtained
from simulated adoptions are presented at Table 4.3, for the topical homophily adoption
scheme, and Table 4.4, for uniformly random adoptions. Both situations are summarized
in Table 4.5 and Figure 4.9. All the p-values for the computed correlations are near the
tolerance of the floating point in R, which is 2.2e-16.

Table 4.3: Kendall τ coefficient values obtained between the topical homophily simulated
adoptions rank and the baseline adoptions rank.

Run α = 5 α = 10 α = 20 α = 30 α = 40

1 0.09188175 0.14193400 0.18832900 0.18592270 0.23649690
2 0.09169501 0.14260240 0.18902960 0.18600810 0.23633970
3 0.09151094 0.14349660 0.18833820 0.18620130 0.23578900
4 0.09191245 0.14266950 0.18879450 0.18685550 0.23722210
5 0.09125654 0.14320110 0.18820800 0.18583570 0.23612200

1https://cran.r-project.org/web/packages/Kendall/Kendall.pdf
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Table 4.4: Kendall τ coefficient values obtained between the uniformly random simulated
adoptions rank and the baseline adoptions rank.

Run α = 5 α = 10 α = 20 α = 30 α = 40

1 0.08140281 0.12912550 0.17468640 0.16814190 0.22306760
2 0.08127601 0.12929860 0.17413340 0.16867890 0.22407270
3 0.08203281 0.12910290 0.17496260 0.16796950 0.22339410
4 0.08136679 0.12831900 0.17589960 0.16888870 0.22462950
5 0.08066648 0.12864280 0.17586120 0.16774080 0.22339700

Table 4.5: Summarized Kendall τ coefficient results between both types of simulations.
’Avg’ stands for average, ’SD’ for standard deviation, ’TH’ discriminates the topical ho-
mophily simulations and ’UR’ the uniformly random simulations, and the difference is
taken between the average values.

α = 5 α = 10 α = 20 α = 30 α = 40

Avg TH τ 0.09165134 0.14278072 0.18853986 0.18616466 0.23639394
SD TH τ 0.00027329 0.00060214 0.00035353 0.00040923 0.00053369
Avg UR τ 0.08134898 0.12889776 0.17510864 0.16828396 0.22371218
SD UR τ 0.00048528 0.00040453 0.00076529 0.00048368 0.00062997
Difference 0.01030236 0.01388296 0.01343122 0.01788070 0.01268176

Figure 4.9: Average Kendall τ and their standard deviations obtained for topical ho-
mophily simulations in the upper blue line and uniformly random simulations in the
lower red line, over the number α of memory slots.
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4.4.2 Meme Lifespan Precision

The next comparison is based on the observed meme lifespan, a validation metric defined
in Subsection 3.5.1. Again, the meme lifespan is given by the biggest period of consecutive
days the meme appeared in adoptions. For each lifespan value, we count the portion of
memes which had their simulated adoptions duration equal to those in the baseline.

In the same fashion as the previous subsection, Table 4.6 has the meme lifespan preci-
sions for each simulation in the topical homophily scheme, Table 4.7 brings meme lifespan
precisions of the uniformly random simulations and Table 4.8 summarizes them along
with Figure 4.10.

Table 4.6: Meme lifespan precision values obtained between the topical homophily simu-
lated adoptions and the baseline adoptions.

Run Alpha=5 Alpha=10 Alpha=20 Alpha=30 Alpha=40
1 0.54531614 0.65371534 0.75207307 0.75621922 0.84004923
2 0.54489505 0.65510818 0.75239699 0.75756348 0.84011401
3 0.54521896 0.65577222 0.75251036 0.75701282 0.83904508
4 0.54576962 0.65556167 0.75267232 0.75691565 0.84106957
5 0.54670899 0.65552928 0.75288287 0.75549041 0.84009782

Table 4.7: Meme lifespan precision values obtained between the uniformly random simu-
lated adoptions and the baseline adoptions.

Run Alpha=5 Alpha=10 Alpha=20 Alpha=30 Alpha=40
1 0.51721624 0.61963915 0.72319577 0.71987561 0.81457307
2 0.51961324 0.62205234 0.72147901 0.72327675 0.81518852
3 0.52053640 0.61989828 0.72089595 0.72121987 0.81429774
4 0.51783169 0.61941241 0.72121987 0.72259652 0.81541526
5 0.51694091 0.62080526 0.72353589 0.72131705 0.81415198

Table 4.8: Summarized meme lifespan precision results between both types of simulations.
’Avg’ stands for average, ’SD’ for standard deviation, ’TH’ discriminates the topical ho-
mophily simulations and ’UR’ the uniformly random simulations, and the difference is
taken between the average values.

α = 5 α = 10 α = 20 α = 30 α = 40

AVG TH 0.54558175 0.65513734 0.75250712 0.75664032 0.84007514
SD TH 0.00070350 0.00083061 0.00030373 0.00080100 0.00071634

AVG UR 0.51842770 0.62036149 0.72206530 0.72165716 0.81472531
SD UR 0.00157206 0.00108316 0.00121103 0.00132157 0.00055346

Difference 0.02715405 0.03477584 0.03044182 0.03498315 0.02534983
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Figure 4.10: Average meme lifespan precisions and their standard deviations obtained for
topical homophily simulations in the upper purple line and uniformly random simulations
in the lower orange line, over the number α of memory slots.

4.4.3 Precision

Our last comparison evaluates the rate of correctly prescribed adoptions of the simulations,
as stated in Subsection 3.5.2. Figure 4.11 is derived from Table 4.11, which is assembled
from the topical homophily scheme results in Table 4.9 and the uniformly random scheme
in Table 4.10.

Table 4.9: Precision values obtained between the topical homophily simulated adoptions
and the baseline adoptions.

Run α = 5 α = 10 α = 20 α = 30 α = 40

1 0.52542141 0.65142868 0.784435299 0.81445040 0.89633557
2 0.52552130 0.65080939 0.784621402 0.81436628 0.89634608
3 0.52559069 0.65173465 0.784506796 0.81436208 0.89673721
4 0.52585670 0.65137821 0.784468945 0.81473323 0.89666151
5 0.52551394 0.65139083 0.784703413 0.81418754 0.89655742
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Table 4.10: Precision values obtained between the uniformly random simulated adoptions
and the baseline adoptions.

Run α = 5 α = 10 α = 20 α = 30 α = 40

1 0.45520499 0.56710525 0.70188878 0.72351349 0.83426139
2 0.45552147 0.56691810 0.70171950 0.72300776 0.83441070
3 0.45560873 0.56704427 0.70184042 0.72325484 0.83435602
4 0.45518396 0.56696016 0.70171530 0.72362705 0.83448955
5 0.45520393 0.56715993 0.70193505 0.72352401 0.83430870

Table 4.11: Summarized precision results between both types of simulations. ’Avg’ stands
for average, ’SD’ for standard deviation, ’TH’ discriminates the topical homophily simu-
lations and ’UR’ the uniformly random simulations, and the difference is taken between
the average values.

α = 5 α = 10 α = 20 α = 30 α = 40

Avg TH 0.52558080 0.65134840 0.78454720 0.81441990 0.89652760
SD TH 0.00016556 0.00033498 0.00011201 0.00019957 0.00018206
Avg UR 0.45534460 0.56703750 0.70181980 0.72338540 0.83436530
SD UR 0.00020378 0.00009983 0.00009930 0.00025183 0.00008886

Difference 0.07023620 0.08431090 0.08272740 0.09103450 0.06216230

Figure 4.11: Average precisions and their standard deviations obtained for topical ho-
mophily simulations in the upper blue line and uniformly random simulations in the
lower red line, over the number α of memory slots.

We can see the number α of memory slots as a proxy for the selective pressure faced
by memes, in the sense that the lower this value is, the more thriving is required for
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memes to survive. More than a relation between our predictions and α, through the three
presented results we wanted to observe a consistent difference between random selection
and homophily selection across different settings of selective pressure.

Based on the results of our experiments, we argue that our most sensitive result in
the difference of simulations generated by topical homophily and uniformly randomness is
that obtained from the Kendall τ coefficient. Even though the meme lifespan precision is
a pertinent dimension of reproduction, the range of values it can assume is rather small.
The true positive precision has a limited extent to the behavior of the system in a manner
of binary classification, without the coupling of a recall measure. This recall measure
requires us to produce false negatives, which, in this context, are simulated through the
production of original memes, which is out of the scope of this research. As for the Kendall
rank correlation, we saw in Figure 4.6 that the adoptions are distributed in a very skewed
manner. It would probably be easier to approximate the lowest and the highest values of
adoptions, but the in-between space is rather large and makes us prone to error, specially
considering the pairwise combinations of order relations over memes are counted in over
6.6e+10.
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Chapter 5

Conclusions

In order to conclude our work, Section 5.1 reviews the results of our methodology as a
means to achieve a critic view of the entire work and discuss some aspects relevant to
the statistical validity of our results; Section 5.2 summarizes the contributions of what
we found through the present effort of scientific investigation; and Section 5.3 explain the
possibilities these contributions carve for future scientific endeavors.

5.1 Discussion

As stated before by the work of Morstatter et al [47], Twitter’s Streaming API samples
nearly 1% of all tweets. This limitation is generally overcame by extending the duration
of collection in the related work we examined, so that the sample size is reasonable. We
judged that the size of our sample was enough to this study, but it does not necessarily
means that the same methods carried out in a bigger dataset would not retrieve different
findings. The same can be observed about the number of simulations for each α and to a
grainer range of its values. Likewise, a thinner time discretization may capture a unknown
number of adoptions we could have missed.

The lack of statistical assessment on the impact of working with static topics of in-
formation pose an unknown danger to the validity of our experiment. As stated by the
end of Subsection 3.2.2, we part from the supposition that hashtag association is not
seasonal is such small time period, but it does not imply necessarily that the hashtags
converge to some sort of steady state of association and, the greater the period we are
looking, the stabler this consideration is. In fact, recent works are already presenting
the debate over temporal dynamics of topics of informations [44]. We follow the trail of
non-Markovian cascade models, so the extra caution with temporal evolution is supposed
to be a scientific guideline. Yet both the simplification of a static topical configuration
and daily update memory slots for meme adoption go in the direction of the Markovian
property. We thought this would require a bigger research effort, so in order to narrow
down the scope of this work to a master thesis, we decided nevertheless to adhere to this
consideration.
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Improvements could have been made by the planned application of statistical frame-
works to bias detection in the data set, caused by our choice of keywords in the Twitter
Streaming API. Most of the dataset filterings we proposed were based on related works,
but they are not always objectively fundamented in statistical frameworks.

5.2 Contributions

We recall that this work leans over the role of homophily in the process of memes com-
peting over attention in online social networks, as stated by our research question. For
the sake of providing an answer to this, we worked with a specific characterization of ho-
mophily, based on a quantitative framework from topics of information. The state of art
found in the literature does not differentiate how attractive each meme can be regarding
each user in a local sense. We chose to work in this limitation.

Our main contribution in this work is a model for meme adoption which takes into
account homophily measured by topics of information. To the best of our knowledge, this
is a comparatively simple model which can be reproduced with clear steps of implemen-
tation, provided a dataset with few procedures of preparation.

Other contributions are the empirical evidences of meme competition and the effects
of homophily in this context. We have seen that very few memes are able to survive
through long periods and our characterization of homophily yields better prediction than
uniformly random adoption of memes. Even though these discoveries are statistically
questionable to a degree, our model supports a satisfiable reproducibility to carry on such
questioning exercises.

Even though this is a initial study about memory behavior and memes in online social
networks considering the scale of data, simulations and model complexity, we expect these
contributions may corroborate generalizations of the other models, taking into account
the heterogeneous attractiveness of meme adoptions to online social media users.

5.3 Future Works

The first extension to our work is to investigate memory models for meme adoption. This
kind of memory can present a deeply diversified configuration, as the previous models
that we studied have shown in the user activity. For instance, a social network user, with
millions of followers and very few followees, acts much more like a broadcaster, always
composing messages of his own, as opposed to profiles with lots of retweets and much less
followers than followees. Both are different from a user with a balance between followers
and followees in moderate numbers. The discerning of how our memory works in these
systems may be the key to identify artificial social media profiles, one of the greatest open
challenges in this field [27], which unleashed a contemporary technology race.
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Another good opportunity is to separate what adoptions were caused by social influ-
ence rather the homophily, much like in the fashion of the research done by Aral et al. [2].
The interplay between these two properties should synthesize a robust model of meme
fitness. We understand that our model can be enhanced to these research challenges in a
near future.

The advancements on evolutionary modelling of memes may also be developed later
into a real-time forecasting and population monitoring system of the meme competition
environment, and lead to sophisticated social media with self-adjusted mechanisms for
information curation.
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Appendix A

Supplementary Material

In this appendix, we provide in-depth description of the dataset.

A.1 Dataset Collection

Tweets were collected with the Streaming API between September 18th and October
30th of 2017, through the method filter. The ’lang’ parameter was set to Portuguese.
The ’track’ parameter received the following 137 keywords:

’eleição’, ’eleicao’, ’eleições’, ’eleições2018’, ’eleicoes’, ’eleicoes2018’, ’cirogomes’,
’ciro gomes’, ’cirogomes2018’, ’ciro2018’, ’ciro 2018’, ’lula’, ’lula2018’, ’joãodóri-
ajr’, ’dória’, ’joaodoriajr’, ’joao doria jr’, ’joaotrabalhador’, ’joao trabalhador’,
’doria2018’, ’doria 2018’, ’dória2018’, ’alckmin’, ’marinasilva’, ’marina silva’,
’marina’, ’marina2018’, ’marina 2018’, ’PT’, ’petralha’, ’mortadela’, ’partido-
dostrabalhadores’, ’partido dos trabalhadores’, ’dilma’, ’dilmarousseff’, ’tu-
cano’, ’PSDB’, ’coxinha’, ’reforma’, ’reformatrabalhista’, ’trabalhista’, ’refor-
madaprevidencia’, ’previdencia’, ’previdência’, ’rede’, ’redesustentabilidade’,
’rede sustentabilidade’, ’PMDB’, ’DEM’, ’democratas’, ’corrupcao’, ’corrupção’,
’temer’, ’cunha’, ’geddel’, ’policiafederal’, ’policia federal’, ’políciafederal’,
’polícia federal’, ’PF’, ’lavajato’, ’lava-jato’, ’lava jato’, ’sergiomoro’, ’moro’,
’supremotribunalfederal’, ’supremo tribunal federal’, ’stf’, ’gilmarmendes’,
’gilmar mendes’, ’procuradoriageraldarepublica’, ’procuradoria geral da re-
publica’, ’procuradoria geral da república’, ’procurador’, ’pgr’, ’rodrigojanot’,
’janot’, ’raquel dodge’, ’deltandallagnol’, ’ministeriopublico’, ’ministerio pub-
lico’, ’ministério público’, ’MP’, ’bolsonaro’, ’bolsomito’, ’bolsonaro2018’, ’jair-
bolsonaro’, ’MBL’, ’movimentobrasillivre’, ’movimento brasil livre’, ’camara-
dosdeputados’, ’camara’, ’senado’, ’senadofederal’, ’palaciodoplanalto’, ’de-
semprego’, ’juros’, ’PIB’, ’produto interno bruto’, ’ministério da fazenda’,
’ministerio da fazenda’, ’impeachment’, ’henrique meirelles’, ’eliseu padilha’,
’moreira franco’, ’blairo maggi’, ’aécio’, ’aecio’, ’politica’, ’política’, ’presi-
dente’, ’presidência’, ’presidencia’, ’executivo’, ’legislativo’, ’judiciario’, ’judi-
ciário’, ’reformapolitica’, ’ministro’, ’partidario’, ’partidário’, ’PEC’, ’votação’,
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’votacao’, ’crise’, ’acordo’, ’manobra’, ’pedido’, ’afastamento’, ’denúncia’, ’de-
nuncia’, ’desvio’, ’depoimento’, ’divida’, ’dívida’, ’emenda’, ’parlamentar’

We then parsed these data into two CSV files. The first one has one record to each
hashtag from each tweet and the second has the mentions network. For example, if a
tweet had three hashtags, it was parsed into three different lines in the first CSV file. The
lines in this resulting file sums up to 16377202 records, containing 7854621 tweets with
614705 different hashtags, posted from 2348788 users.

A.2 Descriptive Statistics

The frequency of the users and hashtags are distributed as in Table A.1 and A.2.

Table A.1: Distribution of the users’ frequency.

N Mean Std. Deviation Median Minimum Maximum Kurtosis
2348788 6.97 98.99 2 1 46702 88859.09

Table A.2: Distribution of the hashtags’ frequency.

N Mean Std. Deviation Median Minimum Maximum Kurtosis
614705 26.64 787.06 2 1 413871 135546.6

A.3 Hashtag Co-ocurrence Network

We built a network with the hashtags as nodes, by linking them if they appear together
in the same tweet. A total number of 1290755 edges were formed between the 614705
nodes.

With the Python library networkx and R package igraph, we could run some network
metrics. The biggest connected component has 53.3530 % of the graph’s size. We observe
the degree distribution of this network in Figure A.1. The two following tables show
degree and eigenvector 1centrality measures, respectively:

Table A.3: Top 5 hashtags in degree centrality.

Hashtag Degree Centrality
politica 0.011581
Politica 0.008216
Política 0.007859
PT 0.007198

marina 0.007083
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Table A.4: Top 5 hashtags in eigenvector centrality.

Hashtag Eigenvector Centrality
Rio 0.154544

Brasil 0.141803
Polícia 0.141537

R 0.134673
Região 0.116086

Figure A.1: Hashtag co-ocurrence network degree distribution.

A.4 Mention Network

As stated before, we chose to use the mention network as a proxy to the follower network.
Each node is a Twitter user and it is pointing to another node mentioned in any of his/her
tweets. Figure A.2 and A.3 are again plots of degree distribution. These figures were
generated with the complete network, which have 7882879 nodes and 54745549 edges.

1The power method in eigenvector centrality was set to iterate 500 times.
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Figure A.2: Mentions network in-degree distribution.

Figure A.3: Mentions network out-degree distribution.

A.5 Filtering

The weight filtering of co-occurrences of hashtags, that is, excluding the edges with one or
two joint apperances, returns a network approximately 49% smaller, with 301,207 hash-
tags. The community detection task was carried out in this filtered co-occurrence hashtag
network to access the topics of information.

Users are filtered first for activity. Those who posted with 9 or more hashtags during
the entire observation period makes up for 261,521, and not all of them use hashtags from
these 301,207, so this number drops to 212,493 users. The next filter for users is to pick
those with 3 or more neighbours, because it would not be significant to observe adoptions
for those with too few people to adopt from. 157,528 users pass in this filter.
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Appendix B

Bias Discussion

In this appendix, we describe what we thought when we obtained the result in Figure 4.1b
and the small investigation we carried out to no conclusions. Firstly, we reproduce the
same result with a histogram visualization in Figure B.1, and put it against the original
distribution of Figure B.2 found in the literature by Cardoso et al [13].

Figure B.1: Number of ocurrences over average similarity, 100 bins.
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Figure B.2: Reproduced histogram of average similarities in the mentions network.
Source:[13]

As it can be seen, we state again the continuous steep increase in our results when
the values of similarity averaged by neighbours are past 0.9. We thought this could be
cause by Twitter profiles with automatically or semi-automatically controlled behavior
dedicated to repost memes of other profiles, namely bots or cyborgs [58]. First of all, we
had to ensure they were using the exact same hashtags of their peers and so we looked to
the Jaccard index of used hashtags and the topics containing them.

(a) Hashtags (b) Topics

Figure B.3: Distribution of average Jaccard indices over each user in a semi-log scale.

We can see again a very distinct pattern in the diminishing number of users as the
Jaccard index grows and then a sudden spike when the value is 1. A Jaccard index of
1 means that two sets have the exact same elements, and these two sets in this case are
the used hashtags in Figure B.3a and the topics associated with them in Figure B.3a,
regarding the pairwise comparison of neighbours.
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What we did next was to isolate users with 10 or more neighbours and with average
similarity bigger than 0.99 to them. These users formed a group of 423 suspect profiles that
we decided to check with the Botometer R© 1, an online tool created in a joint project by the
Indiana University Network Science Institute and the Center for Complex Networks and
Systems Research to assign a score of how likely a Twitter account is a bot. Unfortunately,
more than half of these users had IDs that no longer existed in the Twitter, and the rest
did not yielded significant scores to conclude anything further.

1https://botometer.iuni.iu.edu/


