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Resumo

No Problema de Localização e Alocação de Terminais, a entrada é um espaço métrico
composto por clientes, localidades e um conjunto de pares de clientes; uma solução é
um subconjunto das localidades, onde serão abertos terminais, e uma atribuição de cada
par de clientes a uma rota, que começa no primeiro cliente, passando em um ou dois
terminais, e terminando no segundo cliente. O objetivo é encontrar uma solução que
minimize o tamanho de todas as rotas somado com o custo de abertura de terminais. Os
algoritmos de aproximação da literatura consideram apenas o caso em que o conjunto de
terminais abertos é dado como parte da entrada, e o problema se torna atribuir clientes
aos terminais; ou então quando o espaço é definido em classes especiais de grafos. Neste
trabalho, apresentamos o primeiro algoritmo de aproximação com fator constante para o
problema de, simultaneamente, escolher localidades para abrir terminais e atribuir clientes
a estes.

A primeira parte desta dissertação cria algoritmos de aproximação para diversas vari-
antes do problema. A estratégia principal é reduzir os problemas de localização e alocação
de terminais aos problemas clássicos de localidades, como o problema de localização de
instalações e o problema das k-medianas. A redução transforma uma instância de loca-
lização e alocação de terminais em uma instância de um destes problemas, que então é
resolvida usando algoritmos de aproximação já existentes na literatura. A saída do algo-
ritmo induz uma solução para o problema original, com uma perda constante no fator de
aproximação.

Na segunda parte, o foco é o Problema de Localização e Alocação Única de Terminais
(SAHLP), que é uma variação em que cada cliente deve estar conectado a apenas um
terminal, além de não haver limite na quantidade de terminais abertos. A principal
contribuição é um algoritmo 2.48-aproximado para o SAHLP, baseado em arredondamento
de uma nova formulação de programa linear para o problema. O algoritmo é composto por
duas fases: na primeira, a solução fracionária é escalada e um subconjunto de terminais
é aberto, e na segunda, atribuímos clientes aos terminais abertos. A primeira fase segue
o formato padrão de filtering para problemas de localidades. A segunda, no entanto,
exigiu o desenvolvimento de novas ideias e é baseada em múltiplos critérios para realizar
a atribuição. A principal técnica atribui cada cliente ao terminal aberto mais próximo, se
este estiver em sua vizinhança; caso contrário, o cliente se conecta ao terminal que melhor
balanceia múltiplos custos, relacionados à distância entre eles.



Abstract

In the Hub Location Problem (HLP), the input is a metric space composed of clients,
locations and a set of pairs of clients; a solution is a subset of locations to open hubs and
an assignment for each pair of clients to a route starting in the first client, passing through
one or two hubs and ending in the second client. The objective is to find a solution that
minimizes the length of all routes plus the cost of opening hubs. The currently known
approximation algorithms consider only the case in which the set of hubs is given as part
of the input and the problem is assigning clients to hubs; or when the space is defined on
special classes of graphs. In this work, we present the first constant-factor approximation
algorithms for the problem of, simultaneously, selecting hubs and allocating clients.

The first part of the thesis derives approximation algorithms for several variants of the
problem. The main strategy is to reduce the hub location problems to classical location
problems, such as Facility Location and k-Median. The reduction transforms an instance
of hub location into an instance of a corresponding location problem, which is then solved
by known approximation algorithm. The algorithm’s output induces a solution of the
original problem within a constant loss in the approximation ratio.

In the second part, we focus on the Single Allocation Hub Location Problem (SAHLP),
that is the variant in which a client must be connected to only one hub and there is no limit
on the number of open hubs. Our main contribution is a 2.48-approximation algorithm
for the SAHLP, based on the rounding of a new linear programming formulation. The
algorithm is composed of two phases: in the first one, we scale the fractional solution
and open a subset of hub locations, and in the second one, we assign clients to open
hubs. The first phase follows the standard filtering framework for location problems.
The latter, however, demanded the development of new ideas and is based on a multiple
criteria assignment. The main technique is assigning a client to a closest open hub only if
there are near open hubs, and otherwise selecting the hub which balances multiple costs.



Contents

1 Introduction 10

2 Preliminaries 13
2.1 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Linear and Integer Programs . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Location Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Literature review 18
3.1 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Location Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Facility Location Problem . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 k-Median Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Review of Byrka and Aardal’s algorithm . . . . . . . . . . . . . . . . . . . 21

4 Reduction-Based Approximation Algorithms for HLP 29
4.1 Multiple allocation variants . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Single allocation variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Summary of reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Randomized Approximation Algorithm for SAHLP 36
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 LP bounds and symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Modifying the fractional solution . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Splitting hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Complete solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 LP-rounding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Analysis of the LP-rounding algorithm . . . . . . . . . . . . . . . . . . . . 44

6 Concluding remarks 53

Bibliography 55



10

Chapter 1

Introduction

Hub Location Problems (HLP) have been a topic of research for more than three decades,
which spans various kinds of real life problems and solution techniques. The area started
with O’Kelly [66, 67], who discussed several hub location system models and applications,
which appear in aviation, telecommunication industries, logistic and postal companies
and other types of problems of a communicating network, where nodes are not connected
directly to the destination.

These networks have two kinds of interacting nodes, clients and hubs, that must be
connected to transport a set of demands between two clients, using one or two hubs of
the given set. There exists a cost to connect each pair of nodes and a cost to open a
hub; the objective is to find a subset of hubs to be opened and an assignment function,
that designates these hubs to clients while minimizing the total cost, that is, the length
of all routes plus the cost of opening hubs. In some practical scenarios, the flow between
hubs benefits from the economy of scale, and thus the cost of traveling between two hubs
is multiplied by a discount factor α ≤ 1. Airlines and air cargo industries are real life
examples of scenarios to which this discount factor is applied. In these applications, a
person or shipment is transported using consolidated lines to travel long distances and
then can take a smaller route to reach its destination.

As seen in a recent survey by Farahani et al. [38], most problems regarding HLP are
based on exact or heuristic solutions, while only few papers focus on approximation algo-
rithms. This type of algorithm rises to deal with NP-hard problems, a class of problems
that are thought impossible to be solved in polynomial time — this is the famous con-
jecture that P 6= NP. With this in mind, the objective of approximation algorithms is to
produce in polynomial time a solution whose cost is at most a factor times the optimal
one. An approximation algorithm differs from an exact algorithm because the latter does
not necessarily run in polynomial time, but always seek for the best solution. Heuris-
tics, on the other hand, do not commit to find a provably good solution, nor to run in
polynomial time; the goal here is to yield acceptable results in practical experiments.

Although there are similarities between HLP and heavily studied location problems,
such as the Facility Location Problem (FLP) and the k-Median Problem, in regard to
approximation approaches, the HLP literature lacks studies involving different kinds of
variants and algorithm design techniques. The majority of the works deal with a Hub-
and-Spoke type of network, that assigns each client to exactly one hub and the set of
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hubs is given in the input, which means that choosing the set of hubs to be opened is
not part of the problem. For this variant, Iwasa et al. [50] present a 2-approximation
algorithm, Ge et al. provide the same factor using geometric rounding techniques [44] and
Ando et al. [4] present a (1 + 2/π)-approximation algorithm for the case in which nodes
are in the Euclidean plane. Approximation algorithms and hardness results have also
been given for the variant in which the topology of the hub network is a star [61, 20].

This work studies hub location problems whose objective is to, simultaneously, select
hubs and allocate clients. A few variants are considered, depending on whether the num-
ber of open hubs is given in the input or there is a cost of opening a given hub; and
on whether a client must be assigned to a single hub or may be assigned to different
hubs. The obtained results may be summarized as follows: first, we present the first
constant-factor approximation algorithm for each of the variants above by means of a
reduction; second, we present an improved approximation factor for a particular single
allocation variant, introducing a new linear programming (LP) formulation and using an
LP-rounding algorithm.

In order to derive the constant-factor approximations, we observe that each of these
variants is a generalization of a location problem which has been widely studied from the
approximation perspective, a fact that we explore to provide both a lower bound on the
solution cost and a reduction to the corresponding location problem. Namely, for the
multiple allocation problems, we derive a (ρ+ 1)-approximation algorithm, where ρ is the
approximation factor of an algorithm for the corresponding location problem; for single
allocation problems, the reduction implies a (2ρ+ 1)-approximation.

For instance, the variant named Single Allocation Median Hub Location Problem
(SAHLP) — where each client must be assigned to exactly one hub and there are no
restrictions on the number of open hubs — can be reduced to the classical Facility Location
Problem, by using the same set of clients and hubs. Using the presented reduction,
together with the best approximation factor for FLP, which is 1.488 [58], we obtain a
3.98-approximation algorithm. This is done by creating an instance for FLP based on the
original instance for SAHLP and solving it with the algorithm for FLP. Then, we use the
approximate solution to this newly created instance to produce a solution for our own
problem. In this case, we assign the clients to the same hubs in both solutions and show
that this generates an approximate solution for HLP with a slightly bigger factor than
the used originally. The same idea is applied to obtain a first approximation for other 5
variants of HLP.

In the second part of this work, we focus on improving the approximation factor
for the SAHLP, and present an LP-rounding 2.48-approximation algorithm based on a
new linear formulation. The algorithm follows the generic framework of LP-rounding for
well studied location problems and is composed of two phases: (i) a phase to scale the
fractional solution and cluster the hubs; (ii) a specially crafted phase to assign clients
to open hubs. The clustering phase is similar to standard algorithms for FLP (see [11]).
However, allocating clients is non-trivial, since each client is not necessarily assigned to
the closest hub, as in FLP. The main techniques are: assigning a client to an open hub
using multiple criteria, depending on whether there is an open hub in its support set; and
balancing the terms of the solution cost (i.e., inbound and outbound connection costs) by



CHAPTER 1. INTRODUCTION 12

exploiting the symmetries of the linear formulation.
The remaining chapters are organized as follows. Chapter 2 brings a brief introduction

to combinatorial optimization problems and approximation algorithms, and also formally
defines Hub Location Problems and the corresponding location problems used in the
reduction algorithm. Chapter 3 reviews the literature of HLP and other relevant location
problems, focusing on approximations and hardness results; furthermore, we briefly review
Byrka and Aardal’s [11] approximation algorithm for FLP, from which we drew a variety
of ideas and results to analyze our algorithm. Chapter 4 presents the reduction algorithms
for the various types of HLP. Chapter 5 brings our major contribution, which is an LP-
rounding algorithm for SAHLP. Chapter 6 contains the concluding remarks.
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Chapter 2

Preliminaries

2.1 Combinatorial Optimization
In a combinatorial optimization problem, a function that maps objects to values is given
and the objective is to find the best object from a finite set, either minimizing or maximiz-
ing its associated value. In many cases, this set is too big, thus performing an exhaustive
search is not viable. To study the complexity of these problems, one normally considers
the corresponding decision version — where the question is whether there exists a solu-
tion of a given cost —, which can be included in various complexity classes. The most
important classes are introduced next.

A problem is in P (polynomial-time) if there exists an algorithm which runs efficiently,
i.e., in polynomial-time, and outputs the answer correctly. The NP (non-deterministic
polynomial-time) class contains all decision problems that can be efficiently verified by
a non-deterministic Turing machine in polynomial time, that is, a non-deterministic ma-
chine for which there is an accepting execution path if and only if the solution is valid
and, when it does, this path takes polynomial time. For an optimization problem, when
solving a problem, it is usual to ask for a solution with best value; and when validating a
problem, checking whether a solution is valid and calculating its value.

Given problems P1 and P2, there exists a polynomial-time reduction (or Karp reduc-
tion) from P1 to P2 if, in polynomial time, it is possible to map an instance from P1 to
an instance of P2, each yes-instance is mapped to a yes-instance, and each no-instance is
mapped to a no-instance. In this way, an algorithm for P2 can be used to solve P1, and
thus P1 is not more “difficult” than P2. A problem is said to be NP-hard if every problem
from NP can be reduced to it in polynomial-time. This implies that, if there exists an
efficient algorithm to solve any NP-hard problem, one can use it to solve all the problems
in NP in polynomial time. If a problem is in both NP and NP-hard, then it is said to be
NP-complete. A detailed guide to these classes is given in [43].

For an optimization problem, the notion of reduction is different. A reduction from P1

to P2 is a pair of polynomial-time transformations, such that the first transformation is
given an instance of P1 and constructs an instance of P2, and the second transformation
receives an optimal solution of the mapped instance of P2, and constructs an optimal
solution for the original instance.

The presented complexity classes are the foundation of many fields, including the
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approximation algorithm, whose premise is the assumption that P 6= NP, and thus the
optimality requirement must be relaxed. This conjecture is one of the most important
unsolved problems in Computer Science, and can be informally stated by the question:
is the class of problems that can be efficiently verified the same as the class of problems
that can be efficiently solved? Most researchers believe that the answer to this question
is no [48]. Under this assumption, NP-hard problems are intractable and thus alternative
ways to tackle these problems and find solutions must be studied. Among the possibilities,
there are exact algorithms [65], heuristic methods [68] and approximation algorithms [78].

Exact algorithms focus on solving problems optimally as fast as possible. For many
problems, the currently known algorithms have only exponential time guarantees in the
worst case. In the real-world applications which demand that NP-hard problems are
solved in a timely manner, the exponential must have a small base [40]; or, possibly, only
a family of “easy” instances may be considered.

Heuristic methods try to solve problems by relaxing the optimality constraint of the
solution and, sometimes, the requirement that algorithms are run in polynomial-time.
These methods are applied when some insights of the problems are known, which guide
the algorithms in the search for a good solution. Such insights may be gathered, for
example, by performing empirical analysis, or using frameworks called metaheuristics,
which are generic optimization processes commonly employed to solve similar problems.

Approximation algorithms give a mathematically-certified guarantee on the quality
of the solution, while maintain the requirement that runtime is polynomial. This sort of
algorithm investigates how much a solution obtained in polynomial time can approach the
optimal value. It differs from common heuristics because the guarantee of the solution
quality and polynomial running time are assured for every input of the problem. While
many approximation algorithms are efficient in practice, they are mostly studied on the
theoretical basis only, and some may have large polynomial degrees, which turn them
impractical for use in real applications. Still, approximation algorithms provide valuable
knowledge on the structure of the problems and provide a means of measuring their
intrinsic difficulty.

2.1.1 Linear and Integer Programs
Linear Programming (LP) is an optimization technique that formulates problems into a
set of n variables under linear constraints and an objective function, whose value must be
minimized or maximized. To solve an LP formulation, an algorithm must find a solution
(which is a point in the Rn) in the feasible region bounded by the constraints. There exist
polynomial-time algorithms to solve LP models (e.g., the interior-point method [54]),
therefore the decision version is in P. This technique is widely used in numerous fields
of science and is of great importance to the nature of the algorithms presented in this
work. Detailed description of linear programming is not in the scope of the text. More
information on LPs and their properties can be found in [23].

Given an LP formulation for a problem, called primal, there exists another formulation
that is closely related to it, the dual formulation. If the primal has n variables and m

constraints, then the dual has m variables, n constraints and a flipped objective goal. The
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following results are used in latter sections, where we fix the primal formulation’s goal to
be minimization.

Theorem 1 (Weak Duality). Given feasible solutions x and y for the primal and dual
linear formulations, respectively, then the cost of x is always greater than or equal to the
cost of y.

Theorem 2 (Strong Duality). Given optimal solutions x and y for the primal and dual
linear formulations, respectively, then the cost of x is equal to the cost of y.

An Integer Linear Programming (ILP) is another modeling technique which is similar
to LP, but such that some variables are restricted to integer values. This, seemingly small,
difference turns the decision version of the problem of solving ILP NP-hard. Nonetheless,
it is generally use modeling NP-hard problems as ILP formulations, as they describe a
problem in an unambiguous language and provide helpful insights. Moreover, there are
various approaches to design algorithms with the aid of ILP, as seen in the next subsection.

2.1.2 Approximation Algorithms
Let A be an algorithm for a minimization problem and I an instance of A. Denote by
A(I) the solution value for I given by the algorithm and by OPT (I) the optimal value
for this instance. We call A an approximation algorithm if it runs in polynomial time and
the approximation ratio rA, defined as the supremum of the ratio between the produced
solution and the optimal value over all instances I of size n,

rA := supI
{

A(I)
OPT (I)

}
,

is bounded by a function of n. If rA is bounded by a constant for every n, then we say
that A is a constant approximation. Normally, rA is not calculated directly, but an upper
bound α; in this case, A is called an α-approximation.

This concept can be extended to define randomized approximation algorithms, that
receive as input a function that generates random bits according to a particular probability
distribution, and is used to create a solution. Since the algorithm is not deterministic,
we are interested in giving the approximation factor in terms of the expected solution
value, since it consists of a random variable. In many cases, it is possible to derandomize
the algorithm, using the method of conditional probabilities [71], yielding a deterministic
algorithm.

Approximation algorithms design techniques typically fall into the categories described
next. A combinatorial algorithm builds a solution without any other algorithmic tool,
whereas a greedy one performs a series of locally optimal choices, always trying to im-
prove on the previously made decision. Linear programming plays an important role in
the design of approximations, and there are many techniques that uses it. A rounding
algorithm uses the relaxation of the problem’s formulation as basis for building an answer,
where the decisions on the algorithm are made by observing the values presented in the
LP solution. When these variables are binary in the original ILP, they assume a value in
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the [0, 1] interval in the relaxation, thus, they can represent a probability which is often
used in randomized rounding. An alternative to build this kind of algorithms is to use
semidefinite programs, that generalize regular LPs, as seen in [45].

Other LP-based technique is the primal-dual method, which makes decisions to com-
pose an integral solution (i.e. primal) by analyzing the dual formulation, typically using a
dual-ascent algorithm, that raises the values of the dual variables from zero, maintaining
feasibility, while the primal variables respond to those changes until a final solution is
given. A variation of the primal-dual method is the dual fitting, where a primal integral
solution is built, as well as a dual one, with the same cost as the first. This dual solution
is infeasible, by weak duality, so the challenge is to find a scaling factor, such that multi-
plying a solution’s variables make it feasible. When such factor is found, it becomes the
approximation factor of the algorithm, again, by weak duality, because the dual solution
value is a lower bound on the primal optimal.

2.2 Problem Definitions

2.2.1 Hub Location Problem
Consider the sets C of clients,H of hubs andD of unordered pairs of clients which represent
demands and let V = C ∪H. There is a function to represent the transportation cost to
connect clients to hubs or hubs to hubs, d:V2 → R, which is assumed to form a metric,
and another cost function f :H→ R to open hubs. Given a pair of clients {i, j} ∈ D, the
demand between them needs to be transported through a pair of hubs that are directly
connected to i and j, and, to simulate the economy of scale that exists in scenarios
modeled by this problem, the transportation cost between hubs undergo a discount factor
α, where 0 ≤ α ≤ 1. A limit on the number of opened hubs in a solution is dictated by
the parameter p. For a client i, define Di as the set of clients that are destinations from
i. The hubs are assumed to have unlimited capacity, so they are capable of connecting
and transporting any amount of clients and demands.

A solution to the HLP is composed of a subset of hubs H′ ⊆ H to be opened and a
function φ that assigns clients to opened hubs, φ(i) ∈ H′, where i ∈ C. The objective
function is the sum of the costs to open the hubs of H′ plus the cost to connect every
pair of demands through a pair of hubs. Some restrictions can be imposed on the given
problem definition, which specializes it to particular cases. There can be a limit on the
number of hubs a client is connected to, such as only one, or no imposed limit at all. The
number of opened hubs may be bounded, that is, at most a value p given in the input.
The opening cost function can be defined as f(h) = 0, for every h ∈ H, or given a specific
value for each hub.

The hardness proofs of the Hub Location Problem focus on the single allocation case,
that is known to be NP-hard. Sohn and Park [74] proved this result by polinomially
transforming the Three-Terminal Cut Problem [30] into the single allocation HLP, when
the number of hubs is equal to three, thus, the problem is NP-hard as soon as the number
of hubs is three. They also proved that if the number of hubs is one or two, the problem
is in P.
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Each considered variant of HLP is formally defined next.

Definition 1. In the Single Allocation Median p-Hub Location Problem (SApHLP), given
a tuple (C,H,D, d, f, α, p), one must find a subset of hubs H′ with |H′|≤ p and an assign-
ment φ(i) ∈ H′ for each i ∈ C. The objective is to find a solution which minimizes

∑
k∈H′

f(k) +
∑
{i,j}∈D

[d(i, φ(i)) + α d(φ(i), φ(j)) + d(φ(j), j)] .

Definition 2. The Single Allocation Median Hub Location Problem (SAHLP) is the par-
ticular case of SApHLP in which there is no limit on the number of opened hubs.

Definition 3. The Single Allocation Median Fixed p-Hub Location Problem (SAFpHLP)
is the particular case of SApHLP in which there are no costs to open hubs.

Definition 4. In the Multiple Allocation p-Hub Location Problem (MApHLP), given a
tuple (C,H,D, d, f, α, p), one must find a subset of hubs H′ with |H′|≤ p and assign each
demand {i, j} to a pair of hubs ψ(i, j), ψ(j, i) ∈ H′. The objective is to minimize

∑
k∈H′

f(k) +
∑
{i,j}∈D

[d(i, ψ(i, j)) + α d(ψ(i, j), ψ(j, i)) + d(ψ(j, i), j)] .

Definition 5. The Multiple Allocation Median Hub Location Problem (MAHLP) is the
particular case of MApHLP in which there is no limit on the number of opened hubs.

Definition 6. The Multiple Allocation Median Fixed p-Hub Location Problem (MAF-
pHLP) is the particular case of MApHLP in which f(k) = 0 for every k ∈ H and |H′|= p.

2.2.2 Location Problems
In Chapter 4, we reduce hub location problems to a series of location problem. These
problems are defined below.

Definition 7. In the k-Facility Location Problem (k-FLP), an instance is comprised of a
set of facilities F , a set of clients C, as well as a distance function d : F ∪ C → R≥0 and
an opening cost f : F → R≥0. Given an instance (C,F , d, f, k), the objective is to find a
subset of facilities F ′ such that |F ′|≤ k, which minimizes∑i∈F ′ f(i)+∑j∈C minf∈F ′ d(i, j).

Definition 8. The Facility Location Problem (FLP) is the case of k-FLP, in which
there is no limit on the number of opened facilities.

Definition 9. The k-Median Problem is the case of k-FLP in which f(i) = 0 for every
i ∈ F and |F ′|= k.



18

Chapter 3

Literature review

In this chapter we review the HLP literature, especially papers featuring approximation
algorithms. Also, we briefly survey Byrka and Aardal’s [11] work, which was an inspiration
for our own algorithm.

3.1 Hub Location Problem
Hub Location Problems have been the research topics of many studies since the first
formal study in the field by O’Kelly [66, 67], in which he brought a quadratic integer
program and two simple heuristics, presenting the computational results in real instances
composed of a few hubs and up to 25 cities in the USA. Before him, the spatial interaction
has been explored by Hakimi [47], that studied the concept of graph centers in order to
best locate service stations and gave procedures to find them, while Toh and Higgins [77]
discussed the advantages to use hubs in airline industries. The interest in HLP grew in the
following decade, with papers focusing on modeling new cases analogous to those found
in the location theory literature, such as Campbell [14, 15] with p-Hub Median, p-Hub
Center and Hub Covering problems. Aykin merged the HLP with a routing problem [7]
and designed exact and heuristic methods to capacitated networks [6, 8].

It is safe to affirm that HLP has been extensively studied under exact and heuristic
points of view, with papers exploring integer formulations [28, 3, 79, 36], and other exact
methods [32, 33, 24, 42]. A wide range of heuristics were applied; to name a few: genetic
algorithm [29, 39, 62], tabu search [64, 18, 80], simulated annealing [7, 37], Lagrangian
relaxation [70, 25, 26], and greedy approaches [5, 15, 35, 9]. These and other works can be
found in surveys from Campbell et al. [13], Alumur and Kara [2] and Farahani et al. [38],
who also cover formulations for numerous variants, classifications and fundamental defi-
nitions.

Approximation algorithms for Hub Location Problems are not as abundant in the
literature as the other methods presented, which indicates an opportunity to explore
some of those variants from a more theoretical perspective and expand the knowledge on
these problems. The most studied problem in this point of view is the Single Allocation
Hub-and-Spoke Problem, where we are given sets of clients and opened hubs, with the
objective to allocate each client to one of the hubs. Note that there is no location phase in
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this problem, i.e., all hubs are already opened, thus, it is a subproblem of HLP for we only
consider the allocation phase. In some practical cases, it is important to optimally decide
the client allocation to hubs for a fixed time interval, where all hubs are available, because
of the associated costs of moving equipment on hubs. This problem was first considered by
Sohn and Park [73], where they showed how to transform a quadratic 0-1 integer program
in the so called fixed two-hub system linear program. They prove that the two-hub variant
is polynomially solvable by transforming it into a minimum 2-cut, which is in P [27]; in a
later work, this problem is shown to be NP-hard when the number of fixed hubs is greater
than or equal to 3, by using a minimum 3-cut reduction [74]. Iwasa et al. [50] introduced
two algorithms for the metric case, using different approaches: a simple 3-approximation
algorithm that connects clients to the nearest hubs and a 2-approximation algorithm based
on a linear programming relaxation and a randomized rounding procedure. They showed
that the Single Allocation Hub-and-Spoke Problem is a special case of Metric Labeling,
introduced by Kleinberg and Tardos [55], concluding that their results are also valid for
this problem when its distances form a metric. When fixed to three hubs/labels, they also
gave a (5/4)-approximation algorithm for the single allocation and a (4/3)-approximation
algorithm for the labeling.

Ando and Matsui [4] proposed an approximation algorithm for a hub-and-spoke struc-
ture when all nodes are embedded in a 2-dimensional plane, where the Euclidean distance
is valid and the distance between hub nodes satisfy the Monge property [10], achieving
a factor of 1 + 2/π. They applied a dependent rounding procedure to a linear program,
the same as Iwasa et al., where both used a tight linearization for general 0-1 quadratic
integer program [1] in the problem’s natural formulation. Ge et al. [44] also presented
a 2-approximation algorithm to the hub-and-spoke structure and a (lnn)-approximation
algorithm for the problem with both location and allocation phases, the first of its kind,
using a technique known as geometric rounding. The relevance of these algorithms is that
they can be used for different problems, like metric labeling and winner determination,
matching the best current bounds of the time.

In the p-Center Hub Location Problem, we are given sets of clients, demands and
hubs with the objective to assign each client to an opened hub, minimizing the longest
path of a demand pair. This version focus on time-sensitive, guaranteed time distribution
systems, or on minimizing the maximum dissatisfaction of passengers. Here, the objective
is not obtaining the lowest overall cost, but avoiding very expensive costs to demand
between individual nodes. The problem was first proposed by Campbell [14], who showed
a binary quadratic formulation and polynomial-time algorithms for special cases. Kara
and Tansel [53] also worked on modeling the problem, performed experiments to determine
a good way to optimally solve it and proved its NP-hardness. Chen et al. [20] showed
that this problem is NP-hard to approximate to a ratio (4/3− ε), unless P = NP, for any
ε > 0 and provided two algorithms, a linear-time 2-approximation algorithm and a cubic
(5/3)-approximation algorithm. They obtained similar results using the same techniques
in a variant presented below, which impose a certain topology on the resulting network.
Pedrosa et al. [69] gave an initial 3-approximation algorithm for the multiple allocation
variant, in which a client cannot be connected to more than one hub.

In 2012, Yaman and Elloumi [79] presented new HLP variants in designing two-level
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star networks, considering service quality. A star network is a common topology in the
field of communications and it consists in appointing a central hub that receives direct
connections of all other peers; a two-level star is obtained by applying the same definition
to the peers of the first level of the network, that now serve as a secondary hub for nodes
in the second level. This configuration results in a tree, rooted in the central hub, with
height of at most 2. In the Star p-Hub Center/Median Problem, a central hub is given
in input, alongside with a set of hubs, clients and its demand points; the objective is
to assign p hubs to be connected to the central hub, creating the network’s first level,
and connect each client to exactly one of those. They are interested in incorporating a
measure of quality in the networks: in the first variant, called center, the objective is to
create a network that minimizes the longest path between any two demand nodes; in the
second, the aim is to find a network such that the total cost of routing is minimum and
the length of the path connecting any two demand nodes doesn’t exceed a predetermined
value. Besides introducing these variants, they proved the problem’s NP-hardness and
also created formulations to computationally run them and report the performance of
the techniques involved. Liang [61] came up with the first approximation algorithm for
the center variant, with factor 3.5, that is based on a reduction to the k-Center Problem,
using its simple 2-approximation algorithm. The first NP-hardness result for the problem,
obtained using a reduction from the dominating set problem [43], was given in this paper:
the problem does not admit a (1.25 − ε)-approximation algorithm, for any ε > 0, unless
P = NP. Chen et al. [19] also studied this problem from the NP-hardness point of view,
strengthening the lower bound to (1.5− ε), for any ε > 0, unless P = NP. Moreover, they
provided two new combinatorial approximation algorithms answering Liang’s question
whether the gap could be diminished, with factors 2 and 5/3, running times O(n) and
O(pn4), respectively. In the following year, Chen et al. [21] enhanced their results creating
a new approximation algorithm to a version of the problem where the triangle inequality
is parameterized by β: given points a, b, c and cost function w, it follows that w(a, c) ≤
β(w(a, b) + w(b, c)).

3.2 Location Problems
In this section we will review the main results of related location problems used to obtain
our algorithms, either by direct reduction or applying similar concepts and techniques.

3.2.1 Facility Location Problem
The Facility Location Problem has been studied for more than 50 years [57, 75], with
books spanning diverse topics and variations [34, 31]. Unlike the HLP, the FLP has
received great attention in the approximation algorithms front that boosted this field
altogether, creating and refining existing techniques over time. For general distance func-
tions, Hochbaum [49] presented a O(log n)-approximation algorithm that matches the
problem’s lower bound, meaning that there is no hope to create a better algorithm, unless
P = NP, since the Set Cover Problem can be easily reduced to the FLP. Since then,
people focused on the FLP with metric distances, i.e., the distance function obeys the
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triangle inequality. Results in this variant’s approximation hardness were given by Guha
and Khuller [46] and Sviridenko [76]: there can be no algorithm with a better factor than
1.463, unless P = NP. Throughout the years a considerable amount of constant-factor
approximation algorithms were created using different techniques, from which we can
highlight the first LP rounding by Shmoys [72], with factor 3.16; Jain and Vazirani [52]
primal-dual method, that achieved a factor of 3; Charikar and Guha [16] merged both
methods and got a 1.728-approximation algorithm.

In 2010, Byrka and Aardal [11] modified the (1 + 2/e)-approximation of Chudak [22],
obtaining a bifactor (1.6774, 1.3738)-approximation algorithm, i.e., it achieves a cost of,
at most, 1.6774 · F ∗ + 1.3738 · C∗, where F ∗ and C∗ are the optimal costs of opening
facilities and connecting clients, respectively. It was the first algorithm to touch the
approximability limit curve (γf , 1 + 2e−γf ) established by Jain et al. [51], meaning that,
if an instance is dominated by connection costs then this algorithm performs as good as
the best possible approximation for FLP. They also showed that, when combined with
the (1.11, 1.7764)-approximation of Jain et al. [51], they produce a 1.5-approximation
algorithm that is governed by the scaling factor γ, which was a fixed value in this work.
A few years later, Li [59] presented an explicit distribution for this scaling factor, obtaining
the best currently known factor guarantee, a 1.488-approximation algorithm. These are
important papers in this work’s arrangement, for the algorithm in Chapter 5 is build up
on similar ideas as those.

3.2.2 k-Median Problem
The k-Median Problem can be applied to similar situations as the FLP, but with the
difference on the number of opened facilities: in the latter, there is a cost on opening
facilities and no limit on the number of open facilities, whereas in the k-Median an exact
number k of facilities must be opened. This fact has led the first approximations to
violate this constraint by opening k+ Ω(k) facilities [63, 56]. Charikar et al. [17] came up
with the first algorithm that opens exactly k facilities and has a constant approximation
factor, using ideas inspired by those applied in FLP. Jain and Vazirani [52] also exploited
the similarity between these problems to create an algorithm that uses their primal-dual
algorithm to FLP as subroutine, noting that the Lagrangian relaxation of k-Median is
the FLP, achieving a factor of 6. Whereas the best known factor was not improved, they
introduced a generic framework to derive algorithms of this kind.

The currently best approximation algorithm for k-Median is due to Byrka et al. [12],
using a framework composed of dependent rounding and a new way to handle positive
correlation in these types of problems, resulting in an approximation factor of 2.675 + ε.
There is an approximation hardness result for this problem, given by Jain et al. [51],
which affirms that k-Median is hard to approximate within a factor 1.736.

3.3 Review of Byrka and Aardal’s algorithm
This section reviews the algorithm for FLP by Jaroslaw Byrka and Karen Aardal, entitled
“An Optimal Bifactor Approximation Algorithm for the Metric Uncapacitated Facility
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Location Algorithm Problem” [11]. In Chapter 5, we develop a new algorithm for the
Single Allocation Hub Location Problem, which is build on some ideas of the algorithm
presented in this section.

The algorithm is an example of application of the LP-rounding technique. Recall
that first, one solves relaxation of an integer program formulation, obtaining a fractional
solution. This solution is then rounded to an integral one, using various strategies, so as
to construct a feasible solution whose value can be bounded as a factor times the value
of the fractional solution. This way, this factor expresses a bound on the approximation
factor of the algorithm, since the fractional value is a lower bound on the value of an
optimal solution.

In our algorithm, we will make use of some lemmas presented in this section, and which
are now standard in the literature of FLP. While these lemmas are defined for FLP, in
the corresponding steps of our analysis we have equivalent conditions. These proofs are
accredited to Byrka and Aardal, but we also used arguments by Shi Li [59]. For the sake
of completeness, we reproduce the proofs here.

The following integer program formulates the FLP, in which variable xij indicates
whether client j is connected to facility i and yi indicates if facility i has been chosen
to be opened. Constraints (3.1) designate exactly one facility to each client, while con-
straints (3.2) ensure each designated facility is included in the set of opened facilities;
constraints (3.3) correspond to the integrality of the solution.

minimize
∑
i∈F

yif(i) +
∑

i∈F ,j∈C
xijd(i, j)

subject to
∑
i∈F

xij = 1 ∀ j ∈ C, (3.1)

xij − yi ≤ 0 ∀ i ∈ F , ∀ j ∈ C, (3.2)

xij, yi ∈ {0, 1} ∀ i ∈ F , ∀ j ∈ C. (3.3)

A clustering procedure is now discussed, that creates a structure from the fractional
solution of the LP and helps to estimate the final connection cost. Many approximation
algorithms for FLP are based on clustering procedures [72, 22, 76] and later we show that
a similar strategy pays off for the HLP. The idea is to create a graph composed of clients
and facilities, connecting a pair if they are used in the optimal LP solution. Formally, we
create a bipartite graph G = (C,F , E), called a support graph, and include an edge (i, j)
in E if variable xij for client j ∈ C and facility i ∈ F is positive. The set of facilities which
are adjacent to a client j is called the support set of j, and is denoted by N(j). If two
clients are connected to the same facility in the support graph they are called neighbors.

The clustering algorithm is as follows: while there are unclustered clients, choose a
client as a new cluster center according to a greedy criterion (defined below), and build a
cluster with this client as a center and including all of its neighbors. After the clustering
is constructed, the algorithm opens facilities: for each cluster, the fractional opening in
the support set of a center must sum to one (according to constraint (3.1)), thus each
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facility i in this set is opened with probability xij; later, for each facility i not in a cluster,
open it independently with probability yi.

Since no two centers are neighbors in the support graph, the cost of each facility is
charged to at most one client, which allows bounding the opening cost in terms of the
fraction opening. Also, each client is close to one open facility, since it is either a center,
or is a neighbor of a center. This situation is depicted in Figure 3.1, with cluster center
j′ and opened hub i, where client j can connect to i using a path of length three.

If the algorithm above is applied directly to the solution (x, y) of the relaxation, then
the obtained solution is very economical, since each facility i is opened with probability yi
and the expected cost is at most the fractional opening cost, given by the relaxed solution
of the problem. The connection cost, however, is bounded by a more expensive factor.
Therefore, before running the clustering algorithm, two previous steps are executed, called
scaling and filtering.

To balance opening and connection costs, in the scaling step, one multiplies the solu-
tion by a factor γ > 1, so that each facility i is opened with probability γyi, but clients are
connected to closer facilities with higher probability. In the filtering step, one returns a
modified solution (x̄, ȳ), where ȳ = γy and x̄ is defined so that each client is (fractionally)
connected to the closest opened facilities. If a variable ȳi for a facility i is greater than
one, this step also splits it in order to keep the variables ȳ a valid probability distribution.

The support set of j with respect to the modified solution (x̄, ȳ) is the set of close
facilities, and is denoted by Cl(j). The facilities which are in the support set according
to the original solution, but are not close are the distant facilities, denoted by Di(j). To
simplify the algorithm and analysis, one assumes the sum of opening close facilities is
exactly 1/γ, that is, ∑i∈Cl(j) yi = 1/γ. If this is not the case, then one can create an
equivalent instance and solution for which this is the case and has no larger value. These
procedures are said to transform the solution into a complete solution, and is standard in
approximation algorithms for FLP. Similar arguments are also used in our algorithm for
HLP, so we refer to Chapter 5 and the original paper for the complete details.

It is useful to consider the distance from a client to a set of fractionally open facilities.
Given a client j ∈ C and a subset of facilities F ′ ⊆ F , the average distance from j and to
F ′ and the maximum distance from j and to F ′ are

d(j,F ′) =
∑
i∈F ′ cijyi∑
i∈F ′ yi

, dmax(j,F ′) = max
i∈F ′

cij.

In particular, the average distance to close facilities, the average distance to distant facil-
ities, and the maximum distance to a close facility are

ccj = d(j,Cl(j)), cdj = d(j,Di(j)), c̃cj = dmax(j,Cl(j)).

Once the solution is filtered, the clustering algorithm is run on the modified solution,
selecting as the next center the unclustered client j whose sum ccj + c̃cj is minimum. Ob-
serve that c̃cj ≤ cdj since the furthest close facility is not further than the closest distant
facility.
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j′ j

i i′ i′′

cluster

Figure 3.1: Cluster with center j′, enclosing its connected facilities and neighbors in the
support graph.

The algorithm is detailed next:

1. Solve the LP-relaxation and obtain a fractional solution (x, y);

2. Modify the solution with the procedures above, resulting in a new solution (x̄, ȳ);

3. Cluster the clients, choosing as center the client j which minimizes the value of
d(j,Cl(j)) + dmax(j,Cl(j));

4. For each center j, open facility i ∈ Cl(j) with probability ȳi;

5. For each facility i that is not close to some center, open i independently with prob-
ability ȳi;

6. For each client, connect it to the closest open facility.

Definition 10. For some subset F ′ ⊆ F of facilities, define the volume of F ′, denoted
by vol(F ′), to be the sum of the modified facility-opening variables, ȳi, over all facilities
in this set: vol(F ′) = ∑

i∈F ′ ȳi.

The following lemma upper bounds the average distance from a client j to another
the set of facilities that are close to its center j′, but are not in the support of j. This
lemma is due to Shi Li [59], and extends the result of Byrka and Aardal to any value of
scaling parameter γ ≥ 1.

Lemma 1. If j ∈ C is a client and j′ is the associated cluster center, then for any γ ≥ 1

d(j,Cl(j′) \N(j)) ≤ (2− γ)c̃cj + (γ − 1)cdj + c̃cj′ + ccj′ .

Proof. Since client j is in the cluster of j′, then Cl(j) ∩ Cl(j′) 6= ∅ and ccj′ + c̃cj′ ≤ ccj + c̃cj.
We can assume that

d(j, j′) ≥ (2− γ)c̃cj + (γ − 1)cdj + ccj′ , (3.4)

because if we sum the missing term, the maximum distance from j′ to a facility in its
close set, it is enough to reach any facility in Cl(j′) from j′. Applying the bound c̃cj ≤ cdj
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in this inequality, we get that d(j, j′) ≥ c̃cj + ccj′ . Since d(j,Cl(j) ∩ Cl(j′)) ≤ c̃cj, we have
d(j′,Cl(j) ∩ Cl(j′)) ≥ ccj′ .

If the average distance from j′ to the intersection of both close sets of j and j′ is
greater than or equal to ccj′ , then d(j′,Cl(j′) \N(j)) ≤ ccj′ and the lemma follows because
d(j, j′) ≤ c̃cj + c̃cj′ ≤ (2− γ)c̃cj + (γ − 1)cdj + c̃cj′ . If not, then

d(j′,Di(j) ∩ Cl(j′)) = ccj′ − z, (3.5)

for some z > 0. In Figure 3.2 the sets involved in the proof are pointed.

j j′

Cl(j) ∩ Cl(j′) Di(j) ∩ Cl(j′)

Cl(j′) \N(j)

Cl(j′) \ Di(j)

Cl(j)Di(j) Cl(j′)

Figure 3.2: Groups of facilities of j and j′.

Let ŷ = vol(Di(j) ∩ Cl(j′)), the volume of the given area. This value is, at most,
max{γ − 1, 1}, for the sum of the scaled variables related to the close facilities of j is
equal to 1. Equation (3.5) implies that

d(j′,Cl(j′) \ Di(j)) = ccj′ +
ŷ

1− ŷ z. (3.6)

Using the triangle inequality between j, j′ and the set of facilities Di(j)∩Cl(j′) as well as
facts (3.4) and (3.5), we can subtract one distance from another and get a lower bound
of the distance of j to Di(j) ∩ Cl(j′):

d(j,Di(j) ∩ Cl(j′)) ≥ (2− γ)c̃cj + (γ − 1)cdj + z

= cdj − (2− γ)(cdj − c̃cj) + z. (3.7)
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Using the natural upper bound and (3.7), we’ll find a lower bound on cdj − c̃cj:

c̃cj ≤ d(j,Di(j) \ Cl(j′))

≤ cdj −
ŷ

γ − 1− ŷ (z − (2− γ)(cdj − c̃cj))

cdj − c̃cj ≥
ŷ

γ − 1− ŷ (z − (2− γ)(cdj − c̃cj))

≥ ŷ

γ − 1− ŷ z
/(

1 + (2− γ)ŷ
γ − 1− ŷ

)

= ŷz

(γ − 1)(1− ŷ) . (3.8)

We used the fact that the denominator of the last inequality is non-negative. Combining
(3.4) and (3.8):

d(j′,Cl(j) ∩ Cl(j′)) ≥ d(j, j′)− d(j,Cl(j) ∩ Cl(j′))
≥ (2− γ)c̃cj + (γ − 1)cdj + ccj′ − c̃cj
= (γ − 1)(cdj − c̃cj) + ccj′

≥ ŷ

1− ŷ z + ccj′ . (3.9)

From (3.7) and (3.9):

d(j′,Cl(j′) \N(j)) ≤ ccj′ +
ŷ

1− ŷ z.

Combining all those values, we complete the lemma:

d(j,Cl(j′) \N(j)) ≤ c̃cj + c̃cj′ + d(j′,Cl(j) ∩ Cl(j′))

≤ (2− γ)c̃cj + (γ − 1)
(
cdj −

ŷz

(γ − 1)(1− ŷ)

)

+ c̃cj′ + ccj′ +
ŷ

1− ŷ
= (2− γ)c̃cj + (γ − 1)cdj + c̃cj′ + ccj′ .

The following lemma provides an upper bound on the expected distance from a client
to the closest facility opened by the algorithm within a certain subset of facilities.

Lemma 2. Let y ∈ {0, 1}|F | be a random binary vector encoding the facilities opened in
steps 4 and 5 of the algorithm. The following inequality holds for any subset A ⊆ F of
facilities, such that ∑i∈A ȳi > 0 and any client j ∈ C:

E
[

min
i∈A,yi=1

cij
∣∣∣∑
i∈A

yi ≥ 1
]
≤ d(j, A).

Proof. Note that there exist disjoint sets A1, A2, . . . ⊆ A corresponding to the clusters,
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that are negatively correlated. By construction, there is at most one facility in each subset
Ak and the probability that one is opened if equal to ∑i∈Ak ȳi.

We will analyze a suboptimal procedure to assign clients to open facilities: consider
an assignment algorithm that replaces each set Ak by a new facility ik, creating a new
instance, with distance d(j, Ak) from client j and fractional opening ȳik = ∑

i∈Ak ȳi. Then,
for each client, the algorithm chooses the closest opened facility ik, which is the same as
choosing the only opened facility in the subset Ak, in the original instance.

Using the described algorithm, a client may be connected to a facility that is not the
closest opened one: if a subset have a high mean value but a close facility to the client is
opened, it will not be chosen. Nevertheless, we will show that the greedy assignment of j
to the closest open facility in the modified instance results in the expected connection cost
at most equal to d(j, A), which translates to the suboptimal assignment in the original
instance and therefore implies that in the optimal assignment in the original instance, the
expected connection cost is also at most d(j, A).

Consider the facilities from A in the order i1, i2, . . . of nondecreasing distance from j.
Since their opening is independent, the probability that il counts as the closest among
the open facilities is

pl =
i<il∏
i=i1

Pr[yi = 0] · Pr[yil = 1]

=
i<il∏
i=i1

(1− ȳi) · ȳil .

The result follows from:

E
[

min
i∈A,yi=1

cij
∣∣∣∑
i∈A

yi ≥ 1
]

=
∑|A|
l=1 plcilj∑|A|
l=1 pl

=
∑|A|
l=1(∏l−1

o=1(1− ȳio))ȳilcilj∑|A|
l=1(∏l−1

o=1(1− ȳio))ȳil

≤
∑|A|
l=1 ȳilcilj∑|A|
l=1 ȳil

= d(j, A).

In the third step, we used a result from Fortuin et al. [41], that extends Chebyshev’s
sum inequality.

Since each facility is opened with probability γ, the expected opening cost of the
the returned solution is ∑i∈F γyi, which is γ times the fraction opening in the objective
function of the linear program. To complete the analysis of the algorithm, the expected
connection cost of a given client j must be bounded. To this, one analyzes three disjoint
events, depending on the set in which the closest facility to j is included: in the close set,
in the distant set, or in neither (when one considers that j is connected to a facility in
the close to its cluster center). The obtained expected cost has the form f(γ)∑i∈F cijxij,
where f is a function that depends only on γ.
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From the obtained bounds, the total expected cost is bounded as γF ∗ + γC∗, where
F ∗ is the fractional opening cost, and C∗ is the fractional connection cost of the optimal
fractional solution. Then, opening and connection costs are balanced, by making γ = 1.68,
for which γ = f(γ). Thus, the total expected cost is bounded by 1.68(C∗+F ∗), obtaining a
1.68-approximation1. We omit the complete details to bound the opening and connection
costs, as they are not used by our algorithm in Chapter 5.

1In Byrka and Aardal’s work, they also balance this factors with the algorithm of Jain et al. [51],
leading to a 1.5-approximation.
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Chapter 4

Reduction-Based Approximation
Algorithms for HLP

In this section, we derive the first approximation algorithm for the HLP variants presented
in Chapter 2. The algorithm strategy is to reduce a HLP problem to a corresponding
location problem. Recall that in a reduction, an instance of the problem we want to
solve is transformed into an instance of another problem, which is known to have an
approximation algorithm. Then, we solve the transformed instance using this algorithm,
and use the returned solution to build a solution to the original problem. Formally, let A
be the problem we want to solve and B the problem for which we have a ρ-approximation
algorithm, called ALGB. Also let IA be an instance of A and IB the mapped instance
of B. In this section, A is a variant of HLP. The choice of B depends on the characteristics
of the HLP problem: the number of hubs to which a client may be connected; the limit
on the number of open hubs; and the cost to open the hubs.

In our reduction, the problem B will be k-FLP, or one of its particular cases, FLP or
k-Median. The problem the SApHLP will be reduced to is the k-FLP; for SAHLP, the
problem is FLP; and for the SAFpHLP, the k-Median variant.

The reduction scheme is summarized below.

1. Starting with IA, build an instance IB.

2. Solve IB using ALGB, obtaining a ρ-approximate solution SB.

3. Starting with SB, build a solution SA.

Constructing IB: Recall that IA has the form of a tuple IA = (C,H,D, d, f, α, p). Cre-
ate an instance IB = (H, C ′, d, f, p). Instance IB contains the same set of facility loca-
tions H, distance d, opening cost function f , and limit on the number of open facilities p
as instance IA. The set of clients C ′ is constructed as follows: for each demand {i, j} ∈ D,
add to C ′ a new client at the same location of i, and a new client at the same location of
j.

To build the solution SA, the clients must be connected to open hubs, respecting the
nature of the considered HLP variant (according to the number of connections a client
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can have). First, we consider the multiple allocation variants. Later, we will describe how
to extend the results for single allocation case.

4.1 Multiple allocation variants

Observe that the set of open facilities in SB corresponds to a set of open hubs in SA, such
that SA and SB have the same set of open hubs. From now on, the terms hub and facility
will be used interchangeably.

Let S∗A and S∗B be optimal solutions of IA and IB, respectively. The value of S∗A can
be expressed as OPTA = C∗+αE∗+H∗, where C∗ is the cost to connect clients to hubs,
E∗ is the connection cost of hub to hub link, and H∗ is the opening cost of hubs. The
value of S∗B can be expressed as OPTB = G∗+F ∗, where G∗ is the cost to connect clients
to facilities, and F ∗ is the opening cost of facilities.

In the lemma below, the solution cost of the optimal solutions are related.

Lemma 3. The optimal value for instance IB is bounded by C∗+H∗, that is, G∗+F ∗ ≤
C∗ +H∗.

Proof. Starting with S∗A, let us build a viable solution for B, named S ′B, that uses the
same set of opened hubs as S∗A and assigns each client to the closest opened hub. For a
client i ∈ C, let φ(i) be the closest hub to i and φ∗(i) be the hub this client is connected
to in an optimal solution S∗A. Note that these hubs are not necessarily the same for a
fixed client.

Let the cost of S ′B be G + F , where G corresponds to the connection cost and F

corresponds to the opening cost. Using the definitions of functions φ and φ∗, it follows
that:

G =
∑
i∈C
|Di| d(i, φ(i))

≤
∑
i∈C
|Di| d(i, φ∗(i)) (4.1)

=
∑
{i,j}∈D

(d(i, φ∗(i)) + d(j, φ∗(j)) (4.2)

= C∗.

Note that we defined a weighted connection cost of a client i, meaning that the cost of
a link between the client and the assigned hub will be payed for each time a demand
point includes i. In step (4.1), the cost of connecting i to any hub cannot be less than
connecting it to the closest hub and in (4.2) we simply split from a fixed client to a fixed
demand point of view.

Seeing that S ′B opens the same set of hubs as S∗A, we know that F = H∗, so the total
cost of this solution is cost(S ′B) = G+ F ≤ C∗ +H∗. Since S ′B is a viable solution to B,
its cost is an upper bound to OPTB. Therefore, the proof is complete.

From the previous result, the cost of solution SB for instance IB can be written in
terms of the optimal cost of IA, since SB is a ρ-approximate solution.
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Corollary 1. The cost of solution SB is, at most, ρ(C∗ +H∗).

We will now describe how to construct SA given the set of hubs that were opened
by SB. Since the subset of hubs to be used is already defined, we must only connect
the clients to hubs to create an answer to IA. For a multiple allocation variant of HLP,
the decision on where to connect clients can be made analyzing only the two clients in
a demand point, for a client can be connected to any number of distinct hubs. In our
algorithm, for each each demand {i, j}, the corresponding clients are connected to the
pair of hubs that achieves minimum connection cost. The complete reduction is described
in Algorithm 1.

Algorithm 1: Reduction algorithm for multiple allocation HLP.
Input : IA
Output: SA, ψ

1 SA ← ∅
2 IB ← convert IA into an instance of B
3 SB ← ALGB(IB) // obtains a ρ-approximation for IB

4 foreach {i, j} ∈ D do
5 k∗, l∗ ← arg min k,l∈SB{d(i, k) + αd(k, l) + d(l, j)}
6 ψ(i, j)← k∗, ψ(j, i)← l∗ // assign hubs k∗ and l∗ to {i, j}
7 SA ← SA ∪ {k∗, l∗} // add hubs k∗ and l∗ to solution

8 return SA, ψ

For the sake of simplicity, we analyze a (possibly suboptimal) algorithm in which i, j
are connected through the hubs φ(i), φ(j) that are the closest open hubs of SB to i and j,
respectively. The cost of SB accounts for the links between clients and hubs for a demand
{i, j}, which are the costs of connecting i to hub φ(i), and j to hub φ(j). However, the
cost of SB does not account the cost of interconnecting hubs. Since this value is not given
by SB, it must be bounded in terms of different lower bounds.

Recall that φ∗(i) represents the hub to which a client i is connected in the optimal
solution S∗A. For each demand {i, j}, Figure 4.1 depicts two paths to bound the route
cost, where the dotted lines represent distances to which the discount factor α was applied.
In π1, clients i and j are assigned to φ(i) and φ(j), respectively, and the connection cost
between these hubs is bounded by using the path from i to j in the optimal solution,
considering the lengths multiplied by α. In π2, both clients are connected to the same
hub φ(i); here, one assumes w.l.o.g. that d(i, φ(i)) ≤ d(j, φ(j)), and the cost from j to
the hub is bounded using the optimal path with no discount factor.

i j

φ(i) φ(j)
φ∗(i) φ∗(j)

i j

φ(i) φ(j)
φ∗(i) φ∗(j)

Figure 4.1: Paths π1 and π2 used to bound the approximate solution value.
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Observe that the connection cost of {i, j} incurred by the solution returned by Al-
gorithm 1 is not larger than the length of the smallest path between π1 and π2. The
following lemmas calculate the cost of using paths π1 and π2 for every demand.

Lemma 4. When all demand points use the assignment of π1, the total transportation
cost is at most αC∗ + αE∗ + (1 + α)G.

Proof. In π1, all clients are connected to the same hub they were designated in SB, given
by the φ function. Define c(1)

ij as the cost to transport demand (i, j) ∈ D through hubs
φ(i) and φ(j), as in Figure 4.1. We get:

c(1)
ij = d(i, φ(i)) + αd(φ(i), φ(j)) + d(j, φ(j))
≤ d(i, φ(i)) + α (d(i, φ(i)) + d(i, φ∗(i)) + d(φ∗(i), φ∗(j)) + d(φ∗(j), j) + d(j, φ(j)))

+ d(j, φ(j))
= (1 + α) (d(i, φ(i)) + d(j, φ(j))) + α (d(i, φ∗(i)) + d(φ∗(i), φ∗(j)) + d(φ∗(j), j)) .

If all demands use the corresponding path π1, the total transportation cost of the solution,
defined as T (1), is obtained by adding the cost of each demand:

T (1) =
∑
{i,j}∈D

c(1)
ij

≤ (1 + α)
∑
{i,j}∈D

(d(i, φ(i)) + d(j, φ(j)))

+ α
∑
{i,j}∈D

(d(i, φ∗(i)) + d(φ∗(i), φ∗(j)) + d(φ∗(j), j))

= αC∗ + αE∗ + (1 + α)
∑
{i,j}∈D

(d(i, φ(i)) + d(j, φ(j)))

= αC∗ + αE∗ + (1 + α)
∑
i∈C
|Di| d(i, φ(i))

= αC∗ + αE∗ + (1 + α)G.

Lemma 5. When all demand points use the assignment of π2, the total transportation
cost is at most C∗ + E∗ +G.

Proof. Given a demand point and using the strategy applied in π2, a client may be
connected to the hub of its destination, which makes the assignment local, that is, a
client may have more than one hub. The discount factor is not used in this case, since
both clients are connected to the same hub. The transportation cost of an individual
demand point {i, j}, defined as c(2)

ij , is:

c(2)
ij = d(i, φ(i)) + d(φ(i), j)
≤ 2d(i, φ(i)) + d(i, φ∗(i)) + d(φ∗(i), φ∗(j)) + d(φ∗(j), j)

The total cost of this route, when all demand points use π2’s assignment, is defined as
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T (2) and is obtained by adding the costs of all demands:

T (2) =
∑
{i,j}∈D

c(2)
ij

≤
∑
{i,j}∈D

2d(i, φ(i)) +
∑
{i,j}∈D

(d(i, φ∗(i)) + d(φ∗(i), φ∗(j)) + d(φ∗(j), j))

= C∗ + E∗ +
∑
{i,j}∈D

2d(i, φ(i))

≤ C∗ + E∗ +
∑
{i,j}∈D

(d(i, φ(i)) + d(j, φ(j))) (4.3)

= C∗ + E∗ +
∑
i∈C
|Di| d(i, φ(i)) (4.4)

= C∗ + E∗ +G.

In step (4.3), the fact that d(i, φ(i)) ≤ d(j, φ(j)) is used, and in (4.4) the indices of the
summation corresponding to a client are grouped.

Note that the discount factor α is applied in the transportation cost between hubs
for path π1, but not for π2. Thus, in the analysis of the algorithm, the paths are chosen
according to a probability parameter p ∈ [0, 1], that expresses how likely is the use of
path π1. Thus, the total expected cost is p multiplied by the cost of using π1 plus (1− p)
multiplied by the cost of using π2. On the one hand, the closer α is to zero, the cheaper
π1 becomes, for it is mostly composed of discount links; on the other hand, if α is closer
to 1, π2 becomes a better choice. Thus, parameter p is set depending on the value of α
in IA, such that the expected connection cost is minimized. Notice that the deterministic
algorithm which chooses the cheapest between the available paths for each demand point
generates a solution of no larger cost, compared to choosing only one strategy for all
demands.

Theorem 3. If problem A is a variant of HLP with multiple allocation, and there is a
ρ-approximation algorithm for the corresponding location problem B, then there exists a
(1 + ρ)-approximation algorithm for A.

Proof. When α = 0, there is no cost to interconnect hubs, so there is a mapping be-
tween solution of IA and IB which preserve the cost, and thus solution SB induces a
ρ-approximation for IA. So, assume α > 0.

Consider the algorithm which uses paths π1 with probability p and π2 otherwise, for
every demand. Let ALG be the expected cost of the selected paths, plus the cost to open
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hubs. The expected cost of returned solution is:

E[ALG] = pT (1) + (1− p)T (2) + F

≤ p(αC∗ + αE∗ + (1 + α)G) + (1− p)(C∗ + E∗ +G) + F

= C∗(αp+ 1− p) + αE∗
(
p+ 1− p

α

)
+G (1 + αp) + F

≤ ρ(1 + αp)(C∗ +H∗) + C∗(αp+ 1− p) + αE∗
(
p+ 1− p

α

)
(4.5)

= C∗(1− p+ ρ+ αp+ αρp) + αE∗
(
p+ 1− p

α

)
+H∗(ρ+ αρp)

≤ γ(C∗ + αE∗ +H∗) (4.6)
= γOPTA

In step (4.5), the fact that the optimal solution cost of SA is an upper bound of the
solution cost of SB is applied, which puts the expected solution value in terms of HLP
related costs. In step (4.6) the approximation factor γ is introduced, whose value is
calculated below by analyzing the parameters’ worst case performance.

γ = max
0<α≤1

{
max

{1−p+ρ+αp+αρp,
p+(1−p)/α,
ρ+αρp

}}
= max

0<α≤1

{
max

{
1−p+ρ+αp+αρp,

p+(1−p)/α

}}
(4.7)

= 1 + ρ (4.8)

In (4.7), the third term of the maximum function was discarded for it is always smaller
than the first one. In (4.8), we replaced p by the following definition:

p =

0 if α ≥ 1
1+ρ ,

1 if α < 1
1+ρ .

This completes the proof.

4.2 Single allocation variants
When problem A is a single allocation HLP variant, each client j must be assigned to one
unique hub and all demand from j must be transported through this hub. The modified
reduction is described in Algorithm 2.

Since in the single allocation case every demand starting in a client i must be routed
through the same hub, only path π1 of Figure 4.1 can be used. Recall that in this path,
each client is connected to the closest open hub.

Theorem 4. If problem A is a variant of HLP with single allocation, and there is a
ρ-approximation algorithm for the corresponding location problem B, then there exists a
(1 + 2ρ)-approximation algorithm for A.

Proof. The proof uses the same argument as the proof of Theorem 3, but in this case,
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Algorithm 2: Reduction algorithm for single allocation HLP.
Input : IA
Output: SA, φ

1 SA ← ∅
2 IB ← convert IA into an instance of B
3 SB ← ALGB(IB) // obtains a ρ-approximation for IB

4 foreach i ∈ C do
5 k∗ ← arg min k∈SB d(i, k)
6 φ(i)← k∗ // assign hub k∗ to i

7 SA ← SA ∪ {k∗} // add hub k∗ to solution

8 return SA, φ

only path π1 is used because clients must be assigned to only one hub, in this case, the
closest one.

4.3 Summary of reductions
From Theorems 3 and 4 we can derive various algorithms for variants of HLP, which are
categorized depending if they have: single allocation (SA) or multiple allocation (MA);
maximum number p of hubs to be opened or no limit at all; cost to open hubs, or no cost
to open hubs (F). The results are summarized in Table 4.1, where given a variant of HLP,
it shows the problem to which it is reduced, the used approximation algorithm and the
obtained approximation factor.

Problem Reduced to Factor used Factor obtained

SAHLP FLP 1.488 [59] 3.98

MAHLP 2.488

SApHLP
k-FLP 2 +

√
3 + ε [81] 8.48

MApHLP 4.74

SAFpHLP
k-Median 1 +

√
3 + ε [60] 6.48

MAFpHLP 3.74

Table 4.1: Variants of HLP with the obtained approximation factors.
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Chapter 5

Randomized Approximation
Algorithm for SAHLP

In this section, a new approximation algorithm for the Single Allocation Hub Location
Problem (SAHLP) is developed, in which there is no limit upon the number of open hubs
and each client must be connected to exactly one of these. This algorithm builds on
previous works on the Facility Location Problem, made through the last two decades. In
particular, we refer to the 1.5-approximation algorithm by Byrka and Aardal [11] and the
refinement of Shi Li, to achieve the 1.488-approximation [59], which are summarized in
Section 3.3.

5.1 Problem Formulation
In the integer programming formulation each demand {i, j} ∈ D will be considered twice:
a demand from i to j and a demand from j to i. Formally, let −→D be the set of directed
demands, defined as:

−→
D = {(i, j), (j, i) : {i, j} ∈ D}.

Given client i and hub k, let the variable xik = 1 indicate that client i is assigned to hub k
and, otherwise, xik = 0. For each hub k, we consider a binary variable zk such that zk = 1
represents that hub k is opened and zk = 0 indicates it is not opened. For a demand
(i, j) ∈ −→D and each pair of hubs (k, l) ∈ H2, let the binary variable yklij = 1 indicate
whether this demand is routed through inbound hub k and outbound hub l, that is, k is
connected to i and l is connected to j; otherwise, this variable assumes the value 0. We
emphasize the order the indices assume in these variables matters, for a different route is
taken if they are flipped. Note that variables x are forced to be binary, by constraints 5.2
and 5.3. Consider the following integer programming formulation of SAHLP.
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minimize
∑
k∈H

zkf(k) + 1
2

∑
(i,j)∈−→D

∑
(k,l)∈H2

yklij (d(i, k) + αd(k, l) + d(l, j))

subject to
∑
k∈H

xik = 1 ∀ i ∈ C, (5.1)

∑
l∈H

yklij = xik ∀ (i, j) ∈ −→D , ∀ k ∈ H, (5.2)

∑
k∈H

yklij = xjl ∀ (i, j) ∈ −→D , ∀ l ∈ H, (5.3)

xik ≤ zk ∀ i ∈ C, ∀ k ∈ H, (5.4)

yklij ∈ {0, 1} ∀ (i, j) ∈ −→D , ∀ (k, l) ∈ H2, (5.5)

zk ∈ {0, 1} k ∈ H. (5.6)

Let (x, y, z) be a solution of the program. The set of variables z produces a set of
open hubs O and x an assignment φ : C → O. Regarding the objective function, the first
term accounts for the cost of open hubs in O and the second term for the connection cost
of each demand (i, j) ∈ −→D . Notice that −→D counts each demand of D twice, and thus we
have a factor 1

2 that multiplies the sum.
By the first set of constraints (5.1), each client i is assigned to exactly one hub, say

k, and constraint (5.4) ensures that k ∈ O, the set of open hubs. Constraints (5.2) and
(5.3) make sure that there is a pair of hubs transporting the demand of a pair of clients,
taking the route cost into account in the second term of the objective function. However,
one could say that a demand (i, j) ∈ −→D with corresponding variable yklij is not set to 1
and not correctly contributing to the final value; instead, a y variable associated with
another hub is wrongly set to 1, so now we argue that for this demand, yklij = 1 if, and
only if i is assigned to k and j is assigned to l, i.e., xik = 1 and xjl = 1. Suppose that i
is assigned to k and let k′ 6= k, then by the second set of constraints yk′l′ij = xik′ = 0 for
every l′, since i can be assigned to only one hub. In a similar way, if j is assigned to l,
then yk′l′ij = xjl′ = 0 for every k′ and l′ 6= l. Given that only ykl′ij , for any l′, and yk

′l
ij , for

any k′, can be different from 0 and the constraint sets of these variables must sum to 1,
it implies that we must have yklij = 1.

For the development of the algorithm, we will require a relaxation of the program, in
which we replace constraints yklij ∈ {0, 1} and zk ∈ {0, 1} by yklij ≥ 0 and zk ≥ 0. Denote
the resulting linear program by (LP).

5.2 LP bounds and symmetries
Let (x, y, z) be a fixed optimal solution for (LP). In the following, we define a series of
variables which represent parts of the cost of this given solution. The goal is the rewrite
the objective function in simpler terms.
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First, for each demand (i, j) we consider the corresponding (fractional) connection cost
in the objective function of (LP). This cost can be broken into three parts: the average
cost to go from i to the fractionally assigned inbound hubs k; the average cost to go from
the fractionally assigned inbound hubs k to the fractionally assigned outbound hubs l;
and the average cost to go from the fractionally assigned outbound hubs l to j. These
costs are illustrated in Figure 5.1. When considering the costs associated with demands,
we will use lower case letters for the name of the variables.

Definition 11. Let (x, y, z) be an optimal solution of (LP). Consider a demand (i, j) ∈−→
D . We define:

cij =
∑

(k,l)∈H2

yklij d(i, k), eij =
∑

(k,l)∈H2

yklijαd(k, l), qij =
∑

(k,l)∈H2

yklij d(l, j).

i j

k1

k2

kn

l1

l2

ln

...
...

cij eij qij

Figure 5.1: Illustration of which link costs are related to cij, eij and qij.

Consider a client i ∈ C and recall that Di = {j : {i, j} ∈ D}. The set Di is the set
of endpoints of demands associated with a client i (excluding i). Since we duplicated the
demands, each demand (i, j) of −→D can be associated with a single client i ∈ C. Now we
associate part of the objective cost corresponding to a given client. When considering the
costs associated with clients, capital letters will be used for the name of the variables.

Definition 12. Let (x, y, z) be an optimal solution of (LP). Consider a client i ∈ C. We
define:

Ci =
∑
j∈Di

cij, Ei =
∑
j∈Di

eij, Qi =
∑
j∈Di

qij.

Finally, we break the cost of the objective function in four different parts, namely:
the opening cost, the inbound connection cost, the inter-hub connection cost and the
outbound connection cost.

Definition 13. Let (x, y, z) be an optimal solution of (LP). We define:

H =
∑
k∈H

zkf(k), C =
∑
i∈C

Ci, E =
∑
i∈C

Ei, Q =
∑
i∈C

Qi.
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Observe that the objective function can now be written as H + 1
2(C +E +Q). When

analyzing the approximation factor of the algorithm these terms’ values will be bounded
individually, which will make up the final achieved ratio. It will also be useful to define
versions of the variables whose sums are restricted to one associated hub k.

Definition 14. Let (x, y, z) be an optimal solution of (LP). Consider a client i ∈ C, and
a fixed hub k ∈ H. We define:

cijk = 1
xik

∑
l∈H

yklij d(i, k), eijk = 1
xik

∑
l∈H

yklij αd(k, l), qijk = 1
xik

∑
l∈H

yklij d(l, j),

Cik =
∑
j∈Di

cijk, Eik =
∑
j∈Di

eijk, Qik =
∑
j∈Di

qijk.

Counting each demand twice is useful, as it provides many symmetries that will be
exploited in the analysis. One such symmetry is given by the next auxiliary lemma, which
follows directly from the set of constraints.

Lemma 6. Let (x, y, z) be a feasible solution of (LP). Then for every demand (i, j) ∈ −→D
and hub k ∈ H, the following holds:

∑
l∈H

yklij =
∑
l∈H

ylkji

Proof. From constraint (5.2), we have ∑l∈H y
kl
ij = xik, and from constraint (5.3) we have∑

l∈H y
lk
ji = xik. The lemma follows.

Using this result, it is possible to relate the inbound and outbound connection costs,
showing they are equal, as in the following corollary.

Corollary 2. For every feasible solution (x, y, z) of (LP) and demand (i, j), cij = qji

Proof. By direct calculation and using Lemma 6,

cij =
∑

(k,l)∈H2

yklij d(i, k)

=
∑
k∈H

d(i, k)
∑
l∈H

yklij


=
∑
k∈H

d(i, k)
∑
l∈H

ylkji


=

∑
(l,k)∈H2

ylkjid(i, k)

= qji.

We make use of other properties of a solution to the (LP). For a fixed client i and
hub k, every constraint of type (5.2) sum up to xik, implying that the constraint of demand
points (i, j) and (i, j′), for any j, j′ ∈ Di, are equal, thus,

∑
l∈H y

kl
ij = ∑

l∈H y
kl
ij′ . Previously,

we defined for a demand (i, j) the average cost to go from i to the fractionally assigned
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inbound hubs k. Below, we define the unique value a client i uses to connect to every
endpoint.

Definition 15. Let (x, y, z) be an optimal solution of (LP), i be a client and j ∈ Di. We
define ci as the unique cost that this client uses to connect to the fractionally assigned
inbound hubs:

ci = cij,

Note the ci does not depend on which endpoint is being used in the definition, and
thus ci is well defined. Indeed, let j, j′ ∈ Di. Then

ci = cij =
∑
k∈H

∑
l∈H

yklij d(i, k) =
∑
k∈H

∑
l∈H

yklij′d(i, k) = cij′ .

We also observe that the overall inbound and outbound connection costs are equal.

Lemma 7. For any feasible solution (x, y, z), C = Q.

Proof. From Corollary 2, we calculate

C =
∑
i∈C

Ci =
∑
i∈C

∑
j∈Di

cij =
∑
i∈C

∑
j∈Di

qji =
∑
j∈C

∑
i∈Dj

qji =
∑
j∈C

Qj = Q.

5.3 Modifying the fractional solution
A commonly used technique for FLP approximation algorithms is the notion of clustering
and the neighborhood of a client, that allow us to bound connection costs and connect
clients to open hubs with values we know how to calculate. Inspired by those ideas, we
consider the support of the solution, i.e., the set of nonzero variables. One way to interpret
the support is to think of the bipartite graph between C and H, where there is an edge
between a client i and a hub k if xik > 0.

Definition 16. Let (x, y, z) be an optimal solution of (LP). For a client i, we define the
neighborhood of this client as the set of hubs to which it is connected:

N(i) = {k ∈ H : xik > 0}.

Before explaining the clustering algorithm, we must introduce several concepts that
involves how to connect clients to hubs.

The filtering technique was introduced by Lin and Vitter [63], that considered problems
with packing and covering constraints. After solving the LP relaxation, some variables
that have large objective coefficients are modified and then a rounding procedure is ap-
plied. Shmoys et al. [72] used the technique but also scaled some variables in the process.
We will use the filtering as seen in the FLP literature [76, 11] to bound the distance
between a client i and a hub k of N(i), instead of using the dual variable that corresponds
to the set of constraints (5.1), as in primal-dual based algorithms.
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Let γ > 1 be a scaling parameter for our algorithm. The first modification in the
solution we will execute is scale up the hub opening variables: for all k ∈ H, let z′k = γzk.
Note that several of these variables related to hubs can now be greater than one. As
discussed by Byrka and Aardal [11], we do not round these variable down to 1 (as done
by Shmoys et al. [72]), but rather split hubs that exceeded the value to maintain feasibility.
This technique is describe more precisely later in this section.

We highlight that variables zk always refer to the non-scaled solution, and are not
replaced by variables z′k.

Definition 17. For a client i, consider a permutation k1, k2, . . . , k|N(i)| of the neighborhood
N(i) in nondecreasing order of d(i, ks). Let t be the minimum index such that the sum
surpasses the given value: ∑t

s=1 zks ≥ 1/γ. The γ-neighborhood of client i is defined as:

Nγ(i) = {k1, k2, . . . , kt}.

Filtering is used in many location problems whose aim is connecting clients to some
kind of structure. The idea is that for γ > 1 only the hubs that are closest to i are
considered and thus the distance between i and a hub in Nγ(i) can be bounded in terms
of the primal objective function. In FLP, this technique has been used to bound the
connection cost of a client to its closest open facility, which produces a good solution, for
the client-facility link is the only cost that needs to be analyzed. In the SAHLP, however,
filtering cannot be used this way. The reason is that the total connection cost of a demand
is the sum of different terms, and not only the distance of a client to the assigned hub
and, thus, the cost of serving the demands starting in i through the closest hub of i could
be larger than serving the same demands though a different hub. In our problem, in the
general case, we might use a more expensive connection to the inbound hub, but save in
other links to transport the demands. To tackle this difficulty, in our algorithm, filtering
will only be used to bound the distance from i to the assigned hub, the overall demand
connection cost will be calculated using different techniques.

Next, we describe more precisely the splitting process, and define the complete solu-
tion.

5.3.1 Splitting hubs
For a given client i, we defined its γ-neighborhood as containing almost the same hubs
as N(i), until the sum of their zk variables exceeds 1/γ, if the opening of each hub is
summed by nondecreasing order of the distance to i. We assume that, for each client, the
volume of opening in Nγ(i) equals to γ, that is,

∑
k∈Nγ(i)

zk = 1/γ.

If this is not the case, it is possible to create an equivalent instance of the problem and a
corresponding solution, whose value is the same as the value of (x, y, z). This is done by
successively splitting hubs. The idea is to find the last hub in the sum related to Nγ(i)
and systematically modify the variables to perfectly achieve the volume of γ.
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Let i ∈ C and t be as in the definition of Nγ(i), that is, let t such that kt is the first
hub for which the sum of fractional opening exceeds 1/γ. Define ε = ∑t

s=1 zks − 1/γ, the
exceeding amount. If ε = 0, then we say that Nγ(i) is tight; otherwise, ε > 0, and we
say that it is loose. In the latter case, we split kt at value zkt − ε: replace kt by two new
hubs, say k′ and k′′, in the same location. Now, define zk′ = zkt − ε and zk′′ = ε. Since
we remove a hub that is connected to multiple clients and replaced it with two others, we
must fix the connection variables for every client: for each i ∈ C, let xik′ = min{zk′ , xikt}
and xik′′ = max{0, xikt − zk′}. Note that splitting takes polynomial time, since each time
that we split a hub, the neighborhood of clients considered in previous iterations remain
tight. Moreover, the number of created hubs is polynomial and the objective value does
not change. Thus, in the following, assume that ∑k∈Nγ(i) zk = 1/γ for every i ∈ C.

5.3.2 Complete solution
There is also the notion of complete solution: a solution (x, y, z) of (LP) is complete if, for
every (i, j) ∈ −→D and every (k, l) ∈ H2, if yklij > 0, then yklij = zk = zl. Once again, we may
assume that (x, y, z) is complete, since otherwise we can create an equivalent instance of
the problem together with a solution of (LP) of no larger cost. Suppose that a solution
is not complete. Then, there is a variable yklij that is greater than zero and at least one of
the variables zk or zl are not equal to yklij : w.l.o.g., assume zk > yklij . The procedure to fix
these variables is the same as before, splitting hub k into hubs k′ and k′′.

Let ε = zk − yklij , the value at which k must be split. Create k′ and k′′ in the same
location as k, define the new variables and fix the value of the variables x that were
already split in the previous step: zk′ = xik′ = yk

′l
ij and zk′′ = xik′′ = ε. As long as there

is a variable yklij that is not in the needed standard, we split zk or zl in a similar way as
described above. Notice that the number of these variables always decreases, thus this
process takes polynomial time. From now on, suppose that (x, y, z) is a complete solution.

In this modified solution, after splitting hubs and transforming it into a complete
solution, we partition the support N(i) of a client i into two sets of hubs: the close hubs
Cl(i) = Nγ(i) and the distant hubs Di(i) = N(i) \ Cl(i). In order to calculate the cost
a demand expends, we will make use of the average distances from a client to particular
sets of hubs it is connected to.

Definition 18. Given a client i ∈ C, define cci as the average distance from i to the close
hubs in Cl(i) and cdi as the average distance from i to the distant hubs in Di(i):

cci =
∑
k∈Cl(i) zkd(i, k)∑

k∈Cl(i) zk
= γ

∑
k∈Cl(i)

zkd(i, k),

cdi =
∑
k∈Di(i) zkd(i, k)∑

k∈Di(i) zk
= γ

γ − 1
∑

k∈Di(i)
zkd(i, k).

From the average distances of a client to these sets of hubs, we introduce helpful distance
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measures of how the hubs of an instance are related to the clients:

Qc = Cc =
∑
i∈C

cci , Qd = Cd =
∑
i∈C

cdi .

Observe that ci can be defined as the weighted arithmetic mean using the terms of
the last definition and thus ci = 1

γ
cci + (1 − 1

γ
)cdi = ∑

k∈N(i) zkd(i, k), which agrees with
the previously defined versions. Also we define the irregularity of the distances, which is
defined as

ρ = C − Cc

C
= Q−Qc

Q
.

Note that 0 ≤ ρ ≤ 1, since 0 ≤ Cc ≤ C.

5.4 LP-rounding algorithm
In this section we describe our randomized algorithm. Given a complete solution of (LP),
we need to perform two steps: (i) locate which hubs will be selected and (ii) create
an allocation of clients to hubs. Notice that we must explicitly return an assignment
φ : C → O. Each step is detailed next.

5.4.1 Clustering
After solving (LP), the obtained fractional solution is modified by scaling the opening
variables, splitting hubs and turning it into a complete solution with the same cost of the
original solution. To select which hubs will be opened, we will use a clustering algorithm,
such that each cluster is associated to a special client, called the cluster center, for which
a hub will be opened. The clustering has the property that not two cluster centers are
neighbors, which are defined as follows:

Definition 19. Given clients i, j ∈ C, we say that i and j are neighbors if Cl(i)∩Cl(j) 6= ∅.

Now, we create a partition of clients by using the following greedy strategy: as long as
there are clients that are not in a cluster, select an unclustered client i whose sum cci + cdi
is minimum, create a new cluster whose center is i and that contains all neighbors of i.
By construction, note that for the chosen centers i, the sets Cl(i) are disjoint and that∑
k∈Cl(i) γzk = 1. Thus, the variables in this set represent a probability distribution on

Cl(i). For each center i, we dependently open exactly one hub k in Cl(i), such that k is
opened with probability γzk. For each hub k that is not a close hub of some center, we
open k independently with probability γzk. Note that these strategies differ in the sense
that the former chooses one hub from Cl(i) to be opened and the latter tries to open each
of the others with that independent probability, therefore, there will always be open hubs.
Let O be the set of all open hubs.

After executing this procedure, a client i will either have an open hub in its set of
close hubs or an open hub that is not too far away, since it is close to the cluster center
of i. This situation is depicted in Figure 5.2.
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i
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h2 h3
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h5

Cl(i)Di(i)
Cl(j) Di(j)

Figure 5.2: Cluster with open hub h2 and center i, that shares hub h3 with client j.

5.4.2 Assignment
Now that the set of open hubs is defined, we must explicitly return an assignment φ : C →
O. Notice that, contrary to what happens in FLP, a client is not necessarily assigned to
the closest open hub. Note that the problem of assigning a hub to a client is NP-hard,
even if the set of open hubs were given [74], then one must be careful on which hubs
are allocated to clients. To allocate a hub to a client i, our algorithm will consider two
possibilities, depending on whether there is a hub open in N(i) or not.

We process each client i independently. Fixing a client i, there are two possibilities.
First, suppose that one or more hubs of N(i) were opened. In this case, we will connect i
to one hub N(i) ∩ O. If we connected i to the closest hub, then the overall demand cost
could be potentially very large, therefore we balance between the inbound connection
cost, the inter-hub connection cost and the outbound connection cost. More precisely, we
assign i to the hub k ∈ N(i) ∩O which minimizes

Vik := 3Cik + Eik +Qik.

In this case, we set φ(i) = k. Otherwise, suppose no hub in N(i) was opened. In this case,
we simply assign i to the closest open hub, i.e., let k ∈ O be the hub which minimizes
d(i, k), then we se φ(i) = k. The rationale for choosing the value for Vik is that it
appears in the analysis as the expected cost a client pays to connect to an open hub in
its neighboring set.

The whole process is presented in Algorithm 3.

5.5 Analysis of the LP-rounding algorithm
In this section, we analyze LP-rounding algorithm and show that the expected cost of the
generated solution is at most 2.48 times the value of the objective function of (LP), and
therefore our algorithm is a randomized 2.48-approximation, since the objective value is
a lower bound on the optimal value.

First, we bound the expected cost of opening hubs.

Lemma 8. If O is the set of hubs opened by the algorithm, then the expected cost to open
hubs is E [O] = γH.
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Algorithm 3: Rounding algorithm for SAHLP.
Input : (x, y, z)
Output: O, φ

1 S ← C
2 C ← ∅ // The set of cluster centers
3 O ← ∅ // The set of open hubs

// Cluter the clients
4 while S 6= ∅ do
5 Let i ∈ S be the client with minimum cci + cdi .
6 C ← C ∪ {i}.
7 Create a cluster Q = {i} ∪ {j ∈ S : Cl(i) ∩ Cl(j) 6= ∅} centered at i.
8 S ← S −Q.

// Open a hub for each cluster
9 foreach i ∈ C do

10 Choose k ∈ Cl(i) with probability γzk.
11 O ← O ∪ {k}.

// Open remaining hubs
12 foreach k ∈ H such that k /∈ Cl(i) for every i ∈ C do
13 Open hub k with probability γzk.

// Connect clients to hubs
14 foreach i ∈ C do
15 if N(i) ∩O 6= ∅ then
16 Let k ∈ N(i) ∩O be the hub that minimizes Vik.
17 else
18 Let k ∈ O be the hub that minimizes d(i, k).
19 φ(i) = k.
20 return O, φ
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Proof. In the algorithm, the opening conditions for a hub k ∈ H occur in two cases:
if k ∈ Cl(i) for some cluster center i, then k is selected with probability γzk; otherwise, k
is not in any cluster and thus was opened with probability γzk. Therefore, the expected
cost to open hubs is:

E

∑
k∈O

f(k)
 =

∑
k∈O

Pr(k ∈ O)f(k) =
∑
k∈O

γzkf(k) = γH.

Consider now the connection cost: recall that for a fixed demand (i, j) ∈ −→D , if i is
assigned to hub k and j is assigned to hub l, then the cost to serve (i, j) is d(i, k) +
αd(k, l)+d(l, j), with the discount factor applied in the hub-hub link. The main intuition
of the analysis is using the fact that α ≤ 1 and bounding the connection cost of a demand
(i, j) as follows:

cost(i, j) = d(i, φ(i)) + αd(φ(i), φ(j)) + d(φ(j), j)
≤ d(i, φ(i)) + αd(φ(i), j) + αd(j, φ(j)) + d(φ(j), j).

Observe that we do not know how to calculate the distance between hubs φ(i) and φ(j),
so we bound this link using only connections of clients to hubs, pertinently multiplying
the discount factor to one of the links. This situation is demonstrated in Figure 5.3,
where the left scheme is the definition of such cost and the right scheme is the value we
bound it to. This connection cost can be split in two parts: (I) d(i, φ(i)) + αd(φ(i), j),
that accounts for the cost of connecting i to its designated hub plus the distance of this
hub to j with the discount factor; and (II) αd(j, φ(j)) + d(φ(j), j), that accounts for the
cost of going from j to the designated hub of j and back, using the discount factor in one
of the links.

i j

φ(i) φ(j)

i j

φ(i) φ(j)

Figure 5.3: Bounding the connection cost of demand (i, j).

In the algorithm, a client i can be connected to an open hub in its neighboring set
N(i), choosing the hub that minimizes a special sum of some components, or connect to
the closest one, in the case that there are not any open hubs in N(i). So, because the
assignment of each client considers two cases, there are four possibilities to analyze. If a
client i is assigned to some hub in its support set N(i), then we will bound part (I) very
economically, meaning that we do not need to bound this cost; otherwise we will consider
the path from i to φ(i) and back to i, and then bound the distance from i to j. For part
(II), we will always bound the cost of going from j to φ(j) and returning.

These bounds cover well the possibility that neither N(i) nor N(j) has an open hub, or
that there is some open hub in N(i) and no open hub in N(j). The possibility regarding
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the case that there is one open hub in N(j) and no open hub in N(i) is also balanced
in our strategy, as we consider each demand {i, j} ∈ D twice, one for (i, j) and other for
(j, i), in the summation of total connection cost. We remark that our strategy will give
only an upper bound on the cost of the solution, since it does not consider the possibility
that both N(i) and N(j) have open hubs k and l for some yklij > 0.

Definition 20. Consider a client i ∈ C and let O be the set of open hubs. Denote by ai
the event that there is an open hub in the neighboring set hubs of i, i.e., N(i) ∩O 6= ∅,
and by āi the complement of ai. Also, let pi be the probability of event ai.

The next lemma bounds the probability of event ai occurring for a client i ∈ C, which
we will use to analyze the four possibilities aforestated.

Lemma 9. For a given client i ∈ C, the probability that there is an open hub in its support
set, i.e., event ai occurring, is: pi ≥ 1− 1/eγ.

Proof. For a fixed client i ∈ C, we consider a sequence of sets associated with the support
of i and the close hubs of cluster centers: let As = Cl(is)∩N(i), for all cluster centers is.
For any pair of hubs k, l in N(i), there can be several cases: k is not close to any center, k
is close to a center or k and l are both close to a center. In the first case, hub k is opened
independently with probability z̄k; in the second case, since it is the only hub of N(i) in
this close set, the same probability applies. In the third case, when there are two or more
hubs of N(i) in the same close set, their probability to be opened is negatively correlated,
meaning that, the fact that one is not chosen to be opened increases the chance of opening
the others, since exactly one hub of this set is chosen. However, we consider the possibly
suboptimal analysis of independent hub opening in this third case.

Now, since all hubs of N(i) are opened independently and knowing that the probability
of hub k not being opened is 1− z̄k, the probability p that N(i) do not have an open hub
is:

p =
∏

k∈N(i)
(1− z̄k) ≤

∏
k∈N(i)

e−z̄k = e
−
∑

k∈N(i) z̄k = e
−
∑

k∈N(i) γzk = e−γ,

where we used the fact that 1 + x ≤ ex, for x ∈ R, and that the sum of z variables over
the neighboring hubs of i is equal to 1. Therefore, there is an open hub in N(i) with
probability at least 1− e−γ.

Next lemma bounds the average cost of the closest hub of a client i in the case that
no hub in N(i) was opened. Recall that in this case, there is an open hub that is near to
its cluster center. The proof of the next two lemmas are featured in Section 3.3, where
we reviewed an important FLP algorithm that uses similar techniques as ours. As said
before, these results are due to Byrka and Aardal, as well as Shi Li.

Lemma 10. Let i ∈ C, i′ be the corresponding cluster center and A = Cl(i′) \ N(i). If
c̃ci represents the maximum distance from client i to one of its close hubs, then, for any
γ ≥ 1: ∑

k∈A zkd(i, k)∑
k∈A zk

≤ (2− γ)c̃ci + (γ − 1)cdi + c̃ci′ + cci′ .
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Lemma 11. Let i be a client, O be the set of opened hubs by the clustering algorithm, and
A ⊆ H be a set of hubs such that ∑k∈A zk > 0. Also, let hk ≥ 0 be a real value associated
with a hub k. Then

E
[

min
k∈A∩O

hk

∣∣∣∣A ∩O 6= ∅] ≤
∑
k∈A zkhk∑
k∈A zk

.

Lemma 12. Let i be a client, then E[Viφ(i) | ai] ≤ 3Ci + Ei +Qi.

Proof. This follows directly from Lemma 11 by defining hk = Vik, for each k.

Using Lemmas 10 and 11, we obtain the following.

Lemma 13. Let i be a client. Then, E[d(i, φ(i)) | āi] ≤ 2cdi + cci .

Proof. Notice that conditioned on the event that i is not assigned to a hub in N(i), i
is assigned to the closest open hub. In particular, in this case d(i, φ(i)) is smaller than
the distance from i to the closest open hub in A = Cl(i′) \ N(i), where i′ is the cluster
center corresponding to i. Observe that A ∩ O 6= ∅ since we opened a hub in Cl(i′), and
we suppose no hub in N(i) ∩ A was opened. Letting hk = d(i, k) for each k and using
Lemma 11, we obtain that

E[d(i, φ(i)) | āi] ≤
∑
k∈A zkhk∑
k∈A zk

≤ (2− γ)c̃ci + (γ − 1)cdi + c̃ci′ + cci′

= (3− γ)c̃ci + (γ − 1)cdi + cci

≤ 2cdi + cci

In the second inequality, Lemma 10 was applied; we used the fact that c̃ci ≤ cdi , for any
i ∈ C and in the last inequality the following bound was used cci′ + cdi′ ≤ cci + cdi since i′ is
the cluster center associated with i.

In the next lemma, we bound the cost a given demand (i, j) considering all cases of
events ai and aj occurring or not.

Lemma 14. Let (i, j) ∈ −→D and cost(i, j) = d(i, φ(i)) + αd(φ(i), φ(j)) + d(φ(j), j). The
expected cost of (i, j) is:

E[cost(i, j)] = piE[d(i, φ(i)) + eijφ(i) + qijφ(i) | ai]
+ (1− pi)

(
2(2cdi + cci) + ci + eij + cj

)
+ pjE[2d(j, φ(j)) | aj]
+ (1− pj)2(2cdj + ccj).
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Proof. Let k = φ(i). First, we calculate a series of bounds:

αd(φ(i), j) = αd(k, j)
≤ min

l∈H
{α(d(k, l) + d(l, j))}

≤ min
l∈H
{αd(k, l) + d(l, j)}

≤ 1
xik

∑
l∈H

yklij (αd(k, l) + d(l, j))

= eijφ(i) + qijφ(i),

where in the last inequality we used ∑l∈H y
kl
ij = xik, and the fact that the minimum of

αd(k, l) + d(l, j), for some l, is not larger than its average. By similar arguments, we also
have:

αd(i, j) ≤ α(ci + eij + cj).

Lemma 13 states that:

E[d(i, φ(i)) | āi] ≤ 2cdi + cci and
E[d(j, φ(j)) | āj] ≤ 2cdj + ccj.

Recall that we want to bound d(i, φ(i)) +αd(φ(i), φ(j)) + d(φ(j), j) as the sum of two
parts: (I) d(i, φ(i)) + αd(φ(i), j) and (II) αd(j, φ(j)) + d(φ(j), j):

• Bounding (I): conditioned on the event ai, i.e., that φ(i) ∈ N(i), the cost of the first
part is d(i, φ(i)) + αd(φ(i), j) ≤ d(i, φ(i)) + eijφ(i) + qijφ(i). Otherwise, since α ≤ 1,
we have:

d(i, φ(i)) + αd(φ(i), j) ≤ 2d(i, φ(i)) + αd(i, j)
≤ 2(2cdi + cci) + ci + eij + cj

• Bounding (II): conditioned on aj, we simply use d(j, φ(j)), otherwise, conditioned
on āj, the value of the part is at most:

E[2d(j, φ(j)) | āj] ≤ 2(2cdj + ccj)

Combining all the conditional expectations, we complete the lemma.

Now we are ready to bound the overall connection cost, summing up the costs of all
demands.

Lemma 15. Suppose γ ≤ 3. The expected connection cost to serve demands in −→D is:

E

 ∑
(i,j)∈−→D

cost(i, j)

 ≤ (2 + 3e−γ + 4e−γ
γ − 1

)
C + E +

(
2 + 3e−γ + 4e−γ

γ − 1

)
Q
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Proof. Let T be the total connection cost. Using Lemma 14, we get that the total expected
cost is:

E[T ] ≤
∑
i∈C

∑
j∈Di

(
piE[d(i, φ(i)) + eijφ(i) + qijφ(i) | ai]

+(1− pi)
(
2(2cdi + cci) + ci + eij + cj

))
+
∑
j∈C

∑
i∈Dj

(
pjE [2d(j, φ(j)) | aj] + (1− pj)2(2cdj + ccj)

)

Notice that indices in the sums in both lines range the set of demands −→D . If we rename
the indices of the sum in the last line, we obtain:

E[T ] ≤
∑
i∈C

∑
j∈Di

(
piE[d(i, φ(i)) + eijφ(i) + qijφ(i) | ai]

+(1− pi)
(
2(2cdi + cci) + ci + eij + cj

))
+
∑
i∈C

∑
j∈Di

(
piE [2d(i, φ(i)) | ai] + (1− pi)2(2cdi + cci)

)

Now we join the lines and distribute the inner sum:

E[T ] ≤
∑
i∈C

(
piE

∑
j∈Di

3d(i, φ(i)) + eijφ(i) + qijφ(i)

∣∣∣ ai


+ (1− pi)
∑
j∈Di

(
4(2cdi + cci) + ci + eij + cj

))

Using the identities from the previous subsections, we get:

E[T ] ≤
∑
i∈C

(
piE

[
3Ciφ(i) + Eiφ(i) +Qiφ(i) | ai

]
+ (1− pi)

(
4(2Cd

i + Cc
i ) + Ci + Ei +Qi

) )
=
∑
i∈C

(
piE

[
Viφ(i) | ai

]
+ (1− pi)

(
4(2Cd

i + Cc
i ) + Ci + Ei +Qi

) )
.

Now we use Lemma 12,

E[T ] ≤
∑
i∈C

(
pi(3Ci + Ei +Qi) + (1− pi)

(
4(2Cd

i + Cc
i ) + Ci + Ei +Qi

) )
.

Let p = 1 − 1/eγ. By Lemma 9, we know that mini∈C pi ≥ p. Since Cd
i ≥ Ci for

each i, the factor that multiplies pi is not larger than the factor that multiplies (1− pi).
Therefore, if we replace pi by p, we get an upper bound on the summation.

E[T ] ≤
∑
i∈C

(
p(3Ci + Ei +Qi) + (1− p)

(
4(2Cd

i + Cc
i ) + Ci + Ei +Qi

))
= p(3C + E +Q) + (1− p)

(
4(2Cd + Cc) + C + E +Q

)
= p(2C + E + 2Q) + (1− p)

(
2(2Cd + Cc) + 2(2Qd +Qc) + C + E +Q

)
.

In the last equality used Q = C, Qd = Cd and Qc = Cc. If we rearrange the terms,
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we get:
E[T ] ≤ (p+ 1)C + (1− p)2(2Cd + Cc)

+ E

+ (p+ 1)Q+ (1− p)2(2Qd +Qc),

which is a sum of three parts, say TC+TE+TQ, where the first and the last parts are equal.
Next, we will bound the first part, TC . Note that Cd = γC−Cc

γ−1 and that Cc = (1 − ρ)C,
where ρ is the irregularity factor. Substituting those into TC :

TC = (p+ 1)C + (1− p)2(2Cd + Cc)

=
(
ρ

(
4e−γ
γ − 1 − 2e−γ

)
+ 2 + 5e−γ

)
C

=
(
ρ

(
2 + 3e−γ + 4e−γ

γ − 1

)
(1− ρ)(2 + 5e−γ)

)
C

≤
(

2 + 3e−γ + 4e−γ
γ − 1

)
C

where we used the fact that 0 ≤ ρ ≤ 1 and 1 < γ ≤ 3. Now, since TC = TQ and Q = C,
we have

E[T ] ≤ TC + TE + TQ ≤
(

2 + 3e−γ + 4e−γ
γ − 1

)
C + E +

(
2 + 3e−γ + 4e−γ

γ − 1

)
Q.

Theorem 5. The LP-rounding algorithm described in Chapter 5 is a randomized 2.48-
approximation algorithm to the Single Allocation Hub Location Problem.

Proof. By Lemma 8, the expected cost of open hubs is at most γH. By Lemma 15, the
overall expected cost of all demands (i, j) ∈ −→D is, at most, (2 + 3e−γ + 4e−γ

γ−1 )C +E+ (2 +
3e−γ + 4e−γ

γ−1 )Q. Since we counted each demand twice, the expected connection cost of the
algorithm is half of this value. By selecting the best possible value of γ, the expected cost
of the solution is bounded as:

E[cost] = E

∑
k∈O

f(k) +
∑
{i,j}∈D

(cost(i, j))


≤ γH + 1
2

((
2 + 3e−γ + 4e−γ

γ − 1

)
C + E +

(
2 + 3e−γ + 4e−γ

γ − 1

)
Q

)

≤ min
γ

{
max

{
γ, 2 + 3e−γ + 4e−γ

γ − 1

}}(
H + C + E +Q

2

)

≤ 2.48
(
H + C + E +Q

2

)
.

The value γ0 = 2.48 was obtained numerically by finding the point in which the
functions g1(γ) = γ and g2(γ) = 2+3e−γ+ 4e−γ

γ−1 intersect, which is the point the minimizes
the expression above. The functions and the found value are depicted in Figure 5.4.
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Figure 5.4: Intersection point of functions g1 and g2.

Since the second term of the cost is the value of the objective function of (LP), the
expected cost is at most 2.48 the value of an optimal solution, and therefore the theorem
holds.
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Chapter 6

Concluding remarks

In this thesis, we studied variations of Hub Location Problems from the perspective of
approximation algorithms. The literature on such subject is not as rich as other loca-
tion problems, such as the Facility Location Problem and the k-Median Problem. With
respect to HLP, the existing approximation algorithms attempt to solve the problem of
designating clients to hubs, but not the problem of locating the hubs to be opened and as-
signing clients to hubs as a single decision process. In our effort to improve the literature,
we handled both location and allocation decisions simultaneously.

The first attempt to do so was tackling some variations of the problem by using state-
of-the-art algorithms of location problems as subroutines. This is done by transforming
an instance of the hub location problem into one instance of a corresponding location
problem for which we know a good approximation. To our knowledge, the approximation
algorithms derived using the reduction described in Chapter 4 are the first approximations
for the six listed variants of HLP.

Our main contribution is a 2.48-approximation algorithm for the Single Allocation
Hub Location Problem, based on LP-rounding and other strategies applied by famous
algorithms for location problems. This algorithm is based on a new linear formulation to
produce an initial fractional solution. The consecutive steps use both techniques that are
standard in the location literature (to select and open hubs), and new techniques, which
are specially crafted to deal with the assignment of clients to hubs. The former is based
on the clustering algorithm for FLP [22, 11]; the latter required the development of new
methods because a client is not always connected to the closest opened hub, as is the case
of FLP.

The adopted strategy to assign clients to hubs uses different criteria to allocate hubs,
depending on whether there is an open hub in its support set. This allows balancing
the terms of the solution cost by exploiting the symmetries of the linear formulation.
The achieved factor improves on the results obtained by the previous reduction for this
problem. We believe the method to balance connection costs described in Chapter 5
can be extended for other hub location problems or similar problems whose objective
functions are composed of multiple terms, in the same way that standard techniques of
FLP algorithms are extended to other location problems.

While this LP-rounding algorithm improves on the previously obtained factor, we
think that the analysis of the algorithm can be strengthened: our strategy only gives an
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upper bound on the solution cost, since it does not consider the case where both demand
endpoints have opened hubs in their neighborhood. Future works might also investigate
new methods to balance the components of the objective function, extending our analysis
of the LP-rounding algorithm. Several research opportunities remain in the field, and we
hope that this work serves as a starting point to deepen the understanding of hub location
problems.
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